/* * New-style TCG opcode generator for i386 instructions * * Copyright (c) 2022 Red Hat, Inc. * * Author: Paolo Bonzini * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #define ZMM_OFFSET(reg) offsetof(CPUX86State, xmm_regs[reg]) typedef void (*SSEFunc_i_ep)(TCGv_i32 val, TCGv_ptr env, TCGv_ptr reg); typedef void (*SSEFunc_l_ep)(TCGv_i64 val, TCGv_ptr env, TCGv_ptr reg); typedef void (*SSEFunc_0_epp)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b); typedef void (*SSEFunc_0_eppp)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_ptr reg_c); typedef void (*SSEFunc_0_epppp)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_ptr reg_c, TCGv_ptr reg_d); typedef void (*SSEFunc_0_eppi)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_i32 val); typedef void (*SSEFunc_0_epppi)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_ptr reg_c, TCGv_i32 val); typedef void (*SSEFunc_0_ppi)(TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_i32 val); typedef void (*SSEFunc_0_pppi)(TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_ptr reg_c, TCGv_i32 val); typedef void (*SSEFunc_0_eppt)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv val); typedef void (*SSEFunc_0_epppti)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_ptr reg_c, TCGv a0, TCGv_i32 scale); typedef void (*SSEFunc_0_eppppi)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_ptr reg_c, TCGv_ptr reg_d, TCGv_i32 flags); typedef void (*SSEFunc_0_eppppii)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_ptr reg_c, TCGv_ptr reg_d, TCGv_i32 even, TCGv_i32 odd); static inline TCGv_i32 tcg_constant8u_i32(uint8_t val) { return tcg_constant_i32(val); } static void gen_NM_exception(DisasContext *s) { gen_exception(s, EXCP07_PREX); } static void gen_illegal(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_illegal_opcode(s); } static void gen_load_ea(DisasContext *s, AddressParts *mem, bool is_vsib) { TCGv ea = gen_lea_modrm_1(s, *mem, is_vsib); gen_lea_v_seg(s, s->aflag, ea, mem->def_seg, s->override); } static inline int mmx_offset(MemOp ot) { switch (ot) { case MO_8: return offsetof(MMXReg, MMX_B(0)); case MO_16: return offsetof(MMXReg, MMX_W(0)); case MO_32: return offsetof(MMXReg, MMX_L(0)); case MO_64: return offsetof(MMXReg, MMX_Q(0)); default: g_assert_not_reached(); } } static inline int xmm_offset(MemOp ot) { switch (ot) { case MO_8: return offsetof(ZMMReg, ZMM_B(0)); case MO_16: return offsetof(ZMMReg, ZMM_W(0)); case MO_32: return offsetof(ZMMReg, ZMM_L(0)); case MO_64: return offsetof(ZMMReg, ZMM_Q(0)); case MO_128: return offsetof(ZMMReg, ZMM_X(0)); case MO_256: return offsetof(ZMMReg, ZMM_Y(0)); default: g_assert_not_reached(); } } static int vector_reg_offset(X86DecodedOp *op) { assert(op->unit == X86_OP_MMX || op->unit == X86_OP_SSE); if (op->unit == X86_OP_MMX) { return op->offset - mmx_offset(op->ot); } else { return op->offset - xmm_offset(op->ot); } } static int vector_elem_offset(X86DecodedOp *op, MemOp ot, int n) { int base_ofs = vector_reg_offset(op); switch(ot) { case MO_8: if (op->unit == X86_OP_MMX) { return base_ofs + offsetof(MMXReg, MMX_B(n)); } else { return base_ofs + offsetof(ZMMReg, ZMM_B(n)); } case MO_16: if (op->unit == X86_OP_MMX) { return base_ofs + offsetof(MMXReg, MMX_W(n)); } else { return base_ofs + offsetof(ZMMReg, ZMM_W(n)); } case MO_32: if (op->unit == X86_OP_MMX) { return base_ofs + offsetof(MMXReg, MMX_L(n)); } else { return base_ofs + offsetof(ZMMReg, ZMM_L(n)); } case MO_64: if (op->unit == X86_OP_MMX) { return base_ofs; } else { return base_ofs + offsetof(ZMMReg, ZMM_Q(n)); } case MO_128: assert(op->unit == X86_OP_SSE); return base_ofs + offsetof(ZMMReg, ZMM_X(n)); case MO_256: assert(op->unit == X86_OP_SSE); return base_ofs + offsetof(ZMMReg, ZMM_Y(n)); default: g_assert_not_reached(); } } static void compute_mmx_offset(X86DecodedOp *op) { if (!op->has_ea) { op->offset = offsetof(CPUX86State, fpregs[op->n].mmx) + mmx_offset(op->ot); } else { op->offset = offsetof(CPUX86State, mmx_t0) + mmx_offset(op->ot); } } static void compute_xmm_offset(X86DecodedOp *op) { if (!op->has_ea) { op->offset = ZMM_OFFSET(op->n) + xmm_offset(op->ot); } else { op->offset = offsetof(CPUX86State, xmm_t0) + xmm_offset(op->ot); } } static void gen_load_sse(DisasContext *s, TCGv temp, MemOp ot, int dest_ofs, bool aligned) { switch(ot) { case MO_8: gen_op_ld_v(s, MO_8, temp, s->A0); tcg_gen_st8_tl(temp, cpu_env, dest_ofs); break; case MO_16: gen_op_ld_v(s, MO_16, temp, s->A0); tcg_gen_st16_tl(temp, cpu_env, dest_ofs); break; case MO_32: gen_op_ld_v(s, MO_32, temp, s->A0); tcg_gen_st32_tl(temp, cpu_env, dest_ofs); break; case MO_64: gen_ldq_env_A0(s, dest_ofs); break; case MO_128: gen_ldo_env_A0(s, dest_ofs, aligned); break; case MO_256: gen_ldy_env_A0(s, dest_ofs, aligned); break; default: g_assert_not_reached(); } } static bool sse_needs_alignment(DisasContext *s, X86DecodedInsn *decode, MemOp ot) { switch (decode->e.vex_class) { case 2: case 4: if ((s->prefix & PREFIX_VEX) || decode->e.vex_special == X86_VEX_SSEUnaligned) { /* MOST legacy SSE instructions require aligned memory operands, but not all. */ return false; } /* fall through */ case 1: return ot >= MO_128; default: return false; } } static void gen_load(DisasContext *s, X86DecodedInsn *decode, int opn, TCGv v) { X86DecodedOp *op = &decode->op[opn]; switch (op->unit) { case X86_OP_SKIP: return; case X86_OP_SEG: tcg_gen_ld32u_tl(v, cpu_env, offsetof(CPUX86State,segs[op->n].selector)); break; case X86_OP_CR: tcg_gen_ld_tl(v, cpu_env, offsetof(CPUX86State, cr[op->n])); break; case X86_OP_DR: tcg_gen_ld_tl(v, cpu_env, offsetof(CPUX86State, dr[op->n])); break; case X86_OP_INT: if (op->has_ea) { gen_op_ld_v(s, op->ot, v, s->A0); } else { gen_op_mov_v_reg(s, op->ot, v, op->n); } break; case X86_OP_IMM: tcg_gen_movi_tl(v, decode->immediate); break; case X86_OP_MMX: compute_mmx_offset(op); goto load_vector; case X86_OP_SSE: compute_xmm_offset(op); load_vector: if (op->has_ea) { bool aligned = sse_needs_alignment(s, decode, op->ot); gen_load_sse(s, v, op->ot, op->offset, aligned); } break; default: g_assert_not_reached(); } } static TCGv_ptr op_ptr(X86DecodedInsn *decode, int opn) { X86DecodedOp *op = &decode->op[opn]; if (op->v_ptr) { return op->v_ptr; } op->v_ptr = tcg_temp_new_ptr(); /* The temporary points to the MMXReg or ZMMReg. */ tcg_gen_addi_ptr(op->v_ptr, cpu_env, vector_reg_offset(op)); return op->v_ptr; } #define OP_PTR0 op_ptr(decode, 0) #define OP_PTR1 op_ptr(decode, 1) #define OP_PTR2 op_ptr(decode, 2) static void gen_writeback(DisasContext *s, X86DecodedInsn *decode, int opn, TCGv v) { X86DecodedOp *op = &decode->op[opn]; switch (op->unit) { case X86_OP_SKIP: break; case X86_OP_SEG: /* Note that gen_movl_seg_T0 takes care of interrupt shadow and TF. */ gen_movl_seg_T0(s, op->n); break; case X86_OP_INT: if (op->has_ea) { gen_op_st_v(s, op->ot, v, s->A0); } else { gen_op_mov_reg_v(s, op->ot, op->n, v); } break; case X86_OP_MMX: break; case X86_OP_SSE: if (!op->has_ea && (s->prefix & PREFIX_VEX) && op->ot <= MO_128) { tcg_gen_gvec_dup_imm(MO_64, offsetof(CPUX86State, xmm_regs[op->n].ZMM_X(1)), 16, 16, 0); } break; case X86_OP_CR: case X86_OP_DR: default: g_assert_not_reached(); } } static inline int vector_len(DisasContext *s, X86DecodedInsn *decode) { if (decode->e.special == X86_SPECIAL_MMX && !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { return 8; } return s->vex_l ? 32 : 16; } static void gen_store_sse(DisasContext *s, X86DecodedInsn *decode, int src_ofs) { MemOp ot = decode->op[0].ot; int vec_len = vector_len(s, decode); bool aligned = sse_needs_alignment(s, decode, ot); if (!decode->op[0].has_ea) { tcg_gen_gvec_mov(MO_64, decode->op[0].offset, src_ofs, vec_len, vec_len); return; } switch (ot) { case MO_64: gen_stq_env_A0(s, src_ofs); break; case MO_128: gen_sto_env_A0(s, src_ofs, aligned); break; case MO_256: gen_sty_env_A0(s, src_ofs, aligned); break; default: g_assert_not_reached(); } } static void gen_helper_pavgusb(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b) { gen_helper_pavgb_mmx(env, reg_a, reg_a, reg_b); } #define FN_3DNOW_MOVE ((SSEFunc_0_epp) (uintptr_t) 1) static const SSEFunc_0_epp fns_3dnow[] = { [0x0c] = gen_helper_pi2fw, [0x0d] = gen_helper_pi2fd, [0x1c] = gen_helper_pf2iw, [0x1d] = gen_helper_pf2id, [0x8a] = gen_helper_pfnacc, [0x8e] = gen_helper_pfpnacc, [0x90] = gen_helper_pfcmpge, [0x94] = gen_helper_pfmin, [0x96] = gen_helper_pfrcp, [0x97] = gen_helper_pfrsqrt, [0x9a] = gen_helper_pfsub, [0x9e] = gen_helper_pfadd, [0xa0] = gen_helper_pfcmpgt, [0xa4] = gen_helper_pfmax, [0xa6] = FN_3DNOW_MOVE, /* PFRCPIT1; no need to actually increase precision */ [0xa7] = FN_3DNOW_MOVE, /* PFRSQIT1 */ [0xb6] = FN_3DNOW_MOVE, /* PFRCPIT2 */ [0xaa] = gen_helper_pfsubr, [0xae] = gen_helper_pfacc, [0xb0] = gen_helper_pfcmpeq, [0xb4] = gen_helper_pfmul, [0xb7] = gen_helper_pmulhrw_mmx, [0xbb] = gen_helper_pswapd, [0xbf] = gen_helper_pavgusb, }; static void gen_3dnow(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { uint8_t b = decode->immediate; SSEFunc_0_epp fn = b < ARRAY_SIZE(fns_3dnow) ? fns_3dnow[b] : NULL; if (!fn) { gen_illegal_opcode(s); return; } if (s->flags & HF_TS_MASK) { gen_NM_exception(s); return; } if (s->flags & HF_EM_MASK) { gen_illegal_opcode(s); return; } gen_helper_enter_mmx(cpu_env); if (fn == FN_3DNOW_MOVE) { tcg_gen_ld_i64(s->tmp1_i64, cpu_env, decode->op[1].offset); tcg_gen_st_i64(s->tmp1_i64, cpu_env, decode->op[0].offset); } else { fn(cpu_env, OP_PTR0, OP_PTR1); } } /* * 00 = v*ps Vps, Hps, Wpd * 66 = v*pd Vpd, Hpd, Wps * f3 = v*ss Vss, Hss, Wps * f2 = v*sd Vsd, Hsd, Wps */ static inline void gen_unary_fp_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, SSEFunc_0_epp pd_xmm, SSEFunc_0_epp ps_xmm, SSEFunc_0_epp pd_ymm, SSEFunc_0_epp ps_ymm, SSEFunc_0_eppp sd, SSEFunc_0_eppp ss) { if ((s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) != 0) { SSEFunc_0_eppp fn = s->prefix & PREFIX_REPZ ? ss : sd; if (!fn) { gen_illegal_opcode(s); return; } fn(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2); } else { SSEFunc_0_epp ps, pd, fn; ps = s->vex_l ? ps_ymm : ps_xmm; pd = s->vex_l ? pd_ymm : pd_xmm; fn = s->prefix & PREFIX_DATA ? pd : ps; if (!fn) { gen_illegal_opcode(s); return; } fn(cpu_env, OP_PTR0, OP_PTR2); } } #define UNARY_FP_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ gen_unary_fp_sse(s, env, decode, \ gen_helper_##lname##pd_xmm, \ gen_helper_##lname##ps_xmm, \ gen_helper_##lname##pd_ymm, \ gen_helper_##lname##ps_ymm, \ gen_helper_##lname##sd, \ gen_helper_##lname##ss); \ } UNARY_FP_SSE(VSQRT, sqrt) /* * 00 = v*ps Vps, Hps, Wpd * 66 = v*pd Vpd, Hpd, Wps * f3 = v*ss Vss, Hss, Wps * f2 = v*sd Vsd, Hsd, Wps */ static inline void gen_fp_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, SSEFunc_0_eppp pd_xmm, SSEFunc_0_eppp ps_xmm, SSEFunc_0_eppp pd_ymm, SSEFunc_0_eppp ps_ymm, SSEFunc_0_eppp sd, SSEFunc_0_eppp ss) { SSEFunc_0_eppp ps, pd, fn; if ((s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) != 0) { fn = s->prefix & PREFIX_REPZ ? ss : sd; } else { ps = s->vex_l ? ps_ymm : ps_xmm; pd = s->vex_l ? pd_ymm : pd_xmm; fn = s->prefix & PREFIX_DATA ? pd : ps; } if (fn) { fn(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2); } else { gen_illegal_opcode(s); } } #define FP_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ gen_fp_sse(s, env, decode, \ gen_helper_##lname##pd_xmm, \ gen_helper_##lname##ps_xmm, \ gen_helper_##lname##pd_ymm, \ gen_helper_##lname##ps_ymm, \ gen_helper_##lname##sd, \ gen_helper_##lname##ss); \ } FP_SSE(VADD, add) FP_SSE(VMUL, mul) FP_SSE(VSUB, sub) FP_SSE(VMIN, min) FP_SSE(VDIV, div) FP_SSE(VMAX, max) #define FMA_SSE_PACKED(uname, ptr0, ptr1, ptr2, even, odd) \ static void gen_##uname##Px(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ SSEFunc_0_eppppii xmm = s->vex_w ? gen_helper_fma4pd_xmm : gen_helper_fma4ps_xmm; \ SSEFunc_0_eppppii ymm = s->vex_w ? gen_helper_fma4pd_ymm : gen_helper_fma4ps_ymm; \ SSEFunc_0_eppppii fn = s->vex_l ? ymm : xmm; \ \ fn(cpu_env, OP_PTR0, ptr0, ptr1, ptr2, \ tcg_constant_i32(even), \ tcg_constant_i32((even) ^ (odd))); \ } #define FMA_SSE(uname, ptr0, ptr1, ptr2, flags) \ FMA_SSE_PACKED(uname, ptr0, ptr1, ptr2, flags, flags) \ static void gen_##uname##Sx(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ SSEFunc_0_eppppi fn = s->vex_w ? gen_helper_fma4sd : gen_helper_fma4ss; \ \ fn(cpu_env, OP_PTR0, ptr0, ptr1, ptr2, \ tcg_constant_i32(flags)); \ } \ FMA_SSE(VFMADD231, OP_PTR1, OP_PTR2, OP_PTR0, 0) FMA_SSE(VFMADD213, OP_PTR1, OP_PTR0, OP_PTR2, 0) FMA_SSE(VFMADD132, OP_PTR0, OP_PTR2, OP_PTR1, 0) FMA_SSE(VFNMADD231, OP_PTR1, OP_PTR2, OP_PTR0, float_muladd_negate_product) FMA_SSE(VFNMADD213, OP_PTR1, OP_PTR0, OP_PTR2, float_muladd_negate_product) FMA_SSE(VFNMADD132, OP_PTR0, OP_PTR2, OP_PTR1, float_muladd_negate_product) FMA_SSE(VFMSUB231, OP_PTR1, OP_PTR2, OP_PTR0, float_muladd_negate_c) FMA_SSE(VFMSUB213, OP_PTR1, OP_PTR0, OP_PTR2, float_muladd_negate_c) FMA_SSE(VFMSUB132, OP_PTR0, OP_PTR2, OP_PTR1, float_muladd_negate_c) FMA_SSE(VFNMSUB231, OP_PTR1, OP_PTR2, OP_PTR0, float_muladd_negate_c|float_muladd_negate_product) FMA_SSE(VFNMSUB213, OP_PTR1, OP_PTR0, OP_PTR2, float_muladd_negate_c|float_muladd_negate_product) FMA_SSE(VFNMSUB132, OP_PTR0, OP_PTR2, OP_PTR1, float_muladd_negate_c|float_muladd_negate_product) FMA_SSE_PACKED(VFMADDSUB231, OP_PTR1, OP_PTR2, OP_PTR0, float_muladd_negate_c, 0) FMA_SSE_PACKED(VFMADDSUB213, OP_PTR1, OP_PTR0, OP_PTR2, float_muladd_negate_c, 0) FMA_SSE_PACKED(VFMADDSUB132, OP_PTR0, OP_PTR2, OP_PTR1, float_muladd_negate_c, 0) FMA_SSE_PACKED(VFMSUBADD231, OP_PTR1, OP_PTR2, OP_PTR0, 0, float_muladd_negate_c) FMA_SSE_PACKED(VFMSUBADD213, OP_PTR1, OP_PTR0, OP_PTR2, 0, float_muladd_negate_c) FMA_SSE_PACKED(VFMSUBADD132, OP_PTR0, OP_PTR2, OP_PTR1, 0, float_muladd_negate_c) #define FP_UNPACK_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ /* PS maps to the DQ integer instruction, PD maps to QDQ. */ \ gen_fp_sse(s, env, decode, \ gen_helper_##lname##qdq_xmm, \ gen_helper_##lname##dq_xmm, \ gen_helper_##lname##qdq_ymm, \ gen_helper_##lname##dq_ymm, \ NULL, NULL); \ } FP_UNPACK_SSE(VUNPCKLPx, punpckl) FP_UNPACK_SSE(VUNPCKHPx, punpckh) /* * 00 = v*ps Vps, Wpd * f3 = v*ss Vss, Wps */ static inline void gen_unary_fp32_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, SSEFunc_0_epp ps_xmm, SSEFunc_0_epp ps_ymm, SSEFunc_0_eppp ss) { if ((s->prefix & (PREFIX_DATA | PREFIX_REPNZ)) != 0) { goto illegal_op; } else if (s->prefix & PREFIX_REPZ) { if (!ss) { goto illegal_op; } ss(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2); } else { SSEFunc_0_epp fn = s->vex_l ? ps_ymm : ps_xmm; if (!fn) { goto illegal_op; } fn(cpu_env, OP_PTR0, OP_PTR2); } return; illegal_op: gen_illegal_opcode(s); } #define UNARY_FP32_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ gen_unary_fp32_sse(s, env, decode, \ gen_helper_##lname##ps_xmm, \ gen_helper_##lname##ps_ymm, \ gen_helper_##lname##ss); \ } UNARY_FP32_SSE(VRSQRT, rsqrt) UNARY_FP32_SSE(VRCP, rcp) /* * 66 = v*pd Vpd, Hpd, Wpd * f2 = v*ps Vps, Hps, Wps */ static inline void gen_horizontal_fp_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, SSEFunc_0_eppp pd_xmm, SSEFunc_0_eppp ps_xmm, SSEFunc_0_eppp pd_ymm, SSEFunc_0_eppp ps_ymm) { SSEFunc_0_eppp ps, pd, fn; ps = s->vex_l ? ps_ymm : ps_xmm; pd = s->vex_l ? pd_ymm : pd_xmm; fn = s->prefix & PREFIX_DATA ? pd : ps; fn(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2); } #define HORIZONTAL_FP_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ gen_horizontal_fp_sse(s, env, decode, \ gen_helper_##lname##pd_xmm, gen_helper_##lname##ps_xmm, \ gen_helper_##lname##pd_ymm, gen_helper_##lname##ps_ymm); \ } HORIZONTAL_FP_SSE(VHADD, hadd) HORIZONTAL_FP_SSE(VHSUB, hsub) HORIZONTAL_FP_SSE(VADDSUB, addsub) static inline void gen_ternary_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, int op3, SSEFunc_0_epppp xmm, SSEFunc_0_epppp ymm) { SSEFunc_0_epppp fn = s->vex_l ? ymm : xmm; TCGv_ptr ptr3 = tcg_temp_new_ptr(); /* The format of the fourth input is Lx */ tcg_gen_addi_ptr(ptr3, cpu_env, ZMM_OFFSET(op3)); fn(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2, ptr3); } #define TERNARY_SSE(uname, uvname, lname) \ static void gen_##uvname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ gen_ternary_sse(s, env, decode, (uint8_t)decode->immediate >> 4, \ gen_helper_##lname##_xmm, gen_helper_##lname##_ymm); \ } \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ gen_ternary_sse(s, env, decode, 0, \ gen_helper_##lname##_xmm, gen_helper_##lname##_ymm); \ } TERNARY_SSE(BLENDVPS, VBLENDVPS, blendvps) TERNARY_SSE(BLENDVPD, VBLENDVPD, blendvpd) TERNARY_SSE(PBLENDVB, VPBLENDVB, pblendvb) static inline void gen_binary_imm_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, SSEFunc_0_epppi xmm, SSEFunc_0_epppi ymm) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); if (!s->vex_l) { xmm(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2, imm); } else { ymm(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2, imm); } } #define BINARY_IMM_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ gen_binary_imm_sse(s, env, decode, \ gen_helper_##lname##_xmm, \ gen_helper_##lname##_ymm); \ } BINARY_IMM_SSE(VBLENDPD, blendpd) BINARY_IMM_SSE(VBLENDPS, blendps) BINARY_IMM_SSE(VPBLENDW, pblendw) BINARY_IMM_SSE(VDDPS, dpps) #define gen_helper_dppd_ymm NULL BINARY_IMM_SSE(VDDPD, dppd) BINARY_IMM_SSE(VMPSADBW, mpsadbw) BINARY_IMM_SSE(PCLMULQDQ, pclmulqdq) #define UNARY_INT_GVEC(uname, func, ...) \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ int vec_len = vector_len(s, decode); \ \ func(__VA_ARGS__, decode->op[0].offset, \ decode->op[2].offset, vec_len, vec_len); \ } UNARY_INT_GVEC(PABSB, tcg_gen_gvec_abs, MO_8) UNARY_INT_GVEC(PABSW, tcg_gen_gvec_abs, MO_16) UNARY_INT_GVEC(PABSD, tcg_gen_gvec_abs, MO_32) UNARY_INT_GVEC(VBROADCASTx128, tcg_gen_gvec_dup_mem, MO_128) UNARY_INT_GVEC(VPBROADCASTB, tcg_gen_gvec_dup_mem, MO_8) UNARY_INT_GVEC(VPBROADCASTW, tcg_gen_gvec_dup_mem, MO_16) UNARY_INT_GVEC(VPBROADCASTD, tcg_gen_gvec_dup_mem, MO_32) UNARY_INT_GVEC(VPBROADCASTQ, tcg_gen_gvec_dup_mem, MO_64) #define BINARY_INT_GVEC(uname, func, ...) \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ int vec_len = vector_len(s, decode); \ \ func(__VA_ARGS__, \ decode->op[0].offset, decode->op[1].offset, \ decode->op[2].offset, vec_len, vec_len); \ } BINARY_INT_GVEC(PADDB, tcg_gen_gvec_add, MO_8) BINARY_INT_GVEC(PADDW, tcg_gen_gvec_add, MO_16) BINARY_INT_GVEC(PADDD, tcg_gen_gvec_add, MO_32) BINARY_INT_GVEC(PADDQ, tcg_gen_gvec_add, MO_64) BINARY_INT_GVEC(PADDSB, tcg_gen_gvec_ssadd, MO_8) BINARY_INT_GVEC(PADDSW, tcg_gen_gvec_ssadd, MO_16) BINARY_INT_GVEC(PADDUSB, tcg_gen_gvec_usadd, MO_8) BINARY_INT_GVEC(PADDUSW, tcg_gen_gvec_usadd, MO_16) BINARY_INT_GVEC(PAND, tcg_gen_gvec_and, MO_64) BINARY_INT_GVEC(PCMPEQB, tcg_gen_gvec_cmp, TCG_COND_EQ, MO_8) BINARY_INT_GVEC(PCMPEQD, tcg_gen_gvec_cmp, TCG_COND_EQ, MO_32) BINARY_INT_GVEC(PCMPEQW, tcg_gen_gvec_cmp, TCG_COND_EQ, MO_16) BINARY_INT_GVEC(PCMPEQQ, tcg_gen_gvec_cmp, TCG_COND_EQ, MO_64) BINARY_INT_GVEC(PCMPGTB, tcg_gen_gvec_cmp, TCG_COND_GT, MO_8) BINARY_INT_GVEC(PCMPGTW, tcg_gen_gvec_cmp, TCG_COND_GT, MO_16) BINARY_INT_GVEC(PCMPGTD, tcg_gen_gvec_cmp, TCG_COND_GT, MO_32) BINARY_INT_GVEC(PCMPGTQ, tcg_gen_gvec_cmp, TCG_COND_GT, MO_64) BINARY_INT_GVEC(PMAXSB, tcg_gen_gvec_smax, MO_8) BINARY_INT_GVEC(PMAXSW, tcg_gen_gvec_smax, MO_16) BINARY_INT_GVEC(PMAXSD, tcg_gen_gvec_smax, MO_32) BINARY_INT_GVEC(PMAXUB, tcg_gen_gvec_umax, MO_8) BINARY_INT_GVEC(PMAXUW, tcg_gen_gvec_umax, MO_16) BINARY_INT_GVEC(PMAXUD, tcg_gen_gvec_umax, MO_32) BINARY_INT_GVEC(PMINSB, tcg_gen_gvec_smin, MO_8) BINARY_INT_GVEC(PMINSW, tcg_gen_gvec_smin, MO_16) BINARY_INT_GVEC(PMINSD, tcg_gen_gvec_smin, MO_32) BINARY_INT_GVEC(PMINUB, tcg_gen_gvec_umin, MO_8) BINARY_INT_GVEC(PMINUW, tcg_gen_gvec_umin, MO_16) BINARY_INT_GVEC(PMINUD, tcg_gen_gvec_umin, MO_32) BINARY_INT_GVEC(PMULLW, tcg_gen_gvec_mul, MO_16) BINARY_INT_GVEC(PMULLD, tcg_gen_gvec_mul, MO_32) BINARY_INT_GVEC(POR, tcg_gen_gvec_or, MO_64) BINARY_INT_GVEC(PSUBB, tcg_gen_gvec_sub, MO_8) BINARY_INT_GVEC(PSUBW, tcg_gen_gvec_sub, MO_16) BINARY_INT_GVEC(PSUBD, tcg_gen_gvec_sub, MO_32) BINARY_INT_GVEC(PSUBQ, tcg_gen_gvec_sub, MO_64) BINARY_INT_GVEC(PSUBSB, tcg_gen_gvec_sssub, MO_8) BINARY_INT_GVEC(PSUBSW, tcg_gen_gvec_sssub, MO_16) BINARY_INT_GVEC(PSUBUSB, tcg_gen_gvec_ussub, MO_8) BINARY_INT_GVEC(PSUBUSW, tcg_gen_gvec_ussub, MO_16) BINARY_INT_GVEC(PXOR, tcg_gen_gvec_xor, MO_64) /* * 00 = p* Pq, Qq (if mmx not NULL; no VEX) * 66 = vp* Vx, Hx, Wx * * These are really the same encoding, because 1) V is the same as P when VEX.V * is not present 2) P and Q are the same as H and W apart from MM/XMM */ static inline void gen_binary_int_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, SSEFunc_0_eppp mmx, SSEFunc_0_eppp xmm, SSEFunc_0_eppp ymm) { assert(!!mmx == !!(decode->e.special == X86_SPECIAL_MMX)); if (mmx && (s->prefix & PREFIX_VEX) && !(s->prefix & PREFIX_DATA)) { /* VEX encoding is not applicable to MMX instructions. */ gen_illegal_opcode(s); return; } if (!(s->prefix & PREFIX_DATA)) { mmx(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2); } else if (!s->vex_l) { xmm(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2); } else { ymm(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2); } } #define BINARY_INT_MMX(uname, lname) \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ gen_binary_int_sse(s, env, decode, \ gen_helper_##lname##_mmx, \ gen_helper_##lname##_xmm, \ gen_helper_##lname##_ymm); \ } BINARY_INT_MMX(PUNPCKLBW, punpcklbw) BINARY_INT_MMX(PUNPCKLWD, punpcklwd) BINARY_INT_MMX(PUNPCKLDQ, punpckldq) BINARY_INT_MMX(PACKSSWB, packsswb) BINARY_INT_MMX(PACKUSWB, packuswb) BINARY_INT_MMX(PUNPCKHBW, punpckhbw) BINARY_INT_MMX(PUNPCKHWD, punpckhwd) BINARY_INT_MMX(PUNPCKHDQ, punpckhdq) BINARY_INT_MMX(PACKSSDW, packssdw) BINARY_INT_MMX(PAVGB, pavgb) BINARY_INT_MMX(PAVGW, pavgw) BINARY_INT_MMX(PMADDWD, pmaddwd) BINARY_INT_MMX(PMULHUW, pmulhuw) BINARY_INT_MMX(PMULHW, pmulhw) BINARY_INT_MMX(PMULUDQ, pmuludq) BINARY_INT_MMX(PSADBW, psadbw) BINARY_INT_MMX(PSLLW_r, psllw) BINARY_INT_MMX(PSLLD_r, pslld) BINARY_INT_MMX(PSLLQ_r, psllq) BINARY_INT_MMX(PSRLW_r, psrlw) BINARY_INT_MMX(PSRLD_r, psrld) BINARY_INT_MMX(PSRLQ_r, psrlq) BINARY_INT_MMX(PSRAW_r, psraw) BINARY_INT_MMX(PSRAD_r, psrad) BINARY_INT_MMX(PHADDW, phaddw) BINARY_INT_MMX(PHADDSW, phaddsw) BINARY_INT_MMX(PHADDD, phaddd) BINARY_INT_MMX(PHSUBW, phsubw) BINARY_INT_MMX(PHSUBSW, phsubsw) BINARY_INT_MMX(PHSUBD, phsubd) BINARY_INT_MMX(PMADDUBSW, pmaddubsw) BINARY_INT_MMX(PSHUFB, pshufb) BINARY_INT_MMX(PSIGNB, psignb) BINARY_INT_MMX(PSIGNW, psignw) BINARY_INT_MMX(PSIGND, psignd) BINARY_INT_MMX(PMULHRSW, pmulhrsw) /* Instructions with no MMX equivalent. */ #define BINARY_INT_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ gen_binary_int_sse(s, env, decode, \ NULL, \ gen_helper_##lname##_xmm, \ gen_helper_##lname##_ymm); \ } /* Instructions with no MMX equivalent. */ BINARY_INT_SSE(PUNPCKLQDQ, punpcklqdq) BINARY_INT_SSE(PUNPCKHQDQ, punpckhqdq) BINARY_INT_SSE(VPACKUSDW, packusdw) BINARY_INT_SSE(VPERMILPS, vpermilps) BINARY_INT_SSE(VPERMILPD, vpermilpd) BINARY_INT_SSE(VMASKMOVPS, vpmaskmovd) BINARY_INT_SSE(VMASKMOVPD, vpmaskmovq) BINARY_INT_SSE(PMULDQ, pmuldq) BINARY_INT_SSE(VAESDEC, aesdec) BINARY_INT_SSE(VAESDECLAST, aesdeclast) BINARY_INT_SSE(VAESENC, aesenc) BINARY_INT_SSE(VAESENCLAST, aesenclast) #define UNARY_CMP_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ if (!s->vex_l) { \ gen_helper_##lname##_xmm(cpu_env, OP_PTR1, OP_PTR2); \ } else { \ gen_helper_##lname##_ymm(cpu_env, OP_PTR1, OP_PTR2); \ } \ set_cc_op(s, CC_OP_EFLAGS); \ } UNARY_CMP_SSE(VPTEST, ptest) UNARY_CMP_SSE(VTESTPS, vtestps) UNARY_CMP_SSE(VTESTPD, vtestpd) static inline void gen_unary_int_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, SSEFunc_0_epp xmm, SSEFunc_0_epp ymm) { if (!s->vex_l) { xmm(cpu_env, OP_PTR0, OP_PTR2); } else { ymm(cpu_env, OP_PTR0, OP_PTR2); } } #define UNARY_INT_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ gen_unary_int_sse(s, env, decode, \ gen_helper_##lname##_xmm, \ gen_helper_##lname##_ymm); \ } UNARY_INT_SSE(VPMOVSXBW, pmovsxbw) UNARY_INT_SSE(VPMOVSXBD, pmovsxbd) UNARY_INT_SSE(VPMOVSXBQ, pmovsxbq) UNARY_INT_SSE(VPMOVSXWD, pmovsxwd) UNARY_INT_SSE(VPMOVSXWQ, pmovsxwq) UNARY_INT_SSE(VPMOVSXDQ, pmovsxdq) UNARY_INT_SSE(VPMOVZXBW, pmovzxbw) UNARY_INT_SSE(VPMOVZXBD, pmovzxbd) UNARY_INT_SSE(VPMOVZXBQ, pmovzxbq) UNARY_INT_SSE(VPMOVZXWD, pmovzxwd) UNARY_INT_SSE(VPMOVZXWQ, pmovzxwq) UNARY_INT_SSE(VPMOVZXDQ, pmovzxdq) UNARY_INT_SSE(VMOVSLDUP, pmovsldup) UNARY_INT_SSE(VMOVSHDUP, pmovshdup) UNARY_INT_SSE(VMOVDDUP, pmovdldup) UNARY_INT_SSE(VCVTDQ2PD, cvtdq2pd) UNARY_INT_SSE(VCVTPD2DQ, cvtpd2dq) UNARY_INT_SSE(VCVTTPD2DQ, cvttpd2dq) UNARY_INT_SSE(VCVTDQ2PS, cvtdq2ps) UNARY_INT_SSE(VCVTPS2DQ, cvtps2dq) UNARY_INT_SSE(VCVTTPS2DQ, cvttps2dq) UNARY_INT_SSE(VCVTPH2PS, cvtph2ps) static inline void gen_unary_imm_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, SSEFunc_0_ppi xmm, SSEFunc_0_ppi ymm) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); if (!s->vex_l) { xmm(OP_PTR0, OP_PTR1, imm); } else { ymm(OP_PTR0, OP_PTR1, imm); } } #define UNARY_IMM_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ gen_unary_imm_sse(s, env, decode, \ gen_helper_##lname##_xmm, \ gen_helper_##lname##_ymm); \ } UNARY_IMM_SSE(PSHUFD, pshufd) UNARY_IMM_SSE(PSHUFHW, pshufhw) UNARY_IMM_SSE(PSHUFLW, pshuflw) #define gen_helper_vpermq_xmm NULL UNARY_IMM_SSE(VPERMQ, vpermq) UNARY_IMM_SSE(VPERMILPS_i, vpermilps_imm) UNARY_IMM_SSE(VPERMILPD_i, vpermilpd_imm) static inline void gen_unary_imm_fp_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, SSEFunc_0_eppi xmm, SSEFunc_0_eppi ymm) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); if (!s->vex_l) { xmm(cpu_env, OP_PTR0, OP_PTR1, imm); } else { ymm(cpu_env, OP_PTR0, OP_PTR1, imm); } } #define UNARY_IMM_FP_SSE(uname, lname) \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ gen_unary_imm_fp_sse(s, env, decode, \ gen_helper_##lname##_xmm, \ gen_helper_##lname##_ymm); \ } UNARY_IMM_FP_SSE(VROUNDPS, roundps) UNARY_IMM_FP_SSE(VROUNDPD, roundpd) static inline void gen_vexw_avx(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, SSEFunc_0_eppp d_xmm, SSEFunc_0_eppp q_xmm, SSEFunc_0_eppp d_ymm, SSEFunc_0_eppp q_ymm) { SSEFunc_0_eppp d = s->vex_l ? d_ymm : d_xmm; SSEFunc_0_eppp q = s->vex_l ? q_ymm : q_xmm; SSEFunc_0_eppp fn = s->vex_w ? q : d; fn(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2); } /* VEX.W affects whether to operate on 32- or 64-bit elements. */ #define VEXW_AVX(uname, lname) \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ gen_vexw_avx(s, env, decode, \ gen_helper_##lname##d_xmm, gen_helper_##lname##q_xmm, \ gen_helper_##lname##d_ymm, gen_helper_##lname##q_ymm); \ } VEXW_AVX(VPSLLV, vpsllv) VEXW_AVX(VPSRLV, vpsrlv) VEXW_AVX(VPSRAV, vpsrav) VEXW_AVX(VPMASKMOV, vpmaskmov) /* Same as above, but with extra arguments to the helper. */ static inline void gen_vsib_avx(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, SSEFunc_0_epppti d_xmm, SSEFunc_0_epppti q_xmm, SSEFunc_0_epppti d_ymm, SSEFunc_0_epppti q_ymm) { SSEFunc_0_epppti d = s->vex_l ? d_ymm : d_xmm; SSEFunc_0_epppti q = s->vex_l ? q_ymm : q_xmm; SSEFunc_0_epppti fn = s->vex_w ? q : d; TCGv_i32 scale = tcg_constant_i32(decode->mem.scale); TCGv_ptr index = tcg_temp_new_ptr(); /* Pass third input as (index, base, scale) */ tcg_gen_addi_ptr(index, cpu_env, ZMM_OFFSET(decode->mem.index)); fn(cpu_env, OP_PTR0, OP_PTR1, index, s->A0, scale); /* * There are two output operands, so zero OP1's high 128 bits * in the VEX.128 case. */ if (!s->vex_l) { int ymmh_ofs = vector_elem_offset(&decode->op[1], MO_128, 1); tcg_gen_gvec_dup_imm(MO_64, ymmh_ofs, 16, 16, 0); } } #define VSIB_AVX(uname, lname) \ static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \ { \ gen_vsib_avx(s, env, decode, \ gen_helper_##lname##d_xmm, gen_helper_##lname##q_xmm, \ gen_helper_##lname##d_ymm, gen_helper_##lname##q_ymm); \ } VSIB_AVX(VPGATHERD, vpgatherd) VSIB_AVX(VPGATHERQ, vpgatherq) static void gen_ADCOX(DisasContext *s, CPUX86State *env, MemOp ot, int cc_op) { int opposite_cc_op; TCGv carry_in = NULL; TCGv carry_out = (cc_op == CC_OP_ADCX ? cpu_cc_dst : cpu_cc_src2); TCGv zero; if (cc_op == s->cc_op || s->cc_op == CC_OP_ADCOX) { /* Re-use the carry-out from a previous round. */ carry_in = carry_out; } else { /* We don't have a carry-in, get it out of EFLAGS. */ if (s->cc_op != CC_OP_ADCX && s->cc_op != CC_OP_ADOX) { gen_compute_eflags(s); } carry_in = s->tmp0; tcg_gen_extract_tl(carry_in, cpu_cc_src, ctz32(cc_op == CC_OP_ADCX ? CC_C : CC_O), 1); } switch (ot) { #ifdef TARGET_X86_64 case MO_32: /* If TL is 64-bit just do everything in 64-bit arithmetic. */ tcg_gen_ext32u_tl(s->T0, s->T0); tcg_gen_ext32u_tl(s->T1, s->T1); tcg_gen_add_i64(s->T0, s->T0, s->T1); tcg_gen_add_i64(s->T0, s->T0, carry_in); tcg_gen_shri_i64(carry_out, s->T0, 32); break; #endif default: zero = tcg_constant_tl(0); tcg_gen_add2_tl(s->T0, carry_out, s->T0, zero, carry_in, zero); tcg_gen_add2_tl(s->T0, carry_out, s->T0, carry_out, s->T1, zero); break; } opposite_cc_op = cc_op == CC_OP_ADCX ? CC_OP_ADOX : CC_OP_ADCX; if (s->cc_op == CC_OP_ADCOX || s->cc_op == opposite_cc_op) { /* Merge with the carry-out from the opposite instruction. */ set_cc_op(s, CC_OP_ADCOX); } else { set_cc_op(s, cc_op); } } static void gen_ADCX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_ADCOX(s, env, decode->op[0].ot, CC_OP_ADCX); } static void gen_ADOX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_ADCOX(s, env, decode->op[0].ot, CC_OP_ADOX); } static void gen_ANDN(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; tcg_gen_andc_tl(s->T0, s->T1, s->T0); gen_op_update1_cc(s); set_cc_op(s, CC_OP_LOGICB + ot); } static void gen_BEXTR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; TCGv bound = tcg_constant_tl(ot == MO_64 ? 63 : 31); TCGv zero = tcg_constant_tl(0); TCGv mone = tcg_constant_tl(-1); /* * Extract START, and shift the operand. * Shifts larger than operand size get zeros. */ tcg_gen_ext8u_tl(s->A0, s->T1); if (TARGET_LONG_BITS == 64 && ot == MO_32) { tcg_gen_ext32u_tl(s->T0, s->T0); } tcg_gen_shr_tl(s->T0, s->T0, s->A0); tcg_gen_movcond_tl(TCG_COND_LEU, s->T0, s->A0, bound, s->T0, zero); /* * Extract the LEN into an inverse mask. Lengths larger than * operand size get all zeros, length 0 gets all ones. */ tcg_gen_extract_tl(s->A0, s->T1, 8, 8); tcg_gen_shl_tl(s->T1, mone, s->A0); tcg_gen_movcond_tl(TCG_COND_LEU, s->T1, s->A0, bound, s->T1, zero); tcg_gen_andc_tl(s->T0, s->T0, s->T1); gen_op_update1_cc(s); set_cc_op(s, CC_OP_LOGICB + ot); } static void gen_BLSI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; tcg_gen_mov_tl(cpu_cc_src, s->T0); tcg_gen_neg_tl(s->T1, s->T0); tcg_gen_and_tl(s->T0, s->T0, s->T1); tcg_gen_mov_tl(cpu_cc_dst, s->T0); set_cc_op(s, CC_OP_BMILGB + ot); } static void gen_BLSMSK(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; tcg_gen_mov_tl(cpu_cc_src, s->T0); tcg_gen_subi_tl(s->T1, s->T0, 1); tcg_gen_xor_tl(s->T0, s->T0, s->T1); tcg_gen_mov_tl(cpu_cc_dst, s->T0); set_cc_op(s, CC_OP_BMILGB + ot); } static void gen_BLSR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; tcg_gen_mov_tl(cpu_cc_src, s->T0); tcg_gen_subi_tl(s->T1, s->T0, 1); tcg_gen_and_tl(s->T0, s->T0, s->T1); tcg_gen_mov_tl(cpu_cc_dst, s->T0); set_cc_op(s, CC_OP_BMILGB + ot); } static void gen_BZHI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; TCGv bound = tcg_constant_tl(ot == MO_64 ? 63 : 31); TCGv zero = tcg_constant_tl(0); TCGv mone = tcg_constant_tl(-1); tcg_gen_ext8u_tl(s->T1, s->T1); /* * Note that since we're using BMILG (in order to get O * cleared) we need to store the inverse into C. */ tcg_gen_setcond_tl(TCG_COND_LEU, cpu_cc_src, s->T1, bound); tcg_gen_shl_tl(s->A0, mone, s->T1); tcg_gen_movcond_tl(TCG_COND_LEU, s->A0, s->T1, bound, s->A0, zero); tcg_gen_andc_tl(s->T0, s->T0, s->A0); gen_op_update1_cc(s); set_cc_op(s, CC_OP_BMILGB + ot); } static void gen_CRC32(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[2].ot; tcg_gen_trunc_tl_i32(s->tmp2_i32, s->T0); gen_helper_crc32(s->T0, s->tmp2_i32, s->T1, tcg_constant_i32(8 << ot)); } static void gen_CVTPI2Px(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_helper_enter_mmx(cpu_env); if (s->prefix & PREFIX_DATA) { gen_helper_cvtpi2pd(cpu_env, OP_PTR0, OP_PTR2); } else { gen_helper_cvtpi2ps(cpu_env, OP_PTR0, OP_PTR2); } } static void gen_CVTPx2PI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_helper_enter_mmx(cpu_env); if (s->prefix & PREFIX_DATA) { gen_helper_cvtpd2pi(cpu_env, OP_PTR0, OP_PTR2); } else { gen_helper_cvtps2pi(cpu_env, OP_PTR0, OP_PTR2); } } static void gen_CVTTPx2PI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_helper_enter_mmx(cpu_env); if (s->prefix & PREFIX_DATA) { gen_helper_cvttpd2pi(cpu_env, OP_PTR0, OP_PTR2); } else { gen_helper_cvttps2pi(cpu_env, OP_PTR0, OP_PTR2); } } static void gen_EMMS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_helper_emms(cpu_env); } static void gen_EXTRQ_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { TCGv_i32 length = tcg_constant_i32(decode->immediate & 63); TCGv_i32 index = tcg_constant_i32((decode->immediate >> 8) & 63); gen_helper_extrq_i(cpu_env, OP_PTR0, index, length); } static void gen_EXTRQ_r(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_helper_extrq_r(cpu_env, OP_PTR0, OP_PTR2); } static void gen_INSERTQ_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { TCGv_i32 length = tcg_constant_i32(decode->immediate & 63); TCGv_i32 index = tcg_constant_i32((decode->immediate >> 8) & 63); gen_helper_insertq_i(cpu_env, OP_PTR0, OP_PTR1, index, length); } static void gen_INSERTQ_r(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_helper_insertq_r(cpu_env, OP_PTR0, OP_PTR2); } static void gen_LDMXCSR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { if (s->vex_l) { gen_illegal_opcode(s); return; } tcg_gen_trunc_tl_i32(s->tmp2_i32, s->T1); gen_helper_ldmxcsr(cpu_env, s->tmp2_i32); } static void gen_MASKMOV(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { tcg_gen_mov_tl(s->A0, cpu_regs[R_EDI]); gen_extu(s->aflag, s->A0); gen_add_A0_ds_seg(s); if (s->prefix & PREFIX_DATA) { gen_helper_maskmov_xmm(cpu_env, OP_PTR1, OP_PTR2, s->A0); } else { gen_helper_maskmov_mmx(cpu_env, OP_PTR1, OP_PTR2, s->A0); } } static void gen_MOVBE(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; /* M operand type does not load/store */ if (decode->e.op0 == X86_TYPE_M) { tcg_gen_qemu_st_tl(s->T0, s->A0, s->mem_index, ot | MO_BE); } else { tcg_gen_qemu_ld_tl(s->T0, s->A0, s->mem_index, ot | MO_BE); } } static void gen_MOVD_from(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[2].ot; switch (ot) { case MO_32: #ifdef TARGET_X86_64 tcg_gen_ld32u_tl(s->T0, cpu_env, decode->op[2].offset); break; case MO_64: #endif tcg_gen_ld_tl(s->T0, cpu_env, decode->op[2].offset); break; default: abort(); } } static void gen_MOVD_to(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[2].ot; int vec_len = vector_len(s, decode); int lo_ofs = vector_elem_offset(&decode->op[0], ot, 0); tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); switch (ot) { case MO_32: #ifdef TARGET_X86_64 tcg_gen_st32_tl(s->T1, cpu_env, lo_ofs); break; case MO_64: #endif tcg_gen_st_tl(s->T1, cpu_env, lo_ofs); break; default: g_assert_not_reached(); } } static void gen_MOVDQ(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_store_sse(s, decode, decode->op[2].offset); } static void gen_MOVMSK(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { typeof(gen_helper_movmskps_ymm) *ps, *pd, *fn; ps = s->vex_l ? gen_helper_movmskps_ymm : gen_helper_movmskps_xmm; pd = s->vex_l ? gen_helper_movmskpd_ymm : gen_helper_movmskpd_xmm; fn = s->prefix & PREFIX_DATA ? pd : ps; fn(s->tmp2_i32, cpu_env, OP_PTR2); tcg_gen_extu_i32_tl(s->T0, s->tmp2_i32); } static void gen_MOVQ(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); int lo_ofs = vector_elem_offset(&decode->op[0], MO_64, 0); tcg_gen_ld_i64(s->tmp1_i64, cpu_env, decode->op[2].offset); if (decode->op[0].has_ea) { tcg_gen_qemu_st_i64(s->tmp1_i64, s->A0, s->mem_index, MO_LEUQ); } else { /* * tcg_gen_gvec_dup_i64(MO_64, op0.offset, 8, vec_len, s->tmp1_64) would * seem to work, but it does not on big-endian platforms; the cleared parts * are always at higher addresses, but cross-endian emulation inverts the * byte order so that the cleared parts need to be at *lower* addresses. * Because oprsz is 8, we see this here even for SSE; but more in general, * it disqualifies using oprsz < maxsz to emulate VEX128. */ tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); tcg_gen_st_i64(s->tmp1_i64, cpu_env, lo_ofs); } } static void gen_MOVq_dq(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_helper_enter_mmx(cpu_env); /* Otherwise the same as any other movq. */ return gen_MOVQ(s, env, decode); } static void gen_MULX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; /* low part of result in VEX.vvvv, high in MODRM */ switch (ot) { default: tcg_gen_trunc_tl_i32(s->tmp2_i32, s->T0); tcg_gen_trunc_tl_i32(s->tmp3_i32, s->T1); tcg_gen_mulu2_i32(s->tmp2_i32, s->tmp3_i32, s->tmp2_i32, s->tmp3_i32); tcg_gen_extu_i32_tl(cpu_regs[s->vex_v], s->tmp2_i32); tcg_gen_extu_i32_tl(s->T0, s->tmp3_i32); break; #ifdef TARGET_X86_64 case MO_64: tcg_gen_mulu2_i64(cpu_regs[s->vex_v], s->T0, s->T0, s->T1); break; #endif } } static void gen_PALIGNR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); if (!(s->prefix & PREFIX_DATA)) { gen_helper_palignr_mmx(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2, imm); } else if (!s->vex_l) { gen_helper_palignr_xmm(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2, imm); } else { gen_helper_palignr_ymm(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2, imm); } } static void gen_PANDN(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); /* Careful, operand order is reversed! */ tcg_gen_gvec_andc(MO_64, decode->op[0].offset, decode->op[2].offset, decode->op[1].offset, vec_len, vec_len); } static void gen_PCMPESTRI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); gen_helper_pcmpestri_xmm(cpu_env, OP_PTR1, OP_PTR2, imm); set_cc_op(s, CC_OP_EFLAGS); } static void gen_PCMPESTRM(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); gen_helper_pcmpestrm_xmm(cpu_env, OP_PTR1, OP_PTR2, imm); set_cc_op(s, CC_OP_EFLAGS); if ((s->prefix & PREFIX_VEX) && !s->vex_l) { tcg_gen_gvec_dup_imm(MO_64, offsetof(CPUX86State, xmm_regs[0].ZMM_X(1)), 16, 16, 0); } } static void gen_PCMPISTRI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); gen_helper_pcmpistri_xmm(cpu_env, OP_PTR1, OP_PTR2, imm); set_cc_op(s, CC_OP_EFLAGS); } static void gen_PCMPISTRM(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); gen_helper_pcmpistrm_xmm(cpu_env, OP_PTR1, OP_PTR2, imm); set_cc_op(s, CC_OP_EFLAGS); if ((s->prefix & PREFIX_VEX) && !s->vex_l) { tcg_gen_gvec_dup_imm(MO_64, offsetof(CPUX86State, xmm_regs[0].ZMM_X(1)), 16, 16, 0); } } static void gen_PDEP(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; if (ot < MO_64) { tcg_gen_ext32u_tl(s->T0, s->T0); } gen_helper_pdep(s->T0, s->T0, s->T1); } static void gen_PEXT(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[1].ot; if (ot < MO_64) { tcg_gen_ext32u_tl(s->T0, s->T0); } gen_helper_pext(s->T0, s->T0, s->T1); } static inline void gen_pextr(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, MemOp ot) { int vec_len = vector_len(s, decode); int mask = (vec_len >> ot) - 1; int val = decode->immediate & mask; switch (ot) { case MO_8: tcg_gen_ld8u_tl(s->T0, cpu_env, vector_elem_offset(&decode->op[1], ot, val)); break; case MO_16: tcg_gen_ld16u_tl(s->T0, cpu_env, vector_elem_offset(&decode->op[1], ot, val)); break; case MO_32: #ifdef TARGET_X86_64 tcg_gen_ld32u_tl(s->T0, cpu_env, vector_elem_offset(&decode->op[1], ot, val)); break; case MO_64: #endif tcg_gen_ld_tl(s->T0, cpu_env, vector_elem_offset(&decode->op[1], ot, val)); break; default: abort(); } } static void gen_PEXTRB(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_pextr(s, env, decode, MO_8); } static void gen_PEXTRW(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_pextr(s, env, decode, MO_16); } static void gen_PEXTR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; gen_pextr(s, env, decode, ot); } static inline void gen_pinsr(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, MemOp ot) { int vec_len = vector_len(s, decode); int mask = (vec_len >> ot) - 1; int val = decode->immediate & mask; if (decode->op[1].offset != decode->op[0].offset) { assert(vec_len == 16); gen_store_sse(s, decode, decode->op[1].offset); } switch (ot) { case MO_8: tcg_gen_st8_tl(s->T1, cpu_env, vector_elem_offset(&decode->op[0], ot, val)); break; case MO_16: tcg_gen_st16_tl(s->T1, cpu_env, vector_elem_offset(&decode->op[0], ot, val)); break; case MO_32: #ifdef TARGET_X86_64 tcg_gen_st32_tl(s->T1, cpu_env, vector_elem_offset(&decode->op[0], ot, val)); break; case MO_64: #endif tcg_gen_st_tl(s->T1, cpu_env, vector_elem_offset(&decode->op[0], ot, val)); break; default: abort(); } } static void gen_PINSRB(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_pinsr(s, env, decode, MO_8); } static void gen_PINSRW(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_pinsr(s, env, decode, MO_16); } static void gen_PINSR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_pinsr(s, env, decode, decode->op[2].ot); } static void gen_pmovmskb_i64(TCGv_i64 d, TCGv_i64 s) { TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_andi_i64(d, s, 0x8080808080808080ull); /* * After each shift+or pair: * 0: a.......b.......c.......d.......e.......f.......g.......h....... * 7: ab......bc......cd......de......ef......fg......gh......h....... * 14: abcd....bcde....cdef....defg....efgh....fgh.....gh......h....... * 28: abcdefghbcdefgh.cdefgh..defgh...efgh....fgh.....gh......h....... * The result is left in the high bits of the word. */ tcg_gen_shli_i64(t, d, 7); tcg_gen_or_i64(d, d, t); tcg_gen_shli_i64(t, d, 14); tcg_gen_or_i64(d, d, t); tcg_gen_shli_i64(t, d, 28); tcg_gen_or_i64(d, d, t); } static void gen_pmovmskb_vec(unsigned vece, TCGv_vec d, TCGv_vec s) { TCGv_vec t = tcg_temp_new_vec_matching(d); TCGv_vec m = tcg_constant_vec_matching(d, MO_8, 0x80); /* See above */ tcg_gen_and_vec(vece, d, s, m); tcg_gen_shli_vec(vece, t, d, 7); tcg_gen_or_vec(vece, d, d, t); tcg_gen_shli_vec(vece, t, d, 14); tcg_gen_or_vec(vece, d, d, t); tcg_gen_shli_vec(vece, t, d, 28); tcg_gen_or_vec(vece, d, d, t); } #ifdef TARGET_X86_64 #define TCG_TARGET_HAS_extract2_tl TCG_TARGET_HAS_extract2_i64 #else #define TCG_TARGET_HAS_extract2_tl TCG_TARGET_HAS_extract2_i32 #endif static void gen_PMOVMSKB(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 }; static const GVecGen2 g = { .fni8 = gen_pmovmskb_i64, .fniv = gen_pmovmskb_vec, .opt_opc = vecop_list, .vece = MO_64, .prefer_i64 = TCG_TARGET_REG_BITS == 64 }; MemOp ot = decode->op[2].ot; int vec_len = vector_len(s, decode); TCGv t = tcg_temp_new(); tcg_gen_gvec_2(offsetof(CPUX86State, xmm_t0) + xmm_offset(ot), decode->op[2].offset, vec_len, vec_len, &g); tcg_gen_ld8u_tl(s->T0, cpu_env, offsetof(CPUX86State, xmm_t0.ZMM_B(vec_len - 1))); while (vec_len > 8) { vec_len -= 8; if (TCG_TARGET_HAS_extract2_tl) { /* * Load the next byte of the result into the high byte of T. * TCG does a similar expansion of deposit to shl+extract2; by * loading the whole word, the shift left is avoided. */ #ifdef TARGET_X86_64 tcg_gen_ld_tl(t, cpu_env, offsetof(CPUX86State, xmm_t0.ZMM_Q((vec_len - 1) / 8))); #else tcg_gen_ld_tl(t, cpu_env, offsetof(CPUX86State, xmm_t0.ZMM_L((vec_len - 1) / 4))); #endif tcg_gen_extract2_tl(s->T0, t, s->T0, TARGET_LONG_BITS - 8); } else { /* * The _previous_ value is deposited into bits 8 and higher of t. Because * those bits are known to be zero after ld8u, this becomes a shift+or * if deposit is not available. */ tcg_gen_ld8u_tl(t, cpu_env, offsetof(CPUX86State, xmm_t0.ZMM_B(vec_len - 1))); tcg_gen_deposit_tl(s->T0, t, s->T0, 8, TARGET_LONG_BITS - 8); } } } static void gen_PSHUFW(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); gen_helper_pshufw_mmx(OP_PTR0, OP_PTR1, imm); } static void gen_PSRLW_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); if (decode->immediate >= 16) { tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); } else { tcg_gen_gvec_shri(MO_16, decode->op[0].offset, decode->op[1].offset, decode->immediate, vec_len, vec_len); } } static void gen_PSLLW_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); if (decode->immediate >= 16) { tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); } else { tcg_gen_gvec_shli(MO_16, decode->op[0].offset, decode->op[1].offset, decode->immediate, vec_len, vec_len); } } static void gen_PSRAW_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); if (decode->immediate >= 16) { decode->immediate = 15; } tcg_gen_gvec_sari(MO_16, decode->op[0].offset, decode->op[1].offset, decode->immediate, vec_len, vec_len); } static void gen_PSRLD_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); if (decode->immediate >= 32) { tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); } else { tcg_gen_gvec_shri(MO_32, decode->op[0].offset, decode->op[1].offset, decode->immediate, vec_len, vec_len); } } static void gen_PSLLD_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); if (decode->immediate >= 32) { tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); } else { tcg_gen_gvec_shli(MO_32, decode->op[0].offset, decode->op[1].offset, decode->immediate, vec_len, vec_len); } } static void gen_PSRAD_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); if (decode->immediate >= 32) { decode->immediate = 31; } tcg_gen_gvec_sari(MO_32, decode->op[0].offset, decode->op[1].offset, decode->immediate, vec_len, vec_len); } static void gen_PSRLQ_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); if (decode->immediate >= 64) { tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); } else { tcg_gen_gvec_shri(MO_64, decode->op[0].offset, decode->op[1].offset, decode->immediate, vec_len, vec_len); } } static void gen_PSLLQ_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); if (decode->immediate >= 64) { tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); } else { tcg_gen_gvec_shli(MO_64, decode->op[0].offset, decode->op[1].offset, decode->immediate, vec_len, vec_len); } } static TCGv_ptr make_imm8u_xmm_vec(uint8_t imm, int vec_len) { MemOp ot = vec_len == 16 ? MO_128 : MO_256; TCGv_i32 imm_v = tcg_constant8u_i32(imm); TCGv_ptr ptr = tcg_temp_new_ptr(); tcg_gen_gvec_dup_imm(MO_64, offsetof(CPUX86State, xmm_t0) + xmm_offset(ot), vec_len, vec_len, 0); tcg_gen_addi_ptr(ptr, cpu_env, offsetof(CPUX86State, xmm_t0)); tcg_gen_st_i32(imm_v, cpu_env, offsetof(CPUX86State, xmm_t0.ZMM_L(0))); return ptr; } static void gen_PSRLDQ_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); TCGv_ptr imm_vec = make_imm8u_xmm_vec(decode->immediate, vec_len); if (s->vex_l) { gen_helper_psrldq_ymm(cpu_env, OP_PTR0, OP_PTR1, imm_vec); } else { gen_helper_psrldq_xmm(cpu_env, OP_PTR0, OP_PTR1, imm_vec); } } static void gen_PSLLDQ_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); TCGv_ptr imm_vec = make_imm8u_xmm_vec(decode->immediate, vec_len); if (s->vex_l) { gen_helper_pslldq_ymm(cpu_env, OP_PTR0, OP_PTR1, imm_vec); } else { gen_helper_pslldq_xmm(cpu_env, OP_PTR0, OP_PTR1, imm_vec); } } static void gen_RORX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; int b = decode->immediate; if (ot == MO_64) { tcg_gen_rotri_tl(s->T0, s->T0, b & 63); } else { tcg_gen_trunc_tl_i32(s->tmp2_i32, s->T0); tcg_gen_rotri_i32(s->tmp2_i32, s->tmp2_i32, b & 31); tcg_gen_extu_i32_tl(s->T0, s->tmp2_i32); } } static void gen_SARX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; int mask; mask = ot == MO_64 ? 63 : 31; tcg_gen_andi_tl(s->T1, s->T1, mask); if (ot != MO_64) { tcg_gen_ext32s_tl(s->T0, s->T0); } tcg_gen_sar_tl(s->T0, s->T0, s->T1); } static void gen_SHLX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; int mask; mask = ot == MO_64 ? 63 : 31; tcg_gen_andi_tl(s->T1, s->T1, mask); tcg_gen_shl_tl(s->T0, s->T0, s->T1); } static void gen_SHRX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { MemOp ot = decode->op[0].ot; int mask; mask = ot == MO_64 ? 63 : 31; tcg_gen_andi_tl(s->T1, s->T1, mask); if (ot != MO_64) { tcg_gen_ext32u_tl(s->T0, s->T0); } tcg_gen_shr_tl(s->T0, s->T0, s->T1); } static void gen_VAESKEYGEN(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); assert(!s->vex_l); gen_helper_aeskeygenassist_xmm(cpu_env, OP_PTR0, OP_PTR1, imm); } static void gen_STMXCSR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { if (s->vex_l) { gen_illegal_opcode(s); return; } gen_helper_update_mxcsr(cpu_env); tcg_gen_ld32u_tl(s->T0, cpu_env, offsetof(CPUX86State, mxcsr)); } static void gen_VAESIMC(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { assert(!s->vex_l); gen_helper_aesimc_xmm(cpu_env, OP_PTR0, OP_PTR2); } /* * 00 = v*ps Vps, Hps, Wpd * 66 = v*pd Vpd, Hpd, Wps * f3 = v*ss Vss, Hss, Wps * f2 = v*sd Vsd, Hsd, Wps */ #define SSE_CMP(x) { \ gen_helper_ ## x ## ps ## _xmm, gen_helper_ ## x ## pd ## _xmm, \ gen_helper_ ## x ## ss, gen_helper_ ## x ## sd, \ gen_helper_ ## x ## ps ## _ymm, gen_helper_ ## x ## pd ## _ymm} static const SSEFunc_0_eppp gen_helper_cmp_funcs[32][6] = { SSE_CMP(cmpeq), SSE_CMP(cmplt), SSE_CMP(cmple), SSE_CMP(cmpunord), SSE_CMP(cmpneq), SSE_CMP(cmpnlt), SSE_CMP(cmpnle), SSE_CMP(cmpord), SSE_CMP(cmpequ), SSE_CMP(cmpnge), SSE_CMP(cmpngt), SSE_CMP(cmpfalse), SSE_CMP(cmpnequ), SSE_CMP(cmpge), SSE_CMP(cmpgt), SSE_CMP(cmptrue), SSE_CMP(cmpeqs), SSE_CMP(cmpltq), SSE_CMP(cmpleq), SSE_CMP(cmpunords), SSE_CMP(cmpneqq), SSE_CMP(cmpnltq), SSE_CMP(cmpnleq), SSE_CMP(cmpords), SSE_CMP(cmpequs), SSE_CMP(cmpngeq), SSE_CMP(cmpngtq), SSE_CMP(cmpfalses), SSE_CMP(cmpnequs), SSE_CMP(cmpgeq), SSE_CMP(cmpgtq), SSE_CMP(cmptrues), }; #undef SSE_CMP static void gen_VCMP(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int index = decode->immediate & (s->prefix & PREFIX_VEX ? 31 : 7); int b = s->prefix & PREFIX_REPZ ? 2 /* ss */ : s->prefix & PREFIX_REPNZ ? 3 /* sd */ : !!(s->prefix & PREFIX_DATA) /* pd */ + (s->vex_l << 2); gen_helper_cmp_funcs[index][b](cpu_env, OP_PTR0, OP_PTR1, OP_PTR2); } static void gen_VCOMI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { SSEFunc_0_epp fn; fn = s->prefix & PREFIX_DATA ? gen_helper_comisd : gen_helper_comiss; fn(cpu_env, OP_PTR1, OP_PTR2); set_cc_op(s, CC_OP_EFLAGS); } static void gen_VCVTPD2PS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { if (s->vex_l) { gen_helper_cvtpd2ps_ymm(cpu_env, OP_PTR0, OP_PTR2); } else { gen_helper_cvtpd2ps_xmm(cpu_env, OP_PTR0, OP_PTR2); } } static void gen_VCVTPS2PD(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { if (s->vex_l) { gen_helper_cvtps2pd_ymm(cpu_env, OP_PTR0, OP_PTR2); } else { gen_helper_cvtps2pd_xmm(cpu_env, OP_PTR0, OP_PTR2); } } static void gen_VCVTPS2PH(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_unary_imm_fp_sse(s, env, decode, gen_helper_cvtps2ph_xmm, gen_helper_cvtps2ph_ymm); /* * VCVTPS2PH is the only instruction that performs an operation on a * register source and then *stores* into memory. */ if (decode->op[0].has_ea) { gen_store_sse(s, decode, decode->op[0].offset); } } static void gen_VCVTSD2SS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_helper_cvtsd2ss(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2); } static void gen_VCVTSS2SD(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_helper_cvtss2sd(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2); } static void gen_VCVTSI2Sx(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); TCGv_i32 in; tcg_gen_gvec_mov(MO_64, decode->op[0].offset, decode->op[1].offset, vec_len, vec_len); #ifdef TARGET_X86_64 MemOp ot = decode->op[2].ot; if (ot == MO_64) { if (s->prefix & PREFIX_REPNZ) { gen_helper_cvtsq2sd(cpu_env, OP_PTR0, s->T1); } else { gen_helper_cvtsq2ss(cpu_env, OP_PTR0, s->T1); } return; } in = s->tmp2_i32; tcg_gen_trunc_tl_i32(in, s->T1); #else in = s->T1; #endif if (s->prefix & PREFIX_REPNZ) { gen_helper_cvtsi2sd(cpu_env, OP_PTR0, in); } else { gen_helper_cvtsi2ss(cpu_env, OP_PTR0, in); } } static inline void gen_VCVTtSx2SI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, SSEFunc_i_ep ss2si, SSEFunc_l_ep ss2sq, SSEFunc_i_ep sd2si, SSEFunc_l_ep sd2sq) { TCGv_i32 out; #ifdef TARGET_X86_64 MemOp ot = decode->op[0].ot; if (ot == MO_64) { if (s->prefix & PREFIX_REPNZ) { sd2sq(s->T0, cpu_env, OP_PTR2); } else { ss2sq(s->T0, cpu_env, OP_PTR2); } return; } out = s->tmp2_i32; #else out = s->T0; #endif if (s->prefix & PREFIX_REPNZ) { sd2si(out, cpu_env, OP_PTR2); } else { ss2si(out, cpu_env, OP_PTR2); } #ifdef TARGET_X86_64 tcg_gen_extu_i32_tl(s->T0, out); #endif } #ifndef TARGET_X86_64 #define gen_helper_cvtss2sq NULL #define gen_helper_cvtsd2sq NULL #define gen_helper_cvttss2sq NULL #define gen_helper_cvttsd2sq NULL #endif static void gen_VCVTSx2SI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_VCVTtSx2SI(s, env, decode, gen_helper_cvtss2si, gen_helper_cvtss2sq, gen_helper_cvtsd2si, gen_helper_cvtsd2sq); } static void gen_VCVTTSx2SI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_VCVTtSx2SI(s, env, decode, gen_helper_cvttss2si, gen_helper_cvttss2sq, gen_helper_cvttsd2si, gen_helper_cvttsd2sq); } static void gen_VEXTRACTx128(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int mask = decode->immediate & 1; int src_ofs = vector_elem_offset(&decode->op[1], MO_128, mask); if (decode->op[0].has_ea) { /* VEX-only instruction, no alignment requirements. */ gen_sto_env_A0(s, src_ofs, false); } else { tcg_gen_gvec_mov(MO_64, decode->op[0].offset, src_ofs, 16, 16); } } static void gen_VEXTRACTPS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_pextr(s, env, decode, MO_32); } static void gen_vinsertps(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int val = decode->immediate; int dest_word = (val >> 4) & 3; int new_mask = (val & 15) | (1 << dest_word); int vec_len = 16; assert(!s->vex_l); if (new_mask == 15) { /* All zeroes except possibly for the inserted element */ tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); } else if (decode->op[1].offset != decode->op[0].offset) { gen_store_sse(s, decode, decode->op[1].offset); } if (new_mask != (val & 15)) { tcg_gen_st_i32(s->tmp2_i32, cpu_env, vector_elem_offset(&decode->op[0], MO_32, dest_word)); } if (new_mask != 15) { TCGv_i32 zero = tcg_constant_i32(0); /* float32_zero */ int i; for (i = 0; i < 4; i++) { if ((val >> i) & 1) { tcg_gen_st_i32(zero, cpu_env, vector_elem_offset(&decode->op[0], MO_32, i)); } } } } static void gen_VINSERTPS_r(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int val = decode->immediate; tcg_gen_ld_i32(s->tmp2_i32, cpu_env, vector_elem_offset(&decode->op[2], MO_32, (val >> 6) & 3)); gen_vinsertps(s, env, decode); } static void gen_VINSERTPS_m(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { tcg_gen_qemu_ld_i32(s->tmp2_i32, s->A0, s->mem_index, MO_LEUL); gen_vinsertps(s, env, decode); } static void gen_VINSERTx128(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int mask = decode->immediate & 1; tcg_gen_gvec_mov(MO_64, decode->op[0].offset + offsetof(YMMReg, YMM_X(mask)), decode->op[2].offset + offsetof(YMMReg, YMM_X(0)), 16, 16); tcg_gen_gvec_mov(MO_64, decode->op[0].offset + offsetof(YMMReg, YMM_X(!mask)), decode->op[1].offset + offsetof(YMMReg, YMM_X(!mask)), 16, 16); } static inline void gen_maskmov(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, SSEFunc_0_eppt xmm, SSEFunc_0_eppt ymm) { if (!s->vex_l) { xmm(cpu_env, OP_PTR2, OP_PTR1, s->A0); } else { ymm(cpu_env, OP_PTR2, OP_PTR1, s->A0); } } static void gen_VMASKMOVPD_st(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_maskmov(s, env, decode, gen_helper_vpmaskmovq_st_xmm, gen_helper_vpmaskmovq_st_ymm); } static void gen_VMASKMOVPS_st(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_maskmov(s, env, decode, gen_helper_vpmaskmovd_st_xmm, gen_helper_vpmaskmovd_st_ymm); } static void gen_VMOVHPx_ld(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_ldq_env_A0(s, decode->op[0].offset + offsetof(XMMReg, XMM_Q(1))); if (decode->op[0].offset != decode->op[1].offset) { tcg_gen_ld_i64(s->tmp1_i64, cpu_env, decode->op[1].offset + offsetof(XMMReg, XMM_Q(0))); tcg_gen_st_i64(s->tmp1_i64, cpu_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0))); } } static void gen_VMOVHPx_st(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { gen_stq_env_A0(s, decode->op[2].offset + offsetof(XMMReg, XMM_Q(1))); } static void gen_VMOVHPx(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { if (decode->op[0].offset != decode->op[2].offset) { tcg_gen_ld_i64(s->tmp1_i64, cpu_env, decode->op[2].offset + offsetof(XMMReg, XMM_Q(1))); tcg_gen_st_i64(s->tmp1_i64, cpu_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(1))); } if (decode->op[0].offset != decode->op[1].offset) { tcg_gen_ld_i64(s->tmp1_i64, cpu_env, decode->op[1].offset + offsetof(XMMReg, XMM_Q(0))); tcg_gen_st_i64(s->tmp1_i64, cpu_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0))); } } static void gen_VMOVHLPS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { tcg_gen_ld_i64(s->tmp1_i64, cpu_env, decode->op[2].offset + offsetof(XMMReg, XMM_Q(1))); tcg_gen_st_i64(s->tmp1_i64, cpu_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0))); if (decode->op[0].offset != decode->op[1].offset) { tcg_gen_ld_i64(s->tmp1_i64, cpu_env, decode->op[1].offset + offsetof(XMMReg, XMM_Q(1))); tcg_gen_st_i64(s->tmp1_i64, cpu_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(1))); } } static void gen_VMOVLHPS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { tcg_gen_ld_i64(s->tmp1_i64, cpu_env, decode->op[2].offset); tcg_gen_st_i64(s->tmp1_i64, cpu_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(1))); if (decode->op[0].offset != decode->op[1].offset) { tcg_gen_ld_i64(s->tmp1_i64, cpu_env, decode->op[1].offset + offsetof(XMMReg, XMM_Q(0))); tcg_gen_st_i64(s->tmp1_i64, cpu_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0))); } } /* * Note that MOVLPx supports 256-bit operation unlike MOVHLPx, MOVLHPx, MOXHPx. * Use a gvec move to move everything above the bottom 64 bits. */ static void gen_VMOVLPx(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); tcg_gen_ld_i64(s->tmp1_i64, cpu_env, decode->op[2].offset + offsetof(XMMReg, XMM_Q(0))); tcg_gen_gvec_mov(MO_64, decode->op[0].offset, decode->op[1].offset, vec_len, vec_len); tcg_gen_st_i64(s->tmp1_i64, cpu_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0))); } static void gen_VMOVLPx_ld(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); tcg_gen_qemu_ld_i64(s->tmp1_i64, s->A0, s->mem_index, MO_LEUQ); tcg_gen_gvec_mov(MO_64, decode->op[0].offset, decode->op[1].offset, vec_len, vec_len); tcg_gen_st_i64(s->tmp1_i64, OP_PTR0, offsetof(ZMMReg, ZMM_Q(0))); } static void gen_VMOVLPx_st(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { tcg_gen_ld_i64(s->tmp1_i64, OP_PTR2, offsetof(ZMMReg, ZMM_Q(0))); tcg_gen_qemu_st_i64(s->tmp1_i64, s->A0, s->mem_index, MO_LEUQ); } static void gen_VMOVSD_ld(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { TCGv_i64 zero = tcg_constant_i64(0); tcg_gen_qemu_ld_i64(s->tmp1_i64, s->A0, s->mem_index, MO_LEUQ); tcg_gen_st_i64(zero, OP_PTR0, offsetof(ZMMReg, ZMM_Q(1))); tcg_gen_st_i64(s->tmp1_i64, OP_PTR0, offsetof(ZMMReg, ZMM_Q(0))); } static void gen_VMOVSS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); tcg_gen_ld_i32(s->tmp2_i32, OP_PTR2, offsetof(ZMMReg, ZMM_L(0))); tcg_gen_gvec_mov(MO_64, decode->op[0].offset, decode->op[1].offset, vec_len, vec_len); tcg_gen_st_i32(s->tmp2_i32, OP_PTR0, offsetof(ZMMReg, ZMM_L(0))); } static void gen_VMOVSS_ld(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int vec_len = vector_len(s, decode); tcg_gen_qemu_ld_i32(s->tmp2_i32, s->A0, s->mem_index, MO_LEUL); tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0); tcg_gen_st_i32(s->tmp2_i32, OP_PTR0, offsetof(ZMMReg, ZMM_L(0))); } static void gen_VMOVSS_st(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { tcg_gen_ld_i32(s->tmp2_i32, OP_PTR2, offsetof(ZMMReg, ZMM_L(0))); tcg_gen_qemu_st_i32(s->tmp2_i32, s->A0, s->mem_index, MO_LEUL); } static void gen_VPMASKMOV_st(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { if (s->vex_w) { gen_VMASKMOVPD_st(s, env, decode); } else { gen_VMASKMOVPS_st(s, env, decode); } } static void gen_VPERMD(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { assert(s->vex_l); gen_helper_vpermd_ymm(OP_PTR0, OP_PTR1, OP_PTR2); } static void gen_VPERM2x128(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); assert(s->vex_l); gen_helper_vpermdq_ymm(OP_PTR0, OP_PTR1, OP_PTR2, imm); } static void gen_VPHMINPOSUW(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { assert(!s->vex_l); gen_helper_phminposuw_xmm(cpu_env, OP_PTR0, OP_PTR2); } static void gen_VROUNDSD(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); assert(!s->vex_l); gen_helper_roundsd_xmm(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2, imm); } static void gen_VROUNDSS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant8u_i32(decode->immediate); assert(!s->vex_l); gen_helper_roundss_xmm(cpu_env, OP_PTR0, OP_PTR1, OP_PTR2, imm); } static void gen_VSHUF(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { TCGv_i32 imm = tcg_constant_i32(decode->immediate); SSEFunc_0_pppi ps, pd, fn; ps = s->vex_l ? gen_helper_shufps_ymm : gen_helper_shufps_xmm; pd = s->vex_l ? gen_helper_shufpd_ymm : gen_helper_shufpd_xmm; fn = s->prefix & PREFIX_DATA ? pd : ps; fn(OP_PTR0, OP_PTR1, OP_PTR2, imm); } static void gen_VUCOMI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { SSEFunc_0_epp fn; fn = s->prefix & PREFIX_DATA ? gen_helper_ucomisd : gen_helper_ucomiss; fn(cpu_env, OP_PTR1, OP_PTR2); set_cc_op(s, CC_OP_EFLAGS); } static void gen_VZEROALL(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { TCGv_ptr ptr = tcg_temp_new_ptr(); tcg_gen_addi_ptr(ptr, cpu_env, offsetof(CPUX86State, xmm_regs)); gen_helper_memset(ptr, ptr, tcg_constant_i32(0), tcg_constant_ptr(CPU_NB_REGS * sizeof(ZMMReg))); } static void gen_VZEROUPPER(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) { int i; for (i = 0; i < CPU_NB_REGS; i++) { int offset = offsetof(CPUX86State, xmm_regs[i].ZMM_X(1)); tcg_gen_gvec_dup_imm(MO_64, offset, 16, 16, 0); } }