/* * PowerPC CPU routines for qemu. * * Copyright (c) 2017 Nikunj A Dadhania, IBM Corporation. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "cpu-models.h" #include "cpu-qom.h" #include "exec/log.h" #include "fpu/softfloat-helpers.h" #include "mmu-hash64.h" #include "helper_regs.h" #include "sysemu/tcg.h" target_ulong cpu_read_xer(const CPUPPCState *env) { if (is_isa300(env)) { return env->xer | (env->so << XER_SO) | (env->ov << XER_OV) | (env->ca << XER_CA) | (env->ov32 << XER_OV32) | (env->ca32 << XER_CA32); } return env->xer | (env->so << XER_SO) | (env->ov << XER_OV) | (env->ca << XER_CA); } void cpu_write_xer(CPUPPCState *env, target_ulong xer) { env->so = (xer >> XER_SO) & 1; env->ov = (xer >> XER_OV) & 1; env->ca = (xer >> XER_CA) & 1; /* write all the flags, while reading back check of isa300 */ env->ov32 = (xer >> XER_OV32) & 1; env->ca32 = (xer >> XER_CA32) & 1; env->xer = xer & ~((1ul << XER_SO) | (1ul << XER_OV) | (1ul << XER_CA) | (1ul << XER_OV32) | (1ul << XER_CA32)); } void ppc_store_vscr(CPUPPCState *env, uint32_t vscr) { env->vscr = vscr & ~(1u << VSCR_SAT); /* Which bit we set is completely arbitrary, but clear the rest. */ env->vscr_sat.u64[0] = vscr & (1u << VSCR_SAT); env->vscr_sat.u64[1] = 0; set_flush_to_zero((vscr >> VSCR_NJ) & 1, &env->vec_status); set_flush_inputs_to_zero((vscr >> VSCR_NJ) & 1, &env->vec_status); } uint32_t ppc_get_vscr(CPUPPCState *env) { uint32_t sat = (env->vscr_sat.u64[0] | env->vscr_sat.u64[1]) != 0; return env->vscr | (sat << VSCR_SAT); } void ppc_set_cr(CPUPPCState *env, uint64_t cr) { for (int i = 7; i >= 0; i--) { env->crf[i] = cr & 0xf; cr >>= 4; } } uint64_t ppc_get_cr(const CPUPPCState *env) { uint64_t cr = 0; for (int i = 0; i < 8; i++) { cr |= (env->crf[i] & 0xf) << (4 * (7 - i)); } return cr; } /* GDBstub can read and write MSR... */ void ppc_store_msr(CPUPPCState *env, target_ulong value) { hreg_store_msr(env, value, 0); } #if !defined(CONFIG_USER_ONLY) void ppc_store_lpcr(PowerPCCPU *cpu, target_ulong val) { PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); CPUPPCState *env = &cpu->env; env->spr[SPR_LPCR] = val & pcc->lpcr_mask; /* The gtse bit affects hflags */ hreg_compute_hflags(env); ppc_maybe_interrupt(env); } #if defined(TARGET_PPC64) void ppc_update_ciabr(CPUPPCState *env) { CPUState *cs = env_cpu(env); target_ulong ciabr = env->spr[SPR_CIABR]; target_ulong ciea, priv; ciea = ciabr & PPC_BITMASK(0, 61); priv = ciabr & PPC_BITMASK(62, 63); if (env->ciabr_breakpoint) { cpu_breakpoint_remove_by_ref(cs, env->ciabr_breakpoint); env->ciabr_breakpoint = NULL; } if (priv) { cpu_breakpoint_insert(cs, ciea, BP_CPU, &env->ciabr_breakpoint); } } void ppc_store_ciabr(CPUPPCState *env, target_ulong val) { env->spr[SPR_CIABR] = val; ppc_update_ciabr(env); } void ppc_update_daw0(CPUPPCState *env) { CPUState *cs = env_cpu(env); target_ulong deaw = env->spr[SPR_DAWR0] & PPC_BITMASK(0, 60); uint32_t dawrx = env->spr[SPR_DAWRX0]; int mrd = extract32(dawrx, PPC_BIT_NR(48), 54 - 48); bool dw = extract32(dawrx, PPC_BIT_NR(57), 1); bool dr = extract32(dawrx, PPC_BIT_NR(58), 1); bool hv = extract32(dawrx, PPC_BIT_NR(61), 1); bool sv = extract32(dawrx, PPC_BIT_NR(62), 1); bool pr = extract32(dawrx, PPC_BIT_NR(62), 1); vaddr len; int flags; if (env->dawr0_watchpoint) { cpu_watchpoint_remove_by_ref(cs, env->dawr0_watchpoint); env->dawr0_watchpoint = NULL; } if (!dr && !dw) { return; } if (!hv && !sv && !pr) { return; } len = (mrd + 1) * 8; flags = BP_CPU | BP_STOP_BEFORE_ACCESS; if (dr) { flags |= BP_MEM_READ; } if (dw) { flags |= BP_MEM_WRITE; } cpu_watchpoint_insert(cs, deaw, len, flags, &env->dawr0_watchpoint); } void ppc_store_dawr0(CPUPPCState *env, target_ulong val) { env->spr[SPR_DAWR0] = val; ppc_update_daw0(env); } void ppc_store_dawrx0(CPUPPCState *env, uint32_t val) { int hrammc = extract32(val, PPC_BIT_NR(56), 1); if (hrammc) { /* This might be done with a second watchpoint at the xor of DEAW[0] */ qemu_log_mask(LOG_UNIMP, "%s: DAWRX0[HRAMMC] is unimplemented\n", __func__); } env->spr[SPR_DAWRX0] = val; ppc_update_daw0(env); } #endif #endif static inline void fpscr_set_rounding_mode(CPUPPCState *env) { int rnd_type; /* Set rounding mode */ switch (env->fpscr & FP_RN) { case 0: /* Best approximation (round to nearest) */ rnd_type = float_round_nearest_even; break; case 1: /* Smaller magnitude (round toward zero) */ rnd_type = float_round_to_zero; break; case 2: /* Round toward +infinite */ rnd_type = float_round_up; break; default: case 3: /* Round toward -infinite */ rnd_type = float_round_down; break; } set_float_rounding_mode(rnd_type, &env->fp_status); } void ppc_store_fpscr(CPUPPCState *env, target_ulong val) { val &= FPSCR_MTFS_MASK; if (val & FPSCR_IX) { val |= FP_VX; } if ((val >> FPSCR_XX) & (val >> FPSCR_XE) & 0x1f) { val |= FP_FEX; } env->fpscr = val; env->fp_status.rebias_overflow = (FP_OE & env->fpscr) ? true : false; env->fp_status.rebias_underflow = (FP_UE & env->fpscr) ? true : false; if (tcg_enabled()) { fpscr_set_rounding_mode(env); } }