/* * QEMU RISC-V CPU * * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu * Copyright (c) 2017-2018 SiFive, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "qemu/qemu-print.h" #include "qemu/ctype.h" #include "qemu/log.h" #include "cpu.h" #include "cpu_vendorid.h" #include "pmu.h" #include "internals.h" #include "time_helper.h" #include "exec/exec-all.h" #include "qapi/error.h" #include "qapi/visitor.h" #include "qemu/error-report.h" #include "hw/qdev-properties.h" #include "migration/vmstate.h" #include "fpu/softfloat-helpers.h" #include "sysemu/kvm.h" #include "sysemu/tcg.h" #include "kvm_riscv.h" #include "tcg/tcg.h" /* RISC-V CPU definitions */ static const char riscv_single_letter_exts[] = "IEMAFDQCPVH"; struct isa_ext_data { const char *name; int min_version; int ext_enable_offset; }; #define ISA_EXT_DATA_ENTRY(_name, _min_ver, _prop) \ {#_name, _min_ver, offsetof(struct RISCVCPUConfig, _prop)} /* * From vector_helper.c * Note that vector data is stored in host-endian 64-bit chunks, * so addressing bytes needs a host-endian fixup. */ #if HOST_BIG_ENDIAN #define BYTE(x) ((x) ^ 7) #else #define BYTE(x) (x) #endif /* * Here are the ordering rules of extension naming defined by RISC-V * specification : * 1. All extensions should be separated from other multi-letter extensions * by an underscore. * 2. The first letter following the 'Z' conventionally indicates the most * closely related alphabetical extension category, IMAFDQLCBKJTPVH. * If multiple 'Z' extensions are named, they should be ordered first * by category, then alphabetically within a category. * 3. Standard supervisor-level extensions (starts with 'S') should be * listed after standard unprivileged extensions. If multiple * supervisor-level extensions are listed, they should be ordered * alphabetically. * 4. Non-standard extensions (starts with 'X') must be listed after all * standard extensions. They must be separated from other multi-letter * extensions by an underscore. * * Single letter extensions are checked in riscv_cpu_validate_misa_priv() * instead. */ static const struct isa_ext_data isa_edata_arr[] = { ISA_EXT_DATA_ENTRY(zicbom, PRIV_VERSION_1_12_0, ext_icbom), ISA_EXT_DATA_ENTRY(zicboz, PRIV_VERSION_1_12_0, ext_icboz), ISA_EXT_DATA_ENTRY(zicond, PRIV_VERSION_1_12_0, ext_zicond), ISA_EXT_DATA_ENTRY(zicsr, PRIV_VERSION_1_10_0, ext_icsr), ISA_EXT_DATA_ENTRY(zifencei, PRIV_VERSION_1_10_0, ext_ifencei), ISA_EXT_DATA_ENTRY(zihintpause, PRIV_VERSION_1_10_0, ext_zihintpause), ISA_EXT_DATA_ENTRY(zawrs, PRIV_VERSION_1_12_0, ext_zawrs), ISA_EXT_DATA_ENTRY(zfa, PRIV_VERSION_1_12_0, ext_zfa), ISA_EXT_DATA_ENTRY(zfbfmin, PRIV_VERSION_1_12_0, ext_zfbfmin), ISA_EXT_DATA_ENTRY(zfh, PRIV_VERSION_1_11_0, ext_zfh), ISA_EXT_DATA_ENTRY(zfhmin, PRIV_VERSION_1_11_0, ext_zfhmin), ISA_EXT_DATA_ENTRY(zfinx, PRIV_VERSION_1_12_0, ext_zfinx), ISA_EXT_DATA_ENTRY(zdinx, PRIV_VERSION_1_12_0, ext_zdinx), ISA_EXT_DATA_ENTRY(zca, PRIV_VERSION_1_12_0, ext_zca), ISA_EXT_DATA_ENTRY(zcb, PRIV_VERSION_1_12_0, ext_zcb), ISA_EXT_DATA_ENTRY(zcf, PRIV_VERSION_1_12_0, ext_zcf), ISA_EXT_DATA_ENTRY(zcd, PRIV_VERSION_1_12_0, ext_zcd), ISA_EXT_DATA_ENTRY(zce, PRIV_VERSION_1_12_0, ext_zce), ISA_EXT_DATA_ENTRY(zcmp, PRIV_VERSION_1_12_0, ext_zcmp), ISA_EXT_DATA_ENTRY(zcmt, PRIV_VERSION_1_12_0, ext_zcmt), ISA_EXT_DATA_ENTRY(zba, PRIV_VERSION_1_12_0, ext_zba), ISA_EXT_DATA_ENTRY(zbb, PRIV_VERSION_1_12_0, ext_zbb), ISA_EXT_DATA_ENTRY(zbc, PRIV_VERSION_1_12_0, ext_zbc), ISA_EXT_DATA_ENTRY(zbkb, PRIV_VERSION_1_12_0, ext_zbkb), ISA_EXT_DATA_ENTRY(zbkc, PRIV_VERSION_1_12_0, ext_zbkc), ISA_EXT_DATA_ENTRY(zbkx, PRIV_VERSION_1_12_0, ext_zbkx), ISA_EXT_DATA_ENTRY(zbs, PRIV_VERSION_1_12_0, ext_zbs), ISA_EXT_DATA_ENTRY(zk, PRIV_VERSION_1_12_0, ext_zk), ISA_EXT_DATA_ENTRY(zkn, PRIV_VERSION_1_12_0, ext_zkn), ISA_EXT_DATA_ENTRY(zknd, PRIV_VERSION_1_12_0, ext_zknd), ISA_EXT_DATA_ENTRY(zkne, PRIV_VERSION_1_12_0, ext_zkne), ISA_EXT_DATA_ENTRY(zknh, PRIV_VERSION_1_12_0, ext_zknh), ISA_EXT_DATA_ENTRY(zkr, PRIV_VERSION_1_12_0, ext_zkr), ISA_EXT_DATA_ENTRY(zks, PRIV_VERSION_1_12_0, ext_zks), ISA_EXT_DATA_ENTRY(zksed, PRIV_VERSION_1_12_0, ext_zksed), ISA_EXT_DATA_ENTRY(zksh, PRIV_VERSION_1_12_0, ext_zksh), ISA_EXT_DATA_ENTRY(zkt, PRIV_VERSION_1_12_0, ext_zkt), ISA_EXT_DATA_ENTRY(zve32f, PRIV_VERSION_1_10_0, ext_zve32f), ISA_EXT_DATA_ENTRY(zve64f, PRIV_VERSION_1_10_0, ext_zve64f), ISA_EXT_DATA_ENTRY(zve64d, PRIV_VERSION_1_10_0, ext_zve64d), ISA_EXT_DATA_ENTRY(zvfbfmin, PRIV_VERSION_1_12_0, ext_zvfbfmin), ISA_EXT_DATA_ENTRY(zvfbfwma, PRIV_VERSION_1_12_0, ext_zvfbfwma), ISA_EXT_DATA_ENTRY(zvfh, PRIV_VERSION_1_12_0, ext_zvfh), ISA_EXT_DATA_ENTRY(zvfhmin, PRIV_VERSION_1_12_0, ext_zvfhmin), ISA_EXT_DATA_ENTRY(zhinx, PRIV_VERSION_1_12_0, ext_zhinx), ISA_EXT_DATA_ENTRY(zhinxmin, PRIV_VERSION_1_12_0, ext_zhinxmin), ISA_EXT_DATA_ENTRY(smaia, PRIV_VERSION_1_12_0, ext_smaia), ISA_EXT_DATA_ENTRY(smstateen, PRIV_VERSION_1_12_0, ext_smstateen), ISA_EXT_DATA_ENTRY(ssaia, PRIV_VERSION_1_12_0, ext_ssaia), ISA_EXT_DATA_ENTRY(sscofpmf, PRIV_VERSION_1_12_0, ext_sscofpmf), ISA_EXT_DATA_ENTRY(sstc, PRIV_VERSION_1_12_0, ext_sstc), ISA_EXT_DATA_ENTRY(svadu, PRIV_VERSION_1_12_0, ext_svadu), ISA_EXT_DATA_ENTRY(svinval, PRIV_VERSION_1_12_0, ext_svinval), ISA_EXT_DATA_ENTRY(svnapot, PRIV_VERSION_1_12_0, ext_svnapot), ISA_EXT_DATA_ENTRY(svpbmt, PRIV_VERSION_1_12_0, ext_svpbmt), ISA_EXT_DATA_ENTRY(xtheadba, PRIV_VERSION_1_11_0, ext_xtheadba), ISA_EXT_DATA_ENTRY(xtheadbb, PRIV_VERSION_1_11_0, ext_xtheadbb), ISA_EXT_DATA_ENTRY(xtheadbs, PRIV_VERSION_1_11_0, ext_xtheadbs), ISA_EXT_DATA_ENTRY(xtheadcmo, PRIV_VERSION_1_11_0, ext_xtheadcmo), ISA_EXT_DATA_ENTRY(xtheadcondmov, PRIV_VERSION_1_11_0, ext_xtheadcondmov), ISA_EXT_DATA_ENTRY(xtheadfmemidx, PRIV_VERSION_1_11_0, ext_xtheadfmemidx), ISA_EXT_DATA_ENTRY(xtheadfmv, PRIV_VERSION_1_11_0, ext_xtheadfmv), ISA_EXT_DATA_ENTRY(xtheadmac, PRIV_VERSION_1_11_0, ext_xtheadmac), ISA_EXT_DATA_ENTRY(xtheadmemidx, PRIV_VERSION_1_11_0, ext_xtheadmemidx), ISA_EXT_DATA_ENTRY(xtheadmempair, PRIV_VERSION_1_11_0, ext_xtheadmempair), ISA_EXT_DATA_ENTRY(xtheadsync, PRIV_VERSION_1_11_0, ext_xtheadsync), ISA_EXT_DATA_ENTRY(xventanacondops, PRIV_VERSION_1_12_0, ext_XVentanaCondOps), }; static bool isa_ext_is_enabled(RISCVCPU *cpu, const struct isa_ext_data *edata) { bool *ext_enabled = (void *)&cpu->cfg + edata->ext_enable_offset; return *ext_enabled; } static void isa_ext_update_enabled(RISCVCPU *cpu, const struct isa_ext_data *edata, bool en) { bool *ext_enabled = (void *)&cpu->cfg + edata->ext_enable_offset; *ext_enabled = en; } const char * const riscv_int_regnames[] = { "x0/zero", "x1/ra", "x2/sp", "x3/gp", "x4/tp", "x5/t0", "x6/t1", "x7/t2", "x8/s0", "x9/s1", "x10/a0", "x11/a1", "x12/a2", "x13/a3", "x14/a4", "x15/a5", "x16/a6", "x17/a7", "x18/s2", "x19/s3", "x20/s4", "x21/s5", "x22/s6", "x23/s7", "x24/s8", "x25/s9", "x26/s10", "x27/s11", "x28/t3", "x29/t4", "x30/t5", "x31/t6" }; const char * const riscv_int_regnamesh[] = { "x0h/zeroh", "x1h/rah", "x2h/sph", "x3h/gph", "x4h/tph", "x5h/t0h", "x6h/t1h", "x7h/t2h", "x8h/s0h", "x9h/s1h", "x10h/a0h", "x11h/a1h", "x12h/a2h", "x13h/a3h", "x14h/a4h", "x15h/a5h", "x16h/a6h", "x17h/a7h", "x18h/s2h", "x19h/s3h", "x20h/s4h", "x21h/s5h", "x22h/s6h", "x23h/s7h", "x24h/s8h", "x25h/s9h", "x26h/s10h", "x27h/s11h", "x28h/t3h", "x29h/t4h", "x30h/t5h", "x31h/t6h" }; const char * const riscv_fpr_regnames[] = { "f0/ft0", "f1/ft1", "f2/ft2", "f3/ft3", "f4/ft4", "f5/ft5", "f6/ft6", "f7/ft7", "f8/fs0", "f9/fs1", "f10/fa0", "f11/fa1", "f12/fa2", "f13/fa3", "f14/fa4", "f15/fa5", "f16/fa6", "f17/fa7", "f18/fs2", "f19/fs3", "f20/fs4", "f21/fs5", "f22/fs6", "f23/fs7", "f24/fs8", "f25/fs9", "f26/fs10", "f27/fs11", "f28/ft8", "f29/ft9", "f30/ft10", "f31/ft11" }; const char * const riscv_rvv_regnames[] = { "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31" }; static const char * const riscv_excp_names[] = { "misaligned_fetch", "fault_fetch", "illegal_instruction", "breakpoint", "misaligned_load", "fault_load", "misaligned_store", "fault_store", "user_ecall", "supervisor_ecall", "hypervisor_ecall", "machine_ecall", "exec_page_fault", "load_page_fault", "reserved", "store_page_fault", "reserved", "reserved", "reserved", "reserved", "guest_exec_page_fault", "guest_load_page_fault", "reserved", "guest_store_page_fault", }; static const char * const riscv_intr_names[] = { "u_software", "s_software", "vs_software", "m_software", "u_timer", "s_timer", "vs_timer", "m_timer", "u_external", "s_external", "vs_external", "m_external", "reserved", "reserved", "reserved", "reserved" }; static void riscv_cpu_add_user_properties(Object *obj); const char *riscv_cpu_get_trap_name(target_ulong cause, bool async) { if (async) { return (cause < ARRAY_SIZE(riscv_intr_names)) ? riscv_intr_names[cause] : "(unknown)"; } else { return (cause < ARRAY_SIZE(riscv_excp_names)) ? riscv_excp_names[cause] : "(unknown)"; } } static void set_misa(CPURISCVState *env, RISCVMXL mxl, uint32_t ext) { env->misa_mxl_max = env->misa_mxl = mxl; env->misa_ext_mask = env->misa_ext = ext; } #ifndef CONFIG_USER_ONLY static uint8_t satp_mode_from_str(const char *satp_mode_str) { if (!strncmp(satp_mode_str, "mbare", 5)) { return VM_1_10_MBARE; } if (!strncmp(satp_mode_str, "sv32", 4)) { return VM_1_10_SV32; } if (!strncmp(satp_mode_str, "sv39", 4)) { return VM_1_10_SV39; } if (!strncmp(satp_mode_str, "sv48", 4)) { return VM_1_10_SV48; } if (!strncmp(satp_mode_str, "sv57", 4)) { return VM_1_10_SV57; } if (!strncmp(satp_mode_str, "sv64", 4)) { return VM_1_10_SV64; } g_assert_not_reached(); } uint8_t satp_mode_max_from_map(uint32_t map) { /* map here has at least one bit set, so no problem with clz */ return 31 - __builtin_clz(map); } const char *satp_mode_str(uint8_t satp_mode, bool is_32_bit) { if (is_32_bit) { switch (satp_mode) { case VM_1_10_SV32: return "sv32"; case VM_1_10_MBARE: return "none"; } } else { switch (satp_mode) { case VM_1_10_SV64: return "sv64"; case VM_1_10_SV57: return "sv57"; case VM_1_10_SV48: return "sv48"; case VM_1_10_SV39: return "sv39"; case VM_1_10_MBARE: return "none"; } } g_assert_not_reached(); } static void set_satp_mode_max_supported(RISCVCPU *cpu, uint8_t satp_mode) { bool rv32 = riscv_cpu_mxl(&cpu->env) == MXL_RV32; const bool *valid_vm = rv32 ? valid_vm_1_10_32 : valid_vm_1_10_64; for (int i = 0; i <= satp_mode; ++i) { if (valid_vm[i]) { cpu->cfg.satp_mode.supported |= (1 << i); } } } /* Set the satp mode to the max supported */ static void set_satp_mode_default_map(RISCVCPU *cpu) { cpu->cfg.satp_mode.map = cpu->cfg.satp_mode.supported; } #endif static void riscv_any_cpu_init(Object *obj) { RISCVCPU *cpu = RISCV_CPU(obj); CPURISCVState *env = &cpu->env; #if defined(TARGET_RISCV32) set_misa(env, MXL_RV32, RVI | RVM | RVA | RVF | RVD | RVC | RVU); #elif defined(TARGET_RISCV64) set_misa(env, MXL_RV64, RVI | RVM | RVA | RVF | RVD | RVC | RVU); #endif #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(RISCV_CPU(obj), riscv_cpu_mxl(&RISCV_CPU(obj)->env) == MXL_RV32 ? VM_1_10_SV32 : VM_1_10_SV57); #endif env->priv_ver = PRIV_VERSION_LATEST; /* inherited from parent obj via riscv_cpu_init() */ cpu->cfg.ext_ifencei = true; cpu->cfg.ext_icsr = true; cpu->cfg.mmu = true; cpu->cfg.pmp = true; } #if defined(TARGET_RISCV64) static void rv64_base_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; /* We set this in the realise function */ set_misa(env, MXL_RV64, 0); riscv_cpu_add_user_properties(obj); /* Set latest version of privileged specification */ env->priv_ver = PRIV_VERSION_LATEST; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(RISCV_CPU(obj), VM_1_10_SV57); #endif } static void rv64_sifive_u_cpu_init(Object *obj) { RISCVCPU *cpu = RISCV_CPU(obj); CPURISCVState *env = &cpu->env; set_misa(env, MXL_RV64, RVI | RVM | RVA | RVF | RVD | RVC | RVS | RVU); env->priv_ver = PRIV_VERSION_1_10_0; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(RISCV_CPU(obj), VM_1_10_SV39); #endif /* inherited from parent obj via riscv_cpu_init() */ cpu->cfg.ext_ifencei = true; cpu->cfg.ext_icsr = true; cpu->cfg.mmu = true; cpu->cfg.pmp = true; } static void rv64_sifive_e_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; RISCVCPU *cpu = RISCV_CPU(obj); set_misa(env, MXL_RV64, RVI | RVM | RVA | RVC | RVU); env->priv_ver = PRIV_VERSION_1_10_0; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(cpu, VM_1_10_MBARE); #endif /* inherited from parent obj via riscv_cpu_init() */ cpu->cfg.ext_ifencei = true; cpu->cfg.ext_icsr = true; cpu->cfg.pmp = true; } static void rv64_thead_c906_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; RISCVCPU *cpu = RISCV_CPU(obj); set_misa(env, MXL_RV64, RVG | RVC | RVS | RVU); env->priv_ver = PRIV_VERSION_1_11_0; cpu->cfg.ext_zfa = true; cpu->cfg.ext_zfh = true; cpu->cfg.mmu = true; cpu->cfg.ext_xtheadba = true; cpu->cfg.ext_xtheadbb = true; cpu->cfg.ext_xtheadbs = true; cpu->cfg.ext_xtheadcmo = true; cpu->cfg.ext_xtheadcondmov = true; cpu->cfg.ext_xtheadfmemidx = true; cpu->cfg.ext_xtheadmac = true; cpu->cfg.ext_xtheadmemidx = true; cpu->cfg.ext_xtheadmempair = true; cpu->cfg.ext_xtheadsync = true; cpu->cfg.mvendorid = THEAD_VENDOR_ID; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(cpu, VM_1_10_SV39); #endif /* inherited from parent obj via riscv_cpu_init() */ cpu->cfg.pmp = true; } static void rv64_veyron_v1_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; RISCVCPU *cpu = RISCV_CPU(obj); set_misa(env, MXL_RV64, RVG | RVC | RVS | RVU | RVH); env->priv_ver = PRIV_VERSION_1_12_0; /* Enable ISA extensions */ cpu->cfg.mmu = true; cpu->cfg.ext_ifencei = true; cpu->cfg.ext_icsr = true; cpu->cfg.pmp = true; cpu->cfg.ext_icbom = true; cpu->cfg.cbom_blocksize = 64; cpu->cfg.cboz_blocksize = 64; cpu->cfg.ext_icboz = true; cpu->cfg.ext_smaia = true; cpu->cfg.ext_ssaia = true; cpu->cfg.ext_sscofpmf = true; cpu->cfg.ext_sstc = true; cpu->cfg.ext_svinval = true; cpu->cfg.ext_svnapot = true; cpu->cfg.ext_svpbmt = true; cpu->cfg.ext_smstateen = true; cpu->cfg.ext_zba = true; cpu->cfg.ext_zbb = true; cpu->cfg.ext_zbc = true; cpu->cfg.ext_zbs = true; cpu->cfg.ext_XVentanaCondOps = true; cpu->cfg.mvendorid = VEYRON_V1_MVENDORID; cpu->cfg.marchid = VEYRON_V1_MARCHID; cpu->cfg.mimpid = VEYRON_V1_MIMPID; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(cpu, VM_1_10_SV48); #endif } static void rv128_base_cpu_init(Object *obj) { if (qemu_tcg_mttcg_enabled()) { /* Missing 128-bit aligned atomics */ error_report("128-bit RISC-V currently does not work with Multi " "Threaded TCG. Please use: -accel tcg,thread=single"); exit(EXIT_FAILURE); } CPURISCVState *env = &RISCV_CPU(obj)->env; /* We set this in the realise function */ set_misa(env, MXL_RV128, 0); riscv_cpu_add_user_properties(obj); /* Set latest version of privileged specification */ env->priv_ver = PRIV_VERSION_LATEST; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(RISCV_CPU(obj), VM_1_10_SV57); #endif } #else static void rv32_base_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; /* We set this in the realise function */ set_misa(env, MXL_RV32, 0); riscv_cpu_add_user_properties(obj); /* Set latest version of privileged specification */ env->priv_ver = PRIV_VERSION_LATEST; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(RISCV_CPU(obj), VM_1_10_SV32); #endif } static void rv32_sifive_u_cpu_init(Object *obj) { RISCVCPU *cpu = RISCV_CPU(obj); CPURISCVState *env = &cpu->env; set_misa(env, MXL_RV32, RVI | RVM | RVA | RVF | RVD | RVC | RVS | RVU); env->priv_ver = PRIV_VERSION_1_10_0; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(RISCV_CPU(obj), VM_1_10_SV32); #endif /* inherited from parent obj via riscv_cpu_init() */ cpu->cfg.ext_ifencei = true; cpu->cfg.ext_icsr = true; cpu->cfg.mmu = true; cpu->cfg.pmp = true; } static void rv32_sifive_e_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; RISCVCPU *cpu = RISCV_CPU(obj); set_misa(env, MXL_RV32, RVI | RVM | RVA | RVC | RVU); env->priv_ver = PRIV_VERSION_1_10_0; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(cpu, VM_1_10_MBARE); #endif /* inherited from parent obj via riscv_cpu_init() */ cpu->cfg.ext_ifencei = true; cpu->cfg.ext_icsr = true; cpu->cfg.pmp = true; } static void rv32_ibex_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; RISCVCPU *cpu = RISCV_CPU(obj); set_misa(env, MXL_RV32, RVI | RVM | RVC | RVU); env->priv_ver = PRIV_VERSION_1_11_0; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(cpu, VM_1_10_MBARE); #endif cpu->cfg.epmp = true; /* inherited from parent obj via riscv_cpu_init() */ cpu->cfg.ext_ifencei = true; cpu->cfg.ext_icsr = true; cpu->cfg.pmp = true; } static void rv32_imafcu_nommu_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; RISCVCPU *cpu = RISCV_CPU(obj); set_misa(env, MXL_RV32, RVI | RVM | RVA | RVF | RVC | RVU); env->priv_ver = PRIV_VERSION_1_10_0; #ifndef CONFIG_USER_ONLY set_satp_mode_max_supported(cpu, VM_1_10_MBARE); #endif /* inherited from parent obj via riscv_cpu_init() */ cpu->cfg.ext_ifencei = true; cpu->cfg.ext_icsr = true; cpu->cfg.pmp = true; } #endif #if defined(CONFIG_KVM) static void riscv_host_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; #if defined(TARGET_RISCV32) set_misa(env, MXL_RV32, 0); #elif defined(TARGET_RISCV64) set_misa(env, MXL_RV64, 0); #endif riscv_cpu_add_user_properties(obj); } #endif /* CONFIG_KVM */ static ObjectClass *riscv_cpu_class_by_name(const char *cpu_model) { ObjectClass *oc; char *typename; char **cpuname; cpuname = g_strsplit(cpu_model, ",", 1); typename = g_strdup_printf(RISCV_CPU_TYPE_NAME("%s"), cpuname[0]); oc = object_class_by_name(typename); g_strfreev(cpuname); g_free(typename); if (!oc || !object_class_dynamic_cast(oc, TYPE_RISCV_CPU) || object_class_is_abstract(oc)) { return NULL; } return oc; } static void riscv_cpu_dump_state(CPUState *cs, FILE *f, int flags) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; int i, j; uint8_t *p; #if !defined(CONFIG_USER_ONLY) if (riscv_has_ext(env, RVH)) { qemu_fprintf(f, " %s %d\n", "V = ", env->virt_enabled); } #endif qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "pc ", env->pc); #ifndef CONFIG_USER_ONLY { static const int dump_csrs[] = { CSR_MHARTID, CSR_MSTATUS, CSR_MSTATUSH, /* * CSR_SSTATUS is intentionally omitted here as its value * can be figured out by looking at CSR_MSTATUS */ CSR_HSTATUS, CSR_VSSTATUS, CSR_MIP, CSR_MIE, CSR_MIDELEG, CSR_HIDELEG, CSR_MEDELEG, CSR_HEDELEG, CSR_MTVEC, CSR_STVEC, CSR_VSTVEC, CSR_MEPC, CSR_SEPC, CSR_VSEPC, CSR_MCAUSE, CSR_SCAUSE, CSR_VSCAUSE, CSR_MTVAL, CSR_STVAL, CSR_HTVAL, CSR_MTVAL2, CSR_MSCRATCH, CSR_SSCRATCH, CSR_SATP, CSR_MMTE, CSR_UPMBASE, CSR_UPMMASK, CSR_SPMBASE, CSR_SPMMASK, CSR_MPMBASE, CSR_MPMMASK, }; for (int i = 0; i < ARRAY_SIZE(dump_csrs); ++i) { int csrno = dump_csrs[i]; target_ulong val = 0; RISCVException res = riscv_csrrw_debug(env, csrno, &val, 0, 0); /* * Rely on the smode, hmode, etc, predicates within csr.c * to do the filtering of the registers that are present. */ if (res == RISCV_EXCP_NONE) { qemu_fprintf(f, " %-8s " TARGET_FMT_lx "\n", csr_ops[csrno].name, val); } } } #endif for (i = 0; i < 32; i++) { qemu_fprintf(f, " %-8s " TARGET_FMT_lx, riscv_int_regnames[i], env->gpr[i]); if ((i & 3) == 3) { qemu_fprintf(f, "\n"); } } if (flags & CPU_DUMP_FPU) { for (i = 0; i < 32; i++) { qemu_fprintf(f, " %-8s %016" PRIx64, riscv_fpr_regnames[i], env->fpr[i]); if ((i & 3) == 3) { qemu_fprintf(f, "\n"); } } } if (riscv_has_ext(env, RVV) && (flags & CPU_DUMP_VPU)) { static const int dump_rvv_csrs[] = { CSR_VSTART, CSR_VXSAT, CSR_VXRM, CSR_VCSR, CSR_VL, CSR_VTYPE, CSR_VLENB, }; for (int i = 0; i < ARRAY_SIZE(dump_rvv_csrs); ++i) { int csrno = dump_rvv_csrs[i]; target_ulong val = 0; RISCVException res = riscv_csrrw_debug(env, csrno, &val, 0, 0); /* * Rely on the smode, hmode, etc, predicates within csr.c * to do the filtering of the registers that are present. */ if (res == RISCV_EXCP_NONE) { qemu_fprintf(f, " %-8s " TARGET_FMT_lx "\n", csr_ops[csrno].name, val); } } uint16_t vlenb = cpu->cfg.vlen >> 3; for (i = 0; i < 32; i++) { qemu_fprintf(f, " %-8s ", riscv_rvv_regnames[i]); p = (uint8_t *)env->vreg; for (j = vlenb - 1 ; j >= 0; j--) { qemu_fprintf(f, "%02x", *(p + i * vlenb + BYTE(j))); } qemu_fprintf(f, "\n"); } } } static void riscv_cpu_set_pc(CPUState *cs, vaddr value) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; if (env->xl == MXL_RV32) { env->pc = (int32_t)value; } else { env->pc = value; } } static vaddr riscv_cpu_get_pc(CPUState *cs) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; /* Match cpu_get_tb_cpu_state. */ if (env->xl == MXL_RV32) { return env->pc & UINT32_MAX; } return env->pc; } static void riscv_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb) { if (!(tb_cflags(tb) & CF_PCREL)) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; RISCVMXL xl = FIELD_EX32(tb->flags, TB_FLAGS, XL); tcg_debug_assert(!(cs->tcg_cflags & CF_PCREL)); if (xl == MXL_RV32) { env->pc = (int32_t) tb->pc; } else { env->pc = tb->pc; } } } static bool riscv_cpu_has_work(CPUState *cs) { #ifndef CONFIG_USER_ONLY RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; /* * Definition of the WFI instruction requires it to ignore the privilege * mode and delegation registers, but respect individual enables */ return riscv_cpu_all_pending(env) != 0; #else return true; #endif } static void riscv_restore_state_to_opc(CPUState *cs, const TranslationBlock *tb, const uint64_t *data) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; RISCVMXL xl = FIELD_EX32(tb->flags, TB_FLAGS, XL); target_ulong pc; if (tb_cflags(tb) & CF_PCREL) { pc = (env->pc & TARGET_PAGE_MASK) | data[0]; } else { pc = data[0]; } if (xl == MXL_RV32) { env->pc = (int32_t)pc; } else { env->pc = pc; } env->bins = data[1]; } static void riscv_cpu_reset_hold(Object *obj) { #ifndef CONFIG_USER_ONLY uint8_t iprio; int i, irq, rdzero; #endif CPUState *cs = CPU(obj); RISCVCPU *cpu = RISCV_CPU(cs); RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cpu); CPURISCVState *env = &cpu->env; if (mcc->parent_phases.hold) { mcc->parent_phases.hold(obj); } #ifndef CONFIG_USER_ONLY env->misa_mxl = env->misa_mxl_max; env->priv = PRV_M; env->mstatus &= ~(MSTATUS_MIE | MSTATUS_MPRV); if (env->misa_mxl > MXL_RV32) { /* * The reset status of SXL/UXL is undefined, but mstatus is WARL * and we must ensure that the value after init is valid for read. */ env->mstatus = set_field(env->mstatus, MSTATUS64_SXL, env->misa_mxl); env->mstatus = set_field(env->mstatus, MSTATUS64_UXL, env->misa_mxl); if (riscv_has_ext(env, RVH)) { env->vsstatus = set_field(env->vsstatus, MSTATUS64_SXL, env->misa_mxl); env->vsstatus = set_field(env->vsstatus, MSTATUS64_UXL, env->misa_mxl); env->mstatus_hs = set_field(env->mstatus_hs, MSTATUS64_SXL, env->misa_mxl); env->mstatus_hs = set_field(env->mstatus_hs, MSTATUS64_UXL, env->misa_mxl); } } env->mcause = 0; env->miclaim = MIP_SGEIP; env->pc = env->resetvec; env->bins = 0; env->two_stage_lookup = false; env->menvcfg = (cpu->cfg.ext_svpbmt ? MENVCFG_PBMTE : 0) | (cpu->cfg.ext_svadu ? MENVCFG_HADE : 0); env->henvcfg = (cpu->cfg.ext_svpbmt ? HENVCFG_PBMTE : 0) | (cpu->cfg.ext_svadu ? HENVCFG_HADE : 0); /* Initialized default priorities of local interrupts. */ for (i = 0; i < ARRAY_SIZE(env->miprio); i++) { iprio = riscv_cpu_default_priority(i); env->miprio[i] = (i == IRQ_M_EXT) ? 0 : iprio; env->siprio[i] = (i == IRQ_S_EXT) ? 0 : iprio; env->hviprio[i] = 0; } i = 0; while (!riscv_cpu_hviprio_index2irq(i, &irq, &rdzero)) { if (!rdzero) { env->hviprio[irq] = env->miprio[irq]; } i++; } /* mmte is supposed to have pm.current hardwired to 1 */ env->mmte |= (EXT_STATUS_INITIAL | MMTE_M_PM_CURRENT); #endif env->xl = riscv_cpu_mxl(env); riscv_cpu_update_mask(env); cs->exception_index = RISCV_EXCP_NONE; env->load_res = -1; set_default_nan_mode(1, &env->fp_status); #ifndef CONFIG_USER_ONLY if (cpu->cfg.debug) { riscv_trigger_init(env); } if (kvm_enabled()) { kvm_riscv_reset_vcpu(cpu); } #endif } static void riscv_cpu_disas_set_info(CPUState *s, disassemble_info *info) { RISCVCPU *cpu = RISCV_CPU(s); CPURISCVState *env = &cpu->env; info->target_info = &cpu->cfg; switch (env->xl) { case MXL_RV32: info->print_insn = print_insn_riscv32; break; case MXL_RV64: info->print_insn = print_insn_riscv64; break; case MXL_RV128: info->print_insn = print_insn_riscv128; break; default: g_assert_not_reached(); } } static void riscv_cpu_validate_v(CPURISCVState *env, RISCVCPUConfig *cfg, Error **errp) { int vext_version = VEXT_VERSION_1_00_0; if (!is_power_of_2(cfg->vlen)) { error_setg(errp, "Vector extension VLEN must be power of 2"); return; } if (cfg->vlen > RV_VLEN_MAX || cfg->vlen < 128) { error_setg(errp, "Vector extension implementation only supports VLEN " "in the range [128, %d]", RV_VLEN_MAX); return; } if (!is_power_of_2(cfg->elen)) { error_setg(errp, "Vector extension ELEN must be power of 2"); return; } if (cfg->elen > 64 || cfg->elen < 8) { error_setg(errp, "Vector extension implementation only supports ELEN " "in the range [8, 64]"); return; } if (cfg->vext_spec) { if (!g_strcmp0(cfg->vext_spec, "v1.0")) { vext_version = VEXT_VERSION_1_00_0; } else { error_setg(errp, "Unsupported vector spec version '%s'", cfg->vext_spec); return; } } else { qemu_log("vector version is not specified, " "use the default value v1.0\n"); } env->vext_ver = vext_version; } static void riscv_cpu_validate_priv_spec(RISCVCPU *cpu, Error **errp) { CPURISCVState *env = &cpu->env; int priv_version = -1; if (cpu->cfg.priv_spec) { if (!g_strcmp0(cpu->cfg.priv_spec, "v1.12.0")) { priv_version = PRIV_VERSION_1_12_0; } else if (!g_strcmp0(cpu->cfg.priv_spec, "v1.11.0")) { priv_version = PRIV_VERSION_1_11_0; } else if (!g_strcmp0(cpu->cfg.priv_spec, "v1.10.0")) { priv_version = PRIV_VERSION_1_10_0; } else { error_setg(errp, "Unsupported privilege spec version '%s'", cpu->cfg.priv_spec); return; } env->priv_ver = priv_version; } } static void riscv_cpu_disable_priv_spec_isa_exts(RISCVCPU *cpu) { CPURISCVState *env = &cpu->env; int i; /* Force disable extensions if priv spec version does not match */ for (i = 0; i < ARRAY_SIZE(isa_edata_arr); i++) { if (isa_ext_is_enabled(cpu, &isa_edata_arr[i]) && (env->priv_ver < isa_edata_arr[i].min_version)) { isa_ext_update_enabled(cpu, &isa_edata_arr[i], false); #ifndef CONFIG_USER_ONLY warn_report("disabling %s extension for hart 0x" TARGET_FMT_lx " because privilege spec version does not match", isa_edata_arr[i].name, env->mhartid); #else warn_report("disabling %s extension because " "privilege spec version does not match", isa_edata_arr[i].name); #endif } } } static void riscv_cpu_validate_misa_mxl(RISCVCPU *cpu, Error **errp) { RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cpu); CPUClass *cc = CPU_CLASS(mcc); CPURISCVState *env = &cpu->env; /* Validate that MISA_MXL is set properly. */ switch (env->misa_mxl_max) { #ifdef TARGET_RISCV64 case MXL_RV64: case MXL_RV128: cc->gdb_core_xml_file = "riscv-64bit-cpu.xml"; break; #endif case MXL_RV32: cc->gdb_core_xml_file = "riscv-32bit-cpu.xml"; break; default: g_assert_not_reached(); } if (env->misa_mxl_max != env->misa_mxl) { error_setg(errp, "misa_mxl_max must be equal to misa_mxl"); return; } } /* * Check consistency between chosen extensions while setting * cpu->cfg accordingly. */ void riscv_cpu_validate_set_extensions(RISCVCPU *cpu, Error **errp) { CPURISCVState *env = &cpu->env; Error *local_err = NULL; /* Do some ISA extension error checking */ if (riscv_has_ext(env, RVG) && !(riscv_has_ext(env, RVI) && riscv_has_ext(env, RVM) && riscv_has_ext(env, RVA) && riscv_has_ext(env, RVF) && riscv_has_ext(env, RVD) && cpu->cfg.ext_icsr && cpu->cfg.ext_ifencei)) { warn_report("Setting G will also set IMAFD_Zicsr_Zifencei"); cpu->cfg.ext_icsr = true; cpu->cfg.ext_ifencei = true; env->misa_ext |= RVI | RVM | RVA | RVF | RVD; env->misa_ext_mask |= RVI | RVM | RVA | RVF | RVD; } if (riscv_has_ext(env, RVI) && riscv_has_ext(env, RVE)) { error_setg(errp, "I and E extensions are incompatible"); return; } if (!riscv_has_ext(env, RVI) && !riscv_has_ext(env, RVE)) { error_setg(errp, "Either I or E extension must be set"); return; } if (riscv_has_ext(env, RVS) && !riscv_has_ext(env, RVU)) { error_setg(errp, "Setting S extension without U extension is illegal"); return; } if (riscv_has_ext(env, RVH) && !riscv_has_ext(env, RVI)) { error_setg(errp, "H depends on an I base integer ISA with 32 x registers"); return; } if (riscv_has_ext(env, RVH) && !riscv_has_ext(env, RVS)) { error_setg(errp, "H extension implicitly requires S-mode"); return; } if (riscv_has_ext(env, RVF) && !cpu->cfg.ext_icsr) { error_setg(errp, "F extension requires Zicsr"); return; } if ((cpu->cfg.ext_zawrs) && !riscv_has_ext(env, RVA)) { error_setg(errp, "Zawrs extension requires A extension"); return; } if (cpu->cfg.ext_zfa && !riscv_has_ext(env, RVF)) { error_setg(errp, "Zfa extension requires F extension"); return; } if (cpu->cfg.ext_zfh) { cpu->cfg.ext_zfhmin = true; } if (cpu->cfg.ext_zfhmin && !riscv_has_ext(env, RVF)) { error_setg(errp, "Zfh/Zfhmin extensions require F extension"); return; } if (cpu->cfg.ext_zfbfmin && !riscv_has_ext(env, RVF)) { error_setg(errp, "Zfbfmin extension depends on F extension"); return; } if (riscv_has_ext(env, RVD) && !riscv_has_ext(env, RVF)) { error_setg(errp, "D extension requires F extension"); return; } if (riscv_has_ext(env, RVV)) { riscv_cpu_validate_v(env, &cpu->cfg, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } /* The V vector extension depends on the Zve64d extension */ cpu->cfg.ext_zve64d = true; } /* The Zve64d extension depends on the Zve64f extension */ if (cpu->cfg.ext_zve64d) { cpu->cfg.ext_zve64f = true; } /* The Zve64f extension depends on the Zve32f extension */ if (cpu->cfg.ext_zve64f) { cpu->cfg.ext_zve32f = true; } if (cpu->cfg.ext_zve64d && !riscv_has_ext(env, RVD)) { error_setg(errp, "Zve64d/V extensions require D extension"); return; } if (cpu->cfg.ext_zve32f && !riscv_has_ext(env, RVF)) { error_setg(errp, "Zve32f/Zve64f extensions require F extension"); return; } if (cpu->cfg.ext_zvfh) { cpu->cfg.ext_zvfhmin = true; } if (cpu->cfg.ext_zvfhmin && !cpu->cfg.ext_zve32f) { error_setg(errp, "Zvfh/Zvfhmin extensions require Zve32f extension"); return; } if (cpu->cfg.ext_zvfh && !cpu->cfg.ext_zfhmin) { error_setg(errp, "Zvfh extensions requires Zfhmin extension"); return; } if (cpu->cfg.ext_zvfbfmin && !cpu->cfg.ext_zfbfmin) { error_setg(errp, "Zvfbfmin extension depends on Zfbfmin extension"); return; } if (cpu->cfg.ext_zvfbfmin && !cpu->cfg.ext_zve32f) { error_setg(errp, "Zvfbfmin extension depends on Zve32f extension"); return; } if (cpu->cfg.ext_zvfbfwma && !cpu->cfg.ext_zvfbfmin) { error_setg(errp, "Zvfbfwma extension depends on Zvfbfmin extension"); return; } /* Set the ISA extensions, checks should have happened above */ if (cpu->cfg.ext_zhinx) { cpu->cfg.ext_zhinxmin = true; } if ((cpu->cfg.ext_zdinx || cpu->cfg.ext_zhinxmin) && !cpu->cfg.ext_zfinx) { error_setg(errp, "Zdinx/Zhinx/Zhinxmin extensions require Zfinx"); return; } if (cpu->cfg.ext_zfinx) { if (!cpu->cfg.ext_icsr) { error_setg(errp, "Zfinx extension requires Zicsr"); return; } if (riscv_has_ext(env, RVF)) { error_setg(errp, "Zfinx cannot be supported together with F extension"); return; } } if (cpu->cfg.ext_zce) { cpu->cfg.ext_zca = true; cpu->cfg.ext_zcb = true; cpu->cfg.ext_zcmp = true; cpu->cfg.ext_zcmt = true; if (riscv_has_ext(env, RVF) && env->misa_mxl_max == MXL_RV32) { cpu->cfg.ext_zcf = true; } } /* zca, zcd and zcf has a PRIV 1.12.0 restriction */ if (riscv_has_ext(env, RVC) && env->priv_ver >= PRIV_VERSION_1_12_0) { cpu->cfg.ext_zca = true; if (riscv_has_ext(env, RVF) && env->misa_mxl_max == MXL_RV32) { cpu->cfg.ext_zcf = true; } if (riscv_has_ext(env, RVD)) { cpu->cfg.ext_zcd = true; } } if (env->misa_mxl_max != MXL_RV32 && cpu->cfg.ext_zcf) { error_setg(errp, "Zcf extension is only relevant to RV32"); return; } if (!riscv_has_ext(env, RVF) && cpu->cfg.ext_zcf) { error_setg(errp, "Zcf extension requires F extension"); return; } if (!riscv_has_ext(env, RVD) && cpu->cfg.ext_zcd) { error_setg(errp, "Zcd extension requires D extension"); return; } if ((cpu->cfg.ext_zcf || cpu->cfg.ext_zcd || cpu->cfg.ext_zcb || cpu->cfg.ext_zcmp || cpu->cfg.ext_zcmt) && !cpu->cfg.ext_zca) { error_setg(errp, "Zcf/Zcd/Zcb/Zcmp/Zcmt extensions require Zca " "extension"); return; } if (cpu->cfg.ext_zcd && (cpu->cfg.ext_zcmp || cpu->cfg.ext_zcmt)) { error_setg(errp, "Zcmp/Zcmt extensions are incompatible with " "Zcd extension"); return; } if (cpu->cfg.ext_zcmt && !cpu->cfg.ext_icsr) { error_setg(errp, "Zcmt extension requires Zicsr extension"); return; } if (cpu->cfg.ext_zk) { cpu->cfg.ext_zkn = true; cpu->cfg.ext_zkr = true; cpu->cfg.ext_zkt = true; } if (cpu->cfg.ext_zkn) { cpu->cfg.ext_zbkb = true; cpu->cfg.ext_zbkc = true; cpu->cfg.ext_zbkx = true; cpu->cfg.ext_zkne = true; cpu->cfg.ext_zknd = true; cpu->cfg.ext_zknh = true; } if (cpu->cfg.ext_zks) { cpu->cfg.ext_zbkb = true; cpu->cfg.ext_zbkc = true; cpu->cfg.ext_zbkx = true; cpu->cfg.ext_zksed = true; cpu->cfg.ext_zksh = true; } /* * Disable isa extensions based on priv spec after we * validated and set everything we need. */ riscv_cpu_disable_priv_spec_isa_exts(cpu); } #ifndef CONFIG_USER_ONLY static void riscv_cpu_satp_mode_finalize(RISCVCPU *cpu, Error **errp) { bool rv32 = riscv_cpu_mxl(&cpu->env) == MXL_RV32; uint8_t satp_mode_map_max; uint8_t satp_mode_supported_max = satp_mode_max_from_map(cpu->cfg.satp_mode.supported); if (cpu->cfg.satp_mode.map == 0) { if (cpu->cfg.satp_mode.init == 0) { /* If unset by the user, we fallback to the default satp mode. */ set_satp_mode_default_map(cpu); } else { /* * Find the lowest level that was disabled and then enable the * first valid level below which can be found in * valid_vm_1_10_32/64. */ for (int i = 1; i < 16; ++i) { if ((cpu->cfg.satp_mode.init & (1 << i)) && (cpu->cfg.satp_mode.supported & (1 << i))) { for (int j = i - 1; j >= 0; --j) { if (cpu->cfg.satp_mode.supported & (1 << j)) { cpu->cfg.satp_mode.map |= (1 << j); break; } } break; } } } } satp_mode_map_max = satp_mode_max_from_map(cpu->cfg.satp_mode.map); /* Make sure the user asked for a supported configuration (HW and qemu) */ if (satp_mode_map_max > satp_mode_supported_max) { error_setg(errp, "satp_mode %s is higher than hw max capability %s", satp_mode_str(satp_mode_map_max, rv32), satp_mode_str(satp_mode_supported_max, rv32)); return; } /* * Make sure the user did not ask for an invalid configuration as per * the specification. */ if (!rv32) { for (int i = satp_mode_map_max - 1; i >= 0; --i) { if (!(cpu->cfg.satp_mode.map & (1 << i)) && (cpu->cfg.satp_mode.init & (1 << i)) && (cpu->cfg.satp_mode.supported & (1 << i))) { error_setg(errp, "cannot disable %s satp mode if %s " "is enabled", satp_mode_str(i, false), satp_mode_str(satp_mode_map_max, false)); return; } } } /* Finally expand the map so that all valid modes are set */ for (int i = satp_mode_map_max - 1; i >= 0; --i) { if (cpu->cfg.satp_mode.supported & (1 << i)) { cpu->cfg.satp_mode.map |= (1 << i); } } } #endif static void riscv_cpu_finalize_features(RISCVCPU *cpu, Error **errp) { #ifndef CONFIG_USER_ONLY Error *local_err = NULL; riscv_cpu_satp_mode_finalize(cpu, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } #endif } static void riscv_cpu_validate_misa_priv(CPURISCVState *env, Error **errp) { if (riscv_has_ext(env, RVH) && env->priv_ver < PRIV_VERSION_1_12_0) { error_setg(errp, "H extension requires priv spec 1.12.0"); return; } } static void riscv_cpu_realize_tcg(DeviceState *dev, Error **errp) { RISCVCPU *cpu = RISCV_CPU(dev); CPURISCVState *env = &cpu->env; Error *local_err = NULL; riscv_cpu_validate_misa_mxl(cpu, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } riscv_cpu_validate_priv_spec(cpu, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } riscv_cpu_validate_misa_priv(env, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } if (cpu->cfg.epmp && !cpu->cfg.pmp) { /* * Enhanced PMP should only be available * on harts with PMP support */ error_setg(errp, "Invalid configuration: EPMP requires PMP support"); return; } riscv_cpu_validate_set_extensions(cpu, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } #ifndef CONFIG_USER_ONLY CPU(dev)->tcg_cflags |= CF_PCREL; if (cpu->cfg.ext_sstc) { riscv_timer_init(cpu); } if (cpu->cfg.pmu_num) { if (!riscv_pmu_init(cpu, cpu->cfg.pmu_num) && cpu->cfg.ext_sscofpmf) { cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, riscv_pmu_timer_cb, cpu); } } #endif } static void riscv_cpu_realize(DeviceState *dev, Error **errp) { CPUState *cs = CPU(dev); RISCVCPU *cpu = RISCV_CPU(dev); RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(dev); Error *local_err = NULL; cpu_exec_realizefn(cs, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } if (tcg_enabled()) { riscv_cpu_realize_tcg(dev, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } } riscv_cpu_finalize_features(cpu, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } riscv_cpu_register_gdb_regs_for_features(cs); qemu_init_vcpu(cs); cpu_reset(cs); mcc->parent_realize(dev, errp); } #ifndef CONFIG_USER_ONLY static void cpu_riscv_get_satp(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { RISCVSATPMap *satp_map = opaque; uint8_t satp = satp_mode_from_str(name); bool value; value = satp_map->map & (1 << satp); visit_type_bool(v, name, &value, errp); } static void cpu_riscv_set_satp(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { RISCVSATPMap *satp_map = opaque; uint8_t satp = satp_mode_from_str(name); bool value; if (!visit_type_bool(v, name, &value, errp)) { return; } satp_map->map = deposit32(satp_map->map, satp, 1, value); satp_map->init |= 1 << satp; } static void riscv_add_satp_mode_properties(Object *obj) { RISCVCPU *cpu = RISCV_CPU(obj); if (cpu->env.misa_mxl == MXL_RV32) { object_property_add(obj, "sv32", "bool", cpu_riscv_get_satp, cpu_riscv_set_satp, NULL, &cpu->cfg.satp_mode); } else { object_property_add(obj, "sv39", "bool", cpu_riscv_get_satp, cpu_riscv_set_satp, NULL, &cpu->cfg.satp_mode); object_property_add(obj, "sv48", "bool", cpu_riscv_get_satp, cpu_riscv_set_satp, NULL, &cpu->cfg.satp_mode); object_property_add(obj, "sv57", "bool", cpu_riscv_get_satp, cpu_riscv_set_satp, NULL, &cpu->cfg.satp_mode); object_property_add(obj, "sv64", "bool", cpu_riscv_get_satp, cpu_riscv_set_satp, NULL, &cpu->cfg.satp_mode); } } static void riscv_cpu_set_irq(void *opaque, int irq, int level) { RISCVCPU *cpu = RISCV_CPU(opaque); CPURISCVState *env = &cpu->env; if (irq < IRQ_LOCAL_MAX) { switch (irq) { case IRQ_U_SOFT: case IRQ_S_SOFT: case IRQ_VS_SOFT: case IRQ_M_SOFT: case IRQ_U_TIMER: case IRQ_S_TIMER: case IRQ_VS_TIMER: case IRQ_M_TIMER: case IRQ_U_EXT: case IRQ_VS_EXT: case IRQ_M_EXT: if (kvm_enabled()) { kvm_riscv_set_irq(cpu, irq, level); } else { riscv_cpu_update_mip(env, 1 << irq, BOOL_TO_MASK(level)); } break; case IRQ_S_EXT: if (kvm_enabled()) { kvm_riscv_set_irq(cpu, irq, level); } else { env->external_seip = level; riscv_cpu_update_mip(env, 1 << irq, BOOL_TO_MASK(level | env->software_seip)); } break; default: g_assert_not_reached(); } } else if (irq < (IRQ_LOCAL_MAX + IRQ_LOCAL_GUEST_MAX)) { /* Require H-extension for handling guest local interrupts */ if (!riscv_has_ext(env, RVH)) { g_assert_not_reached(); } /* Compute bit position in HGEIP CSR */ irq = irq - IRQ_LOCAL_MAX + 1; if (env->geilen < irq) { g_assert_not_reached(); } /* Update HGEIP CSR */ env->hgeip &= ~((target_ulong)1 << irq); if (level) { env->hgeip |= (target_ulong)1 << irq; } /* Update mip.SGEIP bit */ riscv_cpu_update_mip(env, MIP_SGEIP, BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); } else { g_assert_not_reached(); } } #endif /* CONFIG_USER_ONLY */ static void riscv_cpu_init(Object *obj) { RISCVCPU *cpu = RISCV_CPU(obj); cpu_set_cpustate_pointers(cpu); #ifndef CONFIG_USER_ONLY qdev_init_gpio_in(DEVICE(cpu), riscv_cpu_set_irq, IRQ_LOCAL_MAX + IRQ_LOCAL_GUEST_MAX); #endif /* CONFIG_USER_ONLY */ } typedef struct RISCVCPUMisaExtConfig { const char *name; const char *description; target_ulong misa_bit; bool enabled; } RISCVCPUMisaExtConfig; static void cpu_set_misa_ext_cfg(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { const RISCVCPUMisaExtConfig *misa_ext_cfg = opaque; target_ulong misa_bit = misa_ext_cfg->misa_bit; RISCVCPU *cpu = RISCV_CPU(obj); CPURISCVState *env = &cpu->env; bool value; if (!visit_type_bool(v, name, &value, errp)) { return; } if (value) { env->misa_ext |= misa_bit; env->misa_ext_mask |= misa_bit; } else { env->misa_ext &= ~misa_bit; env->misa_ext_mask &= ~misa_bit; } } static void cpu_get_misa_ext_cfg(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { const RISCVCPUMisaExtConfig *misa_ext_cfg = opaque; target_ulong misa_bit = misa_ext_cfg->misa_bit; RISCVCPU *cpu = RISCV_CPU(obj); CPURISCVState *env = &cpu->env; bool value; value = env->misa_ext & misa_bit; visit_type_bool(v, name, &value, errp); } typedef struct misa_ext_info { const char *name; const char *description; } MISAExtInfo; #define MISA_INFO_IDX(_bit) \ __builtin_ctz(_bit) #define MISA_EXT_INFO(_bit, _propname, _descr) \ [MISA_INFO_IDX(_bit)] = {.name = _propname, .description = _descr} static const MISAExtInfo misa_ext_info_arr[] = { MISA_EXT_INFO(RVA, "a", "Atomic instructions"), MISA_EXT_INFO(RVC, "c", "Compressed instructions"), MISA_EXT_INFO(RVD, "d", "Double-precision float point"), MISA_EXT_INFO(RVF, "f", "Single-precision float point"), MISA_EXT_INFO(RVI, "i", "Base integer instruction set"), MISA_EXT_INFO(RVE, "e", "Base integer instruction set (embedded)"), MISA_EXT_INFO(RVM, "m", "Integer multiplication and division"), MISA_EXT_INFO(RVS, "s", "Supervisor-level instructions"), MISA_EXT_INFO(RVU, "u", "User-level instructions"), MISA_EXT_INFO(RVH, "h", "Hypervisor"), MISA_EXT_INFO(RVJ, "x-j", "Dynamic translated languages"), MISA_EXT_INFO(RVV, "v", "Vector operations"), MISA_EXT_INFO(RVG, "g", "General purpose (IMAFD_Zicsr_Zifencei)"), }; static int riscv_validate_misa_info_idx(uint32_t bit) { int idx; /* * Our lowest valid input (RVA) is 1 and * __builtin_ctz() is UB with zero. */ g_assert(bit != 0); idx = MISA_INFO_IDX(bit); g_assert(idx < ARRAY_SIZE(misa_ext_info_arr)); return idx; } const char *riscv_get_misa_ext_name(uint32_t bit) { int idx = riscv_validate_misa_info_idx(bit); const char *val = misa_ext_info_arr[idx].name; g_assert(val != NULL); return val; } const char *riscv_get_misa_ext_description(uint32_t bit) { int idx = riscv_validate_misa_info_idx(bit); const char *val = misa_ext_info_arr[idx].description; g_assert(val != NULL); return val; } #define MISA_CFG(_bit, _enabled) \ {.misa_bit = _bit, .enabled = _enabled} static RISCVCPUMisaExtConfig misa_ext_cfgs[] = { MISA_CFG(RVA, true), MISA_CFG(RVC, true), MISA_CFG(RVD, true), MISA_CFG(RVF, true), MISA_CFG(RVI, true), MISA_CFG(RVE, false), MISA_CFG(RVM, true), MISA_CFG(RVS, true), MISA_CFG(RVU, true), MISA_CFG(RVH, true), MISA_CFG(RVJ, false), MISA_CFG(RVV, false), MISA_CFG(RVG, false), }; static void riscv_cpu_add_misa_properties(Object *cpu_obj) { int i; for (i = 0; i < ARRAY_SIZE(misa_ext_cfgs); i++) { RISCVCPUMisaExtConfig *misa_cfg = &misa_ext_cfgs[i]; int bit = misa_cfg->misa_bit; misa_cfg->name = riscv_get_misa_ext_name(bit); misa_cfg->description = riscv_get_misa_ext_description(bit); /* Check if KVM already created the property */ if (object_property_find(cpu_obj, misa_cfg->name)) { continue; } object_property_add(cpu_obj, misa_cfg->name, "bool", cpu_get_misa_ext_cfg, cpu_set_misa_ext_cfg, NULL, (void *)misa_cfg); object_property_set_description(cpu_obj, misa_cfg->name, misa_cfg->description); object_property_set_bool(cpu_obj, misa_cfg->name, misa_cfg->enabled, NULL); } } static Property riscv_cpu_extensions[] = { /* Defaults for standard extensions */ DEFINE_PROP_UINT8("pmu-num", RISCVCPU, cfg.pmu_num, 16), DEFINE_PROP_BOOL("sscofpmf", RISCVCPU, cfg.ext_sscofpmf, false), DEFINE_PROP_BOOL("Zifencei", RISCVCPU, cfg.ext_ifencei, true), DEFINE_PROP_BOOL("Zicsr", RISCVCPU, cfg.ext_icsr, true), DEFINE_PROP_BOOL("Zihintpause", RISCVCPU, cfg.ext_zihintpause, true), DEFINE_PROP_BOOL("Zawrs", RISCVCPU, cfg.ext_zawrs, true), DEFINE_PROP_BOOL("Zfa", RISCVCPU, cfg.ext_zfa, true), DEFINE_PROP_BOOL("Zfh", RISCVCPU, cfg.ext_zfh, false), DEFINE_PROP_BOOL("Zfhmin", RISCVCPU, cfg.ext_zfhmin, false), DEFINE_PROP_BOOL("Zve32f", RISCVCPU, cfg.ext_zve32f, false), DEFINE_PROP_BOOL("Zve64f", RISCVCPU, cfg.ext_zve64f, false), DEFINE_PROP_BOOL("Zve64d", RISCVCPU, cfg.ext_zve64d, false), DEFINE_PROP_BOOL("mmu", RISCVCPU, cfg.mmu, true), DEFINE_PROP_BOOL("pmp", RISCVCPU, cfg.pmp, true), DEFINE_PROP_BOOL("sstc", RISCVCPU, cfg.ext_sstc, true), DEFINE_PROP_STRING("priv_spec", RISCVCPU, cfg.priv_spec), DEFINE_PROP_STRING("vext_spec", RISCVCPU, cfg.vext_spec), DEFINE_PROP_UINT16("vlen", RISCVCPU, cfg.vlen, 128), DEFINE_PROP_UINT16("elen", RISCVCPU, cfg.elen, 64), DEFINE_PROP_BOOL("smstateen", RISCVCPU, cfg.ext_smstateen, false), DEFINE_PROP_BOOL("svadu", RISCVCPU, cfg.ext_svadu, true), DEFINE_PROP_BOOL("svinval", RISCVCPU, cfg.ext_svinval, false), DEFINE_PROP_BOOL("svnapot", RISCVCPU, cfg.ext_svnapot, false), DEFINE_PROP_BOOL("svpbmt", RISCVCPU, cfg.ext_svpbmt, false), DEFINE_PROP_BOOL("zba", RISCVCPU, cfg.ext_zba, true), DEFINE_PROP_BOOL("zbb", RISCVCPU, cfg.ext_zbb, true), DEFINE_PROP_BOOL("zbc", RISCVCPU, cfg.ext_zbc, true), DEFINE_PROP_BOOL("zbkb", RISCVCPU, cfg.ext_zbkb, false), DEFINE_PROP_BOOL("zbkc", RISCVCPU, cfg.ext_zbkc, false), DEFINE_PROP_BOOL("zbkx", RISCVCPU, cfg.ext_zbkx, false), DEFINE_PROP_BOOL("zbs", RISCVCPU, cfg.ext_zbs, true), DEFINE_PROP_BOOL("zk", RISCVCPU, cfg.ext_zk, false), DEFINE_PROP_BOOL("zkn", RISCVCPU, cfg.ext_zkn, false), DEFINE_PROP_BOOL("zknd", RISCVCPU, cfg.ext_zknd, false), DEFINE_PROP_BOOL("zkne", RISCVCPU, cfg.ext_zkne, false), DEFINE_PROP_BOOL("zknh", RISCVCPU, cfg.ext_zknh, false), DEFINE_PROP_BOOL("zkr", RISCVCPU, cfg.ext_zkr, false), DEFINE_PROP_BOOL("zks", RISCVCPU, cfg.ext_zks, false), DEFINE_PROP_BOOL("zksed", RISCVCPU, cfg.ext_zksed, false), DEFINE_PROP_BOOL("zksh", RISCVCPU, cfg.ext_zksh, false), DEFINE_PROP_BOOL("zkt", RISCVCPU, cfg.ext_zkt, false), DEFINE_PROP_BOOL("zdinx", RISCVCPU, cfg.ext_zdinx, false), DEFINE_PROP_BOOL("zfinx", RISCVCPU, cfg.ext_zfinx, false), DEFINE_PROP_BOOL("zhinx", RISCVCPU, cfg.ext_zhinx, false), DEFINE_PROP_BOOL("zhinxmin", RISCVCPU, cfg.ext_zhinxmin, false), DEFINE_PROP_BOOL("zicbom", RISCVCPU, cfg.ext_icbom, true), DEFINE_PROP_UINT16("cbom_blocksize", RISCVCPU, cfg.cbom_blocksize, 64), DEFINE_PROP_BOOL("zicboz", RISCVCPU, cfg.ext_icboz, true), DEFINE_PROP_UINT16("cboz_blocksize", RISCVCPU, cfg.cboz_blocksize, 64), DEFINE_PROP_BOOL("zmmul", RISCVCPU, cfg.ext_zmmul, false), DEFINE_PROP_BOOL("zca", RISCVCPU, cfg.ext_zca, false), DEFINE_PROP_BOOL("zcb", RISCVCPU, cfg.ext_zcb, false), DEFINE_PROP_BOOL("zcd", RISCVCPU, cfg.ext_zcd, false), DEFINE_PROP_BOOL("zce", RISCVCPU, cfg.ext_zce, false), DEFINE_PROP_BOOL("zcf", RISCVCPU, cfg.ext_zcf, false), DEFINE_PROP_BOOL("zcmp", RISCVCPU, cfg.ext_zcmp, false), DEFINE_PROP_BOOL("zcmt", RISCVCPU, cfg.ext_zcmt, false), /* Vendor-specific custom extensions */ DEFINE_PROP_BOOL("xtheadba", RISCVCPU, cfg.ext_xtheadba, false), DEFINE_PROP_BOOL("xtheadbb", RISCVCPU, cfg.ext_xtheadbb, false), DEFINE_PROP_BOOL("xtheadbs", RISCVCPU, cfg.ext_xtheadbs, false), DEFINE_PROP_BOOL("xtheadcmo", RISCVCPU, cfg.ext_xtheadcmo, false), DEFINE_PROP_BOOL("xtheadcondmov", RISCVCPU, cfg.ext_xtheadcondmov, false), DEFINE_PROP_BOOL("xtheadfmemidx", RISCVCPU, cfg.ext_xtheadfmemidx, false), DEFINE_PROP_BOOL("xtheadfmv", RISCVCPU, cfg.ext_xtheadfmv, false), DEFINE_PROP_BOOL("xtheadmac", RISCVCPU, cfg.ext_xtheadmac, false), DEFINE_PROP_BOOL("xtheadmemidx", RISCVCPU, cfg.ext_xtheadmemidx, false), DEFINE_PROP_BOOL("xtheadmempair", RISCVCPU, cfg.ext_xtheadmempair, false), DEFINE_PROP_BOOL("xtheadsync", RISCVCPU, cfg.ext_xtheadsync, false), DEFINE_PROP_BOOL("xventanacondops", RISCVCPU, cfg.ext_XVentanaCondOps, false), /* These are experimental so mark with 'x-' */ DEFINE_PROP_BOOL("x-zicond", RISCVCPU, cfg.ext_zicond, false), /* ePMP 0.9.3 */ DEFINE_PROP_BOOL("x-epmp", RISCVCPU, cfg.epmp, false), DEFINE_PROP_BOOL("x-smaia", RISCVCPU, cfg.ext_smaia, false), DEFINE_PROP_BOOL("x-ssaia", RISCVCPU, cfg.ext_ssaia, false), DEFINE_PROP_BOOL("x-zvfh", RISCVCPU, cfg.ext_zvfh, false), DEFINE_PROP_BOOL("x-zvfhmin", RISCVCPU, cfg.ext_zvfhmin, false), DEFINE_PROP_BOOL("x-zfbfmin", RISCVCPU, cfg.ext_zfbfmin, false), DEFINE_PROP_BOOL("x-zvfbfmin", RISCVCPU, cfg.ext_zvfbfmin, false), DEFINE_PROP_BOOL("x-zvfbfwma", RISCVCPU, cfg.ext_zvfbfwma, false), DEFINE_PROP_END_OF_LIST(), }; #ifndef CONFIG_USER_ONLY static void cpu_set_cfg_unavailable(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { const char *propname = opaque; bool value; if (!visit_type_bool(v, name, &value, errp)) { return; } if (value) { error_setg(errp, "extension %s is not available with KVM", propname); } } #endif /* * Add CPU properties with user-facing flags. * * This will overwrite existing env->misa_ext values with the * defaults set via riscv_cpu_add_misa_properties(). */ static void riscv_cpu_add_user_properties(Object *obj) { Property *prop; DeviceState *dev = DEVICE(obj); #ifndef CONFIG_USER_ONLY riscv_add_satp_mode_properties(obj); if (kvm_enabled()) { kvm_riscv_init_user_properties(obj); } #endif riscv_cpu_add_misa_properties(obj); for (prop = riscv_cpu_extensions; prop && prop->name; prop++) { #ifndef CONFIG_USER_ONLY if (kvm_enabled()) { /* Check if KVM created the property already */ if (object_property_find(obj, prop->name)) { continue; } /* * Set the default to disabled for every extension * unknown to KVM and error out if the user attempts * to enable any of them. * * We're giving a pass for non-bool properties since they're * not related to the availability of extensions and can be * safely ignored as is. */ if (prop->info == &qdev_prop_bool) { object_property_add(obj, prop->name, "bool", NULL, cpu_set_cfg_unavailable, NULL, (void *)prop->name); continue; } } #endif qdev_property_add_static(dev, prop); } } static Property riscv_cpu_properties[] = { DEFINE_PROP_BOOL("debug", RISCVCPU, cfg.debug, true), #ifndef CONFIG_USER_ONLY DEFINE_PROP_UINT64("resetvec", RISCVCPU, env.resetvec, DEFAULT_RSTVEC), #endif DEFINE_PROP_BOOL("short-isa-string", RISCVCPU, cfg.short_isa_string, false), DEFINE_PROP_BOOL("rvv_ta_all_1s", RISCVCPU, cfg.rvv_ta_all_1s, false), DEFINE_PROP_BOOL("rvv_ma_all_1s", RISCVCPU, cfg.rvv_ma_all_1s, false), /* * write_misa() is marked as experimental for now so mark * it with -x and default to 'false'. */ DEFINE_PROP_BOOL("x-misa-w", RISCVCPU, cfg.misa_w, false), DEFINE_PROP_END_OF_LIST(), }; static gchar *riscv_gdb_arch_name(CPUState *cs) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; switch (riscv_cpu_mxl(env)) { case MXL_RV32: return g_strdup("riscv:rv32"); case MXL_RV64: case MXL_RV128: return g_strdup("riscv:rv64"); default: g_assert_not_reached(); } } static const char *riscv_gdb_get_dynamic_xml(CPUState *cs, const char *xmlname) { RISCVCPU *cpu = RISCV_CPU(cs); if (strcmp(xmlname, "riscv-csr.xml") == 0) { return cpu->dyn_csr_xml; } else if (strcmp(xmlname, "riscv-vector.xml") == 0) { return cpu->dyn_vreg_xml; } return NULL; } #ifndef CONFIG_USER_ONLY static int64_t riscv_get_arch_id(CPUState *cs) { RISCVCPU *cpu = RISCV_CPU(cs); return cpu->env.mhartid; } #include "hw/core/sysemu-cpu-ops.h" static const struct SysemuCPUOps riscv_sysemu_ops = { .get_phys_page_debug = riscv_cpu_get_phys_page_debug, .write_elf64_note = riscv_cpu_write_elf64_note, .write_elf32_note = riscv_cpu_write_elf32_note, .legacy_vmsd = &vmstate_riscv_cpu, }; #endif #include "hw/core/tcg-cpu-ops.h" static const struct TCGCPUOps riscv_tcg_ops = { .initialize = riscv_translate_init, .synchronize_from_tb = riscv_cpu_synchronize_from_tb, .restore_state_to_opc = riscv_restore_state_to_opc, #ifndef CONFIG_USER_ONLY .tlb_fill = riscv_cpu_tlb_fill, .cpu_exec_interrupt = riscv_cpu_exec_interrupt, .do_interrupt = riscv_cpu_do_interrupt, .do_transaction_failed = riscv_cpu_do_transaction_failed, .do_unaligned_access = riscv_cpu_do_unaligned_access, .debug_excp_handler = riscv_cpu_debug_excp_handler, .debug_check_breakpoint = riscv_cpu_debug_check_breakpoint, .debug_check_watchpoint = riscv_cpu_debug_check_watchpoint, #endif /* !CONFIG_USER_ONLY */ }; static bool riscv_cpu_is_dynamic(Object *cpu_obj) { return object_dynamic_cast(cpu_obj, TYPE_RISCV_DYNAMIC_CPU) != NULL; } static void cpu_set_mvendorid(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { bool dynamic_cpu = riscv_cpu_is_dynamic(obj); RISCVCPU *cpu = RISCV_CPU(obj); uint32_t prev_val = cpu->cfg.mvendorid; uint32_t value; if (!visit_type_uint32(v, name, &value, errp)) { return; } if (!dynamic_cpu && prev_val != value) { error_setg(errp, "Unable to change %s mvendorid (0x%x)", object_get_typename(obj), prev_val); return; } cpu->cfg.mvendorid = value; } static void cpu_get_mvendorid(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { bool value = RISCV_CPU(obj)->cfg.mvendorid; visit_type_bool(v, name, &value, errp); } static void cpu_set_mimpid(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { bool dynamic_cpu = riscv_cpu_is_dynamic(obj); RISCVCPU *cpu = RISCV_CPU(obj); uint64_t prev_val = cpu->cfg.mimpid; uint64_t value; if (!visit_type_uint64(v, name, &value, errp)) { return; } if (!dynamic_cpu && prev_val != value) { error_setg(errp, "Unable to change %s mimpid (0x%" PRIu64 ")", object_get_typename(obj), prev_val); return; } cpu->cfg.mimpid = value; } static void cpu_get_mimpid(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { bool value = RISCV_CPU(obj)->cfg.mimpid; visit_type_bool(v, name, &value, errp); } static void cpu_set_marchid(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { bool dynamic_cpu = riscv_cpu_is_dynamic(obj); RISCVCPU *cpu = RISCV_CPU(obj); uint64_t prev_val = cpu->cfg.marchid; uint64_t value, invalid_val; uint32_t mxlen = 0; if (!visit_type_uint64(v, name, &value, errp)) { return; } if (!dynamic_cpu && prev_val != value) { error_setg(errp, "Unable to change %s marchid (0x%" PRIu64 ")", object_get_typename(obj), prev_val); return; } switch (riscv_cpu_mxl(&cpu->env)) { case MXL_RV32: mxlen = 32; break; case MXL_RV64: case MXL_RV128: mxlen = 64; break; default: g_assert_not_reached(); } invalid_val = 1LL << (mxlen - 1); if (value == invalid_val) { error_setg(errp, "Unable to set marchid with MSB (%u) bit set " "and the remaining bits zero", mxlen); return; } cpu->cfg.marchid = value; } static void cpu_get_marchid(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { bool value = RISCV_CPU(obj)->cfg.marchid; visit_type_bool(v, name, &value, errp); } static void riscv_cpu_class_init(ObjectClass *c, void *data) { RISCVCPUClass *mcc = RISCV_CPU_CLASS(c); CPUClass *cc = CPU_CLASS(c); DeviceClass *dc = DEVICE_CLASS(c); ResettableClass *rc = RESETTABLE_CLASS(c); device_class_set_parent_realize(dc, riscv_cpu_realize, &mcc->parent_realize); resettable_class_set_parent_phases(rc, NULL, riscv_cpu_reset_hold, NULL, &mcc->parent_phases); cc->class_by_name = riscv_cpu_class_by_name; cc->has_work = riscv_cpu_has_work; cc->dump_state = riscv_cpu_dump_state; cc->set_pc = riscv_cpu_set_pc; cc->get_pc = riscv_cpu_get_pc; cc->gdb_read_register = riscv_cpu_gdb_read_register; cc->gdb_write_register = riscv_cpu_gdb_write_register; cc->gdb_num_core_regs = 33; cc->gdb_stop_before_watchpoint = true; cc->disas_set_info = riscv_cpu_disas_set_info; #ifndef CONFIG_USER_ONLY cc->sysemu_ops = &riscv_sysemu_ops; cc->get_arch_id = riscv_get_arch_id; #endif cc->gdb_arch_name = riscv_gdb_arch_name; cc->gdb_get_dynamic_xml = riscv_gdb_get_dynamic_xml; cc->tcg_ops = &riscv_tcg_ops; object_class_property_add(c, "mvendorid", "uint32", cpu_get_mvendorid, cpu_set_mvendorid, NULL, NULL); object_class_property_add(c, "mimpid", "uint64", cpu_get_mimpid, cpu_set_mimpid, NULL, NULL); object_class_property_add(c, "marchid", "uint64", cpu_get_marchid, cpu_set_marchid, NULL, NULL); device_class_set_props(dc, riscv_cpu_properties); } static void riscv_isa_string_ext(RISCVCPU *cpu, char **isa_str, int max_str_len) { char *old = *isa_str; char *new = *isa_str; int i; for (i = 0; i < ARRAY_SIZE(isa_edata_arr); i++) { if (isa_ext_is_enabled(cpu, &isa_edata_arr[i])) { new = g_strconcat(old, "_", isa_edata_arr[i].name, NULL); g_free(old); old = new; } } *isa_str = new; } char *riscv_isa_string(RISCVCPU *cpu) { int i; const size_t maxlen = sizeof("rv128") + sizeof(riscv_single_letter_exts); char *isa_str = g_new(char, maxlen); char *p = isa_str + snprintf(isa_str, maxlen, "rv%d", TARGET_LONG_BITS); for (i = 0; i < sizeof(riscv_single_letter_exts) - 1; i++) { if (cpu->env.misa_ext & RV(riscv_single_letter_exts[i])) { *p++ = qemu_tolower(riscv_single_letter_exts[i]); } } *p = '\0'; if (!cpu->cfg.short_isa_string) { riscv_isa_string_ext(cpu, &isa_str, maxlen); } return isa_str; } static gint riscv_cpu_list_compare(gconstpointer a, gconstpointer b) { ObjectClass *class_a = (ObjectClass *)a; ObjectClass *class_b = (ObjectClass *)b; const char *name_a, *name_b; name_a = object_class_get_name(class_a); name_b = object_class_get_name(class_b); return strcmp(name_a, name_b); } static void riscv_cpu_list_entry(gpointer data, gpointer user_data) { const char *typename = object_class_get_name(OBJECT_CLASS(data)); int len = strlen(typename) - strlen(RISCV_CPU_TYPE_SUFFIX); qemu_printf("%.*s\n", len, typename); } void riscv_cpu_list(void) { GSList *list; list = object_class_get_list(TYPE_RISCV_CPU, false); list = g_slist_sort(list, riscv_cpu_list_compare); g_slist_foreach(list, riscv_cpu_list_entry, NULL); g_slist_free(list); } #define DEFINE_CPU(type_name, initfn) \ { \ .name = type_name, \ .parent = TYPE_RISCV_CPU, \ .instance_init = initfn \ } #define DEFINE_DYNAMIC_CPU(type_name, initfn) \ { \ .name = type_name, \ .parent = TYPE_RISCV_DYNAMIC_CPU, \ .instance_init = initfn \ } static const TypeInfo riscv_cpu_type_infos[] = { { .name = TYPE_RISCV_CPU, .parent = TYPE_CPU, .instance_size = sizeof(RISCVCPU), .instance_align = __alignof__(RISCVCPU), .instance_init = riscv_cpu_init, .abstract = true, .class_size = sizeof(RISCVCPUClass), .class_init = riscv_cpu_class_init, }, { .name = TYPE_RISCV_DYNAMIC_CPU, .parent = TYPE_RISCV_CPU, .abstract = true, }, DEFINE_DYNAMIC_CPU(TYPE_RISCV_CPU_ANY, riscv_any_cpu_init), #if defined(CONFIG_KVM) DEFINE_CPU(TYPE_RISCV_CPU_HOST, riscv_host_cpu_init), #endif #if defined(TARGET_RISCV32) DEFINE_DYNAMIC_CPU(TYPE_RISCV_CPU_BASE32, rv32_base_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_IBEX, rv32_ibex_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_E31, rv32_sifive_e_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_E34, rv32_imafcu_nommu_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_U34, rv32_sifive_u_cpu_init), #elif defined(TARGET_RISCV64) DEFINE_DYNAMIC_CPU(TYPE_RISCV_CPU_BASE64, rv64_base_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_E51, rv64_sifive_e_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_U54, rv64_sifive_u_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_SHAKTI_C, rv64_sifive_u_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_THEAD_C906, rv64_thead_c906_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_VEYRON_V1, rv64_veyron_v1_cpu_init), DEFINE_DYNAMIC_CPU(TYPE_RISCV_CPU_BASE128, rv128_base_cpu_init), #endif }; DEFINE_TYPES(riscv_cpu_type_infos)