/* * QEMU RISC-V PMP (Physical Memory Protection) * * Author: Daire McNamara, daire.mcnamara@emdalo.com * Ivan Griffin, ivan.griffin@emdalo.com * * This provides a RISC-V Physical Memory Protection implementation * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qapi/error.h" #include "cpu.h" #include "trace.h" #include "exec/exec-all.h" static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index, uint8_t val); static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index); static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index); /* * Accessor method to extract address matching type 'a field' from cfg reg */ static inline uint8_t pmp_get_a_field(uint8_t cfg) { uint8_t a = cfg >> 3; return a & 0x3; } /* * Check whether a PMP is locked or not. */ static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index) { if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) { return 1; } /* Top PMP has no 'next' to check */ if ((pmp_index + 1u) >= MAX_RISCV_PMPS) { return 0; } return 0; } /* * Count the number of active rules. */ uint32_t pmp_get_num_rules(CPURISCVState *env) { return env->pmp_state.num_rules; } /* * Accessor to get the cfg reg for a specific PMP/HART */ static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index) { if (pmp_index < MAX_RISCV_PMPS) { return env->pmp_state.pmp[pmp_index].cfg_reg; } return 0; } /* * Accessor to set the cfg reg for a specific PMP/HART * Bounds checks and relevant lock bit. */ static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val) { if (pmp_index < MAX_RISCV_PMPS) { bool locked = true; if (riscv_feature(env, RISCV_FEATURE_EPMP)) { /* mseccfg.RLB is set */ if (MSECCFG_RLB_ISSET(env)) { locked = false; } /* mseccfg.MML is not set */ if (!MSECCFG_MML_ISSET(env) && !pmp_is_locked(env, pmp_index)) { locked = false; } /* mseccfg.MML is set */ if (MSECCFG_MML_ISSET(env)) { /* not adding execute bit */ if ((val & PMP_LOCK) != 0 && (val & PMP_EXEC) != PMP_EXEC) { locked = false; } /* shared region and not adding X bit */ if ((val & PMP_LOCK) != PMP_LOCK && (val & 0x7) != (PMP_WRITE | PMP_EXEC)) { locked = false; } } } else { if (!pmp_is_locked(env, pmp_index)) { locked = false; } } if (locked) { qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n"); } else { env->pmp_state.pmp[pmp_index].cfg_reg = val; pmp_update_rule(env, pmp_index); } } else { qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - out of bounds\n"); } } static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea) { /* aaaa...aaa0 8-byte NAPOT range aaaa...aa01 16-byte NAPOT range aaaa...a011 32-byte NAPOT range ... aa01...1111 2^XLEN-byte NAPOT range a011...1111 2^(XLEN+1)-byte NAPOT range 0111...1111 2^(XLEN+2)-byte NAPOT range 1111...1111 Reserved */ if (a == -1) { *sa = 0u; *ea = -1; return; } else { target_ulong t1 = ctz64(~a); target_ulong base = (a & ~(((target_ulong)1 << t1) - 1)) << 2; target_ulong range = ((target_ulong)1 << (t1 + 3)) - 1; *sa = base; *ea = base + range; } } void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index) { uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg; target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg; target_ulong prev_addr = 0u; target_ulong sa = 0u; target_ulong ea = 0u; if (pmp_index >= 1u) { prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg; } switch (pmp_get_a_field(this_cfg)) { case PMP_AMATCH_OFF: sa = 0u; ea = -1; break; case PMP_AMATCH_TOR: sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ ea = (this_addr << 2) - 1u; break; case PMP_AMATCH_NA4: sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ ea = (sa + 4u) - 1u; break; case PMP_AMATCH_NAPOT: pmp_decode_napot(this_addr, &sa, &ea); break; default: sa = 0u; ea = 0u; break; } env->pmp_state.addr[pmp_index].sa = sa; env->pmp_state.addr[pmp_index].ea = ea; } void pmp_update_rule_nums(CPURISCVState *env) { int i; env->pmp_state.num_rules = 0; for (i = 0; i < MAX_RISCV_PMPS; i++) { const uint8_t a_field = pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); if (PMP_AMATCH_OFF != a_field) { env->pmp_state.num_rules++; } } } /* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea' * end address values. * This function is called relatively infrequently whereas the check that * an address is within a pmp rule is called often, so optimise that one */ static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index) { pmp_update_rule_addr(env, pmp_index); pmp_update_rule_nums(env); } static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr) { int result = 0; if ((addr >= env->pmp_state.addr[pmp_index].sa) && (addr <= env->pmp_state.addr[pmp_index].ea)) { result = 1; } else { result = 0; } return result; } /* * Check if the address has required RWX privs when no PMP entry is matched. */ static bool pmp_hart_has_privs_default(CPURISCVState *env, target_ulong addr, target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs, target_ulong mode) { bool ret; if (riscv_feature(env, RISCV_FEATURE_EPMP)) { if (MSECCFG_MMWP_ISSET(env)) { /* * The Machine Mode Whitelist Policy (mseccfg.MMWP) is set * so we default to deny all, even for M-mode. */ *allowed_privs = 0; return false; } else if (MSECCFG_MML_ISSET(env)) { /* * The Machine Mode Lockdown (mseccfg.MML) bit is set * so we can only execute code in M-mode with an applicable * rule. Other modes are disabled. */ if (mode == PRV_M && !(privs & PMP_EXEC)) { ret = true; *allowed_privs = PMP_READ | PMP_WRITE; } else { ret = false; *allowed_privs = 0; } return ret; } } if ((!riscv_feature(env, RISCV_FEATURE_PMP)) || (mode == PRV_M)) { /* * Privileged spec v1.10 states if HW doesn't implement any PMP entry * or no PMP entry matches an M-Mode access, the access succeeds. */ ret = true; *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; } else { /* * Other modes are not allowed to succeed if they don't * match a rule, * but there are rules. We've checked for no rule earlier in this * function. */ ret = false; *allowed_privs = 0; } return ret; } /* * Public Interface */ /* * Check if the address has required RWX privs to complete desired operation */ bool pmp_hart_has_privs(CPURISCVState *env, target_ulong addr, target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs, target_ulong mode) { int i = 0; int ret = -1; int pmp_size = 0; target_ulong s = 0; target_ulong e = 0; /* Short cut if no rules */ if (0 == pmp_get_num_rules(env)) { return pmp_hart_has_privs_default(env, addr, size, privs, allowed_privs, mode); } if (size == 0) { if (riscv_feature(env, RISCV_FEATURE_MMU)) { /* * If size is unknown (0), assume that all bytes * from addr to the end of the page will be accessed. */ pmp_size = -(addr | TARGET_PAGE_MASK); } else { pmp_size = sizeof(target_ulong); } } else { pmp_size = size; } /* 1.10 draft priv spec states there is an implicit order from low to high */ for (i = 0; i < MAX_RISCV_PMPS; i++) { s = pmp_is_in_range(env, i, addr); e = pmp_is_in_range(env, i, addr + pmp_size - 1); /* partially inside */ if ((s + e) == 1) { qemu_log_mask(LOG_GUEST_ERROR, "pmp violation - access is partially inside\n"); ret = 0; break; } /* fully inside */ const uint8_t a_field = pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); /* * Convert the PMP permissions to match the truth table in the * ePMP spec. */ const uint8_t epmp_operation = ((env->pmp_state.pmp[i].cfg_reg & PMP_LOCK) >> 4) | ((env->pmp_state.pmp[i].cfg_reg & PMP_READ) << 2) | (env->pmp_state.pmp[i].cfg_reg & PMP_WRITE) | ((env->pmp_state.pmp[i].cfg_reg & PMP_EXEC) >> 2); if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) { /* * If the PMP entry is not off and the address is in range, * do the priv check */ if (!MSECCFG_MML_ISSET(env)) { /* * If mseccfg.MML Bit is not set, do pmp priv check * This will always apply to regular PMP. */ *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; if ((mode != PRV_M) || pmp_is_locked(env, i)) { *allowed_privs &= env->pmp_state.pmp[i].cfg_reg; } } else { /* * If mseccfg.MML Bit set, do the enhanced pmp priv check */ if (mode == PRV_M) { switch (epmp_operation) { case 0: case 1: case 4: case 5: case 6: case 7: case 8: *allowed_privs = 0; break; case 2: case 3: case 14: *allowed_privs = PMP_READ | PMP_WRITE; break; case 9: case 10: *allowed_privs = PMP_EXEC; break; case 11: case 13: *allowed_privs = PMP_READ | PMP_EXEC; break; case 12: case 15: *allowed_privs = PMP_READ; break; default: g_assert_not_reached(); } } else { switch (epmp_operation) { case 0: case 8: case 9: case 12: case 13: case 14: *allowed_privs = 0; break; case 1: case 10: case 11: *allowed_privs = PMP_EXEC; break; case 2: case 4: case 15: *allowed_privs = PMP_READ; break; case 3: case 6: *allowed_privs = PMP_READ | PMP_WRITE; break; case 5: *allowed_privs = PMP_READ | PMP_EXEC; break; case 7: *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; break; default: g_assert_not_reached(); } } } ret = ((privs & *allowed_privs) == privs); break; } } /* No rule matched */ if (ret == -1) { return pmp_hart_has_privs_default(env, addr, size, privs, allowed_privs, mode); } return ret == 1 ? true : false; } /* * Handle a write to a pmpcfg CSR */ void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index, target_ulong val) { int i; uint8_t cfg_val; int pmpcfg_nums = 2 << riscv_cpu_mxl(env); trace_pmpcfg_csr_write(env->mhartid, reg_index, val); for (i = 0; i < pmpcfg_nums; i++) { cfg_val = (val >> 8 * i) & 0xff; pmp_write_cfg(env, (reg_index * 4) + i, cfg_val); } /* If PMP permission of any addr has been changed, flush TLB pages. */ tlb_flush(env_cpu(env)); } /* * Handle a read from a pmpcfg CSR */ target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index) { int i; target_ulong cfg_val = 0; target_ulong val = 0; int pmpcfg_nums = 2 << riscv_cpu_mxl(env); for (i = 0; i < pmpcfg_nums; i++) { val = pmp_read_cfg(env, (reg_index * 4) + i); cfg_val |= (val << (i * 8)); } trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val); return cfg_val; } /* * Handle a write to a pmpaddr CSR */ void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index, target_ulong val) { trace_pmpaddr_csr_write(env->mhartid, addr_index, val); if (addr_index < MAX_RISCV_PMPS) { /* * In TOR mode, need to check the lock bit of the next pmp * (if there is a next). */ if (addr_index + 1 < MAX_RISCV_PMPS) { uint8_t pmp_cfg = env->pmp_state.pmp[addr_index + 1].cfg_reg; if (pmp_cfg & PMP_LOCK && PMP_AMATCH_TOR == pmp_get_a_field(pmp_cfg)) { qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpaddr write - pmpcfg + 1 locked\n"); return; } } if (!pmp_is_locked(env, addr_index)) { env->pmp_state.pmp[addr_index].addr_reg = val; pmp_update_rule(env, addr_index); } else { qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpaddr write - locked\n"); } } else { qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpaddr write - out of bounds\n"); } } /* * Handle a read from a pmpaddr CSR */ target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index) { target_ulong val = 0; if (addr_index < MAX_RISCV_PMPS) { val = env->pmp_state.pmp[addr_index].addr_reg; trace_pmpaddr_csr_read(env->mhartid, addr_index, val); } else { qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpaddr read - out of bounds\n"); } return val; } /* * Handle a write to a mseccfg CSR */ void mseccfg_csr_write(CPURISCVState *env, target_ulong val) { int i; trace_mseccfg_csr_write(env->mhartid, val); /* RLB cannot be enabled if it's already 0 and if any regions are locked */ if (!MSECCFG_RLB_ISSET(env)) { for (i = 0; i < MAX_RISCV_PMPS; i++) { if (pmp_is_locked(env, i)) { val &= ~MSECCFG_RLB; break; } } } /* Sticky bits */ val |= (env->mseccfg & (MSECCFG_MMWP | MSECCFG_MML)); env->mseccfg = val; } /* * Handle a read from a mseccfg CSR */ target_ulong mseccfg_csr_read(CPURISCVState *env) { trace_mseccfg_csr_read(env->mhartid, env->mseccfg); return env->mseccfg; } /* * Calculate the TLB size if the start address or the end address of * PMP entry is presented in the TLB page. */ static target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index, target_ulong tlb_sa, target_ulong tlb_ea) { target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa; target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea; if (pmp_sa >= tlb_sa && pmp_ea <= tlb_ea) { return pmp_ea - pmp_sa + 1; } if (pmp_sa >= tlb_sa && pmp_sa <= tlb_ea && pmp_ea >= tlb_ea) { return tlb_ea - pmp_sa + 1; } if (pmp_ea <= tlb_ea && pmp_ea >= tlb_sa && pmp_sa <= tlb_sa) { return pmp_ea - tlb_sa + 1; } return 0; } /* * Check is there a PMP entry which range covers this page. If so, * try to find the minimum granularity for the TLB size. */ bool pmp_is_range_in_tlb(CPURISCVState *env, hwaddr tlb_sa, target_ulong *tlb_size) { int i; target_ulong val; target_ulong tlb_ea = (tlb_sa + TARGET_PAGE_SIZE - 1); for (i = 0; i < MAX_RISCV_PMPS; i++) { val = pmp_get_tlb_size(env, i, tlb_sa, tlb_ea); if (val) { if (*tlb_size == 0 || *tlb_size > val) { *tlb_size = val; } } } if (*tlb_size != 0) { return true; } return false; } /* * Convert PMP privilege to TLB page privilege. */ int pmp_priv_to_page_prot(pmp_priv_t pmp_priv) { int prot = 0; if (pmp_priv & PMP_READ) { prot |= PAGE_READ; } if (pmp_priv & PMP_WRITE) { prot |= PAGE_WRITE; } if (pmp_priv & PMP_EXEC) { prot |= PAGE_EXEC; } return prot; }