/* * s390x crypto helpers * * Copyright (C) 2022 Jason A. Donenfeld . All Rights Reserved. * Copyright (c) 2017 Red Hat Inc * * Authors: * David Hildenbrand * Jason A. Donenfeld * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/guest-random.h" #include "s390x-internal.h" #include "tcg_s390x.h" #include "exec/helper-proto.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" static uint64_t R(uint64_t x, int c) { return (x >> c) | (x << (64 - c)); } static uint64_t Ch(uint64_t x, uint64_t y, uint64_t z) { return (x & y) ^ (~x & z); } static uint64_t Maj(uint64_t x, uint64_t y, uint64_t z) { return (x & y) ^ (x & z) ^ (y & z); } static uint64_t Sigma0(uint64_t x) { return R(x, 28) ^ R(x, 34) ^ R(x, 39); } static uint64_t Sigma1(uint64_t x) { return R(x, 14) ^ R(x, 18) ^ R(x, 41); } static uint64_t sigma0(uint64_t x) { return R(x, 1) ^ R(x, 8) ^ (x >> 7); } static uint64_t sigma1(uint64_t x) { return R(x, 19) ^ R(x, 61) ^ (x >> 6); } static const uint64_t K[80] = { 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL }; /* a is icv/ocv, w is a single message block. w will get reused internally. */ static void sha512_bda(uint64_t a[8], uint64_t w[16]) { uint64_t t, z[8], b[8]; int i, j; memcpy(z, a, sizeof(z)); for (i = 0; i < 80; i++) { memcpy(b, a, sizeof(b)); t = a[7] + Sigma1(a[4]) + Ch(a[4], a[5], a[6]) + K[i] + w[i % 16]; b[7] = t + Sigma0(a[0]) + Maj(a[0], a[1], a[2]); b[3] += t; for (j = 0; j < 8; ++j) { a[(j + 1) % 8] = b[j]; } if (i % 16 == 15) { for (j = 0; j < 16; ++j) { w[j] += w[(j + 9) % 16] + sigma0(w[(j + 1) % 16]) + sigma1(w[(j + 14) % 16]); } } } for (i = 0; i < 8; i++) { a[i] += z[i]; } } /* a is icv/ocv, w is a single message block that needs be64 conversion. */ static void sha512_bda_be64(uint64_t a[8], uint64_t w[16]) { uint64_t t[16]; int i; for (i = 0; i < 16; i++) { t[i] = be64_to_cpu(w[i]); } sha512_bda(a, t); } static void sha512_read_icv(CPUS390XState *env, uint64_t addr, uint64_t a[8], uintptr_t ra) { int i; for (i = 0; i < 8; i++, addr += 8) { addr = wrap_address(env, addr); a[i] = cpu_ldq_be_data_ra(env, addr, ra); } } static void sha512_write_ocv(CPUS390XState *env, uint64_t addr, uint64_t a[8], uintptr_t ra) { int i; for (i = 0; i < 8; i++, addr += 8) { addr = wrap_address(env, addr); cpu_stq_be_data_ra(env, addr, a[i], ra); } } static void sha512_read_block(CPUS390XState *env, uint64_t addr, uint64_t a[16], uintptr_t ra) { int i; for (i = 0; i < 16; i++, addr += 8) { addr = wrap_address(env, addr); a[i] = cpu_ldq_be_data_ra(env, addr, ra); } } static void sha512_read_mbl_be64(CPUS390XState *env, uint64_t addr, uint8_t a[16], uintptr_t ra) { int i; for (i = 0; i < 16; i++, addr += 1) { addr = wrap_address(env, addr); a[i] = cpu_ldub_data_ra(env, addr, ra); } } static int cpacf_sha512(CPUS390XState *env, uintptr_t ra, uint64_t param_addr, uint64_t *message_reg, uint64_t *len_reg, uint32_t type) { enum { MAX_BLOCKS_PER_RUN = 64 }; /* Arbitrary: keep interactivity. */ uint64_t len = *len_reg, a[8], processed = 0; int i, message_reg_len = 64; g_assert(type == S390_FEAT_TYPE_KIMD || type == S390_FEAT_TYPE_KLMD); if (!(env->psw.mask & PSW_MASK_64)) { len = (uint32_t)len; message_reg_len = (env->psw.mask & PSW_MASK_32) ? 32 : 24; } /* KIMD: length has to be properly aligned. */ if (type == S390_FEAT_TYPE_KIMD && !QEMU_IS_ALIGNED(len, 128)) { tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra); } sha512_read_icv(env, param_addr, a, ra); /* Process full blocks first. */ for (; len >= 128; len -= 128, processed += 128) { uint64_t w[16]; if (processed >= MAX_BLOCKS_PER_RUN * 128) { break; } sha512_read_block(env, *message_reg + processed, w, ra); sha512_bda(a, w); } /* KLMD: Process partial/empty block last. */ if (type == S390_FEAT_TYPE_KLMD && len < 128) { uint8_t x[128]; /* Read the remainder of the message byte-per-byte. */ for (i = 0; i < len; i++) { uint64_t addr = wrap_address(env, *message_reg + processed + i); x[i] = cpu_ldub_data_ra(env, addr, ra); } /* Pad the remainder with zero and set the top bit. */ memset(x + len, 0, 128 - len); x[len] = 128; /* * Place the MBL either into this block (if there is space left), * or use an additional one. */ if (len < 112) { sha512_read_mbl_be64(env, param_addr + 64, x + 112, ra); } sha512_bda_be64(a, (uint64_t *)x); if (len >= 112) { memset(x, 0, 112); sha512_read_mbl_be64(env, param_addr + 64, x + 112, ra); sha512_bda_be64(a, (uint64_t *)x); } processed += len; len = 0; } /* * Modify memory after we read all inputs and modify registers only after * writing memory succeeded. * * TODO: if writing fails halfway through (e.g., when crossing page * boundaries), we're in trouble. We'd need something like access_prepare(). */ sha512_write_ocv(env, param_addr, a, ra); *message_reg = deposit64(*message_reg, 0, message_reg_len, *message_reg + processed); *len_reg -= processed; return !len ? 0 : 3; } static void fill_buf_random(CPUS390XState *env, uintptr_t ra, uint64_t *buf_reg, uint64_t *len_reg) { uint8_t tmp[256]; uint64_t len = *len_reg; int buf_reg_len = 64; if (!(env->psw.mask & PSW_MASK_64)) { len = (uint32_t)len; buf_reg_len = (env->psw.mask & PSW_MASK_32) ? 32 : 24; } while (len) { size_t block = MIN(len, sizeof(tmp)); qemu_guest_getrandom_nofail(tmp, block); for (size_t i = 0; i < block; ++i) { cpu_stb_data_ra(env, wrap_address(env, *buf_reg), tmp[i], ra); *buf_reg = deposit64(*buf_reg, 0, buf_reg_len, *buf_reg + 1); --*len_reg; } len -= block; } } uint32_t HELPER(msa)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t r3, uint32_t type) { const uintptr_t ra = GETPC(); const uint8_t mod = env->regs[0] & 0x80ULL; const uint8_t fc = env->regs[0] & 0x7fULL; uint8_t subfunc[16] = { 0 }; uint64_t param_addr; int i; switch (type) { case S390_FEAT_TYPE_KMAC: case S390_FEAT_TYPE_KIMD: case S390_FEAT_TYPE_KLMD: case S390_FEAT_TYPE_PCKMO: case S390_FEAT_TYPE_PCC: if (mod) { tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra); } break; } s390_get_feat_block(type, subfunc); if (!test_be_bit(fc, subfunc)) { tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra); } switch (fc) { case 0: /* query subfunction */ for (i = 0; i < 16; i++) { param_addr = wrap_address(env, env->regs[1] + i); cpu_stb_data_ra(env, param_addr, subfunc[i], ra); } break; case 3: /* CPACF_*_SHA_512 */ return cpacf_sha512(env, ra, env->regs[1], &env->regs[r2], &env->regs[r2 + 1], type); case 114: /* CPACF_PRNO_TRNG */ fill_buf_random(env, ra, &env->regs[r1], &env->regs[r1 + 1]); fill_buf_random(env, ra, &env->regs[r2], &env->regs[r2 + 1]); break; default: /* we don't implement any other subfunction yet */ g_assert_not_reached(); } return 0; }