#ifndef SPARC_CPU_H #define SPARC_CPU_H #include "qemu/bswap.h" #include "cpu-qom.h" #include "exec/cpu-defs.h" #include "qemu/cpu-float.h" /* * From Oracle SPARC Architecture 2015: * * Compatibility notes: The PSO memory model described in SPARC V8 and * SPARC V9 compatibility architecture specifications was never implemented * in a SPARC V9 implementation and is not included in the Oracle SPARC * Architecture specification. * * The RMO memory model described in the SPARC V9 specification was * implemented in some non-Sun SPARC V9 implementations, but is not * directly supported in Oracle SPARC Architecture 2015 implementations. * * Therefore always use TSO in QEMU. * * D.5 Specification of Partial Store Order (PSO) * ... [loads] are followed by an implied MEMBAR #LoadLoad | #LoadStore. * * D.6 Specification of Total Store Order (TSO) * ... PSO with the additional requirement that all [stores] are followed * by an implied MEMBAR #StoreStore. */ #define TCG_GUEST_DEFAULT_MO (TCG_MO_LD_LD | TCG_MO_LD_ST | TCG_MO_ST_ST) #if !defined(TARGET_SPARC64) #define TARGET_DPREGS 16 #define TARGET_FCCREGS 1 #else #define TARGET_DPREGS 32 #define TARGET_FCCREGS 4 #endif /*#define EXCP_INTERRUPT 0x100*/ /* Windowed register indexes. */ enum { WREG_O0, WREG_O1, WREG_O2, WREG_O3, WREG_O4, WREG_O5, WREG_O6, WREG_O7, WREG_L0, WREG_L1, WREG_L2, WREG_L3, WREG_L4, WREG_L5, WREG_L6, WREG_L7, WREG_I0, WREG_I1, WREG_I2, WREG_I3, WREG_I4, WREG_I5, WREG_I6, WREG_I7, WREG_SP = WREG_O6, WREG_FP = WREG_I6, }; /* trap definitions */ #ifndef TARGET_SPARC64 #define TT_TFAULT 0x01 #define TT_ILL_INSN 0x02 #define TT_PRIV_INSN 0x03 #define TT_NFPU_INSN 0x04 #define TT_WIN_OVF 0x05 #define TT_WIN_UNF 0x06 #define TT_UNALIGNED 0x07 #define TT_FP_EXCP 0x08 #define TT_DFAULT 0x09 #define TT_TOVF 0x0a #define TT_EXTINT 0x10 #define TT_CODE_ACCESS 0x21 #define TT_UNIMP_FLUSH 0x25 #define TT_DATA_ACCESS 0x29 #define TT_DIV_ZERO 0x2a #define TT_NCP_INSN 0x24 #define TT_TRAP 0x80 #else #define TT_POWER_ON_RESET 0x01 #define TT_TFAULT 0x08 #define TT_CODE_ACCESS 0x0a #define TT_ILL_INSN 0x10 #define TT_UNIMP_FLUSH TT_ILL_INSN #define TT_PRIV_INSN 0x11 #define TT_NFPU_INSN 0x20 #define TT_FP_EXCP 0x21 #define TT_TOVF 0x23 #define TT_CLRWIN 0x24 #define TT_DIV_ZERO 0x28 #define TT_DFAULT 0x30 #define TT_DATA_ACCESS 0x32 #define TT_UNALIGNED 0x34 #define TT_PRIV_ACT 0x37 #define TT_INSN_REAL_TRANSLATION_MISS 0x3e #define TT_DATA_REAL_TRANSLATION_MISS 0x3f #define TT_EXTINT 0x40 #define TT_IVEC 0x60 #define TT_TMISS 0x64 #define TT_DMISS 0x68 #define TT_DPROT 0x6c #define TT_SPILL 0x80 #define TT_FILL 0xc0 #define TT_WOTHER (1 << 5) #define TT_TRAP 0x100 #define TT_HTRAP 0x180 #endif #define PSR_NEG_SHIFT 23 #define PSR_NEG (1 << PSR_NEG_SHIFT) #define PSR_ZERO_SHIFT 22 #define PSR_ZERO (1 << PSR_ZERO_SHIFT) #define PSR_OVF_SHIFT 21 #define PSR_OVF (1 << PSR_OVF_SHIFT) #define PSR_CARRY_SHIFT 20 #define PSR_CARRY (1 << PSR_CARRY_SHIFT) #define PSR_ICC (PSR_NEG|PSR_ZERO|PSR_OVF|PSR_CARRY) #if !defined(TARGET_SPARC64) #define PSR_EF (1<<12) #define PSR_PIL 0xf00 #define PSR_S (1<<7) #define PSR_PS (1<<6) #define PSR_ET (1<<5) #define PSR_CWP 0x1f #endif /* Trap base register */ #define TBR_BASE_MASK 0xfffff000 #if defined(TARGET_SPARC64) #define PS_TCT (1<<12) /* UA2007, impl.dep. trap on control transfer */ #define PS_IG (1<<11) /* v9, zero on UA2007 */ #define PS_MG (1<<10) /* v9, zero on UA2007 */ #define PS_CLE (1<<9) /* UA2007 */ #define PS_TLE (1<<8) /* UA2007 */ #define PS_RMO (1<<7) #define PS_RED (1<<5) /* v9, zero on UA2007 */ #define PS_PEF (1<<4) /* enable fpu */ #define PS_AM (1<<3) /* address mask */ #define PS_PRIV (1<<2) #define PS_IE (1<<1) #define PS_AG (1<<0) /* v9, zero on UA2007 */ #define FPRS_DL (1 << 0) #define FPRS_DU (1 << 1) #define FPRS_FEF (1 << 2) #define HS_PRIV (1<<2) #endif /* Fcc */ #define FSR_RD1 (1ULL << 31) #define FSR_RD0 (1ULL << 30) #define FSR_RD_MASK (FSR_RD1 | FSR_RD0) #define FSR_RD_NEAREST 0 #define FSR_RD_ZERO FSR_RD0 #define FSR_RD_POS FSR_RD1 #define FSR_RD_NEG (FSR_RD1 | FSR_RD0) #define FSR_NVM (1ULL << 27) #define FSR_OFM (1ULL << 26) #define FSR_UFM (1ULL << 25) #define FSR_DZM (1ULL << 24) #define FSR_NXM (1ULL << 23) #define FSR_TEM_MASK (FSR_NVM | FSR_OFM | FSR_UFM | FSR_DZM | FSR_NXM) #define FSR_TEM_SHIFT 23 #define FSR_NVA (1ULL << 9) #define FSR_OFA (1ULL << 8) #define FSR_UFA (1ULL << 7) #define FSR_DZA (1ULL << 6) #define FSR_NXA (1ULL << 5) #define FSR_AEXC_MASK (FSR_NVA | FSR_OFA | FSR_UFA | FSR_DZA | FSR_NXA) #define FSR_AEXC_SHIFT 5 #define FSR_NVC (1ULL << 4) #define FSR_OFC (1ULL << 3) #define FSR_UFC (1ULL << 2) #define FSR_DZC (1ULL << 1) #define FSR_NXC (1ULL << 0) #define FSR_CEXC_MASK (FSR_NVC | FSR_OFC | FSR_UFC | FSR_DZC | FSR_NXC) #define FSR_VER_SHIFT 17 #define FSR_VER_MASK (7 << FSR_VER_SHIFT) #define FSR_FTT2 (1ULL << 16) #define FSR_FTT1 (1ULL << 15) #define FSR_FTT0 (1ULL << 14) #define FSR_FTT_MASK (FSR_FTT2 | FSR_FTT1 | FSR_FTT0) #define FSR_FTT_IEEE_EXCP (1ULL << 14) #define FSR_FTT_UNIMPFPOP (3ULL << 14) #define FSR_FTT_SEQ_ERROR (4ULL << 14) #define FSR_FTT_INVAL_FPR (6ULL << 14) #define FSR_FCC0_SHIFT 10 #define FSR_FCC1_SHIFT 32 #define FSR_FCC2_SHIFT 34 #define FSR_FCC3_SHIFT 36 /* MMU */ #define MMU_E (1<<0) #define MMU_NF (1<<1) #define PTE_ENTRYTYPE_MASK 3 #define PTE_ACCESS_MASK 0x1c #define PTE_ACCESS_SHIFT 2 #define PTE_PPN_SHIFT 7 #define PTE_ADDR_MASK 0xffffff00 #define PG_ACCESSED_BIT 5 #define PG_MODIFIED_BIT 6 #define PG_CACHE_BIT 7 #define PG_ACCESSED_MASK (1 << PG_ACCESSED_BIT) #define PG_MODIFIED_MASK (1 << PG_MODIFIED_BIT) #define PG_CACHE_MASK (1 << PG_CACHE_BIT) /* 3 <= NWINDOWS <= 32. */ #define MIN_NWINDOWS 3 #define MAX_NWINDOWS 32 #ifdef TARGET_SPARC64 typedef struct trap_state { uint64_t tpc; uint64_t tnpc; uint64_t tstate; uint32_t tt; } trap_state; #endif #define TARGET_INSN_START_EXTRA_WORDS 1 typedef struct sparc_def_t { const char *name; target_ulong iu_version; uint32_t fpu_version; uint32_t mmu_version; uint32_t mmu_bm; uint32_t mmu_ctpr_mask; uint32_t mmu_cxr_mask; uint32_t mmu_sfsr_mask; uint32_t mmu_trcr_mask; uint32_t mxcc_version; uint32_t features; uint32_t nwindows; uint32_t maxtl; } sparc_def_t; #define FEATURE(X) CPU_FEATURE_BIT_##X, enum { #include "cpu-feature.h.inc" }; #undef FEATURE #define FEATURE(X) CPU_FEATURE_##X = 1u << CPU_FEATURE_BIT_##X, enum { #include "cpu-feature.h.inc" }; #undef FEATURE #ifndef TARGET_SPARC64 #define CPU_DEFAULT_FEATURES (CPU_FEATURE_MUL | CPU_FEATURE_DIV | \ CPU_FEATURE_FSMULD) #else #define CPU_DEFAULT_FEATURES (CPU_FEATURE_MUL | CPU_FEATURE_DIV | \ CPU_FEATURE_FSMULD | CPU_FEATURE_CASA | \ CPU_FEATURE_VIS1 | CPU_FEATURE_VIS2) enum { mmu_us_12, // Ultrasparc < III (64 entry TLB) mmu_us_3, // Ultrasparc III (512 entry TLB) mmu_us_4, // Ultrasparc IV (several TLBs, 32 and 256MB pages) mmu_sun4v, // T1, T2 }; #endif #define TTE_VALID_BIT (1ULL << 63) #define TTE_NFO_BIT (1ULL << 60) #define TTE_IE_BIT (1ULL << 59) #define TTE_USED_BIT (1ULL << 41) #define TTE_LOCKED_BIT (1ULL << 6) #define TTE_SIDEEFFECT_BIT (1ULL << 3) #define TTE_PRIV_BIT (1ULL << 2) #define TTE_W_OK_BIT (1ULL << 1) #define TTE_GLOBAL_BIT (1ULL << 0) #define TTE_NFO_BIT_UA2005 (1ULL << 62) #define TTE_USED_BIT_UA2005 (1ULL << 47) #define TTE_LOCKED_BIT_UA2005 (1ULL << 61) #define TTE_SIDEEFFECT_BIT_UA2005 (1ULL << 11) #define TTE_PRIV_BIT_UA2005 (1ULL << 8) #define TTE_W_OK_BIT_UA2005 (1ULL << 6) #define TTE_IS_VALID(tte) ((tte) & TTE_VALID_BIT) #define TTE_IS_NFO(tte) ((tte) & TTE_NFO_BIT) #define TTE_IS_IE(tte) ((tte) & TTE_IE_BIT) #define TTE_IS_USED(tte) ((tte) & TTE_USED_BIT) #define TTE_IS_LOCKED(tte) ((tte) & TTE_LOCKED_BIT) #define TTE_IS_SIDEEFFECT(tte) ((tte) & TTE_SIDEEFFECT_BIT) #define TTE_IS_SIDEEFFECT_UA2005(tte) ((tte) & TTE_SIDEEFFECT_BIT_UA2005) #define TTE_IS_PRIV(tte) ((tte) & TTE_PRIV_BIT) #define TTE_IS_W_OK(tte) ((tte) & TTE_W_OK_BIT) #define TTE_IS_NFO_UA2005(tte) ((tte) & TTE_NFO_BIT_UA2005) #define TTE_IS_USED_UA2005(tte) ((tte) & TTE_USED_BIT_UA2005) #define TTE_IS_LOCKED_UA2005(tte) ((tte) & TTE_LOCKED_BIT_UA2005) #define TTE_IS_SIDEEFFECT_UA2005(tte) ((tte) & TTE_SIDEEFFECT_BIT_UA2005) #define TTE_IS_PRIV_UA2005(tte) ((tte) & TTE_PRIV_BIT_UA2005) #define TTE_IS_W_OK_UA2005(tte) ((tte) & TTE_W_OK_BIT_UA2005) #define TTE_IS_GLOBAL(tte) ((tte) & TTE_GLOBAL_BIT) #define TTE_SET_USED(tte) ((tte) |= TTE_USED_BIT) #define TTE_SET_UNUSED(tte) ((tte) &= ~TTE_USED_BIT) #define TTE_PGSIZE(tte) (((tte) >> 61) & 3ULL) #define TTE_PGSIZE_UA2005(tte) ((tte) & 7ULL) #define TTE_PA(tte) ((tte) & 0x1ffffffe000ULL) /* UltraSPARC T1 specific */ #define TLB_UST1_IS_REAL_BIT (1ULL << 9) /* Real translation entry */ #define TLB_UST1_IS_SUN4V_BIT (1ULL << 10) /* sun4u/sun4v TTE format switch */ #define SFSR_NF_BIT (1ULL << 24) /* JPS1 NoFault */ #define SFSR_TM_BIT (1ULL << 15) /* JPS1 TLB Miss */ #define SFSR_FT_VA_IMMU_BIT (1ULL << 13) /* USIIi VA out of range (IMMU) */ #define SFSR_FT_VA_DMMU_BIT (1ULL << 12) /* USIIi VA out of range (DMMU) */ #define SFSR_FT_NFO_BIT (1ULL << 11) /* NFO page access */ #define SFSR_FT_ILL_BIT (1ULL << 10) /* illegal LDA/STA ASI */ #define SFSR_FT_ATOMIC_BIT (1ULL << 9) /* atomic op on noncacheable area */ #define SFSR_FT_NF_E_BIT (1ULL << 8) /* NF access on side effect area */ #define SFSR_FT_PRIV_BIT (1ULL << 7) /* privilege violation */ #define SFSR_PR_BIT (1ULL << 3) /* privilege mode */ #define SFSR_WRITE_BIT (1ULL << 2) /* write access mode */ #define SFSR_OW_BIT (1ULL << 1) /* status overwritten */ #define SFSR_VALID_BIT (1ULL << 0) /* status valid */ #define SFSR_ASI_SHIFT 16 /* 23:16 ASI value */ #define SFSR_ASI_MASK (0xffULL << SFSR_ASI_SHIFT) #define SFSR_CT_PRIMARY (0ULL << 4) /* 5:4 context type */ #define SFSR_CT_SECONDARY (1ULL << 4) #define SFSR_CT_NUCLEUS (2ULL << 4) #define SFSR_CT_NOTRANS (3ULL << 4) #define SFSR_CT_MASK (3ULL << 4) /* Leon3 cache control */ /* Cache control: emulate the behavior of cache control registers but without any effect on the emulated */ #define CACHE_STATE_MASK 0x3 #define CACHE_DISABLED 0x0 #define CACHE_FROZEN 0x1 #define CACHE_ENABLED 0x3 /* Cache Control register fields */ #define CACHE_CTRL_IF (1 << 4) /* Instruction Cache Freeze on Interrupt */ #define CACHE_CTRL_DF (1 << 5) /* Data Cache Freeze on Interrupt */ #define CACHE_CTRL_DP (1 << 14) /* Data cache flush pending */ #define CACHE_CTRL_IP (1 << 15) /* Instruction cache flush pending */ #define CACHE_CTRL_IB (1 << 16) /* Instruction burst fetch */ #define CACHE_CTRL_FI (1 << 21) /* Flush Instruction cache (Write only) */ #define CACHE_CTRL_FD (1 << 22) /* Flush Data cache (Write only) */ #define CACHE_CTRL_DS (1 << 23) /* Data cache snoop enable */ #define CONVERT_BIT(X, SRC, DST) \ (SRC > DST ? (X) / (SRC / DST) & (DST) : ((X) & SRC) * (DST / SRC)) typedef struct SparcTLBEntry { uint64_t tag; uint64_t tte; } SparcTLBEntry; struct CPUTimer { const char *name; uint32_t frequency; uint32_t disabled; uint64_t disabled_mask; uint32_t npt; uint64_t npt_mask; int64_t clock_offset; QEMUTimer *qtimer; }; typedef struct CPUTimer CPUTimer; typedef struct CPUArchState CPUSPARCState; #if defined(TARGET_SPARC64) typedef union { uint64_t mmuregs[16]; struct { uint64_t tsb_tag_target; uint64_t mmu_primary_context; uint64_t mmu_secondary_context; uint64_t sfsr; uint64_t sfar; uint64_t tsb; uint64_t tag_access; uint64_t virtual_watchpoint; uint64_t physical_watchpoint; uint64_t sun4v_ctx_config[2]; uint64_t sun4v_tsb_pointers[4]; }; } SparcV9MMU; #endif struct CPUArchState { target_ulong gregs[8]; /* general registers */ target_ulong *regwptr; /* pointer to current register window */ target_ulong pc; /* program counter */ target_ulong npc; /* next program counter */ target_ulong y; /* multiply/divide register */ /* * Bit 31 is for icc, bit 63 for xcc. * Other bits are garbage. */ target_long cc_N; target_long cc_V; /* * Z is represented as == 0; any non-zero value is !Z. * For sparc64, the high 32-bits of icc.Z are garbage. */ target_ulong icc_Z; #ifdef TARGET_SPARC64 target_ulong xcc_Z; #endif /* * For sparc32, icc.C is boolean. * For sparc64, xcc.C is boolean; * icc.C is bit 32 with other bits garbage. */ target_ulong icc_C; #ifdef TARGET_SPARC64 target_ulong xcc_C; #endif target_ulong cond; /* conditional branch result (XXX: save it in a temporary register when possible) */ /* FPU State Register, in parts */ uint32_t fsr; /* rm, tem, aexc */ uint32_t fsr_cexc_ftt; /* cexc, ftt */ uint32_t fcc[TARGET_FCCREGS]; /* fcc* */ CPU_DoubleU fpr[TARGET_DPREGS]; /* floating point registers */ uint32_t cwp; /* index of current register window (extracted from PSR) */ #if !defined(TARGET_SPARC64) || defined(TARGET_ABI32) uint32_t wim; /* window invalid mask */ #endif target_ulong tbr; /* trap base register */ #if !defined(TARGET_SPARC64) int psrs; /* supervisor mode (extracted from PSR) */ int psrps; /* previous supervisor mode */ int psret; /* enable traps */ #endif uint32_t psrpil; /* interrupt blocking level */ uint32_t pil_in; /* incoming interrupt level bitmap */ #if !defined(TARGET_SPARC64) int psref; /* enable fpu */ #endif int interrupt_index; /* NOTE: we allow 8 more registers to handle wrapping */ target_ulong regbase[MAX_NWINDOWS * 16 + 8]; /* Fields up to this point are cleared by a CPU reset */ struct {} end_reset_fields; /* Fields from here on are preserved across CPU reset. */ target_ulong version; uint32_t nwindows; /* MMU regs */ #if defined(TARGET_SPARC64) uint64_t lsu; #define DMMU_E 0x8 #define IMMU_E 0x4 SparcV9MMU immu; SparcV9MMU dmmu; SparcTLBEntry itlb[64]; SparcTLBEntry dtlb[64]; uint32_t mmu_version; #else uint32_t mmuregs[32]; uint64_t mxccdata[4]; uint64_t mxccregs[8]; uint32_t mmubpctrv, mmubpctrc, mmubpctrs; uint64_t mmubpaction; uint64_t mmubpregs[4]; uint64_t prom_addr; #endif float_status fp_status; #if defined(TARGET_SPARC64) #define MAXTL_MAX 8 #define MAXTL_MASK (MAXTL_MAX - 1) trap_state ts[MAXTL_MAX]; uint32_t asi; uint32_t pstate; uint32_t tl; uint32_t maxtl; uint32_t cansave, canrestore, otherwin, wstate, cleanwin; uint64_t agregs[8]; /* alternate general registers */ uint64_t bgregs[8]; /* backup for normal global registers */ uint64_t igregs[8]; /* interrupt general registers */ uint64_t mgregs[8]; /* mmu general registers */ uint64_t glregs[8 * MAXTL_MAX]; uint32_t fprs; uint64_t tick_cmpr, stick_cmpr; CPUTimer *tick, *stick; #define TICK_NPT_MASK 0x8000000000000000ULL #define TICK_INT_DIS 0x8000000000000000ULL uint64_t gsr; uint32_t gl; // UA2005 /* UA 2005 hyperprivileged registers */ uint64_t hpstate, htstate[MAXTL_MAX], hintp, htba, hver, hstick_cmpr, ssr; uint64_t scratch[8]; CPUTimer *hstick; // UA 2005 /* Interrupt vector registers */ uint64_t ivec_status; uint64_t ivec_data[3]; uint32_t softint; #define SOFTINT_TIMER 1 #define SOFTINT_STIMER (1 << 16) #define SOFTINT_INTRMASK (0xFFFE) #define SOFTINT_REG_MASK (SOFTINT_STIMER|SOFTINT_INTRMASK|SOFTINT_TIMER) #endif sparc_def_t def; /* Leon3 */ DeviceState *irq_manager; void (*qemu_irq_ack)(CPUSPARCState *env, int intno); uint32_t cache_control; }; /** * SPARCCPU: * @env: #CPUSPARCState * * A SPARC CPU. */ struct ArchCPU { CPUState parent_obj; CPUSPARCState env; }; /** * SPARCCPUClass: * @parent_realize: The parent class' realize handler. * @parent_phases: The parent class' reset phase handlers. * * A SPARC CPU model. */ struct SPARCCPUClass { CPUClass parent_class; DeviceRealize parent_realize; ResettablePhases parent_phases; sparc_def_t *cpu_def; }; #ifndef CONFIG_USER_ONLY extern const VMStateDescription vmstate_sparc_cpu; hwaddr sparc_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); #endif void sparc_cpu_do_interrupt(CPUState *cpu); int sparc_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); int sparc_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); G_NORETURN void sparc_cpu_do_unaligned_access(CPUState *cpu, vaddr addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr); G_NORETURN void cpu_raise_exception_ra(CPUSPARCState *, int, uintptr_t); /* cpu_init.c */ void cpu_sparc_set_id(CPUSPARCState *env, unsigned int cpu); void sparc_cpu_list(void); /* mmu_helper.c */ bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr); target_ulong mmu_probe(CPUSPARCState *env, target_ulong address, int mmulev); void dump_mmu(CPUSPARCState *env); #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) int sparc_cpu_memory_rw_debug(CPUState *cpu, vaddr addr, uint8_t *buf, int len, bool is_write); #endif /* translate.c */ void sparc_tcg_init(void); void sparc_restore_state_to_opc(CPUState *cs, const TranslationBlock *tb, const uint64_t *data); /* fop_helper.c */ target_ulong cpu_get_fsr(CPUSPARCState *); void cpu_put_fsr(CPUSPARCState *, target_ulong); /* win_helper.c */ target_ulong cpu_get_psr(CPUSPARCState *env1); void cpu_put_psr(CPUSPARCState *env1, target_ulong val); void cpu_put_psr_icc(CPUSPARCState *env1, target_ulong val); void cpu_put_psr_raw(CPUSPARCState *env1, target_ulong val); #ifdef TARGET_SPARC64 void cpu_change_pstate(CPUSPARCState *env1, uint32_t new_pstate); void cpu_gl_switch_gregs(CPUSPARCState *env, uint32_t new_gl); #endif int cpu_cwp_inc(CPUSPARCState *env1, int cwp); int cpu_cwp_dec(CPUSPARCState *env1, int cwp); void cpu_set_cwp(CPUSPARCState *env1, int new_cwp); /* sun4m.c, sun4u.c */ void cpu_check_irqs(CPUSPARCState *env); #if defined (TARGET_SPARC64) static inline int compare_masked(uint64_t x, uint64_t y, uint64_t mask) { return (x & mask) == (y & mask); } #define MMU_CONTEXT_BITS 13 #define MMU_CONTEXT_MASK ((1 << MMU_CONTEXT_BITS) - 1) static inline int tlb_compare_context(const SparcTLBEntry *tlb, uint64_t context) { return compare_masked(context, tlb->tag, MMU_CONTEXT_MASK); } #endif /* cpu-exec.c */ #if !defined(CONFIG_USER_ONLY) void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr, unsigned size, MMUAccessType access_type, int mmu_idx, MemTxAttrs attrs, MemTxResult response, uintptr_t retaddr); #if defined(TARGET_SPARC64) hwaddr cpu_get_phys_page_nofault(CPUSPARCState *env, target_ulong addr, int mmu_idx); #endif #endif #define CPU_RESOLVING_TYPE TYPE_SPARC_CPU #define cpu_list sparc_cpu_list /* MMU modes definitions */ #if defined (TARGET_SPARC64) #define MMU_USER_IDX 0 #define MMU_USER_SECONDARY_IDX 1 #define MMU_KERNEL_IDX 2 #define MMU_KERNEL_SECONDARY_IDX 3 #define MMU_NUCLEUS_IDX 4 #define MMU_PHYS_IDX 5 #else #define MMU_USER_IDX 0 #define MMU_KERNEL_IDX 1 #define MMU_PHYS_IDX 2 #endif #if defined (TARGET_SPARC64) static inline int cpu_has_hypervisor(CPUSPARCState *env1) { return env1->def.features & CPU_FEATURE_HYPV; } static inline int cpu_hypervisor_mode(CPUSPARCState *env1) { return cpu_has_hypervisor(env1) && (env1->hpstate & HS_PRIV); } static inline int cpu_supervisor_mode(CPUSPARCState *env1) { return env1->pstate & PS_PRIV; } #else static inline int cpu_supervisor_mode(CPUSPARCState *env1) { return env1->psrs; } #endif static inline int cpu_interrupts_enabled(CPUSPARCState *env1) { #if !defined (TARGET_SPARC64) if (env1->psret != 0) return 1; #else if ((env1->pstate & PS_IE) && !cpu_hypervisor_mode(env1)) { return 1; } #endif return 0; } static inline int cpu_pil_allowed(CPUSPARCState *env1, int pil) { #if !defined(TARGET_SPARC64) /* level 15 is non-maskable on sparc v8 */ return pil == 15 || pil > env1->psrpil; #else return pil > env1->psrpil; #endif } #include "exec/cpu-all.h" #ifdef TARGET_SPARC64 /* sun4u.c */ void cpu_tick_set_count(CPUTimer *timer, uint64_t count); uint64_t cpu_tick_get_count(CPUTimer *timer); void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit); trap_state* cpu_tsptr(CPUSPARCState* env); #endif #define TB_FLAG_MMU_MASK 7 #define TB_FLAG_FPU_ENABLED (1 << 4) #define TB_FLAG_AM_ENABLED (1 << 5) #define TB_FLAG_SUPER (1 << 6) #define TB_FLAG_HYPER (1 << 7) #define TB_FLAG_ASI_SHIFT 24 static inline void cpu_get_tb_cpu_state(CPUSPARCState *env, vaddr *pc, uint64_t *cs_base, uint32_t *pflags) { uint32_t flags; *pc = env->pc; *cs_base = env->npc; flags = cpu_mmu_index(env_cpu(env), false); #ifndef CONFIG_USER_ONLY if (cpu_supervisor_mode(env)) { flags |= TB_FLAG_SUPER; } #endif #ifdef TARGET_SPARC64 #ifndef CONFIG_USER_ONLY if (cpu_hypervisor_mode(env)) { flags |= TB_FLAG_HYPER; } #endif if (env->pstate & PS_AM) { flags |= TB_FLAG_AM_ENABLED; } if ((env->pstate & PS_PEF) && (env->fprs & FPRS_FEF)) { flags |= TB_FLAG_FPU_ENABLED; } flags |= env->asi << TB_FLAG_ASI_SHIFT; #else if (env->psref) { flags |= TB_FLAG_FPU_ENABLED; } #endif *pflags = flags; } static inline bool tb_fpu_enabled(int tb_flags) { #if defined(CONFIG_USER_ONLY) return true; #else return tb_flags & TB_FLAG_FPU_ENABLED; #endif } static inline bool tb_am_enabled(int tb_flags) { #ifndef TARGET_SPARC64 return false; #else return tb_flags & TB_FLAG_AM_ENABLED; #endif } #ifdef TARGET_SPARC64 /* win_helper.c */ target_ulong cpu_get_ccr(CPUSPARCState *env1); void cpu_put_ccr(CPUSPARCState *env1, target_ulong val); target_ulong cpu_get_cwp64(CPUSPARCState *env1); void cpu_put_cwp64(CPUSPARCState *env1, int cwp); static inline uint64_t sparc64_tstate(CPUSPARCState *env) { uint64_t tstate = (cpu_get_ccr(env) << 32) | ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) | cpu_get_cwp64(env); if (env->def.features & CPU_FEATURE_GL) { tstate |= (env->gl & 7ULL) << 40; } return tstate; } #endif #endif