/* * FPU op helpers * * Copyright (c) 2003-2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "exec/helper-proto.h" #include "fpu/softfloat.h" static inline float128 f128_in(Int128 i) { union { Int128 i; float128 f; } u; u.i = i; return u.f; } static inline Int128 f128_ret(float128 f) { union { Int128 i; float128 f; } u; u.f = f; return u.i; } static void check_ieee_exceptions(CPUSPARCState *env, uintptr_t ra) { target_ulong status = get_float_exception_flags(&env->fp_status); uint32_t cexc = 0; if (unlikely(status)) { /* Keep exception flags clear for next time. */ set_float_exception_flags(0, &env->fp_status); /* Copy IEEE 754 flags into FSR */ if (status & float_flag_invalid) { cexc |= FSR_NVC; } if (status & float_flag_overflow) { cexc |= FSR_OFC; } if (status & float_flag_underflow) { cexc |= FSR_UFC; } if (status & float_flag_divbyzero) { cexc |= FSR_DZC; } if (status & float_flag_inexact) { cexc |= FSR_NXC; } if (cexc & (env->fsr >> FSR_TEM_SHIFT)) { /* Unmasked exception, generate an IEEE trap. */ env->fsr_cexc_ftt = cexc | FSR_FTT_IEEE_EXCP; cpu_raise_exception_ra(env, TT_FP_EXCP, ra); } /* Accumulate exceptions */ env->fsr |= cexc << FSR_AEXC_SHIFT; } /* No trap, so FTT is cleared. */ env->fsr_cexc_ftt = cexc; } float32 helper_fadds(CPUSPARCState *env, float32 src1, float32 src2) { float32 ret = float32_add(src1, src2, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } float32 helper_fsubs(CPUSPARCState *env, float32 src1, float32 src2) { float32 ret = float32_sub(src1, src2, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } float32 helper_fmuls(CPUSPARCState *env, float32 src1, float32 src2) { float32 ret = float32_mul(src1, src2, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } float32 helper_fdivs(CPUSPARCState *env, float32 src1, float32 src2) { float32 ret = float32_div(src1, src2, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } float64 helper_faddd(CPUSPARCState *env, float64 src1, float64 src2) { float64 ret = float64_add(src1, src2, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } float64 helper_fsubd(CPUSPARCState *env, float64 src1, float64 src2) { float64 ret = float64_sub(src1, src2, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } float64 helper_fmuld(CPUSPARCState *env, float64 src1, float64 src2) { float64 ret = float64_mul(src1, src2, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } float64 helper_fdivd(CPUSPARCState *env, float64 src1, float64 src2) { float64 ret = float64_div(src1, src2, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } Int128 helper_faddq(CPUSPARCState *env, Int128 src1, Int128 src2) { float128 ret = float128_add(f128_in(src1), f128_in(src2), &env->fp_status); check_ieee_exceptions(env, GETPC()); return f128_ret(ret); } Int128 helper_fsubq(CPUSPARCState *env, Int128 src1, Int128 src2) { float128 ret = float128_sub(f128_in(src1), f128_in(src2), &env->fp_status); check_ieee_exceptions(env, GETPC()); return f128_ret(ret); } Int128 helper_fmulq(CPUSPARCState *env, Int128 src1, Int128 src2) { float128 ret = float128_mul(f128_in(src1), f128_in(src2), &env->fp_status); check_ieee_exceptions(env, GETPC()); return f128_ret(ret); } Int128 helper_fdivq(CPUSPARCState *env, Int128 src1, Int128 src2) { float128 ret = float128_div(f128_in(src1), f128_in(src2), &env->fp_status); check_ieee_exceptions(env, GETPC()); return f128_ret(ret); } float64 helper_fsmuld(CPUSPARCState *env, float32 src1, float32 src2) { float64 ret = float64_mul(float32_to_float64(src1, &env->fp_status), float32_to_float64(src2, &env->fp_status), &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } Int128 helper_fdmulq(CPUSPARCState *env, float64 src1, float64 src2) { float128 ret = float128_mul(float64_to_float128(src1, &env->fp_status), float64_to_float128(src2, &env->fp_status), &env->fp_status); check_ieee_exceptions(env, GETPC()); return f128_ret(ret); } /* Integer to float conversion. */ float32 helper_fitos(CPUSPARCState *env, int32_t src) { float32 ret = int32_to_float32(src, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } float64 helper_fitod(CPUSPARCState *env, int32_t src) { float64 ret = int32_to_float64(src, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } Int128 helper_fitoq(CPUSPARCState *env, int32_t src) { float128 ret = int32_to_float128(src, &env->fp_status); check_ieee_exceptions(env, GETPC()); return f128_ret(ret); } #ifdef TARGET_SPARC64 float32 helper_fxtos(CPUSPARCState *env, int64_t src) { float32 ret = int64_to_float32(src, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } float64 helper_fxtod(CPUSPARCState *env, int64_t src) { float64 ret = int64_to_float64(src, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } Int128 helper_fxtoq(CPUSPARCState *env, int64_t src) { float128 ret = int64_to_float128(src, &env->fp_status); check_ieee_exceptions(env, GETPC()); return f128_ret(ret); } #endif /* floating point conversion */ float32 helper_fdtos(CPUSPARCState *env, float64 src) { float32 ret = float64_to_float32(src, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } float64 helper_fstod(CPUSPARCState *env, float32 src) { float64 ret = float32_to_float64(src, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } float32 helper_fqtos(CPUSPARCState *env, Int128 src) { float32 ret = float128_to_float32(f128_in(src), &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } Int128 helper_fstoq(CPUSPARCState *env, float32 src) { float128 ret = float32_to_float128(src, &env->fp_status); check_ieee_exceptions(env, GETPC()); return f128_ret(ret); } float64 helper_fqtod(CPUSPARCState *env, Int128 src) { float64 ret = float128_to_float64(f128_in(src), &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } Int128 helper_fdtoq(CPUSPARCState *env, float64 src) { float128 ret = float64_to_float128(src, &env->fp_status); check_ieee_exceptions(env, GETPC()); return f128_ret(ret); } /* Float to integer conversion. */ int32_t helper_fstoi(CPUSPARCState *env, float32 src) { int32_t ret = float32_to_int32_round_to_zero(src, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } int32_t helper_fdtoi(CPUSPARCState *env, float64 src) { int32_t ret = float64_to_int32_round_to_zero(src, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } int32_t helper_fqtoi(CPUSPARCState *env, Int128 src) { int32_t ret = float128_to_int32_round_to_zero(f128_in(src), &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } #ifdef TARGET_SPARC64 int64_t helper_fstox(CPUSPARCState *env, float32 src) { int64_t ret = float32_to_int64_round_to_zero(src, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } int64_t helper_fdtox(CPUSPARCState *env, float64 src) { int64_t ret = float64_to_int64_round_to_zero(src, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } int64_t helper_fqtox(CPUSPARCState *env, Int128 src) { int64_t ret = float128_to_int64_round_to_zero(f128_in(src), &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } #endif float32 helper_fsqrts(CPUSPARCState *env, float32 src) { float32 ret = float32_sqrt(src, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } float64 helper_fsqrtd(CPUSPARCState *env, float64 src) { float64 ret = float64_sqrt(src, &env->fp_status); check_ieee_exceptions(env, GETPC()); return ret; } Int128 helper_fsqrtq(CPUSPARCState *env, Int128 src) { float128 ret = float128_sqrt(f128_in(src), &env->fp_status); check_ieee_exceptions(env, GETPC()); return f128_ret(ret); } static uint32_t finish_fcmp(CPUSPARCState *env, FloatRelation r, uintptr_t ra) { check_ieee_exceptions(env, ra); /* * FCC values: * 0 = * 1 < * 2 > * 3 unordered */ switch (r) { case float_relation_equal: return 0; case float_relation_less: return 1; case float_relation_greater: return 2; case float_relation_unordered: env->fsr |= FSR_NVA; return 3; } g_assert_not_reached(); } uint32_t helper_fcmps(CPUSPARCState *env, float32 src1, float32 src2) { FloatRelation r = float32_compare_quiet(src1, src2, &env->fp_status); return finish_fcmp(env, r, GETPC()); } uint32_t helper_fcmpes(CPUSPARCState *env, float32 src1, float32 src2) { FloatRelation r = float32_compare(src1, src2, &env->fp_status); return finish_fcmp(env, r, GETPC()); } uint32_t helper_fcmpd(CPUSPARCState *env, float64 src1, float64 src2) { FloatRelation r = float64_compare_quiet(src1, src2, &env->fp_status); return finish_fcmp(env, r, GETPC()); } uint32_t helper_fcmped(CPUSPARCState *env, float64 src1, float64 src2) { FloatRelation r = float64_compare(src1, src2, &env->fp_status); return finish_fcmp(env, r, GETPC()); } uint32_t helper_fcmpq(CPUSPARCState *env, Int128 src1, Int128 src2) { FloatRelation r = float128_compare_quiet(f128_in(src1), f128_in(src2), &env->fp_status); return finish_fcmp(env, r, GETPC()); } uint32_t helper_fcmpeq(CPUSPARCState *env, Int128 src1, Int128 src2) { FloatRelation r = float128_compare(f128_in(src1), f128_in(src2), &env->fp_status); return finish_fcmp(env, r, GETPC()); } target_ulong cpu_get_fsr(CPUSPARCState *env) { target_ulong fsr = env->fsr | env->fsr_cexc_ftt; fsr |= env->fcc[0] << FSR_FCC0_SHIFT; #ifdef TARGET_SPARC64 fsr |= (uint64_t)env->fcc[1] << FSR_FCC1_SHIFT; fsr |= (uint64_t)env->fcc[2] << FSR_FCC2_SHIFT; fsr |= (uint64_t)env->fcc[3] << FSR_FCC3_SHIFT; #endif /* VER is kept completely separate until re-assembly. */ fsr |= env->def.fpu_version; return fsr; } target_ulong helper_get_fsr(CPUSPARCState *env) { return cpu_get_fsr(env); } static void set_fsr_nonsplit(CPUSPARCState *env, target_ulong fsr) { int rnd_mode; env->fsr = fsr & (FSR_RD_MASK | FSR_TEM_MASK | FSR_AEXC_MASK); switch (fsr & FSR_RD_MASK) { case FSR_RD_NEAREST: rnd_mode = float_round_nearest_even; break; default: case FSR_RD_ZERO: rnd_mode = float_round_to_zero; break; case FSR_RD_POS: rnd_mode = float_round_up; break; case FSR_RD_NEG: rnd_mode = float_round_down; break; } set_float_rounding_mode(rnd_mode, &env->fp_status); } void cpu_put_fsr(CPUSPARCState *env, target_ulong fsr) { env->fsr_cexc_ftt = fsr & (FSR_CEXC_MASK | FSR_FTT_MASK); env->fcc[0] = extract32(fsr, FSR_FCC0_SHIFT, 2); #ifdef TARGET_SPARC64 env->fcc[1] = extract64(fsr, FSR_FCC1_SHIFT, 2); env->fcc[2] = extract64(fsr, FSR_FCC2_SHIFT, 2); env->fcc[3] = extract64(fsr, FSR_FCC3_SHIFT, 2); #endif set_fsr_nonsplit(env, fsr); } void helper_set_fsr_nofcc_noftt(CPUSPARCState *env, uint32_t fsr) { env->fsr_cexc_ftt &= FSR_FTT_MASK; env->fsr_cexc_ftt |= fsr & FSR_CEXC_MASK; set_fsr_nonsplit(env, fsr); }