/* * Copyright(c) 2020-2023 Qualcomm Innovation Center, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ /* * This test checks various FP operations performed on Hexagon */ #include const int FPINVF_BIT = 1; /* Invalid */ const int FPINVF = 1 << FPINVF_BIT; const int FPDBZF_BIT = 2; /* Divide by zero */ const int FPDBZF = 1 << FPDBZF_BIT; const int FPOVFF_BIT = 3; /* Overflow */ const int FPOVFF = 1 << FPOVFF_BIT; const int FPUNFF_BIT = 4; /* Underflow */ const int FPUNFF = 1 << FPUNFF_BIT; const int FPINPF_BIT = 5; /* Inexact */ const int FPINPF = 1 << FPINPF_BIT; const int SF_ZERO = 0x00000000; const int SF_NaN = 0x7fc00000; const int SF_NaN_special = 0x7f800001; const int SF_ANY = 0x3f800000; const int SF_HEX_NAN = 0xffffffff; const int SF_small_neg = 0xab98fba8; const int SF_denorm = 0x00000001; const int SF_random = 0x346001d6; const int SF_neg_zero = 0x80000000; const long long DF_QNaN = 0x7ff8000000000000ULL; const long long DF_SNaN = 0x7ff7000000000000ULL; const long long DF_ANY = 0x3f80000000000000ULL; const long long DF_HEX_NAN = 0xffffffffffffffffULL; const long long DF_small_neg = 0xbd731f7500000000ULL; int err; #define CLEAR_FPSTATUS \ "r2 = usr\n\t" \ "r2 = clrbit(r2, #1)\n\t" \ "r2 = clrbit(r2, #2)\n\t" \ "r2 = clrbit(r2, #3)\n\t" \ "r2 = clrbit(r2, #4)\n\t" \ "r2 = clrbit(r2, #5)\n\t" \ "usr = r2\n\t" static void check_fpstatus_bit(int usr, int expect, int flag, const char *n) { int bit = 1 << flag; if ((usr & bit) != (expect & bit)) { printf("ERROR %s: usr = %d, expect = %d\n", n, (usr >> flag) & 1, (expect >> flag) & 1); err++; } } static void check_fpstatus(int usr, int expect) { check_fpstatus_bit(usr, expect, FPINVF_BIT, "Invalid"); check_fpstatus_bit(usr, expect, FPDBZF_BIT, "Div by zero"); check_fpstatus_bit(usr, expect, FPOVFF_BIT, "Overflow"); check_fpstatus_bit(usr, expect, FPUNFF_BIT, "Underflow"); check_fpstatus_bit(usr, expect, FPINPF_BIT, "Inexact"); } static void check32(int val, int expect) { if (val != expect) { printf("ERROR: 0x%x != 0x%x\n", val, expect); err++; } } static void check64(unsigned long long val, unsigned long long expect) { if (val != expect) { printf("ERROR: 0x%llx != 0x%llx\n", val, expect); err++; } } static void check_compare_exception(void) { int cmp; int usr; /* Check that FP compares are quiet (don't raise any execptions) */ asm (CLEAR_FPSTATUS "p0 = sfcmp.eq(%2, %3)\n\t" "%0 = p0\n\t" "%1 = usr\n\t" : "=r"(cmp), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY) : "r2", "p0", "usr"); check32(cmp, 0); check_fpstatus(usr, 0); asm (CLEAR_FPSTATUS "p0 = sfcmp.gt(%2, %3)\n\t" "%0 = p0\n\t" "%1 = usr\n\t" : "=r"(cmp), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY) : "r2", "p0", "usr"); check32(cmp, 0); check_fpstatus(usr, 0); asm (CLEAR_FPSTATUS "p0 = sfcmp.ge(%2, %3)\n\t" "%0 = p0\n\t" "%1 = usr\n\t" : "=r"(cmp), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY) : "r2", "p0", "usr"); check32(cmp, 0); check_fpstatus(usr, 0); asm (CLEAR_FPSTATUS "p0 = dfcmp.eq(%2, %3)\n\t" "%0 = p0\n\t" "%1 = usr\n\t" : "=r"(cmp), "=r"(usr) : "r"(DF_QNaN), "r"(DF_ANY) : "r2", "p0", "usr"); check32(cmp, 0); check_fpstatus(usr, 0); asm (CLEAR_FPSTATUS "p0 = dfcmp.gt(%2, %3)\n\t" "%0 = p0\n\t" "%1 = usr\n\t" : "=r"(cmp), "=r"(usr) : "r"(DF_QNaN), "r"(DF_ANY) : "r2", "p0", "usr"); check32(cmp, 0); check_fpstatus(usr, 0); asm (CLEAR_FPSTATUS "p0 = dfcmp.ge(%2, %3)\n\t" "%0 = p0\n\t" "%1 = usr\n\t" : "=r"(cmp), "=r"(usr) : "r"(DF_QNaN), "r"(DF_ANY) : "r2", "p0", "usr"); check32(cmp, 0); check_fpstatus(usr, 0); } static void check_sfminmax(void) { int minmax; int usr; /* * Execute sfmin/sfmax instructions with one operand as NaN * Check that * Result is the other operand * Invalid bit in USR is not set */ asm (CLEAR_FPSTATUS "%0 = sfmin(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(minmax), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY) : "r2", "usr"); check64(minmax, SF_ANY); check_fpstatus(usr, 0); asm (CLEAR_FPSTATUS "%0 = sfmax(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(minmax), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY) : "r2", "usr"); check64(minmax, SF_ANY); check_fpstatus(usr, 0); /* * Execute sfmin/sfmax instructions with both operands NaN * Check that * Result is SF_HEX_NAN * Invalid bit in USR is set */ asm (CLEAR_FPSTATUS "%0 = sfmin(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(minmax), "=r"(usr) : "r"(SF_NaN), "r"(SF_NaN) : "r2", "usr"); check64(minmax, SF_HEX_NAN); check_fpstatus(usr, 0); asm (CLEAR_FPSTATUS "%0 = sfmax(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(minmax), "=r"(usr) : "r"(SF_NaN), "r"(SF_NaN) : "r2", "usr"); check64(minmax, SF_HEX_NAN); check_fpstatus(usr, 0); } static void check_dfminmax(void) { unsigned long long minmax; int usr; /* * Execute dfmin/dfmax instructions with one operand as SNaN * Check that * Result is the other operand * Invalid bit in USR is set */ asm (CLEAR_FPSTATUS "%0 = dfmin(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(minmax), "=r"(usr) : "r"(DF_SNaN), "r"(DF_ANY) : "r2", "usr"); check64(minmax, DF_ANY); check_fpstatus(usr, FPINVF); asm (CLEAR_FPSTATUS "%0 = dfmax(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(minmax), "=r"(usr) : "r"(DF_SNaN), "r"(DF_ANY) : "r2", "usr"); check64(minmax, DF_ANY); check_fpstatus(usr, FPINVF); /* * Execute dfmin/dfmax instructions with one operand as QNaN * Check that * Result is the other operand * No bit in USR is set */ asm (CLEAR_FPSTATUS "%0 = dfmin(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(minmax), "=r"(usr) : "r"(DF_QNaN), "r"(DF_ANY) : "r2", "usr"); check64(minmax, DF_ANY); check_fpstatus(usr, 0); asm (CLEAR_FPSTATUS "%0 = dfmax(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(minmax), "=r"(usr) : "r"(DF_QNaN), "r"(DF_ANY) : "r2", "usr"); check64(minmax, DF_ANY); check_fpstatus(usr, 0); /* * Execute dfmin/dfmax instructions with both operands SNaN * Check that * Result is DF_HEX_NAN * Invalid bit in USR is set */ asm (CLEAR_FPSTATUS "%0 = dfmin(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(minmax), "=r"(usr) : "r"(DF_SNaN), "r"(DF_SNaN) : "r2", "usr"); check64(minmax, DF_HEX_NAN); check_fpstatus(usr, FPINVF); asm (CLEAR_FPSTATUS "%0 = dfmax(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(minmax), "=r"(usr) : "r"(DF_SNaN), "r"(DF_SNaN) : "r2", "usr"); check64(minmax, DF_HEX_NAN); check_fpstatus(usr, FPINVF); /* * Execute dfmin/dfmax instructions with both operands QNaN * Check that * Result is DF_HEX_NAN * No bit in USR is set */ asm (CLEAR_FPSTATUS "%0 = dfmin(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(minmax), "=r"(usr) : "r"(DF_QNaN), "r"(DF_QNaN) : "r2", "usr"); check64(minmax, DF_HEX_NAN); check_fpstatus(usr, 0); asm (CLEAR_FPSTATUS "%0 = dfmax(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(minmax), "=r"(usr) : "r"(DF_QNaN), "r"(DF_QNaN) : "r2", "usr"); check64(minmax, DF_HEX_NAN); check_fpstatus(usr, 0); } static void check_sfrecipa(void) { int result; int usr; int pred; /* * Check that sfrecipa doesn't set status bits when * a NaN with bit 22 non-zero is passed */ asm (CLEAR_FPSTATUS "%0,p0 = sfrecipa(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY) : "r2", "p0", "usr"); check32(result, SF_HEX_NAN); check_fpstatus(usr, 0); asm (CLEAR_FPSTATUS "%0,p0 = sfrecipa(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(result), "=r"(usr) : "r"(SF_ANY), "r"(SF_NaN) : "r2", "p0", "usr"); check32(result, SF_HEX_NAN); check_fpstatus(usr, 0); asm (CLEAR_FPSTATUS "%0,p0 = sfrecipa(%2, %2)\n\t" "%1 = usr\n\t" : "=r"(result), "=r"(usr) : "r"(SF_NaN) : "r2", "p0", "usr"); check32(result, SF_HEX_NAN); check_fpstatus(usr, 0); /* * Check that sfrecipa doesn't set status bits when * a NaN with bit 22 zero is passed */ asm (CLEAR_FPSTATUS "%0,p0 = sfrecipa(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(result), "=r"(usr) : "r"(SF_NaN_special), "r"(SF_ANY) : "r2", "p0", "usr"); check32(result, SF_HEX_NAN); check_fpstatus(usr, FPINVF); asm (CLEAR_FPSTATUS "%0,p0 = sfrecipa(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(result), "=r"(usr) : "r"(SF_ANY), "r"(SF_NaN_special) : "r2", "p0", "usr"); check32(result, SF_HEX_NAN); check_fpstatus(usr, FPINVF); asm (CLEAR_FPSTATUS "%0,p0 = sfrecipa(%2, %2)\n\t" "%1 = usr\n\t" : "=r"(result), "=r"(usr) : "r"(SF_NaN_special) : "r2", "p0", "usr"); check32(result, SF_HEX_NAN); check_fpstatus(usr, FPINVF); /* * Check that sfrecipa properly sets divid-by-zero */ asm (CLEAR_FPSTATUS "%0,p0 = sfrecipa(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(result), "=r"(usr) : "r"(0x885dc960), "r"(0x80000000) : "r2", "p0", "usr"); check32(result, 0x3f800000); check_fpstatus(usr, FPDBZF); asm (CLEAR_FPSTATUS "%0,p0 = sfrecipa(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(result), "=r"(usr) : "r"(0x7f800000), "r"(SF_ZERO) : "r2", "p0", "usr"); check32(result, 0x3f800000); check_fpstatus(usr, 0); /* * Check that sfrecipa properly handles denorm */ asm (CLEAR_FPSTATUS "%0,p0 = sfrecipa(%2, %3)\n\t" "%1 = p0\n\t" : "=r"(result), "=r"(pred) : "r"(SF_denorm), "r"(SF_random) : "p0", "usr"); check32(result, 0x6a920001); check32(pred, 0x80); } static void check_canonical_NaN(void) { int sf_result; unsigned long long df_result; int usr; /* Check that each FP instruction properly returns SF_HEX_NAN/DF_HEX_NAN */ asm(CLEAR_FPSTATUS "%0 = sfadd(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY) : "r2", "usr"); check32(sf_result, SF_HEX_NAN); check_fpstatus(usr, 0); asm(CLEAR_FPSTATUS "%0 = sfsub(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY) : "r2", "usr"); check32(sf_result, SF_HEX_NAN); check_fpstatus(usr, 0); asm(CLEAR_FPSTATUS "%0 = sfmpy(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY) : "r2", "usr"); check32(sf_result, SF_HEX_NAN); check_fpstatus(usr, 0); sf_result = SF_ZERO; asm(CLEAR_FPSTATUS "%0 += sfmpy(%2, %3)\n\t" "%1 = usr\n\t" : "+r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY) : "r2", "usr"); check32(sf_result, SF_HEX_NAN); check_fpstatus(usr, 0); sf_result = SF_ZERO; asm(CLEAR_FPSTATUS "p0 = !cmp.eq(r0, r0)\n\t" "%0 += sfmpy(%2, %3, p0):scale\n\t" "%1 = usr\n\t" : "+r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY) : "r2", "usr", "p0"); check32(sf_result, SF_HEX_NAN); check_fpstatus(usr, 0); sf_result = SF_ZERO; asm(CLEAR_FPSTATUS "%0 -= sfmpy(%2, %3)\n\t" "%1 = usr\n\t" : "+r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY) : "r2", "usr"); check32(sf_result, SF_HEX_NAN); check_fpstatus(usr, 0); sf_result = SF_ZERO; asm(CLEAR_FPSTATUS "%0 += sfmpy(%2, %3):lib\n\t" "%1 = usr\n\t" : "+r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY) : "r2", "usr"); check32(sf_result, SF_HEX_NAN); check_fpstatus(usr, 0); sf_result = SF_ZERO; asm(CLEAR_FPSTATUS "%0 -= sfmpy(%2, %3):lib\n\t" "%1 = usr\n\t" : "+r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY) : "r2", "usr"); check32(sf_result, SF_HEX_NAN); check_fpstatus(usr, 0); asm(CLEAR_FPSTATUS "%0 = convert_df2sf(%2)\n\t" "%1 = usr\n\t" : "=r"(sf_result), "=r"(usr) : "r"(DF_QNaN) : "r2", "usr"); check32(sf_result, SF_HEX_NAN); check_fpstatus(usr, 0); asm(CLEAR_FPSTATUS "%0 = dfadd(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(df_result), "=r"(usr) : "r"(DF_QNaN), "r"(DF_ANY) : "r2", "usr"); check64(df_result, DF_HEX_NAN); check_fpstatus(usr, 0); asm(CLEAR_FPSTATUS "%0 = dfsub(%2, %3)\n\t" "%1 = usr\n\t" : "=r"(df_result), "=r"(usr) : "r"(DF_QNaN), "r"(DF_ANY) : "r2", "usr"); check64(df_result, DF_HEX_NAN); check_fpstatus(usr, 0); asm(CLEAR_FPSTATUS "%0 = convert_sf2df(%2)\n\t" "%1 = usr\n\t" : "=r"(df_result), "=r"(usr) : "r"(SF_NaN) : "r2", "usr"); check64(df_result, DF_HEX_NAN); check_fpstatus(usr, 0); } static void check_invsqrta(void) { int result; int predval; asm volatile("%0,p0 = sfinvsqrta(%2)\n\t" "%1 = p0\n\t" : "+r"(result), "=r"(predval) : "r"(0x7f800000) : "p0"); check32(result, 0xff800000); check32(predval, 0x0); } static void check_sffixupn(void) { int result; /* Check that sffixupn properly deals with denorm */ asm volatile("%0 = sffixupn(%1, %2)\n\t" : "=r"(result) : "r"(SF_random), "r"(SF_denorm)); check32(result, 0x246001d6); } static void check_sffixupd(void) { int result; /* Check that sffixupd properly deals with denorm */ asm volatile("%0 = sffixupd(%1, %2)\n\t" : "=r"(result) : "r"(SF_denorm), "r"(SF_random)); check32(result, 0x146001d6); } static void check_sffms(void) { int result; /* Check that sffms properly deals with -0 */ result = SF_neg_zero; asm ("%0 -= sfmpy(%1 , %2)\n\t" : "+r"(result) : "r"(SF_ZERO), "r"(SF_ZERO) : "r12", "r8"); check32(result, SF_neg_zero); result = SF_ZERO; asm ("%0 -= sfmpy(%1 , %2)\n\t" : "+r"(result) : "r"(SF_neg_zero), "r"(SF_ZERO) : "r12", "r8"); check32(result, SF_ZERO); result = SF_ZERO; asm ("%0 -= sfmpy(%1 , %2)\n\t" : "+r"(result) : "r"(SF_ZERO), "r"(SF_neg_zero) : "r12", "r8"); check32(result, SF_ZERO); } static void check_float2int_convs() { int res32; long long res64; int usr; /* * Check that the various forms of float-to-unsigned * check sign before rounding */ asm(CLEAR_FPSTATUS "%0 = convert_sf2uw(%2)\n\t" "%1 = usr\n\t" : "=r"(res32), "=r"(usr) : "r"(SF_small_neg) : "r2", "usr"); check32(res32, 0); check_fpstatus(usr, FPINVF); asm(CLEAR_FPSTATUS "%0 = convert_sf2uw(%2):chop\n\t" "%1 = usr\n\t" : "=r"(res32), "=r"(usr) : "r"(SF_small_neg) : "r2", "usr"); check32(res32, 0); check_fpstatus(usr, FPINVF); asm(CLEAR_FPSTATUS "%0 = convert_sf2ud(%2)\n\t" "%1 = usr\n\t" : "=r"(res64), "=r"(usr) : "r"(SF_small_neg) : "r2", "usr"); check64(res64, 0); check_fpstatus(usr, FPINVF); asm(CLEAR_FPSTATUS "%0 = convert_sf2ud(%2):chop\n\t" "%1 = usr\n\t" : "=r"(res64), "=r"(usr) : "r"(SF_small_neg) : "r2", "usr"); check64(res64, 0); check_fpstatus(usr, FPINVF); asm(CLEAR_FPSTATUS "%0 = convert_df2uw(%2)\n\t" "%1 = usr\n\t" : "=r"(res32), "=r"(usr) : "r"(DF_small_neg) : "r2", "usr"); check32(res32, 0); check_fpstatus(usr, FPINVF); asm(CLEAR_FPSTATUS "%0 = convert_df2uw(%2):chop\n\t" "%1 = usr\n\t" : "=r"(res32), "=r"(usr) : "r"(DF_small_neg) : "r2", "usr"); check32(res32, 0); check_fpstatus(usr, FPINVF); asm(CLEAR_FPSTATUS "%0 = convert_df2ud(%2)\n\t" "%1 = usr\n\t" : "=r"(res64), "=r"(usr) : "r"(DF_small_neg) : "r2", "usr"); check64(res64, 0); check_fpstatus(usr, FPINVF); asm(CLEAR_FPSTATUS "%0 = convert_df2ud(%2):chop\n\t" "%1 = usr\n\t" : "=r"(res64), "=r"(usr) : "r"(DF_small_neg) : "r2", "usr"); check64(res64, 0); check_fpstatus(usr, FPINVF); /* * Check that the various forms of float-to-signed return -1 for NaN */ asm(CLEAR_FPSTATUS "%0 = convert_sf2w(%2)\n\t" "%1 = usr\n\t" : "=r"(res32), "=r"(usr) : "r"(SF_NaN) : "r2", "usr"); check32(res32, -1); check_fpstatus(usr, FPINVF); asm(CLEAR_FPSTATUS "%0 = convert_sf2w(%2):chop\n\t" "%1 = usr\n\t" : "=r"(res32), "=r"(usr) : "r"(SF_NaN) : "r2", "usr"); check32(res32, -1); check_fpstatus(usr, FPINVF); asm(CLEAR_FPSTATUS "%0 = convert_sf2d(%2)\n\t" "%1 = usr\n\t" : "=r"(res64), "=r"(usr) : "r"(SF_NaN) : "r2", "usr"); check64(res64, -1); check_fpstatus(usr, FPINVF); asm(CLEAR_FPSTATUS "%0 = convert_sf2d(%2):chop\n\t" "%1 = usr\n\t" : "=r"(res64), "=r"(usr) : "r"(SF_NaN) : "r2", "usr"); check64(res64, -1); check_fpstatus(usr, FPINVF); asm(CLEAR_FPSTATUS "%0 = convert_df2w(%2)\n\t" "%1 = usr\n\t" : "=r"(res32), "=r"(usr) : "r"(DF_QNaN) : "r2", "usr"); check32(res32, -1); check_fpstatus(usr, FPINVF); asm(CLEAR_FPSTATUS "%0 = convert_df2w(%2):chop\n\t" "%1 = usr\n\t" : "=r"(res32), "=r"(usr) : "r"(DF_QNaN) : "r2", "usr"); check32(res32, -1); check_fpstatus(usr, FPINVF); asm(CLEAR_FPSTATUS "%0 = convert_df2d(%2)\n\t" "%1 = usr\n\t" : "=r"(res64), "=r"(usr) : "r"(DF_QNaN) : "r2", "usr"); check64(res64, -1); check_fpstatus(usr, FPINVF); asm(CLEAR_FPSTATUS "%0 = convert_df2d(%2):chop\n\t" "%1 = usr\n\t" : "=r"(res64), "=r"(usr) : "r"(DF_QNaN) : "r2", "usr"); check64(res64, -1); check_fpstatus(usr, FPINVF); } int main() { check_compare_exception(); check_sfminmax(); check_dfminmax(); check_sfrecipa(); check_canonical_NaN(); check_invsqrta(); check_sffixupn(); check_sffixupd(); check_sffms(); check_float2int_convs(); puts(err ? "FAIL" : "PASS"); return err ? 1 : 0; }