/* * sha512 test based on CCAN: https://ccodearchive.net/info/crypto/sha512.html * * src/crypto/sha512.cpp commit f914f1a746d7f91951c1da262a4a749dd3ebfa71 * Copyright (c) 2014 The Bitcoin Core developers * Distributed under the MIT software license, see: * http://www.opensource.org/licenses/mit-license.php. * * SPDX-License-Identifier: MIT CC0-1.0 */ #define _GNU_SOURCE /* See feature_test_macros(7) */ #include #include #include #include #include #include /* Required portions from endian.h */ /** * BSWAP_64 - reverse bytes in a constant uint64_t value. * @val: constantvalue whose bytes to swap. * * Designed to be usable in constant-requiring initializers. * * Example: * struct mystruct { * char buf[BSWAP_64(0xff00000000000000ULL)]; * }; */ #define BSWAP_64(val) \ ((((uint64_t)(val) & 0x00000000000000ffULL) << 56) \ | (((uint64_t)(val) & 0x000000000000ff00ULL) << 40) \ | (((uint64_t)(val) & 0x0000000000ff0000ULL) << 24) \ | (((uint64_t)(val) & 0x00000000ff000000ULL) << 8) \ | (((uint64_t)(val) & 0x000000ff00000000ULL) >> 8) \ | (((uint64_t)(val) & 0x0000ff0000000000ULL) >> 24) \ | (((uint64_t)(val) & 0x00ff000000000000ULL) >> 40) \ | (((uint64_t)(val) & 0xff00000000000000ULL) >> 56)) typedef uint64_t beint64_t; #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ /** * CPU_TO_BE64 - convert a constant uint64_t value to big-endian * @native: constant to convert */ #define CPU_TO_BE64(native) ((beint64_t)(native)) /** * BE64_TO_CPU - convert a big-endian uint64_t constant * @le_val: big-endian constant to convert */ #define BE64_TO_CPU(le_val) ((uint64_t)(le_val)) #else /* ... HAVE_LITTLE_ENDIAN */ #define CPU_TO_BE64(native) ((beint64_t)BSWAP_64(native)) #define BE64_TO_CPU(le_val) BSWAP_64((uint64_t)le_val) #endif /* HAVE_LITTE_ENDIAN */ /** * cpu_to_be64 - convert a uint64_t value to big endian. * @native: value to convert */ static inline beint64_t cpu_to_be64(uint64_t native) { return CPU_TO_BE64(native); } /** * be64_to_cpu - convert a big-endian uint64_t value * @be_val: big-endian value to convert */ static inline uint64_t be64_to_cpu(beint64_t be_val) { return BE64_TO_CPU(be_val); } /* From compiler.h */ #ifndef UNUSED /** * UNUSED - a parameter is unused * * Some compilers (eg. gcc with -W or -Wunused) warn about unused * function parameters. This suppresses such warnings and indicates * to the reader that it's deliberate. * * Example: * // This is used as a callback, so needs to have this prototype. * static int some_callback(void *unused UNUSED) * { * return 0; * } */ #define UNUSED __attribute__((__unused__)) #endif /* From sha512.h */ /** * struct sha512 - structure representing a completed SHA512. * @u.u8: an unsigned char array. * @u.u64: a 64-bit integer array. * * Other fields may be added to the union in future. */ struct sha512 { union { uint64_t u64[8]; unsigned char u8[64]; } u; }; /** * sha512 - return sha512 of an object. * @sha512: the sha512 to fill in * @p: pointer to memory, * @size: the number of bytes pointed to by @p * * The bytes pointed to by @p is SHA512 hashed into @sha512. This is * equivalent to sha512_init(), sha512_update() then sha512_done(). */ void sha512(struct sha512 *sha, const void *p, size_t size); /** * struct sha512_ctx - structure to store running context for sha512 */ struct sha512_ctx { uint64_t s[8]; union { uint64_t u64[16]; unsigned char u8[128]; } buf; size_t bytes; }; /** * sha512_init - initialize an SHA512 context. * @ctx: the sha512_ctx to initialize * * This must be called before sha512_update or sha512_done, or * alternately you can assign SHA512_INIT. * * If it was already initialized, this forgets anything which was * hashed before. * * Example: * static void hash_all(const char **arr, struct sha512 *hash) * { * size_t i; * struct sha512_ctx ctx; * * sha512_init(&ctx); * for (i = 0; arr[i]; i++) * sha512_update(&ctx, arr[i], strlen(arr[i])); * sha512_done(&ctx, hash); * } */ void sha512_init(struct sha512_ctx *ctx); /** * SHA512_INIT - initializer for an SHA512 context. * * This can be used to statically initialize an SHA512 context (instead * of sha512_init()). * * Example: * static void hash_all(const char **arr, struct sha512 *hash) * { * size_t i; * struct sha512_ctx ctx = SHA512_INIT; * * for (i = 0; arr[i]; i++) * sha512_update(&ctx, arr[i], strlen(arr[i])); * sha512_done(&ctx, hash); * } */ #define SHA512_INIT \ { { 0x6a09e667f3bcc908ull, 0xbb67ae8584caa73bull, \ 0x3c6ef372fe94f82bull, 0xa54ff53a5f1d36f1ull, \ 0x510e527fade682d1ull, 0x9b05688c2b3e6c1full, \ 0x1f83d9abfb41bd6bull, 0x5be0cd19137e2179ull }, \ { { 0 } }, 0 } /** * sha512_update - include some memory in the hash. * @ctx: the sha512_ctx to use * @p: pointer to memory, * @size: the number of bytes pointed to by @p * * You can call this multiple times to hash more data, before calling * sha512_done(). */ void sha512_update(struct sha512_ctx *ctx, const void *p, size_t size); /** * sha512_done - finish SHA512 and return the hash * @ctx: the sha512_ctx to complete * @res: the hash to return. * * Note that @ctx is *destroyed* by this, and must be reinitialized. * To avoid that, pass a copy instead. */ void sha512_done(struct sha512_ctx *sha512, struct sha512 *res); /* From sha512.c */ /* * SHA512 core code translated from the Bitcoin project's C++: * * src/crypto/sha512.cpp commit f914f1a746d7f91951c1da262a4a749dd3ebfa71 * Copyright (c) 2014 The Bitcoin Core developers * Distributed under the MIT software license, see the accompanying * file COPYING or http://www.opensource.org/licenses/mit-license.php. */ /* #include */ /* #include */ #include #include #include static void invalidate_sha512(struct sha512_ctx *ctx) { ctx->bytes = (size_t)-1; } static void check_sha512(struct sha512_ctx *ctx UNUSED) { assert(ctx->bytes != (size_t)-1); } static uint64_t Ch(uint64_t x, uint64_t y, uint64_t z) { return z ^ (x & (y ^ z)); } static uint64_t Maj(uint64_t x, uint64_t y, uint64_t z) { return (x & y) | (z & (x | y)); } static uint64_t Sigma0(uint64_t x) { return (x >> 28 | x << 36) ^ (x >> 34 | x << 30) ^ (x >> 39 | x << 25); } static uint64_t Sigma1(uint64_t x) { return (x >> 14 | x << 50) ^ (x >> 18 | x << 46) ^ (x >> 41 | x << 23); } static uint64_t sigma0(uint64_t x) { return (x >> 1 | x << 63) ^ (x >> 8 | x << 56) ^ (x >> 7); } static uint64_t sigma1(uint64_t x) { return (x >> 19 | x << 45) ^ (x >> 61 | x << 3) ^ (x >> 6); } /** One round of SHA-512. */ static void Round(uint64_t a, uint64_t b, uint64_t c, uint64_t *d, uint64_t e, uint64_t f, uint64_t g, uint64_t *h, uint64_t k, uint64_t w) { uint64_t t1 = *h + Sigma1(e) + Ch(e, f, g) + k + w; uint64_t t2 = Sigma0(a) + Maj(a, b, c); *d += t1; *h = t1 + t2; } /** Perform one SHA-512 transformation, processing a 128-byte chunk. */ static void Transform(uint64_t *s, const uint64_t *chunk) { uint64_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7]; uint64_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15; Round(a, b, c, &d, e, f, g, &h, 0x428a2f98d728ae22ull, w0 = be64_to_cpu(chunk[0])); Round(h, a, b, &c, d, e, f, &g, 0x7137449123ef65cdull, w1 = be64_to_cpu(chunk[1])); Round(g, h, a, &b, c, d, e, &f, 0xb5c0fbcfec4d3b2full, w2 = be64_to_cpu(chunk[2])); Round(f, g, h, &a, b, c, d, &e, 0xe9b5dba58189dbbcull, w3 = be64_to_cpu(chunk[3])); Round(e, f, g, &h, a, b, c, &d, 0x3956c25bf348b538ull, w4 = be64_to_cpu(chunk[4])); Round(d, e, f, &g, h, a, b, &c, 0x59f111f1b605d019ull, w5 = be64_to_cpu(chunk[5])); Round(c, d, e, &f, g, h, a, &b, 0x923f82a4af194f9bull, w6 = be64_to_cpu(chunk[6])); Round(b, c, d, &e, f, g, h, &a, 0xab1c5ed5da6d8118ull, w7 = be64_to_cpu(chunk[7])); Round(a, b, c, &d, e, f, g, &h, 0xd807aa98a3030242ull, w8 = be64_to_cpu(chunk[8])); Round(h, a, b, &c, d, e, f, &g, 0x12835b0145706fbeull, w9 = be64_to_cpu(chunk[9])); Round(g, h, a, &b, c, d, e, &f, 0x243185be4ee4b28cull, w10 = be64_to_cpu(chunk[10])); Round(f, g, h, &a, b, c, d, &e, 0x550c7dc3d5ffb4e2ull, w11 = be64_to_cpu(chunk[11])); Round(e, f, g, &h, a, b, c, &d, 0x72be5d74f27b896full, w12 = be64_to_cpu(chunk[12])); Round(d, e, f, &g, h, a, b, &c, 0x80deb1fe3b1696b1ull, w13 = be64_to_cpu(chunk[13])); Round(c, d, e, &f, g, h, a, &b, 0x9bdc06a725c71235ull, w14 = be64_to_cpu(chunk[14])); Round(b, c, d, &e, f, g, h, &a, 0xc19bf174cf692694ull, w15 = be64_to_cpu(chunk[15])); Round(a, b, c, &d, e, f, g, &h, 0xe49b69c19ef14ad2ull, w0 += sigma1(w14) + w9 + sigma0(w1)); Round(h, a, b, &c, d, e, f, &g, 0xefbe4786384f25e3ull, w1 += sigma1(w15) + w10 + sigma0(w2)); Round(g, h, a, &b, c, d, e, &f, 0x0fc19dc68b8cd5b5ull, w2 += sigma1(w0) + w11 + sigma0(w3)); Round(f, g, h, &a, b, c, d, &e, 0x240ca1cc77ac9c65ull, w3 += sigma1(w1) + w12 + sigma0(w4)); Round(e, f, g, &h, a, b, c, &d, 0x2de92c6f592b0275ull, w4 += sigma1(w2) + w13 + sigma0(w5)); Round(d, e, f, &g, h, a, b, &c, 0x4a7484aa6ea6e483ull, w5 += sigma1(w3) + w14 + sigma0(w6)); Round(c, d, e, &f, g, h, a, &b, 0x5cb0a9dcbd41fbd4ull, w6 += sigma1(w4) + w15 + sigma0(w7)); Round(b, c, d, &e, f, g, h, &a, 0x76f988da831153b5ull, w7 += sigma1(w5) + w0 + sigma0(w8)); Round(a, b, c, &d, e, f, g, &h, 0x983e5152ee66dfabull, w8 += sigma1(w6) + w1 + sigma0(w9)); Round(h, a, b, &c, d, e, f, &g, 0xa831c66d2db43210ull, w9 += sigma1(w7) + w2 + sigma0(w10)); Round(g, h, a, &b, c, d, e, &f, 0xb00327c898fb213full, w10 += sigma1(w8) + w3 + sigma0(w11)); Round(f, g, h, &a, b, c, d, &e, 0xbf597fc7beef0ee4ull, w11 += sigma1(w9) + w4 + sigma0(w12)); Round(e, f, g, &h, a, b, c, &d, 0xc6e00bf33da88fc2ull, w12 += sigma1(w10) + w5 + sigma0(w13)); Round(d, e, f, &g, h, a, b, &c, 0xd5a79147930aa725ull, w13 += sigma1(w11) + w6 + sigma0(w14)); Round(c, d, e, &f, g, h, a, &b, 0x06ca6351e003826full, w14 += sigma1(w12) + w7 + sigma0(w15)); Round(b, c, d, &e, f, g, h, &a, 0x142929670a0e6e70ull, w15 += sigma1(w13) + w8 + sigma0(w0)); Round(a, b, c, &d, e, f, g, &h, 0x27b70a8546d22ffcull, w0 += sigma1(w14) + w9 + sigma0(w1)); Round(h, a, b, &c, d, e, f, &g, 0x2e1b21385c26c926ull, w1 += sigma1(w15) + w10 + sigma0(w2)); Round(g, h, a, &b, c, d, e, &f, 0x4d2c6dfc5ac42aedull, w2 += sigma1(w0) + w11 + sigma0(w3)); Round(f, g, h, &a, b, c, d, &e, 0x53380d139d95b3dfull, w3 += sigma1(w1) + w12 + sigma0(w4)); Round(e, f, g, &h, a, b, c, &d, 0x650a73548baf63deull, w4 += sigma1(w2) + w13 + sigma0(w5)); Round(d, e, f, &g, h, a, b, &c, 0x766a0abb3c77b2a8ull, w5 += sigma1(w3) + w14 + sigma0(w6)); Round(c, d, e, &f, g, h, a, &b, 0x81c2c92e47edaee6ull, w6 += sigma1(w4) + w15 + sigma0(w7)); Round(b, c, d, &e, f, g, h, &a, 0x92722c851482353bull, w7 += sigma1(w5) + w0 + sigma0(w8)); Round(a, b, c, &d, e, f, g, &h, 0xa2bfe8a14cf10364ull, w8 += sigma1(w6) + w1 + sigma0(w9)); Round(h, a, b, &c, d, e, f, &g, 0xa81a664bbc423001ull, w9 += sigma1(w7) + w2 + sigma0(w10)); Round(g, h, a, &b, c, d, e, &f, 0xc24b8b70d0f89791ull, w10 += sigma1(w8) + w3 + sigma0(w11)); Round(f, g, h, &a, b, c, d, &e, 0xc76c51a30654be30ull, w11 += sigma1(w9) + w4 + sigma0(w12)); Round(e, f, g, &h, a, b, c, &d, 0xd192e819d6ef5218ull, w12 += sigma1(w10) + w5 + sigma0(w13)); Round(d, e, f, &g, h, a, b, &c, 0xd69906245565a910ull, w13 += sigma1(w11) + w6 + sigma0(w14)); Round(c, d, e, &f, g, h, a, &b, 0xf40e35855771202aull, w14 += sigma1(w12) + w7 + sigma0(w15)); Round(b, c, d, &e, f, g, h, &a, 0x106aa07032bbd1b8ull, w15 += sigma1(w13) + w8 + sigma0(w0)); Round(a, b, c, &d, e, f, g, &h, 0x19a4c116b8d2d0c8ull, w0 += sigma1(w14) + w9 + sigma0(w1)); Round(h, a, b, &c, d, e, f, &g, 0x1e376c085141ab53ull, w1 += sigma1(w15) + w10 + sigma0(w2)); Round(g, h, a, &b, c, d, e, &f, 0x2748774cdf8eeb99ull, w2 += sigma1(w0) + w11 + sigma0(w3)); Round(f, g, h, &a, b, c, d, &e, 0x34b0bcb5e19b48a8ull, w3 += sigma1(w1) + w12 + sigma0(w4)); Round(e, f, g, &h, a, b, c, &d, 0x391c0cb3c5c95a63ull, w4 += sigma1(w2) + w13 + sigma0(w5)); Round(d, e, f, &g, h, a, b, &c, 0x4ed8aa4ae3418acbull, w5 += sigma1(w3) + w14 + sigma0(w6)); Round(c, d, e, &f, g, h, a, &b, 0x5b9cca4f7763e373ull, w6 += sigma1(w4) + w15 + sigma0(w7)); Round(b, c, d, &e, f, g, h, &a, 0x682e6ff3d6b2b8a3ull, w7 += sigma1(w5) + w0 + sigma0(w8)); Round(a, b, c, &d, e, f, g, &h, 0x748f82ee5defb2fcull, w8 += sigma1(w6) + w1 + sigma0(w9)); Round(h, a, b, &c, d, e, f, &g, 0x78a5636f43172f60ull, w9 += sigma1(w7) + w2 + sigma0(w10)); Round(g, h, a, &b, c, d, e, &f, 0x84c87814a1f0ab72ull, w10 += sigma1(w8) + w3 + sigma0(w11)); Round(f, g, h, &a, b, c, d, &e, 0x8cc702081a6439ecull, w11 += sigma1(w9) + w4 + sigma0(w12)); Round(e, f, g, &h, a, b, c, &d, 0x90befffa23631e28ull, w12 += sigma1(w10) + w5 + sigma0(w13)); Round(d, e, f, &g, h, a, b, &c, 0xa4506cebde82bde9ull, w13 += sigma1(w11) + w6 + sigma0(w14)); Round(c, d, e, &f, g, h, a, &b, 0xbef9a3f7b2c67915ull, w14 += sigma1(w12) + w7 + sigma0(w15)); Round(b, c, d, &e, f, g, h, &a, 0xc67178f2e372532bull, w15 += sigma1(w13) + w8 + sigma0(w0)); Round(a, b, c, &d, e, f, g, &h, 0xca273eceea26619cull, w0 += sigma1(w14) + w9 + sigma0(w1)); Round(h, a, b, &c, d, e, f, &g, 0xd186b8c721c0c207ull, w1 += sigma1(w15) + w10 + sigma0(w2)); Round(g, h, a, &b, c, d, e, &f, 0xeada7dd6cde0eb1eull, w2 += sigma1(w0) + w11 + sigma0(w3)); Round(f, g, h, &a, b, c, d, &e, 0xf57d4f7fee6ed178ull, w3 += sigma1(w1) + w12 + sigma0(w4)); Round(e, f, g, &h, a, b, c, &d, 0x06f067aa72176fbaull, w4 += sigma1(w2) + w13 + sigma0(w5)); Round(d, e, f, &g, h, a, b, &c, 0x0a637dc5a2c898a6ull, w5 += sigma1(w3) + w14 + sigma0(w6)); Round(c, d, e, &f, g, h, a, &b, 0x113f9804bef90daeull, w6 += sigma1(w4) + w15 + sigma0(w7)); Round(b, c, d, &e, f, g, h, &a, 0x1b710b35131c471bull, w7 += sigma1(w5) + w0 + sigma0(w8)); Round(a, b, c, &d, e, f, g, &h, 0x28db77f523047d84ull, w8 += sigma1(w6) + w1 + sigma0(w9)); Round(h, a, b, &c, d, e, f, &g, 0x32caab7b40c72493ull, w9 += sigma1(w7) + w2 + sigma0(w10)); Round(g, h, a, &b, c, d, e, &f, 0x3c9ebe0a15c9bebcull, w10 += sigma1(w8) + w3 + sigma0(w11)); Round(f, g, h, &a, b, c, d, &e, 0x431d67c49c100d4cull, w11 += sigma1(w9) + w4 + sigma0(w12)); Round(e, f, g, &h, a, b, c, &d, 0x4cc5d4becb3e42b6ull, w12 += sigma1(w10) + w5 + sigma0(w13)); Round(d, e, f, &g, h, a, b, &c, 0x597f299cfc657e2aull, w13 += sigma1(w11) + w6 + sigma0(w14)); Round(c, d, e, &f, g, h, a, &b, 0x5fcb6fab3ad6faecull, w14 + sigma1(w12) + w7 + sigma0(w15)); Round(b, c, d, &e, f, g, h, &a, 0x6c44198c4a475817ull, w15 + sigma1(w13) + w8 + sigma0(w0)); s[0] += a; s[1] += b; s[2] += c; s[3] += d; s[4] += e; s[5] += f; s[6] += g; s[7] += h; } static bool alignment_ok(const void *p UNUSED, size_t n UNUSED) { #if HAVE_UNALIGNED_ACCESS return true; #else return ((size_t)p % n == 0); #endif } static void add(struct sha512_ctx *ctx, const void *p, size_t len) { const unsigned char *data = p; size_t bufsize = ctx->bytes % 128; if (bufsize + len >= 128) { /* Fill the buffer, and process it. */ memcpy(ctx->buf.u8 + bufsize, data, 128 - bufsize); ctx->bytes += 128 - bufsize; data += 128 - bufsize; len -= 128 - bufsize; Transform(ctx->s, ctx->buf.u64); bufsize = 0; } while (len >= 128) { /* Process full chunks directly from the source. */ if (alignment_ok(data, sizeof(uint64_t))) Transform(ctx->s, (const uint64_t *)data); else { memcpy(ctx->buf.u8, data, sizeof(ctx->buf)); Transform(ctx->s, ctx->buf.u64); } ctx->bytes += 128; data += 128; len -= 128; } if (len) { /* Fill the buffer with what remains. */ memcpy(ctx->buf.u8 + bufsize, data, len); ctx->bytes += len; } } void sha512_init(struct sha512_ctx *ctx) { struct sha512_ctx init = SHA512_INIT; *ctx = init; } void sha512_update(struct sha512_ctx *ctx, const void *p, size_t size) { check_sha512(ctx); add(ctx, p, size); } void sha512_done(struct sha512_ctx *ctx, struct sha512 *res) { static const unsigned char pad[128] = { 0x80 }; uint64_t sizedesc[2] = { 0, 0 }; size_t i; sizedesc[1] = cpu_to_be64((uint64_t)ctx->bytes << 3); /* Add '1' bit to terminate, then all 0 bits, up to next block - 16. */ add(ctx, pad, 1 + ((256 - 16 - (ctx->bytes % 128) - 1) % 128)); /* Add number of bits of data (big endian) */ add(ctx, sizedesc, sizeof(sizedesc)); for (i = 0; i < sizeof(ctx->s) / sizeof(ctx->s[0]); i++) res->u.u64[i] = cpu_to_be64(ctx->s[i]); invalidate_sha512(ctx); } void sha512(struct sha512 *sha, const void *p, size_t size) { struct sha512_ctx ctx; sha512_init(&ctx); sha512_update(&ctx, p, size); sha512_done(&ctx, sha); } /* From hex.h */ /** * hex_decode - Unpack a hex string. * @str: the hexidecimal string * @slen: the length of @str * @buf: the buffer to write the data into * @bufsize: the length of @buf * * Returns false if there are any characters which aren't 0-9, a-f or A-F, * of the string wasn't the right length for @bufsize. * * Example: * unsigned char data[20]; * * if (!hex_decode(argv[1], strlen(argv[1]), data, 20)) * printf("String is malformed!\n"); */ bool hex_decode(const char *str, size_t slen, void *buf, size_t bufsize); /** * hex_encode - Create a nul-terminated hex string * @buf: the buffer to read the data from * @bufsize: the length of @buf * @dest: the string to fill * @destsize: the max size of the string * * Returns true if the string, including terminator, fit in @destsize; * * Example: * unsigned char buf[] = { 0x1F, 0x2F }; * char str[5]; * * if (!hex_encode(buf, sizeof(buf), str, sizeof(str))) * abort(); */ bool hex_encode(const void *buf, size_t bufsize, char *dest, size_t destsize); /** * hex_str_size - Calculate how big a nul-terminated hex string is * @bytes: bytes of data to represent * * Example: * unsigned char buf[] = { 0x1F, 0x2F }; * char str[hex_str_size(sizeof(buf))]; * * hex_encode(buf, sizeof(buf), str, sizeof(str)); */ static inline size_t hex_str_size(size_t bytes) { return 2 * bytes + 1; } /* From hex.c */ static bool char_to_hex(unsigned char *val, char c) { if (c >= '0' && c <= '9') { *val = c - '0'; return true; } if (c >= 'a' && c <= 'f') { *val = c - 'a' + 10; return true; } if (c >= 'A' && c <= 'F') { *val = c - 'A' + 10; return true; } return false; } bool hex_decode(const char *str, size_t slen, void *buf, size_t bufsize) { unsigned char v1, v2; unsigned char *p = buf; while (slen > 1) { if (!char_to_hex(&v1, str[0]) || !char_to_hex(&v2, str[1])) return false; if (!bufsize) return false; *(p++) = (v1 << 4) | v2; str += 2; slen -= 2; bufsize--; } return slen == 0 && bufsize == 0; } static char hexchar(unsigned int val) { if (val < 10) return '0' + val; if (val < 16) return 'a' + val - 10; abort(); } bool hex_encode(const void *buf, size_t bufsize, char *dest, size_t destsize) { size_t i; if (destsize < hex_str_size(bufsize)) return false; for (i = 0; i < bufsize; i++) { unsigned int c = ((const unsigned char *)buf)[i]; *(dest++) = hexchar(c >> 4); *(dest++) = hexchar(c & 0xF); } *dest = '\0'; return true; } /* From tap.h */ /** * plan_tests - announce the number of tests you plan to run * @tests: the number of tests * * This should be the first call in your test program: it allows tracing * of failures which mean that not all tests are run. * * If you don't know how many tests will actually be run, assume all of them * and use skip() if you don't actually run some tests. * * Example: * plan_tests(13); */ void plan_tests(unsigned int tests); /** * ok1 - Simple conditional test * @e: the expression which we expect to be true. * * This is the simplest kind of test: if the expression is true, the * test passes. The name of the test which is printed will simply be * file name, line number, and the expression itself. * * Example: * ok1(somefunc() == 1); */ # define ok1(e) ((e) ? \ _gen_result(1, __func__, __FILE__, __LINE__, "%s", #e) : \ _gen_result(0, __func__, __FILE__, __LINE__, "%s", #e)) /** * exit_status - the value that main should return. * * For maximum compatibility your test program should return a particular exit * code (ie. 0 if all tests were run, and every test which was expected to * succeed succeeded). * * Example: * exit(exit_status()); */ int exit_status(void); /** * tap_fail_callback - function to call when we fail * * This can be used to ease debugging, or exit on the first failure. */ void (*tap_fail_callback)(void); /* From tap.c */ static int no_plan = 0; static int skip_all = 0; static int have_plan = 0; static unsigned int test_count = 0; /* Number of tests that have been run */ static unsigned int e_tests = 0; /* Expected number of tests to run */ static unsigned int failures = 0; /* Number of tests that failed */ static char *todo_msg = NULL; static const char *todo_msg_fixed = "libtap malloc issue"; static int todo = 0; static int test_died = 0; static int test_pid; static void _expected_tests(unsigned int tests) { printf("1..%d\n", tests); e_tests = tests; } static void diagv(const char *fmt, va_list ap) { fputs("# ", stdout); vfprintf(stdout, fmt, ap); fputs("\n", stdout); } static void _diag(const char *fmt, ...) { va_list ap; va_start(ap, fmt); diagv(fmt, ap); va_end(ap); } /* * Generate a test result. * * ok -- boolean, indicates whether or not the test passed. * test_name -- the name of the test, may be NULL * test_comment -- a comment to print afterwards, may be NULL */ unsigned int _gen_result(int ok, const char *func, const char *file, unsigned int line, const char *test_name, ...) { va_list ap; char *local_test_name = NULL; char *c; int name_is_digits; test_count++; /* Start by taking the test name and performing any printf() expansions on it */ if(test_name != NULL) { va_start(ap, test_name); if (vasprintf(&local_test_name, test_name, ap) < 0) local_test_name = NULL; va_end(ap); /* Make sure the test name contains more than digits and spaces. Emit an error message and exit if it does */ if(local_test_name) { name_is_digits = 1; for(c = local_test_name; *c != '\0'; c++) { if(!isdigit((unsigned char)*c) && !isspace((unsigned char)*c)) { name_is_digits = 0; break; } } if(name_is_digits) { _diag(" You named your test '%s'. You shouldn't use numbers for your test names.", local_test_name); _diag(" Very confusing."); } } } if(!ok) { printf("not "); failures++; } printf("ok %d", test_count); if(test_name != NULL) { printf(" - "); /* Print the test name, escaping any '#' characters it might contain */ if(local_test_name != NULL) { flockfile(stdout); for(c = local_test_name; *c != '\0'; c++) { if(*c == '#') fputc('\\', stdout); fputc((int)*c, stdout); } funlockfile(stdout); } else { /* vasprintf() failed, use a fixed message */ printf("%s", todo_msg_fixed); } } /* If we're in a todo_start() block then flag the test as being TODO. todo_msg should contain the message to print at this point. If it's NULL then asprintf() failed, and we should use the fixed message. This is not counted as a failure, so decrement the counter if the test failed. */ if(todo) { printf(" # TODO %s", todo_msg ? todo_msg : todo_msg_fixed); if(!ok) failures--; } printf("\n"); if(!ok) _diag(" Failed %stest (%s:%s() at line %d)", todo ? "(TODO) " : "", file, func, line); free(local_test_name); if (!ok && tap_fail_callback) tap_fail_callback(); /* We only care (when testing) that ok is positive, but here we specifically only want to return 1 or 0 */ return ok ? 1 : 0; } /* * Cleanup at the end of the run, produce any final output that might be * required. */ static void _cleanup(void) { /* If we forked, don't do cleanup in child! */ if (getpid() != test_pid) return; /* If plan_no_plan() wasn't called, and we don't have a plan, and we're not skipping everything, then something happened before we could produce any output */ if(!no_plan && !have_plan && !skip_all) { _diag("Looks like your test died before it could output anything."); return; } if(test_died) { _diag("Looks like your test died just after %d.", test_count); return; } /* No plan provided, but now we know how many tests were run, and can print the header at the end */ if(!skip_all && (no_plan || !have_plan)) { printf("1..%d\n", test_count); } if((have_plan && !no_plan) && e_tests < test_count) { _diag("Looks like you planned %d tests but ran %d extra.", e_tests, test_count - e_tests); return; } if((have_plan || !no_plan) && e_tests > test_count) { _diag("Looks like you planned %d tests but only ran %d.", e_tests, test_count); if(failures) { _diag("Looks like you failed %d tests of %d run.", failures, test_count); } return; } if(failures) _diag("Looks like you failed %d tests of %d.", failures, test_count); } /* * Initialise the TAP library. Will only do so once, however many times it's * called. */ static void _tap_init(void) { static int run_once = 0; if(!run_once) { test_pid = getpid(); atexit(_cleanup); /* stdout needs to be unbuffered so that the output appears in the same place relative to stderr output as it does with Test::Harness */ // setbuf(stdout, 0); run_once = 1; } } /* * Note the number of tests that will be run. */ void plan_tests(unsigned int tests) { _tap_init(); if(have_plan != 0) { fprintf(stderr, "You tried to plan twice!\n"); test_died = 1; exit(255); } if(tests == 0) { fprintf(stderr, "You said to run 0 tests! You've got to run something.\n"); test_died = 1; exit(255); } have_plan = 1; _expected_tests(tests); } static int exit_status_(void) { /* If there's no plan, just return the number of failures */ if(no_plan || !have_plan) { return failures; } /* Ran too many tests? Return the number of tests that were run that shouldn't have been */ if(e_tests < test_count) { return test_count - e_tests; } /* Return the number of tests that failed + the number of tests that weren't run */ return failures + e_tests - test_count; } int exit_status(void) { int r = exit_status_(); if (r > 255) r = 255; return r; } /* From run-test-vectors.c */ /* Test vectors. */ struct test { const char *vector; size_t repetitions; const char *expected; }; static const char ZEROES[] = "0000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000000"; static struct test tests[] = { /* http://csrc.nist.gov/groups/STM/cavp/secure-hashing.html ShortMsg */ { "21", 1, "3831a6a6155e509dee59a7f451eb35324d8f8f2df6e3708894740f98fdee2388" "9f4de5adb0c5010dfb555cda77c8ab5dc902094c52de3278f35a75ebc25f093a" }, { "9083", 1, "55586ebba48768aeb323655ab6f4298fc9f670964fc2e5f2731e34dfa4b0c09e" "6e1e12e3d7286b3145c61c2047fb1a2a1297f36da64160b31fa4c8c2cddd2fb4" }, { "0a55db", 1, "7952585e5330cb247d72bae696fc8a6b0f7d0804577e347d99bc1b11e52f3849" "85a428449382306a89261ae143c2f3fb613804ab20b42dc097e5bf4a96ef919b" }, { "23be86d5", 1, "76d42c8eadea35a69990c63a762f330614a4699977f058adb988f406fb0be8f2" "ea3dce3a2bbd1d827b70b9b299ae6f9e5058ee97b50bd4922d6d37ddc761f8eb" }, { "eb0ca946c1", 1, "d39ecedfe6e705a821aee4f58bfc489c3d9433eb4ac1b03a97e321a2586b40dd" "0522f40fa5aef36afff591a78c916bfc6d1ca515c4983dd8695b1ec7951d723e" }, { "38667f39277b", 1, "85708b8ff05d974d6af0801c152b95f5fa5c06af9a35230c5bea2752f031f9bd" "84bd844717b3add308a70dc777f90813c20b47b16385664eefc88449f04f2131" }, { "b39f71aaa8a108", 1, "258b8efa05b4a06b1e63c7a3f925c5ef11fa03e3d47d631bf4d474983783d8c0" "b09449009e842fc9fa15de586c67cf8955a17d790b20f41dadf67ee8cdcdfce6" }, { "dc28484ebfd293d62ac759d5754bdf502423e4d419fa79020805134b2ce3dff7" "38c7556c91d810adbad8dd210f041296b73c2185d4646c97fc0a5b69ed49ac8c" "7ced0bd1cfd7e3c3cca47374d189247da6811a40b0ab097067ed4ad40ade2e47" "91e39204e398b3204971445822a1be0dd93af8", 1, "615115d2e8b62e345adaa4bdb95395a3b4fe27d71c4a111b86c1841463c5f03d" "6b20d164a39948ab08ae060720d05c10f6022e5c8caf2fa3bca2e04d9c539ded" }, { "fd2203e467574e834ab07c9097ae164532f24be1eb5d88f1af7748ceff0d2c67" "a21f4e4097f9d3bb4e9fbf97186e0db6db0100230a52b453d421f8ab9c9a6043" "aa3295ea20d2f06a2f37470d8a99075f1b8a8336f6228cf08b5942fc1fb4299c" "7d2480e8e82bce175540bdfad7752bc95b577f229515394f3ae5cec870a4b2f8", 1, "a21b1077d52b27ac545af63b32746c6e3c51cb0cb9f281eb9f3580a6d4996d5c" "9917d2a6e484627a9d5a06fa1b25327a9d710e027387fc3e07d7c4d14c6086cc" }, /* http://www.di-mgt.com.au/sha_testvectors.html */ { ZEROES, 1, "7be9fda48f4179e611c698a73cff09faf72869431efee6eaad14de0cb44bbf66" "503f752b7a8eb17083355f3ce6eb7d2806f236b25af96a24e22b887405c20081" } }; static void *xmalloc(size_t size) { char * ret; ret = malloc(size); if (ret == NULL) { perror("malloc"); abort(); } return ret; } static bool do_test(const struct test *t) { struct sha512 h; char got[128 + 1]; bool passed; size_t i, vector_len = strlen(t->vector) / 2; void *vector = xmalloc(vector_len); hex_decode(t->vector, vector_len * 2, vector, vector_len); for (i = 0; i < t->repetitions; i++) { sha512(&h, vector, vector_len); if (t->repetitions > 1) memcpy(vector, &h, sizeof(h)); } hex_encode(&h, sizeof(h), got, sizeof(got)); passed = strcmp(t->expected, got) == 0; free(vector); return passed; } int main(void) { const size_t num_tests = sizeof(tests) / sizeof(tests[0]); size_t i; /* This is how many tests you plan to run */ plan_tests(num_tests); for (i = 0; i < num_tests; i++) ok1(do_test(&tests[i])); /* This exits depending on whether all tests passed */ return exit_status(); }