1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3    2000, 2001, 2002, 2003, 2004, 2005, 2006
4    Free Software Foundation, Inc.
5    Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6 
7    This file is part of GCC.
8 
9    GCC is free software; you can redistribute it and/or modify it
10    under the terms of the GNU General Public License as published
11    by the Free Software Foundation; either version 2, or (at your
12    option) any later version.
13 
14    GCC is distributed in the hope that it will be useful, but WITHOUT
15    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
17    License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with GCC; see the file COPYING.  If not, write to the
21    Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston,
22    MA 02110-1301, USA.  */
23 
24 /* Note that some other tm.h files include this one and then override
25    many of the definitions.  */
26 
27 /* Definitions for the object file format.  These are set at
28    compile-time.  */
29 
30 #define OBJECT_XCOFF 1
31 #define OBJECT_ELF 2
32 #define OBJECT_PEF 3
33 #define OBJECT_MACHO 4
34 
35 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
36 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
37 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
38 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
39 
40 #ifndef TARGET_AIX
41 #define TARGET_AIX 0
42 #endif
43 
44 /* Control whether function entry points use a "dot" symbol when
45    ABI_AIX.  */
46 #define DOT_SYMBOLS 1
47 
48 /* Default string to use for cpu if not specified.  */
49 #ifndef TARGET_CPU_DEFAULT
50 #define TARGET_CPU_DEFAULT ((char *)0)
51 #endif
52 
53 /* If configured for PPC405, support PPC405CR Erratum77.  */
54 #ifdef CONFIG_PPC405CR
55 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
56 #else
57 #define PPC405_ERRATUM77 0
58 #endif
59 
60 /* Common ASM definitions used by ASM_SPEC among the various targets
61    for handling -mcpu=xxx switches.  */
62 #define ASM_CPU_SPEC \
63 "%{!mcpu*: \
64   %{mpower: %{!mpower2: -mpwr}} \
65   %{mpower2: -mpwrx} \
66   %{mpowerpc64*: -mppc64} \
67   %{!mpowerpc64*: %{mpowerpc*: -mppc}} \
68   %{mno-power: %{!mpowerpc*: -mcom}} \
69   %{!mno-power: %{!mpower*: %(asm_default)}}} \
70 %{mcpu=common: -mcom} \
71 %{mcpu=power: -mpwr} \
72 %{mcpu=power2: -mpwrx} \
73 %{mcpu=power3: -mppc64} \
74 %{mcpu=power4: -mpower4} \
75 %{mcpu=power5: -mpower4} \
76 %{mcpu=power5+: -mpower4} \
77 %{mcpu=power6: -mpower4 -maltivec} \
78 %{mcpu=powerpc: -mppc} \
79 %{mcpu=rios: -mpwr} \
80 %{mcpu=rios1: -mpwr} \
81 %{mcpu=rios2: -mpwrx} \
82 %{mcpu=rsc: -mpwr} \
83 %{mcpu=rsc1: -mpwr} \
84 %{mcpu=rs64a: -mppc64} \
85 %{mcpu=401: -mppc} \
86 %{mcpu=403: -m403} \
87 %{mcpu=405: -m405} \
88 %{mcpu=405fp: -m405} \
89 %{mcpu=440: -m440} \
90 %{mcpu=440fp: -m440} \
91 %{mcpu=505: -mppc} \
92 %{mcpu=601: -m601} \
93 %{mcpu=602: -mppc} \
94 %{mcpu=603: -mppc} \
95 %{mcpu=603e: -mppc} \
96 %{mcpu=ec603e: -mppc} \
97 %{mcpu=604: -mppc} \
98 %{mcpu=604e: -mppc} \
99 %{mcpu=620: -mppc64} \
100 %{mcpu=630: -mppc64} \
101 %{mcpu=740: -mppc} \
102 %{mcpu=750: -mppc} \
103 %{mcpu=G3: -mppc} \
104 %{mcpu=7400: -mppc -maltivec} \
105 %{mcpu=7450: -mppc -maltivec} \
106 %{mcpu=G4: -mppc -maltivec} \
107 %{mcpu=801: -mppc} \
108 %{mcpu=821: -mppc} \
109 %{mcpu=823: -mppc} \
110 %{mcpu=860: -mppc} \
111 %{mcpu=970: -mpower4 -maltivec} \
112 %{mcpu=G5: -mpower4 -maltivec} \
113 %{mcpu=8540: -me500} \
114 %{maltivec: -maltivec} \
115 -many"
116 
117 #define CPP_DEFAULT_SPEC ""
118 
119 #define ASM_DEFAULT_SPEC ""
120 
121 /* This macro defines names of additional specifications to put in the specs
122    that can be used in various specifications like CC1_SPEC.  Its definition
123    is an initializer with a subgrouping for each command option.
124 
125    Each subgrouping contains a string constant, that defines the
126    specification name, and a string constant that used by the GCC driver
127    program.
128 
129    Do not define this macro if it does not need to do anything.  */
130 
131 #define SUBTARGET_EXTRA_SPECS
132 
133 #define EXTRA_SPECS							\
134   { "cpp_default",		CPP_DEFAULT_SPEC },			\
135   { "asm_cpu",			ASM_CPU_SPEC },				\
136   { "asm_default",		ASM_DEFAULT_SPEC },			\
137   SUBTARGET_EXTRA_SPECS
138 
139 /* Architecture type.  */
140 
141 /* Define TARGET_MFCRF if the target assembler does not support the
142    optional field operand for mfcr.  */
143 
144 #ifndef HAVE_AS_MFCRF
145 #undef  TARGET_MFCRF
146 #define TARGET_MFCRF 0
147 #endif
148 
149 /* Define TARGET_POPCNTB if the target assembler does not support the
150    popcount byte instruction.  */
151 
152 #ifndef HAVE_AS_POPCNTB
153 #undef  TARGET_POPCNTB
154 #define TARGET_POPCNTB 0
155 #endif
156 
157 /* Define TARGET_FPRND if the target assembler does not support the
158    fp rounding instructions.  */
159 
160 #ifndef HAVE_AS_FPRND
161 #undef  TARGET_FPRND
162 #define TARGET_FPRND 0
163 #endif
164 
165 #ifndef TARGET_SECURE_PLT
166 #define TARGET_SECURE_PLT 0
167 #endif
168 
169 #define TARGET_32BIT		(! TARGET_64BIT)
170 
171 #ifndef HAVE_AS_TLS
172 #define HAVE_AS_TLS 0
173 #endif
174 
175 /* Return 1 for a symbol ref for a thread-local storage symbol.  */
176 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
177   (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
178 
179 #ifdef IN_LIBGCC2
180 /* For libgcc2 we make sure this is a compile time constant */
181 #if defined (__64BIT__) || defined (__powerpc64__)
182 #undef TARGET_POWERPC64
183 #define TARGET_POWERPC64	1
184 #else
185 #undef TARGET_POWERPC64
186 #define TARGET_POWERPC64	0
187 #endif
188 #else
189     /* The option machinery will define this.  */
190 #endif
191 
192 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
193 
194 /* Processor type.  Order must match cpu attribute in MD file.  */
195 enum processor_type
196  {
197    PROCESSOR_RIOS1,
198    PROCESSOR_RIOS2,
199    PROCESSOR_RS64A,
200    PROCESSOR_MPCCORE,
201    PROCESSOR_PPC403,
202    PROCESSOR_PPC405,
203    PROCESSOR_PPC440,
204    PROCESSOR_PPC601,
205    PROCESSOR_PPC603,
206    PROCESSOR_PPC604,
207    PROCESSOR_PPC604e,
208    PROCESSOR_PPC620,
209    PROCESSOR_PPC630,
210    PROCESSOR_PPC750,
211    PROCESSOR_PPC7400,
212    PROCESSOR_PPC7450,
213    PROCESSOR_PPC8540,
214    PROCESSOR_POWER4,
215    PROCESSOR_POWER5
216 };
217 
218 extern enum processor_type rs6000_cpu;
219 
220 /* Recast the processor type to the cpu attribute.  */
221 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
222 
223 /* Define generic processor types based upon current deployment.  */
224 #define PROCESSOR_COMMON    PROCESSOR_PPC601
225 #define PROCESSOR_POWER     PROCESSOR_RIOS1
226 #define PROCESSOR_POWERPC   PROCESSOR_PPC604
227 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
228 
229 /* Define the default processor.  This is overridden by other tm.h files.  */
230 #define PROCESSOR_DEFAULT   PROCESSOR_RIOS1
231 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
232 
233 /* Specify the dialect of assembler to use.  New mnemonics is dialect one
234    and the old mnemonics are dialect zero.  */
235 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
236 
237 /* Types of costly dependences.  */
238 enum rs6000_dependence_cost
239  {
240    max_dep_latency = 1000,
241    no_dep_costly,
242    all_deps_costly,
243    true_store_to_load_dep_costly,
244    store_to_load_dep_costly
245  };
246 
247 /* Types of nop insertion schemes in sched target hook sched_finish.  */
248 enum rs6000_nop_insertion
249   {
250     sched_finish_regroup_exact = 1000,
251     sched_finish_pad_groups,
252     sched_finish_none
253   };
254 
255 /* Dispatch group termination caused by an insn.  */
256 enum group_termination
257   {
258     current_group,
259     previous_group
260   };
261 
262 /* Support for a compile-time default CPU, et cetera.  The rules are:
263    --with-cpu is ignored if -mcpu is specified.
264    --with-tune is ignored if -mtune is specified.
265    --with-float is ignored if -mhard-float or -msoft-float are
266     specified.  */
267 #define OPTION_DEFAULT_SPECS \
268   {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
269   {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
270   {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }
271 
272 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
273 struct rs6000_cpu_select
274 {
275   const char *string;
276   const char *name;
277   int set_tune_p;
278   int set_arch_p;
279 };
280 
281 extern struct rs6000_cpu_select rs6000_select[];
282 
283 /* Debug support */
284 extern const char *rs6000_debug_name;	/* Name for -mdebug-xxxx option */
285 extern int rs6000_debug_stack;		/* debug stack applications */
286 extern int rs6000_debug_arg;		/* debug argument handling */
287 
288 #define	TARGET_DEBUG_STACK	rs6000_debug_stack
289 #define	TARGET_DEBUG_ARG	rs6000_debug_arg
290 
291 extern const char *rs6000_traceback_name; /* Type of traceback table.  */
292 
293 /* These are separate from target_flags because we've run out of bits
294    there.  */
295 extern int rs6000_long_double_type_size;
296 extern int rs6000_ieeequad;
297 extern int rs6000_altivec_abi;
298 extern int rs6000_spe_abi;
299 extern int rs6000_float_gprs;
300 extern int rs6000_alignment_flags;
301 extern const char *rs6000_sched_insert_nops_str;
302 extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
303 
304 /* Alignment options for fields in structures for sub-targets following
305    AIX-like ABI.
306    ALIGN_POWER word-aligns FP doubles (default AIX ABI).
307    ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
308 
309    Override the macro definitions when compiling libobjc to avoid undefined
310    reference to rs6000_alignment_flags due to library's use of GCC alignment
311    macros which use the macros below.  */
312 
313 #ifndef IN_TARGET_LIBS
314 #define MASK_ALIGN_POWER   0x00000000
315 #define MASK_ALIGN_NATURAL 0x00000001
316 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
317 #else
318 #define TARGET_ALIGN_NATURAL 0
319 #endif
320 
321 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
322 #define TARGET_IEEEQUAD rs6000_ieeequad
323 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
324 
325 #define TARGET_SPE_ABI 0
326 #define TARGET_SPE 0
327 #define TARGET_E500 0
328 #define TARGET_ISEL 0
329 #define TARGET_FPRS 1
330 #define TARGET_E500_SINGLE 0
331 #define TARGET_E500_DOUBLE 0
332 
333 /* Sometimes certain combinations of command options do not make sense
334    on a particular target machine.  You can define a macro
335    `OVERRIDE_OPTIONS' to take account of this.  This macro, if
336    defined, is executed once just after all the command options have
337    been parsed.
338 
339    Do not use this macro to turn on various extra optimizations for
340    `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.
341 
342    On the RS/6000 this is used to define the target cpu type.  */
343 
344 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
345 
346 /* Define this to change the optimizations performed by default.  */
347 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
348 
349 /* Show we can debug even without a frame pointer.  */
350 #define CAN_DEBUG_WITHOUT_FP
351 
352 /* Target pragma.  */
353 #define REGISTER_TARGET_PRAGMAS() do {				\
354   c_register_pragma (0, "longcall", rs6000_pragma_longcall);	\
355   targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
356 } while (0)
357 
358 /* Target #defines.  */
359 #define TARGET_CPU_CPP_BUILTINS() \
360   rs6000_cpu_cpp_builtins (pfile)
361 
362 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
363    we're compiling for.  Some configurations may need to override it.  */
364 #define RS6000_CPU_CPP_ENDIAN_BUILTINS()	\
365   do						\
366     {						\
367       if (BYTES_BIG_ENDIAN)			\
368 	{					\
369 	  builtin_define ("__BIG_ENDIAN__");	\
370 	  builtin_define ("_BIG_ENDIAN");	\
371 	  builtin_assert ("machine=bigendian");	\
372 	}					\
373       else					\
374 	{					\
375 	  builtin_define ("__LITTLE_ENDIAN__");	\
376 	  builtin_define ("_LITTLE_ENDIAN");	\
377 	  builtin_assert ("machine=littleendian"); \
378 	}					\
379     }						\
380   while (0)
381 
382 /* Target machine storage layout.  */
383 
384 /* Define this macro if it is advisable to hold scalars in registers
385    in a wider mode than that declared by the program.  In such cases,
386    the value is constrained to be within the bounds of the declared
387    type, but kept valid in the wider mode.  The signedness of the
388    extension may differ from that of the type.  */
389 
390 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)	\
391   if (GET_MODE_CLASS (MODE) == MODE_INT		\
392       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
393     (MODE) = TARGET_32BIT ? SImode : DImode;
394 
395 /* Define this if most significant bit is lowest numbered
396    in instructions that operate on numbered bit-fields.  */
397 /* That is true on RS/6000.  */
398 #define BITS_BIG_ENDIAN 1
399 
400 /* Define this if most significant byte of a word is the lowest numbered.  */
401 /* That is true on RS/6000.  */
402 #define BYTES_BIG_ENDIAN 1
403 
404 /* Define this if most significant word of a multiword number is lowest
405    numbered.
406 
407    For RS/6000 we can decide arbitrarily since there are no machine
408    instructions for them.  Might as well be consistent with bits and bytes.  */
409 #define WORDS_BIG_ENDIAN 1
410 
411 #define MAX_BITS_PER_WORD 64
412 
413 /* Width of a word, in units (bytes).  */
414 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
415 #ifdef IN_LIBGCC2
416 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
417 #else
418 #define MIN_UNITS_PER_WORD 4
419 #endif
420 #define UNITS_PER_FP_WORD 8
421 #define UNITS_PER_ALTIVEC_WORD 16
422 #define UNITS_PER_SPE_WORD 8
423 
424 /* Type used for ptrdiff_t, as a string used in a declaration.  */
425 #define PTRDIFF_TYPE "int"
426 
427 /* Type used for size_t, as a string used in a declaration.  */
428 #define SIZE_TYPE "long unsigned int"
429 
430 /* Type used for wchar_t, as a string used in a declaration.  */
431 #define WCHAR_TYPE "short unsigned int"
432 
433 /* Width of wchar_t in bits.  */
434 #define WCHAR_TYPE_SIZE 16
435 
436 /* A C expression for the size in bits of the type `short' on the
437    target machine.  If you don't define this, the default is half a
438    word.  (If this would be less than one storage unit, it is
439    rounded up to one unit.)  */
440 #define SHORT_TYPE_SIZE 16
441 
442 /* A C expression for the size in bits of the type `int' on the
443    target machine.  If you don't define this, the default is one
444    word.  */
445 #define INT_TYPE_SIZE 32
446 
447 /* A C expression for the size in bits of the type `long' on the
448    target machine.  If you don't define this, the default is one
449    word.  */
450 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
451 
452 /* A C expression for the size in bits of the type `long long' on the
453    target machine.  If you don't define this, the default is two
454    words.  */
455 #define LONG_LONG_TYPE_SIZE 64
456 
457 /* A C expression for the size in bits of the type `float' on the
458    target machine.  If you don't define this, the default is one
459    word.  */
460 #define FLOAT_TYPE_SIZE 32
461 
462 /* A C expression for the size in bits of the type `double' on the
463    target machine.  If you don't define this, the default is two
464    words.  */
465 #define DOUBLE_TYPE_SIZE 64
466 
467 /* A C expression for the size in bits of the type `long double' on
468    the target machine.  If you don't define this, the default is two
469    words.  */
470 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
471 
472 /* Define this to set long double type size to use in libgcc2.c, which can
473    not depend on target_flags.  */
474 #ifdef __LONG_DOUBLE_128__
475 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
476 #else
477 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
478 #endif
479 
480 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c.  */
481 #define WIDEST_HARDWARE_FP_SIZE 64
482 
483 /* Width in bits of a pointer.
484    See also the macro `Pmode' defined below.  */
485 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
486 
487 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
488 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
489 
490 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
491 #define STACK_BOUNDARY \
492   ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI) ? 64 : 128)
493 
494 /* Allocation boundary (in *bits*) for the code of a function.  */
495 #define FUNCTION_BOUNDARY 32
496 
497 /* No data type wants to be aligned rounder than this.  */
498 #define BIGGEST_ALIGNMENT 128
499 
500 /* A C expression to compute the alignment for a variables in the
501    local store.  TYPE is the data type, and ALIGN is the alignment
502    that the object would ordinarily have.  */
503 #define LOCAL_ALIGNMENT(TYPE, ALIGN)				\
504   ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 :	\
505     (TARGET_E500_DOUBLE && TYPE_MODE (TYPE) == DFmode) ? 64 : \
506     (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
507 
508 /* Alignment of field after `int : 0' in a structure.  */
509 #define EMPTY_FIELD_BOUNDARY 32
510 
511 /* Every structure's size must be a multiple of this.  */
512 #define STRUCTURE_SIZE_BOUNDARY 8
513 
514 /* Return 1 if a structure or array containing FIELD should be
515    accessed using `BLKMODE'.
516 
517    For the SPE, simd types are V2SI, and gcc can be tempted to put the
518    entire thing in a DI and use subregs to access the internals.
519    store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
520    back-end.  Because a single GPR can hold a V2SI, but not a DI, the
521    best thing to do is set structs to BLKmode and avoid Severe Tire
522    Damage.
523 
524    On e500 v2, DF and DI modes suffer from the same anomaly.  DF can
525    fit into 1, whereas DI still needs two.  */
526 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
527   ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \
528    || (TARGET_E500_DOUBLE && (MODE) == DFmode))
529 
530 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
531 #define PCC_BITFIELD_TYPE_MATTERS 1
532 
533 /* Make strings word-aligned so strcpy from constants will be faster.
534    Make vector constants quadword aligned.  */
535 #define CONSTANT_ALIGNMENT(EXP, ALIGN)                           \
536   (TREE_CODE (EXP) == STRING_CST	                         \
537    && (ALIGN) < BITS_PER_WORD                                    \
538    ? BITS_PER_WORD                                               \
539    : (ALIGN))
540 
541 /* Make arrays of chars word-aligned for the same reasons.
542    Align vectors to 128 bits.  Align SPE vectors and E500 v2 doubles to
543    64 bits.  */
544 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
545   (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128)	\
546    : (TARGET_E500_DOUBLE && TYPE_MODE (TYPE) == DFmode) ? 64 \
547    : TREE_CODE (TYPE) == ARRAY_TYPE		\
548    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
549    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
550 
551 /* Nonzero if move instructions will actually fail to work
552    when given unaligned data.  */
553 #define STRICT_ALIGNMENT 0
554 
555 /* Define this macro to be the value 1 if unaligned accesses have a cost
556    many times greater than aligned accesses, for example if they are
557    emulated in a trap handler.  */
558 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN)				\
559   (STRICT_ALIGNMENT							\
560    || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode	\
561 	|| (MODE) == DImode)						\
562        && (ALIGN) < 32))
563 
564 /* Standard register usage.  */
565 
566 /* Number of actual hardware registers.
567    The hardware registers are assigned numbers for the compiler
568    from 0 to just below FIRST_PSEUDO_REGISTER.
569    All registers that the compiler knows about must be given numbers,
570    even those that are not normally considered general registers.
571 
572    RS/6000 has 32 fixed-point registers, 32 floating-point registers,
573    an MQ register, a count register, a link register, and 8 condition
574    register fields, which we view here as separate registers.  AltiVec
575    adds 32 vector registers and a VRsave register.
576 
577    In addition, the difference between the frame and argument pointers is
578    a function of the number of registers saved, so we need to have a
579    register for AP that will later be eliminated in favor of SP or FP.
580    This is a normal register, but it is fixed.
581 
582    We also create a pseudo register for float/int conversions, that will
583    really represent the memory location used.  It is represented here as
584    a register, in order to work around problems in allocating stack storage
585    in inline functions.
586 
587    Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
588    pointer, which is eventually eliminated in favor of SP or FP.  */
589 
590 #define FIRST_PSEUDO_REGISTER 114
591 
592 /* This must be included for pre gcc 3.0 glibc compatibility.  */
593 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
594 
595 /* Add 32 dwarf columns for synthetic SPE registers.  */
596 #define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
597 
598 /* The SPE has an additional 32 synthetic registers, with DWARF debug
599    info numbering for these registers starting at 1200.  While eh_frame
600    register numbering need not be the same as the debug info numbering,
601    we choose to number these regs for eh_frame at 1200 too.  This allows
602    future versions of the rs6000 backend to add hard registers and
603    continue to use the gcc hard register numbering for eh_frame.  If the
604    extra SPE registers in eh_frame were numbered starting from the
605    current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
606    changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
607    avoid invalidating older SPE eh_frame info.
608 
609    We must map them here to avoid huge unwinder tables mostly consisting
610    of unused space.  */
611 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
612   ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
613 
614 /* Use gcc hard register numbering for eh_frame.  */
615 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
616 
617 /* 1 for registers that have pervasive standard uses
618    and are not available for the register allocator.
619 
620    On RS/6000, r1 is used for the stack.  On Darwin, r2 is available
621    as a local register; for all other OS's r2 is the TOC pointer.
622 
623    cr5 is not supposed to be used.
624 
625    On System V implementations, r13 is fixed and not available for use.  */
626 
627 #define FIXED_REGISTERS  \
628   {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
629    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
630    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
631    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
632    0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,	   \
633    /* AltiVec registers.  */			   \
634    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
635    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
636    1, 1						   \
637    , 1, 1, 1                                       \
638 }
639 
640 /* 1 for registers not available across function calls.
641    These must include the FIXED_REGISTERS and also any
642    registers that can be used without being saved.
643    The latter must include the registers where values are returned
644    and the register where structure-value addresses are passed.
645    Aside from that, you can include as many other registers as you like.  */
646 
647 #define CALL_USED_REGISTERS  \
648   {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
649    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
650    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
651    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
652    1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
653    /* AltiVec registers.  */			   \
654    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
655    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
656    1, 1						   \
657    , 1, 1, 1                                       \
658 }
659 
660 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
661    the entire set of `FIXED_REGISTERS' be included.
662    (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
663    This macro is optional.  If not specified, it defaults to the value
664    of `CALL_USED_REGISTERS'.  */
665 
666 #define CALL_REALLY_USED_REGISTERS  \
667   {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
668    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
669    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
670    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
671    1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
672    /* AltiVec registers.  */			   \
673    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
674    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
675    0, 0						   \
676    , 0, 0, 0                                       \
677 }
678 
679 #define MQ_REGNO     64
680 #define CR0_REGNO    68
681 #define CR1_REGNO    69
682 #define CR2_REGNO    70
683 #define CR3_REGNO    71
684 #define CR4_REGNO    72
685 #define MAX_CR_REGNO 75
686 #define XER_REGNO    76
687 #define FIRST_ALTIVEC_REGNO	77
688 #define LAST_ALTIVEC_REGNO	108
689 #define TOTAL_ALTIVEC_REGS	(LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
690 #define VRSAVE_REGNO		109
691 #define VSCR_REGNO		110
692 #define SPE_ACC_REGNO		111
693 #define SPEFSCR_REGNO		112
694 
695 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
696 #define FIRST_SAVED_FP_REGNO    (14+32)
697 #define FIRST_SAVED_GP_REGNO 13
698 
699 /* List the order in which to allocate registers.  Each register must be
700    listed once, even those in FIXED_REGISTERS.
701 
702    We allocate in the following order:
703 	fp0		(not saved or used for anything)
704 	fp13 - fp2	(not saved; incoming fp arg registers)
705 	fp1		(not saved; return value)
706 	fp31 - fp14	(saved; order given to save least number)
707 	cr7, cr6	(not saved or special)
708 	cr1		(not saved, but used for FP operations)
709 	cr0		(not saved, but used for arithmetic operations)
710 	cr4, cr3, cr2	(saved)
711 	r0		(not saved; cannot be base reg)
712 	r9		(not saved; best for TImode)
713 	r11, r10, r8-r4	(not saved; highest used first to make less conflict)
714 	r3		(not saved; return value register)
715 	r31 - r13	(saved; order given to save least number)
716 	r12		(not saved; if used for DImode or DFmode would use r13)
717 	mq		(not saved; best to use it if we can)
718 	ctr		(not saved; when we have the choice ctr is better)
719 	lr		(saved)
720 	cr5, r1, r2, ap, xer (fixed)
721 	v0 - v1		(not saved or used for anything)
722 	v13 - v3	(not saved; incoming vector arg registers)
723 	v2		(not saved; incoming vector arg reg; return value)
724 	v19 - v14	(not saved or used for anything)
725 	v31 - v20	(saved; order given to save least number)
726 	vrsave, vscr	(fixed)
727 	spe_acc, spefscr (fixed)
728 	sfp		(fixed)
729 */
730 
731 #if FIXED_R2 == 1
732 #define MAYBE_R2_AVAILABLE
733 #define MAYBE_R2_FIXED 2,
734 #else
735 #define MAYBE_R2_AVAILABLE 2,
736 #define MAYBE_R2_FIXED
737 #endif
738 
739 #define REG_ALLOC_ORDER						\
740   {32,								\
741    45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34,		\
742    33,								\
743    63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51,		\
744    50, 49, 48, 47, 46,						\
745    75, 74, 69, 68, 72, 71, 70,					\
746    0, MAYBE_R2_AVAILABLE					\
747    9, 11, 10, 8, 7, 6, 5, 4,					\
748    3,								\
749    31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,		\
750    18, 17, 16, 15, 14, 13, 12,					\
751    64, 66, 65,							\
752    73, 1, MAYBE_R2_FIXED 67, 76,				\
753    /* AltiVec registers.  */					\
754    77, 78,							\
755    90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80,			\
756    79,								\
757    96, 95, 94, 93, 92, 91,					\
758    108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97,	\
759    109, 110,							\
760    111, 112, 113						\
761 }
762 
763 /* True if register is floating-point.  */
764 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
765 
766 /* True if register is a condition register.  */
767 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
768 
769 /* True if register is a condition register, but not cr0.  */
770 #define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
771 
772 /* True if register is an integer register.  */
773 #define INT_REGNO_P(N) \
774   ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
775 
776 /* SPE SIMD registers are just the GPRs.  */
777 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
778 
779 /* True if register is the XER register.  */
780 #define XER_REGNO_P(N) ((N) == XER_REGNO)
781 
782 /* True if register is an AltiVec register.  */
783 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
784 
785 /* Return number of consecutive hard regs needed starting at reg REGNO
786    to hold something of mode MODE.  */
787 
788 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs ((REGNO), (MODE))
789 
790 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE)	\
791   ((TARGET_32BIT && TARGET_POWERPC64			\
792     && (GET_MODE_SIZE (MODE) > 4)  \
793     && INT_REGNO_P (REGNO)) ? 1 : 0)
794 
795 #define ALTIVEC_VECTOR_MODE(MODE)	\
796 	 ((MODE) == V16QImode		\
797 	  || (MODE) == V8HImode		\
798 	  || (MODE) == V4SFmode		\
799 	  || (MODE) == V4SImode)
800 
801 #define SPE_VECTOR_MODE(MODE)		\
802 	((MODE) == V4HImode          	\
803          || (MODE) == V2SFmode          \
804          || (MODE) == V1DImode          \
805          || (MODE) == V2SImode)
806 
807 #define UNITS_PER_SIMD_WORD					\
808         (TARGET_ALTIVEC ? UNITS_PER_ALTIVEC_WORD		\
809 	 : (TARGET_SPE ? UNITS_PER_SPE_WORD : UNITS_PER_WORD))
810 
811 /* Value is TRUE if hard register REGNO can hold a value of
812    machine-mode MODE.  */
813 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
814   rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
815 
816 /* Value is 1 if it is a good idea to tie two pseudo registers
817    when one has mode MODE1 and one has mode MODE2.
818    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
819    for any hard reg, then this must be 0 for correct output.  */
820 #define MODES_TIEABLE_P(MODE1, MODE2) \
821   (GET_MODE_CLASS (MODE1) == MODE_FLOAT		\
822    ? GET_MODE_CLASS (MODE2) == MODE_FLOAT	\
823    : GET_MODE_CLASS (MODE2) == MODE_FLOAT	\
824    ? GET_MODE_CLASS (MODE1) == MODE_FLOAT	\
825    : GET_MODE_CLASS (MODE1) == MODE_CC		\
826    ? GET_MODE_CLASS (MODE2) == MODE_CC		\
827    : GET_MODE_CLASS (MODE2) == MODE_CC		\
828    ? GET_MODE_CLASS (MODE1) == MODE_CC		\
829    : SPE_VECTOR_MODE (MODE1)			\
830    ? SPE_VECTOR_MODE (MODE2)			\
831    : SPE_VECTOR_MODE (MODE2)			\
832    ? SPE_VECTOR_MODE (MODE1)			\
833    : ALTIVEC_VECTOR_MODE (MODE1)		\
834    ? ALTIVEC_VECTOR_MODE (MODE2)		\
835    : ALTIVEC_VECTOR_MODE (MODE2)		\
836    ? ALTIVEC_VECTOR_MODE (MODE1)		\
837    : 1)
838 
839 /* Post-reload, we can't use any new AltiVec registers, as we already
840    emitted the vrsave mask.  */
841 
842 #define HARD_REGNO_RENAME_OK(SRC, DST) \
843   (! ALTIVEC_REGNO_P (DST) || regs_ever_live[DST])
844 
845 /* A C expression returning the cost of moving data from a register of class
846    CLASS1 to one of CLASS2.  */
847 
848 #define REGISTER_MOVE_COST rs6000_register_move_cost
849 
850 /* A C expressions returning the cost of moving data of MODE from a register to
851    or from memory.  */
852 
853 #define MEMORY_MOVE_COST rs6000_memory_move_cost
854 
855 /* Specify the cost of a branch insn; roughly the number of extra insns that
856    should be added to avoid a branch.
857 
858    Set this to 3 on the RS/6000 since that is roughly the average cost of an
859    unscheduled conditional branch.  */
860 
861 #define BRANCH_COST 3
862 
863 /* Override BRANCH_COST heuristic which empirically produces worse
864    performance for removing short circuiting from the logical ops.  */
865 
866 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
867 
868 /* A fixed register used at prologue and epilogue generation to fix
869    addressing modes.  The SPE needs heavy addressing fixes at the last
870    minute, and it's best to save a register for it.
871 
872    AltiVec also needs fixes, but we've gotten around using r11, which
873    is actually wrong because when use_backchain_to_restore_sp is true,
874    we end up clobbering r11.
875 
876    The AltiVec case needs to be fixed.  Dunno if we should break ABI
877    compatibility and reserve a register for it as well..  */
878 
879 #define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
880 
881 /* Define this macro to change register usage conditional on target
882    flags.  */
883 
884 #define CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage ()
885 
886 /* Specify the registers used for certain standard purposes.
887    The values of these macros are register numbers.  */
888 
889 /* RS/6000 pc isn't overloaded on a register that the compiler knows about.  */
890 /* #define PC_REGNUM  */
891 
892 /* Register to use for pushing function arguments.  */
893 #define STACK_POINTER_REGNUM 1
894 
895 /* Base register for access to local variables of the function.  */
896 #define HARD_FRAME_POINTER_REGNUM 31
897 
898 /* Base register for access to local variables of the function.  */
899 #define FRAME_POINTER_REGNUM 113
900 
901 /* Value should be nonzero if functions must have frame pointers.
902    Zero means the frame pointer need not be set up (and parms
903    may be accessed via the stack pointer) in functions that seem suitable.
904    This is computed in `reload', in reload1.c.  */
905 #define FRAME_POINTER_REQUIRED 0
906 
907 /* Base register for access to arguments of the function.  */
908 #define ARG_POINTER_REGNUM 67
909 
910 /* Place to put static chain when calling a function that requires it.  */
911 #define STATIC_CHAIN_REGNUM 11
912 
913 /* Link register number.  */
914 #define LINK_REGISTER_REGNUM 65
915 
916 /* Count register number.  */
917 #define COUNT_REGISTER_REGNUM 66
918 
919 /* Define the classes of registers for register constraints in the
920    machine description.  Also define ranges of constants.
921 
922    One of the classes must always be named ALL_REGS and include all hard regs.
923    If there is more than one class, another class must be named NO_REGS
924    and contain no registers.
925 
926    The name GENERAL_REGS must be the name of a class (or an alias for
927    another name such as ALL_REGS).  This is the class of registers
928    that is allowed by "g" or "r" in a register constraint.
929    Also, registers outside this class are allocated only when
930    instructions express preferences for them.
931 
932    The classes must be numbered in nondecreasing order; that is,
933    a larger-numbered class must never be contained completely
934    in a smaller-numbered class.
935 
936    For any two classes, it is very desirable that there be another
937    class that represents their union.  */
938 
939 /* The RS/6000 has three types of registers, fixed-point, floating-point,
940    and condition registers, plus three special registers, MQ, CTR, and the
941    link register.  AltiVec adds a vector register class.
942 
943    However, r0 is special in that it cannot be used as a base register.
944    So make a class for registers valid as base registers.
945 
946    Also, cr0 is the only condition code register that can be used in
947    arithmetic insns, so make a separate class for it.  */
948 
949 enum reg_class
950 {
951   NO_REGS,
952   BASE_REGS,
953   GENERAL_REGS,
954   FLOAT_REGS,
955   ALTIVEC_REGS,
956   VRSAVE_REGS,
957   VSCR_REGS,
958   SPE_ACC_REGS,
959   SPEFSCR_REGS,
960   NON_SPECIAL_REGS,
961   MQ_REGS,
962   LINK_REGS,
963   CTR_REGS,
964   LINK_OR_CTR_REGS,
965   SPECIAL_REGS,
966   SPEC_OR_GEN_REGS,
967   CR0_REGS,
968   CR_REGS,
969   NON_FLOAT_REGS,
970   XER_REGS,
971   ALL_REGS,
972   LIM_REG_CLASSES
973 };
974 
975 #define N_REG_CLASSES (int) LIM_REG_CLASSES
976 
977 /* Give names of register classes as strings for dump file.  */
978 
979 #define REG_CLASS_NAMES							\
980 {									\
981   "NO_REGS",								\
982   "BASE_REGS",								\
983   "GENERAL_REGS",							\
984   "FLOAT_REGS",								\
985   "ALTIVEC_REGS",							\
986   "VRSAVE_REGS",							\
987   "VSCR_REGS",								\
988   "SPE_ACC_REGS",                                                       \
989   "SPEFSCR_REGS",                                                       \
990   "NON_SPECIAL_REGS",							\
991   "MQ_REGS",								\
992   "LINK_REGS",								\
993   "CTR_REGS",								\
994   "LINK_OR_CTR_REGS",							\
995   "SPECIAL_REGS",							\
996   "SPEC_OR_GEN_REGS",							\
997   "CR0_REGS",								\
998   "CR_REGS",								\
999   "NON_FLOAT_REGS",							\
1000   "XER_REGS",								\
1001   "ALL_REGS"								\
1002 }
1003 
1004 /* Define which registers fit in which classes.
1005    This is an initializer for a vector of HARD_REG_SET
1006    of length N_REG_CLASSES.  */
1007 
1008 #define REG_CLASS_CONTENTS						     \
1009 {									     \
1010   { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */	     \
1011   { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */	     \
1012   { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */     \
1013   { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */       \
1014   { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */     \
1015   { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */	     \
1016   { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */	     \
1017   { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */     \
1018   { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */     \
1019   { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
1020   { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */	     \
1021   { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */	     \
1022   { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */	     \
1023   { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1024   { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */     \
1025   { 0xffffffff, 0x00000000, 0x0000000f, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
1026   { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */	     \
1027   { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */	     \
1028   { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */   \
1029   { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */	     \
1030   { 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff }  /* ALL_REGS */	     \
1031 }
1032 
1033 /* The same information, inverted:
1034    Return the class number of the smallest class containing
1035    reg number REGNO.  This could be a conditional expression
1036    or could index an array.  */
1037 
1038 #define REGNO_REG_CLASS(REGNO)			\
1039  ((REGNO) == 0 ? GENERAL_REGS			\
1040   : (REGNO) < 32 ? BASE_REGS			\
1041   : FP_REGNO_P (REGNO) ? FLOAT_REGS		\
1042   : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS	\
1043   : (REGNO) == CR0_REGNO ? CR0_REGS		\
1044   : CR_REGNO_P (REGNO) ? CR_REGS		\
1045   : (REGNO) == MQ_REGNO ? MQ_REGS		\
1046   : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS	\
1047   : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS	\
1048   : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS	\
1049   : (REGNO) == XER_REGNO ? XER_REGS		\
1050   : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS	\
1051   : (REGNO) == VSCR_REGNO ? VRSAVE_REGS		\
1052   : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS	\
1053   : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS	\
1054   : (REGNO) == FRAME_POINTER_REGNUM ? BASE_REGS	\
1055   : NO_REGS)
1056 
1057 /* The class value for index registers, and the one for base regs.  */
1058 #define INDEX_REG_CLASS GENERAL_REGS
1059 #define BASE_REG_CLASS BASE_REGS
1060 
1061 /* Get reg_class from a letter such as appears in the machine description.  */
1062 
1063 #define REG_CLASS_FROM_LETTER(C) \
1064   ((C) == 'f' ? ((TARGET_HARD_FLOAT && TARGET_FPRS) ? FLOAT_REGS : NO_REGS) \
1065    : (C) == 'b' ? BASE_REGS	\
1066    : (C) == 'h' ? SPECIAL_REGS	\
1067    : (C) == 'q' ? MQ_REGS	\
1068    : (C) == 'c' ? CTR_REGS	\
1069    : (C) == 'l' ? LINK_REGS	\
1070    : (C) == 'v' ? ALTIVEC_REGS	\
1071    : (C) == 'x' ? CR0_REGS	\
1072    : (C) == 'y' ? CR_REGS	\
1073    : (C) == 'z' ? XER_REGS	\
1074    : NO_REGS)
1075 
1076 /* The letters I, J, K, L, M, N, and P in a register constraint string
1077    can be used to stand for particular ranges of immediate operands.
1078    This macro defines what the ranges are.
1079    C is the letter, and VALUE is a constant value.
1080    Return 1 if VALUE is in the range specified by C.
1081 
1082    `I' is a signed 16-bit constant
1083    `J' is a constant with only the high-order 16 bits nonzero
1084    `K' is a constant with only the low-order 16 bits nonzero
1085    `L' is a signed 16-bit constant shifted left 16 bits
1086    `M' is a constant that is greater than 31
1087    `N' is a positive constant that is an exact power of two
1088    `O' is the constant zero
1089    `P' is a constant whose negation is a signed 16-bit constant */
1090 
1091 #define CONST_OK_FOR_LETTER_P(VALUE, C)					\
1092    ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000	\
1093    : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
1094    : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0		\
1095    : (C) == 'L' ? (((VALUE) & 0xffff) == 0				\
1096 		   && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0))	\
1097    : (C) == 'M' ? (VALUE) > 31						\
1098    : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0		\
1099    : (C) == 'O' ? (VALUE) == 0						\
1100    : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
1101    : 0)
1102 
1103 /* Similar, but for floating constants, and defining letters G and H.
1104    Here VALUE is the CONST_DOUBLE rtx itself.
1105 
1106    We flag for special constants when we can copy the constant into
1107    a general register in two insns for DF/DI and one insn for SF.
1108 
1109    'H' is used for DI/DF constants that take 3 insns.  */
1110 
1111 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)				\
1112   (  (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE))		\
1113 		   == ((GET_MODE (VALUE) == SFmode) ? 1 : 2))		\
1114    : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3)	\
1115    : 0)
1116 
1117 /* Optional extra constraints for this machine.
1118 
1119    'Q' means that is a memory operand that is just an offset from a reg.
1120    'R' is for AIX TOC entries.
1121    'S' is a constant that can be placed into a 64-bit mask operand.
1122    'T' is a constant that can be placed into a 32-bit mask operand.
1123    'U' is for V.4 small data references.
1124    'W' is a vector constant that can be easily generated (no mem refs).
1125    'Y' is an indexed or word-aligned displacement memory operand.
1126    'Z' is an indexed or indirect memory operand.
1127    'a'  is an indexed or indirect address operand.
1128    't' is for AND masks that can be performed by two rldic{l,r} insns
1129        (but excluding those that could match other constraints of anddi3.)  */
1130 
1131 #define EXTRA_CONSTRAINT(OP, C)						\
1132   ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG	\
1133    : (C) == 'R' ? legitimate_constant_pool_address_p (OP)		\
1134    : (C) == 'S' ? mask64_operand (OP, DImode)				\
1135    : (C) == 'T' ? mask_operand (OP, GET_MODE (OP))			\
1136    : (C) == 'U' ? (DEFAULT_ABI == ABI_V4				\
1137 		   && small_data_operand (OP, GET_MODE (OP)))		\
1138    : (C) == 't' ? (mask64_2_operand (OP, DImode)			\
1139 		   && (fixed_regs[CR0_REGNO]				\
1140 		       || !logical_operand (OP, DImode))		\
1141 		   && !mask_operand (OP, DImode)			\
1142 		   && !mask64_operand (OP, DImode))			\
1143    : (C) == 'W' ? (easy_vector_constant (OP, GET_MODE (OP)))		\
1144    : (C) == 'Y' ? (word_offset_memref_operand (OP, GET_MODE (OP)))      \
1145    : (C) == 'Z' ? (indexed_or_indirect_operand (OP, GET_MODE (OP)))	\
1146    : (C) == 'a' ? (indexed_or_indirect_address (OP, GET_MODE (OP)))	\
1147    : 0)
1148 
1149 /* Define which constraints are memory constraints.  Tell reload
1150    that any memory address can be reloaded by copying the
1151    memory address into a base register if required.  */
1152 
1153 #define EXTRA_MEMORY_CONSTRAINT(C, STR)				\
1154   ((C) == 'Q' || (C) == 'Y' || (C) == 'Z')
1155 
1156 /* Define which constraints should be treated like address constraints
1157    by the reload pass.  */
1158 
1159 #define EXTRA_ADDRESS_CONSTRAINT(C, STR)			\
1160   ((C) == 'a')
1161 
1162 /* Given an rtx X being reloaded into a reg required to be
1163    in class CLASS, return the class of reg to actually use.
1164    In general this is just CLASS; but on some machines
1165    in some cases it is preferable to use a more restrictive class.
1166 
1167    On the RS/6000, we have to return NO_REGS when we want to reload a
1168    floating-point CONST_DOUBLE to force it to be copied to memory.
1169 
1170    We also don't want to reload integer values into floating-point
1171    registers if we can at all help it.  In fact, this can
1172    cause reload to die, if it tries to generate a reload of CTR
1173    into a FP register and discovers it doesn't have the memory location
1174    required.
1175 
1176    ??? Would it be a good idea to have reload do the converse, that is
1177    try to reload floating modes into FP registers if possible?
1178  */
1179 
1180 #define PREFERRED_RELOAD_CLASS(X,CLASS)			\
1181   ((CONSTANT_P (X)					\
1182     && reg_classes_intersect_p ((CLASS), FLOAT_REGS))	\
1183    ? NO_REGS 						\
1184    : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT 	\
1185       && (CLASS) == NON_SPECIAL_REGS)			\
1186    ? GENERAL_REGS					\
1187    : (CLASS))
1188 
1189 /* Return the register class of a scratch register needed to copy IN into
1190    or out of a register in CLASS in MODE.  If it can be done directly,
1191    NO_REGS is returned.  */
1192 
1193 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1194   secondary_reload_class (CLASS, MODE, IN)
1195 
1196 /* If we are copying between FP or AltiVec registers and anything
1197    else, we need a memory location.  */
1198 
1199 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) 		\
1200  ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS		\
1201 			   || (CLASS2) == FLOAT_REGS		\
1202 			   || (CLASS1) == ALTIVEC_REGS		\
1203 			   || (CLASS2) == ALTIVEC_REGS))
1204 
1205 /* Return the maximum number of consecutive registers
1206    needed to represent mode MODE in a register of class CLASS.
1207 
1208    On RS/6000, this is the size of MODE in words,
1209    except in the FP regs, where a single reg is enough for two words.  */
1210 #define CLASS_MAX_NREGS(CLASS, MODE)					\
1211  (((CLASS) == FLOAT_REGS) 						\
1212   ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1213   : (TARGET_E500_DOUBLE && (CLASS) == GENERAL_REGS && (MODE) == DFmode) \
1214   ? 1                                                                   \
1215   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1216 
1217 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid.  */
1218 
1219 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)			\
1220   (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)				\
1221    ? ((GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8		\
1222        || TARGET_IEEEQUAD)						\
1223       && reg_classes_intersect_p (FLOAT_REGS, CLASS))			\
1224    : (((TARGET_E500_DOUBLE						\
1225 	&& ((((TO) == DFmode) + ((FROM) == DFmode)) == 1		\
1226 	    || (((TO) == DImode) + ((FROM) == DImode)) == 1))		\
1227        || (TARGET_SPE							\
1228 	   && (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1))	\
1229       && reg_classes_intersect_p (GENERAL_REGS, CLASS)))
1230 
1231 /* Stack layout; function entry, exit and calling.  */
1232 
1233 /* Enumeration to give which calling sequence to use.  */
1234 enum rs6000_abi {
1235   ABI_NONE,
1236   ABI_AIX,			/* IBM's AIX */
1237   ABI_V4,			/* System V.4/eabi */
1238   ABI_DARWIN			/* Apple's Darwin (OS X kernel) */
1239 };
1240 
1241 extern enum rs6000_abi rs6000_current_abi;	/* available for use by subtarget */
1242 
1243 /* Define this if pushing a word on the stack
1244    makes the stack pointer a smaller address.  */
1245 #define STACK_GROWS_DOWNWARD
1246 
1247 /* Offsets recorded in opcodes are a multiple of this alignment factor.  */
1248 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1249 
1250 /* Define this to nonzero if the nominal address of the stack frame
1251    is at the high-address end of the local variables;
1252    that is, each additional local variable allocated
1253    goes at a more negative offset in the frame.
1254 
1255    On the RS/6000, we grow upwards, from the area after the outgoing
1256    arguments.  */
1257 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0)
1258 
1259 /* Size of the outgoing register save area */
1260 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX			\
1261 			  || DEFAULT_ABI == ABI_DARWIN)			\
1262 			 ? (TARGET_64BIT ? 64 : 32)			\
1263 			 : 0)
1264 
1265 /* Size of the fixed area on the stack */
1266 #define RS6000_SAVE_AREA \
1267   (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8)	\
1268    << (TARGET_64BIT ? 1 : 0))
1269 
1270 /* MEM representing address to save the TOC register */
1271 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1272 				     plus_constant (stack_pointer_rtx, \
1273 						    (TARGET_32BIT ? 20 : 40)))
1274 
1275 /* Align an address */
1276 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1277 
1278 /* Offset within stack frame to start allocating local variables at.
1279    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1280    first local allocated.  Otherwise, it is the offset to the BEGINNING
1281    of the first local allocated.
1282 
1283    On the RS/6000, the frame pointer is the same as the stack pointer,
1284    except for dynamic allocations.  So we start after the fixed area and
1285    outgoing parameter area.  */
1286 
1287 #define STARTING_FRAME_OFFSET						\
1288   (FRAME_GROWS_DOWNWARD							\
1289    ? 0									\
1290    : (RS6000_ALIGN (current_function_outgoing_args_size,		\
1291 		    TARGET_ALTIVEC ? 16 : 8)				\
1292       + RS6000_SAVE_AREA))
1293 
1294 /* Offset from the stack pointer register to an item dynamically
1295    allocated on the stack, e.g., by `alloca'.
1296 
1297    The default value for this macro is `STACK_POINTER_OFFSET' plus the
1298    length of the outgoing arguments.  The default is correct for most
1299    machines.  See `function.c' for details.  */
1300 #define STACK_DYNAMIC_OFFSET(FUNDECL)					\
1301   (RS6000_ALIGN (current_function_outgoing_args_size,			\
1302 		 TARGET_ALTIVEC ? 16 : 8)				\
1303    + (STACK_POINTER_OFFSET))
1304 
1305 /* If we generate an insn to push BYTES bytes,
1306    this says how many the stack pointer really advances by.
1307    On RS/6000, don't define this because there are no push insns.  */
1308 /*  #define PUSH_ROUNDING(BYTES) */
1309 
1310 /* Offset of first parameter from the argument pointer register value.
1311    On the RS/6000, we define the argument pointer to the start of the fixed
1312    area.  */
1313 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1314 
1315 /* Offset from the argument pointer register value to the top of
1316    stack.  This is different from FIRST_PARM_OFFSET because of the
1317    register save area.  */
1318 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1319 
1320 /* Define this if stack space is still allocated for a parameter passed
1321    in a register.  The value is the number of bytes allocated to this
1322    area.  */
1323 #define REG_PARM_STACK_SPACE(FNDECL)	RS6000_REG_SAVE
1324 
1325 /* Define this if the above stack space is to be considered part of the
1326    space allocated by the caller.  */
1327 #define OUTGOING_REG_PARM_STACK_SPACE
1328 
1329 /* This is the difference between the logical top of stack and the actual sp.
1330 
1331    For the RS/6000, sp points past the fixed area.  */
1332 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1333 
1334 /* Define this if the maximum size of all the outgoing args is to be
1335    accumulated and pushed during the prologue.  The amount can be
1336    found in the variable current_function_outgoing_args_size.  */
1337 #define ACCUMULATE_OUTGOING_ARGS 1
1338 
1339 /* Value is the number of bytes of arguments automatically
1340    popped when returning from a subroutine call.
1341    FUNDECL is the declaration node of the function (as a tree),
1342    FUNTYPE is the data type of the function (as a tree),
1343    or for a library call it is an identifier node for the subroutine name.
1344    SIZE is the number of bytes of arguments passed on the stack.  */
1345 
1346 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1347 
1348 /* Define how to find the value returned by a function.
1349    VALTYPE is the data type of the value (as a tree).
1350    If the precise function being called is known, FUNC is its FUNCTION_DECL;
1351    otherwise, FUNC is 0.  */
1352 
1353 #define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC))
1354 
1355 /* Define how to find the value returned by a library function
1356    assuming the value has mode MODE.  */
1357 
1358 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1359 
1360 /* DRAFT_V4_STRUCT_RET defaults off.  */
1361 #define DRAFT_V4_STRUCT_RET 0
1362 
1363 /* Let TARGET_RETURN_IN_MEMORY control what happens.  */
1364 #define DEFAULT_PCC_STRUCT_RETURN 0
1365 
1366 /* Mode of stack savearea.
1367    FUNCTION is VOIDmode because calling convention maintains SP.
1368    BLOCK needs Pmode for SP.
1369    NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
1370 #define STACK_SAVEAREA_MODE(LEVEL)	\
1371   (LEVEL == SAVE_FUNCTION ? VOIDmode	\
1372   : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1373 
1374 /* Minimum and maximum general purpose registers used to hold arguments.  */
1375 #define GP_ARG_MIN_REG 3
1376 #define GP_ARG_MAX_REG 10
1377 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1378 
1379 /* Minimum and maximum floating point registers used to hold arguments.  */
1380 #define FP_ARG_MIN_REG 33
1381 #define	FP_ARG_AIX_MAX_REG 45
1382 #define	FP_ARG_V4_MAX_REG  40
1383 #define	FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX				\
1384 			 || DEFAULT_ABI == ABI_DARWIN)			\
1385 			? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1386 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1387 
1388 /* Minimum and maximum AltiVec registers used to hold arguments.  */
1389 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1390 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1391 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1392 
1393 /* Return registers */
1394 #define GP_ARG_RETURN GP_ARG_MIN_REG
1395 #define FP_ARG_RETURN FP_ARG_MIN_REG
1396 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1397 
1398 /* Flags for the call/call_value rtl operations set up by function_arg */
1399 #define CALL_NORMAL		0x00000000	/* no special processing */
1400 /* Bits in 0x00000001 are unused.  */
1401 #define CALL_V4_CLEAR_FP_ARGS	0x00000002	/* V.4, no FP args passed */
1402 #define CALL_V4_SET_FP_ARGS	0x00000004	/* V.4, FP args were passed */
1403 #define CALL_LONG		0x00000008	/* always call indirect */
1404 #define CALL_LIBCALL		0x00000010	/* libcall */
1405 
1406 /* We don't have prologue and epilogue functions to save/restore
1407    everything for most ABIs.  */
1408 #define WORLD_SAVE_P(INFO) 0
1409 
1410 /* 1 if N is a possible register number for a function value
1411    as seen by the caller.
1412 
1413    On RS/6000, this is r3, fp1, and v2 (for AltiVec).  */
1414 #define FUNCTION_VALUE_REGNO_P(N)					\
1415   ((N) == GP_ARG_RETURN							\
1416    || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS)	\
1417    || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1418 
1419 /* 1 if N is a possible register number for function argument passing.
1420    On RS/6000, these are r3-r10 and fp1-fp13.
1421    On AltiVec, v2 - v13 are used for passing vectors.  */
1422 #define FUNCTION_ARG_REGNO_P(N)						\
1423   ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG			\
1424    || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG	\
1425        && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)				\
1426    || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG			\
1427        && TARGET_HARD_FLOAT && TARGET_FPRS))
1428 
1429 /* Define a data type for recording info about an argument list
1430    during the scan of that argument list.  This data type should
1431    hold all necessary information about the function itself
1432    and about the args processed so far, enough to enable macros
1433    such as FUNCTION_ARG to determine where the next arg should go.
1434 
1435    On the RS/6000, this is a structure.  The first element is the number of
1436    total argument words, the second is used to store the next
1437    floating-point register number, and the third says how many more args we
1438    have prototype types for.
1439 
1440    For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1441    the next available GP register, `fregno' is the next available FP
1442    register, and `words' is the number of words used on the stack.
1443 
1444    The varargs/stdarg support requires that this structure's size
1445    be a multiple of sizeof(int).  */
1446 
1447 typedef struct rs6000_args
1448 {
1449   int words;			/* # words used for passing GP registers */
1450   int fregno;			/* next available FP register */
1451   int vregno;			/* next available AltiVec register */
1452   int nargs_prototype;		/* # args left in the current prototype */
1453   int prototype;		/* Whether a prototype was defined */
1454   int stdarg;			/* Whether function is a stdarg function.  */
1455   int call_cookie;		/* Do special things for this call */
1456   int sysv_gregno;		/* next available GP register */
1457   int intoffset;		/* running offset in struct (darwin64) */
1458   int use_stack;		/* any part of struct on stack (darwin64) */
1459   int named;			/* false for varargs params */
1460 } CUMULATIVE_ARGS;
1461 
1462 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1463    for a call to a function whose data type is FNTYPE.
1464    For a library call, FNTYPE is 0.  */
1465 
1466 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1467   init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS)
1468 
1469 /* Similar, but when scanning the definition of a procedure.  We always
1470    set NARGS_PROTOTYPE large so we never return an EXPR_LIST.  */
1471 
1472 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1473   init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000)
1474 
1475 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls.  */
1476 
1477 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1478   init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0)
1479 
1480 /* Update the data in CUM to advance over an argument
1481    of mode MODE and data type TYPE.
1482    (TYPE is null for libcalls where that information may not be available.)  */
1483 
1484 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
1485   function_arg_advance (&CUM, MODE, TYPE, NAMED, 0)
1486 
1487 /* Determine where to put an argument to a function.
1488    Value is zero to push the argument on the stack,
1489    or a hard register in which to store the argument.
1490 
1491    MODE is the argument's machine mode.
1492    TYPE is the data type of the argument (as a tree).
1493     This is null for libcalls where that information may
1494     not be available.
1495    CUM is a variable of type CUMULATIVE_ARGS which gives info about
1496     the preceding args and about the function being called.
1497    NAMED is nonzero if this argument is a named parameter
1498     (otherwise it is an extra parameter matching an ellipsis).
1499 
1500    On RS/6000 the first eight words of non-FP are normally in registers
1501    and the rest are pushed.  The first 13 FP args are in registers.
1502 
1503    If this is floating-point and no prototype is specified, we use
1504    both an FP and integer register (or possibly FP reg and stack).  Library
1505    functions (when TYPE is zero) always have the proper types for args,
1506    so we can pass the FP value just in one register.  emit_library_function
1507    doesn't support EXPR_LIST anyway.  */
1508 
1509 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1510   function_arg (&CUM, MODE, TYPE, NAMED)
1511 
1512 /* If defined, a C expression which determines whether, and in which
1513    direction, to pad out an argument with extra space.  The value
1514    should be of type `enum direction': either `upward' to pad above
1515    the argument, `downward' to pad below, or `none' to inhibit
1516    padding.  */
1517 
1518 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1519 
1520 /* If defined, a C expression that gives the alignment boundary, in bits,
1521    of an argument with the specified mode and type.  If it is not defined,
1522    PARM_BOUNDARY is used for all arguments.  */
1523 
1524 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1525   function_arg_boundary (MODE, TYPE)
1526 
1527 /* Implement `va_start' for varargs and stdarg.  */
1528 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1529   rs6000_va_start (valist, nextarg)
1530 
1531 #define PAD_VARARGS_DOWN \
1532    (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1533 
1534 /* Output assembler code to FILE to increment profiler label # LABELNO
1535    for profiling a function entry.  */
1536 
1537 #define FUNCTION_PROFILER(FILE, LABELNO)	\
1538   output_function_profiler ((FILE), (LABELNO));
1539 
1540 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1541    the stack pointer does not matter. No definition is equivalent to
1542    always zero.
1543 
1544    On the RS/6000, this is nonzero because we can restore the stack from
1545    its backpointer, which we maintain.  */
1546 #define EXIT_IGNORE_STACK	1
1547 
1548 /* Define this macro as a C expression that is nonzero for registers
1549    that are used by the epilogue or the return' pattern.  The stack
1550    and frame pointer registers are already be assumed to be used as
1551    needed.  */
1552 
1553 #define	EPILOGUE_USES(REGNO)					\
1554   ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM)	\
1555    || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO)		\
1556    || (current_function_calls_eh_return				\
1557        && TARGET_AIX						\
1558        && (REGNO) == 2))
1559 
1560 
1561 /* TRAMPOLINE_TEMPLATE deleted */
1562 
1563 /* Length in units of the trampoline for entering a nested function.  */
1564 
1565 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1566 
1567 /* Emit RTL insns to initialize the variable parts of a trampoline.
1568    FNADDR is an RTX for the address of the function's pure code.
1569    CXT is an RTX for the static chain value for the function.  */
1570 
1571 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT)		\
1572   rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1573 
1574 /* Definitions for __builtin_return_address and __builtin_frame_address.
1575    __builtin_return_address (0) should give link register (65), enable
1576    this.  */
1577 /* This should be uncommented, so that the link register is used, but
1578    currently this would result in unmatched insns and spilling fixed
1579    registers so we'll leave it for another day.  When these problems are
1580    taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1581    (mrs) */
1582 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1583 
1584 /* Number of bytes into the frame return addresses can be found.  See
1585    rs6000_stack_info in rs6000.c for more information on how the different
1586    abi's store the return address.  */
1587 #define RETURN_ADDRESS_OFFSET						\
1588  ((DEFAULT_ABI == ABI_AIX						\
1589    || DEFAULT_ABI == ABI_DARWIN)	? (TARGET_32BIT ? 8 : 16) :	\
1590   (DEFAULT_ABI == ABI_V4)		? 4 :				\
1591   (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1592 
1593 /* The current return address is in link register (65).  The return address
1594    of anything farther back is accessed normally at an offset of 8 from the
1595    frame pointer.  */
1596 #define RETURN_ADDR_RTX(COUNT, FRAME)                 \
1597   (rs6000_return_addr (COUNT, FRAME))
1598 
1599 
1600 /* Definitions for register eliminations.
1601 
1602    We have two registers that can be eliminated on the RS/6000.  First, the
1603    frame pointer register can often be eliminated in favor of the stack
1604    pointer register.  Secondly, the argument pointer register can always be
1605    eliminated; it is replaced with either the stack or frame pointer.
1606 
1607    In addition, we use the elimination mechanism to see if r30 is needed
1608    Initially we assume that it isn't.  If it is, we spill it.  This is done
1609    by making it an eliminable register.  We replace it with itself so that
1610    if it isn't needed, then existing uses won't be modified.  */
1611 
1612 /* This is an array of structures.  Each structure initializes one pair
1613    of eliminable registers.  The "from" register number is given first,
1614    followed by "to".  Eliminations of the same "from" register are listed
1615    in order of preference.  */
1616 #define ELIMINABLE_REGS					\
1617 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1618  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1619  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1620  { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1621  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1622  { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1623 
1624 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1625    Frame pointer elimination is automatically handled.
1626 
1627    For the RS/6000, if frame pointer elimination is being done, we would like
1628    to convert ap into fp, not sp.
1629 
1630    We need r30 if -mminimal-toc was specified, and there are constant pool
1631    references.  */
1632 
1633 #define CAN_ELIMINATE(FROM, TO)						\
1634  ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM		\
1635   ? ! frame_pointer_needed						\
1636   : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM 				\
1637   ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0	\
1638   : 1)
1639 
1640 /* Define the offset between two registers, one to be eliminated, and the other
1641    its replacement, at the start of a routine.  */
1642 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1643   ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1644 
1645 /* Addressing modes, and classification of registers for them.  */
1646 
1647 #define HAVE_PRE_DECREMENT 1
1648 #define HAVE_PRE_INCREMENT 1
1649 
1650 /* Macros to check register numbers against specific register classes.  */
1651 
1652 /* These assume that REGNO is a hard or pseudo reg number.
1653    They give nonzero only if REGNO is a hard reg of the suitable class
1654    or a pseudo reg currently allocated to a suitable hard reg.
1655    Since they use reg_renumber, they are safe only once reg_renumber
1656    has been allocated, which happens in local-alloc.c.  */
1657 
1658 #define REGNO_OK_FOR_INDEX_P(REGNO)				\
1659 ((REGNO) < FIRST_PSEUDO_REGISTER				\
1660  ? (REGNO) <= 31 || (REGNO) == 67				\
1661    || (REGNO) == FRAME_POINTER_REGNUM				\
1662  : (reg_renumber[REGNO] >= 0					\
1663     && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67	\
1664 	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1665 
1666 #define REGNO_OK_FOR_BASE_P(REGNO)				\
1667 ((REGNO) < FIRST_PSEUDO_REGISTER				\
1668  ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67		\
1669    || (REGNO) == FRAME_POINTER_REGNUM				\
1670  : (reg_renumber[REGNO] > 0					\
1671     && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67	\
1672 	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1673 
1674 /* Maximum number of registers that can appear in a valid memory address.  */
1675 
1676 #define MAX_REGS_PER_ADDRESS 2
1677 
1678 /* Recognize any constant value that is a valid address.  */
1679 
1680 #define CONSTANT_ADDRESS_P(X)   \
1681   (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
1682    || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
1683    || GET_CODE (X) == HIGH)
1684 
1685 /* Nonzero if the constant value X is a legitimate general operand.
1686    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1687 
1688    On the RS/6000, all integer constants are acceptable, most won't be valid
1689    for particular insns, though.  Only easy FP constants are
1690    acceptable.  */
1691 
1692 #define LEGITIMATE_CONSTANT_P(X)				\
1693   (((GET_CODE (X) != CONST_DOUBLE				\
1694      && GET_CODE (X) != CONST_VECTOR)				\
1695     || GET_MODE (X) == VOIDmode					\
1696     || (TARGET_POWERPC64 && GET_MODE (X) == DImode)		\
1697     || easy_fp_constant (X, GET_MODE (X))			\
1698     || easy_vector_constant (X, GET_MODE (X)))			\
1699    && !rs6000_tls_referenced_p (X))
1700 
1701 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1702 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n))	\
1703 				    && EASY_VECTOR_15((n) >> 1) \
1704 				    && ((n) & 1) == 0)
1705 
1706 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1707    and check its validity for a certain class.
1708    We have two alternate definitions for each of them.
1709    The usual definition accepts all pseudo regs; the other rejects
1710    them unless they have been allocated suitable hard regs.
1711    The symbol REG_OK_STRICT causes the latter definition to be used.
1712 
1713    Most source files want to accept pseudo regs in the hope that
1714    they will get allocated to the class that the insn wants them to be in.
1715    Source files for reload pass need to be strict.
1716    After reload, it makes no difference, since pseudo regs have
1717    been eliminated by then.  */
1718 
1719 #ifdef REG_OK_STRICT
1720 # define REG_OK_STRICT_FLAG 1
1721 #else
1722 # define REG_OK_STRICT_FLAG 0
1723 #endif
1724 
1725 /* Nonzero if X is a hard reg that can be used as an index
1726    or if it is a pseudo reg in the non-strict case.  */
1727 #define INT_REG_OK_FOR_INDEX_P(X, STRICT)			\
1728   ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)		\
1729    || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1730 
1731 /* Nonzero if X is a hard reg that can be used as a base reg
1732    or if it is a pseudo reg in the non-strict case.  */
1733 #define INT_REG_OK_FOR_BASE_P(X, STRICT)			\
1734   ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)		\
1735    || REGNO_OK_FOR_BASE_P (REGNO (X)))
1736 
1737 #define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
1738 #define REG_OK_FOR_BASE_P(X)  INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
1739 
1740 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1741    that is a valid memory address for an instruction.
1742    The MODE argument is the machine mode for the MEM expression
1743    that wants to use this address.
1744 
1745    On the RS/6000, there are four valid address: a SYMBOL_REF that
1746    refers to a constant pool entry of an address (or the sum of it
1747    plus a constant), a short (16-bit signed) constant plus a register,
1748    the sum of two registers, or a register indirect, possibly with an
1749    auto-increment.  For DFmode and DImode with a constant plus register,
1750    we must ensure that both words are addressable or PowerPC64 with offset
1751    word aligned.
1752 
1753    For modes spanning multiple registers (DFmode in 32-bit GPRs,
1754    32-bit DImode, TImode), indexed addressing cannot be used because
1755    adjacent memory cells are accessed by adding word-sized offsets
1756    during assembly output.  */
1757 
1758 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)			\
1759 { if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG))	\
1760     goto ADDR;							\
1761 }
1762 
1763 /* Try machine-dependent ways of modifying an illegitimate address
1764    to be legitimate.  If we find one, return the new, valid address.
1765    This macro is used in only one place: `memory_address' in explow.c.
1766 
1767    OLDX is the address as it was before break_out_memory_refs was called.
1768    In some cases it is useful to look at this to decide what needs to be done.
1769 
1770    MODE and WIN are passed so that this macro can use
1771    GO_IF_LEGITIMATE_ADDRESS.
1772 
1773    It is always safe for this macro to do nothing.  It exists to recognize
1774    opportunities to optimize the output.
1775 
1776    On RS/6000, first check for the sum of a register with a constant
1777    integer that is out of range.  If so, generate code to add the
1778    constant with the low-order 16 bits masked to the register and force
1779    this result into another register (this can be done with `cau').
1780    Then generate an address of REG+(CONST&0xffff), allowing for the
1781    possibility of bit 16 being a one.
1782 
1783    Then check for the sum of a register and something not constant, try to
1784    load the other things into a register and return the sum.  */
1785 
1786 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)			\
1787 {  rtx result = rs6000_legitimize_address (X, OLDX, MODE);	\
1788    if (result != NULL_RTX)					\
1789      {								\
1790        (X) = result;						\
1791        goto WIN;						\
1792      }								\
1793 }
1794 
1795 /* Try a machine-dependent way of reloading an illegitimate address
1796    operand.  If we find one, push the reload and jump to WIN.  This
1797    macro is used in only one place: `find_reloads_address' in reload.c.
1798 
1799    Implemented on rs6000 by rs6000_legitimize_reload_address.
1800    Note that (X) is evaluated twice; this is safe in current usage.  */
1801 
1802 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	     \
1803 do {									     \
1804   int win;								     \
1805   (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM),		     \
1806 			(int)(TYPE), (IND_LEVELS), &win);		     \
1807   if ( win )								     \
1808     goto WIN;								     \
1809 } while (0)
1810 
1811 /* Go to LABEL if ADDR (a legitimate address expression)
1812    has an effect that depends on the machine mode it is used for.  */
1813 
1814 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)		\
1815 do {								\
1816   if (rs6000_mode_dependent_address (ADDR))			\
1817     goto LABEL;							\
1818 } while (0)
1819 
1820 /* The register number of the register used to address a table of
1821    static data addresses in memory.  In some cases this register is
1822    defined by a processor's "application binary interface" (ABI).
1823    When this macro is defined, RTL is generated for this register
1824    once, as with the stack pointer and frame pointer registers.  If
1825    this macro is not defined, it is up to the machine-dependent files
1826    to allocate such a register (if necessary).  */
1827 
1828 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1829 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1830 
1831 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1832 
1833 /* Define this macro if the register defined by
1834    `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls.  Do not define
1835    this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined.  */
1836 
1837 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1838 
1839 /* A C expression that is nonzero if X is a legitimate immediate
1840    operand on the target machine when generating position independent
1841    code.  You can assume that X satisfies `CONSTANT_P', so you need
1842    not check this.  You can also assume FLAG_PIC is true, so you need
1843    not check it either.  You need not define this macro if all
1844    constants (including `SYMBOL_REF') can be immediate operands when
1845    generating position independent code.  */
1846 
1847 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1848 
1849 /* Define this if some processing needs to be done immediately before
1850    emitting code for an insn.  */
1851 
1852 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1853 
1854 /* Specify the machine mode that this machine uses
1855    for the index in the tablejump instruction.  */
1856 #define CASE_VECTOR_MODE SImode
1857 
1858 /* Define as C expression which evaluates to nonzero if the tablejump
1859    instruction expects the table to contain offsets from the address of the
1860    table.
1861    Do not define this if the table should contain absolute addresses.  */
1862 #define CASE_VECTOR_PC_RELATIVE 1
1863 
1864 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1865 #define DEFAULT_SIGNED_CHAR 0
1866 
1867 /* This flag, if defined, says the same insns that convert to a signed fixnum
1868    also convert validly to an unsigned one.  */
1869 
1870 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1871 
1872 /* An integer expression for the size in bits of the largest integer machine
1873    mode that should actually be used.  */
1874 
1875 /* Allow pairs of registers to be used, which is the intent of the default.  */
1876 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1877 
1878 /* Max number of bytes we can move from memory to memory
1879    in one reasonably fast instruction.  */
1880 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1881 #define MAX_MOVE_MAX 8
1882 
1883 /* Nonzero if access to memory by bytes is no faster than for words.
1884    Also nonzero if doing byte operations (specifically shifts) in registers
1885    is undesirable.  */
1886 #define SLOW_BYTE_ACCESS 1
1887 
1888 /* Define if operations between registers always perform the operation
1889    on the full register even if a narrower mode is specified.  */
1890 #define WORD_REGISTER_OPERATIONS
1891 
1892 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1893    will either zero-extend or sign-extend.  The value of this macro should
1894    be the code that says which one of the two operations is implicitly
1895    done, UNKNOWN if none.  */
1896 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1897 
1898 /* Define if loading short immediate values into registers sign extends.  */
1899 #define SHORT_IMMEDIATES_SIGN_EXTEND
1900 
1901 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1902    is done just by pretending it is already truncated.  */
1903 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1904 
1905 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero.  */
1906 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1907   ((VALUE) = ((MODE) == SImode ? 32 : 64))
1908 
1909 /* The CTZ patterns return -1 for input of zero.  */
1910 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1)
1911 
1912 /* Specify the machine mode that pointers have.
1913    After generation of rtl, the compiler makes no further distinction
1914    between pointers and any other objects of this machine mode.  */
1915 #define Pmode (TARGET_32BIT ? SImode : DImode)
1916 
1917 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space.  */
1918 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1919 
1920 /* Mode of a function address in a call instruction (for indexing purposes).
1921    Doesn't matter on RS/6000.  */
1922 #define FUNCTION_MODE SImode
1923 
1924 /* Define this if addresses of constant functions
1925    shouldn't be put through pseudo regs where they can be cse'd.
1926    Desirable on machines where ordinary constants are expensive
1927    but a CALL with constant address is cheap.  */
1928 #define NO_FUNCTION_CSE
1929 
1930 /* Define this to be nonzero if shift instructions ignore all but the low-order
1931    few bits.
1932 
1933    The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1934    have been dropped from the PowerPC architecture.  */
1935 
1936 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
1937 
1938 /* Adjust the length of an INSN.  LENGTH is the currently-computed length and
1939    should be adjusted to reflect any required changes.  This macro is used when
1940    there is some systematic length adjustment required that would be difficult
1941    to express in the length attribute.  */
1942 
1943 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1944 
1945 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
1946    COMPARE, return the mode to be used for the comparison.  For
1947    floating-point, CCFPmode should be used.  CCUNSmode should be used
1948    for unsigned comparisons.  CCEQmode should be used when we are
1949    doing an inequality comparison on the result of a
1950    comparison.  CCmode should be used in all other cases.  */
1951 
1952 #define SELECT_CC_MODE(OP,X,Y) \
1953   (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode	\
1954    : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1955    : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X)			  \
1956       ? CCEQmode : CCmode))
1957 
1958 /* Can the condition code MODE be safely reversed?  This is safe in
1959    all cases on this port, because at present it doesn't use the
1960    trapping FP comparisons (fcmpo).  */
1961 #define REVERSIBLE_CC_MODE(MODE) 1
1962 
1963 /* Given a condition code and a mode, return the inverse condition.  */
1964 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1965 
1966 /* Define the information needed to generate branch and scc insns.  This is
1967    stored from the compare operation.  */
1968 
1969 extern GTY(()) rtx rs6000_compare_op0;
1970 extern GTY(()) rtx rs6000_compare_op1;
1971 extern int rs6000_compare_fp_p;
1972 
1973 /* Control the assembler format that we output.  */
1974 
1975 /* A C string constant describing how to begin a comment in the target
1976    assembler language.  The compiler assumes that the comment will end at
1977    the end of the line.  */
1978 #define ASM_COMMENT_START " #"
1979 
1980 /* Flag to say the TOC is initialized */
1981 extern int toc_initialized;
1982 
1983 /* Macro to output a special constant pool entry.  Go to WIN if we output
1984    it.  Otherwise, it is written the usual way.
1985 
1986    On the RS/6000, toc entries are handled this way.  */
1987 
1988 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1989 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE))			  \
1990     {									  \
1991       output_toc (FILE, X, LABELNO, MODE);				  \
1992       goto WIN;								  \
1993     }									  \
1994 }
1995 
1996 #ifdef HAVE_GAS_WEAK
1997 #define RS6000_WEAK 1
1998 #else
1999 #define RS6000_WEAK 0
2000 #endif
2001 
2002 #if RS6000_WEAK
2003 /* Used in lieu of ASM_WEAKEN_LABEL.  */
2004 #define	ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL)			 	\
2005   do									\
2006     {									\
2007       fputs ("\t.weak\t", (FILE));					\
2008       RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 				\
2009       if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL			\
2010 	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
2011 	{								\
2012 	  if (TARGET_XCOFF)						\
2013 	    fputs ("[DS]", (FILE));					\
2014 	  fputs ("\n\t.weak\t.", (FILE));				\
2015 	  RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
2016 	}								\
2017       fputc ('\n', (FILE));						\
2018       if (VAL)								\
2019 	{								\
2020 	  ASM_OUTPUT_DEF ((FILE), (NAME), (VAL));			\
2021 	  if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL		\
2022 	      && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
2023 	    {								\
2024 	      fputs ("\t.set\t.", (FILE));				\
2025 	      RS6000_OUTPUT_BASENAME ((FILE), (NAME));			\
2026 	      fputs (",.", (FILE));					\
2027 	      RS6000_OUTPUT_BASENAME ((FILE), (VAL));			\
2028 	      fputc ('\n', (FILE));					\
2029 	    }								\
2030 	}								\
2031     }									\
2032   while (0)
2033 #endif
2034 
2035 #if HAVE_GAS_WEAKREF
2036 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE)			\
2037   do									\
2038     {									\
2039       fputs ("\t.weakref\t", (FILE));					\
2040       RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 				\
2041       fputs (", ", (FILE));						\
2042       RS6000_OUTPUT_BASENAME ((FILE), (VALUE));				\
2043       if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL			\
2044 	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
2045 	{								\
2046 	  fputs ("\n\t.weakref\t.", (FILE));				\
2047 	  RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
2048 	  fputs (", .", (FILE));					\
2049 	  RS6000_OUTPUT_BASENAME ((FILE), (VALUE));			\
2050 	}								\
2051       fputc ('\n', (FILE));						\
2052     } while (0)
2053 #endif
2054 
2055 /* This implements the `alias' attribute.  */
2056 #undef	ASM_OUTPUT_DEF_FROM_DECLS
2057 #define	ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET)			\
2058   do									\
2059     {									\
2060       const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0);		\
2061       const char *name = IDENTIFIER_POINTER (TARGET);			\
2062       if (TREE_CODE (DECL) == FUNCTION_DECL				\
2063 	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
2064 	{								\
2065 	  if (TREE_PUBLIC (DECL))					\
2066 	    {								\
2067 	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
2068 		{							\
2069 		  fputs ("\t.globl\t.", FILE);				\
2070 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
2071 		  putc ('\n', FILE);					\
2072 		}							\
2073 	    }								\
2074 	  else if (TARGET_XCOFF)					\
2075 	    {								\
2076 	      fputs ("\t.lglobl\t.", FILE);				\
2077 	      RS6000_OUTPUT_BASENAME (FILE, alias);			\
2078 	      putc ('\n', FILE);					\
2079 	    }								\
2080 	  fputs ("\t.set\t.", FILE);					\
2081 	  RS6000_OUTPUT_BASENAME (FILE, alias);				\
2082 	  fputs (",.", FILE);						\
2083 	  RS6000_OUTPUT_BASENAME (FILE, name);				\
2084 	  fputc ('\n', FILE);						\
2085 	}								\
2086       ASM_OUTPUT_DEF (FILE, alias, name);				\
2087     }									\
2088    while (0)
2089 
2090 #define TARGET_ASM_FILE_START rs6000_file_start
2091 
2092 /* Output to assembler file text saying following lines
2093    may contain character constants, extra white space, comments, etc.  */
2094 
2095 #define ASM_APP_ON ""
2096 
2097 /* Output to assembler file text saying following lines
2098    no longer contain unusual constructs.  */
2099 
2100 #define ASM_APP_OFF ""
2101 
2102 /* How to refer to registers in assembler output.
2103    This sequence is indexed by compiler's hard-register-number (see above).  */
2104 
2105 extern char rs6000_reg_names[][8];	/* register names (0 vs. %r0).  */
2106 
2107 #define REGISTER_NAMES							\
2108 {									\
2109   &rs6000_reg_names[ 0][0],	/* r0   */				\
2110   &rs6000_reg_names[ 1][0],	/* r1	*/				\
2111   &rs6000_reg_names[ 2][0],     /* r2	*/				\
2112   &rs6000_reg_names[ 3][0],	/* r3	*/				\
2113   &rs6000_reg_names[ 4][0],	/* r4	*/				\
2114   &rs6000_reg_names[ 5][0],	/* r5	*/				\
2115   &rs6000_reg_names[ 6][0],	/* r6	*/				\
2116   &rs6000_reg_names[ 7][0],	/* r7	*/				\
2117   &rs6000_reg_names[ 8][0],	/* r8	*/				\
2118   &rs6000_reg_names[ 9][0],	/* r9	*/				\
2119   &rs6000_reg_names[10][0],	/* r10  */				\
2120   &rs6000_reg_names[11][0],	/* r11  */				\
2121   &rs6000_reg_names[12][0],	/* r12  */				\
2122   &rs6000_reg_names[13][0],	/* r13  */				\
2123   &rs6000_reg_names[14][0],	/* r14  */				\
2124   &rs6000_reg_names[15][0],	/* r15  */				\
2125   &rs6000_reg_names[16][0],	/* r16  */				\
2126   &rs6000_reg_names[17][0],	/* r17  */				\
2127   &rs6000_reg_names[18][0],	/* r18  */				\
2128   &rs6000_reg_names[19][0],	/* r19  */				\
2129   &rs6000_reg_names[20][0],	/* r20  */				\
2130   &rs6000_reg_names[21][0],	/* r21  */				\
2131   &rs6000_reg_names[22][0],	/* r22  */				\
2132   &rs6000_reg_names[23][0],	/* r23  */				\
2133   &rs6000_reg_names[24][0],	/* r24  */				\
2134   &rs6000_reg_names[25][0],	/* r25  */				\
2135   &rs6000_reg_names[26][0],	/* r26  */				\
2136   &rs6000_reg_names[27][0],	/* r27  */				\
2137   &rs6000_reg_names[28][0],	/* r28  */				\
2138   &rs6000_reg_names[29][0],	/* r29  */				\
2139   &rs6000_reg_names[30][0],	/* r30  */				\
2140   &rs6000_reg_names[31][0],	/* r31  */				\
2141 									\
2142   &rs6000_reg_names[32][0],     /* fr0  */				\
2143   &rs6000_reg_names[33][0],	/* fr1  */				\
2144   &rs6000_reg_names[34][0],	/* fr2  */				\
2145   &rs6000_reg_names[35][0],	/* fr3  */				\
2146   &rs6000_reg_names[36][0],	/* fr4  */				\
2147   &rs6000_reg_names[37][0],	/* fr5  */				\
2148   &rs6000_reg_names[38][0],	/* fr6  */				\
2149   &rs6000_reg_names[39][0],	/* fr7  */				\
2150   &rs6000_reg_names[40][0],	/* fr8  */				\
2151   &rs6000_reg_names[41][0],	/* fr9  */				\
2152   &rs6000_reg_names[42][0],	/* fr10 */				\
2153   &rs6000_reg_names[43][0],	/* fr11 */				\
2154   &rs6000_reg_names[44][0],	/* fr12 */				\
2155   &rs6000_reg_names[45][0],	/* fr13 */				\
2156   &rs6000_reg_names[46][0],	/* fr14 */				\
2157   &rs6000_reg_names[47][0],	/* fr15 */				\
2158   &rs6000_reg_names[48][0],	/* fr16 */				\
2159   &rs6000_reg_names[49][0],	/* fr17 */				\
2160   &rs6000_reg_names[50][0],	/* fr18 */				\
2161   &rs6000_reg_names[51][0],	/* fr19 */				\
2162   &rs6000_reg_names[52][0],	/* fr20 */				\
2163   &rs6000_reg_names[53][0],	/* fr21 */				\
2164   &rs6000_reg_names[54][0],	/* fr22 */				\
2165   &rs6000_reg_names[55][0],	/* fr23 */				\
2166   &rs6000_reg_names[56][0],	/* fr24 */				\
2167   &rs6000_reg_names[57][0],	/* fr25 */				\
2168   &rs6000_reg_names[58][0],	/* fr26 */				\
2169   &rs6000_reg_names[59][0],	/* fr27 */				\
2170   &rs6000_reg_names[60][0],	/* fr28 */				\
2171   &rs6000_reg_names[61][0],	/* fr29 */				\
2172   &rs6000_reg_names[62][0],	/* fr30 */				\
2173   &rs6000_reg_names[63][0],	/* fr31 */				\
2174 									\
2175   &rs6000_reg_names[64][0],     /* mq   */				\
2176   &rs6000_reg_names[65][0],	/* lr   */				\
2177   &rs6000_reg_names[66][0],	/* ctr  */				\
2178   &rs6000_reg_names[67][0],	/* ap   */				\
2179 									\
2180   &rs6000_reg_names[68][0],	/* cr0  */				\
2181   &rs6000_reg_names[69][0],	/* cr1  */				\
2182   &rs6000_reg_names[70][0],	/* cr2  */				\
2183   &rs6000_reg_names[71][0],	/* cr3  */				\
2184   &rs6000_reg_names[72][0],	/* cr4  */				\
2185   &rs6000_reg_names[73][0],	/* cr5  */				\
2186   &rs6000_reg_names[74][0],	/* cr6  */				\
2187   &rs6000_reg_names[75][0],	/* cr7  */				\
2188 									\
2189   &rs6000_reg_names[76][0],	/* xer  */				\
2190 									\
2191   &rs6000_reg_names[77][0],	/* v0  */				\
2192   &rs6000_reg_names[78][0],	/* v1  */				\
2193   &rs6000_reg_names[79][0],	/* v2  */				\
2194   &rs6000_reg_names[80][0],	/* v3  */				\
2195   &rs6000_reg_names[81][0],	/* v4  */				\
2196   &rs6000_reg_names[82][0],	/* v5  */				\
2197   &rs6000_reg_names[83][0],	/* v6  */				\
2198   &rs6000_reg_names[84][0],	/* v7  */				\
2199   &rs6000_reg_names[85][0],	/* v8  */				\
2200   &rs6000_reg_names[86][0],	/* v9  */				\
2201   &rs6000_reg_names[87][0],	/* v10  */				\
2202   &rs6000_reg_names[88][0],	/* v11  */				\
2203   &rs6000_reg_names[89][0],	/* v12  */				\
2204   &rs6000_reg_names[90][0],	/* v13  */				\
2205   &rs6000_reg_names[91][0],	/* v14  */				\
2206   &rs6000_reg_names[92][0],	/* v15  */				\
2207   &rs6000_reg_names[93][0],	/* v16  */				\
2208   &rs6000_reg_names[94][0],	/* v17  */				\
2209   &rs6000_reg_names[95][0],	/* v18  */				\
2210   &rs6000_reg_names[96][0],	/* v19  */				\
2211   &rs6000_reg_names[97][0],	/* v20  */				\
2212   &rs6000_reg_names[98][0],	/* v21  */				\
2213   &rs6000_reg_names[99][0],	/* v22  */				\
2214   &rs6000_reg_names[100][0],	/* v23  */				\
2215   &rs6000_reg_names[101][0],	/* v24  */				\
2216   &rs6000_reg_names[102][0],	/* v25  */				\
2217   &rs6000_reg_names[103][0],	/* v26  */				\
2218   &rs6000_reg_names[104][0],	/* v27  */				\
2219   &rs6000_reg_names[105][0],	/* v28  */				\
2220   &rs6000_reg_names[106][0],	/* v29  */				\
2221   &rs6000_reg_names[107][0],	/* v30  */				\
2222   &rs6000_reg_names[108][0],	/* v31  */				\
2223   &rs6000_reg_names[109][0],	/* vrsave  */				\
2224   &rs6000_reg_names[110][0],	/* vscr  */				\
2225   &rs6000_reg_names[111][0],	/* spe_acc */				\
2226   &rs6000_reg_names[112][0],	/* spefscr */				\
2227   &rs6000_reg_names[113][0],	/* sfp  */				\
2228 }
2229 
2230 /* Table of additional register names to use in user input.  */
2231 
2232 #define ADDITIONAL_REGISTER_NAMES \
2233  {{"r0",    0}, {"r1",    1}, {"r2",    2}, {"r3",    3},	\
2234   {"r4",    4}, {"r5",    5}, {"r6",    6}, {"r7",    7},	\
2235   {"r8",    8}, {"r9",    9}, {"r10",  10}, {"r11",  11},	\
2236   {"r12",  12}, {"r13",  13}, {"r14",  14}, {"r15",  15},	\
2237   {"r16",  16}, {"r17",  17}, {"r18",  18}, {"r19",  19},	\
2238   {"r20",  20}, {"r21",  21}, {"r22",  22}, {"r23",  23},	\
2239   {"r24",  24}, {"r25",  25}, {"r26",  26}, {"r27",  27},	\
2240   {"r28",  28}, {"r29",  29}, {"r30",  30}, {"r31",  31},	\
2241   {"fr0",  32}, {"fr1",  33}, {"fr2",  34}, {"fr3",  35},	\
2242   {"fr4",  36}, {"fr5",  37}, {"fr6",  38}, {"fr7",  39},	\
2243   {"fr8",  40}, {"fr9",  41}, {"fr10", 42}, {"fr11", 43},	\
2244   {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47},	\
2245   {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51},	\
2246   {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55},	\
2247   {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59},	\
2248   {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63},	\
2249   {"v0",   77}, {"v1",   78}, {"v2",   79}, {"v3",   80},       \
2250   {"v4",   81}, {"v5",   82}, {"v6",   83}, {"v7",   84},       \
2251   {"v8",   85}, {"v9",   86}, {"v10",  87}, {"v11",  88},       \
2252   {"v12",  89}, {"v13",  90}, {"v14",  91}, {"v15",  92},       \
2253   {"v16",  93}, {"v17",  94}, {"v18",  95}, {"v19",  96},       \
2254   {"v20",  97}, {"v21",  98}, {"v22",  99}, {"v23",  100},	\
2255   {"v24",  101},{"v25",  102},{"v26",  103},{"v27",  104},      \
2256   {"v28",  105},{"v29",  106},{"v30",  107},{"v31",  108},      \
2257   {"vrsave", 109}, {"vscr", 110},				\
2258   {"spe_acc", 111}, {"spefscr", 112},				\
2259   /* no additional names for: mq, lr, ctr, ap */		\
2260   {"cr0",  68}, {"cr1",  69}, {"cr2",  70}, {"cr3",  71},	\
2261   {"cr4",  72}, {"cr5",  73}, {"cr6",  74}, {"cr7",  75},	\
2262   {"cc",   68}, {"sp",    1}, {"toc",   2} }
2263 
2264 /* Text to write out after a CALL that may be replaced by glue code by
2265    the loader.  This depends on the AIX version.  */
2266 #define RS6000_CALL_GLUE "cror 31,31,31"
2267 
2268 /* This is how to output an element of a case-vector that is relative.  */
2269 
2270 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2271   do { char buf[100];					\
2272        fputs ("\t.long ", FILE);			\
2273        ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);	\
2274        assemble_name (FILE, buf);			\
2275        putc ('-', FILE);				\
2276        ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);	\
2277        assemble_name (FILE, buf);			\
2278        putc ('\n', FILE);				\
2279      } while (0)
2280 
2281 /* This is how to output an assembler line
2282    that says to advance the location counter
2283    to a multiple of 2**LOG bytes.  */
2284 
2285 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2286   if ((LOG) != 0)			\
2287     fprintf (FILE, "\t.align %d\n", (LOG))
2288 
2289 /* Pick up the return address upon entry to a procedure. Used for
2290    dwarf2 unwind information.  This also enables the table driven
2291    mechanism.  */
2292 
2293 #define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
2294 #define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
2295 
2296 /* Describe how we implement __builtin_eh_return.  */
2297 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2298 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 10)
2299 
2300 /* Print operand X (an rtx) in assembler syntax to file FILE.
2301    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2302    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2303 
2304 #define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
2305 
2306 /* Define which CODE values are valid.  */
2307 
2308 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)  \
2309   ((CODE) == '.' || (CODE) == '&')
2310 
2311 /* Print a memory address as an operand to reference that memory location.  */
2312 
2313 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2314 
2315 /* uncomment for disabling the corresponding default options */
2316 /* #define  MACHINE_no_sched_interblock */
2317 /* #define  MACHINE_no_sched_speculative */
2318 /* #define  MACHINE_no_sched_speculative_load */
2319 
2320 /* General flags.  */
2321 extern int flag_pic;
2322 extern int optimize;
2323 extern int flag_expensive_optimizations;
2324 extern int frame_pointer_needed;
2325 
2326 enum rs6000_builtins
2327 {
2328   /* AltiVec builtins.  */
2329   ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2330   ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2331   ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2332   ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2333   ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2334   ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2335   ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2336   ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2337   ALTIVEC_BUILTIN_VADDUBM,
2338   ALTIVEC_BUILTIN_VADDUHM,
2339   ALTIVEC_BUILTIN_VADDUWM,
2340   ALTIVEC_BUILTIN_VADDFP,
2341   ALTIVEC_BUILTIN_VADDCUW,
2342   ALTIVEC_BUILTIN_VADDUBS,
2343   ALTIVEC_BUILTIN_VADDSBS,
2344   ALTIVEC_BUILTIN_VADDUHS,
2345   ALTIVEC_BUILTIN_VADDSHS,
2346   ALTIVEC_BUILTIN_VADDUWS,
2347   ALTIVEC_BUILTIN_VADDSWS,
2348   ALTIVEC_BUILTIN_VAND,
2349   ALTIVEC_BUILTIN_VANDC,
2350   ALTIVEC_BUILTIN_VAVGUB,
2351   ALTIVEC_BUILTIN_VAVGSB,
2352   ALTIVEC_BUILTIN_VAVGUH,
2353   ALTIVEC_BUILTIN_VAVGSH,
2354   ALTIVEC_BUILTIN_VAVGUW,
2355   ALTIVEC_BUILTIN_VAVGSW,
2356   ALTIVEC_BUILTIN_VCFUX,
2357   ALTIVEC_BUILTIN_VCFSX,
2358   ALTIVEC_BUILTIN_VCTSXS,
2359   ALTIVEC_BUILTIN_VCTUXS,
2360   ALTIVEC_BUILTIN_VCMPBFP,
2361   ALTIVEC_BUILTIN_VCMPEQUB,
2362   ALTIVEC_BUILTIN_VCMPEQUH,
2363   ALTIVEC_BUILTIN_VCMPEQUW,
2364   ALTIVEC_BUILTIN_VCMPEQFP,
2365   ALTIVEC_BUILTIN_VCMPGEFP,
2366   ALTIVEC_BUILTIN_VCMPGTUB,
2367   ALTIVEC_BUILTIN_VCMPGTSB,
2368   ALTIVEC_BUILTIN_VCMPGTUH,
2369   ALTIVEC_BUILTIN_VCMPGTSH,
2370   ALTIVEC_BUILTIN_VCMPGTUW,
2371   ALTIVEC_BUILTIN_VCMPGTSW,
2372   ALTIVEC_BUILTIN_VCMPGTFP,
2373   ALTIVEC_BUILTIN_VEXPTEFP,
2374   ALTIVEC_BUILTIN_VLOGEFP,
2375   ALTIVEC_BUILTIN_VMADDFP,
2376   ALTIVEC_BUILTIN_VMAXUB,
2377   ALTIVEC_BUILTIN_VMAXSB,
2378   ALTIVEC_BUILTIN_VMAXUH,
2379   ALTIVEC_BUILTIN_VMAXSH,
2380   ALTIVEC_BUILTIN_VMAXUW,
2381   ALTIVEC_BUILTIN_VMAXSW,
2382   ALTIVEC_BUILTIN_VMAXFP,
2383   ALTIVEC_BUILTIN_VMHADDSHS,
2384   ALTIVEC_BUILTIN_VMHRADDSHS,
2385   ALTIVEC_BUILTIN_VMLADDUHM,
2386   ALTIVEC_BUILTIN_VMRGHB,
2387   ALTIVEC_BUILTIN_VMRGHH,
2388   ALTIVEC_BUILTIN_VMRGHW,
2389   ALTIVEC_BUILTIN_VMRGLB,
2390   ALTIVEC_BUILTIN_VMRGLH,
2391   ALTIVEC_BUILTIN_VMRGLW,
2392   ALTIVEC_BUILTIN_VMSUMUBM,
2393   ALTIVEC_BUILTIN_VMSUMMBM,
2394   ALTIVEC_BUILTIN_VMSUMUHM,
2395   ALTIVEC_BUILTIN_VMSUMSHM,
2396   ALTIVEC_BUILTIN_VMSUMUHS,
2397   ALTIVEC_BUILTIN_VMSUMSHS,
2398   ALTIVEC_BUILTIN_VMINUB,
2399   ALTIVEC_BUILTIN_VMINSB,
2400   ALTIVEC_BUILTIN_VMINUH,
2401   ALTIVEC_BUILTIN_VMINSH,
2402   ALTIVEC_BUILTIN_VMINUW,
2403   ALTIVEC_BUILTIN_VMINSW,
2404   ALTIVEC_BUILTIN_VMINFP,
2405   ALTIVEC_BUILTIN_VMULEUB,
2406   ALTIVEC_BUILTIN_VMULESB,
2407   ALTIVEC_BUILTIN_VMULEUH,
2408   ALTIVEC_BUILTIN_VMULESH,
2409   ALTIVEC_BUILTIN_VMULOUB,
2410   ALTIVEC_BUILTIN_VMULOSB,
2411   ALTIVEC_BUILTIN_VMULOUH,
2412   ALTIVEC_BUILTIN_VMULOSH,
2413   ALTIVEC_BUILTIN_VNMSUBFP,
2414   ALTIVEC_BUILTIN_VNOR,
2415   ALTIVEC_BUILTIN_VOR,
2416   ALTIVEC_BUILTIN_VSEL_4SI,
2417   ALTIVEC_BUILTIN_VSEL_4SF,
2418   ALTIVEC_BUILTIN_VSEL_8HI,
2419   ALTIVEC_BUILTIN_VSEL_16QI,
2420   ALTIVEC_BUILTIN_VPERM_4SI,
2421   ALTIVEC_BUILTIN_VPERM_4SF,
2422   ALTIVEC_BUILTIN_VPERM_8HI,
2423   ALTIVEC_BUILTIN_VPERM_16QI,
2424   ALTIVEC_BUILTIN_VPKUHUM,
2425   ALTIVEC_BUILTIN_VPKUWUM,
2426   ALTIVEC_BUILTIN_VPKPX,
2427   ALTIVEC_BUILTIN_VPKUHSS,
2428   ALTIVEC_BUILTIN_VPKSHSS,
2429   ALTIVEC_BUILTIN_VPKUWSS,
2430   ALTIVEC_BUILTIN_VPKSWSS,
2431   ALTIVEC_BUILTIN_VPKUHUS,
2432   ALTIVEC_BUILTIN_VPKSHUS,
2433   ALTIVEC_BUILTIN_VPKUWUS,
2434   ALTIVEC_BUILTIN_VPKSWUS,
2435   ALTIVEC_BUILTIN_VREFP,
2436   ALTIVEC_BUILTIN_VRFIM,
2437   ALTIVEC_BUILTIN_VRFIN,
2438   ALTIVEC_BUILTIN_VRFIP,
2439   ALTIVEC_BUILTIN_VRFIZ,
2440   ALTIVEC_BUILTIN_VRLB,
2441   ALTIVEC_BUILTIN_VRLH,
2442   ALTIVEC_BUILTIN_VRLW,
2443   ALTIVEC_BUILTIN_VRSQRTEFP,
2444   ALTIVEC_BUILTIN_VSLB,
2445   ALTIVEC_BUILTIN_VSLH,
2446   ALTIVEC_BUILTIN_VSLW,
2447   ALTIVEC_BUILTIN_VSL,
2448   ALTIVEC_BUILTIN_VSLO,
2449   ALTIVEC_BUILTIN_VSPLTB,
2450   ALTIVEC_BUILTIN_VSPLTH,
2451   ALTIVEC_BUILTIN_VSPLTW,
2452   ALTIVEC_BUILTIN_VSPLTISB,
2453   ALTIVEC_BUILTIN_VSPLTISH,
2454   ALTIVEC_BUILTIN_VSPLTISW,
2455   ALTIVEC_BUILTIN_VSRB,
2456   ALTIVEC_BUILTIN_VSRH,
2457   ALTIVEC_BUILTIN_VSRW,
2458   ALTIVEC_BUILTIN_VSRAB,
2459   ALTIVEC_BUILTIN_VSRAH,
2460   ALTIVEC_BUILTIN_VSRAW,
2461   ALTIVEC_BUILTIN_VSR,
2462   ALTIVEC_BUILTIN_VSRO,
2463   ALTIVEC_BUILTIN_VSUBUBM,
2464   ALTIVEC_BUILTIN_VSUBUHM,
2465   ALTIVEC_BUILTIN_VSUBUWM,
2466   ALTIVEC_BUILTIN_VSUBFP,
2467   ALTIVEC_BUILTIN_VSUBCUW,
2468   ALTIVEC_BUILTIN_VSUBUBS,
2469   ALTIVEC_BUILTIN_VSUBSBS,
2470   ALTIVEC_BUILTIN_VSUBUHS,
2471   ALTIVEC_BUILTIN_VSUBSHS,
2472   ALTIVEC_BUILTIN_VSUBUWS,
2473   ALTIVEC_BUILTIN_VSUBSWS,
2474   ALTIVEC_BUILTIN_VSUM4UBS,
2475   ALTIVEC_BUILTIN_VSUM4SBS,
2476   ALTIVEC_BUILTIN_VSUM4SHS,
2477   ALTIVEC_BUILTIN_VSUM2SWS,
2478   ALTIVEC_BUILTIN_VSUMSWS,
2479   ALTIVEC_BUILTIN_VXOR,
2480   ALTIVEC_BUILTIN_VSLDOI_16QI,
2481   ALTIVEC_BUILTIN_VSLDOI_8HI,
2482   ALTIVEC_BUILTIN_VSLDOI_4SI,
2483   ALTIVEC_BUILTIN_VSLDOI_4SF,
2484   ALTIVEC_BUILTIN_VUPKHSB,
2485   ALTIVEC_BUILTIN_VUPKHPX,
2486   ALTIVEC_BUILTIN_VUPKHSH,
2487   ALTIVEC_BUILTIN_VUPKLSB,
2488   ALTIVEC_BUILTIN_VUPKLPX,
2489   ALTIVEC_BUILTIN_VUPKLSH,
2490   ALTIVEC_BUILTIN_MTVSCR,
2491   ALTIVEC_BUILTIN_MFVSCR,
2492   ALTIVEC_BUILTIN_DSSALL,
2493   ALTIVEC_BUILTIN_DSS,
2494   ALTIVEC_BUILTIN_LVSL,
2495   ALTIVEC_BUILTIN_LVSR,
2496   ALTIVEC_BUILTIN_DSTT,
2497   ALTIVEC_BUILTIN_DSTST,
2498   ALTIVEC_BUILTIN_DSTSTT,
2499   ALTIVEC_BUILTIN_DST,
2500   ALTIVEC_BUILTIN_LVEBX,
2501   ALTIVEC_BUILTIN_LVEHX,
2502   ALTIVEC_BUILTIN_LVEWX,
2503   ALTIVEC_BUILTIN_LVXL,
2504   ALTIVEC_BUILTIN_LVX,
2505   ALTIVEC_BUILTIN_STVX,
2506   ALTIVEC_BUILTIN_STVEBX,
2507   ALTIVEC_BUILTIN_STVEHX,
2508   ALTIVEC_BUILTIN_STVEWX,
2509   ALTIVEC_BUILTIN_STVXL,
2510   ALTIVEC_BUILTIN_VCMPBFP_P,
2511   ALTIVEC_BUILTIN_VCMPEQFP_P,
2512   ALTIVEC_BUILTIN_VCMPEQUB_P,
2513   ALTIVEC_BUILTIN_VCMPEQUH_P,
2514   ALTIVEC_BUILTIN_VCMPEQUW_P,
2515   ALTIVEC_BUILTIN_VCMPGEFP_P,
2516   ALTIVEC_BUILTIN_VCMPGTFP_P,
2517   ALTIVEC_BUILTIN_VCMPGTSB_P,
2518   ALTIVEC_BUILTIN_VCMPGTSH_P,
2519   ALTIVEC_BUILTIN_VCMPGTSW_P,
2520   ALTIVEC_BUILTIN_VCMPGTUB_P,
2521   ALTIVEC_BUILTIN_VCMPGTUH_P,
2522   ALTIVEC_BUILTIN_VCMPGTUW_P,
2523   ALTIVEC_BUILTIN_ABSS_V4SI,
2524   ALTIVEC_BUILTIN_ABSS_V8HI,
2525   ALTIVEC_BUILTIN_ABSS_V16QI,
2526   ALTIVEC_BUILTIN_ABS_V4SI,
2527   ALTIVEC_BUILTIN_ABS_V4SF,
2528   ALTIVEC_BUILTIN_ABS_V8HI,
2529   ALTIVEC_BUILTIN_ABS_V16QI,
2530   ALTIVEC_BUILTIN_MASK_FOR_LOAD,
2531   ALTIVEC_BUILTIN_MASK_FOR_STORE,
2532   ALTIVEC_BUILTIN_VEC_INIT_V4SI,
2533   ALTIVEC_BUILTIN_VEC_INIT_V8HI,
2534   ALTIVEC_BUILTIN_VEC_INIT_V16QI,
2535   ALTIVEC_BUILTIN_VEC_INIT_V4SF,
2536   ALTIVEC_BUILTIN_VEC_SET_V4SI,
2537   ALTIVEC_BUILTIN_VEC_SET_V8HI,
2538   ALTIVEC_BUILTIN_VEC_SET_V16QI,
2539   ALTIVEC_BUILTIN_VEC_SET_V4SF,
2540   ALTIVEC_BUILTIN_VEC_EXT_V4SI,
2541   ALTIVEC_BUILTIN_VEC_EXT_V8HI,
2542   ALTIVEC_BUILTIN_VEC_EXT_V16QI,
2543   ALTIVEC_BUILTIN_VEC_EXT_V4SF,
2544 
2545   /* Altivec overloaded builtins.  */
2546   ALTIVEC_BUILTIN_VCMPEQ_P,
2547   ALTIVEC_BUILTIN_OVERLOADED_FIRST = ALTIVEC_BUILTIN_VCMPEQ_P,
2548   ALTIVEC_BUILTIN_VCMPGT_P,
2549   ALTIVEC_BUILTIN_VCMPGE_P,
2550   ALTIVEC_BUILTIN_VEC_ABS,
2551   ALTIVEC_BUILTIN_VEC_ABSS,
2552   ALTIVEC_BUILTIN_VEC_ADD,
2553   ALTIVEC_BUILTIN_VEC_ADDC,
2554   ALTIVEC_BUILTIN_VEC_ADDS,
2555   ALTIVEC_BUILTIN_VEC_AND,
2556   ALTIVEC_BUILTIN_VEC_ANDC,
2557   ALTIVEC_BUILTIN_VEC_AVG,
2558   ALTIVEC_BUILTIN_VEC_CEIL,
2559   ALTIVEC_BUILTIN_VEC_CMPB,
2560   ALTIVEC_BUILTIN_VEC_CMPEQ,
2561   ALTIVEC_BUILTIN_VEC_CMPEQUB,
2562   ALTIVEC_BUILTIN_VEC_CMPEQUH,
2563   ALTIVEC_BUILTIN_VEC_CMPEQUW,
2564   ALTIVEC_BUILTIN_VEC_CMPGE,
2565   ALTIVEC_BUILTIN_VEC_CMPGT,
2566   ALTIVEC_BUILTIN_VEC_CMPLE,
2567   ALTIVEC_BUILTIN_VEC_CMPLT,
2568   ALTIVEC_BUILTIN_VEC_CTF,
2569   ALTIVEC_BUILTIN_VEC_CTS,
2570   ALTIVEC_BUILTIN_VEC_CTU,
2571   ALTIVEC_BUILTIN_VEC_DST,
2572   ALTIVEC_BUILTIN_VEC_DSTST,
2573   ALTIVEC_BUILTIN_VEC_DSTSTT,
2574   ALTIVEC_BUILTIN_VEC_DSTT,
2575   ALTIVEC_BUILTIN_VEC_EXPTE,
2576   ALTIVEC_BUILTIN_VEC_FLOOR,
2577   ALTIVEC_BUILTIN_VEC_LD,
2578   ALTIVEC_BUILTIN_VEC_LDE,
2579   ALTIVEC_BUILTIN_VEC_LDL,
2580   ALTIVEC_BUILTIN_VEC_LOGE,
2581   ALTIVEC_BUILTIN_VEC_LVEBX,
2582   ALTIVEC_BUILTIN_VEC_LVEHX,
2583   ALTIVEC_BUILTIN_VEC_LVEWX,
2584   ALTIVEC_BUILTIN_VEC_LVSL,
2585   ALTIVEC_BUILTIN_VEC_LVSR,
2586   ALTIVEC_BUILTIN_VEC_MADD,
2587   ALTIVEC_BUILTIN_VEC_MADDS,
2588   ALTIVEC_BUILTIN_VEC_MAX,
2589   ALTIVEC_BUILTIN_VEC_MERGEH,
2590   ALTIVEC_BUILTIN_VEC_MERGEL,
2591   ALTIVEC_BUILTIN_VEC_MIN,
2592   ALTIVEC_BUILTIN_VEC_MLADD,
2593   ALTIVEC_BUILTIN_VEC_MPERM,
2594   ALTIVEC_BUILTIN_VEC_MRADDS,
2595   ALTIVEC_BUILTIN_VEC_MRGHB,
2596   ALTIVEC_BUILTIN_VEC_MRGHH,
2597   ALTIVEC_BUILTIN_VEC_MRGHW,
2598   ALTIVEC_BUILTIN_VEC_MRGLB,
2599   ALTIVEC_BUILTIN_VEC_MRGLH,
2600   ALTIVEC_BUILTIN_VEC_MRGLW,
2601   ALTIVEC_BUILTIN_VEC_MSUM,
2602   ALTIVEC_BUILTIN_VEC_MSUMS,
2603   ALTIVEC_BUILTIN_VEC_MTVSCR,
2604   ALTIVEC_BUILTIN_VEC_MULE,
2605   ALTIVEC_BUILTIN_VEC_MULO,
2606   ALTIVEC_BUILTIN_VEC_NMSUB,
2607   ALTIVEC_BUILTIN_VEC_NOR,
2608   ALTIVEC_BUILTIN_VEC_OR,
2609   ALTIVEC_BUILTIN_VEC_PACK,
2610   ALTIVEC_BUILTIN_VEC_PACKPX,
2611   ALTIVEC_BUILTIN_VEC_PACKS,
2612   ALTIVEC_BUILTIN_VEC_PACKSU,
2613   ALTIVEC_BUILTIN_VEC_PERM,
2614   ALTIVEC_BUILTIN_VEC_RE,
2615   ALTIVEC_BUILTIN_VEC_RL,
2616   ALTIVEC_BUILTIN_VEC_ROUND,
2617   ALTIVEC_BUILTIN_VEC_RSQRTE,
2618   ALTIVEC_BUILTIN_VEC_SEL,
2619   ALTIVEC_BUILTIN_VEC_SL,
2620   ALTIVEC_BUILTIN_VEC_SLD,
2621   ALTIVEC_BUILTIN_VEC_SLL,
2622   ALTIVEC_BUILTIN_VEC_SLO,
2623   ALTIVEC_BUILTIN_VEC_SPLAT,
2624   ALTIVEC_BUILTIN_VEC_SPLAT_S16,
2625   ALTIVEC_BUILTIN_VEC_SPLAT_S32,
2626   ALTIVEC_BUILTIN_VEC_SPLAT_S8,
2627   ALTIVEC_BUILTIN_VEC_SPLAT_U16,
2628   ALTIVEC_BUILTIN_VEC_SPLAT_U32,
2629   ALTIVEC_BUILTIN_VEC_SPLAT_U8,
2630   ALTIVEC_BUILTIN_VEC_SPLTB,
2631   ALTIVEC_BUILTIN_VEC_SPLTH,
2632   ALTIVEC_BUILTIN_VEC_SPLTW,
2633   ALTIVEC_BUILTIN_VEC_SR,
2634   ALTIVEC_BUILTIN_VEC_SRA,
2635   ALTIVEC_BUILTIN_VEC_SRL,
2636   ALTIVEC_BUILTIN_VEC_SRO,
2637   ALTIVEC_BUILTIN_VEC_ST,
2638   ALTIVEC_BUILTIN_VEC_STE,
2639   ALTIVEC_BUILTIN_VEC_STL,
2640   ALTIVEC_BUILTIN_VEC_STVEBX,
2641   ALTIVEC_BUILTIN_VEC_STVEHX,
2642   ALTIVEC_BUILTIN_VEC_STVEWX,
2643   ALTIVEC_BUILTIN_VEC_SUB,
2644   ALTIVEC_BUILTIN_VEC_SUBC,
2645   ALTIVEC_BUILTIN_VEC_SUBS,
2646   ALTIVEC_BUILTIN_VEC_SUM2S,
2647   ALTIVEC_BUILTIN_VEC_SUM4S,
2648   ALTIVEC_BUILTIN_VEC_SUMS,
2649   ALTIVEC_BUILTIN_VEC_TRUNC,
2650   ALTIVEC_BUILTIN_VEC_UNPACKH,
2651   ALTIVEC_BUILTIN_VEC_UNPACKL,
2652   ALTIVEC_BUILTIN_VEC_VADDFP,
2653   ALTIVEC_BUILTIN_VEC_VADDSBS,
2654   ALTIVEC_BUILTIN_VEC_VADDSHS,
2655   ALTIVEC_BUILTIN_VEC_VADDSWS,
2656   ALTIVEC_BUILTIN_VEC_VADDUBM,
2657   ALTIVEC_BUILTIN_VEC_VADDUBS,
2658   ALTIVEC_BUILTIN_VEC_VADDUHM,
2659   ALTIVEC_BUILTIN_VEC_VADDUHS,
2660   ALTIVEC_BUILTIN_VEC_VADDUWM,
2661   ALTIVEC_BUILTIN_VEC_VADDUWS,
2662   ALTIVEC_BUILTIN_VEC_VAVGSB,
2663   ALTIVEC_BUILTIN_VEC_VAVGSH,
2664   ALTIVEC_BUILTIN_VEC_VAVGSW,
2665   ALTIVEC_BUILTIN_VEC_VAVGUB,
2666   ALTIVEC_BUILTIN_VEC_VAVGUH,
2667   ALTIVEC_BUILTIN_VEC_VAVGUW,
2668   ALTIVEC_BUILTIN_VEC_VCFSX,
2669   ALTIVEC_BUILTIN_VEC_VCFUX,
2670   ALTIVEC_BUILTIN_VEC_VCMPEQFP,
2671   ALTIVEC_BUILTIN_VEC_VCMPEQUB,
2672   ALTIVEC_BUILTIN_VEC_VCMPEQUH,
2673   ALTIVEC_BUILTIN_VEC_VCMPEQUW,
2674   ALTIVEC_BUILTIN_VEC_VCMPGTFP,
2675   ALTIVEC_BUILTIN_VEC_VCMPGTSB,
2676   ALTIVEC_BUILTIN_VEC_VCMPGTSH,
2677   ALTIVEC_BUILTIN_VEC_VCMPGTSW,
2678   ALTIVEC_BUILTIN_VEC_VCMPGTUB,
2679   ALTIVEC_BUILTIN_VEC_VCMPGTUH,
2680   ALTIVEC_BUILTIN_VEC_VCMPGTUW,
2681   ALTIVEC_BUILTIN_VEC_VMAXFP,
2682   ALTIVEC_BUILTIN_VEC_VMAXSB,
2683   ALTIVEC_BUILTIN_VEC_VMAXSH,
2684   ALTIVEC_BUILTIN_VEC_VMAXSW,
2685   ALTIVEC_BUILTIN_VEC_VMAXUB,
2686   ALTIVEC_BUILTIN_VEC_VMAXUH,
2687   ALTIVEC_BUILTIN_VEC_VMAXUW,
2688   ALTIVEC_BUILTIN_VEC_VMINFP,
2689   ALTIVEC_BUILTIN_VEC_VMINSB,
2690   ALTIVEC_BUILTIN_VEC_VMINSH,
2691   ALTIVEC_BUILTIN_VEC_VMINSW,
2692   ALTIVEC_BUILTIN_VEC_VMINUB,
2693   ALTIVEC_BUILTIN_VEC_VMINUH,
2694   ALTIVEC_BUILTIN_VEC_VMINUW,
2695   ALTIVEC_BUILTIN_VEC_VMRGHB,
2696   ALTIVEC_BUILTIN_VEC_VMRGHH,
2697   ALTIVEC_BUILTIN_VEC_VMRGHW,
2698   ALTIVEC_BUILTIN_VEC_VMRGLB,
2699   ALTIVEC_BUILTIN_VEC_VMRGLH,
2700   ALTIVEC_BUILTIN_VEC_VMRGLW,
2701   ALTIVEC_BUILTIN_VEC_VMSUMMBM,
2702   ALTIVEC_BUILTIN_VEC_VMSUMSHM,
2703   ALTIVEC_BUILTIN_VEC_VMSUMSHS,
2704   ALTIVEC_BUILTIN_VEC_VMSUMUBM,
2705   ALTIVEC_BUILTIN_VEC_VMSUMUHM,
2706   ALTIVEC_BUILTIN_VEC_VMSUMUHS,
2707   ALTIVEC_BUILTIN_VEC_VMULESB,
2708   ALTIVEC_BUILTIN_VEC_VMULESH,
2709   ALTIVEC_BUILTIN_VEC_VMULEUB,
2710   ALTIVEC_BUILTIN_VEC_VMULEUH,
2711   ALTIVEC_BUILTIN_VEC_VMULOSB,
2712   ALTIVEC_BUILTIN_VEC_VMULOSH,
2713   ALTIVEC_BUILTIN_VEC_VMULOUB,
2714   ALTIVEC_BUILTIN_VEC_VMULOUH,
2715   ALTIVEC_BUILTIN_VEC_VPKSHSS,
2716   ALTIVEC_BUILTIN_VEC_VPKSHUS,
2717   ALTIVEC_BUILTIN_VEC_VPKSWSS,
2718   ALTIVEC_BUILTIN_VEC_VPKSWUS,
2719   ALTIVEC_BUILTIN_VEC_VPKUHUM,
2720   ALTIVEC_BUILTIN_VEC_VPKUHUS,
2721   ALTIVEC_BUILTIN_VEC_VPKUWUM,
2722   ALTIVEC_BUILTIN_VEC_VPKUWUS,
2723   ALTIVEC_BUILTIN_VEC_VRLB,
2724   ALTIVEC_BUILTIN_VEC_VRLH,
2725   ALTIVEC_BUILTIN_VEC_VRLW,
2726   ALTIVEC_BUILTIN_VEC_VSLB,
2727   ALTIVEC_BUILTIN_VEC_VSLH,
2728   ALTIVEC_BUILTIN_VEC_VSLW,
2729   ALTIVEC_BUILTIN_VEC_VSPLTB,
2730   ALTIVEC_BUILTIN_VEC_VSPLTH,
2731   ALTIVEC_BUILTIN_VEC_VSPLTW,
2732   ALTIVEC_BUILTIN_VEC_VSRAB,
2733   ALTIVEC_BUILTIN_VEC_VSRAH,
2734   ALTIVEC_BUILTIN_VEC_VSRAW,
2735   ALTIVEC_BUILTIN_VEC_VSRB,
2736   ALTIVEC_BUILTIN_VEC_VSRH,
2737   ALTIVEC_BUILTIN_VEC_VSRW,
2738   ALTIVEC_BUILTIN_VEC_VSUBFP,
2739   ALTIVEC_BUILTIN_VEC_VSUBSBS,
2740   ALTIVEC_BUILTIN_VEC_VSUBSHS,
2741   ALTIVEC_BUILTIN_VEC_VSUBSWS,
2742   ALTIVEC_BUILTIN_VEC_VSUBUBM,
2743   ALTIVEC_BUILTIN_VEC_VSUBUBS,
2744   ALTIVEC_BUILTIN_VEC_VSUBUHM,
2745   ALTIVEC_BUILTIN_VEC_VSUBUHS,
2746   ALTIVEC_BUILTIN_VEC_VSUBUWM,
2747   ALTIVEC_BUILTIN_VEC_VSUBUWS,
2748   ALTIVEC_BUILTIN_VEC_VSUM4SBS,
2749   ALTIVEC_BUILTIN_VEC_VSUM4SHS,
2750   ALTIVEC_BUILTIN_VEC_VSUM4UBS,
2751   ALTIVEC_BUILTIN_VEC_VUPKHPX,
2752   ALTIVEC_BUILTIN_VEC_VUPKHSB,
2753   ALTIVEC_BUILTIN_VEC_VUPKHSH,
2754   ALTIVEC_BUILTIN_VEC_VUPKLPX,
2755   ALTIVEC_BUILTIN_VEC_VUPKLSB,
2756   ALTIVEC_BUILTIN_VEC_VUPKLSH,
2757   ALTIVEC_BUILTIN_VEC_XOR,
2758   ALTIVEC_BUILTIN_VEC_STEP,
2759   ALTIVEC_BUILTIN_OVERLOADED_LAST = ALTIVEC_BUILTIN_VEC_STEP,
2760 
2761   /* SPE builtins.  */
2762   SPE_BUILTIN_EVADDW,
2763   SPE_BUILTIN_EVAND,
2764   SPE_BUILTIN_EVANDC,
2765   SPE_BUILTIN_EVDIVWS,
2766   SPE_BUILTIN_EVDIVWU,
2767   SPE_BUILTIN_EVEQV,
2768   SPE_BUILTIN_EVFSADD,
2769   SPE_BUILTIN_EVFSDIV,
2770   SPE_BUILTIN_EVFSMUL,
2771   SPE_BUILTIN_EVFSSUB,
2772   SPE_BUILTIN_EVLDDX,
2773   SPE_BUILTIN_EVLDHX,
2774   SPE_BUILTIN_EVLDWX,
2775   SPE_BUILTIN_EVLHHESPLATX,
2776   SPE_BUILTIN_EVLHHOSSPLATX,
2777   SPE_BUILTIN_EVLHHOUSPLATX,
2778   SPE_BUILTIN_EVLWHEX,
2779   SPE_BUILTIN_EVLWHOSX,
2780   SPE_BUILTIN_EVLWHOUX,
2781   SPE_BUILTIN_EVLWHSPLATX,
2782   SPE_BUILTIN_EVLWWSPLATX,
2783   SPE_BUILTIN_EVMERGEHI,
2784   SPE_BUILTIN_EVMERGEHILO,
2785   SPE_BUILTIN_EVMERGELO,
2786   SPE_BUILTIN_EVMERGELOHI,
2787   SPE_BUILTIN_EVMHEGSMFAA,
2788   SPE_BUILTIN_EVMHEGSMFAN,
2789   SPE_BUILTIN_EVMHEGSMIAA,
2790   SPE_BUILTIN_EVMHEGSMIAN,
2791   SPE_BUILTIN_EVMHEGUMIAA,
2792   SPE_BUILTIN_EVMHEGUMIAN,
2793   SPE_BUILTIN_EVMHESMF,
2794   SPE_BUILTIN_EVMHESMFA,
2795   SPE_BUILTIN_EVMHESMFAAW,
2796   SPE_BUILTIN_EVMHESMFANW,
2797   SPE_BUILTIN_EVMHESMI,
2798   SPE_BUILTIN_EVMHESMIA,
2799   SPE_BUILTIN_EVMHESMIAAW,
2800   SPE_BUILTIN_EVMHESMIANW,
2801   SPE_BUILTIN_EVMHESSF,
2802   SPE_BUILTIN_EVMHESSFA,
2803   SPE_BUILTIN_EVMHESSFAAW,
2804   SPE_BUILTIN_EVMHESSFANW,
2805   SPE_BUILTIN_EVMHESSIAAW,
2806   SPE_BUILTIN_EVMHESSIANW,
2807   SPE_BUILTIN_EVMHEUMI,
2808   SPE_BUILTIN_EVMHEUMIA,
2809   SPE_BUILTIN_EVMHEUMIAAW,
2810   SPE_BUILTIN_EVMHEUMIANW,
2811   SPE_BUILTIN_EVMHEUSIAAW,
2812   SPE_BUILTIN_EVMHEUSIANW,
2813   SPE_BUILTIN_EVMHOGSMFAA,
2814   SPE_BUILTIN_EVMHOGSMFAN,
2815   SPE_BUILTIN_EVMHOGSMIAA,
2816   SPE_BUILTIN_EVMHOGSMIAN,
2817   SPE_BUILTIN_EVMHOGUMIAA,
2818   SPE_BUILTIN_EVMHOGUMIAN,
2819   SPE_BUILTIN_EVMHOSMF,
2820   SPE_BUILTIN_EVMHOSMFA,
2821   SPE_BUILTIN_EVMHOSMFAAW,
2822   SPE_BUILTIN_EVMHOSMFANW,
2823   SPE_BUILTIN_EVMHOSMI,
2824   SPE_BUILTIN_EVMHOSMIA,
2825   SPE_BUILTIN_EVMHOSMIAAW,
2826   SPE_BUILTIN_EVMHOSMIANW,
2827   SPE_BUILTIN_EVMHOSSF,
2828   SPE_BUILTIN_EVMHOSSFA,
2829   SPE_BUILTIN_EVMHOSSFAAW,
2830   SPE_BUILTIN_EVMHOSSFANW,
2831   SPE_BUILTIN_EVMHOSSIAAW,
2832   SPE_BUILTIN_EVMHOSSIANW,
2833   SPE_BUILTIN_EVMHOUMI,
2834   SPE_BUILTIN_EVMHOUMIA,
2835   SPE_BUILTIN_EVMHOUMIAAW,
2836   SPE_BUILTIN_EVMHOUMIANW,
2837   SPE_BUILTIN_EVMHOUSIAAW,
2838   SPE_BUILTIN_EVMHOUSIANW,
2839   SPE_BUILTIN_EVMWHSMF,
2840   SPE_BUILTIN_EVMWHSMFA,
2841   SPE_BUILTIN_EVMWHSMI,
2842   SPE_BUILTIN_EVMWHSMIA,
2843   SPE_BUILTIN_EVMWHSSF,
2844   SPE_BUILTIN_EVMWHSSFA,
2845   SPE_BUILTIN_EVMWHUMI,
2846   SPE_BUILTIN_EVMWHUMIA,
2847   SPE_BUILTIN_EVMWLSMIAAW,
2848   SPE_BUILTIN_EVMWLSMIANW,
2849   SPE_BUILTIN_EVMWLSSIAAW,
2850   SPE_BUILTIN_EVMWLSSIANW,
2851   SPE_BUILTIN_EVMWLUMI,
2852   SPE_BUILTIN_EVMWLUMIA,
2853   SPE_BUILTIN_EVMWLUMIAAW,
2854   SPE_BUILTIN_EVMWLUMIANW,
2855   SPE_BUILTIN_EVMWLUSIAAW,
2856   SPE_BUILTIN_EVMWLUSIANW,
2857   SPE_BUILTIN_EVMWSMF,
2858   SPE_BUILTIN_EVMWSMFA,
2859   SPE_BUILTIN_EVMWSMFAA,
2860   SPE_BUILTIN_EVMWSMFAN,
2861   SPE_BUILTIN_EVMWSMI,
2862   SPE_BUILTIN_EVMWSMIA,
2863   SPE_BUILTIN_EVMWSMIAA,
2864   SPE_BUILTIN_EVMWSMIAN,
2865   SPE_BUILTIN_EVMWHSSFAA,
2866   SPE_BUILTIN_EVMWSSF,
2867   SPE_BUILTIN_EVMWSSFA,
2868   SPE_BUILTIN_EVMWSSFAA,
2869   SPE_BUILTIN_EVMWSSFAN,
2870   SPE_BUILTIN_EVMWUMI,
2871   SPE_BUILTIN_EVMWUMIA,
2872   SPE_BUILTIN_EVMWUMIAA,
2873   SPE_BUILTIN_EVMWUMIAN,
2874   SPE_BUILTIN_EVNAND,
2875   SPE_BUILTIN_EVNOR,
2876   SPE_BUILTIN_EVOR,
2877   SPE_BUILTIN_EVORC,
2878   SPE_BUILTIN_EVRLW,
2879   SPE_BUILTIN_EVSLW,
2880   SPE_BUILTIN_EVSRWS,
2881   SPE_BUILTIN_EVSRWU,
2882   SPE_BUILTIN_EVSTDDX,
2883   SPE_BUILTIN_EVSTDHX,
2884   SPE_BUILTIN_EVSTDWX,
2885   SPE_BUILTIN_EVSTWHEX,
2886   SPE_BUILTIN_EVSTWHOX,
2887   SPE_BUILTIN_EVSTWWEX,
2888   SPE_BUILTIN_EVSTWWOX,
2889   SPE_BUILTIN_EVSUBFW,
2890   SPE_BUILTIN_EVXOR,
2891   SPE_BUILTIN_EVABS,
2892   SPE_BUILTIN_EVADDSMIAAW,
2893   SPE_BUILTIN_EVADDSSIAAW,
2894   SPE_BUILTIN_EVADDUMIAAW,
2895   SPE_BUILTIN_EVADDUSIAAW,
2896   SPE_BUILTIN_EVCNTLSW,
2897   SPE_BUILTIN_EVCNTLZW,
2898   SPE_BUILTIN_EVEXTSB,
2899   SPE_BUILTIN_EVEXTSH,
2900   SPE_BUILTIN_EVFSABS,
2901   SPE_BUILTIN_EVFSCFSF,
2902   SPE_BUILTIN_EVFSCFSI,
2903   SPE_BUILTIN_EVFSCFUF,
2904   SPE_BUILTIN_EVFSCFUI,
2905   SPE_BUILTIN_EVFSCTSF,
2906   SPE_BUILTIN_EVFSCTSI,
2907   SPE_BUILTIN_EVFSCTSIZ,
2908   SPE_BUILTIN_EVFSCTUF,
2909   SPE_BUILTIN_EVFSCTUI,
2910   SPE_BUILTIN_EVFSCTUIZ,
2911   SPE_BUILTIN_EVFSNABS,
2912   SPE_BUILTIN_EVFSNEG,
2913   SPE_BUILTIN_EVMRA,
2914   SPE_BUILTIN_EVNEG,
2915   SPE_BUILTIN_EVRNDW,
2916   SPE_BUILTIN_EVSUBFSMIAAW,
2917   SPE_BUILTIN_EVSUBFSSIAAW,
2918   SPE_BUILTIN_EVSUBFUMIAAW,
2919   SPE_BUILTIN_EVSUBFUSIAAW,
2920   SPE_BUILTIN_EVADDIW,
2921   SPE_BUILTIN_EVLDD,
2922   SPE_BUILTIN_EVLDH,
2923   SPE_BUILTIN_EVLDW,
2924   SPE_BUILTIN_EVLHHESPLAT,
2925   SPE_BUILTIN_EVLHHOSSPLAT,
2926   SPE_BUILTIN_EVLHHOUSPLAT,
2927   SPE_BUILTIN_EVLWHE,
2928   SPE_BUILTIN_EVLWHOS,
2929   SPE_BUILTIN_EVLWHOU,
2930   SPE_BUILTIN_EVLWHSPLAT,
2931   SPE_BUILTIN_EVLWWSPLAT,
2932   SPE_BUILTIN_EVRLWI,
2933   SPE_BUILTIN_EVSLWI,
2934   SPE_BUILTIN_EVSRWIS,
2935   SPE_BUILTIN_EVSRWIU,
2936   SPE_BUILTIN_EVSTDD,
2937   SPE_BUILTIN_EVSTDH,
2938   SPE_BUILTIN_EVSTDW,
2939   SPE_BUILTIN_EVSTWHE,
2940   SPE_BUILTIN_EVSTWHO,
2941   SPE_BUILTIN_EVSTWWE,
2942   SPE_BUILTIN_EVSTWWO,
2943   SPE_BUILTIN_EVSUBIFW,
2944 
2945   /* Compares.  */
2946   SPE_BUILTIN_EVCMPEQ,
2947   SPE_BUILTIN_EVCMPGTS,
2948   SPE_BUILTIN_EVCMPGTU,
2949   SPE_BUILTIN_EVCMPLTS,
2950   SPE_BUILTIN_EVCMPLTU,
2951   SPE_BUILTIN_EVFSCMPEQ,
2952   SPE_BUILTIN_EVFSCMPGT,
2953   SPE_BUILTIN_EVFSCMPLT,
2954   SPE_BUILTIN_EVFSTSTEQ,
2955   SPE_BUILTIN_EVFSTSTGT,
2956   SPE_BUILTIN_EVFSTSTLT,
2957 
2958   /* EVSEL compares.  */
2959   SPE_BUILTIN_EVSEL_CMPEQ,
2960   SPE_BUILTIN_EVSEL_CMPGTS,
2961   SPE_BUILTIN_EVSEL_CMPGTU,
2962   SPE_BUILTIN_EVSEL_CMPLTS,
2963   SPE_BUILTIN_EVSEL_CMPLTU,
2964   SPE_BUILTIN_EVSEL_FSCMPEQ,
2965   SPE_BUILTIN_EVSEL_FSCMPGT,
2966   SPE_BUILTIN_EVSEL_FSCMPLT,
2967   SPE_BUILTIN_EVSEL_FSTSTEQ,
2968   SPE_BUILTIN_EVSEL_FSTSTGT,
2969   SPE_BUILTIN_EVSEL_FSTSTLT,
2970 
2971   SPE_BUILTIN_EVSPLATFI,
2972   SPE_BUILTIN_EVSPLATI,
2973   SPE_BUILTIN_EVMWHSSMAA,
2974   SPE_BUILTIN_EVMWHSMFAA,
2975   SPE_BUILTIN_EVMWHSMIAA,
2976   SPE_BUILTIN_EVMWHUSIAA,
2977   SPE_BUILTIN_EVMWHUMIAA,
2978   SPE_BUILTIN_EVMWHSSFAN,
2979   SPE_BUILTIN_EVMWHSSIAN,
2980   SPE_BUILTIN_EVMWHSMFAN,
2981   SPE_BUILTIN_EVMWHSMIAN,
2982   SPE_BUILTIN_EVMWHUSIAN,
2983   SPE_BUILTIN_EVMWHUMIAN,
2984   SPE_BUILTIN_EVMWHGSSFAA,
2985   SPE_BUILTIN_EVMWHGSMFAA,
2986   SPE_BUILTIN_EVMWHGSMIAA,
2987   SPE_BUILTIN_EVMWHGUMIAA,
2988   SPE_BUILTIN_EVMWHGSSFAN,
2989   SPE_BUILTIN_EVMWHGSMFAN,
2990   SPE_BUILTIN_EVMWHGSMIAN,
2991   SPE_BUILTIN_EVMWHGUMIAN,
2992   SPE_BUILTIN_MTSPEFSCR,
2993   SPE_BUILTIN_MFSPEFSCR,
2994   SPE_BUILTIN_BRINC,
2995 
2996   RS6000_BUILTIN_COUNT
2997 };
2998 
2999 enum rs6000_builtin_type_index
3000 {
3001   RS6000_BTI_NOT_OPAQUE,
3002   RS6000_BTI_opaque_V2SI,
3003   RS6000_BTI_opaque_V2SF,
3004   RS6000_BTI_opaque_p_V2SI,
3005   RS6000_BTI_opaque_V4SI,
3006   RS6000_BTI_V16QI,
3007   RS6000_BTI_V2SI,
3008   RS6000_BTI_V2SF,
3009   RS6000_BTI_V4HI,
3010   RS6000_BTI_V4SI,
3011   RS6000_BTI_V4SF,
3012   RS6000_BTI_V8HI,
3013   RS6000_BTI_unsigned_V16QI,
3014   RS6000_BTI_unsigned_V8HI,
3015   RS6000_BTI_unsigned_V4SI,
3016   RS6000_BTI_bool_char,          /* __bool char */
3017   RS6000_BTI_bool_short,         /* __bool short */
3018   RS6000_BTI_bool_int,           /* __bool int */
3019   RS6000_BTI_pixel,              /* __pixel */
3020   RS6000_BTI_bool_V16QI,         /* __vector __bool char */
3021   RS6000_BTI_bool_V8HI,          /* __vector __bool short */
3022   RS6000_BTI_bool_V4SI,          /* __vector __bool int */
3023   RS6000_BTI_pixel_V8HI,         /* __vector __pixel */
3024   RS6000_BTI_long,	         /* long_integer_type_node */
3025   RS6000_BTI_unsigned_long,      /* long_unsigned_type_node */
3026   RS6000_BTI_INTQI,	         /* intQI_type_node */
3027   RS6000_BTI_UINTQI,		 /* unsigned_intQI_type_node */
3028   RS6000_BTI_INTHI,	         /* intHI_type_node */
3029   RS6000_BTI_UINTHI,		 /* unsigned_intHI_type_node */
3030   RS6000_BTI_INTSI,		 /* intSI_type_node */
3031   RS6000_BTI_UINTSI,		 /* unsigned_intSI_type_node */
3032   RS6000_BTI_float,	         /* float_type_node */
3033   RS6000_BTI_void,	         /* void_type_node */
3034   RS6000_BTI_MAX
3035 };
3036 
3037 
3038 #define opaque_V2SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
3039 #define opaque_V2SF_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
3040 #define opaque_p_V2SI_type_node       (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
3041 #define opaque_V4SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
3042 #define V16QI_type_node               (rs6000_builtin_types[RS6000_BTI_V16QI])
3043 #define V2SI_type_node                (rs6000_builtin_types[RS6000_BTI_V2SI])
3044 #define V2SF_type_node                (rs6000_builtin_types[RS6000_BTI_V2SF])
3045 #define V4HI_type_node                (rs6000_builtin_types[RS6000_BTI_V4HI])
3046 #define V4SI_type_node                (rs6000_builtin_types[RS6000_BTI_V4SI])
3047 #define V4SF_type_node                (rs6000_builtin_types[RS6000_BTI_V4SF])
3048 #define V8HI_type_node                (rs6000_builtin_types[RS6000_BTI_V8HI])
3049 #define unsigned_V16QI_type_node      (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
3050 #define unsigned_V8HI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
3051 #define unsigned_V4SI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
3052 #define bool_char_type_node           (rs6000_builtin_types[RS6000_BTI_bool_char])
3053 #define bool_short_type_node          (rs6000_builtin_types[RS6000_BTI_bool_short])
3054 #define bool_int_type_node            (rs6000_builtin_types[RS6000_BTI_bool_int])
3055 #define pixel_type_node               (rs6000_builtin_types[RS6000_BTI_pixel])
3056 #define bool_V16QI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
3057 #define bool_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
3058 #define bool_V4SI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
3059 #define pixel_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
3060 
3061 #define long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long])
3062 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
3063 #define intQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTQI])
3064 #define uintQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTQI])
3065 #define intHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTHI])
3066 #define uintHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTHI])
3067 #define intSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTSI])
3068 #define uintSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTSI])
3069 #define float_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_float])
3070 #define void_type_internal_node		 (rs6000_builtin_types[RS6000_BTI_void])
3071 
3072 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
3073 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
3074 
3075