1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 //
13 // This file contains the ARM implementation of TargetFrameLowering class.
14 //
15 // On ARM, stack frames are structured as follows:
16 //
17 // The stack grows downward.
18 //
19 // All of the individual frame areas on the frame below are optional, i.e. it's
20 // possible to create a function so that the particular area isn't present
21 // in the frame.
22 //
23 // At function entry, the "frame" looks as follows:
24 //
25 // | | Higher address
26 // |-----------------------------------|
27 // | |
28 // | arguments passed on the stack |
29 // | |
30 // |-----------------------------------| <- sp
31 // | | Lower address
32 //
33 //
34 // After the prologue has run, the frame has the following general structure.
35 // Technically the last frame area (VLAs) doesn't get created until in the
36 // main function body, after the prologue is run. However, it's depicted here
37 // for completeness.
38 //
39 // | | Higher address
40 // |-----------------------------------|
41 // | |
42 // | arguments passed on the stack |
43 // | |
44 // |-----------------------------------| <- (sp at function entry)
45 // | |
46 // | varargs from registers |
47 // | |
48 // |-----------------------------------|
49 // | |
50 // | prev_lr |
51 // | prev_fp |
52 // | (a.k.a. "frame record") |
53 // | |
54 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11)
55 // | |
56 // | callee-saved gpr registers |
57 // | |
58 // |-----------------------------------|
59 // | |
60 // | callee-saved fp/simd regs |
61 // | |
62 // |-----------------------------------|
63 // |.empty.space.to.make.part.below....|
64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
65 // |.the.standard.8-byte.alignment.....| compile time; if present)
66 // |-----------------------------------|
67 // | |
68 // | local variables of fixed size |
69 // | including spill slots |
70 // |-----------------------------------| <- base pointer (not defined by ABI,
71 // |.variable-sized.local.variables....| LLVM chooses r6)
72 // |.(VLAs)............................| (size of this area is unknown at
73 // |...................................| compile time)
74 // |-----------------------------------| <- sp
75 // | | Lower address
76 //
77 //
78 // To access the data in a frame, at-compile time, a constant offset must be
79 // computable from one of the pointers (fp, bp, sp) to access it. The size
80 // of the areas with a dotted background cannot be computed at compile-time
81 // if they are present, making it required to have all three of fp, bp and
82 // sp to be set up to be able to access all contents in the frame areas,
83 // assuming all of the frame areas are non-empty.
84 //
85 // For most functions, some of the frame areas are empty. For those functions,
86 // it may not be necessary to set up fp or bp:
87 // * A base pointer is definitely needed when there are both VLAs and local
88 // variables with more-than-default alignment requirements.
89 // * A frame pointer is definitely needed when there are local variables with
90 // more-than-default alignment requirements.
91 //
92 // In some cases when a base pointer is not strictly needed, it is generated
93 // anyway when offsets from the frame pointer to access local variables become
94 // so large that the offset can't be encoded in the immediate fields of loads
95 // or stores.
96 //
97 // The frame pointer might be chosen to be r7 or r11, depending on the target
98 // architecture and operating system. See ARMSubtarget::getFramePointerReg for
99 // details.
100 //
101 // Outgoing function arguments must be at the bottom of the stack frame when
102 // calling another function. If we do not have variable-sized stack objects, we
103 // can allocate a "reserved call frame" area at the bottom of the local
104 // variable area, large enough for all outgoing calls. If we do have VLAs, then
105 // the stack pointer must be decremented and incremented around each call to
106 // make space for the arguments below the VLAs.
107 //
108 //===----------------------------------------------------------------------===//
109
110 #include "ARMFrameLowering.h"
111 #include "ARMBaseInstrInfo.h"
112 #include "ARMBaseRegisterInfo.h"
113 #include "ARMConstantPoolValue.h"
114 #include "ARMMachineFunctionInfo.h"
115 #include "ARMSubtarget.h"
116 #include "MCTargetDesc/ARMAddressingModes.h"
117 #include "MCTargetDesc/ARMBaseInfo.h"
118 #include "Utils/ARMBaseInfo.h"
119 #include "llvm/ADT/BitVector.h"
120 #include "llvm/ADT/STLExtras.h"
121 #include "llvm/ADT/SmallPtrSet.h"
122 #include "llvm/ADT/SmallVector.h"
123 #include "llvm/CodeGen/MachineBasicBlock.h"
124 #include "llvm/CodeGen/MachineConstantPool.h"
125 #include "llvm/CodeGen/MachineFrameInfo.h"
126 #include "llvm/CodeGen/MachineFunction.h"
127 #include "llvm/CodeGen/MachineInstr.h"
128 #include "llvm/CodeGen/MachineInstrBuilder.h"
129 #include "llvm/CodeGen/MachineJumpTableInfo.h"
130 #include "llvm/CodeGen/MachineModuleInfo.h"
131 #include "llvm/CodeGen/MachineOperand.h"
132 #include "llvm/CodeGen/MachineRegisterInfo.h"
133 #include "llvm/CodeGen/RegisterScavenging.h"
134 #include "llvm/CodeGen/TargetInstrInfo.h"
135 #include "llvm/CodeGen/TargetOpcodes.h"
136 #include "llvm/CodeGen/TargetRegisterInfo.h"
137 #include "llvm/CodeGen/TargetSubtargetInfo.h"
138 #include "llvm/IR/Attributes.h"
139 #include "llvm/IR/CallingConv.h"
140 #include "llvm/IR/DebugLoc.h"
141 #include "llvm/IR/Function.h"
142 #include "llvm/MC/MCAsmInfo.h"
143 #include "llvm/MC/MCContext.h"
144 #include "llvm/MC/MCDwarf.h"
145 #include "llvm/MC/MCInstrDesc.h"
146 #include "llvm/MC/MCRegisterInfo.h"
147 #include "llvm/Support/CodeGen.h"
148 #include "llvm/Support/CommandLine.h"
149 #include "llvm/Support/Compiler.h"
150 #include "llvm/Support/Debug.h"
151 #include "llvm/Support/ErrorHandling.h"
152 #include "llvm/Support/MathExtras.h"
153 #include "llvm/Support/raw_ostream.h"
154 #include "llvm/Target/TargetMachine.h"
155 #include "llvm/Target/TargetOptions.h"
156 #include <algorithm>
157 #include <cassert>
158 #include <cstddef>
159 #include <cstdint>
160 #include <iterator>
161 #include <utility>
162 #include <vector>
163
164 #define DEBUG_TYPE "arm-frame-lowering"
165
166 using namespace llvm;
167
168 static cl::opt<bool>
169 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
170 cl::desc("Align ARM NEON spills in prolog and epilog"));
171
172 static MachineBasicBlock::iterator
173 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
174 unsigned NumAlignedDPRCS2Regs);
175
ARMFrameLowering(const ARMSubtarget & sti)176 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
177 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
178 STI(sti) {}
179
keepFramePointer(const MachineFunction & MF) const180 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
181 // iOS always has a FP for backtracking, force other targets to keep their FP
182 // when doing FastISel. The emitted code is currently superior, and in cases
183 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
184 return MF.getSubtarget<ARMSubtarget>().useFastISel();
185 }
186
187 /// Returns true if the target can safely skip saving callee-saved registers
188 /// for noreturn nounwind functions.
enableCalleeSaveSkip(const MachineFunction & MF) const189 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
190 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
191 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
192 !MF.getFunction().hasFnAttribute(Attribute::UWTable));
193
194 // Frame pointer and link register are not treated as normal CSR, thus we
195 // can always skip CSR saves for nonreturning functions.
196 return true;
197 }
198
199 /// hasFP - Return true if the specified function should have a dedicated frame
200 /// pointer register. This is true if the function has variable sized allocas
201 /// or if frame pointer elimination is disabled.
hasFP(const MachineFunction & MF) const202 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
203 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
204 const MachineFrameInfo &MFI = MF.getFrameInfo();
205
206 // ABI-required frame pointer.
207 if (MF.getTarget().Options.DisableFramePointerElim(MF))
208 return true;
209
210 // Frame pointer required for use within this function.
211 return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
212 MFI.isFrameAddressTaken());
213 }
214
215 /// isFPReserved - Return true if the frame pointer register should be
216 /// considered a reserved register on the scope of the specified function.
isFPReserved(const MachineFunction & MF) const217 bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const {
218 return hasFP(MF) || MF.getSubtarget<ARMSubtarget>().createAAPCSFrameChain();
219 }
220
221 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
222 /// not required, we reserve argument space for call sites in the function
223 /// immediately on entry to the current function. This eliminates the need for
224 /// add/sub sp brackets around call sites. Returns true if the call frame is
225 /// included as part of the stack frame.
hasReservedCallFrame(const MachineFunction & MF) const226 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
227 const MachineFrameInfo &MFI = MF.getFrameInfo();
228 unsigned CFSize = MFI.getMaxCallFrameSize();
229 // It's not always a good idea to include the call frame as part of the
230 // stack frame. ARM (especially Thumb) has small immediate offset to
231 // address the stack frame. So a large call frame can cause poor codegen
232 // and may even makes it impossible to scavenge a register.
233 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12
234 return false;
235
236 return !MFI.hasVarSizedObjects();
237 }
238
239 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
240 /// call frame pseudos can be simplified. Unlike most targets, having a FP
241 /// is not sufficient here since we still may reference some objects via SP
242 /// even when FP is available in Thumb2 mode.
243 bool
canSimplifyCallFramePseudos(const MachineFunction & MF) const244 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
245 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
246 }
247
248 // Returns how much of the incoming argument stack area we should clean up in an
249 // epilogue. For the C calling convention this will be 0, for guaranteed tail
250 // call conventions it can be positive (a normal return or a tail call to a
251 // function that uses less stack space for arguments) or negative (for a tail
252 // call to a function that needs more stack space than us for arguments).
getArgumentStackToRestore(MachineFunction & MF,MachineBasicBlock & MBB)253 static int getArgumentStackToRestore(MachineFunction &MF,
254 MachineBasicBlock &MBB) {
255 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
256 bool IsTailCallReturn = false;
257 if (MBB.end() != MBBI) {
258 unsigned RetOpcode = MBBI->getOpcode();
259 IsTailCallReturn = RetOpcode == ARM::TCRETURNdi ||
260 RetOpcode == ARM::TCRETURNri;
261 }
262 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
263
264 int ArgumentPopSize = 0;
265 if (IsTailCallReturn) {
266 MachineOperand &StackAdjust = MBBI->getOperand(1);
267
268 // For a tail-call in a callee-pops-arguments environment, some or all of
269 // the stack may actually be in use for the call's arguments, this is
270 // calculated during LowerCall and consumed here...
271 ArgumentPopSize = StackAdjust.getImm();
272 } else {
273 // ... otherwise the amount to pop is *all* of the argument space,
274 // conveniently stored in the MachineFunctionInfo by
275 // LowerFormalArguments. This will, of course, be zero for the C calling
276 // convention.
277 ArgumentPopSize = AFI->getArgumentStackToRestore();
278 }
279
280 return ArgumentPopSize;
281 }
282
needsWinCFI(const MachineFunction & MF)283 static bool needsWinCFI(const MachineFunction &MF) {
284 const Function &F = MF.getFunction();
285 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
286 F.needsUnwindTableEntry();
287 }
288
289 // Given a load or a store instruction, generate an appropriate unwinding SEH
290 // code on Windows.
insertSEH(MachineBasicBlock::iterator MBBI,const TargetInstrInfo & TII,unsigned Flags)291 static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI,
292 const TargetInstrInfo &TII,
293 unsigned Flags) {
294 unsigned Opc = MBBI->getOpcode();
295 MachineBasicBlock *MBB = MBBI->getParent();
296 MachineFunction &MF = *MBB->getParent();
297 DebugLoc DL = MBBI->getDebugLoc();
298 MachineInstrBuilder MIB;
299 const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>();
300 const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
301
302 Flags |= MachineInstr::NoMerge;
303
304 switch (Opc) {
305 default:
306 report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc));
307 break;
308 case ARM::t2ADDri: // add.w r11, sp, #xx
309 case ARM::t2ADDri12: // add.w r11, sp, #xx
310 case ARM::t2MOVTi16: // movt r4, #xx
311 case ARM::tBL: // bl __chkstk
312 // These are harmless if used for just setting up a frame pointer,
313 // but that frame pointer can't be relied upon for unwinding, unless
314 // set up with SEH_SaveSP.
315 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
316 .addImm(/*Wide=*/1)
317 .setMIFlags(Flags);
318 break;
319
320 case ARM::t2MOVi16: { // mov(w) r4, #xx
321 bool Wide = MBBI->getOperand(1).getImm() >= 256;
322 if (!Wide) {
323 MachineInstrBuilder NewInstr =
324 BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags());
325 NewInstr.add(MBBI->getOperand(0));
326 NewInstr.add(t1CondCodeOp(/*isDead=*/true));
327 for (unsigned i = 1, NumOps = MBBI->getNumOperands(); i != NumOps; ++i)
328 NewInstr.add(MBBI->getOperand(i));
329 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
330 MBB->erase(MBBI);
331 MBBI = NewMBBI;
332 }
333 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags);
334 break;
335 }
336
337 case ARM::tBLXr: // blx r12 (__chkstk)
338 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
339 .addImm(/*Wide=*/0)
340 .setMIFlags(Flags);
341 break;
342
343 case ARM::t2MOVi32imm: // movw+movt
344 // This pseudo instruction expands into two mov instructions. If the
345 // second operand is a symbol reference, this will stay as two wide
346 // instructions, movw+movt. If they're immediates, the first one can
347 // end up as a narrow mov though.
348 // As two SEH instructions are appended here, they won't get interleaved
349 // between the two final movw/movt instructions, but it doesn't make any
350 // practical difference.
351 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
352 .addImm(/*Wide=*/1)
353 .setMIFlags(Flags);
354 MBB->insertAfter(MBBI, MIB);
355 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
356 .addImm(/*Wide=*/1)
357 .setMIFlags(Flags);
358 break;
359
360 case ARM::t2STR_PRE:
361 if (MBBI->getOperand(0).getReg() == ARM::SP &&
362 MBBI->getOperand(2).getReg() == ARM::SP &&
363 MBBI->getOperand(3).getImm() == -4) {
364 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
365 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs))
366 .addImm(1ULL << Reg)
367 .addImm(/*Wide=*/1)
368 .setMIFlags(Flags);
369 } else {
370 report_fatal_error("No matching SEH Opcode for t2STR_PRE");
371 }
372 break;
373
374 case ARM::t2LDR_POST:
375 if (MBBI->getOperand(1).getReg() == ARM::SP &&
376 MBBI->getOperand(2).getReg() == ARM::SP &&
377 MBBI->getOperand(3).getImm() == 4) {
378 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
379 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs))
380 .addImm(1ULL << Reg)
381 .addImm(/*Wide=*/1)
382 .setMIFlags(Flags);
383 } else {
384 report_fatal_error("No matching SEH Opcode for t2LDR_POST");
385 }
386 break;
387
388 case ARM::t2LDMIA_RET:
389 case ARM::t2LDMIA_UPD:
390 case ARM::t2STMDB_UPD: {
391 unsigned Mask = 0;
392 bool Wide = false;
393 for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) {
394 const MachineOperand &MO = MBBI->getOperand(i);
395 if (!MO.isReg() || MO.isImplicit())
396 continue;
397 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
398 if (Reg == 15)
399 Reg = 14;
400 if (Reg >= 8 && Reg <= 13)
401 Wide = true;
402 else if (Opc == ARM::t2LDMIA_UPD && Reg == 14)
403 Wide = true;
404 Mask |= 1 << Reg;
405 }
406 if (!Wide) {
407 unsigned NewOpc;
408 switch (Opc) {
409 case ARM::t2LDMIA_RET:
410 NewOpc = ARM::tPOP_RET;
411 break;
412 case ARM::t2LDMIA_UPD:
413 NewOpc = ARM::tPOP;
414 break;
415 case ARM::t2STMDB_UPD:
416 NewOpc = ARM::tPUSH;
417 break;
418 default:
419 llvm_unreachable("");
420 }
421 MachineInstrBuilder NewInstr =
422 BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags());
423 for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i)
424 NewInstr.add(MBBI->getOperand(i));
425 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
426 MBB->erase(MBBI);
427 MBBI = NewMBBI;
428 }
429 unsigned SEHOpc =
430 (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs;
431 MIB = BuildMI(MF, DL, TII.get(SEHOpc))
432 .addImm(Mask)
433 .addImm(Wide ? 1 : 0)
434 .setMIFlags(Flags);
435 break;
436 }
437 case ARM::VSTMDDB_UPD:
438 case ARM::VLDMDIA_UPD: {
439 int First = -1, Last = 0;
440 for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) {
441 const MachineOperand &MO = MBBI->getOperand(i);
442 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
443 if (First == -1)
444 First = Reg;
445 Last = Reg;
446 }
447 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs))
448 .addImm(First)
449 .addImm(Last)
450 .setMIFlags(Flags);
451 break;
452 }
453 case ARM::tSUBspi:
454 case ARM::tADDspi:
455 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
456 .addImm(MBBI->getOperand(2).getImm() * 4)
457 .addImm(/*Wide=*/0)
458 .setMIFlags(Flags);
459 break;
460 case ARM::t2SUBspImm:
461 case ARM::t2SUBspImm12:
462 case ARM::t2ADDspImm:
463 case ARM::t2ADDspImm12:
464 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
465 .addImm(MBBI->getOperand(2).getImm())
466 .addImm(/*Wide=*/1)
467 .setMIFlags(Flags);
468 break;
469
470 case ARM::tMOVr:
471 if (MBBI->getOperand(1).getReg() == ARM::SP &&
472 (Flags & MachineInstr::FrameSetup)) {
473 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
474 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
475 .addImm(Reg)
476 .setMIFlags(Flags);
477 } else if (MBBI->getOperand(0).getReg() == ARM::SP &&
478 (Flags & MachineInstr::FrameDestroy)) {
479 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
480 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
481 .addImm(Reg)
482 .setMIFlags(Flags);
483 } else {
484 report_fatal_error("No SEH Opcode for MOV");
485 }
486 break;
487
488 case ARM::tBX_RET:
489 case ARM::TCRETURNri:
490 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
491 .addImm(/*Wide=*/0)
492 .setMIFlags(Flags);
493 break;
494
495 case ARM::TCRETURNdi:
496 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
497 .addImm(/*Wide=*/1)
498 .setMIFlags(Flags);
499 break;
500 }
501 return MBB->insertAfter(MBBI, MIB);
502 }
503
504 static MachineBasicBlock::iterator
initMBBRange(MachineBasicBlock & MBB,const MachineBasicBlock::iterator & MBBI)505 initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) {
506 if (MBBI == MBB.begin())
507 return MachineBasicBlock::iterator();
508 return std::prev(MBBI);
509 }
510
insertSEHRange(MachineBasicBlock & MBB,MachineBasicBlock::iterator Start,const MachineBasicBlock::iterator & End,const ARMBaseInstrInfo & TII,unsigned MIFlags)511 static void insertSEHRange(MachineBasicBlock &MBB,
512 MachineBasicBlock::iterator Start,
513 const MachineBasicBlock::iterator &End,
514 const ARMBaseInstrInfo &TII, unsigned MIFlags) {
515 if (Start.isValid())
516 Start = std::next(Start);
517 else
518 Start = MBB.begin();
519
520 for (auto MI = Start; MI != End;) {
521 auto Next = std::next(MI);
522 // Check if this instruction already has got a SEH opcode added. In that
523 // case, don't do this generic mapping.
524 if (Next != End && isSEHInstruction(*Next)) {
525 MI = std::next(Next);
526 while (MI != End && isSEHInstruction(*MI))
527 ++MI;
528 continue;
529 }
530 insertSEH(MI, TII, MIFlags);
531 MI = Next;
532 }
533 }
534
emitRegPlusImmediate(bool isARM,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & dl,const ARMBaseInstrInfo & TII,unsigned DestReg,unsigned SrcReg,int NumBytes,unsigned MIFlags=MachineInstr::NoFlags,ARMCC::CondCodes Pred=ARMCC::AL,unsigned PredReg=0)535 static void emitRegPlusImmediate(
536 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
537 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
538 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
539 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
540 if (isARM)
541 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
542 Pred, PredReg, TII, MIFlags);
543 else
544 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
545 Pred, PredReg, TII, MIFlags);
546 }
547
emitSPUpdate(bool isARM,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & dl,const ARMBaseInstrInfo & TII,int NumBytes,unsigned MIFlags=MachineInstr::NoFlags,ARMCC::CondCodes Pred=ARMCC::AL,unsigned PredReg=0)548 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
549 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
550 const ARMBaseInstrInfo &TII, int NumBytes,
551 unsigned MIFlags = MachineInstr::NoFlags,
552 ARMCC::CondCodes Pred = ARMCC::AL,
553 unsigned PredReg = 0) {
554 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
555 MIFlags, Pred, PredReg);
556 }
557
sizeOfSPAdjustment(const MachineInstr & MI)558 static int sizeOfSPAdjustment(const MachineInstr &MI) {
559 int RegSize;
560 switch (MI.getOpcode()) {
561 case ARM::VSTMDDB_UPD:
562 RegSize = 8;
563 break;
564 case ARM::STMDB_UPD:
565 case ARM::t2STMDB_UPD:
566 RegSize = 4;
567 break;
568 case ARM::t2STR_PRE:
569 case ARM::STR_PRE_IMM:
570 return 4;
571 default:
572 llvm_unreachable("Unknown push or pop like instruction");
573 }
574
575 int count = 0;
576 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
577 // pred) so the list starts at 4.
578 for (int i = MI.getNumOperands() - 1; i >= 4; --i)
579 count += RegSize;
580 return count;
581 }
582
WindowsRequiresStackProbe(const MachineFunction & MF,size_t StackSizeInBytes)583 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
584 size_t StackSizeInBytes) {
585 const MachineFrameInfo &MFI = MF.getFrameInfo();
586 const Function &F = MF.getFunction();
587 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
588
589 StackProbeSize =
590 F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize);
591 return (StackSizeInBytes >= StackProbeSize) &&
592 !F.hasFnAttribute("no-stack-arg-probe");
593 }
594
595 namespace {
596
597 struct StackAdjustingInsts {
598 struct InstInfo {
599 MachineBasicBlock::iterator I;
600 unsigned SPAdjust;
601 bool BeforeFPSet;
602 };
603
604 SmallVector<InstInfo, 4> Insts;
605
addInst__anond6e83db40111::StackAdjustingInsts606 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
607 bool BeforeFPSet = false) {
608 InstInfo Info = {I, SPAdjust, BeforeFPSet};
609 Insts.push_back(Info);
610 }
611
addExtraBytes__anond6e83db40111::StackAdjustingInsts612 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
613 auto Info =
614 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
615 assert(Info != Insts.end() && "invalid sp adjusting instruction");
616 Info->SPAdjust += ExtraBytes;
617 }
618
emitDefCFAOffsets__anond6e83db40111::StackAdjustingInsts619 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
620 const ARMBaseInstrInfo &TII, bool HasFP) {
621 MachineFunction &MF = *MBB.getParent();
622 unsigned CFAOffset = 0;
623 for (auto &Info : Insts) {
624 if (HasFP && !Info.BeforeFPSet)
625 return;
626
627 CFAOffset += Info.SPAdjust;
628 unsigned CFIIndex = MF.addFrameInst(
629 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset));
630 BuildMI(MBB, std::next(Info.I), dl,
631 TII.get(TargetOpcode::CFI_INSTRUCTION))
632 .addCFIIndex(CFIIndex)
633 .setMIFlags(MachineInstr::FrameSetup);
634 }
635 }
636 };
637
638 } // end anonymous namespace
639
640 /// Emit an instruction sequence that will align the address in
641 /// register Reg by zero-ing out the lower bits. For versions of the
642 /// architecture that support Neon, this must be done in a single
643 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
644 /// single instruction. That function only gets called when optimizing
645 /// spilling of D registers on a core with the Neon instruction set
646 /// present.
emitAligningInstructions(MachineFunction & MF,ARMFunctionInfo * AFI,const TargetInstrInfo & TII,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,const unsigned Reg,const Align Alignment,const bool MustBeSingleInstruction)647 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
648 const TargetInstrInfo &TII,
649 MachineBasicBlock &MBB,
650 MachineBasicBlock::iterator MBBI,
651 const DebugLoc &DL, const unsigned Reg,
652 const Align Alignment,
653 const bool MustBeSingleInstruction) {
654 const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>();
655 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
656 const unsigned AlignMask = Alignment.value() - 1U;
657 const unsigned NrBitsToZero = Log2(Alignment);
658 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
659 if (!AFI->isThumbFunction()) {
660 // if the BFC instruction is available, use that to zero the lower
661 // bits:
662 // bfc Reg, #0, log2(Alignment)
663 // otherwise use BIC, if the mask to zero the required number of bits
664 // can be encoded in the bic immediate field
665 // bic Reg, Reg, Alignment-1
666 // otherwise, emit
667 // lsr Reg, Reg, log2(Alignment)
668 // lsl Reg, Reg, log2(Alignment)
669 if (CanUseBFC) {
670 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
671 .addReg(Reg, RegState::Kill)
672 .addImm(~AlignMask)
673 .add(predOps(ARMCC::AL));
674 } else if (AlignMask <= 255) {
675 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
676 .addReg(Reg, RegState::Kill)
677 .addImm(AlignMask)
678 .add(predOps(ARMCC::AL))
679 .add(condCodeOp());
680 } else {
681 assert(!MustBeSingleInstruction &&
682 "Shouldn't call emitAligningInstructions demanding a single "
683 "instruction to be emitted for large stack alignment for a target "
684 "without BFC.");
685 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
686 .addReg(Reg, RegState::Kill)
687 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
688 .add(predOps(ARMCC::AL))
689 .add(condCodeOp());
690 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
691 .addReg(Reg, RegState::Kill)
692 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
693 .add(predOps(ARMCC::AL))
694 .add(condCodeOp());
695 }
696 } else {
697 // Since this is only reached for Thumb-2 targets, the BFC instruction
698 // should always be available.
699 assert(CanUseBFC);
700 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
701 .addReg(Reg, RegState::Kill)
702 .addImm(~AlignMask)
703 .add(predOps(ARMCC::AL));
704 }
705 }
706
707 /// We need the offset of the frame pointer relative to other MachineFrameInfo
708 /// offsets which are encoded relative to SP at function begin.
709 /// See also emitPrologue() for how the FP is set up.
710 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
711 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
712 /// this to produce a conservative estimate that we check in an assert() later.
getMaxFPOffset(const ARMSubtarget & STI,const ARMFunctionInfo & AFI,const MachineFunction & MF)713 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI,
714 const MachineFunction &MF) {
715 // For Thumb1, push.w isn't available, so the first push will always push
716 // r7 and lr onto the stack first.
717 if (AFI.isThumb1OnlyFunction())
718 return -AFI.getArgRegsSaveSize() - (2 * 4);
719 // This is a conservative estimation: Assume the frame pointer being r7 and
720 // pc("r15") up to r8 getting spilled before (= 8 registers).
721 int MaxRegBytes = 8 * 4;
722 if (STI.splitFramePointerPush(MF)) {
723 // Here, r11 can be stored below all of r4-r15 (3 registers more than
724 // above), plus d8-d15.
725 MaxRegBytes = 11 * 4 + 8 * 8;
726 }
727 int FPCXTSaveSize =
728 (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0;
729 return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes;
730 }
731
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const732 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
733 MachineBasicBlock &MBB) const {
734 MachineBasicBlock::iterator MBBI = MBB.begin();
735 MachineFrameInfo &MFI = MF.getFrameInfo();
736 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
737 MachineModuleInfo &MMI = MF.getMMI();
738 MCContext &Context = MMI.getContext();
739 const TargetMachine &TM = MF.getTarget();
740 const MCRegisterInfo *MRI = Context.getRegisterInfo();
741 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
742 const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
743 assert(!AFI->isThumb1OnlyFunction() &&
744 "This emitPrologue does not support Thumb1!");
745 bool isARM = !AFI->isThumbFunction();
746 Align Alignment = STI.getFrameLowering()->getStackAlign();
747 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
748 unsigned NumBytes = MFI.getStackSize();
749 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
750 int FPCXTSaveSize = 0;
751 bool NeedsWinCFI = needsWinCFI(MF);
752
753 // Debug location must be unknown since the first debug location is used
754 // to determine the end of the prologue.
755 DebugLoc dl;
756
757 Register FramePtr = RegInfo->getFrameRegister(MF);
758
759 // Determine the sizes of each callee-save spill areas and record which frame
760 // belongs to which callee-save spill areas.
761 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
762 int FramePtrSpillFI = 0;
763 int D8SpillFI = 0;
764
765 // All calls are tail calls in GHC calling conv, and functions have no
766 // prologue/epilogue.
767 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
768 return;
769
770 StackAdjustingInsts DefCFAOffsetCandidates;
771 bool HasFP = hasFP(MF);
772
773 if (!AFI->hasStackFrame() &&
774 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
775 if (NumBytes != 0) {
776 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
777 MachineInstr::FrameSetup);
778 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true);
779 }
780 if (!NeedsWinCFI)
781 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
782 if (NeedsWinCFI && MBBI != MBB.begin()) {
783 insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup);
784 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd))
785 .setMIFlag(MachineInstr::FrameSetup);
786 MF.setHasWinCFI(true);
787 }
788 return;
789 }
790
791 // Determine spill area sizes.
792 if (STI.splitFramePointerPush(MF)) {
793 for (const CalleeSavedInfo &I : CSI) {
794 Register Reg = I.getReg();
795 int FI = I.getFrameIdx();
796 switch (Reg) {
797 case ARM::R11:
798 case ARM::LR:
799 if (Reg == FramePtr)
800 FramePtrSpillFI = FI;
801 GPRCS2Size += 4;
802 break;
803 case ARM::R0:
804 case ARM::R1:
805 case ARM::R2:
806 case ARM::R3:
807 case ARM::R4:
808 case ARM::R5:
809 case ARM::R6:
810 case ARM::R7:
811 case ARM::R8:
812 case ARM::R9:
813 case ARM::R10:
814 case ARM::R12:
815 GPRCS1Size += 4;
816 break;
817 case ARM::FPCXTNS:
818 FPCXTSaveSize = 4;
819 break;
820 default:
821 // This is a DPR. Exclude the aligned DPRCS2 spills.
822 if (Reg == ARM::D8)
823 D8SpillFI = FI;
824 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
825 DPRCSSize += 8;
826 }
827 }
828 } else {
829 for (const CalleeSavedInfo &I : CSI) {
830 Register Reg = I.getReg();
831 int FI = I.getFrameIdx();
832 switch (Reg) {
833 case ARM::R8:
834 case ARM::R9:
835 case ARM::R10:
836 case ARM::R11:
837 case ARM::R12:
838 if (STI.splitFramePushPop(MF)) {
839 GPRCS2Size += 4;
840 break;
841 }
842 [[fallthrough]];
843 case ARM::R0:
844 case ARM::R1:
845 case ARM::R2:
846 case ARM::R3:
847 case ARM::R4:
848 case ARM::R5:
849 case ARM::R6:
850 case ARM::R7:
851 case ARM::LR:
852 if (Reg == FramePtr)
853 FramePtrSpillFI = FI;
854 GPRCS1Size += 4;
855 break;
856 case ARM::FPCXTNS:
857 FPCXTSaveSize = 4;
858 break;
859 default:
860 // This is a DPR. Exclude the aligned DPRCS2 spills.
861 if (Reg == ARM::D8)
862 D8SpillFI = FI;
863 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
864 DPRCSSize += 8;
865 }
866 }
867 }
868
869 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
870
871 // Move past the PAC computation.
872 if (AFI->shouldSignReturnAddress())
873 LastPush = MBBI++;
874
875 // Move past FPCXT area.
876 if (FPCXTSaveSize > 0) {
877 LastPush = MBBI++;
878 DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true);
879 }
880
881 // Allocate the vararg register save area.
882 if (ArgRegsSaveSize) {
883 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
884 MachineInstr::FrameSetup);
885 LastPush = std::prev(MBBI);
886 DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true);
887 }
888
889 // Move past area 1.
890 if (GPRCS1Size > 0) {
891 GPRCS1Push = LastPush = MBBI++;
892 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
893 }
894
895 // Determine starting offsets of spill areas.
896 unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize;
897 unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size;
898 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
899 Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4);
900 unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize;
901 if (!STI.splitFramePointerPush(MF)) {
902 DPRGapSize += GPRCS2Size;
903 }
904 DPRGapSize %= DPRAlign.value();
905
906 unsigned DPRCSOffset;
907 if (STI.splitFramePointerPush(MF)) {
908 DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize;
909 GPRCS2Offset = DPRCSOffset - GPRCS2Size;
910 } else {
911 DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
912 }
913 int FramePtrOffsetInPush = 0;
914 if (HasFP) {
915 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
916 assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset &&
917 "Max FP estimation is wrong");
918 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize;
919 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
920 NumBytes);
921 }
922 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
923 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
924 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
925
926 // Move past area 2.
927 if (GPRCS2Size > 0 && !STI.splitFramePointerPush(MF)) {
928 GPRCS2Push = LastPush = MBBI++;
929 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
930 }
931
932 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
933 // .cfi_offset operations will reflect that.
934 if (DPRGapSize) {
935 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
936 if (LastPush != MBB.end() &&
937 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
938 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
939 else {
940 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
941 MachineInstr::FrameSetup);
942 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
943 }
944 }
945
946 // Move past area 3.
947 if (DPRCSSize > 0) {
948 // Since vpush register list cannot have gaps, there may be multiple vpush
949 // instructions in the prologue.
950 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
951 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
952 LastPush = MBBI++;
953 }
954 }
955
956 // Move past the aligned DPRCS2 area.
957 if (AFI->getNumAlignedDPRCS2Regs() > 0) {
958 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
959 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
960 // leaves the stack pointer pointing to the DPRCS2 area.
961 //
962 // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
963 NumBytes += MFI.getObjectOffset(D8SpillFI);
964 } else
965 NumBytes = DPRCSOffset;
966
967 if (GPRCS2Size > 0 && STI.splitFramePointerPush(MF)) {
968 GPRCS2Push = LastPush = MBBI++;
969 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
970 }
971
972 bool NeedsWinCFIStackAlloc = NeedsWinCFI;
973 if (STI.splitFramePointerPush(MF) && HasFP)
974 NeedsWinCFIStackAlloc = false;
975
976 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
977 uint32_t NumWords = NumBytes >> 2;
978
979 if (NumWords < 65536) {
980 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
981 .addImm(NumWords)
982 .setMIFlags(MachineInstr::FrameSetup)
983 .add(predOps(ARMCC::AL));
984 } else {
985 // Split into two instructions here, instead of using t2MOVi32imm,
986 // to allow inserting accurate SEH instructions (including accurate
987 // instruction size for each of them).
988 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
989 .addImm(NumWords & 0xffff)
990 .setMIFlags(MachineInstr::FrameSetup)
991 .add(predOps(ARMCC::AL));
992 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4)
993 .addReg(ARM::R4)
994 .addImm(NumWords >> 16)
995 .setMIFlags(MachineInstr::FrameSetup)
996 .add(predOps(ARMCC::AL));
997 }
998
999 switch (TM.getCodeModel()) {
1000 case CodeModel::Tiny:
1001 llvm_unreachable("Tiny code model not available on ARM.");
1002 case CodeModel::Small:
1003 case CodeModel::Medium:
1004 case CodeModel::Kernel:
1005 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
1006 .add(predOps(ARMCC::AL))
1007 .addExternalSymbol("__chkstk")
1008 .addReg(ARM::R4, RegState::Implicit)
1009 .setMIFlags(MachineInstr::FrameSetup);
1010 break;
1011 case CodeModel::Large:
1012 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
1013 .addExternalSymbol("__chkstk")
1014 .setMIFlags(MachineInstr::FrameSetup);
1015
1016 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
1017 .add(predOps(ARMCC::AL))
1018 .addReg(ARM::R12, RegState::Kill)
1019 .addReg(ARM::R4, RegState::Implicit)
1020 .setMIFlags(MachineInstr::FrameSetup);
1021 break;
1022 }
1023
1024 MachineInstrBuilder Instr, SEH;
1025 Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
1026 .addReg(ARM::SP, RegState::Kill)
1027 .addReg(ARM::R4, RegState::Kill)
1028 .setMIFlags(MachineInstr::FrameSetup)
1029 .add(predOps(ARMCC::AL))
1030 .add(condCodeOp());
1031 if (NeedsWinCFIStackAlloc) {
1032 SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc))
1033 .addImm(NumBytes)
1034 .addImm(/*Wide=*/1)
1035 .setMIFlags(MachineInstr::FrameSetup);
1036 MBB.insertAfter(Instr, SEH);
1037 }
1038 NumBytes = 0;
1039 }
1040
1041 if (NumBytes) {
1042 // Adjust SP after all the callee-save spills.
1043 if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
1044 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
1045 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
1046 else {
1047 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
1048 MachineInstr::FrameSetup);
1049 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
1050 }
1051
1052 if (HasFP && isARM)
1053 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
1054 // Note it's not safe to do this in Thumb2 mode because it would have
1055 // taken two instructions:
1056 // mov sp, r7
1057 // sub sp, #24
1058 // If an interrupt is taken between the two instructions, then sp is in
1059 // an inconsistent state (pointing to the middle of callee-saved area).
1060 // The interrupt handler can end up clobbering the registers.
1061 AFI->setShouldRestoreSPFromFP(true);
1062 }
1063
1064 // Set FP to point to the stack slot that contains the previous FP.
1065 // For iOS, FP is R7, which has now been stored in spill area 1.
1066 // Otherwise, if this is not iOS, all the callee-saved registers go
1067 // into spill area 1, including the FP in R11. In either case, it
1068 // is in area one and the adjustment needs to take place just after
1069 // that push.
1070 // FIXME: The above is not necessary true when PACBTI is enabled.
1071 // AAPCS requires use of R11, and PACBTI gets in the way of regular pushes,
1072 // so FP ends up on area two.
1073 MachineBasicBlock::iterator AfterPush;
1074 if (HasFP) {
1075 AfterPush = std::next(GPRCS1Push);
1076 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
1077 int FPOffset = PushSize + FramePtrOffsetInPush;
1078 if (STI.splitFramePointerPush(MF)) {
1079 AfterPush = std::next(GPRCS2Push);
1080 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1081 FramePtr, ARM::SP, 0, MachineInstr::FrameSetup);
1082 } else {
1083 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1084 FramePtr, ARM::SP, FPOffset,
1085 MachineInstr::FrameSetup);
1086 }
1087 if (!NeedsWinCFI) {
1088 if (FramePtrOffsetInPush + PushSize != 0) {
1089 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1090 nullptr, MRI->getDwarfRegNum(FramePtr, true),
1091 FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush));
1092 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1093 .addCFIIndex(CFIIndex)
1094 .setMIFlags(MachineInstr::FrameSetup);
1095 } else {
1096 unsigned CFIIndex =
1097 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
1098 nullptr, MRI->getDwarfRegNum(FramePtr, true)));
1099 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1100 .addCFIIndex(CFIIndex)
1101 .setMIFlags(MachineInstr::FrameSetup);
1102 }
1103 }
1104 }
1105
1106 // Emit a SEH opcode indicating the prologue end. The rest of the prologue
1107 // instructions below don't need to be replayed to unwind the stack.
1108 if (NeedsWinCFI && MBBI != MBB.begin()) {
1109 MachineBasicBlock::iterator End = MBBI;
1110 if (HasFP && STI.splitFramePointerPush(MF))
1111 End = AfterPush;
1112 insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup);
1113 BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd))
1114 .setMIFlag(MachineInstr::FrameSetup);
1115 MF.setHasWinCFI(true);
1116 }
1117
1118 // Now that the prologue's actual instructions are finalised, we can insert
1119 // the necessary DWARF cf instructions to describe the situation. Start by
1120 // recording where each register ended up:
1121 if (GPRCS1Size > 0 && !NeedsWinCFI) {
1122 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
1123 int CFIIndex;
1124 for (const auto &Entry : CSI) {
1125 Register Reg = Entry.getReg();
1126 int FI = Entry.getFrameIdx();
1127 switch (Reg) {
1128 case ARM::R8:
1129 case ARM::R9:
1130 case ARM::R10:
1131 case ARM::R11:
1132 case ARM::R12:
1133 if (STI.splitFramePushPop(MF))
1134 break;
1135 [[fallthrough]];
1136 case ARM::R0:
1137 case ARM::R1:
1138 case ARM::R2:
1139 case ARM::R3:
1140 case ARM::R4:
1141 case ARM::R5:
1142 case ARM::R6:
1143 case ARM::R7:
1144 case ARM::LR:
1145 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1146 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
1147 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1148 .addCFIIndex(CFIIndex)
1149 .setMIFlags(MachineInstr::FrameSetup);
1150 break;
1151 }
1152 }
1153 }
1154
1155 if (GPRCS2Size > 0 && !NeedsWinCFI) {
1156 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
1157 for (const auto &Entry : CSI) {
1158 Register Reg = Entry.getReg();
1159 int FI = Entry.getFrameIdx();
1160 switch (Reg) {
1161 case ARM::R8:
1162 case ARM::R9:
1163 case ARM::R10:
1164 case ARM::R11:
1165 case ARM::R12:
1166 if (STI.splitFramePushPop(MF)) {
1167 unsigned DwarfReg = MRI->getDwarfRegNum(
1168 Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, true);
1169 unsigned Offset = MFI.getObjectOffset(FI);
1170 unsigned CFIIndex = MF.addFrameInst(
1171 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
1172 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1173 .addCFIIndex(CFIIndex)
1174 .setMIFlags(MachineInstr::FrameSetup);
1175 }
1176 break;
1177 }
1178 }
1179 }
1180
1181 if (DPRCSSize > 0 && !NeedsWinCFI) {
1182 // Since vpush register list cannot have gaps, there may be multiple vpush
1183 // instructions in the prologue.
1184 MachineBasicBlock::iterator Pos = std::next(LastPush);
1185 for (const auto &Entry : CSI) {
1186 Register Reg = Entry.getReg();
1187 int FI = Entry.getFrameIdx();
1188 if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
1189 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
1190 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
1191 unsigned Offset = MFI.getObjectOffset(FI);
1192 unsigned CFIIndex = MF.addFrameInst(
1193 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
1194 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1195 .addCFIIndex(CFIIndex)
1196 .setMIFlags(MachineInstr::FrameSetup);
1197 }
1198 }
1199 }
1200
1201 // Now we can emit descriptions of where the canonical frame address was
1202 // throughout the process. If we have a frame pointer, it takes over the job
1203 // half-way through, so only the first few .cfi_def_cfa_offset instructions
1204 // actually get emitted.
1205 if (!NeedsWinCFI)
1206 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
1207
1208 if (STI.isTargetELF() && hasFP(MF))
1209 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
1210 AFI->getFramePtrSpillOffset());
1211
1212 AFI->setFPCXTSaveAreaSize(FPCXTSaveSize);
1213 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
1214 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
1215 AFI->setDPRCalleeSavedGapSize(DPRGapSize);
1216 AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
1217
1218 // If we need dynamic stack realignment, do it here. Be paranoid and make
1219 // sure if we also have VLAs, we have a base pointer for frame access.
1220 // If aligned NEON registers were spilled, the stack has already been
1221 // realigned.
1222 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) {
1223 Align MaxAlign = MFI.getMaxAlign();
1224 assert(!AFI->isThumb1OnlyFunction());
1225 if (!AFI->isThumbFunction()) {
1226 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
1227 false);
1228 } else {
1229 // We cannot use sp as source/dest register here, thus we're using r4 to
1230 // perform the calculations. We're emitting the following sequence:
1231 // mov r4, sp
1232 // -- use emitAligningInstructions to produce best sequence to zero
1233 // -- out lower bits in r4
1234 // mov sp, r4
1235 // FIXME: It will be better just to find spare register here.
1236 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
1237 .addReg(ARM::SP, RegState::Kill)
1238 .add(predOps(ARMCC::AL));
1239 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
1240 false);
1241 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1242 .addReg(ARM::R4, RegState::Kill)
1243 .add(predOps(ARMCC::AL));
1244 }
1245
1246 AFI->setShouldRestoreSPFromFP(true);
1247 }
1248
1249 // If we need a base pointer, set it up here. It's whatever the value
1250 // of the stack pointer is at this point. Any variable size objects
1251 // will be allocated after this, so we can still use the base pointer
1252 // to reference locals.
1253 // FIXME: Clarify FrameSetup flags here.
1254 if (RegInfo->hasBasePointer(MF)) {
1255 if (isARM)
1256 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
1257 .addReg(ARM::SP)
1258 .add(predOps(ARMCC::AL))
1259 .add(condCodeOp());
1260 else
1261 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
1262 .addReg(ARM::SP)
1263 .add(predOps(ARMCC::AL));
1264 }
1265
1266 // If the frame has variable sized objects then the epilogue must restore
1267 // the sp from fp. We can assume there's an FP here since hasFP already
1268 // checks for hasVarSizedObjects.
1269 if (MFI.hasVarSizedObjects())
1270 AFI->setShouldRestoreSPFromFP(true);
1271 }
1272
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const1273 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
1274 MachineBasicBlock &MBB) const {
1275 MachineFrameInfo &MFI = MF.getFrameInfo();
1276 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1277 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
1278 const ARMBaseInstrInfo &TII =
1279 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1280 assert(!AFI->isThumb1OnlyFunction() &&
1281 "This emitEpilogue does not support Thumb1!");
1282 bool isARM = !AFI->isThumbFunction();
1283
1284 // Amount of stack space we reserved next to incoming args for either
1285 // varargs registers or stack arguments in tail calls made by this function.
1286 unsigned ReservedArgStack = AFI->getArgRegsSaveSize();
1287
1288 // How much of the stack used by incoming arguments this function is expected
1289 // to restore in this particular epilogue.
1290 int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB);
1291 int NumBytes = (int)MFI.getStackSize();
1292 Register FramePtr = RegInfo->getFrameRegister(MF);
1293
1294 // All calls are tail calls in GHC calling conv, and functions have no
1295 // prologue/epilogue.
1296 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1297 return;
1298
1299 // First put ourselves on the first (from top) terminator instructions.
1300 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1301 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1302
1303 MachineBasicBlock::iterator RangeStart;
1304 if (!AFI->hasStackFrame()) {
1305 if (MF.hasWinCFI()) {
1306 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1307 .setMIFlag(MachineInstr::FrameDestroy);
1308 RangeStart = initMBBRange(MBB, MBBI);
1309 }
1310
1311 if (NumBytes + IncomingArgStackToRestore != 0)
1312 emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1313 NumBytes + IncomingArgStackToRestore,
1314 MachineInstr::FrameDestroy);
1315 } else {
1316 // Unwind MBBI to point to first LDR / VLDRD.
1317 if (MBBI != MBB.begin()) {
1318 do {
1319 --MBBI;
1320 } while (MBBI != MBB.begin() &&
1321 MBBI->getFlag(MachineInstr::FrameDestroy));
1322 if (!MBBI->getFlag(MachineInstr::FrameDestroy))
1323 ++MBBI;
1324 }
1325
1326 if (MF.hasWinCFI()) {
1327 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1328 .setMIFlag(MachineInstr::FrameDestroy);
1329 RangeStart = initMBBRange(MBB, MBBI);
1330 }
1331
1332 // Move SP to start of FP callee save spill area.
1333 NumBytes -= (ReservedArgStack +
1334 AFI->getFPCXTSaveAreaSize() +
1335 AFI->getGPRCalleeSavedArea1Size() +
1336 AFI->getGPRCalleeSavedArea2Size() +
1337 AFI->getDPRCalleeSavedGapSize() +
1338 AFI->getDPRCalleeSavedAreaSize());
1339
1340 // Reset SP based on frame pointer only if the stack frame extends beyond
1341 // frame pointer stack slot or target is ELF and the function has FP.
1342 if (AFI->shouldRestoreSPFromFP()) {
1343 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
1344 if (NumBytes) {
1345 if (isARM)
1346 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
1347 ARMCC::AL, 0, TII,
1348 MachineInstr::FrameDestroy);
1349 else {
1350 // It's not possible to restore SP from FP in a single instruction.
1351 // For iOS, this looks like:
1352 // mov sp, r7
1353 // sub sp, #24
1354 // This is bad, if an interrupt is taken after the mov, sp is in an
1355 // inconsistent state.
1356 // Use the first callee-saved register as a scratch register.
1357 assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
1358 "No scratch register to restore SP from FP!");
1359 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
1360 ARMCC::AL, 0, TII, MachineInstr::FrameDestroy);
1361 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1362 .addReg(ARM::R4)
1363 .add(predOps(ARMCC::AL))
1364 .setMIFlag(MachineInstr::FrameDestroy);
1365 }
1366 } else {
1367 // Thumb2 or ARM.
1368 if (isARM)
1369 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
1370 .addReg(FramePtr)
1371 .add(predOps(ARMCC::AL))
1372 .add(condCodeOp())
1373 .setMIFlag(MachineInstr::FrameDestroy);
1374 else
1375 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1376 .addReg(FramePtr)
1377 .add(predOps(ARMCC::AL))
1378 .setMIFlag(MachineInstr::FrameDestroy);
1379 }
1380 } else if (NumBytes &&
1381 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
1382 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes,
1383 MachineInstr::FrameDestroy);
1384
1385 // Increment past our save areas.
1386 if (AFI->getGPRCalleeSavedArea2Size() && STI.splitFramePointerPush(MF))
1387 MBBI++;
1388
1389 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
1390 MBBI++;
1391 // Since vpop register list cannot have gaps, there may be multiple vpop
1392 // instructions in the epilogue.
1393 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
1394 MBBI++;
1395 }
1396 if (AFI->getDPRCalleeSavedGapSize()) {
1397 assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
1398 "unexpected DPR alignment gap");
1399 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(),
1400 MachineInstr::FrameDestroy);
1401 }
1402
1403 if (AFI->getGPRCalleeSavedArea2Size() && !STI.splitFramePointerPush(MF))
1404 MBBI++;
1405 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
1406
1407 if (ReservedArgStack || IncomingArgStackToRestore) {
1408 assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 &&
1409 "attempting to restore negative stack amount");
1410 emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1411 ReservedArgStack + IncomingArgStackToRestore,
1412 MachineInstr::FrameDestroy);
1413 }
1414
1415 // Validate PAC, It should have been already popped into R12. For CMSE entry
1416 // function, the validation instruction is emitted during expansion of the
1417 // tBXNS_RET, since the validation must use the value of SP at function
1418 // entry, before saving, resp. after restoring, FPCXTNS.
1419 if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction())
1420 BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT));
1421 }
1422
1423 if (MF.hasWinCFI()) {
1424 insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy);
1425 BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd))
1426 .setMIFlag(MachineInstr::FrameDestroy);
1427 }
1428 }
1429
1430 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1431 /// debug info. It's the same as what we use for resolving the code-gen
1432 /// references for now. FIXME: This can go wrong when references are
1433 /// SP-relative and simple call frames aren't used.
getFrameIndexReference(const MachineFunction & MF,int FI,Register & FrameReg) const1434 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF,
1435 int FI,
1436 Register &FrameReg) const {
1437 return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0));
1438 }
1439
ResolveFrameIndexReference(const MachineFunction & MF,int FI,Register & FrameReg,int SPAdj) const1440 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
1441 int FI, Register &FrameReg,
1442 int SPAdj) const {
1443 const MachineFrameInfo &MFI = MF.getFrameInfo();
1444 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1445 MF.getSubtarget().getRegisterInfo());
1446 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1447 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
1448 int FPOffset = Offset - AFI->getFramePtrSpillOffset();
1449 bool isFixed = MFI.isFixedObjectIndex(FI);
1450
1451 FrameReg = ARM::SP;
1452 Offset += SPAdj;
1453
1454 // SP can move around if there are allocas. We may also lose track of SP
1455 // when emergency spilling inside a non-reserved call frame setup.
1456 bool hasMovingSP = !hasReservedCallFrame(MF);
1457
1458 // When dynamically realigning the stack, use the frame pointer for
1459 // parameters, and the stack/base pointer for locals.
1460 if (RegInfo->hasStackRealignment(MF)) {
1461 assert(hasFP(MF) && "dynamic stack realignment without a FP!");
1462 if (isFixed) {
1463 FrameReg = RegInfo->getFrameRegister(MF);
1464 Offset = FPOffset;
1465 } else if (hasMovingSP) {
1466 assert(RegInfo->hasBasePointer(MF) &&
1467 "VLAs and dynamic stack alignment, but missing base pointer!");
1468 FrameReg = RegInfo->getBaseRegister();
1469 Offset -= SPAdj;
1470 }
1471 return Offset;
1472 }
1473
1474 // If there is a frame pointer, use it when we can.
1475 if (hasFP(MF) && AFI->hasStackFrame()) {
1476 // Use frame pointer to reference fixed objects. Use it for locals if
1477 // there are VLAs (and thus the SP isn't reliable as a base).
1478 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
1479 FrameReg = RegInfo->getFrameRegister(MF);
1480 return FPOffset;
1481 } else if (hasMovingSP) {
1482 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
1483 if (AFI->isThumb2Function()) {
1484 // Try to use the frame pointer if we can, else use the base pointer
1485 // since it's available. This is handy for the emergency spill slot, in
1486 // particular.
1487 if (FPOffset >= -255 && FPOffset < 0) {
1488 FrameReg = RegInfo->getFrameRegister(MF);
1489 return FPOffset;
1490 }
1491 }
1492 } else if (AFI->isThumbFunction()) {
1493 // Prefer SP to base pointer, if the offset is suitably aligned and in
1494 // range as the effective range of the immediate offset is bigger when
1495 // basing off SP.
1496 // Use add <rd>, sp, #<imm8>
1497 // ldr <rd>, [sp, #<imm8>]
1498 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
1499 return Offset;
1500 // In Thumb2 mode, the negative offset is very limited. Try to avoid
1501 // out of range references. ldr <rt>,[<rn>, #-<imm8>]
1502 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
1503 FrameReg = RegInfo->getFrameRegister(MF);
1504 return FPOffset;
1505 }
1506 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
1507 // Otherwise, use SP or FP, whichever is closer to the stack slot.
1508 FrameReg = RegInfo->getFrameRegister(MF);
1509 return FPOffset;
1510 }
1511 }
1512 // Use the base pointer if we have one.
1513 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
1514 // That can happen if we forced a base pointer for a large call frame.
1515 if (RegInfo->hasBasePointer(MF)) {
1516 FrameReg = RegInfo->getBaseRegister();
1517 Offset -= SPAdj;
1518 }
1519 return Offset;
1520 }
1521
emitPushInst(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,ArrayRef<CalleeSavedInfo> CSI,unsigned StmOpc,unsigned StrOpc,bool NoGap,bool (* Func)(unsigned,bool),unsigned NumAlignedDPRCS2Regs,unsigned MIFlags) const1522 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
1523 MachineBasicBlock::iterator MI,
1524 ArrayRef<CalleeSavedInfo> CSI,
1525 unsigned StmOpc, unsigned StrOpc,
1526 bool NoGap, bool (*Func)(unsigned, bool),
1527 unsigned NumAlignedDPRCS2Regs,
1528 unsigned MIFlags) const {
1529 MachineFunction &MF = *MBB.getParent();
1530 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1531 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1532
1533 DebugLoc DL;
1534
1535 using RegAndKill = std::pair<unsigned, bool>;
1536
1537 SmallVector<RegAndKill, 4> Regs;
1538 unsigned i = CSI.size();
1539 while (i != 0) {
1540 unsigned LastReg = 0;
1541 for (; i != 0; --i) {
1542 Register Reg = CSI[i-1].getReg();
1543 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1544
1545 // D-registers in the aligned area DPRCS2 are NOT spilled here.
1546 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1547 continue;
1548
1549 const MachineRegisterInfo &MRI = MF.getRegInfo();
1550 bool isLiveIn = MRI.isLiveIn(Reg);
1551 if (!isLiveIn && !MRI.isReserved(Reg))
1552 MBB.addLiveIn(Reg);
1553 // If NoGap is true, push consecutive registers and then leave the rest
1554 // for other instructions. e.g.
1555 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1556 if (NoGap && LastReg && LastReg != Reg-1)
1557 break;
1558 LastReg = Reg;
1559 // Do not set a kill flag on values that are also marked as live-in. This
1560 // happens with the @llvm-returnaddress intrinsic and with arguments
1561 // passed in callee saved registers.
1562 // Omitting the kill flags is conservatively correct even if the live-in
1563 // is not used after all.
1564 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1565 }
1566
1567 if (Regs.empty())
1568 continue;
1569
1570 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1571 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1572 });
1573
1574 if (Regs.size() > 1 || StrOpc== 0) {
1575 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1576 .addReg(ARM::SP)
1577 .setMIFlags(MIFlags)
1578 .add(predOps(ARMCC::AL));
1579 for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1580 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1581 } else if (Regs.size() == 1) {
1582 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1583 .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1584 .addReg(ARM::SP)
1585 .setMIFlags(MIFlags)
1586 .addImm(-4)
1587 .add(predOps(ARMCC::AL));
1588 }
1589 Regs.clear();
1590
1591 // Put any subsequent vpush instructions before this one: they will refer to
1592 // higher register numbers so need to be pushed first in order to preserve
1593 // monotonicity.
1594 if (MI != MBB.begin())
1595 --MI;
1596 }
1597 }
1598
emitPopInst(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,MutableArrayRef<CalleeSavedInfo> CSI,unsigned LdmOpc,unsigned LdrOpc,bool isVarArg,bool NoGap,bool (* Func)(unsigned,bool),unsigned NumAlignedDPRCS2Regs) const1599 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1600 MachineBasicBlock::iterator MI,
1601 MutableArrayRef<CalleeSavedInfo> CSI,
1602 unsigned LdmOpc, unsigned LdrOpc,
1603 bool isVarArg, bool NoGap,
1604 bool (*Func)(unsigned, bool),
1605 unsigned NumAlignedDPRCS2Regs) const {
1606 MachineFunction &MF = *MBB.getParent();
1607 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1608 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1609 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1610 bool hasPAC = AFI->shouldSignReturnAddress();
1611 DebugLoc DL;
1612 bool isTailCall = false;
1613 bool isInterrupt = false;
1614 bool isTrap = false;
1615 bool isCmseEntry = false;
1616 if (MBB.end() != MI) {
1617 DL = MI->getDebugLoc();
1618 unsigned RetOpcode = MI->getOpcode();
1619 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
1620 isInterrupt =
1621 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1622 isTrap =
1623 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1624 RetOpcode == ARM::tTRAP;
1625 isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET);
1626 }
1627
1628 SmallVector<unsigned, 4> Regs;
1629 unsigned i = CSI.size();
1630 while (i != 0) {
1631 unsigned LastReg = 0;
1632 bool DeleteRet = false;
1633 for (; i != 0; --i) {
1634 CalleeSavedInfo &Info = CSI[i-1];
1635 Register Reg = Info.getReg();
1636 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1637
1638 // The aligned reloads from area DPRCS2 are not inserted here.
1639 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1640 continue;
1641 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1642 !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 &&
1643 STI.hasV5TOps() && MBB.succ_empty() && !hasPAC &&
1644 !STI.splitFramePointerPush(MF)) {
1645 Reg = ARM::PC;
1646 // Fold the return instruction into the LDM.
1647 DeleteRet = true;
1648 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1649 // We 'restore' LR into PC so it is not live out of the return block:
1650 // Clear Restored bit.
1651 Info.setRestored(false);
1652 }
1653
1654 // If NoGap is true, pop consecutive registers and then leave the rest
1655 // for other instructions. e.g.
1656 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1657 if (NoGap && LastReg && LastReg != Reg-1)
1658 break;
1659
1660 LastReg = Reg;
1661 Regs.push_back(Reg);
1662 }
1663
1664 if (Regs.empty())
1665 continue;
1666
1667 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1668 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1669 });
1670
1671 if (Regs.size() > 1 || LdrOpc == 0) {
1672 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1673 .addReg(ARM::SP)
1674 .add(predOps(ARMCC::AL))
1675 .setMIFlags(MachineInstr::FrameDestroy);
1676 for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1677 MIB.addReg(Regs[i], getDefRegState(true));
1678 if (DeleteRet) {
1679 if (MI != MBB.end()) {
1680 MIB.copyImplicitOps(*MI);
1681 MI->eraseFromParent();
1682 }
1683 }
1684 MI = MIB;
1685 } else if (Regs.size() == 1) {
1686 // If we adjusted the reg to PC from LR above, switch it back here. We
1687 // only do that for LDM.
1688 if (Regs[0] == ARM::PC)
1689 Regs[0] = ARM::LR;
1690 MachineInstrBuilder MIB =
1691 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1692 .addReg(ARM::SP, RegState::Define)
1693 .addReg(ARM::SP)
1694 .setMIFlags(MachineInstr::FrameDestroy);
1695 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1696 // that refactoring is complete (eventually).
1697 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1698 MIB.addReg(0);
1699 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1700 } else
1701 MIB.addImm(4);
1702 MIB.add(predOps(ARMCC::AL));
1703 }
1704 Regs.clear();
1705
1706 // Put any subsequent vpop instructions after this one: they will refer to
1707 // higher register numbers so need to be popped afterwards.
1708 if (MI != MBB.end())
1709 ++MI;
1710 }
1711 }
1712
1713 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1714 /// starting from d8. Also insert stack realignment code and leave the stack
1715 /// pointer pointing to the d8 spill slot.
emitAlignedDPRCS2Spills(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned NumAlignedDPRCS2Regs,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI)1716 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1717 MachineBasicBlock::iterator MI,
1718 unsigned NumAlignedDPRCS2Regs,
1719 ArrayRef<CalleeSavedInfo> CSI,
1720 const TargetRegisterInfo *TRI) {
1721 MachineFunction &MF = *MBB.getParent();
1722 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1723 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1724 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1725 MachineFrameInfo &MFI = MF.getFrameInfo();
1726
1727 // Mark the D-register spill slots as properly aligned. Since MFI computes
1728 // stack slot layout backwards, this can actually mean that the d-reg stack
1729 // slot offsets can be wrong. The offset for d8 will always be correct.
1730 for (const CalleeSavedInfo &I : CSI) {
1731 unsigned DNum = I.getReg() - ARM::D8;
1732 if (DNum > NumAlignedDPRCS2Regs - 1)
1733 continue;
1734 int FI = I.getFrameIdx();
1735 // The even-numbered registers will be 16-byte aligned, the odd-numbered
1736 // registers will be 8-byte aligned.
1737 MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16));
1738
1739 // The stack slot for D8 needs to be maximally aligned because this is
1740 // actually the point where we align the stack pointer. MachineFrameInfo
1741 // computes all offsets relative to the incoming stack pointer which is a
1742 // bit weird when realigning the stack. Any extra padding for this
1743 // over-alignment is not realized because the code inserted below adjusts
1744 // the stack pointer by numregs * 8 before aligning the stack pointer.
1745 if (DNum == 0)
1746 MFI.setObjectAlignment(FI, MFI.getMaxAlign());
1747 }
1748
1749 // Move the stack pointer to the d8 spill slot, and align it at the same
1750 // time. Leave the stack slot address in the scratch register r4.
1751 //
1752 // sub r4, sp, #numregs * 8
1753 // bic r4, r4, #align - 1
1754 // mov sp, r4
1755 //
1756 bool isThumb = AFI->isThumbFunction();
1757 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1758 AFI->setShouldRestoreSPFromFP(true);
1759
1760 // sub r4, sp, #numregs * 8
1761 // The immediate is <= 64, so it doesn't need any special encoding.
1762 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1763 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1764 .addReg(ARM::SP)
1765 .addImm(8 * NumAlignedDPRCS2Regs)
1766 .add(predOps(ARMCC::AL))
1767 .add(condCodeOp());
1768
1769 Align MaxAlign = MF.getFrameInfo().getMaxAlign();
1770 // We must set parameter MustBeSingleInstruction to true, since
1771 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1772 // stack alignment. Luckily, this can always be done since all ARM
1773 // architecture versions that support Neon also support the BFC
1774 // instruction.
1775 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1776
1777 // mov sp, r4
1778 // The stack pointer must be adjusted before spilling anything, otherwise
1779 // the stack slots could be clobbered by an interrupt handler.
1780 // Leave r4 live, it is used below.
1781 Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1782 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1783 .addReg(ARM::R4)
1784 .add(predOps(ARMCC::AL));
1785 if (!isThumb)
1786 MIB.add(condCodeOp());
1787
1788 // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1789 // r4 holds the stack slot address.
1790 unsigned NextReg = ARM::D8;
1791
1792 // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1793 // The writeback is only needed when emitting two vst1.64 instructions.
1794 if (NumAlignedDPRCS2Regs >= 6) {
1795 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1796 &ARM::QQPRRegClass);
1797 MBB.addLiveIn(SupReg);
1798 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1799 .addReg(ARM::R4, RegState::Kill)
1800 .addImm(16)
1801 .addReg(NextReg)
1802 .addReg(SupReg, RegState::ImplicitKill)
1803 .add(predOps(ARMCC::AL));
1804 NextReg += 4;
1805 NumAlignedDPRCS2Regs -= 4;
1806 }
1807
1808 // We won't modify r4 beyond this point. It currently points to the next
1809 // register to be spilled.
1810 unsigned R4BaseReg = NextReg;
1811
1812 // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1813 if (NumAlignedDPRCS2Regs >= 4) {
1814 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1815 &ARM::QQPRRegClass);
1816 MBB.addLiveIn(SupReg);
1817 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1818 .addReg(ARM::R4)
1819 .addImm(16)
1820 .addReg(NextReg)
1821 .addReg(SupReg, RegState::ImplicitKill)
1822 .add(predOps(ARMCC::AL));
1823 NextReg += 4;
1824 NumAlignedDPRCS2Regs -= 4;
1825 }
1826
1827 // 16-byte aligned vst1.64 with 2 d-regs.
1828 if (NumAlignedDPRCS2Regs >= 2) {
1829 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1830 &ARM::QPRRegClass);
1831 MBB.addLiveIn(SupReg);
1832 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1833 .addReg(ARM::R4)
1834 .addImm(16)
1835 .addReg(SupReg)
1836 .add(predOps(ARMCC::AL));
1837 NextReg += 2;
1838 NumAlignedDPRCS2Regs -= 2;
1839 }
1840
1841 // Finally, use a vanilla vstr.64 for the odd last register.
1842 if (NumAlignedDPRCS2Regs) {
1843 MBB.addLiveIn(NextReg);
1844 // vstr.64 uses addrmode5 which has an offset scale of 4.
1845 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1846 .addReg(NextReg)
1847 .addReg(ARM::R4)
1848 .addImm((NextReg - R4BaseReg) * 2)
1849 .add(predOps(ARMCC::AL));
1850 }
1851
1852 // The last spill instruction inserted should kill the scratch register r4.
1853 std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1854 }
1855
1856 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1857 /// iterator to the following instruction.
1858 static MachineBasicBlock::iterator
skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,unsigned NumAlignedDPRCS2Regs)1859 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1860 unsigned NumAlignedDPRCS2Regs) {
1861 // sub r4, sp, #numregs * 8
1862 // bic r4, r4, #align - 1
1863 // mov sp, r4
1864 ++MI; ++MI; ++MI;
1865 assert(MI->mayStore() && "Expecting spill instruction");
1866
1867 // These switches all fall through.
1868 switch(NumAlignedDPRCS2Regs) {
1869 case 7:
1870 ++MI;
1871 assert(MI->mayStore() && "Expecting spill instruction");
1872 [[fallthrough]];
1873 default:
1874 ++MI;
1875 assert(MI->mayStore() && "Expecting spill instruction");
1876 [[fallthrough]];
1877 case 1:
1878 case 2:
1879 case 4:
1880 assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
1881 ++MI;
1882 }
1883 return MI;
1884 }
1885
1886 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1887 /// starting from d8. These instructions are assumed to execute while the
1888 /// stack is still aligned, unlike the code inserted by emitPopInst.
emitAlignedDPRCS2Restores(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned NumAlignedDPRCS2Regs,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI)1889 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1890 MachineBasicBlock::iterator MI,
1891 unsigned NumAlignedDPRCS2Regs,
1892 ArrayRef<CalleeSavedInfo> CSI,
1893 const TargetRegisterInfo *TRI) {
1894 MachineFunction &MF = *MBB.getParent();
1895 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1896 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1897 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1898
1899 // Find the frame index assigned to d8.
1900 int D8SpillFI = 0;
1901 for (const CalleeSavedInfo &I : CSI)
1902 if (I.getReg() == ARM::D8) {
1903 D8SpillFI = I.getFrameIdx();
1904 break;
1905 }
1906
1907 // Materialize the address of the d8 spill slot into the scratch register r4.
1908 // This can be fairly complicated if the stack frame is large, so just use
1909 // the normal frame index elimination mechanism to do it. This code runs as
1910 // the initial part of the epilog where the stack and base pointers haven't
1911 // been changed yet.
1912 bool isThumb = AFI->isThumbFunction();
1913 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1914
1915 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1916 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1917 .addFrameIndex(D8SpillFI)
1918 .addImm(0)
1919 .add(predOps(ARMCC::AL))
1920 .add(condCodeOp());
1921
1922 // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1923 unsigned NextReg = ARM::D8;
1924
1925 // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1926 if (NumAlignedDPRCS2Regs >= 6) {
1927 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1928 &ARM::QQPRRegClass);
1929 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1930 .addReg(ARM::R4, RegState::Define)
1931 .addReg(ARM::R4, RegState::Kill)
1932 .addImm(16)
1933 .addReg(SupReg, RegState::ImplicitDefine)
1934 .add(predOps(ARMCC::AL));
1935 NextReg += 4;
1936 NumAlignedDPRCS2Regs -= 4;
1937 }
1938
1939 // We won't modify r4 beyond this point. It currently points to the next
1940 // register to be spilled.
1941 unsigned R4BaseReg = NextReg;
1942
1943 // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1944 if (NumAlignedDPRCS2Regs >= 4) {
1945 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1946 &ARM::QQPRRegClass);
1947 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1948 .addReg(ARM::R4)
1949 .addImm(16)
1950 .addReg(SupReg, RegState::ImplicitDefine)
1951 .add(predOps(ARMCC::AL));
1952 NextReg += 4;
1953 NumAlignedDPRCS2Regs -= 4;
1954 }
1955
1956 // 16-byte aligned vld1.64 with 2 d-regs.
1957 if (NumAlignedDPRCS2Regs >= 2) {
1958 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1959 &ARM::QPRRegClass);
1960 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1961 .addReg(ARM::R4)
1962 .addImm(16)
1963 .add(predOps(ARMCC::AL));
1964 NextReg += 2;
1965 NumAlignedDPRCS2Regs -= 2;
1966 }
1967
1968 // Finally, use a vanilla vldr.64 for the remaining odd register.
1969 if (NumAlignedDPRCS2Regs)
1970 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1971 .addReg(ARM::R4)
1972 .addImm(2 * (NextReg - R4BaseReg))
1973 .add(predOps(ARMCC::AL));
1974
1975 // Last store kills r4.
1976 std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1977 }
1978
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const1979 bool ARMFrameLowering::spillCalleeSavedRegisters(
1980 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1981 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1982 if (CSI.empty())
1983 return false;
1984
1985 MachineFunction &MF = *MBB.getParent();
1986 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1987
1988 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1989 unsigned PushOneOpc = AFI->isThumbFunction() ?
1990 ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1991 unsigned FltOpc = ARM::VSTMDDB_UPD;
1992 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1993 // Compute PAC in R12.
1994 if (AFI->shouldSignReturnAddress()) {
1995 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC))
1996 .setMIFlags(MachineInstr::FrameSetup);
1997 }
1998 // Save the non-secure floating point context.
1999 if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) {
2000 return C.getReg() == ARM::FPCXTNS;
2001 })) {
2002 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre),
2003 ARM::SP)
2004 .addReg(ARM::SP)
2005 .addImm(-4)
2006 .add(predOps(ARMCC::AL));
2007 }
2008 if (STI.splitFramePointerPush(MF)) {
2009 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
2010 &isSplitFPArea1Register, 0, MachineInstr::FrameSetup);
2011 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
2012 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
2013 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
2014 &isSplitFPArea2Register, 0, MachineInstr::FrameSetup);
2015 } else {
2016 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register,
2017 0, MachineInstr::FrameSetup);
2018 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register,
2019 0, MachineInstr::FrameSetup);
2020 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
2021 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
2022 }
2023
2024 // The code above does not insert spill code for the aligned DPRCS2 registers.
2025 // The stack realignment code will be inserted between the push instructions
2026 // and these spills.
2027 if (NumAlignedDPRCS2Regs)
2028 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
2029
2030 return true;
2031 }
2032
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,MutableArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const2033 bool ARMFrameLowering::restoreCalleeSavedRegisters(
2034 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2035 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2036 if (CSI.empty())
2037 return false;
2038
2039 MachineFunction &MF = *MBB.getParent();
2040 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2041 bool isVarArg = AFI->getArgRegsSaveSize() > 0;
2042 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
2043
2044 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
2045 // registers. Do that here instead.
2046 if (NumAlignedDPRCS2Regs)
2047 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
2048
2049 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
2050 unsigned LdrOpc =
2051 AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
2052 unsigned FltOpc = ARM::VLDMDIA_UPD;
2053 if (STI.splitFramePointerPush(MF)) {
2054 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2055 &isSplitFPArea2Register, 0);
2056 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
2057 NumAlignedDPRCS2Regs);
2058 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2059 &isSplitFPArea1Register, 0);
2060 } else {
2061 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
2062 NumAlignedDPRCS2Regs);
2063 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2064 &isARMArea2Register, 0);
2065 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2066 &isARMArea1Register, 0);
2067 }
2068
2069 return true;
2070 }
2071
2072 // FIXME: Make generic?
EstimateFunctionSizeInBytes(const MachineFunction & MF,const ARMBaseInstrInfo & TII)2073 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
2074 const ARMBaseInstrInfo &TII) {
2075 unsigned FnSize = 0;
2076 for (auto &MBB : MF) {
2077 for (auto &MI : MBB)
2078 FnSize += TII.getInstSizeInBytes(MI);
2079 }
2080 if (MF.getJumpTableInfo())
2081 for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
2082 FnSize += Table.MBBs.size() * 4;
2083 FnSize += MF.getConstantPool()->getConstants().size() * 4;
2084 return FnSize;
2085 }
2086
2087 /// estimateRSStackSizeLimit - Look at each instruction that references stack
2088 /// frames and return the stack size limit beyond which some of these
2089 /// instructions will require a scratch register during their expansion later.
2090 // FIXME: Move to TII?
estimateRSStackSizeLimit(MachineFunction & MF,const TargetFrameLowering * TFI,bool & HasNonSPFrameIndex)2091 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
2092 const TargetFrameLowering *TFI,
2093 bool &HasNonSPFrameIndex) {
2094 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2095 const ARMBaseInstrInfo &TII =
2096 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2097 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2098 unsigned Limit = (1 << 12) - 1;
2099 for (auto &MBB : MF) {
2100 for (auto &MI : MBB) {
2101 if (MI.isDebugInstr())
2102 continue;
2103 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2104 if (!MI.getOperand(i).isFI())
2105 continue;
2106
2107 // When using ADDri to get the address of a stack object, 255 is the
2108 // largest offset guaranteed to fit in the immediate offset.
2109 if (MI.getOpcode() == ARM::ADDri) {
2110 Limit = std::min(Limit, (1U << 8) - 1);
2111 break;
2112 }
2113 // t2ADDri will not require an extra register, it can reuse the
2114 // destination.
2115 if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
2116 break;
2117
2118 const MCInstrDesc &MCID = MI.getDesc();
2119 const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
2120 if (RegClass && !RegClass->contains(ARM::SP))
2121 HasNonSPFrameIndex = true;
2122
2123 // Otherwise check the addressing mode.
2124 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
2125 case ARMII::AddrMode_i12:
2126 case ARMII::AddrMode2:
2127 // Default 12 bit limit.
2128 break;
2129 case ARMII::AddrMode3:
2130 case ARMII::AddrModeT2_i8neg:
2131 Limit = std::min(Limit, (1U << 8) - 1);
2132 break;
2133 case ARMII::AddrMode5FP16:
2134 Limit = std::min(Limit, ((1U << 8) - 1) * 2);
2135 break;
2136 case ARMII::AddrMode5:
2137 case ARMII::AddrModeT2_i8s4:
2138 case ARMII::AddrModeT2_ldrex:
2139 Limit = std::min(Limit, ((1U << 8) - 1) * 4);
2140 break;
2141 case ARMII::AddrModeT2_i12:
2142 // i12 supports only positive offset so these will be converted to
2143 // i8 opcodes. See llvm::rewriteT2FrameIndex.
2144 if (TFI->hasFP(MF) && AFI->hasStackFrame())
2145 Limit = std::min(Limit, (1U << 8) - 1);
2146 break;
2147 case ARMII::AddrMode4:
2148 case ARMII::AddrMode6:
2149 // Addressing modes 4 & 6 (load/store) instructions can't encode an
2150 // immediate offset for stack references.
2151 return 0;
2152 case ARMII::AddrModeT2_i7:
2153 Limit = std::min(Limit, ((1U << 7) - 1) * 1);
2154 break;
2155 case ARMII::AddrModeT2_i7s2:
2156 Limit = std::min(Limit, ((1U << 7) - 1) * 2);
2157 break;
2158 case ARMII::AddrModeT2_i7s4:
2159 Limit = std::min(Limit, ((1U << 7) - 1) * 4);
2160 break;
2161 default:
2162 llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
2163 }
2164 break; // At most one FI per instruction
2165 }
2166 }
2167 }
2168
2169 return Limit;
2170 }
2171
2172 // In functions that realign the stack, it can be an advantage to spill the
2173 // callee-saved vector registers after realigning the stack. The vst1 and vld1
2174 // instructions take alignment hints that can improve performance.
2175 static void
checkNumAlignedDPRCS2Regs(MachineFunction & MF,BitVector & SavedRegs)2176 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
2177 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
2178 if (!SpillAlignedNEONRegs)
2179 return;
2180
2181 // Naked functions don't spill callee-saved registers.
2182 if (MF.getFunction().hasFnAttribute(Attribute::Naked))
2183 return;
2184
2185 // We are planning to use NEON instructions vst1 / vld1.
2186 if (!MF.getSubtarget<ARMSubtarget>().hasNEON())
2187 return;
2188
2189 // Don't bother if the default stack alignment is sufficiently high.
2190 if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8))
2191 return;
2192
2193 // Aligned spills require stack realignment.
2194 if (!static_cast<const ARMBaseRegisterInfo *>(
2195 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
2196 return;
2197
2198 // We always spill contiguous d-registers starting from d8. Count how many
2199 // needs spilling. The register allocator will almost always use the
2200 // callee-saved registers in order, but it can happen that there are holes in
2201 // the range. Registers above the hole will be spilled to the standard DPRCS
2202 // area.
2203 unsigned NumSpills = 0;
2204 for (; NumSpills < 8; ++NumSpills)
2205 if (!SavedRegs.test(ARM::D8 + NumSpills))
2206 break;
2207
2208 // Don't do this for just one d-register. It's not worth it.
2209 if (NumSpills < 2)
2210 return;
2211
2212 // Spill the first NumSpills D-registers after realigning the stack.
2213 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
2214
2215 // A scratch register is required for the vst1 / vld1 instructions.
2216 SavedRegs.set(ARM::R4);
2217 }
2218
enableShrinkWrapping(const MachineFunction & MF) const2219 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2220 // For CMSE entry functions, we want to save the FPCXT_NS immediately
2221 // upon function entry (resp. restore it immmediately before return)
2222 if (STI.hasV8_1MMainlineOps() &&
2223 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction())
2224 return false;
2225
2226 // We are disabling shrinkwrapping for now when PAC is enabled, as
2227 // shrinkwrapping can cause clobbering of r12 when the PAC code is
2228 // generated. A follow-up patch will fix this in a more performant manner.
2229 if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(
2230 true /* SpillsLR */))
2231 return false;
2232
2233 return true;
2234 }
2235
requiresAAPCSFrameRecord(const MachineFunction & MF)2236 static bool requiresAAPCSFrameRecord(const MachineFunction &MF) {
2237 const auto &Subtarget = MF.getSubtarget<ARMSubtarget>();
2238 return Subtarget.createAAPCSFrameChainLeaf() ||
2239 (Subtarget.createAAPCSFrameChain() && MF.getFrameInfo().hasCalls());
2240 }
2241
2242 // Thumb1 may require a spill when storing to a frame index through FP, for
2243 // cases where FP is a high register (R11). This scans the function for cases
2244 // where this may happen.
canSpillOnFrameIndexAccess(const MachineFunction & MF,const TargetFrameLowering & TFI)2245 static bool canSpillOnFrameIndexAccess(const MachineFunction &MF,
2246 const TargetFrameLowering &TFI) {
2247 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2248 if (!AFI->isThumb1OnlyFunction())
2249 return false;
2250
2251 for (const auto &MBB : MF)
2252 for (const auto &MI : MBB)
2253 if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi)
2254 for (const auto &Op : MI.operands())
2255 if (Op.isFI()) {
2256 Register Reg;
2257 TFI.getFrameIndexReference(MF, Op.getIndex(), Reg);
2258 if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP)
2259 return true;
2260 }
2261 return false;
2262 }
2263
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const2264 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
2265 BitVector &SavedRegs,
2266 RegScavenger *RS) const {
2267 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2268 // This tells PEI to spill the FP as if it is any other callee-save register
2269 // to take advantage the eliminateFrameIndex machinery. This also ensures it
2270 // is spilled in the order specified by getCalleeSavedRegs() to make it easier
2271 // to combine multiple loads / stores.
2272 bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF));
2273 bool CS1Spilled = false;
2274 bool LRSpilled = false;
2275 unsigned NumGPRSpills = 0;
2276 unsigned NumFPRSpills = 0;
2277 SmallVector<unsigned, 4> UnspilledCS1GPRs;
2278 SmallVector<unsigned, 4> UnspilledCS2GPRs;
2279 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
2280 MF.getSubtarget().getRegisterInfo());
2281 const ARMBaseInstrInfo &TII =
2282 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2283 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2284 MachineFrameInfo &MFI = MF.getFrameInfo();
2285 MachineRegisterInfo &MRI = MF.getRegInfo();
2286 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2287 (void)TRI; // Silence unused warning in non-assert builds.
2288 Register FramePtr = RegInfo->getFrameRegister(MF);
2289
2290 // Spill R4 if Thumb2 function requires stack realignment - it will be used as
2291 // scratch register. Also spill R4 if Thumb2 function has varsized objects,
2292 // since it's not always possible to restore sp from fp in a single
2293 // instruction.
2294 // FIXME: It will be better just to find spare register here.
2295 if (AFI->isThumb2Function() &&
2296 (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)))
2297 SavedRegs.set(ARM::R4);
2298
2299 // If a stack probe will be emitted, spill R4 and LR, since they are
2300 // clobbered by the stack probe call.
2301 // This estimate should be a safe, conservative estimate. The actual
2302 // stack probe is enabled based on the size of the local objects;
2303 // this estimate also includes the varargs store size.
2304 if (STI.isTargetWindows() &&
2305 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
2306 SavedRegs.set(ARM::R4);
2307 SavedRegs.set(ARM::LR);
2308 }
2309
2310 if (AFI->isThumb1OnlyFunction()) {
2311 // Spill LR if Thumb1 function uses variable length argument lists.
2312 if (AFI->getArgRegsSaveSize() > 0)
2313 SavedRegs.set(ARM::LR);
2314
2315 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
2316 // requires stack alignment. We don't know for sure what the stack size
2317 // will be, but for this, an estimate is good enough. If there anything
2318 // changes it, it'll be a spill, which implies we've used all the registers
2319 // and so R4 is already used, so not marking it here will be OK.
2320 // FIXME: It will be better just to find spare register here.
2321 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) ||
2322 MFI.estimateStackSize(MF) > 508)
2323 SavedRegs.set(ARM::R4);
2324 }
2325
2326 // See if we can spill vector registers to aligned stack.
2327 checkNumAlignedDPRCS2Regs(MF, SavedRegs);
2328
2329 // Spill the BasePtr if it's used.
2330 if (RegInfo->hasBasePointer(MF))
2331 SavedRegs.set(RegInfo->getBaseRegister());
2332
2333 // On v8.1-M.Main CMSE entry functions save/restore FPCXT.
2334 if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction())
2335 CanEliminateFrame = false;
2336
2337 // Don't spill FP if the frame can be eliminated. This is determined
2338 // by scanning the callee-save registers to see if any is modified.
2339 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
2340 for (unsigned i = 0; CSRegs[i]; ++i) {
2341 unsigned Reg = CSRegs[i];
2342 bool Spilled = false;
2343 if (SavedRegs.test(Reg)) {
2344 Spilled = true;
2345 CanEliminateFrame = false;
2346 }
2347
2348 if (!ARM::GPRRegClass.contains(Reg)) {
2349 if (Spilled) {
2350 if (ARM::SPRRegClass.contains(Reg))
2351 NumFPRSpills++;
2352 else if (ARM::DPRRegClass.contains(Reg))
2353 NumFPRSpills += 2;
2354 else if (ARM::QPRRegClass.contains(Reg))
2355 NumFPRSpills += 4;
2356 }
2357 continue;
2358 }
2359
2360 if (Spilled) {
2361 NumGPRSpills++;
2362
2363 if (!STI.splitFramePushPop(MF)) {
2364 if (Reg == ARM::LR)
2365 LRSpilled = true;
2366 CS1Spilled = true;
2367 continue;
2368 }
2369
2370 // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
2371 switch (Reg) {
2372 case ARM::LR:
2373 LRSpilled = true;
2374 [[fallthrough]];
2375 case ARM::R0: case ARM::R1:
2376 case ARM::R2: case ARM::R3:
2377 case ARM::R4: case ARM::R5:
2378 case ARM::R6: case ARM::R7:
2379 CS1Spilled = true;
2380 break;
2381 default:
2382 break;
2383 }
2384 } else {
2385 if (!STI.splitFramePushPop(MF)) {
2386 UnspilledCS1GPRs.push_back(Reg);
2387 continue;
2388 }
2389
2390 switch (Reg) {
2391 case ARM::R0: case ARM::R1:
2392 case ARM::R2: case ARM::R3:
2393 case ARM::R4: case ARM::R5:
2394 case ARM::R6: case ARM::R7:
2395 case ARM::LR:
2396 UnspilledCS1GPRs.push_back(Reg);
2397 break;
2398 default:
2399 UnspilledCS2GPRs.push_back(Reg);
2400 break;
2401 }
2402 }
2403 }
2404
2405 bool ForceLRSpill = false;
2406 if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
2407 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
2408 // Force LR to be spilled if the Thumb function size is > 2048. This enables
2409 // use of BL to implement far jump.
2410 if (FnSize >= (1 << 11)) {
2411 CanEliminateFrame = false;
2412 ForceLRSpill = true;
2413 }
2414 }
2415
2416 // If any of the stack slot references may be out of range of an immediate
2417 // offset, make sure a register (or a spill slot) is available for the
2418 // register scavenger. Note that if we're indexing off the frame pointer, the
2419 // effective stack size is 4 bytes larger since the FP points to the stack
2420 // slot of the previous FP. Also, if we have variable sized objects in the
2421 // function, stack slot references will often be negative, and some of
2422 // our instructions are positive-offset only, so conservatively consider
2423 // that case to want a spill slot (or register) as well. Similarly, if
2424 // the function adjusts the stack pointer during execution and the
2425 // adjustments aren't already part of our stack size estimate, our offset
2426 // calculations may be off, so be conservative.
2427 // FIXME: We could add logic to be more precise about negative offsets
2428 // and which instructions will need a scratch register for them. Is it
2429 // worth the effort and added fragility?
2430 unsigned EstimatedStackSize =
2431 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
2432
2433 // Determine biggest (positive) SP offset in MachineFrameInfo.
2434 int MaxFixedOffset = 0;
2435 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
2436 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
2437 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
2438 }
2439
2440 bool HasFP = hasFP(MF);
2441 if (HasFP) {
2442 if (AFI->hasStackFrame())
2443 EstimatedStackSize += 4;
2444 } else {
2445 // If FP is not used, SP will be used to access arguments, so count the
2446 // size of arguments into the estimation.
2447 EstimatedStackSize += MaxFixedOffset;
2448 }
2449 EstimatedStackSize += 16; // For possible paddings.
2450
2451 unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
2452 bool HasNonSPFrameIndex = false;
2453 if (AFI->isThumb1OnlyFunction()) {
2454 // For Thumb1, don't bother to iterate over the function. The only
2455 // instruction that requires an emergency spill slot is a store to a
2456 // frame index.
2457 //
2458 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
2459 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
2460 // a 5-bit unsigned immediate.
2461 //
2462 // We could try to check if the function actually contains a tSTRspi
2463 // that might need the spill slot, but it's not really important.
2464 // Functions with VLAs or extremely large call frames are rare, and
2465 // if a function is allocating more than 1KB of stack, an extra 4-byte
2466 // slot probably isn't relevant.
2467 //
2468 // A special case is the scenario where r11 is used as FP, where accesses
2469 // to a frame index will require its value to be moved into a low reg.
2470 // This is handled later on, once we are able to determine if we have any
2471 // fp-relative accesses.
2472 if (RegInfo->hasBasePointer(MF))
2473 EstimatedRSStackSizeLimit = (1U << 5) * 4;
2474 else
2475 EstimatedRSStackSizeLimit = (1U << 8) * 4;
2476 EstimatedRSFixedSizeLimit = (1U << 5) * 4;
2477 } else {
2478 EstimatedRSStackSizeLimit =
2479 estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
2480 EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
2481 }
2482 // Final estimate of whether sp or bp-relative accesses might require
2483 // scavenging.
2484 bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
2485
2486 // If the stack pointer moves and we don't have a base pointer, the
2487 // estimate logic doesn't work. The actual offsets might be larger when
2488 // we're constructing a call frame, or we might need to use negative
2489 // offsets from fp.
2490 bool HasMovingSP = MFI.hasVarSizedObjects() ||
2491 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
2492 bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
2493
2494 // If we have a frame pointer, we assume arguments will be accessed
2495 // relative to the frame pointer. Check whether fp-relative accesses to
2496 // arguments require scavenging.
2497 //
2498 // We could do slightly better on Thumb1; in some cases, an sp-relative
2499 // offset would be legal even though an fp-relative offset is not.
2500 int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF);
2501 bool HasLargeArgumentList =
2502 HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
2503
2504 bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
2505 HasLargeArgumentList || HasNonSPFrameIndex;
2506 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
2507 << "; EstimatedStack: " << EstimatedStackSize
2508 << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
2509 << "; BigFrameOffsets: " << BigFrameOffsets << "\n");
2510 if (BigFrameOffsets ||
2511 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
2512 AFI->setHasStackFrame(true);
2513
2514 if (HasFP) {
2515 SavedRegs.set(FramePtr);
2516 // If the frame pointer is required by the ABI, also spill LR so that we
2517 // emit a complete frame record.
2518 if ((requiresAAPCSFrameRecord(MF) ||
2519 MF.getTarget().Options.DisableFramePointerElim(MF)) &&
2520 !LRSpilled) {
2521 SavedRegs.set(ARM::LR);
2522 LRSpilled = true;
2523 NumGPRSpills++;
2524 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
2525 if (LRPos != UnspilledCS1GPRs.end())
2526 UnspilledCS1GPRs.erase(LRPos);
2527 }
2528 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
2529 if (FPPos != UnspilledCS1GPRs.end())
2530 UnspilledCS1GPRs.erase(FPPos);
2531 NumGPRSpills++;
2532 if (FramePtr == ARM::R7)
2533 CS1Spilled = true;
2534 }
2535
2536 // This is true when we inserted a spill for a callee-save GPR which is
2537 // not otherwise used by the function. This guaranteees it is possible
2538 // to scavenge a register to hold the address of a stack slot. On Thumb1,
2539 // the register must be a valid operand to tSTRi, i.e. r4-r7. For other
2540 // subtargets, this is any GPR, i.e. r4-r11 or lr.
2541 //
2542 // If we don't insert a spill, we instead allocate an emergency spill
2543 // slot, which can be used by scavenging to spill an arbitrary register.
2544 //
2545 // We currently don't try to figure out whether any specific instruction
2546 // requires scavening an additional register.
2547 bool ExtraCSSpill = false;
2548
2549 if (AFI->isThumb1OnlyFunction()) {
2550 // For Thumb1-only targets, we need some low registers when we save and
2551 // restore the high registers (which aren't allocatable, but could be
2552 // used by inline assembly) because the push/pop instructions can not
2553 // access high registers. If necessary, we might need to push more low
2554 // registers to ensure that there is at least one free that can be used
2555 // for the saving & restoring, and preferably we should ensure that as
2556 // many as are needed are available so that fewer push/pop instructions
2557 // are required.
2558
2559 // Low registers which are not currently pushed, but could be (r4-r7).
2560 SmallVector<unsigned, 4> AvailableRegs;
2561
2562 // Unused argument registers (r0-r3) can be clobbered in the prologue for
2563 // free.
2564 int EntryRegDeficit = 0;
2565 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
2566 if (!MF.getRegInfo().isLiveIn(Reg)) {
2567 --EntryRegDeficit;
2568 LLVM_DEBUG(dbgs()
2569 << printReg(Reg, TRI)
2570 << " is unused argument register, EntryRegDeficit = "
2571 << EntryRegDeficit << "\n");
2572 }
2573 }
2574
2575 // Unused return registers can be clobbered in the epilogue for free.
2576 int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
2577 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
2578 << " return regs used, ExitRegDeficit = "
2579 << ExitRegDeficit << "\n");
2580
2581 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
2582 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
2583
2584 // r4-r6 can be used in the prologue if they are pushed by the first push
2585 // instruction.
2586 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
2587 if (SavedRegs.test(Reg)) {
2588 --RegDeficit;
2589 LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2590 << " is saved low register, RegDeficit = "
2591 << RegDeficit << "\n");
2592 } else {
2593 AvailableRegs.push_back(Reg);
2594 LLVM_DEBUG(
2595 dbgs()
2596 << printReg(Reg, TRI)
2597 << " is non-saved low register, adding to AvailableRegs\n");
2598 }
2599 }
2600
2601 // r7 can be used if it is not being used as the frame pointer.
2602 if (!HasFP || FramePtr != ARM::R7) {
2603 if (SavedRegs.test(ARM::R7)) {
2604 --RegDeficit;
2605 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
2606 << RegDeficit << "\n");
2607 } else {
2608 AvailableRegs.push_back(ARM::R7);
2609 LLVM_DEBUG(
2610 dbgs()
2611 << "%r7 is non-saved low register, adding to AvailableRegs\n");
2612 }
2613 }
2614
2615 // Each of r8-r11 needs to be copied to a low register, then pushed.
2616 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
2617 if (SavedRegs.test(Reg)) {
2618 ++RegDeficit;
2619 LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2620 << " is saved high register, RegDeficit = "
2621 << RegDeficit << "\n");
2622 }
2623 }
2624
2625 // LR can only be used by PUSH, not POP, and can't be used at all if the
2626 // llvm.returnaddress intrinsic is used. This is only worth doing if we
2627 // are more limited at function entry than exit.
2628 if ((EntryRegDeficit > ExitRegDeficit) &&
2629 !(MF.getRegInfo().isLiveIn(ARM::LR) &&
2630 MF.getFrameInfo().isReturnAddressTaken())) {
2631 if (SavedRegs.test(ARM::LR)) {
2632 --RegDeficit;
2633 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
2634 << RegDeficit << "\n");
2635 } else {
2636 AvailableRegs.push_back(ARM::LR);
2637 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
2638 }
2639 }
2640
2641 // If there are more high registers that need pushing than low registers
2642 // available, push some more low registers so that we can use fewer push
2643 // instructions. This might not reduce RegDeficit all the way to zero,
2644 // because we can only guarantee that r4-r6 are available, but r8-r11 may
2645 // need saving.
2646 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
2647 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
2648 unsigned Reg = AvailableRegs.pop_back_val();
2649 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2650 << " to make up reg deficit\n");
2651 SavedRegs.set(Reg);
2652 NumGPRSpills++;
2653 CS1Spilled = true;
2654 assert(!MRI.isReserved(Reg) && "Should not be reserved");
2655 if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
2656 ExtraCSSpill = true;
2657 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
2658 if (Reg == ARM::LR)
2659 LRSpilled = true;
2660 }
2661 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2662 << "\n");
2663 }
2664
2665 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2666 // restore LR in that case.
2667 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
2668
2669 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2670 // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2671 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
2672 SavedRegs.set(ARM::LR);
2673 NumGPRSpills++;
2674 SmallVectorImpl<unsigned>::iterator LRPos;
2675 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
2676 if (LRPos != UnspilledCS1GPRs.end())
2677 UnspilledCS1GPRs.erase(LRPos);
2678
2679 ForceLRSpill = false;
2680 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
2681 !AFI->isThumb1OnlyFunction())
2682 ExtraCSSpill = true;
2683 }
2684
2685 // If stack and double are 8-byte aligned and we are spilling an odd number
2686 // of GPRs, spill one extra callee save GPR so we won't have to pad between
2687 // the integer and double callee save areas.
2688 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
2689 const Align TargetAlign = getStackAlign();
2690 if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) {
2691 if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
2692 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
2693 unsigned Reg = UnspilledCS1GPRs[i];
2694 // Don't spill high register if the function is thumb. In the case of
2695 // Windows on ARM, accept R11 (frame pointer)
2696 if (!AFI->isThumbFunction() ||
2697 (STI.isTargetWindows() && Reg == ARM::R11) ||
2698 isARMLowRegister(Reg) ||
2699 (Reg == ARM::LR && !ExpensiveLRRestore)) {
2700 SavedRegs.set(Reg);
2701 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2702 << " to make up alignment\n");
2703 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
2704 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
2705 ExtraCSSpill = true;
2706 break;
2707 }
2708 }
2709 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
2710 unsigned Reg = UnspilledCS2GPRs.front();
2711 SavedRegs.set(Reg);
2712 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2713 << " to make up alignment\n");
2714 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
2715 ExtraCSSpill = true;
2716 }
2717 }
2718
2719 // Estimate if we might need to scavenge a register at some point in order
2720 // to materialize a stack offset. If so, either spill one additional
2721 // callee-saved register or reserve a special spill slot to facilitate
2722 // register scavenging. Thumb1 needs a spill slot for stack pointer
2723 // adjustments and for frame index accesses when FP is high register,
2724 // even when the frame itself is small.
2725 if (!ExtraCSSpill &&
2726 (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this))) {
2727 // If any non-reserved CS register isn't spilled, just spill one or two
2728 // extra. That should take care of it!
2729 unsigned NumExtras = TargetAlign.value() / 4;
2730 SmallVector<unsigned, 2> Extras;
2731 while (NumExtras && !UnspilledCS1GPRs.empty()) {
2732 unsigned Reg = UnspilledCS1GPRs.pop_back_val();
2733 if (!MRI.isReserved(Reg) &&
2734 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
2735 Extras.push_back(Reg);
2736 NumExtras--;
2737 }
2738 }
2739 // For non-Thumb1 functions, also check for hi-reg CS registers
2740 if (!AFI->isThumb1OnlyFunction()) {
2741 while (NumExtras && !UnspilledCS2GPRs.empty()) {
2742 unsigned Reg = UnspilledCS2GPRs.pop_back_val();
2743 if (!MRI.isReserved(Reg)) {
2744 Extras.push_back(Reg);
2745 NumExtras--;
2746 }
2747 }
2748 }
2749 if (NumExtras == 0) {
2750 for (unsigned Reg : Extras) {
2751 SavedRegs.set(Reg);
2752 if (!MRI.isPhysRegUsed(Reg))
2753 ExtraCSSpill = true;
2754 }
2755 }
2756 if (!ExtraCSSpill && RS) {
2757 // Reserve a slot closest to SP or frame pointer.
2758 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2759 const TargetRegisterClass &RC = ARM::GPRRegClass;
2760 unsigned Size = TRI->getSpillSize(RC);
2761 Align Alignment = TRI->getSpillAlign(RC);
2762 RS->addScavengingFrameIndex(
2763 MFI.CreateStackObject(Size, Alignment, false));
2764 }
2765 }
2766 }
2767
2768 if (ForceLRSpill)
2769 SavedRegs.set(ARM::LR);
2770 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
2771 }
2772
getCalleeSaves(const MachineFunction & MF,BitVector & SavedRegs) const2773 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
2774 BitVector &SavedRegs) const {
2775 TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
2776
2777 // If we have the "returned" parameter attribute which guarantees that we
2778 // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2779 // record that fact for IPRA.
2780 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2781 if (AFI->getPreservesR0())
2782 SavedRegs.set(ARM::R0);
2783 }
2784
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * TRI,std::vector<CalleeSavedInfo> & CSI) const2785 bool ARMFrameLowering::assignCalleeSavedSpillSlots(
2786 MachineFunction &MF, const TargetRegisterInfo *TRI,
2787 std::vector<CalleeSavedInfo> &CSI) const {
2788 // For CMSE entry functions, handle floating-point context as if it was a
2789 // callee-saved register.
2790 if (STI.hasV8_1MMainlineOps() &&
2791 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) {
2792 CSI.emplace_back(ARM::FPCXTNS);
2793 CSI.back().setRestored(false);
2794 }
2795
2796 // For functions, which sign their return address, upon function entry, the
2797 // return address PAC is computed in R12. Treat R12 as a callee-saved register
2798 // in this case.
2799 const auto &AFI = *MF.getInfo<ARMFunctionInfo>();
2800 if (AFI.shouldSignReturnAddress()) {
2801 // The order of register must match the order we push them, because the
2802 // PEI assigns frame indices in that order. When compiling for return
2803 // address sign and authenication, we use split push, therefore the orders
2804 // we want are:
2805 // LR, R7, R6, R5, R4, <R12>, R11, R10, R9, R8, D15-D8
2806 CSI.insert(find_if(CSI,
2807 [=](const auto &CS) {
2808 Register Reg = CS.getReg();
2809 return Reg == ARM::R10 || Reg == ARM::R11 ||
2810 Reg == ARM::R8 || Reg == ARM::R9 ||
2811 ARM::DPRRegClass.contains(Reg);
2812 }),
2813 CalleeSavedInfo(ARM::R12));
2814 }
2815
2816 return false;
2817 }
2818
2819 const TargetFrameLowering::SpillSlot *
getCalleeSavedSpillSlots(unsigned & NumEntries) const2820 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
2821 static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}};
2822 NumEntries = std::size(FixedSpillOffsets);
2823 return FixedSpillOffsets;
2824 }
2825
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const2826 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
2827 MachineFunction &MF, MachineBasicBlock &MBB,
2828 MachineBasicBlock::iterator I) const {
2829 const ARMBaseInstrInfo &TII =
2830 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2831 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2832 bool isARM = !AFI->isThumbFunction();
2833 DebugLoc dl = I->getDebugLoc();
2834 unsigned Opc = I->getOpcode();
2835 bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode();
2836 unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
2837
2838 assert(!AFI->isThumb1OnlyFunction() &&
2839 "This eliminateCallFramePseudoInstr does not support Thumb1!");
2840
2841 int PIdx = I->findFirstPredOperandIdx();
2842 ARMCC::CondCodes Pred = (PIdx == -1)
2843 ? ARMCC::AL
2844 : (ARMCC::CondCodes)I->getOperand(PIdx).getImm();
2845 unsigned PredReg = TII.getFramePred(*I);
2846
2847 if (!hasReservedCallFrame(MF)) {
2848 // Bail early if the callee is expected to do the adjustment.
2849 if (IsDestroy && CalleePopAmount != -1U)
2850 return MBB.erase(I);
2851
2852 // If we have alloca, convert as follows:
2853 // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2854 // ADJCALLSTACKUP -> add, sp, sp, amount
2855 unsigned Amount = TII.getFrameSize(*I);
2856 if (Amount != 0) {
2857 // We need to keep the stack aligned properly. To do this, we round the
2858 // amount of space needed for the outgoing arguments up to the next
2859 // alignment boundary.
2860 Amount = alignSPAdjust(Amount);
2861
2862 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
2863 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
2864 Pred, PredReg);
2865 } else {
2866 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
2867 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
2868 Pred, PredReg);
2869 }
2870 }
2871 } else if (CalleePopAmount != -1U) {
2872 // If the calling convention demands that the callee pops arguments from the
2873 // stack, we want to add it back if we have a reserved call frame.
2874 emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount,
2875 MachineInstr::NoFlags, Pred, PredReg);
2876 }
2877 return MBB.erase(I);
2878 }
2879
2880 /// Get the minimum constant for ARM that is greater than or equal to the
2881 /// argument. In ARM, constants can have any value that can be produced by
2882 /// rotating an 8-bit value to the right by an even number of bits within a
2883 /// 32-bit word.
alignToARMConstant(uint32_t Value)2884 static uint32_t alignToARMConstant(uint32_t Value) {
2885 unsigned Shifted = 0;
2886
2887 if (Value == 0)
2888 return 0;
2889
2890 while (!(Value & 0xC0000000)) {
2891 Value = Value << 2;
2892 Shifted += 2;
2893 }
2894
2895 bool Carry = (Value & 0x00FFFFFF);
2896 Value = ((Value & 0xFF000000) >> 24) + Carry;
2897
2898 if (Value & 0x0000100)
2899 Value = Value & 0x000001FC;
2900
2901 if (Shifted > 24)
2902 Value = Value >> (Shifted - 24);
2903 else
2904 Value = Value << (24 - Shifted);
2905
2906 return Value;
2907 }
2908
2909 // The stack limit in the TCB is set to this many bytes above the actual
2910 // stack limit.
2911 static const uint64_t kSplitStackAvailable = 256;
2912
2913 // Adjust the function prologue to enable split stacks. This currently only
2914 // supports android and linux.
2915 //
2916 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2917 // must be well defined in order to allow for consistent implementations of the
2918 // __morestack helper function. The ABI is also not a normal ABI in that it
2919 // doesn't follow the normal calling conventions because this allows the
2920 // prologue of each function to be optimized further.
2921 //
2922 // Currently, the ABI looks like (when calling __morestack)
2923 //
2924 // * r4 holds the minimum stack size requested for this function call
2925 // * r5 holds the stack size of the arguments to the function
2926 // * the beginning of the function is 3 instructions after the call to
2927 // __morestack
2928 //
2929 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2930 // place the arguments on to the new stack, and the 3-instruction knowledge to
2931 // jump directly to the body of the function when working on the new stack.
2932 //
2933 // An old (and possibly no longer compatible) implementation of __morestack for
2934 // ARM can be found at [1].
2935 //
2936 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
adjustForSegmentedStacks(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const2937 void ARMFrameLowering::adjustForSegmentedStacks(
2938 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2939 unsigned Opcode;
2940 unsigned CFIIndex;
2941 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2942 bool Thumb = ST->isThumb();
2943 bool Thumb2 = ST->isThumb2();
2944
2945 // Sadly, this currently doesn't support varargs, platforms other than
2946 // android/linux. Note that thumb1/thumb2 are support for android/linux.
2947 if (MF.getFunction().isVarArg())
2948 report_fatal_error("Segmented stacks do not support vararg functions.");
2949 if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2950 report_fatal_error("Segmented stacks not supported on this platform.");
2951
2952 MachineFrameInfo &MFI = MF.getFrameInfo();
2953 MachineModuleInfo &MMI = MF.getMMI();
2954 MCContext &Context = MMI.getContext();
2955 const MCRegisterInfo *MRI = Context.getRegisterInfo();
2956 const ARMBaseInstrInfo &TII =
2957 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2958 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
2959 DebugLoc DL;
2960
2961 if (!MFI.needsSplitStackProlog())
2962 return;
2963
2964 uint64_t StackSize = MFI.getStackSize();
2965
2966 // Use R4 and R5 as scratch registers.
2967 // We save R4 and R5 before use and restore them before leaving the function.
2968 unsigned ScratchReg0 = ARM::R4;
2969 unsigned ScratchReg1 = ARM::R5;
2970 uint64_t AlignedStackSize;
2971
2972 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
2973 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
2974 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
2975 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
2976 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
2977
2978 // Grab everything that reaches PrologueMBB to update there liveness as well.
2979 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
2980 SmallVector<MachineBasicBlock *, 2> WalkList;
2981 WalkList.push_back(&PrologueMBB);
2982
2983 do {
2984 MachineBasicBlock *CurMBB = WalkList.pop_back_val();
2985 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
2986 if (BeforePrologueRegion.insert(PredBB).second)
2987 WalkList.push_back(PredBB);
2988 }
2989 } while (!WalkList.empty());
2990
2991 // The order in that list is important.
2992 // The blocks will all be inserted before PrologueMBB using that order.
2993 // Therefore the block that should appear first in the CFG should appear
2994 // first in the list.
2995 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
2996 PostStackMBB};
2997
2998 for (MachineBasicBlock *B : AddedBlocks)
2999 BeforePrologueRegion.insert(B);
3000
3001 for (const auto &LI : PrologueMBB.liveins()) {
3002 for (MachineBasicBlock *PredBB : BeforePrologueRegion)
3003 PredBB->addLiveIn(LI);
3004 }
3005
3006 // Remove the newly added blocks from the list, since we know
3007 // we do not have to do the following updates for them.
3008 for (MachineBasicBlock *B : AddedBlocks) {
3009 BeforePrologueRegion.erase(B);
3010 MF.insert(PrologueMBB.getIterator(), B);
3011 }
3012
3013 for (MachineBasicBlock *MBB : BeforePrologueRegion) {
3014 // Make sure the LiveIns are still sorted and unique.
3015 MBB->sortUniqueLiveIns();
3016 // Replace the edges to PrologueMBB by edges to the sequences
3017 // we are about to add, but only update for immediate predecessors.
3018 if (MBB->isSuccessor(&PrologueMBB))
3019 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
3020 }
3021
3022 // The required stack size that is aligned to ARM constant criterion.
3023 AlignedStackSize = alignToARMConstant(StackSize);
3024
3025 // When the frame size is less than 256 we just compare the stack
3026 // boundary directly to the value of the stack pointer, per gcc.
3027 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
3028
3029 // We will use two of the callee save registers as scratch registers so we
3030 // need to save those registers onto the stack.
3031 // We will use SR0 to hold stack limit and SR1 to hold the stack size
3032 // requested and arguments for __morestack().
3033 // SR0: Scratch Register #0
3034 // SR1: Scratch Register #1
3035 // push {SR0, SR1}
3036 if (Thumb) {
3037 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
3038 .add(predOps(ARMCC::AL))
3039 .addReg(ScratchReg0)
3040 .addReg(ScratchReg1);
3041 } else {
3042 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
3043 .addReg(ARM::SP, RegState::Define)
3044 .addReg(ARM::SP)
3045 .add(predOps(ARMCC::AL))
3046 .addReg(ScratchReg0)
3047 .addReg(ScratchReg1);
3048 }
3049
3050 // Emit the relevant DWARF information about the change in stack pointer as
3051 // well as where to find both r4 and r5 (the callee-save registers)
3052 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3053 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8));
3054 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3055 .addCFIIndex(CFIIndex);
3056 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3057 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
3058 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3059 .addCFIIndex(CFIIndex);
3060 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3061 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
3062 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3063 .addCFIIndex(CFIIndex);
3064 }
3065
3066 // mov SR1, sp
3067 if (Thumb) {
3068 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
3069 .addReg(ARM::SP)
3070 .add(predOps(ARMCC::AL));
3071 } else if (CompareStackPointer) {
3072 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
3073 .addReg(ARM::SP)
3074 .add(predOps(ARMCC::AL))
3075 .add(condCodeOp());
3076 }
3077
3078 // sub SR1, sp, #StackSize
3079 if (!CompareStackPointer && Thumb) {
3080 if (AlignedStackSize < 256) {
3081 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
3082 .add(condCodeOp())
3083 .addReg(ScratchReg1)
3084 .addImm(AlignedStackSize)
3085 .add(predOps(ARMCC::AL));
3086 } else {
3087 if (Thumb2) {
3088 BuildMI(McrMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg0)
3089 .addImm(AlignedStackSize);
3090 } else {
3091 auto MBBI = McrMBB->end();
3092 auto RegInfo = STI.getRegisterInfo();
3093 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3094 AlignedStackSize);
3095 }
3096 BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1)
3097 .add(condCodeOp())
3098 .addReg(ScratchReg1)
3099 .addReg(ScratchReg0)
3100 .add(predOps(ARMCC::AL));
3101 }
3102 } else if (!CompareStackPointer) {
3103 if (AlignedStackSize < 256) {
3104 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
3105 .addReg(ARM::SP)
3106 .addImm(AlignedStackSize)
3107 .add(predOps(ARMCC::AL))
3108 .add(condCodeOp());
3109 } else {
3110 auto MBBI = McrMBB->end();
3111 auto RegInfo = STI.getRegisterInfo();
3112 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3113 AlignedStackSize);
3114 BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1)
3115 .addReg(ARM::SP)
3116 .addReg(ScratchReg0)
3117 .add(predOps(ARMCC::AL))
3118 .add(condCodeOp());
3119 }
3120 }
3121
3122 if (Thumb && ST->isThumb1Only()) {
3123 unsigned PCLabelId = ARMFI->createPICLabelUId();
3124 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
3125 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
3126 MachineConstantPool *MCP = MF.getConstantPool();
3127 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4));
3128
3129 // ldr SR0, [pc, offset(STACK_LIMIT)]
3130 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
3131 .addConstantPoolIndex(CPI)
3132 .add(predOps(ARMCC::AL));
3133
3134 // ldr SR0, [SR0]
3135 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
3136 .addReg(ScratchReg0)
3137 .addImm(0)
3138 .add(predOps(ARMCC::AL));
3139 } else {
3140 // Get TLS base address from the coprocessor
3141 // mrc p15, #0, SR0, c13, c0, #3
3142 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
3143 ScratchReg0)
3144 .addImm(15)
3145 .addImm(0)
3146 .addImm(13)
3147 .addImm(0)
3148 .addImm(3)
3149 .add(predOps(ARMCC::AL));
3150
3151 // Use the last tls slot on android and a private field of the TCP on linux.
3152 assert(ST->isTargetAndroid() || ST->isTargetLinux());
3153 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
3154
3155 // Get the stack limit from the right offset
3156 // ldr SR0, [sr0, #4 * TlsOffset]
3157 BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
3158 ScratchReg0)
3159 .addReg(ScratchReg0)
3160 .addImm(4 * TlsOffset)
3161 .add(predOps(ARMCC::AL));
3162 }
3163
3164 // Compare stack limit with stack size requested.
3165 // cmp SR0, SR1
3166 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
3167 BuildMI(GetMBB, DL, TII.get(Opcode))
3168 .addReg(ScratchReg0)
3169 .addReg(ScratchReg1)
3170 .add(predOps(ARMCC::AL));
3171
3172 // This jump is taken if StackLimit < SP - stack required.
3173 Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
3174 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
3175 .addImm(ARMCC::LO)
3176 .addReg(ARM::CPSR);
3177
3178
3179 // Calling __morestack(StackSize, Size of stack arguments).
3180 // __morestack knows that the stack size requested is in SR0(r4)
3181 // and amount size of stack arguments is in SR1(r5).
3182
3183 // Pass first argument for the __morestack by Scratch Register #0.
3184 // The amount size of stack required
3185 if (Thumb) {
3186 if (AlignedStackSize < 256) {
3187 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
3188 .add(condCodeOp())
3189 .addImm(AlignedStackSize)
3190 .add(predOps(ARMCC::AL));
3191 } else {
3192 if (Thumb2) {
3193 BuildMI(AllocMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg0)
3194 .addImm(AlignedStackSize);
3195 } else {
3196 auto MBBI = AllocMBB->end();
3197 auto RegInfo = STI.getRegisterInfo();
3198 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3199 AlignedStackSize);
3200 }
3201 }
3202 } else {
3203 if (AlignedStackSize < 256) {
3204 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
3205 .addImm(AlignedStackSize)
3206 .add(predOps(ARMCC::AL))
3207 .add(condCodeOp());
3208 } else {
3209 auto MBBI = AllocMBB->end();
3210 auto RegInfo = STI.getRegisterInfo();
3211 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3212 AlignedStackSize);
3213 }
3214 }
3215
3216 // Pass second argument for the __morestack by Scratch Register #1.
3217 // The amount size of stack consumed to save function arguments.
3218 if (Thumb) {
3219 if (ARMFI->getArgumentStackSize() < 256) {
3220 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
3221 .add(condCodeOp())
3222 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3223 .add(predOps(ARMCC::AL));
3224 } else {
3225 if (Thumb2) {
3226 BuildMI(AllocMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg1)
3227 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()));
3228 } else {
3229 auto MBBI = AllocMBB->end();
3230 auto RegInfo = STI.getRegisterInfo();
3231 RegInfo->emitLoadConstPool(
3232 *AllocMBB, MBBI, DL, ScratchReg1, 0,
3233 alignToARMConstant(ARMFI->getArgumentStackSize()));
3234 }
3235 }
3236 } else {
3237 if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) {
3238 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
3239 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3240 .add(predOps(ARMCC::AL))
3241 .add(condCodeOp());
3242 } else {
3243 auto MBBI = AllocMBB->end();
3244 auto RegInfo = STI.getRegisterInfo();
3245 RegInfo->emitLoadConstPool(
3246 *AllocMBB, MBBI, DL, ScratchReg1, 0,
3247 alignToARMConstant(ARMFI->getArgumentStackSize()));
3248 }
3249 }
3250
3251 // push {lr} - Save return address of this function.
3252 if (Thumb) {
3253 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
3254 .add(predOps(ARMCC::AL))
3255 .addReg(ARM::LR);
3256 } else {
3257 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
3258 .addReg(ARM::SP, RegState::Define)
3259 .addReg(ARM::SP)
3260 .add(predOps(ARMCC::AL))
3261 .addReg(ARM::LR);
3262 }
3263
3264 // Emit the DWARF info about the change in stack as well as where to find the
3265 // previous link register
3266 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3267 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12));
3268 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3269 .addCFIIndex(CFIIndex);
3270 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3271 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
3272 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3273 .addCFIIndex(CFIIndex);
3274 }
3275
3276 // Call __morestack().
3277 if (Thumb) {
3278 BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
3279 .add(predOps(ARMCC::AL))
3280 .addExternalSymbol("__morestack");
3281 } else {
3282 BuildMI(AllocMBB, DL, TII.get(ARM::BL))
3283 .addExternalSymbol("__morestack");
3284 }
3285
3286 // pop {lr} - Restore return address of this original function.
3287 if (Thumb) {
3288 if (ST->isThumb1Only()) {
3289 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3290 .add(predOps(ARMCC::AL))
3291 .addReg(ScratchReg0);
3292 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
3293 .addReg(ScratchReg0)
3294 .add(predOps(ARMCC::AL));
3295 } else {
3296 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
3297 .addReg(ARM::LR, RegState::Define)
3298 .addReg(ARM::SP, RegState::Define)
3299 .addReg(ARM::SP)
3300 .addImm(4)
3301 .add(predOps(ARMCC::AL));
3302 }
3303 } else {
3304 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3305 .addReg(ARM::SP, RegState::Define)
3306 .addReg(ARM::SP)
3307 .add(predOps(ARMCC::AL))
3308 .addReg(ARM::LR);
3309 }
3310
3311 // Restore SR0 and SR1 in case of __morestack() was called.
3312 // __morestack() will skip PostStackMBB block so we need to restore
3313 // scratch registers from here.
3314 // pop {SR0, SR1}
3315 if (Thumb) {
3316 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3317 .add(predOps(ARMCC::AL))
3318 .addReg(ScratchReg0)
3319 .addReg(ScratchReg1);
3320 } else {
3321 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3322 .addReg(ARM::SP, RegState::Define)
3323 .addReg(ARM::SP)
3324 .add(predOps(ARMCC::AL))
3325 .addReg(ScratchReg0)
3326 .addReg(ScratchReg1);
3327 }
3328
3329 // Update the CFA offset now that we've popped
3330 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3331 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3332 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3333 .addCFIIndex(CFIIndex);
3334 }
3335
3336 // Return from this function.
3337 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
3338
3339 // Restore SR0 and SR1 in case of __morestack() was not called.
3340 // pop {SR0, SR1}
3341 if (Thumb) {
3342 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
3343 .add(predOps(ARMCC::AL))
3344 .addReg(ScratchReg0)
3345 .addReg(ScratchReg1);
3346 } else {
3347 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
3348 .addReg(ARM::SP, RegState::Define)
3349 .addReg(ARM::SP)
3350 .add(predOps(ARMCC::AL))
3351 .addReg(ScratchReg0)
3352 .addReg(ScratchReg1);
3353 }
3354
3355 // Update the CFA offset now that we've popped
3356 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3357 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3358 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3359 .addCFIIndex(CFIIndex);
3360
3361 // Tell debuggers that r4 and r5 are now the same as they were in the
3362 // previous function, that they're the "Same Value".
3363 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3364 nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
3365 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3366 .addCFIIndex(CFIIndex);
3367 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3368 nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
3369 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3370 .addCFIIndex(CFIIndex);
3371 }
3372
3373 // Organizing MBB lists
3374 PostStackMBB->addSuccessor(&PrologueMBB);
3375
3376 AllocMBB->addSuccessor(PostStackMBB);
3377
3378 GetMBB->addSuccessor(PostStackMBB);
3379 GetMBB->addSuccessor(AllocMBB);
3380
3381 McrMBB->addSuccessor(GetMBB);
3382
3383 PrevStackMBB->addSuccessor(McrMBB);
3384
3385 #ifdef EXPENSIVE_CHECKS
3386 MF.verify();
3387 #endif
3388 }
3389