xref: /netbsd/sys/dev/ic/atw.c (revision 3bfe9bdb)
1 /*	$NetBSD: atw.c,v 1.172 2021/09/21 14:42:01 christos Exp $  */
2 
3 /*-
4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.172 2021/09/21 14:42:01 christos Exp $");
38 
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/ioctl.h>
48 #include <sys/errno.h>
49 #include <sys/device.h>
50 #include <sys/kauth.h>
51 #include <sys/time.h>
52 #include <sys/proc.h>
53 #include <sys/atomic.h>
54 #include <lib/libkern/libkern.h>
55 
56 #include <machine/endian.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62 
63 #include <net80211/ieee80211_netbsd.h>
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66 
67 #include <net/bpf.h>
68 
69 #include <sys/bus.h>
70 #include <sys/intr.h>
71 
72 #include <dev/ic/atwreg.h>
73 #include <dev/ic/rf3000reg.h>
74 #include <dev/ic/si4136reg.h>
75 #include <dev/ic/atwvar.h>
76 #include <dev/ic/smc93cx6var.h>
77 
78 /* XXX TBD open questions
79  *
80  *
81  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
82  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
83  * handle this for me?
84  *
85  */
86 /* device attachment
87  *
88  *    print TOFS[012]
89  *
90  * device initialization
91  *
92  *    clear ATW_FRCTL_MAXPSP to disable max power saving
93  *    set ATW_TXBR_ALCUPDATE to enable ALC
94  *    set TOFS[012]? (hope not)
95  *    disable rx/tx
96  *    set ATW_PAR_SWR (software reset)
97  *    wait for ATW_PAR_SWR clear
98  *    disable interrupts
99  *    ack status register
100  *    enable interrupts
101  *
102  * rx/tx initialization
103  *
104  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
105  *    allocate and init descriptor rings
106  *    write ATW_PAR_DSL (descriptor skip length)
107  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
108  *    write ATW_NAR_SQ for one/both transmit descriptor rings
109  *    write ATW_NAR_SQ for one/both transmit descriptor rings
110  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
111  *
112  * rx/tx end
113  *
114  *    stop DMA
115  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
116  *    flush tx w/ ATW_NAR_HF
117  *
118  * scan
119  *
120  *    initialize rx/tx
121  *
122  * BSS join: (re)association response
123  *
124  *    set ATW_FRCTL_AID
125  *
126  * optimizations ???
127  *
128  */
129 
130 #define ATW_REFSLAVE	/* slavishly do what the reference driver does */
131 
132 int atw_pseudo_milli = 1;
133 int atw_magic_delay1 = 100 * 1000;
134 int atw_magic_delay2 = 100 * 1000;
135 /* more magic multi-millisecond delays (units: microseconds) */
136 int atw_nar_delay = 20 * 1000;
137 int atw_magic_delay4 = 10 * 1000;
138 int atw_rf_delay1 = 10 * 1000;
139 int atw_rf_delay2 = 5 * 1000;
140 int atw_plcphd_delay = 2 * 1000;
141 int atw_bbp_io_enable_delay = 20 * 1000;
142 int atw_bbp_io_disable_delay = 2 * 1000;
143 int atw_writewep_delay = 1000;
144 int atw_beacon_len_adjust = 4;
145 int atw_dwelltime = 200;
146 int atw_xindiv2 = 0;
147 
148 #ifdef ATW_DEBUG
149 int atw_debug = 0;
150 
151 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
152 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
153 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
154 #define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
155 #define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
156 #define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
157 
158 static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
159 static void	atw_print_regs(struct atw_softc *, const char *);
160 
161 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
162 #	ifdef ATW_BBPDEBUG
163 static void	atw_rf3000_print(struct atw_softc *);
164 static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
165 #	endif /* ATW_BBPDEBUG */
166 
167 #	ifdef ATW_SYNDEBUG
168 static void	atw_si4126_print(struct atw_softc *);
169 static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
170 #	endif /* ATW_SYNDEBUG */
171 #define __atwdebugused	/* empty */
172 #else
173 #define ATW_DPRINTF(x)
174 #define ATW_DPRINTF2(x)
175 #define ATW_DPRINTF3(x)
176 #define	DPRINTF(sc, x)	/* nothing */
177 #define	DPRINTF2(sc, x)	/* nothing */
178 #define	DPRINTF3(sc, x)	/* nothing */
179 #define __atwdebugused	__unused
180 #endif
181 
182 /* ifnet methods */
183 int	atw_init(struct ifnet *);
184 int	atw_ioctl(struct ifnet *, u_long, void *);
185 void	atw_start(struct ifnet *);
186 void	atw_stop(struct ifnet *, int);
187 void	atw_watchdog(struct ifnet *);
188 
189 /* Device attachment */
190 void	atw_attach(struct atw_softc *);
191 int	atw_detach(struct atw_softc *);
192 static void atw_evcnt_attach(struct atw_softc *);
193 static void atw_evcnt_detach(struct atw_softc *);
194 
195 /* Rx/Tx process */
196 int	atw_add_rxbuf(struct atw_softc *, int);
197 void	atw_idle(struct atw_softc *, uint32_t);
198 void	atw_rxdrain(struct atw_softc *);
199 void	atw_txdrain(struct atw_softc *);
200 
201 /* Device (de)activation and power state */
202 void	atw_reset(struct atw_softc *);
203 
204 /* Interrupt handlers */
205 void	atw_softintr(void *);
206 void	atw_linkintr(struct atw_softc *, uint32_t);
207 void	atw_rxintr(struct atw_softc *);
208 void	atw_txintr(struct atw_softc *, uint32_t);
209 
210 /* 802.11 state machine */
211 static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
212 static void	atw_next_scan(void *);
213 static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
214 			      struct ieee80211_node *, int, int, uint32_t);
215 static int	atw_tune(struct atw_softc *);
216 
217 /* Device initialization */
218 static void	atw_bbp_io_init(struct atw_softc *);
219 static void	atw_cfp_init(struct atw_softc *);
220 static void	atw_cmdr_init(struct atw_softc *);
221 static void	atw_ifs_init(struct atw_softc *);
222 static void	atw_nar_init(struct atw_softc *);
223 static void	atw_response_times_init(struct atw_softc *);
224 static void	atw_rf_reset(struct atw_softc *);
225 static void	atw_test1_init(struct atw_softc *);
226 static void	atw_tofs0_init(struct atw_softc *);
227 static void	atw_tofs2_init(struct atw_softc *);
228 static void	atw_txlmt_init(struct atw_softc *);
229 static void	atw_wcsr_init(struct atw_softc *);
230 
231 /* Key management */
232 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
233 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
234 	const uint8_t[IEEE80211_ADDR_LEN]);
235 static void atw_key_update_begin(struct ieee80211com *);
236 static void atw_key_update_end(struct ieee80211com *);
237 
238 /* RAM/ROM utilities */
239 static void	atw_clear_sram(struct atw_softc *);
240 static void	atw_write_sram(struct atw_softc *, u_int, uint8_t *, u_int);
241 static int	atw_read_srom(struct atw_softc *);
242 
243 /* BSS setup */
244 static void	atw_predict_beacon(struct atw_softc *);
245 static void	atw_start_beacon(struct atw_softc *, int);
246 static void	atw_write_bssid(struct atw_softc *);
247 static void	atw_write_ssid(struct atw_softc *);
248 static void	atw_write_sup_rates(struct atw_softc *);
249 static void	atw_write_wep(struct atw_softc *);
250 
251 /* Media */
252 static int	atw_media_change(struct ifnet *);
253 
254 static void	atw_filter_setup(struct atw_softc *);
255 
256 /* 802.11 utilities */
257 static uint64_t			atw_get_tsft(struct atw_softc *);
258 static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
259 						   uint32_t);
260 static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
261 static void			atw_node_free(struct ieee80211_node *);
262 
263 /*
264  * Tuner/transceiver/modem
265  */
266 static void	atw_bbp_io_enable(struct atw_softc *, int);
267 
268 /* RFMD RF3000 Baseband Processor */
269 static int	atw_rf3000_init(struct atw_softc *);
270 static int	atw_rf3000_tune(struct atw_softc *, u_int);
271 static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
272 
273 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
274 static void	atw_si4126_tune(struct atw_softc *, u_int);
275 static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
276 
277 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
278 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
279 
280 const char *atw_tx_state[] = {
281 	"STOPPED",
282 	"RUNNING - read descriptor",
283 	"RUNNING - transmitting",
284 	"RUNNING - filling fifo",	/* XXX */
285 	"SUSPENDED",
286 	"RUNNING -- write descriptor",
287 	"RUNNING -- write last descriptor",
288 	"RUNNING - fifo full"
289 };
290 
291 const char *atw_rx_state[] = {
292 	"STOPPED",
293 	"RUNNING - read descriptor",
294 	"RUNNING - check this packet, pre-fetch next",
295 	"RUNNING - wait for reception",
296 	"SUSPENDED",
297 	"RUNNING - write descriptor",
298 	"RUNNING - flush fifo",
299 	"RUNNING - fifo drain"
300 };
301 
302 static inline int
is_running(struct ifnet * ifp)303 is_running(struct ifnet *ifp)
304 {
305 	return (ifp->if_flags & (IFF_RUNNING | IFF_UP))
306 	    == (IFF_RUNNING | IFF_UP);
307 }
308 
309 int
atw_activate(device_t self,enum devact act)310 atw_activate(device_t self, enum devact act)
311 {
312 	struct atw_softc *sc = device_private(self);
313 
314 	switch (act) {
315 	case DVACT_DEACTIVATE:
316 		if_deactivate(&sc->sc_if);
317 		return 0;
318 	default:
319 		return EOPNOTSUPP;
320 	}
321 }
322 
323 bool
atw_suspend(device_t self,const pmf_qual_t * qual)324 atw_suspend(device_t self, const pmf_qual_t *qual)
325 {
326 	struct atw_softc *sc = device_private(self);
327 
328 	atw_rxdrain(sc);
329 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
330 
331 	return true;
332 }
333 
334 /* Returns -1 on failure. */
335 static int
atw_read_srom(struct atw_softc * sc)336 atw_read_srom(struct atw_softc *sc)
337 {
338 	struct seeprom_descriptor sd;
339 	uint32_t test0, fail_bits;
340 
341 	(void)memset(&sd, 0, sizeof(sd));
342 
343 	test0 = ATW_READ(sc, ATW_TEST0);
344 
345 	switch (sc->sc_rev) {
346 	case ATW_REVISION_BA:
347 	case ATW_REVISION_CA:
348 		fail_bits = ATW_TEST0_EPNE;
349 		break;
350 	default:
351 		fail_bits = ATW_TEST0_EPNE | ATW_TEST0_EPSNM;
352 		break;
353 	}
354 	if ((test0 & fail_bits) != 0) {
355 		aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
356 		return -1;
357 	}
358 
359 	switch (test0 & ATW_TEST0_EPTYP_MASK) {
360 	case ATW_TEST0_EPTYP_93c66:
361 		ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
362 		sc->sc_sromsz = 512;
363 		sd.sd_chip = C56_66;
364 		break;
365 	case ATW_TEST0_EPTYP_93c46:
366 		ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
367 		sc->sc_sromsz = 128;
368 		sd.sd_chip = C46;
369 		break;
370 	default:
371 		printf("%s: unknown SROM type %" __PRIuBITS "\n",
372 		    device_xname(sc->sc_dev),
373 		    __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
374 		return -1;
375 	}
376 
377 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_WAITOK | M_ZERO);
378 
379 	/* ADM8211 has a single 32-bit register for controlling the
380 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
381 	 * "ready" bit. The ADM8211 input/output sense is the reverse
382 	 * of read_seeprom's.
383 	 */
384 	sd.sd_tag = sc->sc_st;
385 	sd.sd_bsh = sc->sc_sh;
386 	sd.sd_regsize = 4;
387 	sd.sd_control_offset = ATW_SPR;
388 	sd.sd_status_offset = ATW_SPR;
389 	sd.sd_dataout_offset = ATW_SPR;
390 	sd.sd_CK = ATW_SPR_SCLK;
391 	sd.sd_CS = ATW_SPR_SCS;
392 	sd.sd_DI = ATW_SPR_SDO;
393 	sd.sd_DO = ATW_SPR_SDI;
394 	sd.sd_MS = ATW_SPR_SRS;
395 	sd.sd_RDY = 0;
396 
397 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
398 		aprint_error_dev(sc->sc_dev, "could not read SROM\n");
399 		free(sc->sc_srom, M_DEVBUF);
400 		return -1;
401 	}
402 #ifdef ATW_DEBUG
403 	{
404 		int i;
405 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
406 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
407 			if (((i % 8) == 0) && (i != 0)) {
408 				ATW_DPRINTF(("\n\t"));
409 			}
410 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
411 		}
412 		ATW_DPRINTF(("\n"));
413 	}
414 #endif /* ATW_DEBUG */
415 	return 0;
416 }
417 
418 #ifdef ATW_DEBUG
419 static void
atw_print_regs(struct atw_softc * sc,const char * where)420 atw_print_regs(struct atw_softc *sc, const char *where)
421 {
422 #define PRINTREG(sc, reg) \
423 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
424 	    device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
425 
426 	ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
427 
428 	PRINTREG(sc, ATW_PAR);
429 	PRINTREG(sc, ATW_FRCTL);
430 	PRINTREG(sc, ATW_TDR);
431 	PRINTREG(sc, ATW_WTDP);
432 	PRINTREG(sc, ATW_RDR);
433 	PRINTREG(sc, ATW_WRDP);
434 	PRINTREG(sc, ATW_RDB);
435 	PRINTREG(sc, ATW_CSR3A);
436 	PRINTREG(sc, ATW_TDBD);
437 	PRINTREG(sc, ATW_TDBP);
438 	PRINTREG(sc, ATW_STSR);
439 	PRINTREG(sc, ATW_CSR5A);
440 	PRINTREG(sc, ATW_NAR);
441 	PRINTREG(sc, ATW_CSR6A);
442 	PRINTREG(sc, ATW_IER);
443 	PRINTREG(sc, ATW_CSR7A);
444 	PRINTREG(sc, ATW_LPC);
445 	PRINTREG(sc, ATW_TEST1);
446 	PRINTREG(sc, ATW_SPR);
447 	PRINTREG(sc, ATW_TEST0);
448 	PRINTREG(sc, ATW_WCSR);
449 	PRINTREG(sc, ATW_WPDR);
450 	PRINTREG(sc, ATW_GPTMR);
451 	PRINTREG(sc, ATW_GPIO);
452 	PRINTREG(sc, ATW_BBPCTL);
453 	PRINTREG(sc, ATW_SYNCTL);
454 	PRINTREG(sc, ATW_PLCPHD);
455 	PRINTREG(sc, ATW_MMIWADDR);
456 	PRINTREG(sc, ATW_MMIRADDR1);
457 	PRINTREG(sc, ATW_MMIRADDR2);
458 	PRINTREG(sc, ATW_TXBR);
459 	PRINTREG(sc, ATW_CSR15A);
460 	PRINTREG(sc, ATW_ALCSTAT);
461 	PRINTREG(sc, ATW_TOFS2);
462 	PRINTREG(sc, ATW_CMDR);
463 	PRINTREG(sc, ATW_PCIC);
464 	PRINTREG(sc, ATW_PMCSR);
465 	PRINTREG(sc, ATW_PAR0);
466 	PRINTREG(sc, ATW_PAR1);
467 	PRINTREG(sc, ATW_MAR0);
468 	PRINTREG(sc, ATW_MAR1);
469 	PRINTREG(sc, ATW_ATIMDA0);
470 	PRINTREG(sc, ATW_ABDA1);
471 	PRINTREG(sc, ATW_BSSID0);
472 	PRINTREG(sc, ATW_TXLMT);
473 	PRINTREG(sc, ATW_MIBCNT);
474 	PRINTREG(sc, ATW_BCNT);
475 	PRINTREG(sc, ATW_TSFTH);
476 	PRINTREG(sc, ATW_TSC);
477 	PRINTREG(sc, ATW_SYNRF);
478 	PRINTREG(sc, ATW_BPLI);
479 	PRINTREG(sc, ATW_CAP0);
480 	PRINTREG(sc, ATW_CAP1);
481 	PRINTREG(sc, ATW_RMD);
482 	PRINTREG(sc, ATW_CFPP);
483 	PRINTREG(sc, ATW_TOFS0);
484 	PRINTREG(sc, ATW_TOFS1);
485 	PRINTREG(sc, ATW_IFST);
486 	PRINTREG(sc, ATW_RSPT);
487 	PRINTREG(sc, ATW_TSFTL);
488 	PRINTREG(sc, ATW_WEPCTL);
489 	PRINTREG(sc, ATW_WESK);
490 	PRINTREG(sc, ATW_WEPCNT);
491 	PRINTREG(sc, ATW_MACTEST);
492 	PRINTREG(sc, ATW_FER);
493 	PRINTREG(sc, ATW_FEMR);
494 	PRINTREG(sc, ATW_FPSR);
495 	PRINTREG(sc, ATW_FFER);
496 #undef PRINTREG
497 }
498 #endif /* ATW_DEBUG */
499 
500 /*
501  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
502  */
503 void
atw_attach(struct atw_softc * sc)504 atw_attach(struct atw_softc *sc)
505 {
506 	static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
507 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
508 	};
509 	struct ieee80211com *ic = &sc->sc_ic;
510 	struct ifnet *ifp = &sc->sc_if;
511 	int country_code, error, i, srom_major;
512 	uint32_t reg;
513 	static const char *type_strings[] = {"Intersil (not supported)",
514 	    "RFMD", "Marvel (not supported)"};
515 
516 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
517 
518 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, atw_softintr, sc);
519 	if (sc->sc_soft_ih == NULL) {
520 		aprint_error_dev(sc->sc_dev, "unable to establish softint\n");
521 		goto fail_0;
522 	}
523 
524 	sc->sc_txth = atw_txthresh_tab_lo;
525 
526 	SIMPLEQ_INIT(&sc->sc_txfreeq);
527 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
528 
529 #ifdef ATW_DEBUG
530 	atw_print_regs(sc, "atw_attach");
531 #endif /* ATW_DEBUG */
532 
533 	/*
534 	 * Allocate the control data structures, and create and load the
535 	 * DMA map for it.
536 	 */
537 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
538 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
539 	    1, &sc->sc_cdnseg, 0)) != 0) {
540 		aprint_error_dev(sc->sc_dev,
541 		    "unable to allocate control data, error = %d\n",
542 		    error);
543 		goto fail_0;
544 	}
545 
546 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
547 	    sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
548 	    BUS_DMA_COHERENT)) != 0) {
549 		aprint_error_dev(sc->sc_dev,
550 		    "unable to map control data, error = %d\n",
551 		    error);
552 		goto fail_1;
553 	}
554 
555 	if ((error = bus_dmamap_create(sc->sc_dmat,
556 	    sizeof(struct atw_control_data), 1,
557 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
558 		aprint_error_dev(sc->sc_dev,
559 		    "unable to create control data DMA map, error = %d\n",
560 		    error);
561 		goto fail_2;
562 	}
563 
564 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
565 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
566 	    0)) != 0) {
567 		aprint_error_dev(sc->sc_dev,
568 		    "unable to load control data DMA map, error = %d\n", error);
569 		goto fail_3;
570 	}
571 
572 	/*
573 	 * Create the transmit buffer DMA maps.
574 	 */
575 	sc->sc_ntxsegs = ATW_NTXSEGS;
576 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
577 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
578 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
579 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
580 			aprint_error_dev(sc->sc_dev,
581 			    "unable to create tx DMA map %d, error = %d\n", i,
582 			    error);
583 			goto fail_4;
584 		}
585 	}
586 
587 	/*
588 	 * Create the receive buffer DMA maps.
589 	 */
590 	for (i = 0; i < ATW_NRXDESC; i++) {
591 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
592 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
593 			aprint_error_dev(sc->sc_dev,
594 			    "unable to create rx DMA map %d, error = %d\n", i,
595 			    error);
596 			goto fail_5;
597 		}
598 	}
599 	for (i = 0; i < ATW_NRXDESC; i++) {
600 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
601 	}
602 
603 	switch (sc->sc_rev) {
604 	case ATW_REVISION_AB:
605 	case ATW_REVISION_AF:
606 		sc->sc_sramlen = ATW_SRAM_A_SIZE;
607 		break;
608 	case ATW_REVISION_BA:
609 	case ATW_REVISION_CA:
610 		sc->sc_sramlen = ATW_SRAM_B_SIZE;
611 		break;
612 	}
613 
614 	/* Reset the chip to a known state. */
615 	atw_reset(sc);
616 
617 	if (atw_read_srom(sc) == -1)
618 		goto fail_5;
619 
620 	sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
621 	    ATW_SR_RFTYPE_MASK);
622 
623 	sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
624 	    ATW_SR_BBPTYPE_MASK);
625 
626 	if (sc->sc_rftype >= __arraycount(type_strings)) {
627 		aprint_error_dev(sc->sc_dev, "unknown RF\n");
628 		goto fail_5;
629 	}
630 	if (sc->sc_bbptype >= __arraycount(type_strings)) {
631 		aprint_error_dev(sc->sc_dev, "unknown BBP\n");
632 		goto fail_5;
633 	}
634 
635 	aprint_normal_dev(sc->sc_dev, "%s RF, %s BBP",
636 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
637 
638 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
639 	 * MARVEL. My bug, or theirs?
640 	 */
641 
642 	reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
643 
644 	switch (sc->sc_rftype) {
645 	case ATW_RFTYPE_INTERSIL:
646 		reg |= ATW_SYNCTL_CS1;
647 		break;
648 	case ATW_RFTYPE_RFMD:
649 		reg |= ATW_SYNCTL_CS0;
650 		break;
651 	case ATW_RFTYPE_MARVEL:
652 		break;
653 	}
654 
655 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
656 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
657 
658 	reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
659 
660 	switch (sc->sc_bbptype) {
661 	case ATW_BBPTYPE_INTERSIL:
662 		reg |= ATW_BBPCTL_TWI;
663 		break;
664 	case ATW_BBPTYPE_RFMD:
665 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
666 		    ATW_BBPCTL_CCA_ACTLO;
667 		break;
668 	case ATW_BBPTYPE_MARVEL:
669 		break;
670 	case ATW_C_BBPTYPE_RFMD:
671 		aprint_error_dev(sc->sc_dev,
672 		    "ADM8211C MAC/RFMD BBP not supported yet.\n");
673 		break;
674 	}
675 
676 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
677 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
678 
679 	/*
680 	 * From this point forward, the attachment cannot fail.  A failure
681 	 * before this point releases all resources that may have been
682 	 * allocated.
683 	 */
684 	sc->sc_flags |= ATWF_ATTACHED;
685 
686 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
687 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
688 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
689 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
690 
691 	srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
692 	    ATW_SR_MAJOR_MASK);
693 
694 	if (srom_major < 2)
695 		sc->sc_rf3000_options1 = 0;
696 	else if (sc->sc_rev == ATW_REVISION_BA) {
697 		sc->sc_rf3000_options1 =
698 		    __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
699 		    ATW_SR_CR28_MASK);
700 	} else
701 		sc->sc_rf3000_options1 = 0;
702 
703 	sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
704 	    ATW_SR_CR29_MASK);
705 
706 	country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
707 	    ATW_SR_CTRY_MASK);
708 
709 #define ADD_CHANNEL(_ic, _chan) do {					\
710 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
711 	_ic->ic_channels[_chan].ic_freq =				\
712 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
713 } while (0)
714 
715 	/* Find available channels */
716 	switch (country_code) {
717 	case COUNTRY_MMK2:	/* 1-14 */
718 		ADD_CHANNEL(ic, 14);
719 		/*FALLTHROUGH*/
720 	case COUNTRY_ETSI:	/* 1-13 */
721 		for (i = 1; i <= 13; i++)
722 			ADD_CHANNEL(ic, i);
723 		break;
724 	case COUNTRY_FCC:	/* 1-11 */
725 	case COUNTRY_IC:	/* 1-11 */
726 		for (i = 1; i <= 11; i++)
727 			ADD_CHANNEL(ic, i);
728 		break;
729 	case COUNTRY_MMK:	/* 14 */
730 		ADD_CHANNEL(ic, 14);
731 		break;
732 	case COUNTRY_FRANCE:	/* 10-13 */
733 		for (i = 10; i <= 13; i++)
734 			ADD_CHANNEL(ic, i);
735 		break;
736 	default:	/* assume channels 10-11 */
737 	case COUNTRY_SPAIN:	/* 10-11 */
738 		for (i = 10; i <= 11; i++)
739 			ADD_CHANNEL(ic, i);
740 		break;
741 	}
742 
743 	/* Read the MAC address. */
744 	reg = ATW_READ(sc, ATW_PAR0);
745 	ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
746 	ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
747 	ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
748 	ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
749 	reg = ATW_READ(sc, ATW_PAR1);
750 	ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
751 	ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
752 
753 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
754 		aprint_error_dev(sc->sc_dev,
755 		    "could not get mac address, attach failed\n");
756 		goto fail_5;
757 	}
758 
759 	aprint_normal(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
760 
761 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
762 	ifp->if_softc = sc;
763 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
764 	ifp->if_ioctl = atw_ioctl;
765 	ifp->if_start = atw_start;
766 	ifp->if_watchdog = atw_watchdog;
767 	ifp->if_init = atw_init;
768 	ifp->if_stop = atw_stop;
769 	IFQ_SET_READY(&ifp->if_snd);
770 
771 	ic->ic_ifp = ifp;
772 	ic->ic_phytype = IEEE80211_T_DS;
773 	ic->ic_opmode = IEEE80211_M_STA;
774 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
775 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
776 
777 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
778 
779 	/*
780 	 * Call MI attach routines.
781 	 */
782 
783 	if_initialize(ifp);
784 	ieee80211_ifattach(ic);
785 	/* Use common softint-based if_input */
786 	ifp->if_percpuq = if_percpuq_create(ifp);
787 	if_register(ifp);
788 
789 	atw_evcnt_attach(sc);
790 
791 	sc->sc_newstate = ic->ic_newstate;
792 	ic->ic_newstate = atw_newstate;
793 
794 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
795 	ic->ic_recv_mgmt = atw_recv_mgmt;
796 
797 	sc->sc_node_free = ic->ic_node_free;
798 	ic->ic_node_free = atw_node_free;
799 
800 	sc->sc_node_alloc = ic->ic_node_alloc;
801 	ic->ic_node_alloc = atw_node_alloc;
802 
803 	ic->ic_crypto.cs_key_delete = atw_key_delete;
804 	ic->ic_crypto.cs_key_set = atw_key_set;
805 	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
806 	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
807 
808 	/* possibly we should fill in our own sc_send_prresp, since
809 	 * the ADM8211 is probably sending probe responses in ad hoc
810 	 * mode.
811 	 */
812 
813 	/* complete initialization */
814 	ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
815 	callout_init(&sc->sc_scan_ch, 0);
816 
817 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
818 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
819 
820 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
821 	sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
822 	sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
823 
824 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
825 	sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
826 	sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
827 
828 	ieee80211_announce(ic);
829 	return;
830 
831 	/*
832 	 * Free any resources we've allocated during the failed attach
833 	 * attempt.  Do this in reverse order and fall through.
834 	 */
835  fail_5:
836 	for (i = 0; i < ATW_NRXDESC; i++) {
837 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
838 			continue;
839 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
840 	}
841  fail_4:
842 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
843 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
844 			continue;
845 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
846 	}
847 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
848  fail_3:
849 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
850  fail_2:
851 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
852 	    sizeof(struct atw_control_data));
853  fail_1:
854 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
855  fail_0:
856 	if (sc->sc_soft_ih != NULL) {
857 		softint_disestablish(sc->sc_soft_ih);
858 		sc->sc_soft_ih = NULL;
859 	}
860 }
861 
862 static struct ieee80211_node *
atw_node_alloc(struct ieee80211_node_table * nt)863 atw_node_alloc(struct ieee80211_node_table *nt)
864 {
865 	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
866 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
867 
868 	DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
869 	return ni;
870 }
871 
872 static void
atw_node_free(struct ieee80211_node * ni)873 atw_node_free(struct ieee80211_node *ni)
874 {
875 	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
876 
877 	DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
878 	    ether_sprintf(ni->ni_bssid)));
879 	(*sc->sc_node_free)(ni);
880 }
881 
882 
883 static void
atw_test1_reset(struct atw_softc * sc)884 atw_test1_reset(struct atw_softc *sc)
885 {
886 	switch (sc->sc_rev) {
887 	case ATW_REVISION_BA:
888 		if (1 /* XXX condition on transceiver type */) {
889 			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
890 		}
891 		break;
892 	case ATW_REVISION_CA:
893 		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
894 		break;
895 	default:
896 		break;
897 	}
898 }
899 
900 /*
901  * atw_reset:
902  *
903  *	Perform a soft reset on the ADM8211.
904  */
905 void
atw_reset(struct atw_softc * sc)906 atw_reset(struct atw_softc *sc)
907 {
908 	int i;
909 	uint32_t lpc __atwdebugused;
910 
911 	ATW_WRITE(sc, ATW_NAR, 0x0);
912 	DELAY(atw_nar_delay);
913 
914 	/* Reference driver has a cryptic remark indicating that this might
915 	 * power-on the chip.  I know that it turns off power-saving....
916 	 */
917 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
918 
919 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
920 
921 	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
922 		if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
923 			break;
924 		DELAY(atw_pseudo_milli);
925 	}
926 
927 	/* ... and then pause 100ms longer for good measure. */
928 	DELAY(atw_magic_delay1);
929 
930 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
931 
932 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
933 		aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
934 
935 	/*
936 	 * Initialize the PCI Access Register.
937 	 */
938 	sc->sc_busmode = ATW_PAR_PBL_8DW;
939 
940 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
941 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
942 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
943 
944 	atw_test1_reset(sc);
945 
946 	/* Turn off maximum power saving, etc. */
947 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
948 
949 	DELAY(atw_magic_delay2);
950 
951 	/* Recall EEPROM. */
952 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
953 
954 	DELAY(atw_magic_delay4);
955 
956 	lpc = ATW_READ(sc, ATW_LPC);
957 
958 	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
959 
960 	/* A reset seems to affect the SRAM contents, so put them into
961 	 * a known state.
962 	 */
963 	atw_clear_sram(sc);
964 
965 	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
966 }
967 
968 static void
atw_clear_sram(struct atw_softc * sc)969 atw_clear_sram(struct atw_softc *sc)
970 {
971 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
972 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
973 	/* XXX not for revision 0x20. */
974 	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
975 }
976 
977 /* TBD atw_init
978  *
979  * set MAC based on ic->ic_bss->myaddr
980  * write WEP keys
981  * set TX rate
982  */
983 
984 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
985  * without receiving a beacon with the preferred BSSID & SSID.
986  * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
987  */
988 static void
atw_wcsr_init(struct atw_softc * sc)989 atw_wcsr_init(struct atw_softc *sc)
990 {
991 	uint32_t wcsr;
992 
993 	wcsr = ATW_READ(sc, ATW_WCSR);
994 	wcsr &= ~ATW_WCSR_BLN_MASK;
995 	wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
996 	/* We always want to wake up on link loss or TSFT out of range */
997 	wcsr |= ATW_WCSR_LSOE | ATW_WCSR_TSFTWE;
998 	ATW_WRITE(sc, ATW_WCSR, wcsr);
999 
1000 	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1001 	    device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
1002 }
1003 
1004 /* Turn off power management.  Set Rx store-and-forward mode. */
1005 static void
atw_cmdr_init(struct atw_softc * sc)1006 atw_cmdr_init(struct atw_softc *sc)
1007 {
1008 	uint32_t cmdr;
1009 	cmdr = ATW_READ(sc, ATW_CMDR);
1010 	cmdr &= ~ATW_CMDR_APM;
1011 	cmdr |= ATW_CMDR_RTE;
1012 	cmdr &= ~ATW_CMDR_DRT_MASK;
1013 	cmdr |= ATW_CMDR_DRT_SF;
1014 
1015 	ATW_WRITE(sc, ATW_CMDR, cmdr);
1016 }
1017 
1018 static void
atw_tofs2_init(struct atw_softc * sc)1019 atw_tofs2_init(struct atw_softc *sc)
1020 {
1021 	uint32_t tofs2;
1022 	/* XXX this magic can probably be figured out from the RFMD docs */
1023 #ifndef ATW_REFSLAVE
1024 	tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1025 	      __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1026 	      __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1027 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1028 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1029 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1030 	      __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1031 	      __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1032 #else
1033 	/* XXX new magic from reference driver source */
1034 	tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1035 	      __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1036 	      __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 1 us */
1037 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1038 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1039 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1040 	      __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 1 us */
1041 	      __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 8 us */
1042 #endif
1043 	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1044 }
1045 
1046 static void
atw_nar_init(struct atw_softc * sc)1047 atw_nar_init(struct atw_softc *sc)
1048 {
1049 	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF | ATW_NAR_PB);
1050 }
1051 
1052 static void
atw_txlmt_init(struct atw_softc * sc)1053 atw_txlmt_init(struct atw_softc *sc)
1054 {
1055 	ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1056 				 __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1057 }
1058 
1059 static void
atw_test1_init(struct atw_softc * sc)1060 atw_test1_init(struct atw_softc *sc)
1061 {
1062 	uint32_t test1;
1063 
1064 	test1 = ATW_READ(sc, ATW_TEST1);
1065 	test1 &= ~(ATW_TEST1_DBGREAD_MASK | ATW_TEST1_CONTROL);
1066 	/* XXX magic 0x1 */
1067 	test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1068 	ATW_WRITE(sc, ATW_TEST1, test1);
1069 }
1070 
1071 static void
atw_rf_reset(struct atw_softc * sc)1072 atw_rf_reset(struct atw_softc *sc)
1073 {
1074 	/* XXX this resets an Intersil RF front-end? */
1075 	/* TBD condition on Intersil RFType? */
1076 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1077 	DELAY(atw_rf_delay1);
1078 	ATW_WRITE(sc, ATW_SYNRF, 0);
1079 	DELAY(atw_rf_delay2);
1080 }
1081 
1082 /* Set 16 TU max duration for the contention-free period (CFP). */
1083 static void
atw_cfp_init(struct atw_softc * sc)1084 atw_cfp_init(struct atw_softc *sc)
1085 {
1086 	uint32_t cfpp;
1087 
1088 	cfpp = ATW_READ(sc, ATW_CFPP);
1089 	cfpp &= ~ATW_CFPP_CFPMD;
1090 	cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1091 	ATW_WRITE(sc, ATW_CFPP, cfpp);
1092 }
1093 
1094 static void
atw_tofs0_init(struct atw_softc * sc)1095 atw_tofs0_init(struct atw_softc *sc)
1096 {
1097 	/* XXX I guess that the Cardbus clock is 22 MHz?
1098 	 * I am assuming that the role of ATW_TOFS0_USCNT is
1099 	 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1100 	 * very clear on this point. It says in the datasheet that it is
1101 	 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1102 	 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1103 	 * these values. These values are also the power-on default.
1104 	 */
1105 	ATW_WRITE(sc, ATW_TOFS0,
1106 	    __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1107 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1108 }
1109 
1110 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1111 static void
atw_ifs_init(struct atw_softc * sc)1112 atw_ifs_init(struct atw_softc *sc)
1113 {
1114 	uint32_t ifst;
1115 	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1116 	 * Go figure.
1117 	 */
1118 	ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1119 	      __SHIFTIN(22 * 10 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1120 		     ATW_IFST_SIFS_MASK) |
1121 	      __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1122 	      __SHIFTIN(IEEE80211_DUR_DS_EIFS, ATW_IFST_EIFS_MASK);
1123 
1124 	ATW_WRITE(sc, ATW_IFST, ifst);
1125 }
1126 
1127 static void
atw_response_times_init(struct atw_softc * sc)1128 atw_response_times_init(struct atw_softc *sc)
1129 {
1130 	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1131 	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1132 	 * to pass after it transmits a frame that requires a response;
1133 	 * it waits at most SIFS + MART microseconds for the response.
1134 	 * Surely this is not the ACK timeout?
1135 	 */
1136 	ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1137 	    __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1138 }
1139 
1140 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1141  * engines read and write baseband registers after Rx and before
1142  * Tx, respectively.
1143  */
1144 static void
atw_bbp_io_init(struct atw_softc * sc)1145 atw_bbp_io_init(struct atw_softc *sc)
1146 {
1147 	uint32_t mmiraddr2;
1148 
1149 	/* XXX The reference driver does this, but is it *really*
1150 	 * necessary?
1151 	 */
1152 	switch (sc->sc_rev) {
1153 	case ATW_REVISION_AB:
1154 	case ATW_REVISION_AF:
1155 		mmiraddr2 = 0x0;
1156 		break;
1157 	default:
1158 		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1159 		mmiraddr2 &=
1160 		    ~(ATW_MMIRADDR2_PROREXT | ATW_MMIRADDR2_PRORLEN_MASK);
1161 		break;
1162 	}
1163 
1164 	switch (sc->sc_bbptype) {
1165 	case ATW_BBPTYPE_INTERSIL:
1166 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1167 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1168 		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1169 		break;
1170 	case ATW_BBPTYPE_MARVEL:
1171 		/* TBD find out the Marvel settings. */
1172 		break;
1173 	case ATW_BBPTYPE_RFMD:
1174 	default:
1175 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1176 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1177 		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1178 		break;
1179 	}
1180 	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1181 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1182 }
1183 
1184 /*
1185  * atw_init:		[ ifnet interface function ]
1186  *
1187  *	Initialize the interface.  Must be called at splnet().
1188  */
1189 int
atw_init(struct ifnet * ifp)1190 atw_init(struct ifnet *ifp)
1191 {
1192 	struct atw_softc *sc = ifp->if_softc;
1193 	struct ieee80211com *ic = &sc->sc_ic;
1194 	struct atw_txsoft *txs;
1195 	struct atw_rxsoft *rxs;
1196 	int i, error = 0;
1197 
1198 	if (device_is_active(sc->sc_dev)) {
1199 		/*
1200 		 * Cancel any pending I/O.
1201 		 */
1202 		atw_stop(ifp, 0);
1203 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1204 		   !device_is_active(sc->sc_dev))
1205 		return 0;
1206 
1207 	/*
1208 	 * Reset the chip to a known state.
1209 	 */
1210 	atw_reset(sc);
1211 
1212 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1213 	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1214 	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1215 
1216 	atw_wcsr_init(sc);
1217 
1218 	atw_cmdr_init(sc);
1219 
1220 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1221 	 *
1222 	 * XXX Set transmit power for ATIM, RTS, Beacon.
1223 	 */
1224 	ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1225 	    __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1226 
1227 	atw_tofs2_init(sc);
1228 
1229 	atw_nar_init(sc);
1230 
1231 	atw_txlmt_init(sc);
1232 
1233 	atw_test1_init(sc);
1234 
1235 	atw_rf_reset(sc);
1236 
1237 	atw_cfp_init(sc);
1238 
1239 	atw_tofs0_init(sc);
1240 
1241 	atw_ifs_init(sc);
1242 
1243 	/* XXX Fall asleep after one second of inactivity.
1244 	 * XXX A frame may only dribble in for 65536us.
1245 	 */
1246 	ATW_WRITE(sc, ATW_RMD,
1247 	    __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1248 
1249 	atw_response_times_init(sc);
1250 
1251 	atw_bbp_io_init(sc);
1252 
1253 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1254 
1255 	if ((error = atw_rf3000_init(sc)) != 0)
1256 		goto out;
1257 
1258 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1259 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
1260 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1261 
1262 	/*
1263 	 * Initialize the transmit descriptor ring.
1264 	 */
1265 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1266 	for (i = 0; i < ATW_NTXDESC; i++) {
1267 		sc->sc_txdescs[i].at_ctl = 0;
1268 		/* no transmit chaining */
1269 		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1270 		sc->sc_txdescs[i].at_buf2 =
1271 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1272 	}
1273 	/* use ring mode */
1274 	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1275 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1276 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1277 	sc->sc_txfree = ATW_NTXDESC;
1278 	sc->sc_txnext = 0;
1279 
1280 	/*
1281 	 * Initialize the transmit job descriptors.
1282 	 */
1283 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1284 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1285 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1286 		txs = &sc->sc_txsoft[i];
1287 		txs->txs_mbuf = NULL;
1288 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1289 	}
1290 
1291 	/*
1292 	 * Initialize the receive descriptor and receive job
1293 	 * descriptor rings.
1294 	 */
1295 	for (i = 0; i < ATW_NRXDESC; i++) {
1296 		rxs = &sc->sc_rxsoft[i];
1297 		if (rxs->rxs_mbuf == NULL) {
1298 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1299 				aprint_error_dev(sc->sc_dev,
1300 				    "unable to allocate or map rx buffer %d, "
1301 				    "error = %d\n", i, error);
1302 				/*
1303 				 * XXX Should attempt to run with fewer receive
1304 				 * XXX buffers instead of just failing.
1305 				 */
1306 				atw_rxdrain(sc);
1307 				goto out;
1308 			}
1309 		} else
1310 			atw_init_rxdesc(sc, i);
1311 	}
1312 	sc->sc_rxptr = 0;
1313 
1314 	/*
1315 	 * Initialize the interrupt mask and enable interrupts.
1316 	 */
1317 	/* normal interrupts */
1318 	sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1319 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1320 
1321 	/* abnormal interrupts */
1322 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1323 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1324 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1325 
1326 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1327 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1328 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1329 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1330 	    ATW_INTR_TRT;
1331 
1332 	sc->sc_linkint_mask &= sc->sc_inten;
1333 	sc->sc_rxint_mask &= sc->sc_inten;
1334 	sc->sc_txint_mask &= sc->sc_inten;
1335 
1336 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1337 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1338 
1339 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1340 	    device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1341 
1342 	/*
1343 	 * Give the transmit and receive rings to the ADM8211.
1344 	 */
1345 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1346 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1347 
1348 	sc->sc_txthresh = 0;
1349 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1350 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1351 
1352 	/* common 802.11 configuration */
1353 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1354 	switch (ic->ic_opmode) {
1355 	case IEEE80211_M_STA:
1356 		break;
1357 	case IEEE80211_M_AHDEMO: /* XXX */
1358 	case IEEE80211_M_IBSS:
1359 		ic->ic_flags |= IEEE80211_F_IBSSON;
1360 		/*FALLTHROUGH*/
1361 	case IEEE80211_M_HOSTAP: /* XXX */
1362 		break;
1363 	case IEEE80211_M_MONITOR: /* XXX */
1364 		break;
1365 	}
1366 
1367 	switch (ic->ic_opmode) {
1368 	case IEEE80211_M_AHDEMO:
1369 	case IEEE80211_M_HOSTAP:
1370 #ifndef IEEE80211_NO_HOSTAP
1371 		ic->ic_bss->ni_intval = ic->ic_lintval;
1372 		ic->ic_bss->ni_rssi = 0;
1373 		ic->ic_bss->ni_rstamp = 0;
1374 #endif /* !IEEE80211_NO_HOSTAP */
1375 		break;
1376 	default:					/* XXX */
1377 		break;
1378 	}
1379 
1380 	sc->sc_wepctl = 0;
1381 
1382 	atw_write_ssid(sc);
1383 	atw_write_sup_rates(sc);
1384 	atw_write_wep(sc);
1385 
1386 	ic->ic_state = IEEE80211_S_INIT;
1387 
1388 	/*
1389 	 * Set the receive filter.  This will start the transmit and
1390 	 * receive processes.
1391 	 */
1392 	atw_filter_setup(sc);
1393 
1394 	/*
1395 	 * Start the receive process.
1396 	 */
1397 	ATW_WRITE(sc, ATW_RDR, 0x1);
1398 
1399 	/*
1400 	 * Note that the interface is now running.
1401 	 */
1402 	ifp->if_flags |= IFF_RUNNING;
1403 
1404 	/* send no beacons, yet. */
1405 	atw_start_beacon(sc, 0);
1406 
1407 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1408 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1409 	else
1410 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1411  out:
1412 	if (error) {
1413 		ifp->if_flags &= ~IFF_RUNNING;
1414 		sc->sc_tx_timer = 0;
1415 		ifp->if_timer = 0;
1416 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1417 	}
1418 #ifdef ATW_DEBUG
1419 	atw_print_regs(sc, "end of init");
1420 #endif /* ATW_DEBUG */
1421 
1422 	return (error);
1423 }
1424 
1425 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1426  *           0: MAC control of RF3000/Si4126.
1427  *
1428  * Applies power, or selects RF front-end? Sets reset condition.
1429  *
1430  * TBD support non-RFMD BBP, non-SiLabs synth.
1431  */
1432 static void
atw_bbp_io_enable(struct atw_softc * sc,int enable)1433 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1434 {
1435 	if (enable) {
1436 		ATW_WRITE(sc, ATW_SYNRF,
1437 		    ATW_SYNRF_SELRF | ATW_SYNRF_PE1 | ATW_SYNRF_PHYRST);
1438 		DELAY(atw_bbp_io_enable_delay);
1439 	} else {
1440 		ATW_WRITE(sc, ATW_SYNRF, 0);
1441 		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1442 	}
1443 }
1444 
1445 static int
atw_tune(struct atw_softc * sc)1446 atw_tune(struct atw_softc *sc)
1447 {
1448 	int rc;
1449 	u_int chan;
1450 	struct ieee80211com *ic = &sc->sc_ic;
1451 
1452 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1453 	if (chan == IEEE80211_CHAN_ANY)
1454 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1455 
1456 	if (chan == sc->sc_cur_chan)
1457 		return 0;
1458 
1459 	DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
1460 	    sc->sc_cur_chan, chan));
1461 
1462 	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
1463 
1464 	atw_si4126_tune(sc, chan);
1465 	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1466 		printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
1467 		    chan);
1468 
1469 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1470 	DELAY(atw_nar_delay);
1471 	ATW_WRITE(sc, ATW_RDR, 0x1);
1472 
1473 	if (rc == 0) {
1474 		sc->sc_cur_chan = chan;
1475 		sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1476 		    htole16(ic->ic_curchan->ic_freq);
1477 		sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1478 		    htole16(ic->ic_curchan->ic_flags);
1479 	}
1480 
1481 	return rc;
1482 }
1483 
1484 #ifdef ATW_SYNDEBUG
1485 static void
atw_si4126_print(struct atw_softc * sc)1486 atw_si4126_print(struct atw_softc *sc)
1487 {
1488 	struct ifnet *ifp = &sc->sc_if;
1489 	u_int addr, val;
1490 
1491 	val = 0;
1492 
1493 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1494 		return;
1495 
1496 	for (addr = 0; addr <= 8; addr++) {
1497 		printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
1498 		if (atw_si4126_read(sc, addr, &val) == 0) {
1499 			printf("<unknown> (quitting print-out)\n");
1500 			break;
1501 		}
1502 		printf("%05x\n", val);
1503 	}
1504 }
1505 #endif /* ATW_SYNDEBUG */
1506 
1507 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1508  *
1509  * The RF/IF synthesizer produces two reference frequencies for
1510  * the RF2948B transceiver.  The first frequency the RF2948B requires
1511  * is two times the so-called "intermediate frequency" (IF). Since
1512  * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1513  * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz.  The second
1514  * frequency required by the transceiver is the radio frequency
1515  * (RF). This is a superheterodyne transceiver; for f(chan) the
1516  * center frequency of the channel we are tuning, RF = f(chan) -
1517  * IF.
1518  *
1519  * XXX I am told by SiLabs that the Si4126 will accept a broader range
1520  * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1521  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1522  * works, but I have still programmed for XINDIV2 = 1 to be safe.
1523  */
1524 static void
atw_si4126_tune(struct atw_softc * sc,u_int chan)1525 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1526 {
1527 	u_int mhz;
1528 	u_int R;
1529 	uint32_t gpio;
1530 	uint16_t gain;
1531 
1532 #ifdef ATW_SYNDEBUG
1533 	atw_si4126_print(sc);
1534 #endif /* ATW_SYNDEBUG */
1535 
1536 	if (chan == 14)
1537 		mhz = 2484;
1538 	else
1539 		mhz = 2412 + 5 * (chan - 1);
1540 
1541 	/* Tune IF to 748 MHz to suit the IF LO input of the
1542 	 * RF2494B, which is 2 x IF. No need to set an IF divider
1543 	 * because an IF in 526 MHz - 952 MHz is allowed.
1544 	 *
1545 	 * XIN is 44.000 MHz, so divide it by two to get allowable
1546 	 * range of 2-25 MHz. SiLabs tells me that this is not
1547 	 * strictly necessary.
1548 	 */
1549 
1550 	if (atw_xindiv2)
1551 		R = 44;
1552 	else
1553 		R = 88;
1554 
1555 	/* Power-up RF, IF synthesizers. */
1556 	atw_si4126_write(sc, SI4126_POWER,
1557 	    SI4126_POWER_PDIB | SI4126_POWER_PDRB);
1558 
1559 	/* set LPWR, too? */
1560 	atw_si4126_write(sc, SI4126_MAIN,
1561 	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1562 
1563 	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1564 	 * set KP2 to 1.
1565 	 *
1566 	 * REFDIF This is different from the reference driver, which
1567 	 * always sets SI4126_GAIN to 0.
1568 	 */
1569 	gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1570 
1571 	atw_si4126_write(sc, SI4126_GAIN, gain);
1572 
1573 	/* XIN = 44 MHz.
1574 	 *
1575 	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1576 	 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1577 	 *
1578 	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1579 	 * so that 1496/88 * 44 MHz = 748 MHz.
1580 	 */
1581 	atw_si4126_write(sc, SI4126_IFN, 1496);
1582 
1583 	atw_si4126_write(sc, SI4126_IFR, R);
1584 
1585 #ifndef ATW_REFSLAVE
1586 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1587 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1588 	 * which has no RF1!
1589 	 */
1590 	atw_si4126_write(sc, SI4126_RF1R, R);
1591 
1592 	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1593 #endif
1594 
1595 	/* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1596 	 * where IF = 374 MHz.  Let's divide XIN to 1 MHz. So R = 44.
1597 	 * Now let's multiply it to mhz. So mhz - IF = N.
1598 	 */
1599 	atw_si4126_write(sc, SI4126_RF2R, R);
1600 
1601 	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1602 
1603 	/* wait 100us from power-up for RF, IF to settle */
1604 	DELAY(100);
1605 
1606 	gpio = ATW_READ(sc, ATW_GPIO);
1607 	gpio &= ~(ATW_GPIO_EN_MASK | ATW_GPIO_O_MASK | ATW_GPIO_I_MASK);
1608 	gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1609 
1610 	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1611 		/* Set a Prism RF front-end to a special mode for channel 14?
1612 		 *
1613 		 * Apparently the SMC2635W needs this, although I don't think
1614 		 * it has a Prism RF.
1615 		 */
1616 		gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1617 	}
1618 	ATW_WRITE(sc, ATW_GPIO, gpio);
1619 
1620 #ifdef ATW_SYNDEBUG
1621 	atw_si4126_print(sc);
1622 #endif /* ATW_SYNDEBUG */
1623 }
1624 
1625 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1626  * diversity.
1627  *
1628  * !!!
1629  * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1630  * !!!
1631  */
1632 static int
atw_rf3000_init(struct atw_softc * sc)1633 atw_rf3000_init(struct atw_softc *sc)
1634 {
1635 	int rc = 0;
1636 
1637 	atw_bbp_io_enable(sc, 1);
1638 
1639 	/* CCA is acquisition sensitive */
1640 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1641 	    __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1642 
1643 	if (rc != 0)
1644 		goto out;
1645 
1646 	/* enable diversity */
1647 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1648 
1649 	if (rc != 0)
1650 		goto out;
1651 
1652 	/* sensible setting from a binary-only driver */
1653 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1654 	    __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1655 
1656 	if (rc != 0)
1657 		goto out;
1658 
1659 	/* magic from a binary-only driver */
1660 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1661 	    __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1662 
1663 	if (rc != 0)
1664 		goto out;
1665 
1666 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1667 
1668 	if (rc != 0)
1669 		goto out;
1670 
1671 	/* XXX Reference driver remarks that Abocom sets this to 50.
1672 	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1673 	 * in the "reserved" area of register RF3000_OPTIONS1.
1674 	 */
1675 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1676 
1677 	if (rc != 0)
1678 		goto out;
1679 
1680 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1681 
1682 	if (rc != 0)
1683 		goto out;
1684 
1685 out:
1686 	atw_bbp_io_enable(sc, 0);
1687 	return rc;
1688 }
1689 
1690 #ifdef ATW_BBPDEBUG
1691 static void
atw_rf3000_print(struct atw_softc * sc)1692 atw_rf3000_print(struct atw_softc *sc)
1693 {
1694 	struct ifnet *ifp = &sc->sc_if;
1695 	u_int addr, val;
1696 
1697 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1698 		return;
1699 
1700 	for (addr = 0x01; addr <= 0x15; addr++) {
1701 		printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
1702 		if (atw_rf3000_read(sc, addr, &val) != 0) {
1703 			printf("<unknown> (quitting print-out)\n");
1704 			break;
1705 		}
1706 		printf("%08x\n", val);
1707 	}
1708 }
1709 #endif /* ATW_BBPDEBUG */
1710 
1711 /* Set the power settings on the BBP for channel `chan'. */
1712 static int
atw_rf3000_tune(struct atw_softc * sc,u_int chan)1713 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1714 {
1715 	int rc = 0;
1716 	uint32_t reg;
1717 	uint16_t txpower, lpf_cutoff, lna_gs_thresh;
1718 
1719 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1720 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1721 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1722 
1723 	/* odd channels: LSB, even channels: MSB */
1724 	if (chan % 2 == 1) {
1725 		txpower &= 0xFF;
1726 		lpf_cutoff &= 0xFF;
1727 		lna_gs_thresh &= 0xFF;
1728 	} else {
1729 		txpower >>= 8;
1730 		lpf_cutoff >>= 8;
1731 		lna_gs_thresh >>= 8;
1732 	}
1733 
1734 #ifdef ATW_BBPDEBUG
1735 	atw_rf3000_print(sc);
1736 #endif /* ATW_BBPDEBUG */
1737 
1738 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1739 	    "lna_gs_thresh %02x\n",
1740 	    device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1741 
1742 	atw_bbp_io_enable(sc, 1);
1743 
1744 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1745 	    __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1746 		goto out;
1747 
1748 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1749 		goto out;
1750 
1751 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1752 		goto out;
1753 
1754 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1755 
1756 	if (rc != 0)
1757 		goto out;
1758 
1759 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1760 
1761 	if (rc != 0)
1762 		goto out;
1763 
1764 #ifdef ATW_BBPDEBUG
1765 	atw_rf3000_print(sc);
1766 #endif /* ATW_BBPDEBUG */
1767 
1768 out:
1769 	atw_bbp_io_enable(sc, 0);
1770 
1771 	/* set beacon, rts, atim transmit power */
1772 	reg = ATW_READ(sc, ATW_PLCPHD);
1773 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1774 	reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1775 	    ATW_PLCPHD_SERVICE_MASK);
1776 	ATW_WRITE(sc, ATW_PLCPHD, reg);
1777 	DELAY(atw_plcphd_delay);
1778 
1779 	return rc;
1780 }
1781 
1782 /* Write a register on the RF3000 baseband processor using the
1783  * registers provided by the ADM8211 for this purpose.
1784  *
1785  * Return 0 on success.
1786  */
1787 static int
atw_rf3000_write(struct atw_softc * sc,u_int addr,u_int val)1788 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1789 {
1790 	uint32_t reg;
1791 	int i;
1792 
1793 	reg = sc->sc_bbpctl_wr |
1794 	     __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1795 	     __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1796 
1797 	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1798 		ATW_WRITE(sc, ATW_BBPCTL, reg);
1799 		DELAY(2 * atw_pseudo_milli);
1800 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1801 			break;
1802 	}
1803 
1804 	if (i < 0) {
1805 		printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
1806 		return ETIMEDOUT;
1807 	}
1808 	return 0;
1809 }
1810 
1811 /* Read a register on the RF3000 baseband processor using the registers
1812  * the ADM8211 provides for this purpose.
1813  *
1814  * The 7-bit register address is addr.  Record the 8-bit data in the register
1815  * in *val.
1816  *
1817  * Return 0 on success.
1818  *
1819  * XXX This does not seem to work. The ADM8211 must require more or
1820  * different magic to read the chip than to write it. Possibly some
1821  * of the magic I have derived from a binary-only driver concerns
1822  * the "chip address" (see the RF3000 manual).
1823  */
1824 #ifdef ATW_BBPDEBUG
1825 static int
atw_rf3000_read(struct atw_softc * sc,u_int addr,u_int * val)1826 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1827 {
1828 	uint32_t reg;
1829 	int i;
1830 
1831 	for (i = 1000; --i >= 0; ) {
1832 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD | ATW_BBPCTL_WR)
1833 		    == 0)
1834 			break;
1835 		DELAY(100);
1836 	}
1837 
1838 	if (i < 0) {
1839 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1840 		    device_xname(sc->sc_dev));
1841 		return ETIMEDOUT;
1842 	}
1843 
1844 	reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1845 
1846 	ATW_WRITE(sc, ATW_BBPCTL, reg);
1847 
1848 	for (i = 1000; --i >= 0; ) {
1849 		DELAY(100);
1850 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1851 			break;
1852 	}
1853 
1854 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1855 
1856 	if (i < 0) {
1857 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1858 		    device_xname(sc->sc_dev), reg);
1859 		return ETIMEDOUT;
1860 	}
1861 	if (val != NULL)
1862 		*val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1863 	return 0;
1864 }
1865 #endif /* ATW_BBPDEBUG */
1866 
1867 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1868  * provided by the ADM8211 for that purpose.
1869  *
1870  * val is 18 bits of data, and val is the 4-bit address of the register.
1871  *
1872  * Return 0 on success.
1873  */
1874 static void
atw_si4126_write(struct atw_softc * sc,u_int addr,u_int val)1875 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1876 {
1877 	uint32_t bits, mask, reg;
1878 	const int nbits = 22;
1879 
1880 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1881 	KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1882 
1883 	bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1884 	       __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1885 
1886 	reg = ATW_SYNRF_SELSYN;
1887 	/* reference driver: reset Si4126 serial bus to initial
1888 	 * conditions?
1889 	 */
1890 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1891 	ATW_WRITE(sc, ATW_SYNRF, reg);
1892 
1893 	for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1894 		if ((bits & mask) != 0)
1895 			reg |= ATW_SYNRF_SYNDATA;
1896 		else
1897 			reg &= ~ATW_SYNRF_SYNDATA;
1898 		ATW_WRITE(sc, ATW_SYNRF, reg);
1899 		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1900 		ATW_WRITE(sc, ATW_SYNRF, reg);
1901 	}
1902 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1903 	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1904 }
1905 
1906 /* Read 18-bit data from the 4-bit address addr in Si4126
1907  * RF synthesizer and write the data to *val. Return 0 on success.
1908  *
1909  * XXX This does not seem to work. The ADM8211 must require more or
1910  * different magic to read the chip than to write it.
1911  */
1912 #ifdef ATW_SYNDEBUG
1913 static int
atw_si4126_read(struct atw_softc * sc,u_int addr,u_int * val)1914 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1915 {
1916 	uint32_t reg;
1917 	int i;
1918 
1919 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1920 
1921 	for (i = 1000; --i >= 0; ) {
1922 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD | ATW_SYNCTL_WR)
1923 		    == 0)
1924 			break;
1925 		DELAY(100);
1926 	}
1927 
1928 	if (i < 0) {
1929 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1930 		    device_xname(sc->sc_dev));
1931 		return ETIMEDOUT;
1932 	}
1933 
1934 	reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1935 
1936 	ATW_WRITE(sc, ATW_SYNCTL, reg);
1937 
1938 	for (i = 1000; --i >= 0; ) {
1939 		DELAY(100);
1940 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1941 			break;
1942 	}
1943 
1944 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1945 
1946 	if (i < 0) {
1947 		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1948 		    device_xname(sc->sc_dev), reg);
1949 		return ETIMEDOUT;
1950 	}
1951 	if (val != NULL)
1952 		*val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1953 				       ATW_SYNCTL_DATA_MASK);
1954 	return 0;
1955 }
1956 #endif /* ATW_SYNDEBUG */
1957 
1958 /* XXX is the endianness correct? test. */
1959 #define	atw_calchash(addr) \
1960 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1961 
1962 /*
1963  * atw_filter_setup:
1964  *
1965  *	Set the ADM8211's receive filter.
1966  */
1967 static void
atw_filter_setup(struct atw_softc * sc)1968 atw_filter_setup(struct atw_softc *sc)
1969 {
1970 	struct ieee80211com *ic = &sc->sc_ic;
1971 	struct ethercom *ec = &sc->sc_ec;
1972 	struct ifnet *ifp = &sc->sc_if;
1973 	int hash;
1974 	uint32_t hashes[2];
1975 	struct ether_multi *enm;
1976 	struct ether_multistep step;
1977 
1978 	/* According to comments in tlp_al981_filter_setup
1979 	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
1980 	 * multicast filter to be set while it is running.  Hopefully
1981 	 * the ADM8211 is not the same!
1982 	 */
1983 	if ((ifp->if_flags & IFF_RUNNING) != 0)
1984 		atw_idle(sc, ATW_NAR_SR);
1985 
1986 	sc->sc_opmode &= ~(ATW_NAR_PB | ATW_NAR_PR | ATW_NAR_MM);
1987 	ifp->if_flags &= ~IFF_ALLMULTI;
1988 
1989 	/* XXX in scan mode, do not filter packets.  Maybe this is
1990 	 * unnecessary.
1991 	 */
1992 	if (ic->ic_state == IEEE80211_S_SCAN ||
1993 	    (ifp->if_flags & IFF_PROMISC) != 0) {
1994 		sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
1995 		goto allmulti;
1996 	}
1997 
1998 	hashes[0] = hashes[1] = 0x0;
1999 
2000 	/*
2001 	 * Program the 64-bit multicast hash filter.
2002 	 */
2003 	ETHER_LOCK(ec);
2004 	ETHER_FIRST_MULTI(step, ec, enm);
2005 	while (enm != NULL) {
2006 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2007 		    ETHER_ADDR_LEN) != 0) {
2008 			ETHER_UNLOCK(ec);
2009 			goto allmulti;
2010 		}
2011 
2012 		hash = atw_calchash(enm->enm_addrlo);
2013 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2014 		ETHER_NEXT_MULTI(step, enm);
2015 		sc->sc_opmode |= ATW_NAR_MM;
2016 	}
2017 	ETHER_UNLOCK(ec);
2018 	ifp->if_flags &= ~IFF_ALLMULTI;
2019 	goto setit;
2020 
2021 allmulti:
2022 	sc->sc_opmode |= ATW_NAR_MM;
2023 	ifp->if_flags |= IFF_ALLMULTI;
2024 	hashes[0] = hashes[1] = 0xffffffff;
2025 
2026 setit:
2027 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2028 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2029 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2030 	DELAY(atw_nar_delay);
2031 	ATW_WRITE(sc, ATW_RDR, 0x1);
2032 
2033 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
2034 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2035 }
2036 
2037 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2038  * a beacon's BSSID and SSID against the preferred BSSID and SSID
2039  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2040  * no beacon with the preferred BSSID and SSID in the number of
2041  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2042  */
2043 static void
atw_write_bssid(struct atw_softc * sc)2044 atw_write_bssid(struct atw_softc *sc)
2045 {
2046 	struct ieee80211com *ic = &sc->sc_ic;
2047 	uint8_t *bssid;
2048 
2049 	bssid = ic->ic_bss->ni_bssid;
2050 
2051 	ATW_WRITE(sc, ATW_BSSID0,
2052 	    __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2053 	    __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2054 	    __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2055 	    __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2056 
2057 	ATW_WRITE(sc, ATW_ABDA1,
2058 	    (ATW_READ(sc, ATW_ABDA1) &
2059 	    ~(ATW_ABDA1_BSSIDB4_MASK | ATW_ABDA1_BSSIDB5_MASK)) |
2060 	    __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2061 	    __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2062 
2063 	DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
2064 	    ether_sprintf(sc->sc_bssid)));
2065 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2066 
2067 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2068 }
2069 
2070 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2071  * 16-bit word.
2072  */
2073 static void
atw_write_sram(struct atw_softc * sc,u_int ofs,uint8_t * buf,u_int buflen)2074 atw_write_sram(struct atw_softc *sc, u_int ofs, uint8_t *buf, u_int buflen)
2075 {
2076 	u_int i;
2077 	uint8_t *ptr;
2078 
2079 	memcpy(&sc->sc_sram[ofs], buf, buflen);
2080 
2081 	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2082 
2083 	KASSERT(buflen + ofs <= sc->sc_sramlen);
2084 
2085 	ptr = &sc->sc_sram[ofs];
2086 
2087 	for (i = 0; i < buflen; i += 2) {
2088 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2089 		    __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2090 		DELAY(atw_writewep_delay);
2091 
2092 		ATW_WRITE(sc, ATW_WESK,
2093 		    __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2094 		DELAY(atw_writewep_delay);
2095 	}
2096 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2097 
2098 	if (sc->sc_if.if_flags & IFF_DEBUG) {
2099 		int n_octets = 0;
2100 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2101 		    device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2102 		for (i = 0; i < buflen; i++) {
2103 			printf(" %02x", ptr[i]);
2104 			if (++n_octets % 24 == 0)
2105 				printf("\n");
2106 		}
2107 		if (n_octets % 24 != 0)
2108 			printf("\n");
2109 	}
2110 }
2111 
2112 static int
atw_key_delete(struct ieee80211com * ic,const struct ieee80211_key * k)2113 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2114 {
2115 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2116 	u_int keyix = k->wk_keyix;
2117 
2118 	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2119 
2120 	if (keyix >= IEEE80211_WEP_NKID)
2121 		return 0;
2122 	if (k->wk_keylen != 0)
2123 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2124 
2125 	return 1;
2126 }
2127 
2128 static int
atw_key_set(struct ieee80211com * ic,const struct ieee80211_key * k,const uint8_t mac[IEEE80211_ADDR_LEN])2129 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2130 	const uint8_t mac[IEEE80211_ADDR_LEN])
2131 {
2132 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2133 
2134 	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2135 
2136 	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2137 		return 0;
2138 
2139 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2140 
2141 	return 1;
2142 }
2143 
2144 static void
atw_key_update_begin(struct ieee80211com * ic)2145 atw_key_update_begin(struct ieee80211com *ic)
2146 {
2147 #ifdef ATW_DEBUG
2148 	struct ifnet *ifp = ic->ic_ifp;
2149 	struct atw_softc *sc = ifp->if_softc;
2150 #endif
2151 
2152 	DPRINTF(sc, ("%s:\n", __func__));
2153 }
2154 
2155 static void
atw_key_update_end(struct ieee80211com * ic)2156 atw_key_update_end(struct ieee80211com *ic)
2157 {
2158 	struct ifnet *ifp = ic->ic_ifp;
2159 	struct atw_softc *sc = ifp->if_softc;
2160 
2161 	DPRINTF(sc, ("%s:\n", __func__));
2162 
2163 	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2164 		return;
2165 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2166 		return;
2167 	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2168 	atw_write_wep(sc);
2169 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2170 	DELAY(atw_nar_delay);
2171 	ATW_WRITE(sc, ATW_RDR, 0x1);
2172 }
2173 
2174 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2175 static void
atw_write_wep(struct atw_softc * sc)2176 atw_write_wep(struct atw_softc *sc)
2177 {
2178 #if 0
2179 	struct ieee80211com *ic = &sc->sc_ic;
2180 	uint32_t reg;
2181 	int i;
2182 #endif
2183 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2184 	uint8_t buf[IEEE80211_WEP_NKID]
2185 		    [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2186 
2187 	sc->sc_wepctl = 0;
2188 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2189 
2190 	memset(&buf[0][0], 0, sizeof(buf));
2191 
2192 #if 0
2193 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2194 		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2195 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2196 		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2197 			buf[i][1] = ATW_WEP_ENABLED;
2198 		} else {
2199 			buf[i][1] = 0;
2200 			continue;
2201 		}
2202 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2203 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2204 		    ic->ic_nw_keys[i].wk_keylen - 1);
2205 	}
2206 
2207 	reg = ATW_READ(sc, ATW_MACTEST);
2208 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2209 	reg &= ~ATW_MACTEST_KEYID_MASK;
2210 	reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2211 	ATW_WRITE(sc, ATW_MACTEST, reg);
2212 
2213 	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2214 		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2215 
2216 	switch (sc->sc_rev) {
2217 	case ATW_REVISION_AB:
2218 	case ATW_REVISION_AF:
2219 		/* Bypass WEP on Rx. */
2220 		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2221 		break;
2222 	default:
2223 		break;
2224 	}
2225 #endif
2226 
2227 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (uint8_t*)&buf[0][0],
2228 	    sizeof(buf));
2229 
2230 	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2231 }
2232 
2233 static void
atw_recv_mgmt(struct ieee80211com * ic,struct mbuf * m,struct ieee80211_node * ni,int subtype,int rssi,uint32_t rstamp)2234 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2235     struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
2236 {
2237 	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2238 
2239 	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2240 	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2241 		return;
2242 
2243 	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2244 
2245 	switch (subtype) {
2246 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2247 	case IEEE80211_FC0_SUBTYPE_BEACON:
2248 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2249 		    ic->ic_state == IEEE80211_S_RUN) {
2250 			if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2251 				(void)ieee80211_ibss_merge(ni);
2252 		}
2253 		break;
2254 	default:
2255 		break;
2256 	}
2257 	return;
2258 }
2259 
2260 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2261  * In ad hoc mode, the SSID is written to the beacons sent by the
2262  * ADM8211. In both ad hoc and infrastructure mode, beacons received
2263  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2264  * indications.
2265  */
2266 static void
atw_write_ssid(struct atw_softc * sc)2267 atw_write_ssid(struct atw_softc *sc)
2268 {
2269 	struct ieee80211com *ic = &sc->sc_ic;
2270 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2271 	 * it only expects the element length, not its ID.
2272 	 */
2273 	uint8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2274 
2275 	memset(buf, 0, sizeof(buf));
2276 	buf[0] = ic->ic_bss->ni_esslen;
2277 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2278 
2279 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2280 	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2281 }
2282 
2283 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2284  * In ad hoc mode, the supported rates are written to beacons sent by the
2285  * ADM8211.
2286  */
2287 static void
atw_write_sup_rates(struct atw_softc * sc)2288 atw_write_sup_rates(struct atw_softc *sc)
2289 {
2290 	struct ieee80211com *ic = &sc->sc_ic;
2291 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2292 	 * supported rates
2293 	 */
2294 	uint8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2295 
2296 	memset(buf, 0, sizeof(buf));
2297 
2298 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2299 
2300 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2301 	    ic->ic_bss->ni_rates.rs_nrates);
2302 
2303 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2304 }
2305 
2306 /* Start/stop sending beacons. */
2307 void
atw_start_beacon(struct atw_softc * sc,int start)2308 atw_start_beacon(struct atw_softc *sc, int start)
2309 {
2310 	struct ieee80211com *ic = &sc->sc_ic;
2311 	uint16_t chan;
2312 	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2313 	size_t len;
2314 
2315 	if (!device_is_active(sc->sc_dev))
2316 		return;
2317 
2318 	/* start beacons */
2319 	len = sizeof(struct ieee80211_frame) +
2320 	    8 /* timestamp */ + 2 /* beacon interval */ +
2321 	    2 /* capability info */ +
2322 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2323 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2324 	    3 /* DS parameters */ +
2325 	    IEEE80211_CRC_LEN;
2326 
2327 	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2328 	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2329 	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2330 
2331 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2332 	ATW_WRITE(sc, ATW_CAP1, cap1);
2333 
2334 	if (!start)
2335 		return;
2336 
2337 	/* TBD use ni_capinfo */
2338 
2339 	capinfo = 0;
2340 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2341 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2342 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2343 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2344 
2345 	switch (ic->ic_opmode) {
2346 	case IEEE80211_M_IBSS:
2347 		len += 4; /* IBSS parameters */
2348 		capinfo |= IEEE80211_CAPINFO_IBSS;
2349 		break;
2350 	case IEEE80211_M_HOSTAP:
2351 		/* XXX 6-byte minimum TIM */
2352 		len += atw_beacon_len_adjust;
2353 		capinfo |= IEEE80211_CAPINFO_ESS;
2354 		break;
2355 	default:
2356 		return;
2357 	}
2358 
2359 	/* set listen interval
2360 	 * XXX do software units agree w/ hardware?
2361 	 */
2362 	bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2363 	    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2364 
2365 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2366 
2367 	bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2368 	cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2369 	cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2370 
2371 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2372 	ATW_WRITE(sc, ATW_BPLI, bpli);
2373 	ATW_WRITE(sc, ATW_CAP0, cap0);
2374 	ATW_WRITE(sc, ATW_CAP1, cap1);
2375 
2376 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2377 	    device_xname(sc->sc_dev), bcnt));
2378 
2379 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2380 	    device_xname(sc->sc_dev), cap1));
2381 }
2382 
2383 /* Return the 32 lsb of the last TSFT divisible by ival. */
2384 static inline uint32_t
atw_last_even_tsft(uint32_t tsfth,uint32_t tsftl,uint32_t ival)2385 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2386 {
2387 	/* Following the reference driver's lead, I compute
2388 	 *
2389 	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2390 	 *
2391 	 * without using 64-bit arithmetic, using the following
2392 	 * relationship:
2393 	 *
2394 	 *     (0x100000000 * H + L) % m
2395 	 *   = ((0x100000000 % m) * H + L) % m
2396 	 *   = (((0xffffffff + 1) % m) * H + L) % m
2397 	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2398 	 *   = ((0xffffffff % m + 1) * H + L) % m
2399 	 */
2400 	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2401 }
2402 
2403 static uint64_t
atw_get_tsft(struct atw_softc * sc)2404 atw_get_tsft(struct atw_softc *sc)
2405 {
2406 	int i;
2407 	uint32_t tsfth, tsftl;
2408 	for (i = 0; i < 2; i++) {
2409 		tsfth = ATW_READ(sc, ATW_TSFTH);
2410 		tsftl = ATW_READ(sc, ATW_TSFTL);
2411 		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2412 			break;
2413 	}
2414 	return ((uint64_t)tsfth << 32) | tsftl;
2415 }
2416 
2417 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2418  * the ieee80211com.
2419  *
2420  * Predict the next target beacon transmission time (TBTT) and
2421  * write it to the ADM8211.
2422  */
2423 static void
atw_predict_beacon(struct atw_softc * sc)2424 atw_predict_beacon(struct atw_softc *sc)
2425 {
2426 #define TBTTOFS 20 /* TU */
2427 
2428 	struct ieee80211com *ic = &sc->sc_ic;
2429 	uint64_t tsft;
2430 	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2431 	union {
2432 		uint64_t	word;
2433 		uint8_t		tstamp[8];
2434 	} u;
2435 
2436 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2437 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2438 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2439 		tsft = atw_get_tsft(sc);
2440 		u.word = htole64(tsft);
2441 		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2442 		    sizeof(ic->ic_bss->ni_tstamp));
2443 	} else
2444 		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2445 
2446 	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2447 
2448 	tsftl = tsft & 0xFFFFFFFF;
2449 	tsfth = tsft >> 32;
2450 
2451 	/* We sent/received the last beacon `past' microseconds
2452 	 * after the interval divided the TSF timer.
2453 	 */
2454 	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2455 
2456 	/* Skip ten beacons so that the TBTT cannot pass before
2457 	 * we've programmed it.  Ten is an arbitrary number.
2458 	 */
2459 	tbtt = past_even + ival * 10;
2460 
2461 	ATW_WRITE(sc, ATW_TOFS1,
2462 	    __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2463 	    __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2464 	    __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2465 		ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2466 #undef TBTTOFS
2467 }
2468 
2469 static void
atw_next_scan(void * arg)2470 atw_next_scan(void *arg)
2471 {
2472 	struct atw_softc *sc = arg;
2473 	struct ieee80211com *ic = &sc->sc_ic;
2474 	int s;
2475 
2476 	/* don't call atw_start w/o network interrupts blocked */
2477 	s = splnet();
2478 	if (ic->ic_state == IEEE80211_S_SCAN)
2479 		ieee80211_next_scan(ic);
2480 	splx(s);
2481 }
2482 
2483 /* Synchronize the hardware state with the software state. */
2484 static int
atw_newstate(struct ieee80211com * ic,enum ieee80211_state nstate,int arg)2485 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2486 {
2487 	struct ifnet *ifp = ic->ic_ifp;
2488 	struct atw_softc *sc = ifp->if_softc;
2489 	int error = 0;
2490 
2491 	callout_stop(&sc->sc_scan_ch);
2492 
2493 	switch (nstate) {
2494 	case IEEE80211_S_AUTH:
2495 	case IEEE80211_S_ASSOC:
2496 		atw_write_bssid(sc);
2497 		error = atw_tune(sc);
2498 		break;
2499 	case IEEE80211_S_INIT:
2500 		callout_stop(&sc->sc_scan_ch);
2501 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2502 		atw_start_beacon(sc, 0);
2503 		break;
2504 	case IEEE80211_S_SCAN:
2505 		error = atw_tune(sc);
2506 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2507 		    atw_next_scan, sc);
2508 		break;
2509 	case IEEE80211_S_RUN:
2510 		error = atw_tune(sc);
2511 		atw_write_bssid(sc);
2512 		atw_write_ssid(sc);
2513 		atw_write_sup_rates(sc);
2514 
2515 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2516 		    ic->ic_opmode == IEEE80211_M_MONITOR)
2517 			break;
2518 
2519 		/* set listen interval
2520 		 * XXX do software units agree w/ hardware?
2521 		 */
2522 		ATW_WRITE(sc, ATW_BPLI,
2523 		    __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2524 		    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2525 			   ATW_BPLI_LI_MASK));
2526 
2527 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
2528 		    ATW_READ(sc, ATW_BPLI)));
2529 
2530 		atw_predict_beacon(sc);
2531 
2532 		switch (ic->ic_opmode) {
2533 		case IEEE80211_M_AHDEMO:
2534 		case IEEE80211_M_HOSTAP:
2535 		case IEEE80211_M_IBSS:
2536 			atw_start_beacon(sc, 1);
2537 			break;
2538 		case IEEE80211_M_MONITOR:
2539 		case IEEE80211_M_STA:
2540 			break;
2541 		}
2542 
2543 		break;
2544 	}
2545 	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2546 }
2547 
2548 /*
2549  * atw_add_rxbuf:
2550  *
2551  *	Add a receive buffer to the indicated descriptor.
2552  */
2553 int
atw_add_rxbuf(struct atw_softc * sc,int idx)2554 atw_add_rxbuf(struct atw_softc *sc, int idx)
2555 {
2556 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2557 	struct mbuf *m;
2558 	int error;
2559 
2560 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2561 	if (m == NULL)
2562 		return (ENOBUFS);
2563 
2564 	MCLGET(m, M_DONTWAIT);
2565 	if ((m->m_flags & M_EXT) == 0) {
2566 		m_freem(m);
2567 		return (ENOBUFS);
2568 	}
2569 
2570 	if (rxs->rxs_mbuf != NULL)
2571 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2572 
2573 	rxs->rxs_mbuf = m;
2574 
2575 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2576 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2577 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2578 	if (error) {
2579 		aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2580 		    idx, error);
2581 		panic("atw_add_rxbuf");	/* XXX */
2582 	}
2583 
2584 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2585 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2586 
2587 	atw_init_rxdesc(sc, idx);
2588 
2589 	return (0);
2590 }
2591 
2592 /*
2593  * Release any queued transmit buffers.
2594  */
2595 void
atw_txdrain(struct atw_softc * sc)2596 atw_txdrain(struct atw_softc *sc)
2597 {
2598 	struct atw_txsoft *txs;
2599 
2600 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2601 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2602 		if (txs->txs_mbuf != NULL) {
2603 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2604 			m_freem(txs->txs_mbuf);
2605 			txs->txs_mbuf = NULL;
2606 		}
2607 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2608 		sc->sc_txfree += txs->txs_ndescs;
2609 	}
2610 
2611 	KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2612 		!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2613 		  sc->sc_txfree != ATW_NTXDESC));
2614 	sc->sc_if.if_flags &= ~IFF_OACTIVE;
2615 	sc->sc_tx_timer = 0;
2616 }
2617 
2618 /*
2619  * atw_stop:		[ ifnet interface function ]
2620  *
2621  *	Stop transmission on the interface.
2622  */
2623 void
atw_stop(struct ifnet * ifp,int disable)2624 atw_stop(struct ifnet *ifp, int disable)
2625 {
2626 	struct atw_softc *sc = ifp->if_softc;
2627 	struct ieee80211com *ic = &sc->sc_ic;
2628 
2629 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2630 
2631 	if (device_is_active(sc->sc_dev)) {
2632 		/* Disable interrupts. */
2633 		ATW_WRITE(sc, ATW_IER, 0);
2634 
2635 		/* Stop the transmit and receive processes. */
2636 		ATW_WRITE(sc, ATW_NAR, 0);
2637 		DELAY(atw_nar_delay);
2638 		ATW_WRITE(sc, ATW_TDBD, 0);
2639 		ATW_WRITE(sc, ATW_TDBP, 0);
2640 		ATW_WRITE(sc, ATW_RDB, 0);
2641 	}
2642 
2643 	sc->sc_opmode = 0;
2644 
2645 	atw_txdrain(sc);
2646 
2647 	/*
2648 	 * Mark the interface down and cancel the watchdog timer.
2649 	 */
2650 	ifp->if_flags &= ~IFF_RUNNING;
2651 	ifp->if_timer = 0;
2652 
2653 	if (disable)
2654 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2655 }
2656 
2657 /*
2658  * atw_rxdrain:
2659  *
2660  *	Drain the receive queue.
2661  */
2662 void
atw_rxdrain(struct atw_softc * sc)2663 atw_rxdrain(struct atw_softc *sc)
2664 {
2665 	struct atw_rxsoft *rxs;
2666 	int i;
2667 
2668 	for (i = 0; i < ATW_NRXDESC; i++) {
2669 		rxs = &sc->sc_rxsoft[i];
2670 		if (rxs->rxs_mbuf == NULL)
2671 			continue;
2672 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2673 		m_freem(rxs->rxs_mbuf);
2674 		rxs->rxs_mbuf = NULL;
2675 	}
2676 }
2677 
2678 /*
2679  * atw_detach:
2680  *
2681  *	Detach an ADM8211 interface.
2682  */
2683 int
atw_detach(struct atw_softc * sc)2684 atw_detach(struct atw_softc *sc)
2685 {
2686 	struct ifnet *ifp = &sc->sc_if;
2687 	struct atw_rxsoft *rxs;
2688 	struct atw_txsoft *txs;
2689 	int i;
2690 
2691 	/*
2692 	 * Succeed now if there isn't any work to do.
2693 	 */
2694 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2695 		return (0);
2696 
2697 	pmf_device_deregister(sc->sc_dev);
2698 
2699 	callout_stop(&sc->sc_scan_ch);
2700 
2701 	ieee80211_ifdetach(&sc->sc_ic);
2702 	if_detach(ifp);
2703 
2704 	for (i = 0; i < ATW_NRXDESC; i++) {
2705 		rxs = &sc->sc_rxsoft[i];
2706 		if (rxs->rxs_mbuf != NULL) {
2707 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2708 			m_freem(rxs->rxs_mbuf);
2709 			rxs->rxs_mbuf = NULL;
2710 		}
2711 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2712 	}
2713 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2714 		txs = &sc->sc_txsoft[i];
2715 		if (txs->txs_mbuf != NULL) {
2716 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2717 			m_freem(txs->txs_mbuf);
2718 			txs->txs_mbuf = NULL;
2719 		}
2720 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2721 	}
2722 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2723 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2724 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2725 	    sizeof(struct atw_control_data));
2726 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2727 
2728 	if (sc->sc_srom)
2729 		free(sc->sc_srom, M_DEVBUF);
2730 
2731 	atw_evcnt_detach(sc);
2732 
2733 	if (sc->sc_soft_ih != NULL) {
2734 		softint_disestablish(sc->sc_soft_ih);
2735 		sc->sc_soft_ih = NULL;
2736 	}
2737 
2738 	return (0);
2739 }
2740 
2741 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2742 bool
atw_shutdown(device_t self,int flags)2743 atw_shutdown(device_t self, int flags)
2744 {
2745 	struct atw_softc *sc = device_private(self);
2746 
2747 	atw_stop(&sc->sc_if, 1);
2748 	return true;
2749 }
2750 
2751 #if 0
2752 static void
2753 atw_workaround1(struct atw_softc *sc)
2754 {
2755 	uint32_t test1;
2756 
2757 	test1 = ATW_READ(sc, ATW_TEST1);
2758 
2759 	sc->sc_misc_ev.ev_count++;
2760 
2761 	if ((test1 & ATW_TEST1_RXPKT1IN) != 0) {
2762 		sc->sc_rxpkt1in_ev.ev_count++;
2763 		return;
2764 	}
2765 	if (__SHIFTOUT(test1, ATW_TEST1_RRA_MASK) ==
2766 	    __SHIFTOUT(test1, ATW_TEST1_RWA_MASK)) {
2767 		sc->sc_rxamatch_ev.ev_count++;
2768 		return;
2769 	}
2770 	sc->sc_workaround1_ev.ev_count++;
2771 	(void)atw_init(&sc->sc_if);
2772 }
2773 #endif
2774 
2775 int
atw_intr(void * arg)2776 atw_intr(void *arg)
2777 {
2778 	struct atw_softc *sc = arg;
2779 	struct ifnet *ifp = &sc->sc_if;
2780 	uint32_t status;
2781 
2782 #ifdef DEBUG
2783 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2784 		panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
2785 #endif
2786 
2787 	/*
2788 	 * If the interface isn't running, the interrupt couldn't
2789 	 * possibly have come from us.
2790 	 */
2791 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2792 	    !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2793 		return (0);
2794 
2795 	status = ATW_READ(sc, ATW_STSR);
2796 	if (status == 0)
2797 		return 0;
2798 
2799 	if ((status & sc->sc_inten) == 0) {
2800 		ATW_WRITE(sc, ATW_STSR, status);
2801 		return 0;
2802 	}
2803 
2804 	/* Disable interrupts */
2805 	ATW_WRITE(sc, ATW_IER, 0);
2806 
2807 	softint_schedule(sc->sc_soft_ih);
2808 	return 1;
2809 }
2810 
2811 void
atw_softintr(void * arg)2812 atw_softintr(void *arg)
2813 {
2814 	struct atw_softc *sc = arg;
2815 	struct ifnet *ifp = &sc->sc_if;
2816 	uint32_t status, rxstatus, txstatus, linkstatus;
2817 	int txthresh, s;
2818 
2819 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2820 	    !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2821 		return;
2822 
2823 	for (;;) {
2824 		status = ATW_READ(sc, ATW_STSR);
2825 
2826 		if (status)
2827 			ATW_WRITE(sc, ATW_STSR, status);
2828 
2829 #ifdef ATW_DEBUG
2830 #define PRINTINTR(flag) do { \
2831 	if ((status & flag) != 0) { \
2832 		printf("%s" #flag, delim); \
2833 		delim = ","; \
2834 	} \
2835 } while (0)
2836 
2837 		if (atw_debug > 1 && status) {
2838 			const char *delim = "<";
2839 
2840 			printf("%s: reg[STSR] = %x",
2841 			    device_xname(sc->sc_dev), status);
2842 
2843 			PRINTINTR(ATW_INTR_FBE);
2844 			PRINTINTR(ATW_INTR_LINKOFF);
2845 			PRINTINTR(ATW_INTR_LINKON);
2846 			PRINTINTR(ATW_INTR_RCI);
2847 			PRINTINTR(ATW_INTR_RDU);
2848 			PRINTINTR(ATW_INTR_REIS);
2849 			PRINTINTR(ATW_INTR_RPS);
2850 			PRINTINTR(ATW_INTR_TCI);
2851 			PRINTINTR(ATW_INTR_TDU);
2852 			PRINTINTR(ATW_INTR_TLT);
2853 			PRINTINTR(ATW_INTR_TPS);
2854 			PRINTINTR(ATW_INTR_TRT);
2855 			PRINTINTR(ATW_INTR_TUF);
2856 			PRINTINTR(ATW_INTR_BCNTC);
2857 			PRINTINTR(ATW_INTR_ATIME);
2858 			PRINTINTR(ATW_INTR_TBTT);
2859 			PRINTINTR(ATW_INTR_TSCZ);
2860 			PRINTINTR(ATW_INTR_TSFTF);
2861 			printf(">\n");
2862 		}
2863 #undef PRINTINTR
2864 #endif /* ATW_DEBUG */
2865 
2866 		if ((status & sc->sc_inten) == 0)
2867 			break;
2868 
2869 		rxstatus = status & sc->sc_rxint_mask;
2870 		txstatus = status & sc->sc_txint_mask;
2871 		linkstatus = status & sc->sc_linkint_mask;
2872 
2873 		if (linkstatus) {
2874 			atw_linkintr(sc, linkstatus);
2875 		}
2876 
2877 		if (rxstatus) {
2878 			/* Grab any new packets. */
2879 			atw_rxintr(sc);
2880 
2881 			if (rxstatus & ATW_INTR_RDU) {
2882 				printf("%s: receive ring overrun\n",
2883 				    device_xname(sc->sc_dev));
2884 				/* Get the receive process going again. */
2885 				ATW_WRITE(sc, ATW_RDR, 0x1);
2886 			}
2887 		}
2888 
2889 		if (txstatus) {
2890 			/* Sweep up transmit descriptors. */
2891 			atw_txintr(sc, txstatus);
2892 
2893 			if (txstatus & ATW_INTR_TLT) {
2894 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2895 				    device_xname(sc->sc_dev)));
2896 				(void)atw_init(&sc->sc_if);
2897 			}
2898 
2899 			if (txstatus & ATW_INTR_TRT) {
2900 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2901 				    device_xname(sc->sc_dev)));
2902 			}
2903 
2904 			/* If Tx under-run, increase our transmit threshold
2905 			 * if another is available.
2906 			 */
2907 			txthresh = sc->sc_txthresh + 1;
2908 			if ((txstatus & ATW_INTR_TUF) &&
2909 			    sc->sc_txth[txthresh].txth_name != NULL) {
2910 				/* Idle the transmit process. */
2911 				atw_idle(sc, ATW_NAR_ST);
2912 
2913 				sc->sc_txthresh = txthresh;
2914 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2915 				sc->sc_opmode |=
2916 				    sc->sc_txth[txthresh].txth_opmode;
2917 				printf("%s: transmit underrun; new "
2918 				    "threshold: %s\n", device_xname(sc->sc_dev),
2919 				    sc->sc_txth[txthresh].txth_name);
2920 
2921 				/* Set the new threshold and restart
2922 				 * the transmit process.
2923 				 */
2924 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2925 				DELAY(atw_nar_delay);
2926 				ATW_WRITE(sc, ATW_TDR, 0x1);
2927 				/* XXX Log every Nth underrun from
2928 				 * XXX now on?
2929 				 */
2930 			}
2931 		}
2932 
2933 		if (status & (ATW_INTR_TPS | ATW_INTR_RPS)) {
2934 			if (status & ATW_INTR_TPS)
2935 				printf("%s: transmit process stopped\n",
2936 				    device_xname(sc->sc_dev));
2937 			if (status & ATW_INTR_RPS)
2938 				printf("%s: receive process stopped\n",
2939 				    device_xname(sc->sc_dev));
2940 			s = splnet();
2941 			(void)atw_init(ifp);
2942 			splx(s);
2943 			break;
2944 		}
2945 
2946 		if (status & ATW_INTR_FBE) {
2947 			aprint_error_dev(sc->sc_dev, "fatal bus error\n");
2948 			s = splnet();
2949 			(void)atw_init(ifp);
2950 			splx(s);
2951 			break;
2952 		}
2953 
2954 		/*
2955 		 * Not handled:
2956 		 *
2957 		 *	Transmit buffer unavailable -- normal
2958 		 *	condition, nothing to do, really.
2959 		 *
2960 		 *	Early receive interrupt -- not available on
2961 		 *	all chips, we just use RI.  We also only
2962 		 *	use single-segment receive DMA, so this
2963 		 *	is mostly useless.
2964 		 *
2965 		 *	TBD others
2966 		 */
2967 	}
2968 
2969 	/* Try to get more packets going. */
2970 	s = splnet();
2971 	atw_start(ifp);
2972 	splx(s);
2973 
2974 	/* Enable interrupts */
2975 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
2976 }
2977 
2978 /*
2979  * atw_idle:
2980  *
2981  *	Cause the transmit and/or receive processes to go idle.
2982  *
2983  *	XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2984  *	process in STSR if I clear SR or ST after the process has already
2985  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2986  *	do not seem to be too reliable. Perhaps I have the sense of the
2987  *	Rx bits switched with the Tx bits?
2988  */
2989 void
atw_idle(struct atw_softc * sc,uint32_t bits)2990 atw_idle(struct atw_softc *sc, uint32_t bits)
2991 {
2992 	uint32_t ackmask = 0, opmode, stsr, test0;
2993 	int i, s;
2994 
2995 	s = splnet();
2996 
2997 	opmode = sc->sc_opmode & ~bits;
2998 
2999 	if (bits & ATW_NAR_SR)
3000 		ackmask |= ATW_INTR_RPS;
3001 
3002 	if (bits & ATW_NAR_ST) {
3003 		ackmask |= ATW_INTR_TPS;
3004 		/* set ATW_NAR_HF to flush TX FIFO. */
3005 		opmode |= ATW_NAR_HF;
3006 	}
3007 
3008 	ATW_WRITE(sc, ATW_NAR, opmode);
3009 	DELAY(atw_nar_delay);
3010 
3011 	for (i = 0; i < 1000; i++) {
3012 		stsr = ATW_READ(sc, ATW_STSR);
3013 		if ((stsr & ackmask) == ackmask)
3014 			break;
3015 		DELAY(10);
3016 	}
3017 
3018 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3019 
3020 	if ((stsr & ackmask) == ackmask)
3021 		goto out;
3022 
3023 	test0 = ATW_READ(sc, ATW_TEST0);
3024 
3025 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3026 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3027 		printf("%s: transmit process not idle [%s]\n",
3028 		    device_xname(sc->sc_dev),
3029 		    atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3030 		printf("%s: bits %08x test0 %08x stsr %08x\n",
3031 		    device_xname(sc->sc_dev), bits, test0, stsr);
3032 	}
3033 
3034 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3035 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3036 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3037 		    device_xname(sc->sc_dev),
3038 		    atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3039 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3040 		    device_xname(sc->sc_dev), bits, test0, stsr));
3041 	}
3042 out:
3043 	if ((bits & ATW_NAR_ST) != 0)
3044 		atw_txdrain(sc);
3045 	splx(s);
3046 	return;
3047 }
3048 
3049 /*
3050  * atw_linkintr:
3051  *
3052  *	Helper; handle link-status interrupts.
3053  */
3054 void
atw_linkintr(struct atw_softc * sc,uint32_t linkstatus)3055 atw_linkintr(struct atw_softc *sc, uint32_t linkstatus)
3056 {
3057 	struct ieee80211com *ic = &sc->sc_ic;
3058 
3059 	if (ic->ic_state != IEEE80211_S_RUN)
3060 		return;
3061 
3062 	if (linkstatus & ATW_INTR_LINKON) {
3063 		DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
3064 		sc->sc_rescan_timer = 0;
3065 	} else if (linkstatus & ATW_INTR_LINKOFF) {
3066 		DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
3067 		if (ic->ic_opmode != IEEE80211_M_STA)
3068 			return;
3069 		sc->sc_rescan_timer = 3;
3070 		sc->sc_if.if_timer = 1;
3071 	}
3072 }
3073 
3074 #if 0
3075 static inline int
3076 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3077 {
3078 	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3079 		return 0;
3080 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3081 		return 0;
3082 	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3083 }
3084 #endif
3085 
3086 /*
3087  * atw_rxintr:
3088  *
3089  *	Helper; handle receive interrupts.
3090  */
3091 void
atw_rxintr(struct atw_softc * sc)3092 atw_rxintr(struct atw_softc *sc)
3093 {
3094 	static int rate_tbl[] = {2, 4, 11, 22, 44};
3095 	struct ieee80211com *ic = &sc->sc_ic;
3096 	struct ieee80211_node *ni;
3097 	struct ieee80211_frame_min *wh;
3098 	struct ifnet *ifp = &sc->sc_if;
3099 	struct atw_rxsoft *rxs;
3100 	struct mbuf *m;
3101 	uint32_t rxstat;
3102 	int i, s, len, rate, rate0;
3103 	uint32_t rssi, ctlrssi;
3104 
3105 	for (i = sc->sc_rxptr;; i = sc->sc_rxptr) {
3106 		rxs = &sc->sc_rxsoft[i];
3107 
3108 		ATW_CDRXSYNC(sc, i,
3109 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3110 
3111 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3112 		ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3113 		rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3114 
3115 		if (rxstat & ATW_RXSTAT_OWN) {
3116 			ATW_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
3117 			break;
3118 		}
3119 
3120 		sc->sc_rxptr = ATW_NEXTRX(i);
3121 
3122 		DPRINTF3(sc,
3123 		    ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3124 		    device_xname(sc->sc_dev),
3125 		    rxstat, ctlrssi,
3126 		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3127 		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3128 
3129 		/*
3130 		 * Make sure the packet fits in one buffer.  This should
3131 		 * always be the case.
3132 		 */
3133 		if ((rxstat & (ATW_RXSTAT_FS | ATW_RXSTAT_LS)) !=
3134 		    (ATW_RXSTAT_FS | ATW_RXSTAT_LS)) {
3135 			printf("%s: incoming packet spilled, resetting\n",
3136 			    device_xname(sc->sc_dev));
3137 			(void)atw_init(ifp);
3138 			return;
3139 		}
3140 
3141 		/*
3142 		 * If an error occurred, update stats, clear the status
3143 		 * word, and leave the packet buffer in place.  It will
3144 		 * simply be reused the next time the ring comes around.
3145 		 */
3146 		if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3147 #define	PRINTERR(bit, str)						\
3148 			if (rxstat & (bit))				\
3149 				aprint_error_dev(sc->sc_dev, "receive error: %s\n",	\
3150 				    str)
3151 			if_statinc(ifp, if_ierrors);
3152 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3153 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3154 #if 0
3155 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3156 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3157 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3158 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3159 #endif
3160 #undef PRINTERR
3161 			atw_init_rxdesc(sc, i);
3162 			continue;
3163 		}
3164 
3165 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3166 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3167 
3168 		/*
3169 		 * No errors; receive the packet.  Note the ADM8211
3170 		 * includes the CRC in promiscuous mode.
3171 		 */
3172 		len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3173 
3174 		/*
3175 		 * Allocate a new mbuf cluster.  If that fails, we are
3176 		 * out of memory, and must drop the packet and recycle
3177 		 * the buffer that's already attached to this descriptor.
3178 		 */
3179 		m = rxs->rxs_mbuf;
3180 		if (atw_add_rxbuf(sc, i) != 0) {
3181 			if_statinc(ifp, if_ierrors);
3182 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3183 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3184 			atw_init_rxdesc(sc, i);
3185 			continue;
3186 		}
3187 
3188 		if_statinc(ifp, if_ipackets);
3189 		m_set_rcvif(m, ifp);
3190 		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3191 
3192 		rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3193 
3194 		/* The RSSI comes straight from a register in the
3195 		 * baseband processor.  I know that for the RF3000,
3196 		 * the RSSI register also contains the antenna-selection
3197 		 * bits.  Mask those off.
3198 		 *
3199 		 * TBD Treat other basebands.
3200 		 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3201 		 */
3202 		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3203 			rssi = ctlrssi & RF3000_RSSI_MASK;
3204 		else
3205 			rssi = ctlrssi;
3206 
3207 		s = splnet();
3208 
3209 		/* Pass this up to any BPF listeners. */
3210 		if (sc->sc_radiobpf != NULL) {
3211 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3212 
3213 			tap->ar_rate = rate;
3214 
3215 			/* TBD verify units are dB */
3216 			tap->ar_antsignal = (int)rssi;
3217 			if (sc->sc_opmode & ATW_NAR_PR)
3218 				tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3219 			else
3220 				tap->ar_flags = 0;
3221 
3222 			if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3223 				tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3224 
3225 			bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_rxtapu),
3226 			    m, BPF_D_IN);
3227 		}
3228 
3229 		sc->sc_recv_ev.ev_count++;
3230 
3231 		if ((rxstat & (ATW_RXSTAT_CRC16E | ATW_RXSTAT_CRC32E |
3232 		    ATW_RXSTAT_ICVE | ATW_RXSTAT_SFDE | ATW_RXSTAT_SIGE))
3233 		    != 0) {
3234 			if (rxstat & ATW_RXSTAT_CRC16E)
3235 				sc->sc_crc16e_ev.ev_count++;
3236 			if (rxstat & ATW_RXSTAT_CRC32E)
3237 				sc->sc_crc32e_ev.ev_count++;
3238 			if (rxstat & ATW_RXSTAT_ICVE)
3239 				sc->sc_icve_ev.ev_count++;
3240 			if (rxstat & ATW_RXSTAT_SFDE)
3241 				sc->sc_sfde_ev.ev_count++;
3242 			if (rxstat & ATW_RXSTAT_SIGE)
3243 				sc->sc_sige_ev.ev_count++;
3244 			if_statinc(ifp, if_ierrors);
3245 			m_freem(m);
3246 			splx(s);
3247 			continue;
3248 		}
3249 
3250 		if (sc->sc_opmode & ATW_NAR_PR)
3251 			m_adj(m, -IEEE80211_CRC_LEN);
3252 
3253 		wh = mtod(m, struct ieee80211_frame_min *);
3254 		ni = ieee80211_find_rxnode(ic, wh);
3255 #if 0
3256 		if (atw_hw_decrypted(sc, wh)) {
3257 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3258 			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3259 		}
3260 #endif
3261 		ieee80211_input(ic, m, ni, (int)rssi, 0);
3262 		ieee80211_free_node(ni);
3263 		splx(s);
3264 	}
3265 }
3266 
3267 /*
3268  * atw_txintr:
3269  *
3270  *	Helper; handle transmit interrupts.
3271  */
3272 void
atw_txintr(struct atw_softc * sc,uint32_t status)3273 atw_txintr(struct atw_softc *sc, uint32_t status)
3274 {
3275 	static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3276 	struct ifnet *ifp = &sc->sc_if;
3277 	struct atw_txsoft *txs;
3278 	uint32_t txstat;
3279 	int s;
3280 
3281 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3282 	    device_xname(sc->sc_dev), sc->sc_flags));
3283 
3284 	s = splnet();
3285 
3286 	/*
3287 	 * Go through our Tx list and free mbufs for those
3288 	 * frames that have been transmitted.
3289 	 */
3290 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3291 		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3292 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3293 
3294 #ifdef ATW_DEBUG
3295 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3296 			int i;
3297 			printf("    txsoft %p transmit chain:\n", txs);
3298 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3299 			    txs->txs_ndescs - 1,
3300 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3301 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3302 				printf("     descriptor %d:\n", i);
3303 				printf("       at_status:   0x%08x\n",
3304 				    le32toh(sc->sc_txdescs[i].at_stat));
3305 				printf("       at_flags:      0x%08x\n",
3306 				    le32toh(sc->sc_txdescs[i].at_flags));
3307 				printf("       at_buf1: 0x%08x\n",
3308 				    le32toh(sc->sc_txdescs[i].at_buf1));
3309 				printf("       at_buf2: 0x%08x\n",
3310 				    le32toh(sc->sc_txdescs[i].at_buf2));
3311 				if (i == txs->txs_lastdesc)
3312 					break;
3313 			}
3314 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3315 			    txs->txs_ndescs - 1, BUS_DMASYNC_PREREAD);
3316 		}
3317 #endif
3318 
3319 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3320 		if (txstat & ATW_TXSTAT_OWN) {
3321 			ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3322 			    BUS_DMASYNC_PREREAD);
3323 			break;
3324 		}
3325 
3326 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3327 
3328 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3329 		    0, txs->txs_dmamap->dm_mapsize,
3330 		    BUS_DMASYNC_POSTWRITE);
3331 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3332 		m_freem(txs->txs_mbuf);
3333 		txs->txs_mbuf = NULL;
3334 
3335 		sc->sc_txfree += txs->txs_ndescs;
3336 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3337 
3338 		KASSERT(!SIMPLEQ_EMPTY(&sc->sc_txfreeq) && sc->sc_txfree != 0);
3339 		sc->sc_tx_timer = 0;
3340 		ifp->if_flags &= ~IFF_OACTIVE;
3341 
3342 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3343 		    (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3344 			snprintb(txstat_buf, sizeof(txstat_buf),
3345 			    ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
3346 			printf("%s: txstat %s %" __PRIuBITS "\n",
3347 			    device_xname(sc->sc_dev), txstat_buf,
3348 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3349 		}
3350 
3351 		sc->sc_xmit_ev.ev_count++;
3352 
3353 		/*
3354 		 * Check for errors and collisions.
3355 		 */
3356 		if (txstat & ATW_TXSTAT_TUF)
3357 			sc->sc_tuf_ev.ev_count++;
3358 		if (txstat & ATW_TXSTAT_TLT)
3359 			sc->sc_tlt_ev.ev_count++;
3360 		if (txstat & ATW_TXSTAT_TRT)
3361 			sc->sc_trt_ev.ev_count++;
3362 		if (txstat & ATW_TXSTAT_TRO)
3363 			sc->sc_tro_ev.ev_count++;
3364 		if (txstat & ATW_TXSTAT_SOFBR)
3365 			sc->sc_sofbr_ev.ev_count++;
3366 
3367 		if ((txstat & ATW_TXSTAT_ES) == 0)
3368 			if_statadd(ifp, if_collisions,
3369 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3370 		else
3371 			if_statinc(ifp, if_oerrors);
3372 
3373 		if_statinc(ifp, if_opackets);
3374 	}
3375 
3376 	KASSERT(txs != NULL || (ifp->if_flags & IFF_OACTIVE) == 0);
3377 
3378 	splx(s);
3379 }
3380 
3381 /*
3382  * atw_watchdog:	[ifnet interface function]
3383  *
3384  *	Watchdog timer handler.
3385  */
3386 void
atw_watchdog(struct ifnet * ifp)3387 atw_watchdog(struct ifnet *ifp)
3388 {
3389 	struct atw_softc *sc = ifp->if_softc;
3390 	struct ieee80211com *ic = &sc->sc_ic;
3391 
3392 	ifp->if_timer = 0;
3393 	if (!device_is_active(sc->sc_dev))
3394 		return;
3395 
3396 	if (sc->sc_rescan_timer != 0 && --sc->sc_rescan_timer == 0)
3397 		(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3398 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0 &&
3399 	    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3400 		printf("%s: transmit timeout\n", ifp->if_xname);
3401 		if_statinc(ifp, if_oerrors);
3402 		(void)atw_init(ifp);
3403 		atw_start(ifp);
3404 	}
3405 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3406 		ifp->if_timer = 1;
3407 	ieee80211_watchdog(ic);
3408 }
3409 
3410 static void
atw_evcnt_detach(struct atw_softc * sc)3411 atw_evcnt_detach(struct atw_softc *sc)
3412 {
3413 	evcnt_detach(&sc->sc_sige_ev);
3414 	evcnt_detach(&sc->sc_sfde_ev);
3415 	evcnt_detach(&sc->sc_icve_ev);
3416 	evcnt_detach(&sc->sc_crc32e_ev);
3417 	evcnt_detach(&sc->sc_crc16e_ev);
3418 	evcnt_detach(&sc->sc_recv_ev);
3419 
3420 	evcnt_detach(&sc->sc_tuf_ev);
3421 	evcnt_detach(&sc->sc_tro_ev);
3422 	evcnt_detach(&sc->sc_trt_ev);
3423 	evcnt_detach(&sc->sc_tlt_ev);
3424 	evcnt_detach(&sc->sc_sofbr_ev);
3425 	evcnt_detach(&sc->sc_xmit_ev);
3426 
3427 	evcnt_detach(&sc->sc_rxpkt1in_ev);
3428 	evcnt_detach(&sc->sc_rxamatch_ev);
3429 	evcnt_detach(&sc->sc_workaround1_ev);
3430 	evcnt_detach(&sc->sc_misc_ev);
3431 }
3432 
3433 static void
atw_evcnt_attach(struct atw_softc * sc)3434 atw_evcnt_attach(struct atw_softc *sc)
3435 {
3436 	evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3437 	    NULL, sc->sc_if.if_xname, "recv");
3438 	evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3439 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3440 	evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3441 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3442 	evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3443 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3444 	evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3445 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3446 	evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3447 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3448 
3449 	evcnt_attach_dynamic(&sc->sc_xmit_ev, EVCNT_TYPE_MISC,
3450 	    NULL, sc->sc_if.if_xname, "xmit");
3451 	evcnt_attach_dynamic(&sc->sc_tuf_ev, EVCNT_TYPE_MISC,
3452 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit underflow");
3453 	evcnt_attach_dynamic(&sc->sc_tro_ev, EVCNT_TYPE_MISC,
3454 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit overrun");
3455 	evcnt_attach_dynamic(&sc->sc_trt_ev, EVCNT_TYPE_MISC,
3456 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "retry count exceeded");
3457 	evcnt_attach_dynamic(&sc->sc_tlt_ev, EVCNT_TYPE_MISC,
3458 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "lifetime exceeded");
3459 	evcnt_attach_dynamic(&sc->sc_sofbr_ev, EVCNT_TYPE_MISC,
3460 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "packet size mismatch");
3461 
3462 	evcnt_attach_dynamic(&sc->sc_misc_ev, EVCNT_TYPE_MISC,
3463 	    NULL, sc->sc_if.if_xname, "misc");
3464 	evcnt_attach_dynamic(&sc->sc_workaround1_ev, EVCNT_TYPE_MISC,
3465 	    &sc->sc_misc_ev, sc->sc_if.if_xname, "workaround #1");
3466 	evcnt_attach_dynamic(&sc->sc_rxamatch_ev, EVCNT_TYPE_MISC,
3467 	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rra equals rwa");
3468 	evcnt_attach_dynamic(&sc->sc_rxpkt1in_ev, EVCNT_TYPE_MISC,
3469 	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rxpkt1in set");
3470 }
3471 
3472 #ifdef ATW_DEBUG
3473 static void
atw_dump_pkt(struct ifnet * ifp,struct mbuf * m0)3474 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3475 {
3476 	struct atw_softc *sc = ifp->if_softc;
3477 	struct mbuf *m;
3478 	int i, noctets = 0;
3479 
3480 	printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
3481 	    m0->m_pkthdr.len);
3482 
3483 	for (m = m0; m; m = m->m_next) {
3484 		if (m->m_len == 0)
3485 			continue;
3486 		for (i = 0; i < m->m_len; i++) {
3487 			printf(" %02x", ((uint8_t*)m->m_data)[i]);
3488 			if (++noctets % 24 == 0)
3489 				printf("\n");
3490 		}
3491 	}
3492 	printf("%s%s: %d bytes emitted\n",
3493 	    (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
3494 }
3495 #endif /* ATW_DEBUG */
3496 
3497 /*
3498  * atw_start:		[ifnet interface function]
3499  *
3500  *	Start packet transmission on the interface.
3501  */
3502 void
atw_start(struct ifnet * ifp)3503 atw_start(struct ifnet *ifp)
3504 {
3505 	struct atw_softc *sc = ifp->if_softc;
3506 	struct ieee80211_key *k;
3507 	struct ieee80211com *ic = &sc->sc_ic;
3508 	struct ieee80211_node *ni;
3509 	struct ieee80211_frame_min *whm;
3510 	struct ieee80211_frame *wh;
3511 	struct atw_frame *hh;
3512 	uint16_t hdrctl;
3513 	struct mbuf *m0, *m;
3514 	struct atw_txsoft *txs;
3515 	struct atw_txdesc *txd;
3516 	int npkt, rate;
3517 	bus_dmamap_t dmamap;
3518 	int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3519 
3520 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3521 	    device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
3522 
3523 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3524 		return;
3525 
3526 	/*
3527 	 * Remember the previous number of free descriptors and
3528 	 * the first descriptor we'll use.
3529 	 */
3530 	ofree = sc->sc_txfree;
3531 	firsttx = lasttx = sc->sc_txnext;
3532 
3533 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3534 	    device_xname(sc->sc_dev), ofree, firsttx));
3535 
3536 	/*
3537 	 * Loop through the send queue, setting up transmit descriptors
3538 	 * until we drain the queue, or use up all available transmit
3539 	 * descriptors.
3540 	 */
3541 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3542 	       sc->sc_txfree != 0) {
3543 
3544 		hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3545 
3546 		/*
3547 		 * Grab a packet off the management queue, if it
3548 		 * is not empty. Otherwise, from the data queue.
3549 		 */
3550 		IF_DEQUEUE(&ic->ic_mgtq, m0);
3551 		if (m0 != NULL) {
3552 			ni = M_GETCTX(m0, struct ieee80211_node *);
3553 			M_CLEARCTX(m0);
3554 		} else if (ic->ic_state != IEEE80211_S_RUN)
3555 			break; /* send no data until associated */
3556 		else {
3557 			IFQ_DEQUEUE(&ifp->if_snd, m0);
3558 			if (m0 == NULL)
3559 				break;
3560 			bpf_mtap(ifp, m0, BPF_D_OUT);
3561 			ni = ieee80211_find_txnode(ic,
3562 			    mtod(m0, struct ether_header *)->ether_dhost);
3563 			if (ni == NULL) {
3564 				if_statinc(ifp, if_oerrors);
3565 				break;
3566 			}
3567 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3568 				ieee80211_free_node(ni);
3569 				if_statinc(ifp, if_oerrors);
3570 				break;
3571 			}
3572 		}
3573 
3574 		rate = MAX(ieee80211_get_rate(ni), 2);
3575 
3576 		whm = mtod(m0, struct ieee80211_frame_min *);
3577 
3578 		if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3579 			k = NULL;
3580 		else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3581 			m_freem(m0);
3582 			ieee80211_free_node(ni);
3583 			if_statinc(ifp, if_oerrors);
3584 			break;
3585 		}
3586 #if 0
3587 		if (IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3588 		    m0->m_pkthdr.len > ic->ic_fragthreshold)
3589 			hdrctl |= htole16(ATW_HDRCTL_MORE_FRAG);
3590 #endif
3591 
3592 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
3593 			hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3594 
3595 		if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3596 		    ic->ic_flags, ic->ic_fragthreshold, rate,
3597 		    &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3598 			DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3599 			m_freem(m0);
3600 			break;
3601 		}
3602 
3603 		/* XXX Misleading if fragmentation is enabled.  Better
3604 		 * to fragment in software?
3605 		 */
3606 		*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3607 
3608 		/*
3609 		 * Pass the packet to any BPF listeners.
3610 		 */
3611 		bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
3612 
3613 		if (sc->sc_radiobpf != NULL) {
3614 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3615 
3616 			tap->at_rate = rate;
3617 
3618 			bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_txtapu),
3619 			    m0, BPF_D_OUT);
3620 		}
3621 
3622 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3623 
3624 		if (ni != NULL)
3625 			ieee80211_free_node(ni);
3626 
3627 		if (m0 == NULL) {
3628 			if_statinc(ifp, if_oerrors);
3629 			break;
3630 		}
3631 
3632 		/* just to make sure. */
3633 		m0 = m_pullup(m0, sizeof(struct atw_frame));
3634 
3635 		if (m0 == NULL) {
3636 			if_statinc(ifp, if_oerrors);
3637 			break;
3638 		}
3639 
3640 		hh = mtod(m0, struct atw_frame *);
3641 		wh = &hh->atw_ihdr;
3642 
3643 		/* Copy everything we need from the 802.11 header:
3644 		 * Frame Control; address 1, address 3, or addresses
3645 		 * 3 and 4. NIC fills in BSSID, SA.
3646 		 */
3647 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3648 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3649 				panic("%s: illegal WDS frame",
3650 				    device_xname(sc->sc_dev));
3651 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3652 		} else
3653 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3654 
3655 		*(uint16_t*)hh->atw_fc = *(uint16_t*)wh->i_fc;
3656 
3657 		/* initialize remaining Tx parameters */
3658 		memset(&hh->u, 0, sizeof(hh->u));
3659 
3660 		hh->atw_rate = rate * 5;
3661 		/* XXX this could be incorrect if M_FCS. _encap should
3662 		 * probably strip FCS just in case it sticks around in
3663 		 * bridged packets.
3664 		 */
3665 		hh->atw_service = 0x00; /* XXX guess */
3666 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3667 		    sizeof(struct atw_frame));
3668 
3669 		/* never fragment multicast frames */
3670 		if (IEEE80211_IS_MULTICAST(hh->atw_dst))
3671 			hh->atw_fragthr = htole16(IEEE80211_FRAG_MAX);
3672 		else {
3673 			if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3674 			    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE))
3675 				hdrctl |= htole16(ATW_HDRCTL_SHORT_PREAMBLE);
3676 			hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3677 		}
3678 
3679 		hh->atw_rtylmt = 3;
3680 #if 0
3681 		if (do_encrypt) {
3682 			hdrctl |= htole16(ATW_HDRCTL_WEP);
3683 			hh->atw_keyid = ic->ic_def_txkey;
3684 		}
3685 #endif
3686 
3687 		hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3688 		hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3689 		if (txs->txs_d0.d_residue)
3690 			hh->atw_head_plcplen |= htole16(0x8000);
3691 		if (txs->txs_dn.d_residue)
3692 			hh->atw_tail_plcplen |= htole16(0x8000);
3693 		hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3694 		hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3695 
3696 		hh->atw_hdrctl = hdrctl;
3697 		hh->atw_fragnum = npkt << 4;
3698 #ifdef ATW_DEBUG
3699 
3700 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3701 			printf("%s: dst = %s, rate = 0x%02x, "
3702 			    "service = 0x%02x, paylen = 0x%04x\n",
3703 			    device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
3704 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3705 
3706 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3707 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3708 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3709 			    device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3710 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3711 			    hh->atw_tail_dur, hh->atw_head_dur);
3712 
3713 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3714 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3715 			    device_xname(sc->sc_dev), hh->atw_hdrctl,
3716 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3717 
3718 			printf("%s: keyid = %d\n",
3719 			    device_xname(sc->sc_dev), hh->atw_keyid);
3720 
3721 			atw_dump_pkt(ifp, m0);
3722 		}
3723 #endif /* ATW_DEBUG */
3724 
3725 		dmamap = txs->txs_dmamap;
3726 
3727 		/*
3728 		 * Load the DMA map.  Copy and try (once) again if the packet
3729 		 * didn't fit in the alloted number of segments.
3730 		 */
3731 		for (first = 1;
3732 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3733 			 BUS_DMA_WRITE | BUS_DMA_NOWAIT)) != 0 && first;
3734 		     first = 0) {
3735 			MGETHDR(m, M_DONTWAIT, MT_DATA);
3736 			if (m == NULL) {
3737 				aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
3738 				break;
3739 			}
3740 			if (m0->m_pkthdr.len > MHLEN) {
3741 				MCLGET(m, M_DONTWAIT);
3742 				if ((m->m_flags & M_EXT) == 0) {
3743 					aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
3744 					    "cluster\n");
3745 					m_freem(m);
3746 					break;
3747 				}
3748 			}
3749 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3750 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3751 			m_freem(m0);
3752 			m0 = m;
3753 			m = NULL;
3754 		}
3755 		if (error != 0) {
3756 			aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
3757 			    "error = %d\n", error);
3758 			m_freem(m0);
3759 			break;
3760 		}
3761 
3762 		/*
3763 		 * Ensure we have enough descriptors free to describe
3764 		 * the packet.
3765 		 */
3766 		if (dmamap->dm_nsegs > sc->sc_txfree) {
3767 			/*
3768 			 * Not enough free descriptors to transmit
3769 			 * this packet.  Unload the DMA map and
3770 			 * drop the packet.  Notify the upper layer
3771 			 * that there are no more slots left.
3772 			 *
3773 			 * XXX We could allocate an mbuf and copy, but
3774 			 * XXX it is worth it?
3775 			 */
3776 			bus_dmamap_unload(sc->sc_dmat, dmamap);
3777 			m_freem(m0);
3778 			break;
3779 		}
3780 
3781 		/*
3782 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3783 		 */
3784 
3785 		/* Sync the DMA map. */
3786 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3787 		    BUS_DMASYNC_PREWRITE);
3788 
3789 		/* XXX arbitrary retry limit; 8 because I have seen it in
3790 		 * use already and maybe 0 means "no tries" !
3791 		 */
3792 		ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3793 
3794 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3795 		    device_xname(sc->sc_dev), rate * 5));
3796 		ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3797 
3798 		/*
3799 		 * Initialize the transmit descriptors.
3800 		 */
3801 		for (nexttx = sc->sc_txnext, seg = 0;
3802 		     seg < dmamap->dm_nsegs;
3803 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3804 			/*
3805 			 * If this is the first descriptor we're
3806 			 * enqueueing, don't set the OWN bit just
3807 			 * yet.  That could cause a race condition.
3808 			 * We'll do it below.
3809 			 */
3810 			txd = &sc->sc_txdescs[nexttx];
3811 			txd->at_ctl = ctl |
3812 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3813 
3814 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3815 			txd->at_flags =
3816 			    htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3817 					   ATW_TXFLAG_TBS1_MASK)) |
3818 			    ((nexttx == (ATW_NTXDESC - 1))
3819 			        ? htole32(ATW_TXFLAG_TER) : 0);
3820 			lasttx = nexttx;
3821 		}
3822 
3823 		/* Set `first segment' and `last segment' appropriately. */
3824 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3825 		    htole32(ATW_TXFLAG_FS);
3826 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3827 
3828 #ifdef ATW_DEBUG
3829 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3830 			printf("     txsoft %p transmit chain:\n", txs);
3831 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3832 				printf("     descriptor %d:\n", seg);
3833 				printf("       at_ctl:   0x%08x\n",
3834 				    le32toh(sc->sc_txdescs[seg].at_ctl));
3835 				printf("       at_flags:      0x%08x\n",
3836 				    le32toh(sc->sc_txdescs[seg].at_flags));
3837 				printf("       at_buf1: 0x%08x\n",
3838 				    le32toh(sc->sc_txdescs[seg].at_buf1));
3839 				printf("       at_buf2: 0x%08x\n",
3840 				    le32toh(sc->sc_txdescs[seg].at_buf2));
3841 				if (seg == lasttx)
3842 					break;
3843 			}
3844 		}
3845 #endif
3846 
3847 		/* Sync the descriptors we're using. */
3848 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3849 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3850 
3851 		/*
3852 		 * Store a pointer to the packet so we can free it later,
3853 		 * and remember what txdirty will be once the packet is
3854 		 * done.
3855 		 */
3856 		txs->txs_mbuf = m0;
3857 		txs->txs_firstdesc = sc->sc_txnext;
3858 		txs->txs_lastdesc = lasttx;
3859 		txs->txs_ndescs = dmamap->dm_nsegs;
3860 
3861 		/* Advance the tx pointer. */
3862 		sc->sc_txfree -= dmamap->dm_nsegs;
3863 		sc->sc_txnext = nexttx;
3864 
3865 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3866 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3867 	}
3868 
3869 	if (sc->sc_txfree != ofree) {
3870 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3871 		    device_xname(sc->sc_dev), lasttx, firsttx));
3872 		/*
3873 		 * Cause a transmit interrupt to happen on the
3874 		 * last packet we enqueued.
3875 		 */
3876 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3877 		ATW_CDTXSYNC(sc, lasttx, 1,
3878 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3879 
3880 		/*
3881 		 * The entire packet chain is set up.  Give the
3882 		 * first descriptor to the chip now.
3883 		 */
3884 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3885 		ATW_CDTXSYNC(sc, firsttx, 1,
3886 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3887 
3888 		/* Wake up the transmitter. */
3889 		ATW_WRITE(sc, ATW_TDR, 0x1);
3890 
3891 		if (txs == NULL || sc->sc_txfree == 0)
3892 			ifp->if_flags |= IFF_OACTIVE;
3893 
3894 		/* Set a watchdog timer in case the chip flakes out. */
3895 		sc->sc_tx_timer = 5;
3896 		ifp->if_timer = 1;
3897 	}
3898 }
3899 
3900 /*
3901  * atw_ioctl:		[ifnet interface function]
3902  *
3903  *	Handle control requests from the operator.
3904  */
3905 int
atw_ioctl(struct ifnet * ifp,u_long cmd,void * data)3906 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3907 {
3908 	struct atw_softc *sc = ifp->if_softc;
3909 	struct ieee80211req *ireq;
3910 	int s, error = 0;
3911 
3912 	s = splnet();
3913 
3914 	switch (cmd) {
3915 	case SIOCSIFFLAGS:
3916 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3917 			break;
3918 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
3919 		case IFF_UP | IFF_RUNNING:
3920 			/*
3921 			 * To avoid rescanning another access point,
3922 			 * do not call atw_init() here.  Instead,
3923 			 * only reflect media settings.
3924 			 */
3925 			if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
3926 				atw_filter_setup(sc);
3927 			break;
3928 		case IFF_UP:
3929 			error = atw_init(ifp);
3930 			break;
3931 		case IFF_RUNNING:
3932 			atw_stop(ifp, 1);
3933 			break;
3934 		case 0:
3935 			break;
3936 		}
3937 		break;
3938 	case SIOCADDMULTI:
3939 	case SIOCDELMULTI:
3940 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3941 			if (ifp->if_flags & IFF_RUNNING)
3942 				atw_filter_setup(sc); /* do not rescan */
3943 			error = 0;
3944 		}
3945 		break;
3946 	case SIOCS80211:
3947 		ireq = data;
3948 		if (ireq->i_type == IEEE80211_IOC_FRAGTHRESHOLD) {
3949 			if ((error = kauth_authorize_network(
3950 			    kauth_cred_get(), KAUTH_NETWORK_INTERFACE,
3951 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3952 			    (void *)cmd, NULL)) != 0)
3953 				break;
3954 			if (!(IEEE80211_FRAG_MIN <= ireq->i_val &&
3955 			      ireq->i_val <= IEEE80211_FRAG_MAX))
3956 				error = EINVAL;
3957 			else
3958 				sc->sc_ic.ic_fragthreshold = ireq->i_val;
3959 			break;
3960 		}
3961 		/*FALLTHROUGH*/
3962 	default:
3963 		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3964 		if (error == ENETRESET || error == ERESTART) {
3965 			if (is_running(ifp))
3966 				error = atw_init(ifp);
3967 			else
3968 				error = 0;
3969 		}
3970 		break;
3971 	}
3972 
3973 	/* Try to get more packets going. */
3974 	if (device_is_active(sc->sc_dev))
3975 		atw_start(ifp);
3976 
3977 	splx(s);
3978 	return (error);
3979 }
3980 
3981 static int
atw_media_change(struct ifnet * ifp)3982 atw_media_change(struct ifnet *ifp)
3983 {
3984 	int error;
3985 
3986 	error = ieee80211_media_change(ifp);
3987 	if (error == ENETRESET) {
3988 		if (is_running(ifp))
3989 			error = atw_init(ifp);
3990 		else
3991 			error = 0;
3992 	}
3993 	return error;
3994 }
3995