1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package runner
6
7import (
8	"container/list"
9	"crypto"
10	"crypto/ecdsa"
11	"crypto/rand"
12	"crypto/x509"
13	"fmt"
14	"io"
15	"math/big"
16	"strings"
17	"sync"
18	"time"
19)
20
21const (
22	VersionSSL30 = 0x0300
23	VersionTLS10 = 0x0301
24	VersionTLS11 = 0x0302
25	VersionTLS12 = 0x0303
26)
27
28const (
29	maxPlaintext        = 16384        // maximum plaintext payload length
30	maxCiphertext       = 16384 + 2048 // maximum ciphertext payload length
31	tlsRecordHeaderLen  = 5            // record header length
32	dtlsRecordHeaderLen = 13
33	maxHandshake        = 65536 // maximum handshake we support (protocol max is 16 MB)
34
35	minVersion = VersionSSL30
36	maxVersion = VersionTLS12
37)
38
39// TLS record types.
40type recordType uint8
41
42const (
43	recordTypeChangeCipherSpec recordType = 20
44	recordTypeAlert            recordType = 21
45	recordTypeHandshake        recordType = 22
46	recordTypeApplicationData  recordType = 23
47)
48
49// TLS handshake message types.
50const (
51	typeHelloRequest        uint8 = 0
52	typeClientHello         uint8 = 1
53	typeServerHello         uint8 = 2
54	typeHelloVerifyRequest  uint8 = 3
55	typeNewSessionTicket    uint8 = 4
56	typeCertificate         uint8 = 11
57	typeServerKeyExchange   uint8 = 12
58	typeCertificateRequest  uint8 = 13
59	typeServerHelloDone     uint8 = 14
60	typeCertificateVerify   uint8 = 15
61	typeClientKeyExchange   uint8 = 16
62	typeFinished            uint8 = 20
63	typeCertificateStatus   uint8 = 22
64	typeNextProtocol        uint8 = 67  // Not IANA assigned
65	typeEncryptedExtensions uint8 = 203 // Not IANA assigned
66)
67
68// TLS compression types.
69const (
70	compressionNone uint8 = 0
71)
72
73// TLS extension numbers
74const (
75	extensionServerName                 uint16 = 0
76	extensionStatusRequest              uint16 = 5
77	extensionSupportedCurves            uint16 = 10
78	extensionSupportedPoints            uint16 = 11
79	extensionSignatureAlgorithms        uint16 = 13
80	extensionUseSRTP                    uint16 = 14
81	extensionALPN                       uint16 = 16
82	extensionSignedCertificateTimestamp uint16 = 18
83	extensionExtendedMasterSecret       uint16 = 23
84	extensionSessionTicket              uint16 = 35
85	extensionCustom                     uint16 = 1234  // not IANA assigned
86	extensionNextProtoNeg               uint16 = 13172 // not IANA assigned
87	extensionRenegotiationInfo          uint16 = 0xff01
88	extensionChannelID                  uint16 = 30032 // not IANA assigned
89)
90
91// TLS signaling cipher suite values
92const (
93	scsvRenegotiation uint16 = 0x00ff
94)
95
96// CurveID is the type of a TLS identifier for an elliptic curve. See
97// http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-8
98type CurveID uint16
99
100const (
101	CurveP224   CurveID = 21
102	CurveP256   CurveID = 23
103	CurveP384   CurveID = 24
104	CurveP521   CurveID = 25
105	CurveX25519 CurveID = 29
106)
107
108// TLS Elliptic Curve Point Formats
109// http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-9
110const (
111	pointFormatUncompressed uint8 = 0
112)
113
114// TLS CertificateStatusType (RFC 3546)
115const (
116	statusTypeOCSP uint8 = 1
117)
118
119// Certificate types (for certificateRequestMsg)
120const (
121	CertTypeRSASign    = 1 // A certificate containing an RSA key
122	CertTypeDSSSign    = 2 // A certificate containing a DSA key
123	CertTypeRSAFixedDH = 3 // A certificate containing a static DH key
124	CertTypeDSSFixedDH = 4 // A certificate containing a static DH key
125
126	// See RFC4492 sections 3 and 5.5.
127	CertTypeECDSASign      = 64 // A certificate containing an ECDSA-capable public key, signed with ECDSA.
128	CertTypeRSAFixedECDH   = 65 // A certificate containing an ECDH-capable public key, signed with RSA.
129	CertTypeECDSAFixedECDH = 66 // A certificate containing an ECDH-capable public key, signed with ECDSA.
130
131	// Rest of these are reserved by the TLS spec
132)
133
134// Hash functions for TLS 1.2 (See RFC 5246, section A.4.1)
135const (
136	hashMD5    uint8 = 1
137	hashSHA1   uint8 = 2
138	hashSHA224 uint8 = 3
139	hashSHA256 uint8 = 4
140	hashSHA384 uint8 = 5
141	hashSHA512 uint8 = 6
142)
143
144// Signature algorithms for TLS 1.2 (See RFC 5246, section A.4.1)
145const (
146	signatureRSA   uint8 = 1
147	signatureECDSA uint8 = 3
148)
149
150// signatureAndHash mirrors the TLS 1.2, SignatureAndHashAlgorithm struct. See
151// RFC 5246, section A.4.1.
152type signatureAndHash struct {
153	signature, hash uint8
154}
155
156// supportedSKXSignatureAlgorithms contains the signature and hash algorithms
157// that the code advertises as supported in a TLS 1.2 ClientHello.
158var supportedSKXSignatureAlgorithms = []signatureAndHash{
159	{signatureRSA, hashSHA256},
160	{signatureECDSA, hashSHA256},
161	{signatureRSA, hashSHA1},
162	{signatureECDSA, hashSHA1},
163}
164
165// supportedClientCertSignatureAlgorithms contains the signature and hash
166// algorithms that the code advertises as supported in a TLS 1.2
167// CertificateRequest.
168var supportedClientCertSignatureAlgorithms = []signatureAndHash{
169	{signatureRSA, hashSHA256},
170	{signatureECDSA, hashSHA256},
171}
172
173// SRTP protection profiles (See RFC 5764, section 4.1.2)
174const (
175	SRTP_AES128_CM_HMAC_SHA1_80 uint16 = 0x0001
176	SRTP_AES128_CM_HMAC_SHA1_32        = 0x0002
177)
178
179// ConnectionState records basic TLS details about the connection.
180type ConnectionState struct {
181	Version                    uint16                // TLS version used by the connection (e.g. VersionTLS12)
182	HandshakeComplete          bool                  // TLS handshake is complete
183	DidResume                  bool                  // connection resumes a previous TLS connection
184	CipherSuite                uint16                // cipher suite in use (TLS_RSA_WITH_RC4_128_SHA, ...)
185	NegotiatedProtocol         string                // negotiated next protocol (from Config.NextProtos)
186	NegotiatedProtocolIsMutual bool                  // negotiated protocol was advertised by server
187	NegotiatedProtocolFromALPN bool                  // protocol negotiated with ALPN
188	ServerName                 string                // server name requested by client, if any (server side only)
189	PeerCertificates           []*x509.Certificate   // certificate chain presented by remote peer
190	VerifiedChains             [][]*x509.Certificate // verified chains built from PeerCertificates
191	ChannelID                  *ecdsa.PublicKey      // the channel ID for this connection
192	SRTPProtectionProfile      uint16                // the negotiated DTLS-SRTP protection profile
193	TLSUnique                  []byte                // the tls-unique channel binding
194	SCTList                    []byte                // signed certificate timestamp list
195	ClientCertSignatureHash    uint8                 // TLS id of the hash used by the client to sign the handshake
196}
197
198// ClientAuthType declares the policy the server will follow for
199// TLS Client Authentication.
200type ClientAuthType int
201
202const (
203	NoClientCert ClientAuthType = iota
204	RequestClientCert
205	RequireAnyClientCert
206	VerifyClientCertIfGiven
207	RequireAndVerifyClientCert
208)
209
210// ClientSessionState contains the state needed by clients to resume TLS
211// sessions.
212type ClientSessionState struct {
213	sessionId            []uint8             // Session ID supplied by the server. nil if the session has a ticket.
214	sessionTicket        []uint8             // Encrypted ticket used for session resumption with server
215	vers                 uint16              // SSL/TLS version negotiated for the session
216	cipherSuite          uint16              // Ciphersuite negotiated for the session
217	masterSecret         []byte              // MasterSecret generated by client on a full handshake
218	handshakeHash        []byte              // Handshake hash for Channel ID purposes.
219	serverCertificates   []*x509.Certificate // Certificate chain presented by the server
220	extendedMasterSecret bool                // Whether an extended master secret was used to generate the session
221	sctList              []byte
222	ocspResponse         []byte
223}
224
225// ClientSessionCache is a cache of ClientSessionState objects that can be used
226// by a client to resume a TLS session with a given server. ClientSessionCache
227// implementations should expect to be called concurrently from different
228// goroutines.
229type ClientSessionCache interface {
230	// Get searches for a ClientSessionState associated with the given key.
231	// On return, ok is true if one was found.
232	Get(sessionKey string) (session *ClientSessionState, ok bool)
233
234	// Put adds the ClientSessionState to the cache with the given key.
235	Put(sessionKey string, cs *ClientSessionState)
236}
237
238// ServerSessionCache is a cache of sessionState objects that can be used by a
239// client to resume a TLS session with a given server. ServerSessionCache
240// implementations should expect to be called concurrently from different
241// goroutines.
242type ServerSessionCache interface {
243	// Get searches for a sessionState associated with the given session
244	// ID. On return, ok is true if one was found.
245	Get(sessionId string) (session *sessionState, ok bool)
246
247	// Put adds the sessionState to the cache with the given session ID.
248	Put(sessionId string, session *sessionState)
249}
250
251// A Config structure is used to configure a TLS client or server.
252// After one has been passed to a TLS function it must not be
253// modified. A Config may be reused; the tls package will also not
254// modify it.
255type Config struct {
256	// Rand provides the source of entropy for nonces and RSA blinding.
257	// If Rand is nil, TLS uses the cryptographic random reader in package
258	// crypto/rand.
259	// The Reader must be safe for use by multiple goroutines.
260	Rand io.Reader
261
262	// Time returns the current time as the number of seconds since the epoch.
263	// If Time is nil, TLS uses time.Now.
264	Time func() time.Time
265
266	// Certificates contains one or more certificate chains
267	// to present to the other side of the connection.
268	// Server configurations must include at least one certificate.
269	Certificates []Certificate
270
271	// NameToCertificate maps from a certificate name to an element of
272	// Certificates. Note that a certificate name can be of the form
273	// '*.example.com' and so doesn't have to be a domain name as such.
274	// See Config.BuildNameToCertificate
275	// The nil value causes the first element of Certificates to be used
276	// for all connections.
277	NameToCertificate map[string]*Certificate
278
279	// RootCAs defines the set of root certificate authorities
280	// that clients use when verifying server certificates.
281	// If RootCAs is nil, TLS uses the host's root CA set.
282	RootCAs *x509.CertPool
283
284	// NextProtos is a list of supported, application level protocols.
285	NextProtos []string
286
287	// ServerName is used to verify the hostname on the returned
288	// certificates unless InsecureSkipVerify is given. It is also included
289	// in the client's handshake to support virtual hosting.
290	ServerName string
291
292	// ClientAuth determines the server's policy for
293	// TLS Client Authentication. The default is NoClientCert.
294	ClientAuth ClientAuthType
295
296	// ClientCAs defines the set of root certificate authorities
297	// that servers use if required to verify a client certificate
298	// by the policy in ClientAuth.
299	ClientCAs *x509.CertPool
300
301	// ClientCertificateTypes defines the set of allowed client certificate
302	// types. The default is CertTypeRSASign and CertTypeECDSASign.
303	ClientCertificateTypes []byte
304
305	// InsecureSkipVerify controls whether a client verifies the
306	// server's certificate chain and host name.
307	// If InsecureSkipVerify is true, TLS accepts any certificate
308	// presented by the server and any host name in that certificate.
309	// In this mode, TLS is susceptible to man-in-the-middle attacks.
310	// This should be used only for testing.
311	InsecureSkipVerify bool
312
313	// CipherSuites is a list of supported cipher suites. If CipherSuites
314	// is nil, TLS uses a list of suites supported by the implementation.
315	CipherSuites []uint16
316
317	// PreferServerCipherSuites controls whether the server selects the
318	// client's most preferred ciphersuite, or the server's most preferred
319	// ciphersuite. If true then the server's preference, as expressed in
320	// the order of elements in CipherSuites, is used.
321	PreferServerCipherSuites bool
322
323	// SessionTicketsDisabled may be set to true to disable session ticket
324	// (resumption) support.
325	SessionTicketsDisabled bool
326
327	// SessionTicketKey is used by TLS servers to provide session
328	// resumption. See RFC 5077. If zero, it will be filled with
329	// random data before the first server handshake.
330	//
331	// If multiple servers are terminating connections for the same host
332	// they should all have the same SessionTicketKey. If the
333	// SessionTicketKey leaks, previously recorded and future TLS
334	// connections using that key are compromised.
335	SessionTicketKey [32]byte
336
337	// ClientSessionCache is a cache of ClientSessionState entries
338	// for TLS session resumption.
339	ClientSessionCache ClientSessionCache
340
341	// ServerSessionCache is a cache of sessionState entries for TLS session
342	// resumption.
343	ServerSessionCache ServerSessionCache
344
345	// MinVersion contains the minimum SSL/TLS version that is acceptable.
346	// If zero, then SSLv3 is taken as the minimum.
347	MinVersion uint16
348
349	// MaxVersion contains the maximum SSL/TLS version that is acceptable.
350	// If zero, then the maximum version supported by this package is used,
351	// which is currently TLS 1.2.
352	MaxVersion uint16
353
354	// CurvePreferences contains the elliptic curves that will be used in
355	// an ECDHE handshake, in preference order. If empty, the default will
356	// be used.
357	CurvePreferences []CurveID
358
359	// ChannelID contains the ECDSA key for the client to use as
360	// its TLS Channel ID.
361	ChannelID *ecdsa.PrivateKey
362
363	// RequestChannelID controls whether the server requests a TLS
364	// Channel ID. If negotiated, the client's public key is
365	// returned in the ConnectionState.
366	RequestChannelID bool
367
368	// PreSharedKey, if not nil, is the pre-shared key to use with
369	// the PSK cipher suites.
370	PreSharedKey []byte
371
372	// PreSharedKeyIdentity, if not empty, is the identity to use
373	// with the PSK cipher suites.
374	PreSharedKeyIdentity string
375
376	// SRTPProtectionProfiles, if not nil, is the list of SRTP
377	// protection profiles to offer in DTLS-SRTP.
378	SRTPProtectionProfiles []uint16
379
380	// SignatureAndHashes, if not nil, overrides the default set of
381	// supported signature and hash algorithms to advertise in
382	// CertificateRequest.
383	SignatureAndHashes []signatureAndHash
384
385	// Bugs specifies optional misbehaviour to be used for testing other
386	// implementations.
387	Bugs ProtocolBugs
388
389	serverInitOnce sync.Once // guards calling (*Config).serverInit
390}
391
392type BadValue int
393
394const (
395	BadValueNone BadValue = iota
396	BadValueNegative
397	BadValueZero
398	BadValueLimit
399	BadValueLarge
400	NumBadValues
401)
402
403type RSABadValue int
404
405const (
406	RSABadValueNone RSABadValue = iota
407	RSABadValueCorrupt
408	RSABadValueTooLong
409	RSABadValueTooShort
410	RSABadValueWrongVersion
411	NumRSABadValues
412)
413
414type ProtocolBugs struct {
415	// InvalidSKXSignature specifies that the signature in a
416	// ServerKeyExchange message should be invalid.
417	InvalidSKXSignature bool
418
419	// InvalidCertVerifySignature specifies that the signature in a
420	// CertificateVerify message should be invalid.
421	InvalidCertVerifySignature bool
422
423	// InvalidSKXCurve causes the curve ID in the ServerKeyExchange message
424	// to be wrong.
425	InvalidSKXCurve bool
426
427	// InvalidECDHPoint, if true, causes the ECC points in
428	// ServerKeyExchange or ClientKeyExchange messages to be invalid.
429	InvalidECDHPoint bool
430
431	// BadECDSAR controls ways in which the 'r' value of an ECDSA signature
432	// can be invalid.
433	BadECDSAR BadValue
434	BadECDSAS BadValue
435
436	// MaxPadding causes CBC records to have the maximum possible padding.
437	MaxPadding bool
438	// PaddingFirstByteBad causes the first byte of the padding to be
439	// incorrect.
440	PaddingFirstByteBad bool
441	// PaddingFirstByteBadIf255 causes the first byte of padding to be
442	// incorrect if there's a maximum amount of padding (i.e. 255 bytes).
443	PaddingFirstByteBadIf255 bool
444
445	// FailIfNotFallbackSCSV causes a server handshake to fail if the
446	// client doesn't send the fallback SCSV value.
447	FailIfNotFallbackSCSV bool
448
449	// DuplicateExtension causes an extra empty extension of bogus type to
450	// be emitted in either the ClientHello or the ServerHello.
451	DuplicateExtension bool
452
453	// UnauthenticatedECDH causes the server to pretend ECDHE_RSA
454	// and ECDHE_ECDSA cipher suites are actually ECDH_anon. No
455	// Certificate message is sent and no signature is added to
456	// ServerKeyExchange.
457	UnauthenticatedECDH bool
458
459	// SkipHelloVerifyRequest causes a DTLS server to skip the
460	// HelloVerifyRequest message.
461	SkipHelloVerifyRequest bool
462
463	// SkipCertificateStatus, if true, causes the server to skip the
464	// CertificateStatus message. This is legal because CertificateStatus is
465	// optional, even with a status_request in ServerHello.
466	SkipCertificateStatus bool
467
468	// SkipServerKeyExchange causes the server to skip sending
469	// ServerKeyExchange messages.
470	SkipServerKeyExchange bool
471
472	// SkipNewSessionTicket causes the server to skip sending the
473	// NewSessionTicket message despite promising to in ServerHello.
474	SkipNewSessionTicket bool
475
476	// SkipClientCertificate causes the client to skip the Certificate
477	// message.
478	SkipClientCertificate bool
479
480	// SkipChangeCipherSpec causes the implementation to skip
481	// sending the ChangeCipherSpec message (and adjusting cipher
482	// state accordingly for the Finished message).
483	SkipChangeCipherSpec bool
484
485	// SkipFinished causes the implementation to skip sending the Finished
486	// message.
487	SkipFinished bool
488
489	// EarlyChangeCipherSpec causes the client to send an early
490	// ChangeCipherSpec message before the ClientKeyExchange. A value of
491	// zero disables this behavior. One and two configure variants for 0.9.8
492	// and 1.0.1 modes, respectively.
493	EarlyChangeCipherSpec int
494
495	// FragmentAcrossChangeCipherSpec causes the implementation to fragment
496	// the Finished (or NextProto) message around the ChangeCipherSpec
497	// messages.
498	FragmentAcrossChangeCipherSpec bool
499
500	// SendV2ClientHello causes the client to send a V2ClientHello
501	// instead of a normal ClientHello.
502	SendV2ClientHello bool
503
504	// SendFallbackSCSV causes the client to include
505	// TLS_FALLBACK_SCSV in the ClientHello.
506	SendFallbackSCSV bool
507
508	// SendRenegotiationSCSV causes the client to include the renegotiation
509	// SCSV in the ClientHello.
510	SendRenegotiationSCSV bool
511
512	// MaxHandshakeRecordLength, if non-zero, is the maximum size of a
513	// handshake record. Handshake messages will be split into multiple
514	// records at the specified size, except that the client_version will
515	// never be fragmented. For DTLS, it is the maximum handshake fragment
516	// size, not record size; DTLS allows multiple handshake fragments in a
517	// single handshake record. See |PackHandshakeFragments|.
518	MaxHandshakeRecordLength int
519
520	// FragmentClientVersion will allow MaxHandshakeRecordLength to apply to
521	// the first 6 bytes of the ClientHello.
522	FragmentClientVersion bool
523
524	// FragmentAlert will cause all alerts to be fragmented across
525	// two records.
526	FragmentAlert bool
527
528	// DoubleAlert will cause all alerts to be sent as two copies packed
529	// within one record.
530	DoubleAlert bool
531
532	// SendSpuriousAlert, if non-zero, will cause an spurious, unwanted
533	// alert to be sent.
534	SendSpuriousAlert alert
535
536	// BadRSAClientKeyExchange causes the client to send a corrupted RSA
537	// ClientKeyExchange which would not pass padding checks.
538	BadRSAClientKeyExchange RSABadValue
539
540	// RenewTicketOnResume causes the server to renew the session ticket and
541	// send a NewSessionTicket message during an abbreviated handshake.
542	RenewTicketOnResume bool
543
544	// SendClientVersion, if non-zero, causes the client to send a different
545	// TLS version in the ClientHello than the maximum supported version.
546	SendClientVersion uint16
547
548	// ExpectFalseStart causes the server to, on full handshakes,
549	// expect the peer to False Start; the server Finished message
550	// isn't sent until we receive an application data record
551	// from the peer.
552	ExpectFalseStart bool
553
554	// AlertBeforeFalseStartTest, if non-zero, causes the server to, on full
555	// handshakes, send an alert just before reading the application data
556	// record to test False Start. This can be used in a negative False
557	// Start test to determine whether the peer processed the alert (and
558	// closed the connection) before or after sending app data.
559	AlertBeforeFalseStartTest alert
560
561	// SkipCipherVersionCheck causes the server to negotiate
562	// TLS 1.2 ciphers in earlier versions of TLS.
563	SkipCipherVersionCheck bool
564
565	// ExpectServerName, if not empty, is the hostname the client
566	// must specify in the server_name extension.
567	ExpectServerName string
568
569	// SwapNPNAndALPN switches the relative order between NPN and ALPN in
570	// both ClientHello and ServerHello.
571	SwapNPNAndALPN bool
572
573	// ALPNProtocol, if not nil, sets the ALPN protocol that a server will
574	// return.
575	ALPNProtocol *string
576
577	// AllowSessionVersionMismatch causes the server to resume sessions
578	// regardless of the version associated with the session.
579	AllowSessionVersionMismatch bool
580
581	// CorruptTicket causes a client to corrupt a session ticket before
582	// sending it in a resume handshake.
583	CorruptTicket bool
584
585	// OversizedSessionId causes the session id that is sent with a ticket
586	// resumption attempt to be too large (33 bytes).
587	OversizedSessionId bool
588
589	// RequireExtendedMasterSecret, if true, requires that the peer support
590	// the extended master secret option.
591	RequireExtendedMasterSecret bool
592
593	// NoExtendedMasterSecret causes the client and server to behave as if
594	// they didn't support an extended master secret.
595	NoExtendedMasterSecret bool
596
597	// EmptyRenegotiationInfo causes the renegotiation extension to be
598	// empty in a renegotiation handshake.
599	EmptyRenegotiationInfo bool
600
601	// BadRenegotiationInfo causes the renegotiation extension value in a
602	// renegotiation handshake to be incorrect.
603	BadRenegotiationInfo bool
604
605	// NoRenegotiationInfo disables renegotiation info support in all
606	// handshakes.
607	NoRenegotiationInfo bool
608
609	// NoRenegotiationInfoInInitial disables renegotiation info support in
610	// the initial handshake.
611	NoRenegotiationInfoInInitial bool
612
613	// NoRenegotiationInfoAfterInitial disables renegotiation info support
614	// in renegotiation handshakes.
615	NoRenegotiationInfoAfterInitial bool
616
617	// RequireRenegotiationInfo, if true, causes the client to return an
618	// error if the server doesn't reply with the renegotiation extension.
619	RequireRenegotiationInfo bool
620
621	// SequenceNumberMapping, if non-nil, is the mapping function to apply
622	// to the sequence number of outgoing packets. For both TLS and DTLS,
623	// the two most-significant bytes in the resulting sequence number are
624	// ignored so that the DTLS epoch cannot be changed.
625	SequenceNumberMapping func(uint64) uint64
626
627	// RSAEphemeralKey, if true, causes the server to send a
628	// ServerKeyExchange message containing an ephemeral key (as in
629	// RSA_EXPORT) in the plain RSA key exchange.
630	RSAEphemeralKey bool
631
632	// SRTPMasterKeyIdentifer, if not empty, is the SRTP MKI value that the
633	// client offers when negotiating SRTP. MKI support is still missing so
634	// the peer must still send none.
635	SRTPMasterKeyIdentifer string
636
637	// SendSRTPProtectionProfile, if non-zero, is the SRTP profile that the
638	// server sends in the ServerHello instead of the negotiated one.
639	SendSRTPProtectionProfile uint16
640
641	// NoSignatureAndHashes, if true, causes the client to omit the
642	// signature and hashes extension.
643	//
644	// For a server, it will cause an empty list to be sent in the
645	// CertificateRequest message. None the less, the configured set will
646	// still be enforced.
647	NoSignatureAndHashes bool
648
649	// NoSupportedCurves, if true, causes the client to omit the
650	// supported_curves extension.
651	NoSupportedCurves bool
652
653	// RequireSameRenegoClientVersion, if true, causes the server
654	// to require that all ClientHellos match in offered version
655	// across a renego.
656	RequireSameRenegoClientVersion bool
657
658	// ExpectInitialRecordVersion, if non-zero, is the expected
659	// version of the records before the version is determined.
660	ExpectInitialRecordVersion uint16
661
662	// MaxPacketLength, if non-zero, is the maximum acceptable size for a
663	// packet.
664	MaxPacketLength int
665
666	// SendCipherSuite, if non-zero, is the cipher suite value that the
667	// server will send in the ServerHello. This does not affect the cipher
668	// the server believes it has actually negotiated.
669	SendCipherSuite uint16
670
671	// AppDataBeforeHandshake, if not nil, causes application data to be
672	// sent immediately before the first handshake message.
673	AppDataBeforeHandshake []byte
674
675	// AppDataAfterChangeCipherSpec, if not nil, causes application data to
676	// be sent immediately after ChangeCipherSpec.
677	AppDataAfterChangeCipherSpec []byte
678
679	// AlertAfterChangeCipherSpec, if non-zero, causes an alert to be sent
680	// immediately after ChangeCipherSpec.
681	AlertAfterChangeCipherSpec alert
682
683	// TimeoutSchedule is the schedule of packet drops and simulated
684	// timeouts for before each handshake leg from the peer.
685	TimeoutSchedule []time.Duration
686
687	// PacketAdaptor is the packetAdaptor to use to simulate timeouts.
688	PacketAdaptor *packetAdaptor
689
690	// ReorderHandshakeFragments, if true, causes handshake fragments in
691	// DTLS to overlap and be sent in the wrong order. It also causes
692	// pre-CCS flights to be sent twice. (Post-CCS flights consist of
693	// Finished and will trigger a spurious retransmit.)
694	ReorderHandshakeFragments bool
695
696	// MixCompleteMessageWithFragments, if true, causes handshake
697	// messages in DTLS to redundantly both fragment the message
698	// and include a copy of the full one.
699	MixCompleteMessageWithFragments bool
700
701	// SendInvalidRecordType, if true, causes a record with an invalid
702	// content type to be sent immediately following the handshake.
703	SendInvalidRecordType bool
704
705	// WrongCertificateMessageType, if true, causes Certificate message to
706	// be sent with the wrong message type.
707	WrongCertificateMessageType bool
708
709	// FragmentMessageTypeMismatch, if true, causes all non-initial
710	// handshake fragments in DTLS to have the wrong message type.
711	FragmentMessageTypeMismatch bool
712
713	// FragmentMessageLengthMismatch, if true, causes all non-initial
714	// handshake fragments in DTLS to have the wrong message length.
715	FragmentMessageLengthMismatch bool
716
717	// SplitFragments, if non-zero, causes the handshake fragments in DTLS
718	// to be split across two records. The value of |SplitFragments| is the
719	// number of bytes in the first fragment.
720	SplitFragments int
721
722	// SendEmptyFragments, if true, causes handshakes to include empty
723	// fragments in DTLS.
724	SendEmptyFragments bool
725
726	// SendSplitAlert, if true, causes an alert to be sent with the header
727	// and record body split across multiple packets. The peer should
728	// discard these packets rather than process it.
729	SendSplitAlert bool
730
731	// FailIfResumeOnRenego, if true, causes renegotiations to fail if the
732	// client offers a resumption or the server accepts one.
733	FailIfResumeOnRenego bool
734
735	// IgnorePeerCipherPreferences, if true, causes the peer's cipher
736	// preferences to be ignored.
737	IgnorePeerCipherPreferences bool
738
739	// IgnorePeerSignatureAlgorithmPreferences, if true, causes the peer's
740	// signature algorithm preferences to be ignored.
741	IgnorePeerSignatureAlgorithmPreferences bool
742
743	// IgnorePeerCurvePreferences, if true, causes the peer's curve
744	// preferences to be ignored.
745	IgnorePeerCurvePreferences bool
746
747	// BadFinished, if true, causes the Finished hash to be broken.
748	BadFinished bool
749
750	// DHGroupPrime, if not nil, is used to define the (finite field)
751	// Diffie-Hellman group. The generator used is always two.
752	DHGroupPrime *big.Int
753
754	// PackHandshakeFragments, if true, causes handshake fragments to be
755	// packed into individual handshake records, up to the specified record
756	// size.
757	PackHandshakeFragments int
758
759	// PackHandshakeRecords, if true, causes handshake records to be packed
760	// into individual packets, up to the specified packet size.
761	PackHandshakeRecords int
762
763	// EnableAllCiphersInDTLS, if true, causes RC4 to be enabled in DTLS.
764	EnableAllCiphersInDTLS bool
765
766	// EmptyCertificateList, if true, causes the server to send an empty
767	// certificate list in the Certificate message.
768	EmptyCertificateList bool
769
770	// ExpectNewTicket, if true, causes the client to abort if it does not
771	// receive a new ticket.
772	ExpectNewTicket bool
773
774	// RequireClientHelloSize, if not zero, is the required length in bytes
775	// of the ClientHello /record/. This is checked by the server.
776	RequireClientHelloSize int
777
778	// CustomExtension, if not empty, contains the contents of an extension
779	// that will be added to client/server hellos.
780	CustomExtension string
781
782	// ExpectedCustomExtension, if not nil, contains the expected contents
783	// of a custom extension.
784	ExpectedCustomExtension *string
785
786	// NoCloseNotify, if true, causes the close_notify alert to be skipped
787	// on connection shutdown.
788	NoCloseNotify bool
789
790	// SendAlertOnShutdown, if non-zero, is the alert to send instead of
791	// close_notify on shutdown.
792	SendAlertOnShutdown alert
793
794	// ExpectCloseNotify, if true, requires a close_notify from the peer on
795	// shutdown. Records from the peer received after close_notify is sent
796	// are not discard.
797	ExpectCloseNotify bool
798
799	// SendLargeRecords, if true, allows outgoing records to be sent
800	// arbitrarily large.
801	SendLargeRecords bool
802
803	// NegotiateALPNAndNPN, if true, causes the server to negotiate both
804	// ALPN and NPN in the same connetion.
805	NegotiateALPNAndNPN bool
806
807	// SendEmptySessionTicket, if true, causes the server to send an empty
808	// session ticket.
809	SendEmptySessionTicket bool
810
811	// FailIfSessionOffered, if true, causes the server to fail any
812	// connections where the client offers a non-empty session ID or session
813	// ticket.
814	FailIfSessionOffered bool
815
816	// SendHelloRequestBeforeEveryAppDataRecord, if true, causes a
817	// HelloRequest handshake message to be sent before each application
818	// data record. This only makes sense for a server.
819	SendHelloRequestBeforeEveryAppDataRecord bool
820
821	// RequireDHPublicValueLen causes a fatal error if the length (in
822	// bytes) of the server's Diffie-Hellman public value is not equal to
823	// this.
824	RequireDHPublicValueLen int
825
826	// BadChangeCipherSpec, if not nil, is the body to be sent in
827	// ChangeCipherSpec records instead of {1}.
828	BadChangeCipherSpec []byte
829
830	// BadHelloRequest, if not nil, is what to send instead of a
831	// HelloRequest.
832	BadHelloRequest []byte
833
834	// RequireSessionTickets, if true, causes the client to require new
835	// sessions use session tickets instead of session IDs.
836	RequireSessionTickets bool
837
838	// NullAllCiphers, if true, causes every cipher to behave like the null
839	// cipher.
840	NullAllCiphers bool
841
842	// SendSCTListOnResume, if not nil, causes the server to send the
843	// supplied SCT list in resumption handshakes.
844	SendSCTListOnResume []byte
845
846	// CECPQ1BadX25519Part corrupts the X25519 part of a CECPQ1 key exchange, as
847	// a trivial proof that it is actually used.
848	CECPQ1BadX25519Part bool
849
850	// CECPQ1BadNewhopePart corrupts the Newhope part of a CECPQ1 key exchange,
851	// as a trivial proof that it is actually used.
852	CECPQ1BadNewhopePart bool
853}
854
855func (c *Config) serverInit() {
856	if c.SessionTicketsDisabled {
857		return
858	}
859
860	// If the key has already been set then we have nothing to do.
861	for _, b := range c.SessionTicketKey {
862		if b != 0 {
863			return
864		}
865	}
866
867	if _, err := io.ReadFull(c.rand(), c.SessionTicketKey[:]); err != nil {
868		c.SessionTicketsDisabled = true
869	}
870}
871
872func (c *Config) rand() io.Reader {
873	r := c.Rand
874	if r == nil {
875		return rand.Reader
876	}
877	return r
878}
879
880func (c *Config) time() time.Time {
881	t := c.Time
882	if t == nil {
883		t = time.Now
884	}
885	return t()
886}
887
888func (c *Config) cipherSuites() []uint16 {
889	s := c.CipherSuites
890	if s == nil {
891		s = defaultCipherSuites()
892	}
893	return s
894}
895
896func (c *Config) minVersion() uint16 {
897	if c == nil || c.MinVersion == 0 {
898		return minVersion
899	}
900	return c.MinVersion
901}
902
903func (c *Config) maxVersion() uint16 {
904	if c == nil || c.MaxVersion == 0 {
905		return maxVersion
906	}
907	return c.MaxVersion
908}
909
910var defaultCurvePreferences = []CurveID{CurveX25519, CurveP256, CurveP384, CurveP521}
911
912func (c *Config) curvePreferences() []CurveID {
913	if c == nil || len(c.CurvePreferences) == 0 {
914		return defaultCurvePreferences
915	}
916	return c.CurvePreferences
917}
918
919// mutualVersion returns the protocol version to use given the advertised
920// version of the peer.
921func (c *Config) mutualVersion(vers uint16) (uint16, bool) {
922	minVersion := c.minVersion()
923	maxVersion := c.maxVersion()
924
925	if vers < minVersion {
926		return 0, false
927	}
928	if vers > maxVersion {
929		vers = maxVersion
930	}
931	return vers, true
932}
933
934// getCertificateForName returns the best certificate for the given name,
935// defaulting to the first element of c.Certificates if there are no good
936// options.
937func (c *Config) getCertificateForName(name string) *Certificate {
938	if len(c.Certificates) == 1 || c.NameToCertificate == nil {
939		// There's only one choice, so no point doing any work.
940		return &c.Certificates[0]
941	}
942
943	name = strings.ToLower(name)
944	for len(name) > 0 && name[len(name)-1] == '.' {
945		name = name[:len(name)-1]
946	}
947
948	if cert, ok := c.NameToCertificate[name]; ok {
949		return cert
950	}
951
952	// try replacing labels in the name with wildcards until we get a
953	// match.
954	labels := strings.Split(name, ".")
955	for i := range labels {
956		labels[i] = "*"
957		candidate := strings.Join(labels, ".")
958		if cert, ok := c.NameToCertificate[candidate]; ok {
959			return cert
960		}
961	}
962
963	// If nothing matches, return the first certificate.
964	return &c.Certificates[0]
965}
966
967func (c *Config) signatureAndHashesForServer() []signatureAndHash {
968	if c != nil && c.SignatureAndHashes != nil {
969		return c.SignatureAndHashes
970	}
971	return supportedClientCertSignatureAlgorithms
972}
973
974func (c *Config) signatureAndHashesForClient() []signatureAndHash {
975	if c != nil && c.SignatureAndHashes != nil {
976		return c.SignatureAndHashes
977	}
978	return supportedSKXSignatureAlgorithms
979}
980
981// BuildNameToCertificate parses c.Certificates and builds c.NameToCertificate
982// from the CommonName and SubjectAlternateName fields of each of the leaf
983// certificates.
984func (c *Config) BuildNameToCertificate() {
985	c.NameToCertificate = make(map[string]*Certificate)
986	for i := range c.Certificates {
987		cert := &c.Certificates[i]
988		x509Cert, err := x509.ParseCertificate(cert.Certificate[0])
989		if err != nil {
990			continue
991		}
992		if len(x509Cert.Subject.CommonName) > 0 {
993			c.NameToCertificate[x509Cert.Subject.CommonName] = cert
994		}
995		for _, san := range x509Cert.DNSNames {
996			c.NameToCertificate[san] = cert
997		}
998	}
999}
1000
1001// A Certificate is a chain of one or more certificates, leaf first.
1002type Certificate struct {
1003	Certificate [][]byte
1004	PrivateKey  crypto.PrivateKey // supported types: *rsa.PrivateKey, *ecdsa.PrivateKey
1005	// OCSPStaple contains an optional OCSP response which will be served
1006	// to clients that request it.
1007	OCSPStaple []byte
1008	// SignedCertificateTimestampList contains an optional encoded
1009	// SignedCertificateTimestampList structure which will be
1010	// served to clients that request it.
1011	SignedCertificateTimestampList []byte
1012	// Leaf is the parsed form of the leaf certificate, which may be
1013	// initialized using x509.ParseCertificate to reduce per-handshake
1014	// processing for TLS clients doing client authentication. If nil, the
1015	// leaf certificate will be parsed as needed.
1016	Leaf *x509.Certificate
1017}
1018
1019// A TLS record.
1020type record struct {
1021	contentType  recordType
1022	major, minor uint8
1023	payload      []byte
1024}
1025
1026type handshakeMessage interface {
1027	marshal() []byte
1028	unmarshal([]byte) bool
1029}
1030
1031// lruSessionCache is a client or server session cache implementation
1032// that uses an LRU caching strategy.
1033type lruSessionCache struct {
1034	sync.Mutex
1035
1036	m        map[string]*list.Element
1037	q        *list.List
1038	capacity int
1039}
1040
1041type lruSessionCacheEntry struct {
1042	sessionKey string
1043	state      interface{}
1044}
1045
1046// Put adds the provided (sessionKey, cs) pair to the cache.
1047func (c *lruSessionCache) Put(sessionKey string, cs interface{}) {
1048	c.Lock()
1049	defer c.Unlock()
1050
1051	if elem, ok := c.m[sessionKey]; ok {
1052		entry := elem.Value.(*lruSessionCacheEntry)
1053		entry.state = cs
1054		c.q.MoveToFront(elem)
1055		return
1056	}
1057
1058	if c.q.Len() < c.capacity {
1059		entry := &lruSessionCacheEntry{sessionKey, cs}
1060		c.m[sessionKey] = c.q.PushFront(entry)
1061		return
1062	}
1063
1064	elem := c.q.Back()
1065	entry := elem.Value.(*lruSessionCacheEntry)
1066	delete(c.m, entry.sessionKey)
1067	entry.sessionKey = sessionKey
1068	entry.state = cs
1069	c.q.MoveToFront(elem)
1070	c.m[sessionKey] = elem
1071}
1072
1073// Get returns the value associated with a given key. It returns (nil,
1074// false) if no value is found.
1075func (c *lruSessionCache) Get(sessionKey string) (interface{}, bool) {
1076	c.Lock()
1077	defer c.Unlock()
1078
1079	if elem, ok := c.m[sessionKey]; ok {
1080		c.q.MoveToFront(elem)
1081		return elem.Value.(*lruSessionCacheEntry).state, true
1082	}
1083	return nil, false
1084}
1085
1086// lruClientSessionCache is a ClientSessionCache implementation that
1087// uses an LRU caching strategy.
1088type lruClientSessionCache struct {
1089	lruSessionCache
1090}
1091
1092func (c *lruClientSessionCache) Put(sessionKey string, cs *ClientSessionState) {
1093	c.lruSessionCache.Put(sessionKey, cs)
1094}
1095
1096func (c *lruClientSessionCache) Get(sessionKey string) (*ClientSessionState, bool) {
1097	cs, ok := c.lruSessionCache.Get(sessionKey)
1098	if !ok {
1099		return nil, false
1100	}
1101	return cs.(*ClientSessionState), true
1102}
1103
1104// lruServerSessionCache is a ServerSessionCache implementation that
1105// uses an LRU caching strategy.
1106type lruServerSessionCache struct {
1107	lruSessionCache
1108}
1109
1110func (c *lruServerSessionCache) Put(sessionId string, session *sessionState) {
1111	c.lruSessionCache.Put(sessionId, session)
1112}
1113
1114func (c *lruServerSessionCache) Get(sessionId string) (*sessionState, bool) {
1115	cs, ok := c.lruSessionCache.Get(sessionId)
1116	if !ok {
1117		return nil, false
1118	}
1119	return cs.(*sessionState), true
1120}
1121
1122// NewLRUClientSessionCache returns a ClientSessionCache with the given
1123// capacity that uses an LRU strategy. If capacity is < 1, a default capacity
1124// is used instead.
1125func NewLRUClientSessionCache(capacity int) ClientSessionCache {
1126	const defaultSessionCacheCapacity = 64
1127
1128	if capacity < 1 {
1129		capacity = defaultSessionCacheCapacity
1130	}
1131	return &lruClientSessionCache{
1132		lruSessionCache{
1133			m:        make(map[string]*list.Element),
1134			q:        list.New(),
1135			capacity: capacity,
1136		},
1137	}
1138}
1139
1140// NewLRUServerSessionCache returns a ServerSessionCache with the given
1141// capacity that uses an LRU strategy. If capacity is < 1, a default capacity
1142// is used instead.
1143func NewLRUServerSessionCache(capacity int) ServerSessionCache {
1144	const defaultSessionCacheCapacity = 64
1145
1146	if capacity < 1 {
1147		capacity = defaultSessionCacheCapacity
1148	}
1149	return &lruServerSessionCache{
1150		lruSessionCache{
1151			m:        make(map[string]*list.Element),
1152			q:        list.New(),
1153			capacity: capacity,
1154		},
1155	}
1156}
1157
1158// TODO(jsing): Make these available to both crypto/x509 and crypto/tls.
1159type dsaSignature struct {
1160	R, S *big.Int
1161}
1162
1163type ecdsaSignature dsaSignature
1164
1165var emptyConfig Config
1166
1167func defaultConfig() *Config {
1168	return &emptyConfig
1169}
1170
1171var (
1172	once                   sync.Once
1173	varDefaultCipherSuites []uint16
1174)
1175
1176func defaultCipherSuites() []uint16 {
1177	once.Do(initDefaultCipherSuites)
1178	return varDefaultCipherSuites
1179}
1180
1181func initDefaultCipherSuites() {
1182	for _, suite := range cipherSuites {
1183		if suite.flags&suitePSK == 0 {
1184			varDefaultCipherSuites = append(varDefaultCipherSuites, suite.id)
1185		}
1186	}
1187}
1188
1189func unexpectedMessageError(wanted, got interface{}) error {
1190	return fmt.Errorf("tls: received unexpected handshake message of type %T when waiting for %T", got, wanted)
1191}
1192
1193func isSupportedSignatureAndHash(sigHash signatureAndHash, sigHashes []signatureAndHash) bool {
1194	for _, s := range sigHashes {
1195		if s == sigHash {
1196			return true
1197		}
1198	}
1199	return false
1200}
1201