1 //===- ASTContext.h - Context to hold long-lived AST nodes ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines the clang::ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15 #define LLVM_CLANG_AST_ASTCONTEXT_H
16 
17 #include "clang/AST/ASTFwd.h"
18 #include "clang/AST/CanonicalType.h"
19 #include "clang/AST/CommentCommandTraits.h"
20 #include "clang/AST/ComparisonCategories.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclarationName.h"
23 #include "clang/AST/ExternalASTSource.h"
24 #include "clang/AST/PrettyPrinter.h"
25 #include "clang/AST/RawCommentList.h"
26 #include "clang/AST/TemplateName.h"
27 #include "clang/Basic/LLVM.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/SourceLocation.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/DenseSet.h"
32 #include "llvm/ADT/FoldingSet.h"
33 #include "llvm/ADT/IntrusiveRefCntPtr.h"
34 #include "llvm/ADT/MapVector.h"
35 #include "llvm/ADT/PointerIntPair.h"
36 #include "llvm/ADT/PointerUnion.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/StringMap.h"
39 #include "llvm/ADT/StringRef.h"
40 #include "llvm/ADT/TinyPtrVector.h"
41 #include "llvm/Support/TypeSize.h"
42 #include <optional>
43 
44 namespace llvm {
45 
46 class APFixedPoint;
47 class FixedPointSemantics;
48 struct fltSemantics;
49 template <typename T, unsigned N> class SmallPtrSet;
50 
51 } // namespace llvm
52 
53 namespace clang {
54 
55 class APValue;
56 class ASTMutationListener;
57 class ASTRecordLayout;
58 class AtomicExpr;
59 class BlockExpr;
60 struct BlockVarCopyInit;
61 class BuiltinTemplateDecl;
62 class CharUnits;
63 class ConceptDecl;
64 class CXXABI;
65 class CXXConstructorDecl;
66 class CXXMethodDecl;
67 class CXXRecordDecl;
68 class DiagnosticsEngine;
69 class DynTypedNodeList;
70 class Expr;
71 enum class FloatModeKind;
72 class GlobalDecl;
73 class IdentifierTable;
74 class LangOptions;
75 class MangleContext;
76 class MangleNumberingContext;
77 class MemberSpecializationInfo;
78 class Module;
79 struct MSGuidDeclParts;
80 class NestedNameSpecifier;
81 class NoSanitizeList;
82 class ObjCCategoryDecl;
83 class ObjCCategoryImplDecl;
84 class ObjCContainerDecl;
85 class ObjCImplDecl;
86 class ObjCImplementationDecl;
87 class ObjCInterfaceDecl;
88 class ObjCIvarDecl;
89 class ObjCMethodDecl;
90 class ObjCPropertyDecl;
91 class ObjCPropertyImplDecl;
92 class ObjCProtocolDecl;
93 class ObjCTypeParamDecl;
94 class OMPTraitInfo;
95 class ParentMapContext;
96 struct ParsedTargetAttr;
97 class Preprocessor;
98 class ProfileList;
99 class StoredDeclsMap;
100 class TargetAttr;
101 class TargetInfo;
102 class TemplateDecl;
103 class TemplateParameterList;
104 class TemplateTemplateParmDecl;
105 class TemplateTypeParmDecl;
106 class TypeConstraint;
107 class UnresolvedSetIterator;
108 class UsingShadowDecl;
109 class VarTemplateDecl;
110 class VTableContextBase;
111 class XRayFunctionFilter;
112 
113 namespace Builtin {
114 
115 class Context;
116 
117 } // namespace Builtin
118 
119 enum BuiltinTemplateKind : int;
120 enum OpenCLTypeKind : uint8_t;
121 
122 namespace comments {
123 
124 class FullComment;
125 
126 } // namespace comments
127 
128 namespace interp {
129 
130 class Context;
131 
132 } // namespace interp
133 
134 namespace serialization {
135 template <class> class AbstractTypeReader;
136 } // namespace serialization
137 
138 enum class AlignRequirementKind {
139   /// The alignment was not explicit in code.
140   None,
141 
142   /// The alignment comes from an alignment attribute on a typedef.
143   RequiredByTypedef,
144 
145   /// The alignment comes from an alignment attribute on a record type.
146   RequiredByRecord,
147 
148   /// The alignment comes from an alignment attribute on a enum type.
149   RequiredByEnum,
150 };
151 
152 struct TypeInfo {
153   uint64_t Width = 0;
154   unsigned Align = 0;
155   AlignRequirementKind AlignRequirement;
156 
TypeInfoTypeInfo157   TypeInfo() : AlignRequirement(AlignRequirementKind::None) {}
TypeInfoTypeInfo158   TypeInfo(uint64_t Width, unsigned Align,
159            AlignRequirementKind AlignRequirement)
160       : Width(Width), Align(Align), AlignRequirement(AlignRequirement) {}
isAlignRequiredTypeInfo161   bool isAlignRequired() {
162     return AlignRequirement != AlignRequirementKind::None;
163   }
164 };
165 
166 struct TypeInfoChars {
167   CharUnits Width;
168   CharUnits Align;
169   AlignRequirementKind AlignRequirement;
170 
TypeInfoCharsTypeInfoChars171   TypeInfoChars() : AlignRequirement(AlignRequirementKind::None) {}
TypeInfoCharsTypeInfoChars172   TypeInfoChars(CharUnits Width, CharUnits Align,
173                 AlignRequirementKind AlignRequirement)
174       : Width(Width), Align(Align), AlignRequirement(AlignRequirement) {}
isAlignRequiredTypeInfoChars175   bool isAlignRequired() {
176     return AlignRequirement != AlignRequirementKind::None;
177   }
178 };
179 
180 /// Holds long-lived AST nodes (such as types and decls) that can be
181 /// referred to throughout the semantic analysis of a file.
182 class ASTContext : public RefCountedBase<ASTContext> {
183   friend class NestedNameSpecifier;
184 
185   mutable SmallVector<Type *, 0> Types;
186   mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
187   mutable llvm::FoldingSet<ComplexType> ComplexTypes;
188   mutable llvm::FoldingSet<PointerType> PointerTypes{GeneralTypesLog2InitSize};
189   mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
190   mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
191   mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
192   mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
193   mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
194   mutable llvm::ContextualFoldingSet<ConstantArrayType, ASTContext &>
195       ConstantArrayTypes;
196   mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
197   mutable std::vector<VariableArrayType*> VariableArrayTypes;
198   mutable llvm::ContextualFoldingSet<DependentSizedArrayType, ASTContext &>
199       DependentSizedArrayTypes;
200   mutable llvm::ContextualFoldingSet<DependentSizedExtVectorType, ASTContext &>
201       DependentSizedExtVectorTypes;
202   mutable llvm::ContextualFoldingSet<DependentAddressSpaceType, ASTContext &>
203       DependentAddressSpaceTypes;
204   mutable llvm::FoldingSet<VectorType> VectorTypes;
205   mutable llvm::ContextualFoldingSet<DependentVectorType, ASTContext &>
206       DependentVectorTypes;
207   mutable llvm::FoldingSet<ConstantMatrixType> MatrixTypes;
208   mutable llvm::ContextualFoldingSet<DependentSizedMatrixType, ASTContext &>
209       DependentSizedMatrixTypes;
210   mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
211   mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
212     FunctionProtoTypes;
213   mutable llvm::ContextualFoldingSet<DependentTypeOfExprType, ASTContext &>
214       DependentTypeOfExprTypes;
215   mutable llvm::ContextualFoldingSet<DependentDecltypeType, ASTContext &>
216       DependentDecltypeTypes;
217   mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
218   mutable llvm::FoldingSet<ObjCTypeParamType> ObjCTypeParamTypes;
219   mutable llvm::FoldingSet<SubstTemplateTypeParmType>
220     SubstTemplateTypeParmTypes;
221   mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
222     SubstTemplateTypeParmPackTypes;
223   mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
224     TemplateSpecializationTypes;
225   mutable llvm::FoldingSet<ParenType> ParenTypes{GeneralTypesLog2InitSize};
226   mutable llvm::FoldingSet<UsingType> UsingTypes;
227   mutable llvm::FoldingSet<TypedefType> TypedefTypes;
228   mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes{
229       GeneralTypesLog2InitSize};
230   mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
231   mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
232                                      ASTContext&>
233     DependentTemplateSpecializationTypes;
234   llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
235   mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
236   mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
237   mutable llvm::FoldingSet<DependentUnaryTransformType>
238     DependentUnaryTransformTypes;
239   mutable llvm::ContextualFoldingSet<AutoType, ASTContext&> AutoTypes;
240   mutable llvm::FoldingSet<DeducedTemplateSpecializationType>
241     DeducedTemplateSpecializationTypes;
242   mutable llvm::FoldingSet<AtomicType> AtomicTypes;
243   mutable llvm::FoldingSet<AttributedType> AttributedTypes;
244   mutable llvm::FoldingSet<PipeType> PipeTypes;
245   mutable llvm::FoldingSet<BitIntType> BitIntTypes;
246   mutable llvm::ContextualFoldingSet<DependentBitIntType, ASTContext &>
247       DependentBitIntTypes;
248   llvm::FoldingSet<BTFTagAttributedType> BTFTagAttributedTypes;
249 
250   mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
251   mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
252   mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
253     SubstTemplateTemplateParms;
254   mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
255                                      ASTContext&>
256     SubstTemplateTemplateParmPacks;
257 
258   /// The set of nested name specifiers.
259   ///
260   /// This set is managed by the NestedNameSpecifier class.
261   mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
262   mutable NestedNameSpecifier *GlobalNestedNameSpecifier = nullptr;
263 
264   /// A cache mapping from RecordDecls to ASTRecordLayouts.
265   ///
266   /// This is lazily created.  This is intentionally not serialized.
267   mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
268     ASTRecordLayouts;
269   mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
270     ObjCLayouts;
271 
272   /// A cache from types to size and alignment information.
273   using TypeInfoMap = llvm::DenseMap<const Type *, struct TypeInfo>;
274   mutable TypeInfoMap MemoizedTypeInfo;
275 
276   /// A cache from types to unadjusted alignment information. Only ARM and
277   /// AArch64 targets need this information, keeping it separate prevents
278   /// imposing overhead on TypeInfo size.
279   using UnadjustedAlignMap = llvm::DenseMap<const Type *, unsigned>;
280   mutable UnadjustedAlignMap MemoizedUnadjustedAlign;
281 
282   /// A cache mapping from CXXRecordDecls to key functions.
283   llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
284 
285   /// Mapping from ObjCContainers to their ObjCImplementations.
286   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
287 
288   /// Mapping from ObjCMethod to its duplicate declaration in the same
289   /// interface.
290   llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
291 
292   /// Mapping from __block VarDecls to BlockVarCopyInit.
293   llvm::DenseMap<const VarDecl *, BlockVarCopyInit> BlockVarCopyInits;
294 
295   /// Mapping from GUIDs to the corresponding MSGuidDecl.
296   mutable llvm::FoldingSet<MSGuidDecl> MSGuidDecls;
297 
298   /// Mapping from APValues to the corresponding UnnamedGlobalConstantDecl.
299   mutable llvm::FoldingSet<UnnamedGlobalConstantDecl>
300       UnnamedGlobalConstantDecls;
301 
302   /// Mapping from APValues to the corresponding TemplateParamObjects.
303   mutable llvm::FoldingSet<TemplateParamObjectDecl> TemplateParamObjectDecls;
304 
305   /// A cache mapping a string value to a StringLiteral object with the same
306   /// value.
307   ///
308   /// This is lazily created.  This is intentionally not serialized.
309   mutable llvm::StringMap<StringLiteral *> StringLiteralCache;
310 
311   /// MD5 hash of CUID. It is calculated when first used and cached by this
312   /// data member.
313   mutable std::string CUIDHash;
314 
315   /// Representation of a "canonical" template template parameter that
316   /// is used in canonical template names.
317   class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
318     TemplateTemplateParmDecl *Parm;
319 
320   public:
CanonicalTemplateTemplateParm(TemplateTemplateParmDecl * Parm)321     CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
322         : Parm(Parm) {}
323 
getParam()324     TemplateTemplateParmDecl *getParam() const { return Parm; }
325 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & C)326     void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &C) {
327       Profile(ID, C, Parm);
328     }
329 
330     static void Profile(llvm::FoldingSetNodeID &ID,
331                         const ASTContext &C,
332                         TemplateTemplateParmDecl *Parm);
333   };
334   mutable llvm::ContextualFoldingSet<CanonicalTemplateTemplateParm,
335                                      const ASTContext&>
336     CanonTemplateTemplateParms;
337 
338   TemplateTemplateParmDecl *
339     getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
340 
341   /// The typedef for the __int128_t type.
342   mutable TypedefDecl *Int128Decl = nullptr;
343 
344   /// The typedef for the __uint128_t type.
345   mutable TypedefDecl *UInt128Decl = nullptr;
346 
347   /// The typedef for the target specific predefined
348   /// __builtin_va_list type.
349   mutable TypedefDecl *BuiltinVaListDecl = nullptr;
350 
351   /// The typedef for the predefined \c __builtin_ms_va_list type.
352   mutable TypedefDecl *BuiltinMSVaListDecl = nullptr;
353 
354   /// The typedef for the predefined \c id type.
355   mutable TypedefDecl *ObjCIdDecl = nullptr;
356 
357   /// The typedef for the predefined \c SEL type.
358   mutable TypedefDecl *ObjCSelDecl = nullptr;
359 
360   /// The typedef for the predefined \c Class type.
361   mutable TypedefDecl *ObjCClassDecl = nullptr;
362 
363   /// The typedef for the predefined \c Protocol class in Objective-C.
364   mutable ObjCInterfaceDecl *ObjCProtocolClassDecl = nullptr;
365 
366   /// The typedef for the predefined 'BOOL' type.
367   mutable TypedefDecl *BOOLDecl = nullptr;
368 
369   // Typedefs which may be provided defining the structure of Objective-C
370   // pseudo-builtins
371   QualType ObjCIdRedefinitionType;
372   QualType ObjCClassRedefinitionType;
373   QualType ObjCSelRedefinitionType;
374 
375   /// The identifier 'bool'.
376   mutable IdentifierInfo *BoolName = nullptr;
377 
378   /// The identifier 'NSObject'.
379   mutable IdentifierInfo *NSObjectName = nullptr;
380 
381   /// The identifier 'NSCopying'.
382   IdentifierInfo *NSCopyingName = nullptr;
383 
384   /// The identifier '__make_integer_seq'.
385   mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
386 
387   /// The identifier '__type_pack_element'.
388   mutable IdentifierInfo *TypePackElementName = nullptr;
389 
390   QualType ObjCConstantStringType;
391   mutable RecordDecl *CFConstantStringTagDecl = nullptr;
392   mutable TypedefDecl *CFConstantStringTypeDecl = nullptr;
393 
394   mutable QualType ObjCSuperType;
395 
396   QualType ObjCNSStringType;
397 
398   /// The typedef declaration for the Objective-C "instancetype" type.
399   TypedefDecl *ObjCInstanceTypeDecl = nullptr;
400 
401   /// The type for the C FILE type.
402   TypeDecl *FILEDecl = nullptr;
403 
404   /// The type for the C jmp_buf type.
405   TypeDecl *jmp_bufDecl = nullptr;
406 
407   /// The type for the C sigjmp_buf type.
408   TypeDecl *sigjmp_bufDecl = nullptr;
409 
410   /// The type for the C ucontext_t type.
411   TypeDecl *ucontext_tDecl = nullptr;
412 
413   /// Type for the Block descriptor for Blocks CodeGen.
414   ///
415   /// Since this is only used for generation of debug info, it is not
416   /// serialized.
417   mutable RecordDecl *BlockDescriptorType = nullptr;
418 
419   /// Type for the Block descriptor for Blocks CodeGen.
420   ///
421   /// Since this is only used for generation of debug info, it is not
422   /// serialized.
423   mutable RecordDecl *BlockDescriptorExtendedType = nullptr;
424 
425   /// Declaration for the CUDA cudaConfigureCall function.
426   FunctionDecl *cudaConfigureCallDecl = nullptr;
427 
428   /// Keeps track of all declaration attributes.
429   ///
430   /// Since so few decls have attrs, we keep them in a hash map instead of
431   /// wasting space in the Decl class.
432   llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
433 
434   /// A mapping from non-redeclarable declarations in modules that were
435   /// merged with other declarations to the canonical declaration that they were
436   /// merged into.
437   llvm::DenseMap<Decl*, Decl*> MergedDecls;
438 
439   /// A mapping from a defining declaration to a list of modules (other
440   /// than the owning module of the declaration) that contain merged
441   /// definitions of that entity.
442   llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
443 
444   /// Initializers for a module, in order. Each Decl will be either
445   /// something that has a semantic effect on startup (such as a variable with
446   /// a non-constant initializer), or an ImportDecl (which recursively triggers
447   /// initialization of another module).
448   struct PerModuleInitializers {
449     llvm::SmallVector<Decl*, 4> Initializers;
450     llvm::SmallVector<uint32_t, 4> LazyInitializers;
451 
452     void resolve(ASTContext &Ctx);
453   };
454   llvm::DenseMap<Module*, PerModuleInitializers*> ModuleInitializers;
455 
456   /// This is the top-level (C++20) Named module we are building.
457   Module *CurrentCXXNamedModule = nullptr;
458 
459   static constexpr unsigned ConstantArrayTypesLog2InitSize = 8;
460   static constexpr unsigned GeneralTypesLog2InitSize = 9;
461   static constexpr unsigned FunctionProtoTypesLog2InitSize = 12;
462 
this_()463   ASTContext &this_() { return *this; }
464 
465 public:
466   /// A type synonym for the TemplateOrInstantiation mapping.
467   using TemplateOrSpecializationInfo =
468       llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>;
469 
470 private:
471   friend class ASTDeclReader;
472   friend class ASTReader;
473   friend class ASTWriter;
474   template <class> friend class serialization::AbstractTypeReader;
475   friend class CXXRecordDecl;
476   friend class IncrementalParser;
477 
478   /// A mapping to contain the template or declaration that
479   /// a variable declaration describes or was instantiated from,
480   /// respectively.
481   ///
482   /// For non-templates, this value will be NULL. For variable
483   /// declarations that describe a variable template, this will be a
484   /// pointer to a VarTemplateDecl. For static data members
485   /// of class template specializations, this will be the
486   /// MemberSpecializationInfo referring to the member variable that was
487   /// instantiated or specialized. Thus, the mapping will keep track of
488   /// the static data member templates from which static data members of
489   /// class template specializations were instantiated.
490   ///
491   /// Given the following example:
492   ///
493   /// \code
494   /// template<typename T>
495   /// struct X {
496   ///   static T value;
497   /// };
498   ///
499   /// template<typename T>
500   ///   T X<T>::value = T(17);
501   ///
502   /// int *x = &X<int>::value;
503   /// \endcode
504   ///
505   /// This mapping will contain an entry that maps from the VarDecl for
506   /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
507   /// class template X) and will be marked TSK_ImplicitInstantiation.
508   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
509   TemplateOrInstantiation;
510 
511   /// Keeps track of the declaration from which a using declaration was
512   /// created during instantiation.
513   ///
514   /// The source and target declarations are always a UsingDecl, an
515   /// UnresolvedUsingValueDecl, or an UnresolvedUsingTypenameDecl.
516   ///
517   /// For example:
518   /// \code
519   /// template<typename T>
520   /// struct A {
521   ///   void f();
522   /// };
523   ///
524   /// template<typename T>
525   /// struct B : A<T> {
526   ///   using A<T>::f;
527   /// };
528   ///
529   /// template struct B<int>;
530   /// \endcode
531   ///
532   /// This mapping will contain an entry that maps from the UsingDecl in
533   /// B<int> to the UnresolvedUsingDecl in B<T>.
534   llvm::DenseMap<NamedDecl *, NamedDecl *> InstantiatedFromUsingDecl;
535 
536   /// Like InstantiatedFromUsingDecl, but for using-enum-declarations. Maps
537   /// from the instantiated using-enum to the templated decl from whence it
538   /// came.
539   /// Note that using-enum-declarations cannot be dependent and
540   /// thus will never be instantiated from an "unresolved"
541   /// version thereof (as with using-declarations), so each mapping is from
542   /// a (resolved) UsingEnumDecl to a (resolved) UsingEnumDecl.
543   llvm::DenseMap<UsingEnumDecl *, UsingEnumDecl *>
544       InstantiatedFromUsingEnumDecl;
545 
546   /// Simlarly maps instantiated UsingShadowDecls to their origin.
547   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
548     InstantiatedFromUsingShadowDecl;
549 
550   llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
551 
552   /// Mapping that stores the methods overridden by a given C++
553   /// member function.
554   ///
555   /// Since most C++ member functions aren't virtual and therefore
556   /// don't override anything, we store the overridden functions in
557   /// this map on the side rather than within the CXXMethodDecl structure.
558   using CXXMethodVector = llvm::TinyPtrVector<const CXXMethodDecl *>;
559   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
560 
561   /// Mapping from each declaration context to its corresponding
562   /// mangling numbering context (used for constructs like lambdas which
563   /// need to be consistently numbered for the mangler).
564   llvm::DenseMap<const DeclContext *, std::unique_ptr<MangleNumberingContext>>
565       MangleNumberingContexts;
566   llvm::DenseMap<const Decl *, std::unique_ptr<MangleNumberingContext>>
567       ExtraMangleNumberingContexts;
568 
569   /// Side-table of mangling numbers for declarations which rarely
570   /// need them (like static local vars).
571   llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
572   llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
573   /// Mapping the associated device lambda mangling number if present.
574   mutable llvm::DenseMap<const CXXRecordDecl *, unsigned>
575       DeviceLambdaManglingNumbers;
576 
577   /// Mapping that stores parameterIndex values for ParmVarDecls when
578   /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
579   using ParameterIndexTable = llvm::DenseMap<const VarDecl *, unsigned>;
580   ParameterIndexTable ParamIndices;
581 
582   ImportDecl *FirstLocalImport = nullptr;
583   ImportDecl *LastLocalImport = nullptr;
584 
585   TranslationUnitDecl *TUDecl = nullptr;
586   mutable ExternCContextDecl *ExternCContext = nullptr;
587   mutable BuiltinTemplateDecl *MakeIntegerSeqDecl = nullptr;
588   mutable BuiltinTemplateDecl *TypePackElementDecl = nullptr;
589 
590   /// The associated SourceManager object.
591   SourceManager &SourceMgr;
592 
593   /// The language options used to create the AST associated with
594   ///  this ASTContext object.
595   LangOptions &LangOpts;
596 
597   /// NoSanitizeList object that is used by sanitizers to decide which
598   /// entities should not be instrumented.
599   std::unique_ptr<NoSanitizeList> NoSanitizeL;
600 
601   /// Function filtering mechanism to determine whether a given function
602   /// should be imbued with the XRay "always" or "never" attributes.
603   std::unique_ptr<XRayFunctionFilter> XRayFilter;
604 
605   /// ProfileList object that is used by the profile instrumentation
606   /// to decide which entities should be instrumented.
607   std::unique_ptr<ProfileList> ProfList;
608 
609   /// The allocator used to create AST objects.
610   ///
611   /// AST objects are never destructed; rather, all memory associated with the
612   /// AST objects will be released when the ASTContext itself is destroyed.
613   mutable llvm::BumpPtrAllocator BumpAlloc;
614 
615   /// Allocator for partial diagnostics.
616   PartialDiagnostic::DiagStorageAllocator DiagAllocator;
617 
618   /// The current C++ ABI.
619   std::unique_ptr<CXXABI> ABI;
620   CXXABI *createCXXABI(const TargetInfo &T);
621 
622   /// Address space map mangling must be used with language specific
623   /// address spaces (e.g. OpenCL/CUDA)
624   bool AddrSpaceMapMangling;
625 
626   const TargetInfo *Target = nullptr;
627   const TargetInfo *AuxTarget = nullptr;
628   clang::PrintingPolicy PrintingPolicy;
629   std::unique_ptr<interp::Context> InterpContext;
630   std::unique_ptr<ParentMapContext> ParentMapCtx;
631 
632   /// Keeps track of the deallocated DeclListNodes for future reuse.
633   DeclListNode *ListNodeFreeList = nullptr;
634 
635 public:
636   IdentifierTable &Idents;
637   SelectorTable &Selectors;
638   Builtin::Context &BuiltinInfo;
639   const TranslationUnitKind TUKind;
640   mutable DeclarationNameTable DeclarationNames;
641   IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
642   ASTMutationListener *Listener = nullptr;
643 
644   /// Returns the clang bytecode interpreter context.
645   interp::Context &getInterpContext();
646 
647   struct CUDAConstantEvalContext {
648     /// Do not allow wrong-sided variables in constant expressions.
649     bool NoWrongSidedVars = false;
650   } CUDAConstantEvalCtx;
651   struct CUDAConstantEvalContextRAII {
652     ASTContext &Ctx;
653     CUDAConstantEvalContext SavedCtx;
CUDAConstantEvalContextRAIICUDAConstantEvalContextRAII654     CUDAConstantEvalContextRAII(ASTContext &Ctx_, bool NoWrongSidedVars)
655         : Ctx(Ctx_), SavedCtx(Ctx_.CUDAConstantEvalCtx) {
656       Ctx_.CUDAConstantEvalCtx.NoWrongSidedVars = NoWrongSidedVars;
657     }
~CUDAConstantEvalContextRAIICUDAConstantEvalContextRAII658     ~CUDAConstantEvalContextRAII() { Ctx.CUDAConstantEvalCtx = SavedCtx; }
659   };
660 
661   /// Returns the dynamic AST node parent map context.
662   ParentMapContext &getParentMapContext();
663 
664   // A traversal scope limits the parts of the AST visible to certain analyses.
665   // RecursiveASTVisitor only visits specified children of TranslationUnitDecl.
666   // getParents() will only observe reachable parent edges.
667   //
668   // The scope is defined by a set of "top-level" declarations which will be
669   // visible under the TranslationUnitDecl.
670   // Initially, it is the entire TU, represented by {getTranslationUnitDecl()}.
671   //
672   // After setTraversalScope({foo, bar}), the exposed AST looks like:
673   // TranslationUnitDecl
674   //  - foo
675   //    - ...
676   //  - bar
677   //    - ...
678   // All other siblings of foo and bar are pruned from the tree.
679   // (However they are still accessible via TranslationUnitDecl->decls())
680   //
681   // Changing the scope clears the parent cache, which is expensive to rebuild.
getTraversalScope()682   std::vector<Decl *> getTraversalScope() const { return TraversalScope; }
683   void setTraversalScope(const std::vector<Decl *> &);
684 
685   /// Forwards to get node parents from the ParentMapContext. New callers should
686   /// use ParentMapContext::getParents() directly.
687   template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node);
688 
getPrintingPolicy()689   const clang::PrintingPolicy &getPrintingPolicy() const {
690     return PrintingPolicy;
691   }
692 
setPrintingPolicy(const clang::PrintingPolicy & Policy)693   void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
694     PrintingPolicy = Policy;
695   }
696 
getSourceManager()697   SourceManager& getSourceManager() { return SourceMgr; }
getSourceManager()698   const SourceManager& getSourceManager() const { return SourceMgr; }
699 
700   // Cleans up some of the data structures. This allows us to do cleanup
701   // normally done in the destructor earlier. Renders much of the ASTContext
702   // unusable, mostly the actual AST nodes, so should be called when we no
703   // longer need access to the AST.
704   void cleanup();
705 
getAllocator()706   llvm::BumpPtrAllocator &getAllocator() const {
707     return BumpAlloc;
708   }
709 
710   void *Allocate(size_t Size, unsigned Align = 8) const {
711     return BumpAlloc.Allocate(Size, Align);
712   }
713   template <typename T> T *Allocate(size_t Num = 1) const {
714     return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
715   }
Deallocate(void * Ptr)716   void Deallocate(void *Ptr) const {}
717 
718   /// Allocates a \c DeclListNode or returns one from the \c ListNodeFreeList
719   /// pool.
AllocateDeclListNode(clang::NamedDecl * ND)720   DeclListNode *AllocateDeclListNode(clang::NamedDecl *ND) {
721     if (DeclListNode *Alloc = ListNodeFreeList) {
722       ListNodeFreeList = Alloc->Rest.dyn_cast<DeclListNode*>();
723       Alloc->D = ND;
724       Alloc->Rest = nullptr;
725       return Alloc;
726     }
727     return new (*this) DeclListNode(ND);
728   }
729   /// Deallcates a \c DeclListNode by returning it to the \c ListNodeFreeList
730   /// pool.
DeallocateDeclListNode(DeclListNode * N)731   void DeallocateDeclListNode(DeclListNode *N) {
732     N->Rest = ListNodeFreeList;
733     ListNodeFreeList = N;
734   }
735 
736   /// Return the total amount of physical memory allocated for representing
737   /// AST nodes and type information.
getASTAllocatedMemory()738   size_t getASTAllocatedMemory() const {
739     return BumpAlloc.getTotalMemory();
740   }
741 
742   /// Return the total memory used for various side tables.
743   size_t getSideTableAllocatedMemory() const;
744 
getDiagAllocator()745   PartialDiagnostic::DiagStorageAllocator &getDiagAllocator() {
746     return DiagAllocator;
747   }
748 
getTargetInfo()749   const TargetInfo &getTargetInfo() const { return *Target; }
getAuxTargetInfo()750   const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
751 
752   /// getIntTypeForBitwidth -
753   /// sets integer QualTy according to specified details:
754   /// bitwidth, signed/unsigned.
755   /// Returns empty type if there is no appropriate target types.
756   QualType getIntTypeForBitwidth(unsigned DestWidth,
757                                  unsigned Signed) const;
758 
759   /// getRealTypeForBitwidth -
760   /// sets floating point QualTy according to specified bitwidth.
761   /// Returns empty type if there is no appropriate target types.
762   QualType getRealTypeForBitwidth(unsigned DestWidth,
763                                   FloatModeKind ExplicitType) const;
764 
765   bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
766 
getLangOpts()767   const LangOptions& getLangOpts() const { return LangOpts; }
768 
769   // If this condition is false, typo correction must be performed eagerly
770   // rather than delayed in many places, as it makes use of dependent types.
771   // the condition is false for clang's C-only codepath, as it doesn't support
772   // dependent types yet.
isDependenceAllowed()773   bool isDependenceAllowed() const {
774     return LangOpts.CPlusPlus || LangOpts.RecoveryAST;
775   }
776 
getNoSanitizeList()777   const NoSanitizeList &getNoSanitizeList() const { return *NoSanitizeL; }
778 
getXRayFilter()779   const XRayFunctionFilter &getXRayFilter() const {
780     return *XRayFilter;
781   }
782 
getProfileList()783   const ProfileList &getProfileList() const { return *ProfList; }
784 
785   DiagnosticsEngine &getDiagnostics() const;
786 
getFullLoc(SourceLocation Loc)787   FullSourceLoc getFullLoc(SourceLocation Loc) const {
788     return FullSourceLoc(Loc,SourceMgr);
789   }
790 
791   /// Return the C++ ABI kind that should be used. The C++ ABI can be overriden
792   /// at compile time with `-fc++-abi=`. If this is not provided, we instead use
793   /// the default ABI set by the target.
794   TargetCXXABI::Kind getCXXABIKind() const;
795 
796   /// All comments in this translation unit.
797   RawCommentList Comments;
798 
799   /// True if comments are already loaded from ExternalASTSource.
800   mutable bool CommentsLoaded = false;
801 
802   /// Mapping from declaration to directly attached comment.
803   ///
804   /// Raw comments are owned by Comments list.  This mapping is populated
805   /// lazily.
806   mutable llvm::DenseMap<const Decl *, const RawComment *> DeclRawComments;
807 
808   /// Mapping from canonical declaration to the first redeclaration in chain
809   /// that has a comment attached.
810   ///
811   /// Raw comments are owned by Comments list.  This mapping is populated
812   /// lazily.
813   mutable llvm::DenseMap<const Decl *, const Decl *> RedeclChainComments;
814 
815   /// Keeps track of redeclaration chains that don't have any comment attached.
816   /// Mapping from canonical declaration to redeclaration chain that has no
817   /// comments attached to any redeclaration. Specifically it's mapping to
818   /// the last redeclaration we've checked.
819   ///
820   /// Shall not contain declarations that have comments attached to any
821   /// redeclaration in their chain.
822   mutable llvm::DenseMap<const Decl *, const Decl *> CommentlessRedeclChains;
823 
824   /// Mapping from declarations to parsed comments attached to any
825   /// redeclaration.
826   mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
827 
828   /// Attaches \p Comment to \p OriginalD and to its redeclaration chain
829   /// and removes the redeclaration chain from the set of commentless chains.
830   ///
831   /// Don't do anything if a comment has already been attached to \p OriginalD
832   /// or its redeclaration chain.
833   void cacheRawCommentForDecl(const Decl &OriginalD,
834                               const RawComment &Comment) const;
835 
836   /// \returns searches \p CommentsInFile for doc comment for \p D.
837   ///
838   /// \p RepresentativeLocForDecl is used as a location for searching doc
839   /// comments. \p CommentsInFile is a mapping offset -> comment of files in the
840   /// same file where \p RepresentativeLocForDecl is.
841   RawComment *getRawCommentForDeclNoCacheImpl(
842       const Decl *D, const SourceLocation RepresentativeLocForDecl,
843       const std::map<unsigned, RawComment *> &CommentsInFile) const;
844 
845   /// Return the documentation comment attached to a given declaration,
846   /// without looking into cache.
847   RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
848 
849 public:
850   void addComment(const RawComment &RC);
851 
852   /// Return the documentation comment attached to a given declaration.
853   /// Returns nullptr if no comment is attached.
854   ///
855   /// \param OriginalDecl if not nullptr, is set to declaration AST node that
856   /// had the comment, if the comment we found comes from a redeclaration.
857   const RawComment *
858   getRawCommentForAnyRedecl(const Decl *D,
859                             const Decl **OriginalDecl = nullptr) const;
860 
861   /// Searches existing comments for doc comments that should be attached to \p
862   /// Decls. If any doc comment is found, it is parsed.
863   ///
864   /// Requirement: All \p Decls are in the same file.
865   ///
866   /// If the last comment in the file is already attached we assume
867   /// there are not comments left to be attached to \p Decls.
868   void attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
869                                        const Preprocessor *PP);
870 
871   /// Return parsed documentation comment attached to a given declaration.
872   /// Returns nullptr if no comment is attached.
873   ///
874   /// \param PP the Preprocessor used with this TU.  Could be nullptr if
875   /// preprocessor is not available.
876   comments::FullComment *getCommentForDecl(const Decl *D,
877                                            const Preprocessor *PP) const;
878 
879   /// Return parsed documentation comment attached to a given declaration.
880   /// Returns nullptr if no comment is attached. Does not look at any
881   /// redeclarations of the declaration.
882   comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
883 
884   comments::FullComment *cloneFullComment(comments::FullComment *FC,
885                                          const Decl *D) const;
886 
887 private:
888   mutable comments::CommandTraits CommentCommandTraits;
889 
890   /// Iterator that visits import declarations.
891   class import_iterator {
892     ImportDecl *Import = nullptr;
893 
894   public:
895     using value_type = ImportDecl *;
896     using reference = ImportDecl *;
897     using pointer = ImportDecl *;
898     using difference_type = int;
899     using iterator_category = std::forward_iterator_tag;
900 
901     import_iterator() = default;
import_iterator(ImportDecl * Import)902     explicit import_iterator(ImportDecl *Import) : Import(Import) {}
903 
904     reference operator*() const { return Import; }
905     pointer operator->() const { return Import; }
906 
907     import_iterator &operator++() {
908       Import = ASTContext::getNextLocalImport(Import);
909       return *this;
910     }
911 
912     import_iterator operator++(int) {
913       import_iterator Other(*this);
914       ++(*this);
915       return Other;
916     }
917 
918     friend bool operator==(import_iterator X, import_iterator Y) {
919       return X.Import == Y.Import;
920     }
921 
922     friend bool operator!=(import_iterator X, import_iterator Y) {
923       return X.Import != Y.Import;
924     }
925   };
926 
927 public:
getCommentCommandTraits()928   comments::CommandTraits &getCommentCommandTraits() const {
929     return CommentCommandTraits;
930   }
931 
932   /// Retrieve the attributes for the given declaration.
933   AttrVec& getDeclAttrs(const Decl *D);
934 
935   /// Erase the attributes corresponding to the given declaration.
936   void eraseDeclAttrs(const Decl *D);
937 
938   /// If this variable is an instantiated static data member of a
939   /// class template specialization, returns the templated static data member
940   /// from which it was instantiated.
941   // FIXME: Remove ?
942   MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
943                                                            const VarDecl *Var);
944 
945   /// Note that the static data member \p Inst is an instantiation of
946   /// the static data member template \p Tmpl of a class template.
947   void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
948                                            TemplateSpecializationKind TSK,
949                         SourceLocation PointOfInstantiation = SourceLocation());
950 
951   TemplateOrSpecializationInfo
952   getTemplateOrSpecializationInfo(const VarDecl *Var);
953 
954   void setTemplateOrSpecializationInfo(VarDecl *Inst,
955                                        TemplateOrSpecializationInfo TSI);
956 
957   /// If the given using decl \p Inst is an instantiation of
958   /// another (possibly unresolved) using decl, return it.
959   NamedDecl *getInstantiatedFromUsingDecl(NamedDecl *Inst);
960 
961   /// Remember that the using decl \p Inst is an instantiation
962   /// of the using decl \p Pattern of a class template.
963   void setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern);
964 
965   /// If the given using-enum decl \p Inst is an instantiation of
966   /// another using-enum decl, return it.
967   UsingEnumDecl *getInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst);
968 
969   /// Remember that the using enum decl \p Inst is an instantiation
970   /// of the using enum decl \p Pattern of a class template.
971   void setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
972                                         UsingEnumDecl *Pattern);
973 
974   UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
975   void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
976                                           UsingShadowDecl *Pattern);
977 
978   FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
979 
980   void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
981 
982   // Access to the set of methods overridden by the given C++ method.
983   using overridden_cxx_method_iterator = CXXMethodVector::const_iterator;
984   overridden_cxx_method_iterator
985   overridden_methods_begin(const CXXMethodDecl *Method) const;
986 
987   overridden_cxx_method_iterator
988   overridden_methods_end(const CXXMethodDecl *Method) const;
989 
990   unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
991 
992   using overridden_method_range =
993       llvm::iterator_range<overridden_cxx_method_iterator>;
994 
995   overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
996 
997   /// Note that the given C++ \p Method overrides the given \p
998   /// Overridden method.
999   void addOverriddenMethod(const CXXMethodDecl *Method,
1000                            const CXXMethodDecl *Overridden);
1001 
1002   /// Return C++ or ObjC overridden methods for the given \p Method.
1003   ///
1004   /// An ObjC method is considered to override any method in the class's
1005   /// base classes, its protocols, or its categories' protocols, that has
1006   /// the same selector and is of the same kind (class or instance).
1007   /// A method in an implementation is not considered as overriding the same
1008   /// method in the interface or its categories.
1009   void getOverriddenMethods(
1010                         const NamedDecl *Method,
1011                         SmallVectorImpl<const NamedDecl *> &Overridden) const;
1012 
1013   /// Notify the AST context that a new import declaration has been
1014   /// parsed or implicitly created within this translation unit.
1015   void addedLocalImportDecl(ImportDecl *Import);
1016 
getNextLocalImport(ImportDecl * Import)1017   static ImportDecl *getNextLocalImport(ImportDecl *Import) {
1018     return Import->getNextLocalImport();
1019   }
1020 
1021   using import_range = llvm::iterator_range<import_iterator>;
1022 
local_imports()1023   import_range local_imports() const {
1024     return import_range(import_iterator(FirstLocalImport), import_iterator());
1025   }
1026 
getPrimaryMergedDecl(Decl * D)1027   Decl *getPrimaryMergedDecl(Decl *D) {
1028     Decl *Result = MergedDecls.lookup(D);
1029     return Result ? Result : D;
1030   }
setPrimaryMergedDecl(Decl * D,Decl * Primary)1031   void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
1032     MergedDecls[D] = Primary;
1033   }
1034 
1035   /// Note that the definition \p ND has been merged into module \p M,
1036   /// and should be visible whenever \p M is visible.
1037   void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1038                                  bool NotifyListeners = true);
1039 
1040   /// Clean up the merged definition list. Call this if you might have
1041   /// added duplicates into the list.
1042   void deduplicateMergedDefinitonsFor(NamedDecl *ND);
1043 
1044   /// Get the additional modules in which the definition \p Def has
1045   /// been merged.
1046   ArrayRef<Module*> getModulesWithMergedDefinition(const NamedDecl *Def);
1047 
1048   /// Add a declaration to the list of declarations that are initialized
1049   /// for a module. This will typically be a global variable (with internal
1050   /// linkage) that runs module initializers, such as the iostream initializer,
1051   /// or an ImportDecl nominating another module that has initializers.
1052   void addModuleInitializer(Module *M, Decl *Init);
1053 
1054   void addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs);
1055 
1056   /// Get the initializations to perform when importing a module, if any.
1057   ArrayRef<Decl*> getModuleInitializers(Module *M);
1058 
1059   /// Set the (C++20) module we are building.
1060   void setCurrentNamedModule(Module *M);
1061 
1062   /// Get module under construction, nullptr if this is not a C++20 module.
getCurrentNamedModule()1063   Module *getCurrentNamedModule() const { return CurrentCXXNamedModule; }
1064 
getTranslationUnitDecl()1065   TranslationUnitDecl *getTranslationUnitDecl() const {
1066     return TUDecl->getMostRecentDecl();
1067   }
addTranslationUnitDecl()1068   void addTranslationUnitDecl() {
1069     assert(!TUDecl || TUKind == TU_Incremental);
1070     TranslationUnitDecl *NewTUDecl = TranslationUnitDecl::Create(*this);
1071     if (TraversalScope.empty() || TraversalScope.back() == TUDecl)
1072       TraversalScope = {NewTUDecl};
1073     if (TUDecl)
1074       NewTUDecl->setPreviousDecl(TUDecl);
1075     TUDecl = NewTUDecl;
1076   }
1077 
1078   ExternCContextDecl *getExternCContextDecl() const;
1079   BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
1080   BuiltinTemplateDecl *getTypePackElementDecl() const;
1081 
1082   // Builtin Types.
1083   CanQualType VoidTy;
1084   CanQualType BoolTy;
1085   CanQualType CharTy;
1086   CanQualType WCharTy;  // [C++ 3.9.1p5].
1087   CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
1088   CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
1089   CanQualType Char8Ty;  // [C++20 proposal]
1090   CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
1091   CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
1092   CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
1093   CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
1094   CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
1095   CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty, Ibm128Ty;
1096   CanQualType ShortAccumTy, AccumTy,
1097       LongAccumTy;  // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1098   CanQualType UnsignedShortAccumTy, UnsignedAccumTy, UnsignedLongAccumTy;
1099   CanQualType ShortFractTy, FractTy, LongFractTy;
1100   CanQualType UnsignedShortFractTy, UnsignedFractTy, UnsignedLongFractTy;
1101   CanQualType SatShortAccumTy, SatAccumTy, SatLongAccumTy;
1102   CanQualType SatUnsignedShortAccumTy, SatUnsignedAccumTy,
1103       SatUnsignedLongAccumTy;
1104   CanQualType SatShortFractTy, SatFractTy, SatLongFractTy;
1105   CanQualType SatUnsignedShortFractTy, SatUnsignedFractTy,
1106       SatUnsignedLongFractTy;
1107   CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
1108   CanQualType BFloat16Ty;
1109   CanQualType Float16Ty; // C11 extension ISO/IEC TS 18661-3
1110   CanQualType VoidPtrTy, NullPtrTy;
1111   CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
1112   CanQualType BuiltinFnTy;
1113   CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
1114   CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
1115   CanQualType ObjCBuiltinBoolTy;
1116 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1117   CanQualType SingletonId;
1118 #include "clang/Basic/OpenCLImageTypes.def"
1119   CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
1120   CanQualType OCLQueueTy, OCLReserveIDTy;
1121   CanQualType IncompleteMatrixIdxTy;
1122   CanQualType OMPArraySectionTy, OMPArrayShapingTy, OMPIteratorTy;
1123 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1124   CanQualType Id##Ty;
1125 #include "clang/Basic/OpenCLExtensionTypes.def"
1126 #define SVE_TYPE(Name, Id, SingletonId) \
1127   CanQualType SingletonId;
1128 #include "clang/Basic/AArch64SVEACLETypes.def"
1129 #define PPC_VECTOR_TYPE(Name, Id, Size) \
1130   CanQualType Id##Ty;
1131 #include "clang/Basic/PPCTypes.def"
1132 #define RVV_TYPE(Name, Id, SingletonId) \
1133   CanQualType SingletonId;
1134 #include "clang/Basic/RISCVVTypes.def"
1135 #define WASM_TYPE(Name, Id, SingletonId) CanQualType SingletonId;
1136 #include "clang/Basic/WebAssemblyReferenceTypes.def"
1137 
1138   // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
1139   mutable QualType AutoDeductTy;     // Deduction against 'auto'.
1140   mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
1141 
1142   // Decl used to help define __builtin_va_list for some targets.
1143   // The decl is built when constructing 'BuiltinVaListDecl'.
1144   mutable Decl *VaListTagDecl = nullptr;
1145 
1146   // Implicitly-declared type 'struct _GUID'.
1147   mutable TagDecl *MSGuidTagDecl = nullptr;
1148 
1149   /// Keep track of CUDA/HIP device-side variables ODR-used by host code.
1150   /// This does not include extern shared variables used by device host
1151   /// functions as addresses of shared variables are per warp, therefore
1152   /// cannot be accessed by host code.
1153   llvm::DenseSet<const VarDecl *> CUDADeviceVarODRUsedByHost;
1154 
1155   /// Keep track of CUDA/HIP external kernels or device variables ODR-used by
1156   /// host code.
1157   llvm::DenseSet<const ValueDecl *> CUDAExternalDeviceDeclODRUsedByHost;
1158 
1159   /// Keep track of CUDA/HIP implicit host device functions used on device side
1160   /// in device compilation.
1161   llvm::DenseSet<const FunctionDecl *> CUDAImplicitHostDeviceFunUsedByDevice;
1162 
1163   ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
1164              SelectorTable &sels, Builtin::Context &builtins,
1165              TranslationUnitKind TUKind);
1166   ASTContext(const ASTContext &) = delete;
1167   ASTContext &operator=(const ASTContext &) = delete;
1168   ~ASTContext();
1169 
1170   /// Attach an external AST source to the AST context.
1171   ///
1172   /// The external AST source provides the ability to load parts of
1173   /// the abstract syntax tree as needed from some external storage,
1174   /// e.g., a precompiled header.
1175   void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
1176 
1177   /// Retrieve a pointer to the external AST source associated
1178   /// with this AST context, if any.
getExternalSource()1179   ExternalASTSource *getExternalSource() const {
1180     return ExternalSource.get();
1181   }
1182 
1183   /// Attach an AST mutation listener to the AST context.
1184   ///
1185   /// The AST mutation listener provides the ability to track modifications to
1186   /// the abstract syntax tree entities committed after they were initially
1187   /// created.
setASTMutationListener(ASTMutationListener * Listener)1188   void setASTMutationListener(ASTMutationListener *Listener) {
1189     this->Listener = Listener;
1190   }
1191 
1192   /// Retrieve a pointer to the AST mutation listener associated
1193   /// with this AST context, if any.
getASTMutationListener()1194   ASTMutationListener *getASTMutationListener() const { return Listener; }
1195 
1196   void PrintStats() const;
getTypes()1197   const SmallVectorImpl<Type *>& getTypes() const { return Types; }
1198 
1199   BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1200                                                 const IdentifierInfo *II) const;
1201 
1202   /// Create a new implicit TU-level CXXRecordDecl or RecordDecl
1203   /// declaration.
1204   RecordDecl *buildImplicitRecord(
1205       StringRef Name,
1206       RecordDecl::TagKind TK = RecordDecl::TagKind::Struct) const;
1207 
1208   /// Create a new implicit TU-level typedef declaration.
1209   TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
1210 
1211   /// Retrieve the declaration for the 128-bit signed integer type.
1212   TypedefDecl *getInt128Decl() const;
1213 
1214   /// Retrieve the declaration for the 128-bit unsigned integer type.
1215   TypedefDecl *getUInt128Decl() const;
1216 
1217   //===--------------------------------------------------------------------===//
1218   //                           Type Constructors
1219   //===--------------------------------------------------------------------===//
1220 
1221 private:
1222   /// Return a type with extended qualifiers.
1223   QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
1224 
1225   QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
1226 
1227   QualType getPipeType(QualType T, bool ReadOnly) const;
1228 
1229 public:
1230   /// Return the uniqued reference to the type for an address space
1231   /// qualified type with the specified type and address space.
1232   ///
1233   /// The resulting type has a union of the qualifiers from T and the address
1234   /// space. If T already has an address space specifier, it is silently
1235   /// replaced.
1236   QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const;
1237 
1238   /// Remove any existing address space on the type and returns the type
1239   /// with qualifiers intact (or that's the idea anyway)
1240   ///
1241   /// The return type should be T with all prior qualifiers minus the address
1242   /// space.
1243   QualType removeAddrSpaceQualType(QualType T) const;
1244 
1245   /// Apply Objective-C protocol qualifiers to the given type.
1246   /// \param allowOnPointerType specifies if we can apply protocol
1247   /// qualifiers on ObjCObjectPointerType. It can be set to true when
1248   /// constructing the canonical type of a Objective-C type parameter.
1249   QualType applyObjCProtocolQualifiers(QualType type,
1250       ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
1251       bool allowOnPointerType = false) const;
1252 
1253   /// Return the uniqued reference to the type for an Objective-C
1254   /// gc-qualified type.
1255   ///
1256   /// The resulting type has a union of the qualifiers from T and the gc
1257   /// attribute.
1258   QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
1259 
1260   /// Remove the existing address space on the type if it is a pointer size
1261   /// address space and return the type with qualifiers intact.
1262   QualType removePtrSizeAddrSpace(QualType T) const;
1263 
1264   /// Return the uniqued reference to the type for a \c restrict
1265   /// qualified type.
1266   ///
1267   /// The resulting type has a union of the qualifiers from \p T and
1268   /// \c restrict.
getRestrictType(QualType T)1269   QualType getRestrictType(QualType T) const {
1270     return T.withFastQualifiers(Qualifiers::Restrict);
1271   }
1272 
1273   /// Return the uniqued reference to the type for a \c volatile
1274   /// qualified type.
1275   ///
1276   /// The resulting type has a union of the qualifiers from \p T and
1277   /// \c volatile.
getVolatileType(QualType T)1278   QualType getVolatileType(QualType T) const {
1279     return T.withFastQualifiers(Qualifiers::Volatile);
1280   }
1281 
1282   /// Return the uniqued reference to the type for a \c const
1283   /// qualified type.
1284   ///
1285   /// The resulting type has a union of the qualifiers from \p T and \c const.
1286   ///
1287   /// It can be reasonably expected that this will always be equivalent to
1288   /// calling T.withConst().
getConstType(QualType T)1289   QualType getConstType(QualType T) const { return T.withConst(); }
1290 
1291   /// Change the ExtInfo on a function type.
1292   const FunctionType *adjustFunctionType(const FunctionType *Fn,
1293                                          FunctionType::ExtInfo EInfo);
1294 
1295   /// Adjust the given function result type.
1296   CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
1297 
1298   /// Change the result type of a function type once it is deduced.
1299   void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
1300 
1301   /// Get a function type and produce the equivalent function type with the
1302   /// specified exception specification. Type sugar that can be present on a
1303   /// declaration of a function with an exception specification is permitted
1304   /// and preserved. Other type sugar (for instance, typedefs) is not.
1305   QualType getFunctionTypeWithExceptionSpec(
1306       QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const;
1307 
1308   /// Determine whether two function types are the same, ignoring
1309   /// exception specifications in cases where they're part of the type.
1310   bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U) const;
1311 
1312   /// Change the exception specification on a function once it is
1313   /// delay-parsed, instantiated, or computed.
1314   void adjustExceptionSpec(FunctionDecl *FD,
1315                            const FunctionProtoType::ExceptionSpecInfo &ESI,
1316                            bool AsWritten = false);
1317 
1318   /// Get a function type and produce the equivalent function type where
1319   /// pointer size address spaces in the return type and parameter tyeps are
1320   /// replaced with the default address space.
1321   QualType getFunctionTypeWithoutPtrSizes(QualType T);
1322 
1323   /// Determine whether two function types are the same, ignoring pointer sizes
1324   /// in the return type and parameter types.
1325   bool hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U);
1326 
1327   /// Return the uniqued reference to the type for a complex
1328   /// number with the specified element type.
1329   QualType getComplexType(QualType T) const;
getComplexType(CanQualType T)1330   CanQualType getComplexType(CanQualType T) const {
1331     return CanQualType::CreateUnsafe(getComplexType((QualType) T));
1332   }
1333 
1334   /// Return the uniqued reference to the type for a pointer to
1335   /// the specified type.
1336   QualType getPointerType(QualType T) const;
getPointerType(CanQualType T)1337   CanQualType getPointerType(CanQualType T) const {
1338     return CanQualType::CreateUnsafe(getPointerType((QualType) T));
1339   }
1340 
1341   /// Return the uniqued reference to a type adjusted from the original
1342   /// type to a new type.
1343   QualType getAdjustedType(QualType Orig, QualType New) const;
getAdjustedType(CanQualType Orig,CanQualType New)1344   CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
1345     return CanQualType::CreateUnsafe(
1346         getAdjustedType((QualType)Orig, (QualType)New));
1347   }
1348 
1349   /// Return the uniqued reference to the decayed version of the given
1350   /// type.  Can only be called on array and function types which decay to
1351   /// pointer types.
1352   QualType getDecayedType(QualType T) const;
getDecayedType(CanQualType T)1353   CanQualType getDecayedType(CanQualType T) const {
1354     return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
1355   }
1356   /// Return the uniqued reference to a specified decay from the original
1357   /// type to the decayed type.
1358   QualType getDecayedType(QualType Orig, QualType Decayed) const;
1359 
1360   /// Return the uniqued reference to the atomic type for the specified
1361   /// type.
1362   QualType getAtomicType(QualType T) const;
1363 
1364   /// Return the uniqued reference to the type for a block of the
1365   /// specified type.
1366   QualType getBlockPointerType(QualType T) const;
1367 
1368   /// Gets the struct used to keep track of the descriptor for pointer to
1369   /// blocks.
1370   QualType getBlockDescriptorType() const;
1371 
1372   /// Return a read_only pipe type for the specified type.
1373   QualType getReadPipeType(QualType T) const;
1374 
1375   /// Return a write_only pipe type for the specified type.
1376   QualType getWritePipeType(QualType T) const;
1377 
1378   /// Return a bit-precise integer type with the specified signedness and bit
1379   /// count.
1380   QualType getBitIntType(bool Unsigned, unsigned NumBits) const;
1381 
1382   /// Return a dependent bit-precise integer type with the specified signedness
1383   /// and bit count.
1384   QualType getDependentBitIntType(bool Unsigned, Expr *BitsExpr) const;
1385 
1386   /// Gets the struct used to keep track of the extended descriptor for
1387   /// pointer to blocks.
1388   QualType getBlockDescriptorExtendedType() const;
1389 
1390   /// Map an AST Type to an OpenCLTypeKind enum value.
1391   OpenCLTypeKind getOpenCLTypeKind(const Type *T) const;
1392 
1393   /// Get address space for OpenCL type.
1394   LangAS getOpenCLTypeAddrSpace(const Type *T) const;
1395 
1396   /// Returns default address space based on OpenCL version and enabled features
getDefaultOpenCLPointeeAddrSpace()1397   inline LangAS getDefaultOpenCLPointeeAddrSpace() {
1398     return LangOpts.OpenCLGenericAddressSpace ? LangAS::opencl_generic
1399                                               : LangAS::opencl_private;
1400   }
1401 
setcudaConfigureCallDecl(FunctionDecl * FD)1402   void setcudaConfigureCallDecl(FunctionDecl *FD) {
1403     cudaConfigureCallDecl = FD;
1404   }
1405 
getcudaConfigureCallDecl()1406   FunctionDecl *getcudaConfigureCallDecl() {
1407     return cudaConfigureCallDecl;
1408   }
1409 
1410   /// Returns true iff we need copy/dispose helpers for the given type.
1411   bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
1412 
1413   /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout
1414   /// is set to false in this case. If HasByrefExtendedLayout returns true,
1415   /// byref variable has extended lifetime.
1416   bool getByrefLifetime(QualType Ty,
1417                         Qualifiers::ObjCLifetime &Lifetime,
1418                         bool &HasByrefExtendedLayout) const;
1419 
1420   /// Return the uniqued reference to the type for an lvalue reference
1421   /// to the specified type.
1422   QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
1423     const;
1424 
1425   /// Return the uniqued reference to the type for an rvalue reference
1426   /// to the specified type.
1427   QualType getRValueReferenceType(QualType T) const;
1428 
1429   /// Return the uniqued reference to the type for a member pointer to
1430   /// the specified type in the specified class.
1431   ///
1432   /// The class \p Cls is a \c Type because it could be a dependent name.
1433   QualType getMemberPointerType(QualType T, const Type *Cls) const;
1434 
1435   /// Return a non-unique reference to the type for a variable array of
1436   /// the specified element type.
1437   QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
1438                                 ArraySizeModifier ASM, unsigned IndexTypeQuals,
1439                                 SourceRange Brackets) const;
1440 
1441   /// Return a non-unique reference to the type for a dependently-sized
1442   /// array of the specified element type.
1443   ///
1444   /// FIXME: We will need these to be uniqued, or at least comparable, at some
1445   /// point.
1446   QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1447                                       ArraySizeModifier ASM,
1448                                       unsigned IndexTypeQuals,
1449                                       SourceRange Brackets) const;
1450 
1451   /// Return a unique reference to the type for an incomplete array of
1452   /// the specified element type.
1453   QualType getIncompleteArrayType(QualType EltTy, ArraySizeModifier ASM,
1454                                   unsigned IndexTypeQuals) const;
1455 
1456   /// Return the unique reference to the type for a constant array of
1457   /// the specified element type.
1458   QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1459                                 const Expr *SizeExpr, ArraySizeModifier ASM,
1460                                 unsigned IndexTypeQuals) const;
1461 
1462   /// Return a type for a constant array for a string literal of the
1463   /// specified element type and length.
1464   QualType getStringLiteralArrayType(QualType EltTy, unsigned Length) const;
1465 
1466   /// Returns a vla type where known sizes are replaced with [*].
1467   QualType getVariableArrayDecayedType(QualType Ty) const;
1468 
1469   // Convenience struct to return information about a builtin vector type.
1470   struct BuiltinVectorTypeInfo {
1471     QualType ElementType;
1472     llvm::ElementCount EC;
1473     unsigned NumVectors;
BuiltinVectorTypeInfoBuiltinVectorTypeInfo1474     BuiltinVectorTypeInfo(QualType ElementType, llvm::ElementCount EC,
1475                           unsigned NumVectors)
1476         : ElementType(ElementType), EC(EC), NumVectors(NumVectors) {}
1477   };
1478 
1479   /// Returns the element type, element count and number of vectors
1480   /// (in case of tuple) for a builtin vector type.
1481   BuiltinVectorTypeInfo
1482   getBuiltinVectorTypeInfo(const BuiltinType *VecTy) const;
1483 
1484   /// Return the unique reference to a scalable vector type of the specified
1485   /// element type and scalable number of elements.
1486   /// For RISC-V, number of fields is also provided when it fetching for
1487   /// tuple type.
1488   ///
1489   /// \pre \p EltTy must be a built-in type.
1490   QualType getScalableVectorType(QualType EltTy, unsigned NumElts,
1491                                  unsigned NumFields = 1) const;
1492 
1493   /// Return a WebAssembly externref type.
1494   QualType getWebAssemblyExternrefType() const;
1495 
1496   /// Return the unique reference to a vector type of the specified
1497   /// element type and size.
1498   ///
1499   /// \pre \p VectorType must be a built-in type.
1500   QualType getVectorType(QualType VectorType, unsigned NumElts,
1501                          VectorKind VecKind) const;
1502   /// Return the unique reference to the type for a dependently sized vector of
1503   /// the specified element type.
1504   QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr,
1505                                   SourceLocation AttrLoc,
1506                                   VectorKind VecKind) const;
1507 
1508   /// Return the unique reference to an extended vector type
1509   /// of the specified element type and size.
1510   ///
1511   /// \pre \p VectorType must be a built-in type.
1512   QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1513 
1514   /// \pre Return a non-unique reference to the type for a dependently-sized
1515   /// vector of the specified element type.
1516   ///
1517   /// FIXME: We will need these to be uniqued, or at least comparable, at some
1518   /// point.
1519   QualType getDependentSizedExtVectorType(QualType VectorType,
1520                                           Expr *SizeExpr,
1521                                           SourceLocation AttrLoc) const;
1522 
1523   /// Return the unique reference to the matrix type of the specified element
1524   /// type and size
1525   ///
1526   /// \pre \p ElementType must be a valid matrix element type (see
1527   /// MatrixType::isValidElementType).
1528   QualType getConstantMatrixType(QualType ElementType, unsigned NumRows,
1529                                  unsigned NumColumns) const;
1530 
1531   /// Return the unique reference to the matrix type of the specified element
1532   /// type and size
1533   QualType getDependentSizedMatrixType(QualType ElementType, Expr *RowExpr,
1534                                        Expr *ColumnExpr,
1535                                        SourceLocation AttrLoc) const;
1536 
1537   QualType getDependentAddressSpaceType(QualType PointeeType,
1538                                         Expr *AddrSpaceExpr,
1539                                         SourceLocation AttrLoc) const;
1540 
1541   /// Return a K&R style C function type like 'int()'.
1542   QualType getFunctionNoProtoType(QualType ResultTy,
1543                                   const FunctionType::ExtInfo &Info) const;
1544 
getFunctionNoProtoType(QualType ResultTy)1545   QualType getFunctionNoProtoType(QualType ResultTy) const {
1546     return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1547   }
1548 
1549   /// Return a normal function type with a typed argument list.
getFunctionType(QualType ResultTy,ArrayRef<QualType> Args,const FunctionProtoType::ExtProtoInfo & EPI)1550   QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1551                            const FunctionProtoType::ExtProtoInfo &EPI) const {
1552     return getFunctionTypeInternal(ResultTy, Args, EPI, false);
1553   }
1554 
1555   QualType adjustStringLiteralBaseType(QualType StrLTy) const;
1556 
1557 private:
1558   /// Return a normal function type with a typed argument list.
1559   QualType getFunctionTypeInternal(QualType ResultTy, ArrayRef<QualType> Args,
1560                                    const FunctionProtoType::ExtProtoInfo &EPI,
1561                                    bool OnlyWantCanonical) const;
1562   QualType
1563   getAutoTypeInternal(QualType DeducedType, AutoTypeKeyword Keyword,
1564                       bool IsDependent, bool IsPack = false,
1565                       ConceptDecl *TypeConstraintConcept = nullptr,
1566                       ArrayRef<TemplateArgument> TypeConstraintArgs = {},
1567                       bool IsCanon = false) const;
1568 
1569 public:
1570   /// Return the unique reference to the type for the specified type
1571   /// declaration.
1572   QualType getTypeDeclType(const TypeDecl *Decl,
1573                            const TypeDecl *PrevDecl = nullptr) const {
1574     assert(Decl && "Passed null for Decl param");
1575     if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1576 
1577     if (PrevDecl) {
1578       assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1579       Decl->TypeForDecl = PrevDecl->TypeForDecl;
1580       return QualType(PrevDecl->TypeForDecl, 0);
1581     }
1582 
1583     return getTypeDeclTypeSlow(Decl);
1584   }
1585 
1586   QualType getUsingType(const UsingShadowDecl *Found,
1587                         QualType Underlying) const;
1588 
1589   /// Return the unique reference to the type for the specified
1590   /// typedef-name decl.
1591   QualType getTypedefType(const TypedefNameDecl *Decl,
1592                           QualType Underlying = QualType()) const;
1593 
1594   QualType getRecordType(const RecordDecl *Decl) const;
1595 
1596   QualType getEnumType(const EnumDecl *Decl) const;
1597 
1598   QualType
1599   getUnresolvedUsingType(const UnresolvedUsingTypenameDecl *Decl) const;
1600 
1601   QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1602 
1603   QualType getAttributedType(attr::Kind attrKind, QualType modifiedType,
1604                              QualType equivalentType) const;
1605 
1606   QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
1607                                    QualType Wrapped);
1608 
1609   QualType
1610   getSubstTemplateTypeParmType(QualType Replacement, Decl *AssociatedDecl,
1611                                unsigned Index,
1612                                std::optional<unsigned> PackIndex) const;
1613   QualType getSubstTemplateTypeParmPackType(Decl *AssociatedDecl,
1614                                             unsigned Index, bool Final,
1615                                             const TemplateArgument &ArgPack);
1616 
1617   QualType
1618   getTemplateTypeParmType(unsigned Depth, unsigned Index,
1619                           bool ParameterPack,
1620                           TemplateTypeParmDecl *ParmDecl = nullptr) const;
1621 
1622   QualType getTemplateSpecializationType(TemplateName T,
1623                                          ArrayRef<TemplateArgument> Args,
1624                                          QualType Canon = QualType()) const;
1625 
1626   QualType
1627   getCanonicalTemplateSpecializationType(TemplateName T,
1628                                          ArrayRef<TemplateArgument> Args) const;
1629 
1630   QualType getTemplateSpecializationType(TemplateName T,
1631                                          ArrayRef<TemplateArgumentLoc> Args,
1632                                          QualType Canon = QualType()) const;
1633 
1634   TypeSourceInfo *
1635   getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1636                                     const TemplateArgumentListInfo &Args,
1637                                     QualType Canon = QualType()) const;
1638 
1639   QualType getParenType(QualType NamedType) const;
1640 
1641   QualType getMacroQualifiedType(QualType UnderlyingTy,
1642                                  const IdentifierInfo *MacroII) const;
1643 
1644   QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1645                              NestedNameSpecifier *NNS, QualType NamedType,
1646                              TagDecl *OwnedTagDecl = nullptr) const;
1647   QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1648                                 NestedNameSpecifier *NNS,
1649                                 const IdentifierInfo *Name,
1650                                 QualType Canon = QualType()) const;
1651 
1652   QualType getDependentTemplateSpecializationType(
1653       ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1654       const IdentifierInfo *Name, ArrayRef<TemplateArgumentLoc> Args) const;
1655   QualType getDependentTemplateSpecializationType(
1656       ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1657       const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
1658 
1659   TemplateArgument getInjectedTemplateArg(NamedDecl *ParamDecl);
1660 
1661   /// Get a template argument list with one argument per template parameter
1662   /// in a template parameter list, such as for the injected class name of
1663   /// a class template.
1664   void getInjectedTemplateArgs(const TemplateParameterList *Params,
1665                                SmallVectorImpl<TemplateArgument> &Args);
1666 
1667   /// Form a pack expansion type with the given pattern.
1668   /// \param NumExpansions The number of expansions for the pack, if known.
1669   /// \param ExpectPackInType If \c false, we should not expect \p Pattern to
1670   ///        contain an unexpanded pack. This only makes sense if the pack
1671   ///        expansion is used in a context where the arity is inferred from
1672   ///        elsewhere, such as if the pattern contains a placeholder type or
1673   ///        if this is the canonical type of another pack expansion type.
1674   QualType getPackExpansionType(QualType Pattern,
1675                                 std::optional<unsigned> NumExpansions,
1676                                 bool ExpectPackInType = true);
1677 
1678   QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1679                                 ObjCInterfaceDecl *PrevDecl = nullptr) const;
1680 
1681   /// Legacy interface: cannot provide type arguments or __kindof.
1682   QualType getObjCObjectType(QualType Base,
1683                              ObjCProtocolDecl * const *Protocols,
1684                              unsigned NumProtocols) const;
1685 
1686   QualType getObjCObjectType(QualType Base,
1687                              ArrayRef<QualType> typeArgs,
1688                              ArrayRef<ObjCProtocolDecl *> protocols,
1689                              bool isKindOf) const;
1690 
1691   QualType getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1692                                 ArrayRef<ObjCProtocolDecl *> protocols) const;
1693   void adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
1694                                     ObjCTypeParamDecl *New) const;
1695 
1696   bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
1697 
1698   /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
1699   /// QT's qualified-id protocol list adopt all protocols in IDecl's list
1700   /// of protocols.
1701   bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
1702                                             ObjCInterfaceDecl *IDecl);
1703 
1704   /// Return a ObjCObjectPointerType type for the given ObjCObjectType.
1705   QualType getObjCObjectPointerType(QualType OIT) const;
1706 
1707   /// C23 feature and GCC extension.
1708   QualType getTypeOfExprType(Expr *E, TypeOfKind Kind) const;
1709   QualType getTypeOfType(QualType QT, TypeOfKind Kind) const;
1710 
1711   QualType getReferenceQualifiedType(const Expr *e) const;
1712 
1713   /// C++11 decltype.
1714   QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1715 
1716   /// Unary type transforms
1717   QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1718                                  UnaryTransformType::UTTKind UKind) const;
1719 
1720   /// C++11 deduced auto type.
1721   QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
1722                        bool IsDependent, bool IsPack = false,
1723                        ConceptDecl *TypeConstraintConcept = nullptr,
1724                        ArrayRef<TemplateArgument> TypeConstraintArgs ={}) const;
1725 
1726   /// C++11 deduction pattern for 'auto' type.
1727   QualType getAutoDeductType() const;
1728 
1729   /// C++11 deduction pattern for 'auto &&' type.
1730   QualType getAutoRRefDeductType() const;
1731 
1732   /// Remove any type constraints from a template parameter type, for
1733   /// equivalence comparison of template parameters.
1734   QualType getUnconstrainedType(QualType T) const;
1735 
1736   /// C++17 deduced class template specialization type.
1737   QualType getDeducedTemplateSpecializationType(TemplateName Template,
1738                                                 QualType DeducedType,
1739                                                 bool IsDependent) const;
1740 
1741   /// Return the unique reference to the type for the specified TagDecl
1742   /// (struct/union/class/enum) decl.
1743   QualType getTagDeclType(const TagDecl *Decl) const;
1744 
1745   /// Return the unique type for "size_t" (C99 7.17), defined in
1746   /// <stddef.h>.
1747   ///
1748   /// The sizeof operator requires this (C99 6.5.3.4p4).
1749   CanQualType getSizeType() const;
1750 
1751   /// Return the unique signed counterpart of
1752   /// the integer type corresponding to size_t.
1753   CanQualType getSignedSizeType() const;
1754 
1755   /// Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1756   /// <stdint.h>.
1757   CanQualType getIntMaxType() const;
1758 
1759   /// Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1760   /// <stdint.h>.
1761   CanQualType getUIntMaxType() const;
1762 
1763   /// Return the unique wchar_t type available in C++ (and available as
1764   /// __wchar_t as a Microsoft extension).
getWCharType()1765   QualType getWCharType() const { return WCharTy; }
1766 
1767   /// Return the type of wide characters. In C++, this returns the
1768   /// unique wchar_t type. In C99, this returns a type compatible with the type
1769   /// defined in <stddef.h> as defined by the target.
getWideCharType()1770   QualType getWideCharType() const { return WideCharTy; }
1771 
1772   /// Return the type of "signed wchar_t".
1773   ///
1774   /// Used when in C++, as a GCC extension.
1775   QualType getSignedWCharType() const;
1776 
1777   /// Return the type of "unsigned wchar_t".
1778   ///
1779   /// Used when in C++, as a GCC extension.
1780   QualType getUnsignedWCharType() const;
1781 
1782   /// In C99, this returns a type compatible with the type
1783   /// defined in <stddef.h> as defined by the target.
getWIntType()1784   QualType getWIntType() const { return WIntTy; }
1785 
1786   /// Return a type compatible with "intptr_t" (C99 7.18.1.4),
1787   /// as defined by the target.
1788   QualType getIntPtrType() const;
1789 
1790   /// Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1791   /// as defined by the target.
1792   QualType getUIntPtrType() const;
1793 
1794   /// Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1795   /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1796   QualType getPointerDiffType() const;
1797 
1798   /// Return the unique unsigned counterpart of "ptrdiff_t"
1799   /// integer type. The standard (C11 7.21.6.1p7) refers to this type
1800   /// in the definition of %tu format specifier.
1801   QualType getUnsignedPointerDiffType() const;
1802 
1803   /// Return the unique type for "pid_t" defined in
1804   /// <sys/types.h>. We need this to compute the correct type for vfork().
1805   QualType getProcessIDType() const;
1806 
1807   /// Return the C structure type used to represent constant CFStrings.
1808   QualType getCFConstantStringType() const;
1809 
1810   /// Returns the C struct type for objc_super
1811   QualType getObjCSuperType() const;
setObjCSuperType(QualType ST)1812   void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1813 
1814   /// Get the structure type used to representation CFStrings, or NULL
1815   /// if it hasn't yet been built.
getRawCFConstantStringType()1816   QualType getRawCFConstantStringType() const {
1817     if (CFConstantStringTypeDecl)
1818       return getTypedefType(CFConstantStringTypeDecl);
1819     return QualType();
1820   }
1821   void setCFConstantStringType(QualType T);
1822   TypedefDecl *getCFConstantStringDecl() const;
1823   RecordDecl *getCFConstantStringTagDecl() const;
1824 
1825   // This setter/getter represents the ObjC type for an NSConstantString.
1826   void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
getObjCConstantStringInterface()1827   QualType getObjCConstantStringInterface() const {
1828     return ObjCConstantStringType;
1829   }
1830 
getObjCNSStringType()1831   QualType getObjCNSStringType() const {
1832     return ObjCNSStringType;
1833   }
1834 
setObjCNSStringType(QualType T)1835   void setObjCNSStringType(QualType T) {
1836     ObjCNSStringType = T;
1837   }
1838 
1839   /// Retrieve the type that \c id has been defined to, which may be
1840   /// different from the built-in \c id if \c id has been typedef'd.
getObjCIdRedefinitionType()1841   QualType getObjCIdRedefinitionType() const {
1842     if (ObjCIdRedefinitionType.isNull())
1843       return getObjCIdType();
1844     return ObjCIdRedefinitionType;
1845   }
1846 
1847   /// Set the user-written type that redefines \c id.
setObjCIdRedefinitionType(QualType RedefType)1848   void setObjCIdRedefinitionType(QualType RedefType) {
1849     ObjCIdRedefinitionType = RedefType;
1850   }
1851 
1852   /// Retrieve the type that \c Class has been defined to, which may be
1853   /// different from the built-in \c Class if \c Class has been typedef'd.
getObjCClassRedefinitionType()1854   QualType getObjCClassRedefinitionType() const {
1855     if (ObjCClassRedefinitionType.isNull())
1856       return getObjCClassType();
1857     return ObjCClassRedefinitionType;
1858   }
1859 
1860   /// Set the user-written type that redefines 'SEL'.
setObjCClassRedefinitionType(QualType RedefType)1861   void setObjCClassRedefinitionType(QualType RedefType) {
1862     ObjCClassRedefinitionType = RedefType;
1863   }
1864 
1865   /// Retrieve the type that 'SEL' has been defined to, which may be
1866   /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
getObjCSelRedefinitionType()1867   QualType getObjCSelRedefinitionType() const {
1868     if (ObjCSelRedefinitionType.isNull())
1869       return getObjCSelType();
1870     return ObjCSelRedefinitionType;
1871   }
1872 
1873   /// Set the user-written type that redefines 'SEL'.
setObjCSelRedefinitionType(QualType RedefType)1874   void setObjCSelRedefinitionType(QualType RedefType) {
1875     ObjCSelRedefinitionType = RedefType;
1876   }
1877 
1878   /// Retrieve the identifier 'NSObject'.
getNSObjectName()1879   IdentifierInfo *getNSObjectName() const {
1880     if (!NSObjectName) {
1881       NSObjectName = &Idents.get("NSObject");
1882     }
1883 
1884     return NSObjectName;
1885   }
1886 
1887   /// Retrieve the identifier 'NSCopying'.
getNSCopyingName()1888   IdentifierInfo *getNSCopyingName() {
1889     if (!NSCopyingName) {
1890       NSCopyingName = &Idents.get("NSCopying");
1891     }
1892 
1893     return NSCopyingName;
1894   }
1895 
1896   CanQualType getNSUIntegerType() const;
1897 
1898   CanQualType getNSIntegerType() const;
1899 
1900   /// Retrieve the identifier 'bool'.
getBoolName()1901   IdentifierInfo *getBoolName() const {
1902     if (!BoolName)
1903       BoolName = &Idents.get("bool");
1904     return BoolName;
1905   }
1906 
getMakeIntegerSeqName()1907   IdentifierInfo *getMakeIntegerSeqName() const {
1908     if (!MakeIntegerSeqName)
1909       MakeIntegerSeqName = &Idents.get("__make_integer_seq");
1910     return MakeIntegerSeqName;
1911   }
1912 
getTypePackElementName()1913   IdentifierInfo *getTypePackElementName() const {
1914     if (!TypePackElementName)
1915       TypePackElementName = &Idents.get("__type_pack_element");
1916     return TypePackElementName;
1917   }
1918 
1919   /// Retrieve the Objective-C "instancetype" type, if already known;
1920   /// otherwise, returns a NULL type;
getObjCInstanceType()1921   QualType getObjCInstanceType() {
1922     return getTypeDeclType(getObjCInstanceTypeDecl());
1923   }
1924 
1925   /// Retrieve the typedef declaration corresponding to the Objective-C
1926   /// "instancetype" type.
1927   TypedefDecl *getObjCInstanceTypeDecl();
1928 
1929   /// Set the type for the C FILE type.
setFILEDecl(TypeDecl * FILEDecl)1930   void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1931 
1932   /// Retrieve the C FILE type.
getFILEType()1933   QualType getFILEType() const {
1934     if (FILEDecl)
1935       return getTypeDeclType(FILEDecl);
1936     return QualType();
1937   }
1938 
1939   /// Set the type for the C jmp_buf type.
setjmp_bufDecl(TypeDecl * jmp_bufDecl)1940   void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1941     this->jmp_bufDecl = jmp_bufDecl;
1942   }
1943 
1944   /// Retrieve the C jmp_buf type.
getjmp_bufType()1945   QualType getjmp_bufType() const {
1946     if (jmp_bufDecl)
1947       return getTypeDeclType(jmp_bufDecl);
1948     return QualType();
1949   }
1950 
1951   /// Set the type for the C sigjmp_buf type.
setsigjmp_bufDecl(TypeDecl * sigjmp_bufDecl)1952   void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1953     this->sigjmp_bufDecl = sigjmp_bufDecl;
1954   }
1955 
1956   /// Retrieve the C sigjmp_buf type.
getsigjmp_bufType()1957   QualType getsigjmp_bufType() const {
1958     if (sigjmp_bufDecl)
1959       return getTypeDeclType(sigjmp_bufDecl);
1960     return QualType();
1961   }
1962 
1963   /// Set the type for the C ucontext_t type.
setucontext_tDecl(TypeDecl * ucontext_tDecl)1964   void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1965     this->ucontext_tDecl = ucontext_tDecl;
1966   }
1967 
1968   /// Retrieve the C ucontext_t type.
getucontext_tType()1969   QualType getucontext_tType() const {
1970     if (ucontext_tDecl)
1971       return getTypeDeclType(ucontext_tDecl);
1972     return QualType();
1973   }
1974 
1975   /// The result type of logical operations, '<', '>', '!=', etc.
getLogicalOperationType()1976   QualType getLogicalOperationType() const {
1977     return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1978   }
1979 
1980   /// Emit the Objective-CC type encoding for the given type \p T into
1981   /// \p S.
1982   ///
1983   /// If \p Field is specified then record field names are also encoded.
1984   void getObjCEncodingForType(QualType T, std::string &S,
1985                               const FieldDecl *Field=nullptr,
1986                               QualType *NotEncodedT=nullptr) const;
1987 
1988   /// Emit the Objective-C property type encoding for the given
1989   /// type \p T into \p S.
1990   void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
1991 
1992   void getLegacyIntegralTypeEncoding(QualType &t) const;
1993 
1994   /// Put the string version of the type qualifiers \p QT into \p S.
1995   void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1996                                        std::string &S) const;
1997 
1998   /// Emit the encoded type for the function \p Decl into \p S.
1999   ///
2000   /// This is in the same format as Objective-C method encodings.
2001   ///
2002   /// \returns true if an error occurred (e.g., because one of the parameter
2003   /// types is incomplete), false otherwise.
2004   std::string getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const;
2005 
2006   /// Emit the encoded type for the method declaration \p Decl into
2007   /// \p S.
2008   std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2009                                            bool Extended = false) const;
2010 
2011   /// Return the encoded type for this block declaration.
2012   std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
2013 
2014   /// getObjCEncodingForPropertyDecl - Return the encoded type for
2015   /// this method declaration. If non-NULL, Container must be either
2016   /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
2017   /// only be NULL when getting encodings for protocol properties.
2018   std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2019                                              const Decl *Container) const;
2020 
2021   bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
2022                                       ObjCProtocolDecl *rProto) const;
2023 
2024   ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
2025                                                   const ObjCPropertyDecl *PD,
2026                                                   const Decl *Container) const;
2027 
2028   /// Return the size of type \p T for Objective-C encoding purpose,
2029   /// in characters.
2030   CharUnits getObjCEncodingTypeSize(QualType T) const;
2031 
2032   /// Retrieve the typedef corresponding to the predefined \c id type
2033   /// in Objective-C.
2034   TypedefDecl *getObjCIdDecl() const;
2035 
2036   /// Represents the Objective-CC \c id type.
2037   ///
2038   /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
2039   /// pointer type, a pointer to a struct.
getObjCIdType()2040   QualType getObjCIdType() const {
2041     return getTypeDeclType(getObjCIdDecl());
2042   }
2043 
2044   /// Retrieve the typedef corresponding to the predefined 'SEL' type
2045   /// in Objective-C.
2046   TypedefDecl *getObjCSelDecl() const;
2047 
2048   /// Retrieve the type that corresponds to the predefined Objective-C
2049   /// 'SEL' type.
getObjCSelType()2050   QualType getObjCSelType() const {
2051     return getTypeDeclType(getObjCSelDecl());
2052   }
2053 
2054   /// Retrieve the typedef declaration corresponding to the predefined
2055   /// Objective-C 'Class' type.
2056   TypedefDecl *getObjCClassDecl() const;
2057 
2058   /// Represents the Objective-C \c Class type.
2059   ///
2060   /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
2061   /// pointer type, a pointer to a struct.
getObjCClassType()2062   QualType getObjCClassType() const {
2063     return getTypeDeclType(getObjCClassDecl());
2064   }
2065 
2066   /// Retrieve the Objective-C class declaration corresponding to
2067   /// the predefined \c Protocol class.
2068   ObjCInterfaceDecl *getObjCProtocolDecl() const;
2069 
2070   /// Retrieve declaration of 'BOOL' typedef
getBOOLDecl()2071   TypedefDecl *getBOOLDecl() const {
2072     return BOOLDecl;
2073   }
2074 
2075   /// Save declaration of 'BOOL' typedef
setBOOLDecl(TypedefDecl * TD)2076   void setBOOLDecl(TypedefDecl *TD) {
2077     BOOLDecl = TD;
2078   }
2079 
2080   /// type of 'BOOL' type.
getBOOLType()2081   QualType getBOOLType() const {
2082     return getTypeDeclType(getBOOLDecl());
2083   }
2084 
2085   /// Retrieve the type of the Objective-C \c Protocol class.
getObjCProtoType()2086   QualType getObjCProtoType() const {
2087     return getObjCInterfaceType(getObjCProtocolDecl());
2088   }
2089 
2090   /// Retrieve the C type declaration corresponding to the predefined
2091   /// \c __builtin_va_list type.
2092   TypedefDecl *getBuiltinVaListDecl() const;
2093 
2094   /// Retrieve the type of the \c __builtin_va_list type.
getBuiltinVaListType()2095   QualType getBuiltinVaListType() const {
2096     return getTypeDeclType(getBuiltinVaListDecl());
2097   }
2098 
2099   /// Retrieve the C type declaration corresponding to the predefined
2100   /// \c __va_list_tag type used to help define the \c __builtin_va_list type
2101   /// for some targets.
2102   Decl *getVaListTagDecl() const;
2103 
2104   /// Retrieve the C type declaration corresponding to the predefined
2105   /// \c __builtin_ms_va_list type.
2106   TypedefDecl *getBuiltinMSVaListDecl() const;
2107 
2108   /// Retrieve the type of the \c __builtin_ms_va_list type.
getBuiltinMSVaListType()2109   QualType getBuiltinMSVaListType() const {
2110     return getTypeDeclType(getBuiltinMSVaListDecl());
2111   }
2112 
2113   /// Retrieve the implicitly-predeclared 'struct _GUID' declaration.
getMSGuidTagDecl()2114   TagDecl *getMSGuidTagDecl() const { return MSGuidTagDecl; }
2115 
2116   /// Retrieve the implicitly-predeclared 'struct _GUID' type.
getMSGuidType()2117   QualType getMSGuidType() const {
2118     assert(MSGuidTagDecl && "asked for GUID type but MS extensions disabled");
2119     return getTagDeclType(MSGuidTagDecl);
2120   }
2121 
2122   /// Return whether a declaration to a builtin is allowed to be
2123   /// overloaded/redeclared.
2124   bool canBuiltinBeRedeclared(const FunctionDecl *) const;
2125 
2126   /// Return a type with additional \c const, \c volatile, or
2127   /// \c restrict qualifiers.
getCVRQualifiedType(QualType T,unsigned CVR)2128   QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
2129     return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
2130   }
2131 
2132   /// Un-split a SplitQualType.
getQualifiedType(SplitQualType split)2133   QualType getQualifiedType(SplitQualType split) const {
2134     return getQualifiedType(split.Ty, split.Quals);
2135   }
2136 
2137   /// Return a type with additional qualifiers.
getQualifiedType(QualType T,Qualifiers Qs)2138   QualType getQualifiedType(QualType T, Qualifiers Qs) const {
2139     if (!Qs.hasNonFastQualifiers())
2140       return T.withFastQualifiers(Qs.getFastQualifiers());
2141     QualifierCollector Qc(Qs);
2142     const Type *Ptr = Qc.strip(T);
2143     return getExtQualType(Ptr, Qc);
2144   }
2145 
2146   /// Return a type with additional qualifiers.
getQualifiedType(const Type * T,Qualifiers Qs)2147   QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
2148     if (!Qs.hasNonFastQualifiers())
2149       return QualType(T, Qs.getFastQualifiers());
2150     return getExtQualType(T, Qs);
2151   }
2152 
2153   /// Return a type with the given lifetime qualifier.
2154   ///
2155   /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
getLifetimeQualifiedType(QualType type,Qualifiers::ObjCLifetime lifetime)2156   QualType getLifetimeQualifiedType(QualType type,
2157                                     Qualifiers::ObjCLifetime lifetime) {
2158     assert(type.getObjCLifetime() == Qualifiers::OCL_None);
2159     assert(lifetime != Qualifiers::OCL_None);
2160 
2161     Qualifiers qs;
2162     qs.addObjCLifetime(lifetime);
2163     return getQualifiedType(type, qs);
2164   }
2165 
2166   /// getUnqualifiedObjCPointerType - Returns version of
2167   /// Objective-C pointer type with lifetime qualifier removed.
getUnqualifiedObjCPointerType(QualType type)2168   QualType getUnqualifiedObjCPointerType(QualType type) const {
2169     if (!type.getTypePtr()->isObjCObjectPointerType() ||
2170         !type.getQualifiers().hasObjCLifetime())
2171       return type;
2172     Qualifiers Qs = type.getQualifiers();
2173     Qs.removeObjCLifetime();
2174     return getQualifiedType(type.getUnqualifiedType(), Qs);
2175   }
2176 
2177   unsigned char getFixedPointScale(QualType Ty) const;
2178   unsigned char getFixedPointIBits(QualType Ty) const;
2179   llvm::FixedPointSemantics getFixedPointSemantics(QualType Ty) const;
2180   llvm::APFixedPoint getFixedPointMax(QualType Ty) const;
2181   llvm::APFixedPoint getFixedPointMin(QualType Ty) const;
2182 
2183   DeclarationNameInfo getNameForTemplate(TemplateName Name,
2184                                          SourceLocation NameLoc) const;
2185 
2186   TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
2187                                          UnresolvedSetIterator End) const;
2188   TemplateName getAssumedTemplateName(DeclarationName Name) const;
2189 
2190   TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
2191                                         bool TemplateKeyword,
2192                                         TemplateName Template) const;
2193 
2194   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2195                                         const IdentifierInfo *Name) const;
2196   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2197                                         OverloadedOperatorKind Operator) const;
2198   TemplateName
2199   getSubstTemplateTemplateParm(TemplateName replacement, Decl *AssociatedDecl,
2200                                unsigned Index,
2201                                std::optional<unsigned> PackIndex) const;
2202   TemplateName getSubstTemplateTemplateParmPack(const TemplateArgument &ArgPack,
2203                                                 Decl *AssociatedDecl,
2204                                                 unsigned Index,
2205                                                 bool Final) const;
2206 
2207   enum GetBuiltinTypeError {
2208     /// No error
2209     GE_None,
2210 
2211     /// Missing a type
2212     GE_Missing_type,
2213 
2214     /// Missing a type from <stdio.h>
2215     GE_Missing_stdio,
2216 
2217     /// Missing a type from <setjmp.h>
2218     GE_Missing_setjmp,
2219 
2220     /// Missing a type from <ucontext.h>
2221     GE_Missing_ucontext
2222   };
2223 
2224   QualType DecodeTypeStr(const char *&Str, const ASTContext &Context,
2225                          ASTContext::GetBuiltinTypeError &Error,
2226                          bool &RequireICE, bool AllowTypeModifiers) const;
2227 
2228   /// Return the type for the specified builtin.
2229   ///
2230   /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
2231   /// arguments to the builtin that are required to be integer constant
2232   /// expressions.
2233   QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
2234                           unsigned *IntegerConstantArgs = nullptr) const;
2235 
2236   /// Types and expressions required to build C++2a three-way comparisons
2237   /// using operator<=>, including the values return by builtin <=> operators.
2238   ComparisonCategories CompCategories;
2239 
2240 private:
2241   CanQualType getFromTargetType(unsigned Type) const;
2242   TypeInfo getTypeInfoImpl(const Type *T) const;
2243 
2244   //===--------------------------------------------------------------------===//
2245   //                         Type Predicates.
2246   //===--------------------------------------------------------------------===//
2247 
2248 public:
2249   /// Return one of the GCNone, Weak or Strong Objective-C garbage
2250   /// collection attributes.
2251   Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
2252 
2253   /// Return true if the given vector types are of the same unqualified
2254   /// type or if they are equivalent to the same GCC vector type.
2255   ///
2256   /// \note This ignores whether they are target-specific (AltiVec or Neon)
2257   /// types.
2258   bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
2259 
2260   /// Return true if the given types are an SVE builtin and a VectorType that
2261   /// is a fixed-length representation of the SVE builtin for a specific
2262   /// vector-length.
2263   bool areCompatibleSveTypes(QualType FirstType, QualType SecondType);
2264 
2265   /// Return true if the given vector types are lax-compatible SVE vector types,
2266   /// false otherwise.
2267   bool areLaxCompatibleSveTypes(QualType FirstType, QualType SecondType);
2268 
2269   /// Return true if the given types are an RISC-V vector builtin type and a
2270   /// VectorType that is a fixed-length representation of the RISC-V vector
2271   /// builtin type for a specific vector-length.
2272   bool areCompatibleRVVTypes(QualType FirstType, QualType SecondType);
2273 
2274   /// Return true if the given vector types are lax-compatible RISC-V vector
2275   /// types as defined by -flax-vector-conversions=, which permits implicit
2276   /// conversions between vectors with different number of elements and/or
2277   /// incompatible element types, false otherwise.
2278   bool areLaxCompatibleRVVTypes(QualType FirstType, QualType SecondType);
2279 
2280   /// Return true if the type has been explicitly qualified with ObjC ownership.
2281   /// A type may be implicitly qualified with ownership under ObjC ARC, and in
2282   /// some cases the compiler treats these differently.
2283   bool hasDirectOwnershipQualifier(QualType Ty) const;
2284 
2285   /// Return true if this is an \c NSObject object with its \c NSObject
2286   /// attribute set.
isObjCNSObjectType(QualType Ty)2287   static bool isObjCNSObjectType(QualType Ty) {
2288     return Ty->isObjCNSObjectType();
2289   }
2290 
2291   //===--------------------------------------------------------------------===//
2292   //                         Type Sizing and Analysis
2293   //===--------------------------------------------------------------------===//
2294 
2295   /// Return the APFloat 'semantics' for the specified scalar floating
2296   /// point type.
2297   const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
2298 
2299   /// Get the size and alignment of the specified complete type in bits.
2300   TypeInfo getTypeInfo(const Type *T) const;
getTypeInfo(QualType T)2301   TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
2302 
2303   /// Get default simd alignment of the specified complete type in bits.
2304   unsigned getOpenMPDefaultSimdAlign(QualType T) const;
2305 
2306   /// Return the size of the specified (complete) type \p T, in bits.
getTypeSize(QualType T)2307   uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
getTypeSize(const Type * T)2308   uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
2309 
2310   /// Return the size of the character type, in bits.
getCharWidth()2311   uint64_t getCharWidth() const {
2312     return getTypeSize(CharTy);
2313   }
2314 
2315   /// Convert a size in bits to a size in characters.
2316   CharUnits toCharUnitsFromBits(int64_t BitSize) const;
2317 
2318   /// Convert a size in characters to a size in bits.
2319   int64_t toBits(CharUnits CharSize) const;
2320 
2321   /// Return the size of the specified (complete) type \p T, in
2322   /// characters.
2323   CharUnits getTypeSizeInChars(QualType T) const;
2324   CharUnits getTypeSizeInChars(const Type *T) const;
2325 
getTypeSizeInCharsIfKnown(QualType Ty)2326   std::optional<CharUnits> getTypeSizeInCharsIfKnown(QualType Ty) const {
2327     if (Ty->isIncompleteType() || Ty->isDependentType())
2328       return std::nullopt;
2329     return getTypeSizeInChars(Ty);
2330   }
2331 
getTypeSizeInCharsIfKnown(const Type * Ty)2332   std::optional<CharUnits> getTypeSizeInCharsIfKnown(const Type *Ty) const {
2333     return getTypeSizeInCharsIfKnown(QualType(Ty, 0));
2334   }
2335 
2336   /// Return the ABI-specified alignment of a (complete) type \p T, in
2337   /// bits.
getTypeAlign(QualType T)2338   unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
getTypeAlign(const Type * T)2339   unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
2340 
2341   /// Return the ABI-specified natural alignment of a (complete) type \p T,
2342   /// before alignment adjustments, in bits.
2343   ///
2344   /// This alignment is curently used only by ARM and AArch64 when passing
2345   /// arguments of a composite type.
getTypeUnadjustedAlign(QualType T)2346   unsigned getTypeUnadjustedAlign(QualType T) const {
2347     return getTypeUnadjustedAlign(T.getTypePtr());
2348   }
2349   unsigned getTypeUnadjustedAlign(const Type *T) const;
2350 
2351   /// Return the alignment of a type, in bits, or 0 if
2352   /// the type is incomplete and we cannot determine the alignment (for
2353   /// example, from alignment attributes). The returned alignment is the
2354   /// Preferred alignment if NeedsPreferredAlignment is true, otherwise is the
2355   /// ABI alignment.
2356   unsigned getTypeAlignIfKnown(QualType T,
2357                                bool NeedsPreferredAlignment = false) const;
2358 
2359   /// Return the ABI-specified alignment of a (complete) type \p T, in
2360   /// characters.
2361   CharUnits getTypeAlignInChars(QualType T) const;
2362   CharUnits getTypeAlignInChars(const Type *T) const;
2363 
2364   /// Return the PreferredAlignment of a (complete) type \p T, in
2365   /// characters.
getPreferredTypeAlignInChars(QualType T)2366   CharUnits getPreferredTypeAlignInChars(QualType T) const {
2367     return toCharUnitsFromBits(getPreferredTypeAlign(T));
2368   }
2369 
2370   /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a type,
2371   /// in characters, before alignment adjustments. This method does not work on
2372   /// incomplete types.
2373   CharUnits getTypeUnadjustedAlignInChars(QualType T) const;
2374   CharUnits getTypeUnadjustedAlignInChars(const Type *T) const;
2375 
2376   // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
2377   // type is a record, its data size is returned.
2378   TypeInfoChars getTypeInfoDataSizeInChars(QualType T) const;
2379 
2380   TypeInfoChars getTypeInfoInChars(const Type *T) const;
2381   TypeInfoChars getTypeInfoInChars(QualType T) const;
2382 
2383   /// Determine if the alignment the type has was required using an
2384   /// alignment attribute.
2385   bool isAlignmentRequired(const Type *T) const;
2386   bool isAlignmentRequired(QualType T) const;
2387 
2388   /// More type predicates useful for type checking/promotion
2389   bool isPromotableIntegerType(QualType T) const; // C99 6.3.1.1p2
2390 
2391   /// Return the "preferred" alignment of the specified type \p T for
2392   /// the current target, in bits.
2393   ///
2394   /// This can be different than the ABI alignment in cases where it is
2395   /// beneficial for performance or backwards compatibility preserving to
2396   /// overalign a data type. (Note: despite the name, the preferred alignment
2397   /// is ABI-impacting, and not an optimization.)
getPreferredTypeAlign(QualType T)2398   unsigned getPreferredTypeAlign(QualType T) const {
2399     return getPreferredTypeAlign(T.getTypePtr());
2400   }
2401   unsigned getPreferredTypeAlign(const Type *T) const;
2402 
2403   /// Return the default alignment for __attribute__((aligned)) on
2404   /// this target, to be used if no alignment value is specified.
2405   unsigned getTargetDefaultAlignForAttributeAligned() const;
2406 
2407   /// Return the alignment in bits that should be given to a
2408   /// global variable with type \p T.
2409   unsigned getAlignOfGlobalVar(QualType T) const;
2410 
2411   /// Return the alignment in characters that should be given to a
2412   /// global variable with type \p T.
2413   CharUnits getAlignOfGlobalVarInChars(QualType T) const;
2414 
2415   /// Return a conservative estimate of the alignment of the specified
2416   /// decl \p D.
2417   ///
2418   /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
2419   /// alignment.
2420   ///
2421   /// If \p ForAlignof, references are treated like their underlying type
2422   /// and  large arrays don't get any special treatment. If not \p ForAlignof
2423   /// it computes the value expected by CodeGen: references are treated like
2424   /// pointers and large arrays get extra alignment.
2425   CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
2426 
2427   /// Return the alignment (in bytes) of the thrown exception object. This is
2428   /// only meaningful for targets that allocate C++ exceptions in a system
2429   /// runtime, such as those using the Itanium C++ ABI.
2430   CharUnits getExnObjectAlignment() const;
2431 
2432   /// Get or compute information about the layout of the specified
2433   /// record (struct/union/class) \p D, which indicates its size and field
2434   /// position information.
2435   const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
2436 
2437   /// Get or compute information about the layout of the specified
2438   /// Objective-C interface.
2439   const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
2440     const;
2441 
2442   void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
2443                         bool Simple = false) const;
2444 
2445   /// Get or compute information about the layout of the specified
2446   /// Objective-C implementation.
2447   ///
2448   /// This may differ from the interface if synthesized ivars are present.
2449   const ASTRecordLayout &
2450   getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
2451 
2452   /// Get our current best idea for the key function of the
2453   /// given record decl, or nullptr if there isn't one.
2454   ///
2455   /// The key function is, according to the Itanium C++ ABI section 5.2.3:
2456   ///   ...the first non-pure virtual function that is not inline at the
2457   ///   point of class definition.
2458   ///
2459   /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
2460   /// virtual functions that are defined 'inline', which means that
2461   /// the result of this computation can change.
2462   const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
2463 
2464   /// Observe that the given method cannot be a key function.
2465   /// Checks the key-function cache for the method's class and clears it
2466   /// if matches the given declaration.
2467   ///
2468   /// This is used in ABIs where out-of-line definitions marked
2469   /// inline are not considered to be key functions.
2470   ///
2471   /// \param method should be the declaration from the class definition
2472   void setNonKeyFunction(const CXXMethodDecl *method);
2473 
2474   /// Loading virtual member pointers using the virtual inheritance model
2475   /// always results in an adjustment using the vbtable even if the index is
2476   /// zero.
2477   ///
2478   /// This is usually OK because the first slot in the vbtable points
2479   /// backwards to the top of the MDC.  However, the MDC might be reusing a
2480   /// vbptr from an nv-base.  In this case, the first slot in the vbtable
2481   /// points to the start of the nv-base which introduced the vbptr and *not*
2482   /// the MDC.  Modify the NonVirtualBaseAdjustment to account for this.
2483   CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
2484 
2485   /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
2486   uint64_t getFieldOffset(const ValueDecl *FD) const;
2487 
2488   /// Get the offset of an ObjCIvarDecl in bits.
2489   uint64_t lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
2490                                 const ObjCImplementationDecl *ID,
2491                                 const ObjCIvarDecl *Ivar) const;
2492 
2493   /// Find the 'this' offset for the member path in a pointer-to-member
2494   /// APValue.
2495   CharUnits getMemberPointerPathAdjustment(const APValue &MP) const;
2496 
2497   bool isNearlyEmpty(const CXXRecordDecl *RD) const;
2498 
2499   VTableContextBase *getVTableContext();
2500 
2501   /// If \p T is null pointer, assume the target in ASTContext.
2502   MangleContext *createMangleContext(const TargetInfo *T = nullptr);
2503 
2504   /// Creates a device mangle context to correctly mangle lambdas in a mixed
2505   /// architecture compile by setting the lambda mangling number source to the
2506   /// DeviceLambdaManglingNumber. Currently this asserts that the TargetInfo
2507   /// (from the AuxTargetInfo) is a an itanium target.
2508   MangleContext *createDeviceMangleContext(const TargetInfo &T);
2509 
2510   void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
2511                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
2512 
2513   unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
2514   void CollectInheritedProtocols(const Decl *CDecl,
2515                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
2516 
2517   /// Return true if the specified type has unique object representations
2518   /// according to (C++17 [meta.unary.prop]p9)
2519   bool
2520   hasUniqueObjectRepresentations(QualType Ty,
2521                                  bool CheckIfTriviallyCopyable = true) const;
2522 
2523   //===--------------------------------------------------------------------===//
2524   //                            Type Operators
2525   //===--------------------------------------------------------------------===//
2526 
2527   /// Return the canonical (structural) type corresponding to the
2528   /// specified potentially non-canonical type \p T.
2529   ///
2530   /// The non-canonical version of a type may have many "decorated" versions of
2531   /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
2532   /// returned type is guaranteed to be free of any of these, allowing two
2533   /// canonical types to be compared for exact equality with a simple pointer
2534   /// comparison.
getCanonicalType(QualType T)2535   CanQualType getCanonicalType(QualType T) const {
2536     return CanQualType::CreateUnsafe(T.getCanonicalType());
2537   }
2538 
getCanonicalType(const Type * T)2539   const Type *getCanonicalType(const Type *T) const {
2540     return T->getCanonicalTypeInternal().getTypePtr();
2541   }
2542 
2543   /// Return the canonical parameter type corresponding to the specific
2544   /// potentially non-canonical one.
2545   ///
2546   /// Qualifiers are stripped off, functions are turned into function
2547   /// pointers, and arrays decay one level into pointers.
2548   CanQualType getCanonicalParamType(QualType T) const;
2549 
2550   /// Determine whether the given types \p T1 and \p T2 are equivalent.
hasSameType(QualType T1,QualType T2)2551   bool hasSameType(QualType T1, QualType T2) const {
2552     return getCanonicalType(T1) == getCanonicalType(T2);
2553   }
hasSameType(const Type * T1,const Type * T2)2554   bool hasSameType(const Type *T1, const Type *T2) const {
2555     return getCanonicalType(T1) == getCanonicalType(T2);
2556   }
2557 
2558   /// Determine whether the given expressions \p X and \p Y are equivalent.
2559   bool hasSameExpr(const Expr *X, const Expr *Y) const;
2560 
2561   /// Return this type as a completely-unqualified array type,
2562   /// capturing the qualifiers in \p Quals.
2563   ///
2564   /// This will remove the minimal amount of sugaring from the types, similar
2565   /// to the behavior of QualType::getUnqualifiedType().
2566   ///
2567   /// \param T is the qualified type, which may be an ArrayType
2568   ///
2569   /// \param Quals will receive the full set of qualifiers that were
2570   /// applied to the array.
2571   ///
2572   /// \returns if this is an array type, the completely unqualified array type
2573   /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
2574   QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
2575 
2576   /// Determine whether the given types are equivalent after
2577   /// cvr-qualifiers have been removed.
hasSameUnqualifiedType(QualType T1,QualType T2)2578   bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
2579     return getCanonicalType(T1).getTypePtr() ==
2580            getCanonicalType(T2).getTypePtr();
2581   }
2582 
hasSameNullabilityTypeQualifier(QualType SubT,QualType SuperT,bool IsParam)2583   bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
2584                                        bool IsParam) const {
2585     auto SubTnullability = SubT->getNullability();
2586     auto SuperTnullability = SuperT->getNullability();
2587     if (SubTnullability.has_value() == SuperTnullability.has_value()) {
2588       // Neither has nullability; return true
2589       if (!SubTnullability)
2590         return true;
2591       // Both have nullability qualifier.
2592       if (*SubTnullability == *SuperTnullability ||
2593           *SubTnullability == NullabilityKind::Unspecified ||
2594           *SuperTnullability == NullabilityKind::Unspecified)
2595         return true;
2596 
2597       if (IsParam) {
2598         // Ok for the superclass method parameter to be "nonnull" and the subclass
2599         // method parameter to be "nullable"
2600         return (*SuperTnullability == NullabilityKind::NonNull &&
2601                 *SubTnullability == NullabilityKind::Nullable);
2602       }
2603       // For the return type, it's okay for the superclass method to specify
2604       // "nullable" and the subclass method specify "nonnull"
2605       return (*SuperTnullability == NullabilityKind::Nullable &&
2606               *SubTnullability == NullabilityKind::NonNull);
2607     }
2608     return true;
2609   }
2610 
2611   bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
2612                            const ObjCMethodDecl *MethodImp);
2613 
2614   bool UnwrapSimilarTypes(QualType &T1, QualType &T2,
2615                           bool AllowPiMismatch = true);
2616   void UnwrapSimilarArrayTypes(QualType &T1, QualType &T2,
2617                                bool AllowPiMismatch = true);
2618 
2619   /// Determine if two types are similar, according to the C++ rules. That is,
2620   /// determine if they are the same other than qualifiers on the initial
2621   /// sequence of pointer / pointer-to-member / array (and in Clang, object
2622   /// pointer) types and their element types.
2623   ///
2624   /// Clang offers a number of qualifiers in addition to the C++ qualifiers;
2625   /// those qualifiers are also ignored in the 'similarity' check.
2626   bool hasSimilarType(QualType T1, QualType T2);
2627 
2628   /// Determine if two types are similar, ignoring only CVR qualifiers.
2629   bool hasCvrSimilarType(QualType T1, QualType T2);
2630 
2631   /// Retrieves the "canonical" nested name specifier for a
2632   /// given nested name specifier.
2633   ///
2634   /// The canonical nested name specifier is a nested name specifier
2635   /// that uniquely identifies a type or namespace within the type
2636   /// system. For example, given:
2637   ///
2638   /// \code
2639   /// namespace N {
2640   ///   struct S {
2641   ///     template<typename T> struct X { typename T* type; };
2642   ///   };
2643   /// }
2644   ///
2645   /// template<typename T> struct Y {
2646   ///   typename N::S::X<T>::type member;
2647   /// };
2648   /// \endcode
2649   ///
2650   /// Here, the nested-name-specifier for N::S::X<T>:: will be
2651   /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
2652   /// by declarations in the type system and the canonical type for
2653   /// the template type parameter 'T' is template-param-0-0.
2654   NestedNameSpecifier *
2655   getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
2656 
2657   /// Retrieves the default calling convention for the current target.
2658   CallingConv getDefaultCallingConvention(bool IsVariadic,
2659                                           bool IsCXXMethod,
2660                                           bool IsBuiltin = false) const;
2661 
2662   /// Retrieves the "canonical" template name that refers to a
2663   /// given template.
2664   ///
2665   /// The canonical template name is the simplest expression that can
2666   /// be used to refer to a given template. For most templates, this
2667   /// expression is just the template declaration itself. For example,
2668   /// the template std::vector can be referred to via a variety of
2669   /// names---std::vector, \::std::vector, vector (if vector is in
2670   /// scope), etc.---but all of these names map down to the same
2671   /// TemplateDecl, which is used to form the canonical template name.
2672   ///
2673   /// Dependent template names are more interesting. Here, the
2674   /// template name could be something like T::template apply or
2675   /// std::allocator<T>::template rebind, where the nested name
2676   /// specifier itself is dependent. In this case, the canonical
2677   /// template name uses the shortest form of the dependent
2678   /// nested-name-specifier, which itself contains all canonical
2679   /// types, values, and templates.
2680   TemplateName getCanonicalTemplateName(const TemplateName &Name) const;
2681 
2682   /// Determine whether the given template names refer to the same
2683   /// template.
2684   bool hasSameTemplateName(const TemplateName &X, const TemplateName &Y) const;
2685 
2686   /// Determine whether the two declarations refer to the same entity.
2687   bool isSameEntity(const NamedDecl *X, const NamedDecl *Y) const;
2688 
2689   /// Determine whether two template parameter lists are similar enough
2690   /// that they may be used in declarations of the same template.
2691   bool isSameTemplateParameterList(const TemplateParameterList *X,
2692                                    const TemplateParameterList *Y) const;
2693 
2694   /// Determine whether two template parameters are similar enough
2695   /// that they may be used in declarations of the same template.
2696   bool isSameTemplateParameter(const NamedDecl *X, const NamedDecl *Y) const;
2697 
2698   /// Determine whether two 'requires' expressions are similar enough that they
2699   /// may be used in re-declarations.
2700   ///
2701   /// Use of 'requires' isn't mandatory, works with constraints expressed in
2702   /// other ways too.
2703   bool isSameConstraintExpr(const Expr *XCE, const Expr *YCE) const;
2704 
2705   /// Determine whether two type contraint are similar enough that they could
2706   /// used in declarations of the same template.
2707   bool isSameTypeConstraint(const TypeConstraint *XTC,
2708                             const TypeConstraint *YTC) const;
2709 
2710   /// Determine whether two default template arguments are similar enough
2711   /// that they may be used in declarations of the same template.
2712   bool isSameDefaultTemplateArgument(const NamedDecl *X,
2713                                      const NamedDecl *Y) const;
2714 
2715   /// Retrieve the "canonical" template argument.
2716   ///
2717   /// The canonical template argument is the simplest template argument
2718   /// (which may be a type, value, expression, or declaration) that
2719   /// expresses the value of the argument.
2720   TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
2721     const;
2722 
2723   /// Type Query functions.  If the type is an instance of the specified class,
2724   /// return the Type pointer for the underlying maximally pretty type.  This
2725   /// is a member of ASTContext because this may need to do some amount of
2726   /// canonicalization, e.g. to move type qualifiers into the element type.
2727   const ArrayType *getAsArrayType(QualType T) const;
getAsConstantArrayType(QualType T)2728   const ConstantArrayType *getAsConstantArrayType(QualType T) const {
2729     return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
2730   }
getAsVariableArrayType(QualType T)2731   const VariableArrayType *getAsVariableArrayType(QualType T) const {
2732     return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
2733   }
getAsIncompleteArrayType(QualType T)2734   const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
2735     return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
2736   }
getAsDependentSizedArrayType(QualType T)2737   const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
2738     const {
2739     return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
2740   }
2741 
2742   /// Return the innermost element type of an array type.
2743   ///
2744   /// For example, will return "int" for int[m][n]
2745   QualType getBaseElementType(const ArrayType *VAT) const;
2746 
2747   /// Return the innermost element type of a type (which needn't
2748   /// actually be an array type).
2749   QualType getBaseElementType(QualType QT) const;
2750 
2751   /// Return number of constant array elements.
2752   uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
2753 
2754   /// Return number of elements initialized in an ArrayInitLoopExpr.
2755   uint64_t
2756   getArrayInitLoopExprElementCount(const ArrayInitLoopExpr *AILE) const;
2757 
2758   /// Perform adjustment on the parameter type of a function.
2759   ///
2760   /// This routine adjusts the given parameter type @p T to the actual
2761   /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
2762   /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
2763   QualType getAdjustedParameterType(QualType T) const;
2764 
2765   /// Retrieve the parameter type as adjusted for use in the signature
2766   /// of a function, decaying array and function types and removing top-level
2767   /// cv-qualifiers.
2768   QualType getSignatureParameterType(QualType T) const;
2769 
2770   QualType getExceptionObjectType(QualType T) const;
2771 
2772   /// Return the properly qualified result of decaying the specified
2773   /// array type to a pointer.
2774   ///
2775   /// This operation is non-trivial when handling typedefs etc.  The canonical
2776   /// type of \p T must be an array type, this returns a pointer to a properly
2777   /// qualified element of the array.
2778   ///
2779   /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2780   QualType getArrayDecayedType(QualType T) const;
2781 
2782   /// Return the type that \p PromotableType will promote to: C99
2783   /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
2784   QualType getPromotedIntegerType(QualType PromotableType) const;
2785 
2786   /// Recurses in pointer/array types until it finds an Objective-C
2787   /// retainable type and returns its ownership.
2788   Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
2789 
2790   /// Whether this is a promotable bitfield reference according
2791   /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2792   ///
2793   /// \returns the type this bit-field will promote to, or NULL if no
2794   /// promotion occurs.
2795   QualType isPromotableBitField(Expr *E) const;
2796 
2797   /// Return the highest ranked integer type, see C99 6.3.1.8p1.
2798   ///
2799   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2800   /// \p LHS < \p RHS, return -1.
2801   int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
2802 
2803   /// Compare the rank of the two specified floating point types,
2804   /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
2805   ///
2806   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2807   /// \p LHS < \p RHS, return -1.
2808   int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
2809 
2810   /// Compare the rank of two floating point types as above, but compare equal
2811   /// if both types have the same floating-point semantics on the target (i.e.
2812   /// long double and double on AArch64 will return 0).
2813   int getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const;
2814 
2815   unsigned getTargetAddressSpace(LangAS AS) const;
2816 
2817   LangAS getLangASForBuiltinAddressSpace(unsigned AS) const;
2818 
2819   /// Get target-dependent integer value for null pointer which is used for
2820   /// constant folding.
2821   uint64_t getTargetNullPointerValue(QualType QT) const;
2822 
addressSpaceMapManglingFor(LangAS AS)2823   bool addressSpaceMapManglingFor(LangAS AS) const {
2824     return AddrSpaceMapMangling || isTargetAddressSpace(AS);
2825   }
2826 
2827   // Merges two exception specifications, such that the resulting
2828   // exception spec is the union of both. For example, if either
2829   // of them can throw something, the result can throw it as well.
2830   FunctionProtoType::ExceptionSpecInfo
2831   mergeExceptionSpecs(FunctionProtoType::ExceptionSpecInfo ESI1,
2832                       FunctionProtoType::ExceptionSpecInfo ESI2,
2833                       SmallVectorImpl<QualType> &ExceptionTypeStorage,
2834                       bool AcceptDependent);
2835 
2836   // For two "same" types, return a type which has
2837   // the common sugar between them. If Unqualified is true,
2838   // both types need only be the same unqualified type.
2839   // The result will drop the qualifiers which do not occur
2840   // in both types.
2841   QualType getCommonSugaredType(QualType X, QualType Y,
2842                                 bool Unqualified = false);
2843 
2844 private:
2845   // Helper for integer ordering
2846   unsigned getIntegerRank(const Type *T) const;
2847 
2848 public:
2849   //===--------------------------------------------------------------------===//
2850   //                    Type Compatibility Predicates
2851   //===--------------------------------------------------------------------===//
2852 
2853   /// Compatibility predicates used to check assignment expressions.
2854   bool typesAreCompatible(QualType T1, QualType T2,
2855                           bool CompareUnqualified = false); // C99 6.2.7p1
2856 
2857   bool propertyTypesAreCompatible(QualType, QualType);
2858   bool typesAreBlockPointerCompatible(QualType, QualType);
2859 
isObjCIdType(QualType T)2860   bool isObjCIdType(QualType T) const {
2861     if (const auto *ET = dyn_cast<ElaboratedType>(T))
2862       T = ET->getNamedType();
2863     return T == getObjCIdType();
2864   }
2865 
isObjCClassType(QualType T)2866   bool isObjCClassType(QualType T) const {
2867     if (const auto *ET = dyn_cast<ElaboratedType>(T))
2868       T = ET->getNamedType();
2869     return T == getObjCClassType();
2870   }
2871 
isObjCSelType(QualType T)2872   bool isObjCSelType(QualType T) const {
2873     if (const auto *ET = dyn_cast<ElaboratedType>(T))
2874       T = ET->getNamedType();
2875     return T == getObjCSelType();
2876   }
2877 
2878   bool ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType *LHS,
2879                                          const ObjCObjectPointerType *RHS,
2880                                          bool ForCompare);
2881 
2882   bool ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType *LHS,
2883                                             const ObjCObjectPointerType *RHS);
2884 
2885   // Check the safety of assignment from LHS to RHS
2886   bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
2887                                const ObjCObjectPointerType *RHSOPT);
2888   bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
2889                                const ObjCObjectType *RHS);
2890   bool canAssignObjCInterfacesInBlockPointer(
2891                                           const ObjCObjectPointerType *LHSOPT,
2892                                           const ObjCObjectPointerType *RHSOPT,
2893                                           bool BlockReturnType);
2894   bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
2895   QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
2896                                    const ObjCObjectPointerType *RHSOPT);
2897   bool canBindObjCObjectType(QualType To, QualType From);
2898 
2899   // Functions for calculating composite types
2900   QualType mergeTypes(QualType, QualType, bool OfBlockPointer = false,
2901                       bool Unqualified = false, bool BlockReturnType = false,
2902                       bool IsConditionalOperator = false);
2903   QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer = false,
2904                               bool Unqualified = false, bool AllowCXX = false,
2905                               bool IsConditionalOperator = false);
2906   QualType mergeFunctionParameterTypes(QualType, QualType,
2907                                        bool OfBlockPointer = false,
2908                                        bool Unqualified = false);
2909   QualType mergeTransparentUnionType(QualType, QualType,
2910                                      bool OfBlockPointer=false,
2911                                      bool Unqualified = false);
2912 
2913   QualType mergeObjCGCQualifiers(QualType, QualType);
2914 
2915   /// This function merges the ExtParameterInfo lists of two functions. It
2916   /// returns true if the lists are compatible. The merged list is returned in
2917   /// NewParamInfos.
2918   ///
2919   /// \param FirstFnType The type of the first function.
2920   ///
2921   /// \param SecondFnType The type of the second function.
2922   ///
2923   /// \param CanUseFirst This flag is set to true if the first function's
2924   /// ExtParameterInfo list can be used as the composite list of
2925   /// ExtParameterInfo.
2926   ///
2927   /// \param CanUseSecond This flag is set to true if the second function's
2928   /// ExtParameterInfo list can be used as the composite list of
2929   /// ExtParameterInfo.
2930   ///
2931   /// \param NewParamInfos The composite list of ExtParameterInfo. The list is
2932   /// empty if none of the flags are set.
2933   ///
2934   bool mergeExtParameterInfo(
2935       const FunctionProtoType *FirstFnType,
2936       const FunctionProtoType *SecondFnType,
2937       bool &CanUseFirst, bool &CanUseSecond,
2938       SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos);
2939 
2940   void ResetObjCLayout(const ObjCContainerDecl *CD);
2941 
2942   //===--------------------------------------------------------------------===//
2943   //                    Integer Predicates
2944   //===--------------------------------------------------------------------===//
2945 
2946   // The width of an integer, as defined in C99 6.2.6.2. This is the number
2947   // of bits in an integer type excluding any padding bits.
2948   unsigned getIntWidth(QualType T) const;
2949 
2950   // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2951   // unsigned integer type.  This method takes a signed type, and returns the
2952   // corresponding unsigned integer type.
2953   // With the introduction of fixed point types in ISO N1169, this method also
2954   // accepts fixed point types and returns the corresponding unsigned type for
2955   // a given fixed point type.
2956   QualType getCorrespondingUnsignedType(QualType T) const;
2957 
2958   // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2959   // unsigned integer type.  This method takes an unsigned type, and returns the
2960   // corresponding signed integer type.
2961   // With the introduction of fixed point types in ISO N1169, this method also
2962   // accepts fixed point types and returns the corresponding signed type for
2963   // a given fixed point type.
2964   QualType getCorrespondingSignedType(QualType T) const;
2965 
2966   // Per ISO N1169, this method accepts fixed point types and returns the
2967   // corresponding saturated type for a given fixed point type.
2968   QualType getCorrespondingSaturatedType(QualType Ty) const;
2969 
2970   // This method accepts fixed point types and returns the corresponding signed
2971   // type. Unlike getCorrespondingUnsignedType(), this only accepts unsigned
2972   // fixed point types because there are unsigned integer types like bool and
2973   // char8_t that don't have signed equivalents.
2974   QualType getCorrespondingSignedFixedPointType(QualType Ty) const;
2975 
2976   //===--------------------------------------------------------------------===//
2977   //                    Integer Values
2978   //===--------------------------------------------------------------------===//
2979 
2980   /// Make an APSInt of the appropriate width and signedness for the
2981   /// given \p Value and integer \p Type.
MakeIntValue(uint64_t Value,QualType Type)2982   llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2983     // If Type is a signed integer type larger than 64 bits, we need to be sure
2984     // to sign extend Res appropriately.
2985     llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
2986     Res = Value;
2987     unsigned Width = getIntWidth(Type);
2988     if (Width != Res.getBitWidth())
2989       return Res.extOrTrunc(Width);
2990     return Res;
2991   }
2992 
2993   bool isSentinelNullExpr(const Expr *E);
2994 
2995   /// Get the implementation of the ObjCInterfaceDecl \p D, or nullptr if
2996   /// none exists.
2997   ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2998 
2999   /// Get the implementation of the ObjCCategoryDecl \p D, or nullptr if
3000   /// none exists.
3001   ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
3002 
3003   /// Return true if there is at least one \@implementation in the TU.
AnyObjCImplementation()3004   bool AnyObjCImplementation() {
3005     return !ObjCImpls.empty();
3006   }
3007 
3008   /// Set the implementation of ObjCInterfaceDecl.
3009   void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
3010                              ObjCImplementationDecl *ImplD);
3011 
3012   /// Set the implementation of ObjCCategoryDecl.
3013   void setObjCImplementation(ObjCCategoryDecl *CatD,
3014                              ObjCCategoryImplDecl *ImplD);
3015 
3016   /// Get the duplicate declaration of a ObjCMethod in the same
3017   /// interface, or null if none exists.
3018   const ObjCMethodDecl *
3019   getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
3020 
3021   void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
3022                                   const ObjCMethodDecl *Redecl);
3023 
3024   /// Returns the Objective-C interface that \p ND belongs to if it is
3025   /// an Objective-C method/property/ivar etc. that is part of an interface,
3026   /// otherwise returns null.
3027   const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
3028 
3029   /// Set the copy initialization expression of a block var decl. \p CanThrow
3030   /// indicates whether the copy expression can throw or not.
3031   void setBlockVarCopyInit(const VarDecl* VD, Expr *CopyExpr, bool CanThrow);
3032 
3033   /// Get the copy initialization expression of the VarDecl \p VD, or
3034   /// nullptr if none exists.
3035   BlockVarCopyInit getBlockVarCopyInit(const VarDecl* VD) const;
3036 
3037   /// Allocate an uninitialized TypeSourceInfo.
3038   ///
3039   /// The caller should initialize the memory held by TypeSourceInfo using
3040   /// the TypeLoc wrappers.
3041   ///
3042   /// \param T the type that will be the basis for type source info. This type
3043   /// should refer to how the declarator was written in source code, not to
3044   /// what type semantic analysis resolved the declarator to.
3045   ///
3046   /// \param Size the size of the type info to create, or 0 if the size
3047   /// should be calculated based on the type.
3048   TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
3049 
3050   /// Allocate a TypeSourceInfo where all locations have been
3051   /// initialized to a given location, which defaults to the empty
3052   /// location.
3053   TypeSourceInfo *
3054   getTrivialTypeSourceInfo(QualType T,
3055                            SourceLocation Loc = SourceLocation()) const;
3056 
3057   /// Add a deallocation callback that will be invoked when the
3058   /// ASTContext is destroyed.
3059   ///
3060   /// \param Callback A callback function that will be invoked on destruction.
3061   ///
3062   /// \param Data Pointer data that will be provided to the callback function
3063   /// when it is called.
3064   void AddDeallocation(void (*Callback)(void *), void *Data) const;
3065 
3066   /// If T isn't trivially destructible, calls AddDeallocation to register it
3067   /// for destruction.
addDestruction(T * Ptr)3068   template <typename T> void addDestruction(T *Ptr) const {
3069     if (!std::is_trivially_destructible<T>::value) {
3070       auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
3071       AddDeallocation(DestroyPtr, Ptr);
3072     }
3073   }
3074 
3075   GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
3076   GVALinkage GetGVALinkageForVariable(const VarDecl *VD) const;
3077 
3078   /// Determines if the decl can be CodeGen'ed or deserialized from PCH
3079   /// lazily, only when used; this is only relevant for function or file scoped
3080   /// var definitions.
3081   ///
3082   /// \returns true if the function/var must be CodeGen'ed/deserialized even if
3083   /// it is not used.
3084   bool DeclMustBeEmitted(const Decl *D);
3085 
3086   /// Visits all versions of a multiversioned function with the passed
3087   /// predicate.
3088   void forEachMultiversionedFunctionVersion(
3089       const FunctionDecl *FD,
3090       llvm::function_ref<void(FunctionDecl *)> Pred) const;
3091 
3092   const CXXConstructorDecl *
3093   getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
3094 
3095   void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
3096                                             CXXConstructorDecl *CD);
3097 
3098   void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
3099 
3100   TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
3101 
3102   void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
3103 
3104   DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
3105 
3106   void setManglingNumber(const NamedDecl *ND, unsigned Number);
3107   unsigned getManglingNumber(const NamedDecl *ND,
3108                              bool ForAuxTarget = false) const;
3109 
3110   void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
3111   unsigned getStaticLocalNumber(const VarDecl *VD) const;
3112 
3113   /// Retrieve the context for computing mangling numbers in the given
3114   /// DeclContext.
3115   MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
3116   enum NeedExtraManglingDecl_t { NeedExtraManglingDecl };
3117   MangleNumberingContext &getManglingNumberContext(NeedExtraManglingDecl_t,
3118                                                    const Decl *D);
3119 
3120   std::unique_ptr<MangleNumberingContext> createMangleNumberingContext() const;
3121 
3122   /// Used by ParmVarDecl to store on the side the
3123   /// index of the parameter when it exceeds the size of the normal bitfield.
3124   void setParameterIndex(const ParmVarDecl *D, unsigned index);
3125 
3126   /// Used by ParmVarDecl to retrieve on the side the
3127   /// index of the parameter when it exceeds the size of the normal bitfield.
3128   unsigned getParameterIndex(const ParmVarDecl *D) const;
3129 
3130   /// Return a string representing the human readable name for the specified
3131   /// function declaration or file name. Used by SourceLocExpr and
3132   /// PredefinedExpr to cache evaluated results.
3133   StringLiteral *getPredefinedStringLiteralFromCache(StringRef Key) const;
3134 
3135   /// Return a declaration for the global GUID object representing the given
3136   /// GUID value.
3137   MSGuidDecl *getMSGuidDecl(MSGuidDeclParts Parts) const;
3138 
3139   /// Return a declaration for a uniquified anonymous global constant
3140   /// corresponding to a given APValue.
3141   UnnamedGlobalConstantDecl *
3142   getUnnamedGlobalConstantDecl(QualType Ty, const APValue &Value) const;
3143 
3144   /// Return the template parameter object of the given type with the given
3145   /// value.
3146   TemplateParamObjectDecl *getTemplateParamObjectDecl(QualType T,
3147                                                       const APValue &V) const;
3148 
3149   /// Parses the target attributes passed in, and returns only the ones that are
3150   /// valid feature names.
3151   ParsedTargetAttr filterFunctionTargetAttrs(const TargetAttr *TD) const;
3152 
3153   std::vector<std::string>
3154   filterFunctionTargetVersionAttrs(const TargetVersionAttr *TV) const;
3155 
3156   void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
3157                              const FunctionDecl *) const;
3158   void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
3159                              GlobalDecl GD) const;
3160 
3161   //===--------------------------------------------------------------------===//
3162   //                    Statistics
3163   //===--------------------------------------------------------------------===//
3164 
3165   /// The number of implicitly-declared default constructors.
3166   unsigned NumImplicitDefaultConstructors = 0;
3167 
3168   /// The number of implicitly-declared default constructors for
3169   /// which declarations were built.
3170   unsigned NumImplicitDefaultConstructorsDeclared = 0;
3171 
3172   /// The number of implicitly-declared copy constructors.
3173   unsigned NumImplicitCopyConstructors = 0;
3174 
3175   /// The number of implicitly-declared copy constructors for
3176   /// which declarations were built.
3177   unsigned NumImplicitCopyConstructorsDeclared = 0;
3178 
3179   /// The number of implicitly-declared move constructors.
3180   unsigned NumImplicitMoveConstructors = 0;
3181 
3182   /// The number of implicitly-declared move constructors for
3183   /// which declarations were built.
3184   unsigned NumImplicitMoveConstructorsDeclared = 0;
3185 
3186   /// The number of implicitly-declared copy assignment operators.
3187   unsigned NumImplicitCopyAssignmentOperators = 0;
3188 
3189   /// The number of implicitly-declared copy assignment operators for
3190   /// which declarations were built.
3191   unsigned NumImplicitCopyAssignmentOperatorsDeclared = 0;
3192 
3193   /// The number of implicitly-declared move assignment operators.
3194   unsigned NumImplicitMoveAssignmentOperators = 0;
3195 
3196   /// The number of implicitly-declared move assignment operators for
3197   /// which declarations were built.
3198   unsigned NumImplicitMoveAssignmentOperatorsDeclared = 0;
3199 
3200   /// The number of implicitly-declared destructors.
3201   unsigned NumImplicitDestructors = 0;
3202 
3203   /// The number of implicitly-declared destructors for which
3204   /// declarations were built.
3205   unsigned NumImplicitDestructorsDeclared = 0;
3206 
3207 public:
3208   /// Initialize built-in types.
3209   ///
3210   /// This routine may only be invoked once for a given ASTContext object.
3211   /// It is normally invoked after ASTContext construction.
3212   ///
3213   /// \param Target The target
3214   void InitBuiltinTypes(const TargetInfo &Target,
3215                         const TargetInfo *AuxTarget = nullptr);
3216 
3217 private:
3218   void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
3219 
3220   class ObjCEncOptions {
3221     unsigned Bits;
3222 
ObjCEncOptions(unsigned Bits)3223     ObjCEncOptions(unsigned Bits) : Bits(Bits) {}
3224 
3225   public:
ObjCEncOptions()3226     ObjCEncOptions() : Bits(0) {}
3227 
3228 #define OPT_LIST(V)                                                            \
3229   V(ExpandPointedToStructures, 0)                                              \
3230   V(ExpandStructures, 1)                                                       \
3231   V(IsOutermostType, 2)                                                        \
3232   V(EncodingProperty, 3)                                                       \
3233   V(IsStructField, 4)                                                          \
3234   V(EncodeBlockParameters, 5)                                                  \
3235   V(EncodeClassNames, 6)                                                       \
3236 
3237 #define V(N,I) ObjCEncOptions& set##N() { Bits |= 1 << I; return *this; }
3238 OPT_LIST(V)
3239 #undef V
3240 
3241 #define V(N,I) bool N() const { return Bits & 1 << I; }
OPT_LIST(V)3242 OPT_LIST(V)
3243 #undef V
3244 
3245 #undef OPT_LIST
3246 
3247     [[nodiscard]] ObjCEncOptions keepingOnly(ObjCEncOptions Mask) const {
3248       return Bits & Mask.Bits;
3249     }
3250 
forComponentType()3251     [[nodiscard]] ObjCEncOptions forComponentType() const {
3252       ObjCEncOptions Mask = ObjCEncOptions()
3253                                 .setIsOutermostType()
3254                                 .setIsStructField();
3255       return Bits & ~Mask.Bits;
3256     }
3257   };
3258 
3259   // Return the Objective-C type encoding for a given type.
3260   void getObjCEncodingForTypeImpl(QualType t, std::string &S,
3261                                   ObjCEncOptions Options,
3262                                   const FieldDecl *Field,
3263                                   QualType *NotEncodedT = nullptr) const;
3264 
3265   // Adds the encoding of the structure's members.
3266   void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
3267                                        const FieldDecl *Field,
3268                                        bool includeVBases = true,
3269                                        QualType *NotEncodedT=nullptr) const;
3270 
3271 public:
3272   // Adds the encoding of a method parameter or return type.
3273   void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
3274                                          QualType T, std::string& S,
3275                                          bool Extended) const;
3276 
3277   /// Returns true if this is an inline-initialized static data member
3278   /// which is treated as a definition for MSVC compatibility.
3279   bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
3280 
3281   enum class InlineVariableDefinitionKind {
3282     /// Not an inline variable.
3283     None,
3284 
3285     /// Weak definition of inline variable.
3286     Weak,
3287 
3288     /// Weak for now, might become strong later in this TU.
3289     WeakUnknown,
3290 
3291     /// Strong definition.
3292     Strong
3293   };
3294 
3295   /// Determine whether a definition of this inline variable should
3296   /// be treated as a weak or strong definition. For compatibility with
3297   /// C++14 and before, for a constexpr static data member, if there is an
3298   /// out-of-line declaration of the member, we may promote it from weak to
3299   /// strong.
3300   InlineVariableDefinitionKind
3301   getInlineVariableDefinitionKind(const VarDecl *VD) const;
3302 
3303 private:
3304   friend class DeclarationNameTable;
3305   friend class DeclContext;
3306 
3307   const ASTRecordLayout &
3308   getObjCLayout(const ObjCInterfaceDecl *D,
3309                 const ObjCImplementationDecl *Impl) const;
3310 
3311   /// A set of deallocations that should be performed when the
3312   /// ASTContext is destroyed.
3313   // FIXME: We really should have a better mechanism in the ASTContext to
3314   // manage running destructors for types which do variable sized allocation
3315   // within the AST. In some places we thread the AST bump pointer allocator
3316   // into the datastructures which avoids this mess during deallocation but is
3317   // wasteful of memory, and here we require a lot of error prone book keeping
3318   // in order to track and run destructors while we're tearing things down.
3319   using DeallocationFunctionsAndArguments =
3320       llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>;
3321   mutable DeallocationFunctionsAndArguments Deallocations;
3322 
3323   // FIXME: This currently contains the set of StoredDeclMaps used
3324   // by DeclContext objects.  This probably should not be in ASTContext,
3325   // but we include it here so that ASTContext can quickly deallocate them.
3326   llvm::PointerIntPair<StoredDeclsMap *, 1> LastSDM;
3327 
3328   std::vector<Decl *> TraversalScope;
3329 
3330   std::unique_ptr<VTableContextBase> VTContext;
3331 
3332   void ReleaseDeclContextMaps();
3333 
3334 public:
3335   enum PragmaSectionFlag : unsigned {
3336     PSF_None = 0,
3337     PSF_Read = 0x1,
3338     PSF_Write = 0x2,
3339     PSF_Execute = 0x4,
3340     PSF_Implicit = 0x8,
3341     PSF_ZeroInit = 0x10,
3342     PSF_Invalid = 0x80000000U,
3343   };
3344 
3345   struct SectionInfo {
3346     NamedDecl *Decl;
3347     SourceLocation PragmaSectionLocation;
3348     int SectionFlags;
3349 
3350     SectionInfo() = default;
SectionInfoSectionInfo3351     SectionInfo(NamedDecl *Decl, SourceLocation PragmaSectionLocation,
3352                 int SectionFlags)
3353         : Decl(Decl), PragmaSectionLocation(PragmaSectionLocation),
3354           SectionFlags(SectionFlags) {}
3355   };
3356 
3357   llvm::StringMap<SectionInfo> SectionInfos;
3358 
3359   /// Return a new OMPTraitInfo object owned by this context.
3360   OMPTraitInfo &getNewOMPTraitInfo();
3361 
3362   /// Whether a C++ static variable or CUDA/HIP kernel may be externalized.
3363   bool mayExternalize(const Decl *D) const;
3364 
3365   /// Whether a C++ static variable or CUDA/HIP kernel should be externalized.
3366   bool shouldExternalize(const Decl *D) const;
3367 
3368   StringRef getCUIDHash() const;
3369 
3370 private:
3371   /// All OMPTraitInfo objects live in this collection, one per
3372   /// `pragma omp [begin] declare variant` directive.
3373   SmallVector<std::unique_ptr<OMPTraitInfo>, 4> OMPTraitInfoVector;
3374 };
3375 
3376 /// Insertion operator for diagnostics.
3377 const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
3378                                       const ASTContext::SectionInfo &Section);
3379 
3380 /// Utility function for constructing a nullary selector.
GetNullarySelector(StringRef name,ASTContext & Ctx)3381 inline Selector GetNullarySelector(StringRef name, ASTContext &Ctx) {
3382   IdentifierInfo* II = &Ctx.Idents.get(name);
3383   return Ctx.Selectors.getSelector(0, &II);
3384 }
3385 
3386 /// Utility function for constructing an unary selector.
GetUnarySelector(StringRef name,ASTContext & Ctx)3387 inline Selector GetUnarySelector(StringRef name, ASTContext &Ctx) {
3388   IdentifierInfo* II = &Ctx.Idents.get(name);
3389   return Ctx.Selectors.getSelector(1, &II);
3390 }
3391 
3392 } // namespace clang
3393 
3394 // operator new and delete aren't allowed inside namespaces.
3395 
3396 /// Placement new for using the ASTContext's allocator.
3397 ///
3398 /// This placement form of operator new uses the ASTContext's allocator for
3399 /// obtaining memory.
3400 ///
3401 /// IMPORTANT: These are also declared in clang/AST/ASTContextAllocate.h!
3402 /// Any changes here need to also be made there.
3403 ///
3404 /// We intentionally avoid using a nothrow specification here so that the calls
3405 /// to this operator will not perform a null check on the result -- the
3406 /// underlying allocator never returns null pointers.
3407 ///
3408 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3409 /// @code
3410 /// // Default alignment (8)
3411 /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
3412 /// // Specific alignment
3413 /// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
3414 /// @endcode
3415 /// Memory allocated through this placement new operator does not need to be
3416 /// explicitly freed, as ASTContext will free all of this memory when it gets
3417 /// destroyed. Please note that you cannot use delete on the pointer.
3418 ///
3419 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3420 /// @param C The ASTContext that provides the allocator.
3421 /// @param Alignment The alignment of the allocated memory (if the underlying
3422 ///                  allocator supports it).
3423 /// @return The allocated memory. Could be nullptr.
new(size_t Bytes,const clang::ASTContext & C,size_t Alignment)3424 inline void *operator new(size_t Bytes, const clang::ASTContext &C,
3425                           size_t Alignment /* = 8 */) {
3426   return C.Allocate(Bytes, Alignment);
3427 }
3428 
3429 /// Placement delete companion to the new above.
3430 ///
3431 /// This operator is just a companion to the new above. There is no way of
3432 /// invoking it directly; see the new operator for more details. This operator
3433 /// is called implicitly by the compiler if a placement new expression using
3434 /// the ASTContext throws in the object constructor.
delete(void * Ptr,const clang::ASTContext & C,size_t)3435 inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
3436   C.Deallocate(Ptr);
3437 }
3438 
3439 /// This placement form of operator new[] uses the ASTContext's allocator for
3440 /// obtaining memory.
3441 ///
3442 /// We intentionally avoid using a nothrow specification here so that the calls
3443 /// to this operator will not perform a null check on the result -- the
3444 /// underlying allocator never returns null pointers.
3445 ///
3446 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3447 /// @code
3448 /// // Default alignment (8)
3449 /// char *data = new (Context) char[10];
3450 /// // Specific alignment
3451 /// char *data = new (Context, 4) char[10];
3452 /// @endcode
3453 /// Memory allocated through this placement new[] operator does not need to be
3454 /// explicitly freed, as ASTContext will free all of this memory when it gets
3455 /// destroyed. Please note that you cannot use delete on the pointer.
3456 ///
3457 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3458 /// @param C The ASTContext that provides the allocator.
3459 /// @param Alignment The alignment of the allocated memory (if the underlying
3460 ///                  allocator supports it).
3461 /// @return The allocated memory. Could be nullptr.
3462 inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
3463                             size_t Alignment /* = 8 */) {
3464   return C.Allocate(Bytes, Alignment);
3465 }
3466 
3467 /// Placement delete[] companion to the new[] above.
3468 ///
3469 /// This operator is just a companion to the new[] above. There is no way of
3470 /// invoking it directly; see the new[] operator for more details. This operator
3471 /// is called implicitly by the compiler if a placement new[] expression using
3472 /// the ASTContext throws in the object constructor.
3473 inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
3474   C.Deallocate(Ptr);
3475 }
3476 
3477 /// Create the representation of a LazyGenerationalUpdatePtr.
3478 template <typename Owner, typename T,
3479           void (clang::ExternalASTSource::*Update)(Owner)>
3480 typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
makeValue(const clang::ASTContext & Ctx,T Value)3481     clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
3482         const clang::ASTContext &Ctx, T Value) {
3483   // Note, this is implemented here so that ExternalASTSource.h doesn't need to
3484   // include ASTContext.h. We explicitly instantiate it for all relevant types
3485   // in ASTContext.cpp.
3486   if (auto *Source = Ctx.getExternalSource())
3487     return new (Ctx) LazyData(Source, Value);
3488   return Value;
3489 }
3490 
3491 #endif // LLVM_CLANG_AST_ASTCONTEXT_H
3492