1 #ifndef _LINUX_BITOPS_H
2 #define _LINUX_BITOPS_H
3
4 #include <ntifs.h>
5 #include <linux/types.h>
6
7 #ifdef __KERNEL__
8 #define BIT(nr) (1 << (nr))
9 #define BIT_MASK(nr) (1 << ((nr) % BITS_PER_LONG))
10 #define BIT_WORD(nr) ((nr) / BITS_PER_LONG)
11 #define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_LONG)
12 #define BITS_PER_BYTE 8
13 #endif
14
15 /*
16 * Include this here because some architectures need generic_ffs/fls in
17 * scope
18 */
19
20 /**
21 * find_first_zero_bit - find the first zero bit in a memory region
22 * @addr: The address to start the search at
23 * @size: The maximum size to search
24 *
25 * Returns the bit number of the first zero bit, not the number of the byte
26 * containing a bit.
27 */
28 #define find_first_zero_bit(addr, size) find_next_zero_bit((addr), (size), 0)
29
30 /**
31 * find_next_zero_bit - find the first zero bit in a memory region
32 * @addr: The address to base the search on
33 * @offset: The bit number to start searching at
34 * @size: The maximum size to search
35 */
36 int find_next_zero_bit(const unsigned long *addr, int size, int offset);
37
38 /**
39 * __ffs - find first bit in word.
40 * @word: The word to search
41 *
42 * Undefined if no bit exists, so code should check against 0 first.
43 */
__ffs(unsigned long word)44 static inline unsigned long __ffs(unsigned long word)
45 {
46 int num = 0;
47
48 #if BITS_PER_LONG == 64
49 if ((word & 0xffffffff) == 0) {
50 num += 32;
51 word >>= 32;
52 }
53 #endif
54 if ((word & 0xffff) == 0) {
55 num += 16;
56 word >>= 16;
57 }
58 if ((word & 0xff) == 0) {
59 num += 8;
60 word >>= 8;
61 }
62 if ((word & 0xf) == 0) {
63 num += 4;
64 word >>= 4;
65 }
66 if ((word & 0x3) == 0) {
67 num += 2;
68 word >>= 2;
69 }
70 if ((word & 0x1) == 0)
71 num += 1;
72 return num;
73 }
74
75 /**
76 * find_first_bit - find the first set bit in a memory region
77 * @addr: The address to start the search at
78 * @size: The maximum size to search
79 *
80 * Returns the bit number of the first set bit, not the number of the byte
81 * containing a bit.
82 */
find_first_bit(const unsigned long * addr,unsigned size)83 static inline unsigned find_first_bit(const unsigned long *addr, unsigned size)
84 {
85 unsigned x = 0;
86
87 while (x < size) {
88 unsigned long val = *addr++;
89 if (val)
90 return __ffs(val) + x;
91 x += (sizeof(*addr)<<3);
92 }
93 return x;
94 }
95
96 /**
97 * find_next_bit - find the next set bit in a memory region
98 * @addr: The address to base the search on
99 * @offset: The bitnumber to start searching at
100 * @size: The maximum size to search
101 */
102
103 /*
104 * ffz - find first zero in word.
105 * @word: The word to search
106 *
107 * Undefined if no zero exists, so code should check against ~0UL first.
108 */
109 #define ffz(x) __ffs(~(x))
110
111
112 /**
113 * ffs - find first bit set
114 * @x: the word to search
115 *
116 * This is defined the same way as
117 * the libc and compiler builtin ffs routines, therefore
118 * differs in spirit from the above ffz (man ffs).
119 */
ffs(int x)120 static inline int ffs(int x)
121 {
122 int r = 1;
123
124 if (!x)
125 return 0;
126 if (!(x & 0xffff)) {
127 x >>= 16;
128 r += 16;
129 }
130 if (!(x & 0xff)) {
131 x >>= 8;
132 r += 8;
133 }
134 if (!(x & 0xf)) {
135 x >>= 4;
136 r += 4;
137 }
138 if (!(x & 3)) {
139 x >>= 2;
140 r += 2;
141 }
142 if (!(x & 1)) {
143 x >>= 1;
144 r += 1;
145 }
146 return r;
147 }
148
149 /**
150 * fls - find last (most-significant) bit set
151 * @x: the word to search
152 *
153 * This is defined the same way as ffs.
154 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
155 */
156
fls(int x)157 static inline int fls(int x)
158 {
159 int r = 32;
160
161 if (!x)
162 return 0;
163 if (!(x & 0xffff0000u)) {
164 x <<= 16;
165 r -= 16;
166 }
167 if (!(x & 0xff000000u)) {
168 x <<= 8;
169 r -= 8;
170 }
171 if (!(x & 0xf0000000u)) {
172 x <<= 4;
173 r -= 4;
174 }
175 if (!(x & 0xc0000000u)) {
176 x <<= 2;
177 r -= 2;
178 }
179 if (!(x & 0x80000000u)) {
180 x <<= 1;
181 r -= 1;
182 }
183 return r;
184 }
185
fls64(__u64 x)186 static inline int fls64(__u64 x)
187 {
188 __u32 h = (__u32) (x >> 32);
189 if (h)
190 return fls(h) + 32;
191 return fls((int)x);
192 }
193
194 #define for_each_bit(bit, addr, size) \
195 for ((bit) = find_first_bit((addr), (size)); \
196 (bit) < (size); \
197 (bit) = find_next_bit((addr), (size), (bit) + 1))
198
199
get_bitmask_order(unsigned int count)200 static __inline int get_bitmask_order(unsigned int count)
201 {
202 int order;
203
204 order = fls(count);
205 return order; /* We could be slightly more clever with -1 here... */
206 }
207
get_count_order(unsigned int count)208 static __inline int get_count_order(unsigned int count)
209 {
210 int order;
211
212 order = fls(count) - 1;
213 if (count & (count - 1))
214 order++;
215 return order;
216 }
217
218
219 /**
220 * rol32 - rotate a 32-bit value left
221 * @word: value to rotate
222 * @shift: bits to roll
223 */
rol32(__u32 word,unsigned int shift)224 static inline __u32 rol32(__u32 word, unsigned int shift)
225 {
226 return (word << shift) | (word >> (32 - shift));
227 }
228
229 /**
230 * ror32 - rotate a 32-bit value right
231 * @word: value to rotate
232 * @shift: bits to roll
233 */
ror32(__u32 word,unsigned int shift)234 static inline __u32 ror32(__u32 word, unsigned int shift)
235 {
236 return (word >> shift) | (word << (32 - shift));
237 }
238
fls_long(unsigned long l)239 static inline unsigned fls_long(unsigned long l)
240 {
241 if (sizeof(l) == 4)
242 return fls(l);
243 return fls64(l);
244 }
245
246 /*
247 * hweightN: returns the hamming weight (i.e. the number
248 * of bits set) of a N-bit word
249 */
250
hweight32(unsigned long w)251 static inline unsigned long hweight32(unsigned long w)
252 {
253 unsigned int res = (w & 0x55555555) + ((w >> 1) & 0x55555555);
254 res = (res & 0x33333333) + ((res >> 2) & 0x33333333);
255 res = (res & 0x0F0F0F0F) + ((res >> 4) & 0x0F0F0F0F);
256 res = (res & 0x00FF00FF) + ((res >> 8) & 0x00FF00FF);
257 return (res & 0x0000FFFF) + ((res >> 16) & 0x0000FFFF);
258 }
259
hweight64(__u64 w)260 static inline unsigned long hweight64(__u64 w)
261 {
262 #if BITS_PER_LONG < 64
263 return hweight32((unsigned int)(w >> 32)) + hweight32((unsigned int)w);
264 #else
265 u64 res;
266 res = (w & 0x5555555555555555U) + ((w >> 1) & 0x5555555555555555U);
267 res = (res & 0x3333333333333333U) + ((res >> 2) & 0x3333333333333333U);
268 res = (res & 0x0F0F0F0F0F0F0F0FU) + ((res >> 4) & 0x0F0F0F0F0F0F0F0FU);
269 res = (res & 0x00FF00FF00FF00FFU) + ((res >> 8) & 0x00FF00FF00FF00FFU);
270 res = (res & 0x0000FFFF0000FFFFU) + ((res >> 16) & 0x0000FFFF0000FFFFU);
271 return (res & 0x00000000FFFFFFFFU) + ((res >> 32) & 0x00000000FFFFFFFFU);
272 #endif
273 }
274
hweight_long(unsigned long w)275 static inline unsigned long hweight_long(unsigned long w)
276 {
277 return sizeof(w) == 4 ? hweight32(w) : hweight64(w);
278 }
279
280 #endif
281