xref: /openbsd/lib/libcrypto/bn/bn_mul.c (revision ca1d80d6)
1 /* $OpenBSD: bn_mul.c,v 1.39 2023/07/08 12:21:58 beck Exp $ */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 
59 #include <assert.h>
60 #include <stdio.h>
61 #include <string.h>
62 
63 #include <openssl/opensslconf.h>
64 
65 #include "bn_arch.h"
66 #include "bn_internal.h"
67 #include "bn_local.h"
68 
69 /*
70  * bn_mul_comba4() computes r[] = a[] * b[] using Comba multiplication
71  * (https://everything2.com/title/Comba+multiplication), where a and b are both
72  * four word arrays, producing an eight word array result.
73  */
74 #ifndef HAVE_BN_MUL_COMBA4
75 void
bn_mul_comba4(BN_ULONG * r,BN_ULONG * a,BN_ULONG * b)76 bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
77 {
78 	BN_ULONG c0, c1, c2;
79 
80 	bn_mulw_addtw(a[0], b[0],  0,  0,  0, &c2, &c1, &r[0]);
81 
82 	bn_mulw_addtw(a[0], b[1],  0, c2, c1, &c2, &c1, &c0);
83 	bn_mulw_addtw(a[1], b[0], c2, c1, c0, &c2, &c1, &r[1]);
84 
85 	bn_mulw_addtw(a[2], b[0],  0, c2, c1, &c2, &c1, &c0);
86 	bn_mulw_addtw(a[1], b[1], c2, c1, c0, &c2, &c1, &c0);
87 	bn_mulw_addtw(a[0], b[2], c2, c1, c0, &c2, &c1, &r[2]);
88 
89 	bn_mulw_addtw(a[0], b[3],  0, c2, c1, &c2, &c1, &c0);
90 	bn_mulw_addtw(a[1], b[2], c2, c1, c0, &c2, &c1, &c0);
91 	bn_mulw_addtw(a[2], b[1], c2, c1, c0, &c2, &c1, &c0);
92 	bn_mulw_addtw(a[3], b[0], c2, c1, c0, &c2, &c1, &r[3]);
93 
94 	bn_mulw_addtw(a[3], b[1],  0, c2, c1, &c2, &c1, &c0);
95 	bn_mulw_addtw(a[2], b[2], c2, c1, c0, &c2, &c1, &c0);
96 	bn_mulw_addtw(a[1], b[3], c2, c1, c0, &c2, &c1, &r[4]);
97 
98 	bn_mulw_addtw(a[2], b[3],  0, c2, c1, &c2, &c1, &c0);
99 	bn_mulw_addtw(a[3], b[2], c2, c1, c0, &c2, &c1, &r[5]);
100 
101 	bn_mulw_addtw(a[3], b[3],  0, c2, c1, &c2, &r[7], &r[6]);
102 }
103 #endif
104 
105 /*
106  * bn_mul_comba8() computes r[] = a[] * b[] using Comba multiplication
107  * (https://everything2.com/title/Comba+multiplication), where a and b are both
108  * eight word arrays, producing a 16 word array result.
109  */
110 #ifndef HAVE_BN_MUL_COMBA8
111 void
bn_mul_comba8(BN_ULONG * r,BN_ULONG * a,BN_ULONG * b)112 bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
113 {
114 	BN_ULONG c0, c1, c2;
115 
116 	bn_mulw_addtw(a[0], b[0],  0,  0,  0, &c2, &c1, &r[0]);
117 
118 	bn_mulw_addtw(a[0], b[1],  0, c2, c1, &c2, &c1, &c0);
119 	bn_mulw_addtw(a[1], b[0], c2, c1, c0, &c2, &c1, &r[1]);
120 
121 	bn_mulw_addtw(a[2], b[0],  0, c2, c1, &c2, &c1, &c0);
122 	bn_mulw_addtw(a[1], b[1], c2, c1, c0, &c2, &c1, &c0);
123 	bn_mulw_addtw(a[0], b[2], c2, c1, c0, &c2, &c1, &r[2]);
124 
125 	bn_mulw_addtw(a[0], b[3],  0, c2, c1, &c2, &c1, &c0);
126 	bn_mulw_addtw(a[1], b[2], c2, c1, c0, &c2, &c1, &c0);
127 	bn_mulw_addtw(a[2], b[1], c2, c1, c0, &c2, &c1, &c0);
128 	bn_mulw_addtw(a[3], b[0], c2, c1, c0, &c2, &c1, &r[3]);
129 
130 	bn_mulw_addtw(a[4], b[0],  0, c2, c1, &c2, &c1, &c0);
131 	bn_mulw_addtw(a[3], b[1], c2, c1, c0, &c2, &c1, &c0);
132 	bn_mulw_addtw(a[2], b[2], c2, c1, c0, &c2, &c1, &c0);
133 	bn_mulw_addtw(a[1], b[3], c2, c1, c0, &c2, &c1, &c0);
134 	bn_mulw_addtw(a[0], b[4], c2, c1, c0, &c2, &c1, &r[4]);
135 
136 	bn_mulw_addtw(a[0], b[5],  0, c2, c1, &c2, &c1, &c0);
137 	bn_mulw_addtw(a[1], b[4], c2, c1, c0, &c2, &c1, &c0);
138 	bn_mulw_addtw(a[2], b[3], c2, c1, c0, &c2, &c1, &c0);
139 	bn_mulw_addtw(a[3], b[2], c2, c1, c0, &c2, &c1, &c0);
140 	bn_mulw_addtw(a[4], b[1], c2, c1, c0, &c2, &c1, &c0);
141 	bn_mulw_addtw(a[5], b[0], c2, c1, c0, &c2, &c1, &r[5]);
142 
143 	bn_mulw_addtw(a[6], b[0],  0, c2, c1, &c2, &c1, &c0);
144 	bn_mulw_addtw(a[5], b[1], c2, c1, c0, &c2, &c1, &c0);
145 	bn_mulw_addtw(a[4], b[2], c2, c1, c0, &c2, &c1, &c0);
146 	bn_mulw_addtw(a[3], b[3], c2, c1, c0, &c2, &c1, &c0);
147 	bn_mulw_addtw(a[2], b[4], c2, c1, c0, &c2, &c1, &c0);
148 	bn_mulw_addtw(a[1], b[5], c2, c1, c0, &c2, &c1, &c0);
149 	bn_mulw_addtw(a[0], b[6], c2, c1, c0, &c2, &c1, &r[6]);
150 
151 	bn_mulw_addtw(a[0], b[7],  0, c2, c1, &c2, &c1, &c0);
152 	bn_mulw_addtw(a[1], b[6], c2, c1, c0, &c2, &c1, &c0);
153 	bn_mulw_addtw(a[2], b[5], c2, c1, c0, &c2, &c1, &c0);
154 	bn_mulw_addtw(a[3], b[4], c2, c1, c0, &c2, &c1, &c0);
155 	bn_mulw_addtw(a[4], b[3], c2, c1, c0, &c2, &c1, &c0);
156 	bn_mulw_addtw(a[5], b[2], c2, c1, c0, &c2, &c1, &c0);
157 	bn_mulw_addtw(a[6], b[1], c2, c1, c0, &c2, &c1, &c0);
158 	bn_mulw_addtw(a[7], b[0], c2, c1, c0, &c2, &c1, &r[7]);
159 
160 	bn_mulw_addtw(a[7], b[1],  0, c2, c1, &c2, &c1, &c0);
161 	bn_mulw_addtw(a[6], b[2], c2, c1, c0, &c2, &c1, &c0);
162 	bn_mulw_addtw(a[5], b[3], c2, c1, c0, &c2, &c1, &c0);
163 	bn_mulw_addtw(a[4], b[4], c2, c1, c0, &c2, &c1, &c0);
164 	bn_mulw_addtw(a[3], b[5], c2, c1, c0, &c2, &c1, &c0);
165 	bn_mulw_addtw(a[2], b[6], c2, c1, c0, &c2, &c1, &c0);
166 	bn_mulw_addtw(a[1], b[7], c2, c1, c0, &c2, &c1, &r[8]);
167 
168 	bn_mulw_addtw(a[2], b[7],  0, c2, c1, &c2, &c1, &c0);
169 	bn_mulw_addtw(a[3], b[6], c2, c1, c0, &c2, &c1, &c0);
170 	bn_mulw_addtw(a[4], b[5], c2, c1, c0, &c2, &c1, &c0);
171 	bn_mulw_addtw(a[5], b[4], c2, c1, c0, &c2, &c1, &c0);
172 	bn_mulw_addtw(a[6], b[3], c2, c1, c0, &c2, &c1, &c0);
173 	bn_mulw_addtw(a[7], b[2], c2, c1, c0, &c2, &c1, &r[9]);
174 
175 	bn_mulw_addtw(a[7], b[3],  0, c2, c1, &c2, &c1, &c0);
176 	bn_mulw_addtw(a[6], b[4], c2, c1, c0, &c2, &c1, &c0);
177 	bn_mulw_addtw(a[5], b[5], c2, c1, c0, &c2, &c1, &c0);
178 	bn_mulw_addtw(a[4], b[6], c2, c1, c0, &c2, &c1, &c0);
179 	bn_mulw_addtw(a[3], b[7], c2, c1, c0, &c2, &c1, &r[10]);
180 
181 	bn_mulw_addtw(a[4], b[7],  0, c2, c1, &c2, &c1, &c0);
182 	bn_mulw_addtw(a[5], b[6], c2, c1, c0, &c2, &c1, &c0);
183 	bn_mulw_addtw(a[6], b[5], c2, c1, c0, &c2, &c1, &c0);
184 	bn_mulw_addtw(a[7], b[4], c2, c1, c0, &c2, &c1, &r[11]);
185 
186 	bn_mulw_addtw(a[7], b[5],  0, c2, c1, &c2, &c1, &c0);
187 	bn_mulw_addtw(a[6], b[6], c2, c1, c0, &c2, &c1, &c0);
188 	bn_mulw_addtw(a[5], b[7], c2, c1, c0, &c2, &c1, &r[12]);
189 
190 	bn_mulw_addtw(a[6], b[7],  0, c2, c1, &c2, &c1, &c0);
191 	bn_mulw_addtw(a[7], b[6], c2, c1, c0, &c2, &c1, &r[13]);
192 
193 	bn_mulw_addtw(a[7], b[7],  0, c2, c1, &c2, &r[15], &r[14]);
194 }
195 #endif
196 
197 /*
198  * bn_mul_words() computes (carry:r[i]) = a[i] * w + carry, where a is an array
199  * of words and w is a single word. This should really be called bn_mulw_words()
200  * since only one input is an array. This is used as a step in the multiplication
201  * of word arrays.
202  */
203 #ifndef HAVE_BN_MUL_WORDS
204 BN_ULONG
bn_mul_words(BN_ULONG * r,const BN_ULONG * a,int num,BN_ULONG w)205 bn_mul_words(BN_ULONG *r, const BN_ULONG *a, int num, BN_ULONG w)
206 {
207 	BN_ULONG carry = 0;
208 
209 	assert(num >= 0);
210 	if (num <= 0)
211 		return 0;
212 
213 	while (num & ~3) {
214 		bn_qwmulw_addw(a[3], a[2], a[1], a[0], w, carry, &carry,
215 		    &r[3], &r[2], &r[1], &r[0]);
216 		a += 4;
217 		r += 4;
218 		num -= 4;
219 	}
220 	while (num) {
221 		bn_mulw_addw(a[0], w, carry, &carry, &r[0]);
222 		a++;
223 		r++;
224 		num--;
225 	}
226 	return carry;
227 }
228 #endif
229 
230 /*
231  * bn_mul_add_words() computes (carry:r[i]) = a[i] * w + r[i] + carry, where
232  * a is an array of words and w is a single word. This should really be called
233  * bn_mulw_add_words() since only one input is an array. This is used as a step
234  * in the multiplication of word arrays.
235  */
236 #ifndef HAVE_BN_MUL_ADD_WORDS
237 BN_ULONG
bn_mul_add_words(BN_ULONG * r,const BN_ULONG * a,int num,BN_ULONG w)238 bn_mul_add_words(BN_ULONG *r, const BN_ULONG *a, int num, BN_ULONG w)
239 {
240 	BN_ULONG carry = 0;
241 
242 	assert(num >= 0);
243 	if (num <= 0)
244 		return 0;
245 
246 	while (num & ~3) {
247 		bn_qwmulw_addqw_addw(a[3], a[2], a[1], a[0], w,
248 		    r[3], r[2], r[1], r[0], carry, &carry,
249 		    &r[3], &r[2], &r[1], &r[0]);
250 		a += 4;
251 		r += 4;
252 		num -= 4;
253 	}
254 	while (num) {
255 		bn_mulw_addw_addw(a[0], w, r[0], carry, &carry, &r[0]);
256 		a++;
257 		r++;
258 		num--;
259 	}
260 
261 	return carry;
262 }
263 #endif
264 
265 void
bn_mul_normal(BN_ULONG * r,BN_ULONG * a,int na,BN_ULONG * b,int nb)266 bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
267 {
268 	BN_ULONG *rr;
269 
270 
271 	if (na < nb) {
272 		int itmp;
273 		BN_ULONG *ltmp;
274 
275 		itmp = na;
276 		na = nb;
277 		nb = itmp;
278 		ltmp = a;
279 		a = b;
280 		b = ltmp;
281 
282 	}
283 	rr = &(r[na]);
284 	if (nb <= 0) {
285 		(void)bn_mul_words(r, a, na, 0);
286 		return;
287 	} else
288 		rr[0] = bn_mul_words(r, a, na, b[0]);
289 
290 	for (;;) {
291 		if (--nb <= 0)
292 			return;
293 		rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
294 		if (--nb <= 0)
295 			return;
296 		rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
297 		if (--nb <= 0)
298 			return;
299 		rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
300 		if (--nb <= 0)
301 			return;
302 		rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
303 		rr += 4;
304 		r += 4;
305 		b += 4;
306 	}
307 }
308 
309 
310 #ifndef HAVE_BN_MUL
311 int
bn_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,int rn,BN_CTX * ctx)312 bn_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, int rn, BN_CTX *ctx)
313 {
314 	bn_mul_normal(r->d, a->d, a->top, b->d, b->top);
315 
316 	return 1;
317 }
318 
319 #endif /* HAVE_BN_MUL */
320 
321 int
BN_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)322 BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
323 {
324 	BIGNUM *rr;
325 	int rn;
326 	int ret = 0;
327 
328 	BN_CTX_start(ctx);
329 
330 	if (BN_is_zero(a) || BN_is_zero(b)) {
331 		BN_zero(r);
332 		goto done;
333 	}
334 
335 	rr = r;
336 	if (rr == a || rr == b)
337 		rr = BN_CTX_get(ctx);
338 	if (rr == NULL)
339 		goto err;
340 
341 	rn = a->top + b->top;
342 	if (rn < a->top)
343 		goto err;
344 	if (!bn_wexpand(rr, rn))
345 		goto err;
346 
347 	if (a->top == 4 && b->top == 4) {
348 		bn_mul_comba4(rr->d, a->d, b->d);
349 	} else if (a->top == 8 && b->top == 8) {
350 		bn_mul_comba8(rr->d, a->d, b->d);
351 	} else {
352 		if (!bn_mul(rr, a, b, rn, ctx))
353 			goto err;
354 	}
355 
356 	rr->top = rn;
357 	bn_correct_top(rr);
358 
359 	BN_set_negative(rr, a->neg ^ b->neg);
360 
361 	if (!bn_copy(r, rr))
362 		goto err;
363  done:
364 	ret = 1;
365  err:
366 	BN_CTX_end(ctx);
367 
368 	return ret;
369 }
370 LCRYPTO_ALIAS(BN_mul);
371