xref: /linux/include/linux/filter.h (revision 2ddec2c8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <linux/atomic.h>
9 #include <linux/bpf.h>
10 #include <linux/refcount.h>
11 #include <linux/compat.h>
12 #include <linux/skbuff.h>
13 #include <linux/linkage.h>
14 #include <linux/printk.h>
15 #include <linux/workqueue.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha1.h>
25 #include <linux/u64_stats_sync.h>
26 
27 #include <net/sch_generic.h>
28 
29 #include <asm/byteorder.h>
30 #include <uapi/linux/filter.h>
31 
32 struct sk_buff;
33 struct sock;
34 struct seccomp_data;
35 struct bpf_prog_aux;
36 struct xdp_rxq_info;
37 struct xdp_buff;
38 struct sock_reuseport;
39 struct ctl_table;
40 struct ctl_table_header;
41 
42 /* ArgX, context and stack frame pointer register positions. Note,
43  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44  * calls in BPF_CALL instruction.
45  */
46 #define BPF_REG_ARG1	BPF_REG_1
47 #define BPF_REG_ARG2	BPF_REG_2
48 #define BPF_REG_ARG3	BPF_REG_3
49 #define BPF_REG_ARG4	BPF_REG_4
50 #define BPF_REG_ARG5	BPF_REG_5
51 #define BPF_REG_CTX	BPF_REG_6
52 #define BPF_REG_FP	BPF_REG_10
53 
54 /* Additional register mappings for converted user programs. */
55 #define BPF_REG_A	BPF_REG_0
56 #define BPF_REG_X	BPF_REG_7
57 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
58 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
59 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
60 
61 /* Kernel hidden auxiliary/helper register. */
62 #define BPF_REG_AX		MAX_BPF_REG
63 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
64 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
65 
66 /* unused opcode to mark special call to bpf_tail_call() helper */
67 #define BPF_TAIL_CALL	0xf0
68 
69 /* unused opcode to mark special load instruction. Same as BPF_ABS */
70 #define BPF_PROBE_MEM	0x20
71 
72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */
73 #define BPF_PROBE_MEMSX	0x40
74 
75 /* unused opcode to mark special load instruction. Same as BPF_MSH */
76 #define BPF_PROBE_MEM32	0xa0
77 
78 /* unused opcode to mark special atomic instruction */
79 #define BPF_PROBE_ATOMIC 0xe0
80 
81 /* unused opcode to mark call to interpreter with arguments */
82 #define BPF_CALL_ARGS	0xe0
83 
84 /* unused opcode to mark speculation barrier for mitigating
85  * Speculative Store Bypass
86  */
87 #define BPF_NOSPEC	0xc0
88 
89 /* As per nm, we expose JITed images as text (code) section for
90  * kallsyms. That way, tools like perf can find it to match
91  * addresses.
92  */
93 #define BPF_SYM_ELF_TYPE	't'
94 
95 /* BPF program can access up to 512 bytes of stack space. */
96 #define MAX_BPF_STACK	512
97 
98 /* Helper macros for filter block array initializers. */
99 
100 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
101 
102 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF)			\
103 	((struct bpf_insn) {					\
104 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
105 		.dst_reg = DST,					\
106 		.src_reg = SRC,					\
107 		.off   = OFF,					\
108 		.imm   = 0 })
109 
110 #define BPF_ALU64_REG(OP, DST, SRC)				\
111 	BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
112 
113 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF)			\
114 	((struct bpf_insn) {					\
115 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
116 		.dst_reg = DST,					\
117 		.src_reg = SRC,					\
118 		.off   = OFF,					\
119 		.imm   = 0 })
120 
121 #define BPF_ALU32_REG(OP, DST, SRC)				\
122 	BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
123 
124 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
125 
126 #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF)			\
127 	((struct bpf_insn) {					\
128 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
129 		.dst_reg = DST,					\
130 		.src_reg = 0,					\
131 		.off   = OFF,					\
132 		.imm   = IMM })
133 #define BPF_ALU64_IMM(OP, DST, IMM)				\
134 	BPF_ALU64_IMM_OFF(OP, DST, IMM, 0)
135 
136 #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF)			\
137 	((struct bpf_insn) {					\
138 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
139 		.dst_reg = DST,					\
140 		.src_reg = 0,					\
141 		.off   = OFF,					\
142 		.imm   = IMM })
143 #define BPF_ALU32_IMM(OP, DST, IMM)				\
144 	BPF_ALU32_IMM_OFF(OP, DST, IMM, 0)
145 
146 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
147 
148 #define BPF_ENDIAN(TYPE, DST, LEN)				\
149 	((struct bpf_insn) {					\
150 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
151 		.dst_reg = DST,					\
152 		.src_reg = 0,					\
153 		.off   = 0,					\
154 		.imm   = LEN })
155 
156 /* Byte Swap, bswap16/32/64 */
157 
158 #define BPF_BSWAP(DST, LEN)					\
159 	((struct bpf_insn) {					\
160 		.code  = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE),	\
161 		.dst_reg = DST,					\
162 		.src_reg = 0,					\
163 		.off   = 0,					\
164 		.imm   = LEN })
165 
166 /* Short form of mov, dst_reg = src_reg */
167 
168 #define BPF_MOV64_REG(DST, SRC)					\
169 	((struct bpf_insn) {					\
170 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
171 		.dst_reg = DST,					\
172 		.src_reg = SRC,					\
173 		.off   = 0,					\
174 		.imm   = 0 })
175 
176 #define BPF_MOV32_REG(DST, SRC)					\
177 	((struct bpf_insn) {					\
178 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
179 		.dst_reg = DST,					\
180 		.src_reg = SRC,					\
181 		.off   = 0,					\
182 		.imm   = 0 })
183 
184 /* Special (internal-only) form of mov, used to resolve per-CPU addrs:
185  * dst_reg = src_reg + <percpu_base_off>
186  * BPF_ADDR_PERCPU is used as a special insn->off value.
187  */
188 #define BPF_ADDR_PERCPU	(-1)
189 
190 #define BPF_MOV64_PERCPU_REG(DST, SRC)				\
191 	((struct bpf_insn) {					\
192 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
193 		.dst_reg = DST,					\
194 		.src_reg = SRC,					\
195 		.off   = BPF_ADDR_PERCPU,			\
196 		.imm   = 0 })
197 
insn_is_mov_percpu_addr(const struct bpf_insn * insn)198 static inline bool insn_is_mov_percpu_addr(const struct bpf_insn *insn)
199 {
200 	return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU;
201 }
202 
203 /* Short form of mov, dst_reg = imm32 */
204 
205 #define BPF_MOV64_IMM(DST, IMM)					\
206 	((struct bpf_insn) {					\
207 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
208 		.dst_reg = DST,					\
209 		.src_reg = 0,					\
210 		.off   = 0,					\
211 		.imm   = IMM })
212 
213 #define BPF_MOV32_IMM(DST, IMM)					\
214 	((struct bpf_insn) {					\
215 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
216 		.dst_reg = DST,					\
217 		.src_reg = 0,					\
218 		.off   = 0,					\
219 		.imm   = IMM })
220 
221 /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */
222 
223 #define BPF_MOVSX64_REG(DST, SRC, OFF)				\
224 	((struct bpf_insn) {					\
225 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
226 		.dst_reg = DST,					\
227 		.src_reg = SRC,					\
228 		.off   = OFF,					\
229 		.imm   = 0 })
230 
231 #define BPF_MOVSX32_REG(DST, SRC, OFF)				\
232 	((struct bpf_insn) {					\
233 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
234 		.dst_reg = DST,					\
235 		.src_reg = SRC,					\
236 		.off   = OFF,					\
237 		.imm   = 0 })
238 
239 /* Special form of mov32, used for doing explicit zero extension on dst. */
240 #define BPF_ZEXT_REG(DST)					\
241 	((struct bpf_insn) {					\
242 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
243 		.dst_reg = DST,					\
244 		.src_reg = DST,					\
245 		.off   = 0,					\
246 		.imm   = 1 })
247 
insn_is_zext(const struct bpf_insn * insn)248 static inline bool insn_is_zext(const struct bpf_insn *insn)
249 {
250 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
251 }
252 
253 /* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers
254  * to pointers in user vma.
255  */
insn_is_cast_user(const struct bpf_insn * insn)256 static inline bool insn_is_cast_user(const struct bpf_insn *insn)
257 {
258 	return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
259 			      insn->off == BPF_ADDR_SPACE_CAST &&
260 			      insn->imm == 1U << 16;
261 }
262 
263 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
264 #define BPF_LD_IMM64(DST, IMM)					\
265 	BPF_LD_IMM64_RAW(DST, 0, IMM)
266 
267 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
268 	((struct bpf_insn) {					\
269 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
270 		.dst_reg = DST,					\
271 		.src_reg = SRC,					\
272 		.off   = 0,					\
273 		.imm   = (__u32) (IMM) }),			\
274 	((struct bpf_insn) {					\
275 		.code  = 0, /* zero is reserved opcode */	\
276 		.dst_reg = 0,					\
277 		.src_reg = 0,					\
278 		.off   = 0,					\
279 		.imm   = ((__u64) (IMM)) >> 32 })
280 
281 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
282 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
283 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
284 
285 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
286 
287 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
288 	((struct bpf_insn) {					\
289 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
290 		.dst_reg = DST,					\
291 		.src_reg = SRC,					\
292 		.off   = 0,					\
293 		.imm   = IMM })
294 
295 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
296 	((struct bpf_insn) {					\
297 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
298 		.dst_reg = DST,					\
299 		.src_reg = SRC,					\
300 		.off   = 0,					\
301 		.imm   = IMM })
302 
303 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
304 
305 #define BPF_LD_ABS(SIZE, IMM)					\
306 	((struct bpf_insn) {					\
307 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
308 		.dst_reg = 0,					\
309 		.src_reg = 0,					\
310 		.off   = 0,					\
311 		.imm   = IMM })
312 
313 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
314 
315 #define BPF_LD_IND(SIZE, SRC, IMM)				\
316 	((struct bpf_insn) {					\
317 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
318 		.dst_reg = 0,					\
319 		.src_reg = SRC,					\
320 		.off   = 0,					\
321 		.imm   = IMM })
322 
323 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
324 
325 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
326 	((struct bpf_insn) {					\
327 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
328 		.dst_reg = DST,					\
329 		.src_reg = SRC,					\
330 		.off   = OFF,					\
331 		.imm   = 0 })
332 
333 /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */
334 
335 #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF)			\
336 	((struct bpf_insn) {					\
337 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX,	\
338 		.dst_reg = DST,					\
339 		.src_reg = SRC,					\
340 		.off   = OFF,					\
341 		.imm   = 0 })
342 
343 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
344 
345 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
346 	((struct bpf_insn) {					\
347 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
348 		.dst_reg = DST,					\
349 		.src_reg = SRC,					\
350 		.off   = OFF,					\
351 		.imm   = 0 })
352 
353 
354 /*
355  * Atomic operations:
356  *
357  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
358  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
359  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
360  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
361  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
362  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
363  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
364  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
365  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
366  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
367  */
368 
369 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
370 	((struct bpf_insn) {					\
371 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
372 		.dst_reg = DST,					\
373 		.src_reg = SRC,					\
374 		.off   = OFF,					\
375 		.imm   = OP })
376 
377 /* Legacy alias */
378 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
379 
380 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
381 
382 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
383 	((struct bpf_insn) {					\
384 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
385 		.dst_reg = DST,					\
386 		.src_reg = 0,					\
387 		.off   = OFF,					\
388 		.imm   = IMM })
389 
390 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
391 
392 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
393 	((struct bpf_insn) {					\
394 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
395 		.dst_reg = DST,					\
396 		.src_reg = SRC,					\
397 		.off   = OFF,					\
398 		.imm   = 0 })
399 
400 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
401 
402 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
403 	((struct bpf_insn) {					\
404 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
405 		.dst_reg = DST,					\
406 		.src_reg = 0,					\
407 		.off   = OFF,					\
408 		.imm   = IMM })
409 
410 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
411 
412 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
413 	((struct bpf_insn) {					\
414 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
415 		.dst_reg = DST,					\
416 		.src_reg = SRC,					\
417 		.off   = OFF,					\
418 		.imm   = 0 })
419 
420 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
421 
422 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
423 	((struct bpf_insn) {					\
424 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
425 		.dst_reg = DST,					\
426 		.src_reg = 0,					\
427 		.off   = OFF,					\
428 		.imm   = IMM })
429 
430 /* Unconditional jumps, goto pc + off16 */
431 
432 #define BPF_JMP_A(OFF)						\
433 	((struct bpf_insn) {					\
434 		.code  = BPF_JMP | BPF_JA,			\
435 		.dst_reg = 0,					\
436 		.src_reg = 0,					\
437 		.off   = OFF,					\
438 		.imm   = 0 })
439 
440 /* Relative call */
441 
442 #define BPF_CALL_REL(TGT)					\
443 	((struct bpf_insn) {					\
444 		.code  = BPF_JMP | BPF_CALL,			\
445 		.dst_reg = 0,					\
446 		.src_reg = BPF_PSEUDO_CALL,			\
447 		.off   = 0,					\
448 		.imm   = TGT })
449 
450 /* Convert function address to BPF immediate */
451 
452 #define BPF_CALL_IMM(x)	((void *)(x) - (void *)__bpf_call_base)
453 
454 #define BPF_EMIT_CALL(FUNC)					\
455 	((struct bpf_insn) {					\
456 		.code  = BPF_JMP | BPF_CALL,			\
457 		.dst_reg = 0,					\
458 		.src_reg = 0,					\
459 		.off   = 0,					\
460 		.imm   = BPF_CALL_IMM(FUNC) })
461 
462 /* Raw code statement block */
463 
464 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
465 	((struct bpf_insn) {					\
466 		.code  = CODE,					\
467 		.dst_reg = DST,					\
468 		.src_reg = SRC,					\
469 		.off   = OFF,					\
470 		.imm   = IMM })
471 
472 /* Program exit */
473 
474 #define BPF_EXIT_INSN()						\
475 	((struct bpf_insn) {					\
476 		.code  = BPF_JMP | BPF_EXIT,			\
477 		.dst_reg = 0,					\
478 		.src_reg = 0,					\
479 		.off   = 0,					\
480 		.imm   = 0 })
481 
482 /* Speculation barrier */
483 
484 #define BPF_ST_NOSPEC()						\
485 	((struct bpf_insn) {					\
486 		.code  = BPF_ST | BPF_NOSPEC,			\
487 		.dst_reg = 0,					\
488 		.src_reg = 0,					\
489 		.off   = 0,					\
490 		.imm   = 0 })
491 
492 /* Internal classic blocks for direct assignment */
493 
494 #define __BPF_STMT(CODE, K)					\
495 	((struct sock_filter) BPF_STMT(CODE, K))
496 
497 #define __BPF_JUMP(CODE, K, JT, JF)				\
498 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
499 
500 #define bytes_to_bpf_size(bytes)				\
501 ({								\
502 	int bpf_size = -EINVAL;					\
503 								\
504 	if (bytes == sizeof(u8))				\
505 		bpf_size = BPF_B;				\
506 	else if (bytes == sizeof(u16))				\
507 		bpf_size = BPF_H;				\
508 	else if (bytes == sizeof(u32))				\
509 		bpf_size = BPF_W;				\
510 	else if (bytes == sizeof(u64))				\
511 		bpf_size = BPF_DW;				\
512 								\
513 	bpf_size;						\
514 })
515 
516 #define bpf_size_to_bytes(bpf_size)				\
517 ({								\
518 	int bytes = -EINVAL;					\
519 								\
520 	if (bpf_size == BPF_B)					\
521 		bytes = sizeof(u8);				\
522 	else if (bpf_size == BPF_H)				\
523 		bytes = sizeof(u16);				\
524 	else if (bpf_size == BPF_W)				\
525 		bytes = sizeof(u32);				\
526 	else if (bpf_size == BPF_DW)				\
527 		bytes = sizeof(u64);				\
528 								\
529 	bytes;							\
530 })
531 
532 #define BPF_SIZEOF(type)					\
533 	({							\
534 		const int __size = bytes_to_bpf_size(sizeof(type)); \
535 		BUILD_BUG_ON(__size < 0);			\
536 		__size;						\
537 	})
538 
539 #define BPF_FIELD_SIZEOF(type, field)				\
540 	({							\
541 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
542 		BUILD_BUG_ON(__size < 0);			\
543 		__size;						\
544 	})
545 
546 #define BPF_LDST_BYTES(insn)					\
547 	({							\
548 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
549 		WARN_ON(__size < 0);				\
550 		__size;						\
551 	})
552 
553 #define __BPF_MAP_0(m, v, ...) v
554 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
555 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
556 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
557 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
558 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
559 
560 #define __BPF_REG_0(...) __BPF_PAD(5)
561 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
562 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
563 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
564 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
565 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
566 
567 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
568 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
569 
570 #define __BPF_CAST(t, a)						       \
571 	(__force t)							       \
572 	(__force							       \
573 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
574 				      (unsigned long)0, (t)0))) a
575 #define __BPF_V void
576 #define __BPF_N
577 
578 #define __BPF_DECL_ARGS(t, a) t   a
579 #define __BPF_DECL_REGS(t, a) u64 a
580 
581 #define __BPF_PAD(n)							       \
582 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
583 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
584 
585 #define BPF_CALL_x(x, attr, name, ...)					       \
586 	static __always_inline						       \
587 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
588 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
589 	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));    \
590 	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))     \
591 	{								       \
592 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
593 	}								       \
594 	static __always_inline						       \
595 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
596 
597 #define __NOATTR
598 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__)
599 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__)
600 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__)
601 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__)
602 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__)
603 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__)
604 
605 #define NOTRACE_BPF_CALL_1(name, ...)	BPF_CALL_x(1, notrace, name, __VA_ARGS__)
606 
607 #define bpf_ctx_range(TYPE, MEMBER)						\
608 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
609 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
610 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
611 #if BITS_PER_LONG == 64
612 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
613 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
614 #else
615 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
616 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
617 #endif /* BITS_PER_LONG == 64 */
618 
619 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
620 	({									\
621 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
622 		*(PTR_SIZE) = (SIZE);						\
623 		offsetof(TYPE, MEMBER);						\
624 	})
625 
626 /* A struct sock_filter is architecture independent. */
627 struct compat_sock_fprog {
628 	u16		len;
629 	compat_uptr_t	filter;	/* struct sock_filter * */
630 };
631 
632 struct sock_fprog_kern {
633 	u16			len;
634 	struct sock_filter	*filter;
635 };
636 
637 /* Some arches need doubleword alignment for their instructions and/or data */
638 #define BPF_IMAGE_ALIGNMENT 8
639 
640 struct bpf_binary_header {
641 	u32 size;
642 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
643 };
644 
645 struct bpf_prog_stats {
646 	u64_stats_t cnt;
647 	u64_stats_t nsecs;
648 	u64_stats_t misses;
649 	struct u64_stats_sync syncp;
650 } __aligned(2 * sizeof(u64));
651 
652 struct sk_filter {
653 	refcount_t	refcnt;
654 	struct rcu_head	rcu;
655 	struct bpf_prog	*prog;
656 };
657 
658 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
659 
660 extern struct mutex nf_conn_btf_access_lock;
661 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
662 				     const struct bpf_reg_state *reg,
663 				     int off, int size);
664 
665 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
666 					  const struct bpf_insn *insnsi,
667 					  unsigned int (*bpf_func)(const void *,
668 								   const struct bpf_insn *));
669 
__bpf_prog_run(const struct bpf_prog * prog,const void * ctx,bpf_dispatcher_fn dfunc)670 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
671 					  const void *ctx,
672 					  bpf_dispatcher_fn dfunc)
673 {
674 	u32 ret;
675 
676 	cant_migrate();
677 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
678 		struct bpf_prog_stats *stats;
679 		u64 duration, start = sched_clock();
680 		unsigned long flags;
681 
682 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
683 
684 		duration = sched_clock() - start;
685 		stats = this_cpu_ptr(prog->stats);
686 		flags = u64_stats_update_begin_irqsave(&stats->syncp);
687 		u64_stats_inc(&stats->cnt);
688 		u64_stats_add(&stats->nsecs, duration);
689 		u64_stats_update_end_irqrestore(&stats->syncp, flags);
690 	} else {
691 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
692 	}
693 	return ret;
694 }
695 
bpf_prog_run(const struct bpf_prog * prog,const void * ctx)696 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
697 {
698 	return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
699 }
700 
701 /*
702  * Use in preemptible and therefore migratable context to make sure that
703  * the execution of the BPF program runs on one CPU.
704  *
705  * This uses migrate_disable/enable() explicitly to document that the
706  * invocation of a BPF program does not require reentrancy protection
707  * against a BPF program which is invoked from a preempting task.
708  */
bpf_prog_run_pin_on_cpu(const struct bpf_prog * prog,const void * ctx)709 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
710 					  const void *ctx)
711 {
712 	u32 ret;
713 
714 	migrate_disable();
715 	ret = bpf_prog_run(prog, ctx);
716 	migrate_enable();
717 	return ret;
718 }
719 
720 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
721 
722 struct bpf_skb_data_end {
723 	struct qdisc_skb_cb qdisc_cb;
724 	void *data_meta;
725 	void *data_end;
726 };
727 
728 struct bpf_nh_params {
729 	u32 nh_family;
730 	union {
731 		u32 ipv4_nh;
732 		struct in6_addr ipv6_nh;
733 	};
734 };
735 
736 struct bpf_redirect_info {
737 	u64 tgt_index;
738 	void *tgt_value;
739 	struct bpf_map *map;
740 	u32 flags;
741 	u32 kern_flags;
742 	u32 map_id;
743 	enum bpf_map_type map_type;
744 	struct bpf_nh_params nh;
745 };
746 
747 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
748 
749 /* flags for bpf_redirect_info kern_flags */
750 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
751 
752 /* Compute the linear packet data range [data, data_end) which
753  * will be accessed by various program types (cls_bpf, act_bpf,
754  * lwt, ...). Subsystems allowing direct data access must (!)
755  * ensure that cb[] area can be written to when BPF program is
756  * invoked (otherwise cb[] save/restore is necessary).
757  */
bpf_compute_data_pointers(struct sk_buff * skb)758 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
759 {
760 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
761 
762 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
763 	cb->data_meta = skb->data - skb_metadata_len(skb);
764 	cb->data_end  = skb->data + skb_headlen(skb);
765 }
766 
767 /* Similar to bpf_compute_data_pointers(), except that save orginal
768  * data in cb->data and cb->meta_data for restore.
769  */
bpf_compute_and_save_data_end(struct sk_buff * skb,void ** saved_data_end)770 static inline void bpf_compute_and_save_data_end(
771 	struct sk_buff *skb, void **saved_data_end)
772 {
773 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
774 
775 	*saved_data_end = cb->data_end;
776 	cb->data_end  = skb->data + skb_headlen(skb);
777 }
778 
779 /* Restore data saved by bpf_compute_and_save_data_end(). */
bpf_restore_data_end(struct sk_buff * skb,void * saved_data_end)780 static inline void bpf_restore_data_end(
781 	struct sk_buff *skb, void *saved_data_end)
782 {
783 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
784 
785 	cb->data_end = saved_data_end;
786 }
787 
bpf_skb_cb(const struct sk_buff * skb)788 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
789 {
790 	/* eBPF programs may read/write skb->cb[] area to transfer meta
791 	 * data between tail calls. Since this also needs to work with
792 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
793 	 *
794 	 * In some socket filter cases, the cb unfortunately needs to be
795 	 * saved/restored so that protocol specific skb->cb[] data won't
796 	 * be lost. In any case, due to unpriviledged eBPF programs
797 	 * attached to sockets, we need to clear the bpf_skb_cb() area
798 	 * to not leak previous contents to user space.
799 	 */
800 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
801 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
802 		     sizeof_field(struct qdisc_skb_cb, data));
803 
804 	return qdisc_skb_cb(skb)->data;
805 }
806 
807 /* Must be invoked with migration disabled */
__bpf_prog_run_save_cb(const struct bpf_prog * prog,const void * ctx)808 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
809 					 const void *ctx)
810 {
811 	const struct sk_buff *skb = ctx;
812 	u8 *cb_data = bpf_skb_cb(skb);
813 	u8 cb_saved[BPF_SKB_CB_LEN];
814 	u32 res;
815 
816 	if (unlikely(prog->cb_access)) {
817 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
818 		memset(cb_data, 0, sizeof(cb_saved));
819 	}
820 
821 	res = bpf_prog_run(prog, skb);
822 
823 	if (unlikely(prog->cb_access))
824 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
825 
826 	return res;
827 }
828 
bpf_prog_run_save_cb(const struct bpf_prog * prog,struct sk_buff * skb)829 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
830 				       struct sk_buff *skb)
831 {
832 	u32 res;
833 
834 	migrate_disable();
835 	res = __bpf_prog_run_save_cb(prog, skb);
836 	migrate_enable();
837 	return res;
838 }
839 
bpf_prog_run_clear_cb(const struct bpf_prog * prog,struct sk_buff * skb)840 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
841 					struct sk_buff *skb)
842 {
843 	u8 *cb_data = bpf_skb_cb(skb);
844 	u32 res;
845 
846 	if (unlikely(prog->cb_access))
847 		memset(cb_data, 0, BPF_SKB_CB_LEN);
848 
849 	res = bpf_prog_run_pin_on_cpu(prog, skb);
850 	return res;
851 }
852 
853 DECLARE_BPF_DISPATCHER(xdp)
854 
855 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
856 
857 u32 xdp_master_redirect(struct xdp_buff *xdp);
858 
859 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
860 
bpf_prog_insn_size(const struct bpf_prog * prog)861 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
862 {
863 	return prog->len * sizeof(struct bpf_insn);
864 }
865 
bpf_prog_tag_scratch_size(const struct bpf_prog * prog)866 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
867 {
868 	return round_up(bpf_prog_insn_size(prog) +
869 			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
870 }
871 
bpf_prog_size(unsigned int proglen)872 static inline unsigned int bpf_prog_size(unsigned int proglen)
873 {
874 	return max(sizeof(struct bpf_prog),
875 		   offsetof(struct bpf_prog, insns[proglen]));
876 }
877 
bpf_prog_was_classic(const struct bpf_prog * prog)878 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
879 {
880 	/* When classic BPF programs have been loaded and the arch
881 	 * does not have a classic BPF JIT (anymore), they have been
882 	 * converted via bpf_migrate_filter() to eBPF and thus always
883 	 * have an unspec program type.
884 	 */
885 	return prog->type == BPF_PROG_TYPE_UNSPEC;
886 }
887 
bpf_ctx_off_adjust_machine(u32 size)888 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
889 {
890 	const u32 size_machine = sizeof(unsigned long);
891 
892 	if (size > size_machine && size % size_machine == 0)
893 		size = size_machine;
894 
895 	return size;
896 }
897 
898 static inline bool
bpf_ctx_narrow_access_ok(u32 off,u32 size,u32 size_default)899 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
900 {
901 	return size <= size_default && (size & (size - 1)) == 0;
902 }
903 
904 static inline u8
bpf_ctx_narrow_access_offset(u32 off,u32 size,u32 size_default)905 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
906 {
907 	u8 access_off = off & (size_default - 1);
908 
909 #ifdef __LITTLE_ENDIAN
910 	return access_off;
911 #else
912 	return size_default - (access_off + size);
913 #endif
914 }
915 
916 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
917 	(size == sizeof(__u64) &&					\
918 	off >= offsetof(type, field) &&					\
919 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
920 	off % sizeof(__u64) == 0)
921 
922 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
923 
bpf_prog_lock_ro(struct bpf_prog * fp)924 static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp)
925 {
926 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
927 	if (!fp->jited) {
928 		set_vm_flush_reset_perms(fp);
929 		return set_memory_ro((unsigned long)fp, fp->pages);
930 	}
931 #endif
932 	return 0;
933 }
934 
935 static inline int __must_check
bpf_jit_binary_lock_ro(struct bpf_binary_header * hdr)936 bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
937 {
938 	set_vm_flush_reset_perms(hdr);
939 	return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
940 }
941 
942 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
sk_filter(struct sock * sk,struct sk_buff * skb)943 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
944 {
945 	return sk_filter_trim_cap(sk, skb, 1);
946 }
947 
948 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
949 void bpf_prog_free(struct bpf_prog *fp);
950 
951 bool bpf_opcode_in_insntable(u8 code);
952 
953 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
954 			       const u32 *insn_to_jit_off);
955 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
956 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
957 
958 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
959 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
960 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
961 				  gfp_t gfp_extra_flags);
962 void __bpf_prog_free(struct bpf_prog *fp);
963 
bpf_prog_unlock_free(struct bpf_prog * fp)964 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
965 {
966 	__bpf_prog_free(fp);
967 }
968 
969 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
970 				       unsigned int flen);
971 
972 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
973 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
974 			      bpf_aux_classic_check_t trans, bool save_orig);
975 void bpf_prog_destroy(struct bpf_prog *fp);
976 
977 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
978 int sk_attach_bpf(u32 ufd, struct sock *sk);
979 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
980 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
981 void sk_reuseport_prog_free(struct bpf_prog *prog);
982 int sk_detach_filter(struct sock *sk);
983 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
984 
985 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
986 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
987 
988 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
989 #define __bpf_call_base_args \
990 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
991 	 (void *)__bpf_call_base)
992 
993 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
994 void bpf_jit_compile(struct bpf_prog *prog);
995 bool bpf_jit_needs_zext(void);
996 bool bpf_jit_inlines_helper_call(s32 imm);
997 bool bpf_jit_supports_subprog_tailcalls(void);
998 bool bpf_jit_supports_percpu_insn(void);
999 bool bpf_jit_supports_kfunc_call(void);
1000 bool bpf_jit_supports_far_kfunc_call(void);
1001 bool bpf_jit_supports_exceptions(void);
1002 bool bpf_jit_supports_ptr_xchg(void);
1003 bool bpf_jit_supports_arena(void);
1004 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena);
1005 u64 bpf_arch_uaddress_limit(void);
1006 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie);
1007 bool bpf_helper_changes_pkt_data(void *func);
1008 
bpf_dump_raw_ok(const struct cred * cred)1009 static inline bool bpf_dump_raw_ok(const struct cred *cred)
1010 {
1011 	/* Reconstruction of call-sites is dependent on kallsyms,
1012 	 * thus make dump the same restriction.
1013 	 */
1014 	return kallsyms_show_value(cred);
1015 }
1016 
1017 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
1018 				       const struct bpf_insn *patch, u32 len);
1019 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
1020 
1021 void bpf_clear_redirect_map(struct bpf_map *map);
1022 
xdp_return_frame_no_direct(void)1023 static inline bool xdp_return_frame_no_direct(void)
1024 {
1025 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1026 
1027 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
1028 }
1029 
xdp_set_return_frame_no_direct(void)1030 static inline void xdp_set_return_frame_no_direct(void)
1031 {
1032 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1033 
1034 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
1035 }
1036 
xdp_clear_return_frame_no_direct(void)1037 static inline void xdp_clear_return_frame_no_direct(void)
1038 {
1039 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1040 
1041 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
1042 }
1043 
xdp_ok_fwd_dev(const struct net_device * fwd,unsigned int pktlen)1044 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
1045 				 unsigned int pktlen)
1046 {
1047 	unsigned int len;
1048 
1049 	if (unlikely(!(fwd->flags & IFF_UP)))
1050 		return -ENETDOWN;
1051 
1052 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1053 	if (pktlen > len)
1054 		return -EMSGSIZE;
1055 
1056 	return 0;
1057 }
1058 
1059 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1060  * same cpu context. Further for best results no more than a single map
1061  * for the do_redirect/do_flush pair should be used. This limitation is
1062  * because we only track one map and force a flush when the map changes.
1063  * This does not appear to be a real limitation for existing software.
1064  */
1065 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1066 			    struct xdp_buff *xdp, struct bpf_prog *prog);
1067 int xdp_do_redirect(struct net_device *dev,
1068 		    struct xdp_buff *xdp,
1069 		    struct bpf_prog *prog);
1070 int xdp_do_redirect_frame(struct net_device *dev,
1071 			  struct xdp_buff *xdp,
1072 			  struct xdp_frame *xdpf,
1073 			  struct bpf_prog *prog);
1074 void xdp_do_flush(void);
1075 
1076 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
1077 
1078 #ifdef CONFIG_INET
1079 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1080 				  struct bpf_prog *prog, struct sk_buff *skb,
1081 				  struct sock *migrating_sk,
1082 				  u32 hash);
1083 #else
1084 static inline struct sock *
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)1085 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1086 		     struct bpf_prog *prog, struct sk_buff *skb,
1087 		     struct sock *migrating_sk,
1088 		     u32 hash)
1089 {
1090 	return NULL;
1091 }
1092 #endif
1093 
1094 #ifdef CONFIG_BPF_JIT
1095 extern int bpf_jit_enable;
1096 extern int bpf_jit_harden;
1097 extern int bpf_jit_kallsyms;
1098 extern long bpf_jit_limit;
1099 extern long bpf_jit_limit_max;
1100 
1101 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1102 
1103 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1104 
1105 struct bpf_binary_header *
1106 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1107 		     unsigned int alignment,
1108 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1109 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1110 u64 bpf_jit_alloc_exec_limit(void);
1111 void *bpf_jit_alloc_exec(unsigned long size);
1112 void bpf_jit_free_exec(void *addr);
1113 void bpf_jit_free(struct bpf_prog *fp);
1114 struct bpf_binary_header *
1115 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1116 
1117 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1118 void bpf_prog_pack_free(void *ptr, u32 size);
1119 
bpf_prog_kallsyms_verify_off(const struct bpf_prog * fp)1120 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1121 {
1122 	return list_empty(&fp->aux->ksym.lnode) ||
1123 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
1124 }
1125 
1126 struct bpf_binary_header *
1127 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1128 			  unsigned int alignment,
1129 			  struct bpf_binary_header **rw_hdr,
1130 			  u8 **rw_image,
1131 			  bpf_jit_fill_hole_t bpf_fill_ill_insns);
1132 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1133 				 struct bpf_binary_header *ro_header,
1134 				 struct bpf_binary_header *rw_header);
1135 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1136 			      struct bpf_binary_header *rw_header);
1137 
1138 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1139 				struct bpf_jit_poke_descriptor *poke);
1140 
1141 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1142 			  const struct bpf_insn *insn, bool extra_pass,
1143 			  u64 *func_addr, bool *func_addr_fixed);
1144 
1145 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1146 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1147 
bpf_jit_dump(unsigned int flen,unsigned int proglen,u32 pass,void * image)1148 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1149 				u32 pass, void *image)
1150 {
1151 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1152 	       proglen, pass, image, current->comm, task_pid_nr(current));
1153 
1154 	if (image)
1155 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1156 			       16, 1, image, proglen, false);
1157 }
1158 
bpf_jit_is_ebpf(void)1159 static inline bool bpf_jit_is_ebpf(void)
1160 {
1161 # ifdef CONFIG_HAVE_EBPF_JIT
1162 	return true;
1163 # else
1164 	return false;
1165 # endif
1166 }
1167 
ebpf_jit_enabled(void)1168 static inline bool ebpf_jit_enabled(void)
1169 {
1170 	return bpf_jit_enable && bpf_jit_is_ebpf();
1171 }
1172 
bpf_prog_ebpf_jited(const struct bpf_prog * fp)1173 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1174 {
1175 	return fp->jited && bpf_jit_is_ebpf();
1176 }
1177 
bpf_jit_blinding_enabled(struct bpf_prog * prog)1178 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1179 {
1180 	/* These are the prerequisites, should someone ever have the
1181 	 * idea to call blinding outside of them, we make sure to
1182 	 * bail out.
1183 	 */
1184 	if (!bpf_jit_is_ebpf())
1185 		return false;
1186 	if (!prog->jit_requested)
1187 		return false;
1188 	if (!bpf_jit_harden)
1189 		return false;
1190 	if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF))
1191 		return false;
1192 
1193 	return true;
1194 }
1195 
bpf_jit_kallsyms_enabled(void)1196 static inline bool bpf_jit_kallsyms_enabled(void)
1197 {
1198 	/* There are a couple of corner cases where kallsyms should
1199 	 * not be enabled f.e. on hardening.
1200 	 */
1201 	if (bpf_jit_harden)
1202 		return false;
1203 	if (!bpf_jit_kallsyms)
1204 		return false;
1205 	if (bpf_jit_kallsyms == 1)
1206 		return true;
1207 
1208 	return false;
1209 }
1210 
1211 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1212 				 unsigned long *off, char *sym);
1213 bool is_bpf_text_address(unsigned long addr);
1214 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1215 		    char *sym);
1216 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr);
1217 
1218 static inline const char *
bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1219 bpf_address_lookup(unsigned long addr, unsigned long *size,
1220 		   unsigned long *off, char **modname, char *sym)
1221 {
1222 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1223 
1224 	if (ret && modname)
1225 		*modname = NULL;
1226 	return ret;
1227 }
1228 
1229 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1230 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1231 
1232 #else /* CONFIG_BPF_JIT */
1233 
ebpf_jit_enabled(void)1234 static inline bool ebpf_jit_enabled(void)
1235 {
1236 	return false;
1237 }
1238 
bpf_jit_blinding_enabled(struct bpf_prog * prog)1239 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1240 {
1241 	return false;
1242 }
1243 
bpf_prog_ebpf_jited(const struct bpf_prog * fp)1244 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1245 {
1246 	return false;
1247 }
1248 
1249 static inline int
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)1250 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1251 			    struct bpf_jit_poke_descriptor *poke)
1252 {
1253 	return -ENOTSUPP;
1254 }
1255 
bpf_jit_free(struct bpf_prog * fp)1256 static inline void bpf_jit_free(struct bpf_prog *fp)
1257 {
1258 	bpf_prog_unlock_free(fp);
1259 }
1260 
bpf_jit_kallsyms_enabled(void)1261 static inline bool bpf_jit_kallsyms_enabled(void)
1262 {
1263 	return false;
1264 }
1265 
1266 static inline const char *
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)1267 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1268 		     unsigned long *off, char *sym)
1269 {
1270 	return NULL;
1271 }
1272 
is_bpf_text_address(unsigned long addr)1273 static inline bool is_bpf_text_address(unsigned long addr)
1274 {
1275 	return false;
1276 }
1277 
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)1278 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1279 				  char *type, char *sym)
1280 {
1281 	return -ERANGE;
1282 }
1283 
bpf_prog_ksym_find(unsigned long addr)1284 static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
1285 {
1286 	return NULL;
1287 }
1288 
1289 static inline const char *
bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1290 bpf_address_lookup(unsigned long addr, unsigned long *size,
1291 		   unsigned long *off, char **modname, char *sym)
1292 {
1293 	return NULL;
1294 }
1295 
bpf_prog_kallsyms_add(struct bpf_prog * fp)1296 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1297 {
1298 }
1299 
bpf_prog_kallsyms_del(struct bpf_prog * fp)1300 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1301 {
1302 }
1303 
1304 #endif /* CONFIG_BPF_JIT */
1305 
1306 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1307 
1308 #define BPF_ANC		BIT(15)
1309 
bpf_needs_clear_a(const struct sock_filter * first)1310 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1311 {
1312 	switch (first->code) {
1313 	case BPF_RET | BPF_K:
1314 	case BPF_LD | BPF_W | BPF_LEN:
1315 		return false;
1316 
1317 	case BPF_LD | BPF_W | BPF_ABS:
1318 	case BPF_LD | BPF_H | BPF_ABS:
1319 	case BPF_LD | BPF_B | BPF_ABS:
1320 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1321 			return true;
1322 		return false;
1323 
1324 	default:
1325 		return true;
1326 	}
1327 }
1328 
bpf_anc_helper(const struct sock_filter * ftest)1329 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1330 {
1331 	BUG_ON(ftest->code & BPF_ANC);
1332 
1333 	switch (ftest->code) {
1334 	case BPF_LD | BPF_W | BPF_ABS:
1335 	case BPF_LD | BPF_H | BPF_ABS:
1336 	case BPF_LD | BPF_B | BPF_ABS:
1337 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1338 				return BPF_ANC | SKF_AD_##CODE
1339 		switch (ftest->k) {
1340 		BPF_ANCILLARY(PROTOCOL);
1341 		BPF_ANCILLARY(PKTTYPE);
1342 		BPF_ANCILLARY(IFINDEX);
1343 		BPF_ANCILLARY(NLATTR);
1344 		BPF_ANCILLARY(NLATTR_NEST);
1345 		BPF_ANCILLARY(MARK);
1346 		BPF_ANCILLARY(QUEUE);
1347 		BPF_ANCILLARY(HATYPE);
1348 		BPF_ANCILLARY(RXHASH);
1349 		BPF_ANCILLARY(CPU);
1350 		BPF_ANCILLARY(ALU_XOR_X);
1351 		BPF_ANCILLARY(VLAN_TAG);
1352 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1353 		BPF_ANCILLARY(PAY_OFFSET);
1354 		BPF_ANCILLARY(RANDOM);
1355 		BPF_ANCILLARY(VLAN_TPID);
1356 		}
1357 		fallthrough;
1358 	default:
1359 		return ftest->code;
1360 	}
1361 }
1362 
1363 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1364 					   int k, unsigned int size);
1365 
bpf_tell_extensions(void)1366 static inline int bpf_tell_extensions(void)
1367 {
1368 	return SKF_AD_MAX;
1369 }
1370 
1371 struct bpf_sock_addr_kern {
1372 	struct sock *sk;
1373 	struct sockaddr *uaddr;
1374 	/* Temporary "register" to make indirect stores to nested structures
1375 	 * defined above. We need three registers to make such a store, but
1376 	 * only two (src and dst) are available at convert_ctx_access time
1377 	 */
1378 	u64 tmp_reg;
1379 	void *t_ctx;	/* Attach type specific context. */
1380 	u32 uaddrlen;
1381 };
1382 
1383 struct bpf_sock_ops_kern {
1384 	struct	sock *sk;
1385 	union {
1386 		u32 args[4];
1387 		u32 reply;
1388 		u32 replylong[4];
1389 	};
1390 	struct sk_buff	*syn_skb;
1391 	struct sk_buff	*skb;
1392 	void	*skb_data_end;
1393 	u8	op;
1394 	u8	is_fullsock;
1395 	u8	remaining_opt_len;
1396 	u64	temp;			/* temp and everything after is not
1397 					 * initialized to 0 before calling
1398 					 * the BPF program. New fields that
1399 					 * should be initialized to 0 should
1400 					 * be inserted before temp.
1401 					 * temp is scratch storage used by
1402 					 * sock_ops_convert_ctx_access
1403 					 * as temporary storage of a register.
1404 					 */
1405 };
1406 
1407 struct bpf_sysctl_kern {
1408 	struct ctl_table_header *head;
1409 	struct ctl_table *table;
1410 	void *cur_val;
1411 	size_t cur_len;
1412 	void *new_val;
1413 	size_t new_len;
1414 	int new_updated;
1415 	int write;
1416 	loff_t *ppos;
1417 	/* Temporary "register" for indirect stores to ppos. */
1418 	u64 tmp_reg;
1419 };
1420 
1421 #define BPF_SOCKOPT_KERN_BUF_SIZE	32
1422 struct bpf_sockopt_buf {
1423 	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
1424 };
1425 
1426 struct bpf_sockopt_kern {
1427 	struct sock	*sk;
1428 	u8		*optval;
1429 	u8		*optval_end;
1430 	s32		level;
1431 	s32		optname;
1432 	s32		optlen;
1433 	/* for retval in struct bpf_cg_run_ctx */
1434 	struct task_struct *current_task;
1435 	/* Temporary "register" for indirect stores to ppos. */
1436 	u64		tmp_reg;
1437 };
1438 
1439 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1440 
1441 struct bpf_sk_lookup_kern {
1442 	u16		family;
1443 	u16		protocol;
1444 	__be16		sport;
1445 	u16		dport;
1446 	struct {
1447 		__be32 saddr;
1448 		__be32 daddr;
1449 	} v4;
1450 	struct {
1451 		const struct in6_addr *saddr;
1452 		const struct in6_addr *daddr;
1453 	} v6;
1454 	struct sock	*selected_sk;
1455 	u32		ingress_ifindex;
1456 	bool		no_reuseport;
1457 };
1458 
1459 extern struct static_key_false bpf_sk_lookup_enabled;
1460 
1461 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1462  *
1463  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1464  * SK_DROP. Their meaning is as follows:
1465  *
1466  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1467  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1468  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1469  *
1470  * This macro aggregates return values and selected sockets from
1471  * multiple BPF programs according to following rules in order:
1472  *
1473  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1474  *     macro result is SK_PASS and last ctx.selected_sk is used.
1475  *  2. If any program returned SK_DROP return value,
1476  *     macro result is SK_DROP.
1477  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1478  *
1479  * Caller must ensure that the prog array is non-NULL, and that the
1480  * array as well as the programs it contains remain valid.
1481  */
1482 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1483 	({								\
1484 		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1485 		struct bpf_prog_array_item *_item;			\
1486 		struct sock *_selected_sk = NULL;			\
1487 		bool _no_reuseport = false;				\
1488 		struct bpf_prog *_prog;					\
1489 		bool _all_pass = true;					\
1490 		u32 _ret;						\
1491 									\
1492 		migrate_disable();					\
1493 		_item = &(array)->items[0];				\
1494 		while ((_prog = READ_ONCE(_item->prog))) {		\
1495 			/* restore most recent selection */		\
1496 			_ctx->selected_sk = _selected_sk;		\
1497 			_ctx->no_reuseport = _no_reuseport;		\
1498 									\
1499 			_ret = func(_prog, _ctx);			\
1500 			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1501 				/* remember last non-NULL socket */	\
1502 				_selected_sk = _ctx->selected_sk;	\
1503 				_no_reuseport = _ctx->no_reuseport;	\
1504 			} else if (_ret == SK_DROP && _all_pass) {	\
1505 				_all_pass = false;			\
1506 			}						\
1507 			_item++;					\
1508 		}							\
1509 		_ctx->selected_sk = _selected_sk;			\
1510 		_ctx->no_reuseport = _no_reuseport;			\
1511 		migrate_enable();					\
1512 		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1513 	 })
1514 
bpf_sk_lookup_run_v4(struct net * net,int protocol,const __be32 saddr,const __be16 sport,const __be32 daddr,const u16 dport,const int ifindex,struct sock ** psk)1515 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1516 					const __be32 saddr, const __be16 sport,
1517 					const __be32 daddr, const u16 dport,
1518 					const int ifindex, struct sock **psk)
1519 {
1520 	struct bpf_prog_array *run_array;
1521 	struct sock *selected_sk = NULL;
1522 	bool no_reuseport = false;
1523 
1524 	rcu_read_lock();
1525 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1526 	if (run_array) {
1527 		struct bpf_sk_lookup_kern ctx = {
1528 			.family		= AF_INET,
1529 			.protocol	= protocol,
1530 			.v4.saddr	= saddr,
1531 			.v4.daddr	= daddr,
1532 			.sport		= sport,
1533 			.dport		= dport,
1534 			.ingress_ifindex	= ifindex,
1535 		};
1536 		u32 act;
1537 
1538 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1539 		if (act == SK_PASS) {
1540 			selected_sk = ctx.selected_sk;
1541 			no_reuseport = ctx.no_reuseport;
1542 		} else {
1543 			selected_sk = ERR_PTR(-ECONNREFUSED);
1544 		}
1545 	}
1546 	rcu_read_unlock();
1547 	*psk = selected_sk;
1548 	return no_reuseport;
1549 }
1550 
1551 #if IS_ENABLED(CONFIG_IPV6)
bpf_sk_lookup_run_v6(struct net * net,int protocol,const struct in6_addr * saddr,const __be16 sport,const struct in6_addr * daddr,const u16 dport,const int ifindex,struct sock ** psk)1552 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1553 					const struct in6_addr *saddr,
1554 					const __be16 sport,
1555 					const struct in6_addr *daddr,
1556 					const u16 dport,
1557 					const int ifindex, struct sock **psk)
1558 {
1559 	struct bpf_prog_array *run_array;
1560 	struct sock *selected_sk = NULL;
1561 	bool no_reuseport = false;
1562 
1563 	rcu_read_lock();
1564 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1565 	if (run_array) {
1566 		struct bpf_sk_lookup_kern ctx = {
1567 			.family		= AF_INET6,
1568 			.protocol	= protocol,
1569 			.v6.saddr	= saddr,
1570 			.v6.daddr	= daddr,
1571 			.sport		= sport,
1572 			.dport		= dport,
1573 			.ingress_ifindex	= ifindex,
1574 		};
1575 		u32 act;
1576 
1577 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1578 		if (act == SK_PASS) {
1579 			selected_sk = ctx.selected_sk;
1580 			no_reuseport = ctx.no_reuseport;
1581 		} else {
1582 			selected_sk = ERR_PTR(-ECONNREFUSED);
1583 		}
1584 	}
1585 	rcu_read_unlock();
1586 	*psk = selected_sk;
1587 	return no_reuseport;
1588 }
1589 #endif /* IS_ENABLED(CONFIG_IPV6) */
1590 
__bpf_xdp_redirect_map(struct bpf_map * map,u64 index,u64 flags,const u64 flag_mask,void * lookup_elem (struct bpf_map * map,u32 key))1591 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1592 						   u64 flags, const u64 flag_mask,
1593 						   void *lookup_elem(struct bpf_map *map, u32 key))
1594 {
1595 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1596 	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1597 
1598 	/* Lower bits of the flags are used as return code on lookup failure */
1599 	if (unlikely(flags & ~(action_mask | flag_mask)))
1600 		return XDP_ABORTED;
1601 
1602 	ri->tgt_value = lookup_elem(map, index);
1603 	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1604 		/* If the lookup fails we want to clear out the state in the
1605 		 * redirect_info struct completely, so that if an eBPF program
1606 		 * performs multiple lookups, the last one always takes
1607 		 * precedence.
1608 		 */
1609 		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1610 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
1611 		return flags & action_mask;
1612 	}
1613 
1614 	ri->tgt_index = index;
1615 	ri->map_id = map->id;
1616 	ri->map_type = map->map_type;
1617 
1618 	if (flags & BPF_F_BROADCAST) {
1619 		WRITE_ONCE(ri->map, map);
1620 		ri->flags = flags;
1621 	} else {
1622 		WRITE_ONCE(ri->map, NULL);
1623 		ri->flags = 0;
1624 	}
1625 
1626 	return XDP_REDIRECT;
1627 }
1628 
1629 #ifdef CONFIG_NET
1630 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1631 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1632 			  u32 len, u64 flags);
1633 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1634 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1635 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1636 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1637 		      void *buf, unsigned long len, bool flush);
1638 #else /* CONFIG_NET */
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1639 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1640 				       void *to, u32 len)
1641 {
1642 	return -EOPNOTSUPP;
1643 }
1644 
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1645 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1646 					const void *from, u32 len, u64 flags)
1647 {
1648 	return -EOPNOTSUPP;
1649 }
1650 
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)1651 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1652 				       void *buf, u32 len)
1653 {
1654 	return -EOPNOTSUPP;
1655 }
1656 
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)1657 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1658 					void *buf, u32 len)
1659 {
1660 	return -EOPNOTSUPP;
1661 }
1662 
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)1663 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1664 {
1665 	return NULL;
1666 }
1667 
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)1668 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1669 				    unsigned long len, bool flush)
1670 {
1671 }
1672 #endif /* CONFIG_NET */
1673 
1674 #endif /* __LINUX_FILTER_H__ */
1675