xref: /openbsd/gnu/usr.bin/gcc/gcc/config/d30v/d30v.h (revision c87b03e5)
1 /* Definitions of target machine for Mitsubishi D30V.
2    Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002
3    Free Software Foundation, Inc.
4    Contributed by Cygnus Solutions.
5 
6    This file is part of GNU CC.
7 
8    GNU CC is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 2, or (at your option)
11    any later version.
12 
13    GNU CC is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with GNU CC; see the file COPYING.  If not, write to
20    the Free Software Foundation, 59 Temple Place - Suite 330,
21    Boston, MA 02111-1307, USA.  */
22 
23 #ifndef GCC_D30V_H
24 
25 /* D30V specific macros */
26 
27 /* Align an address */
28 #define D30V_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
29 
30 
31 /* Driver configuration */
32 
33 /* Defined in svr4.h.  */
34 /* #define SWITCH_TAKES_ARG(CHAR) */
35 
36 /* Defined in svr4.h.  */
37 /* #define WORD_SWITCH_TAKES_ARG(NAME) */
38 
39 /* Defined in svr4.h.  */
40 #undef	ASM_SPEC
41 #define ASM_SPEC "\
42 %{!mno-asm-optimize: %{O*: %{!O0: -O} %{O0: %{masm-optimize: -O}}}} \
43 %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*}"
44 
45 /* Defined in svr4.h.  */
46 /* #define ASM_FINAL_SPEC "" */
47 
48 /* Defined in svr4.h.  */
49 #undef	LINK_SPEC
50 #define LINK_SPEC "\
51 %{h*} %{v:-V} \
52 %{b} %{Wl,*:%*} \
53 %{static:-dn -Bstatic} \
54 %{shared:-G -dy -z text} \
55 %{symbolic:-Bsymbolic -G -dy -z text} \
56 %{G:-G} \
57 %{YP,*} \
58 %{Qy:} %{!Qn:-Qy} \
59 %{mextmem: -m d30v_e} %{mextmemory: -m d30v_e} %{monchip: -m d30v_o}"
60 
61 /* Defined in svr4.h.  */
62 #undef	LIB_SPEC
63 #define LIB_SPEC "--start-group -lsim -lc --end-group"
64 
65 /* Defined in svr4.h.  */
66 #undef	STARTFILE_SPEC
67 #define STARTFILE_SPEC "crt0%O%s crtbegin%O%s"
68 
69 /* Defined in svr4.h.  */
70 #undef	ENDFILE_SPEC
71 #define ENDFILE_SPEC "crtend%O%s"
72 
73 /* Defined in svr4.h for host compilers.  */
74 /* #define MD_EXEC_PREFIX "" */
75 
76 /* Defined in svr4.h for host compilers.  */
77 /* #define MD_STARTFILE_PREFIX "" */
78 
79 
80 /* Run-time target specifications */
81 
82 #define TARGET_CPU_CPP_BUILTINS()		\
83   do						\
84     {						\
85       builtin_define ("__D30V__");		\
86       builtin_assert ("machine=d30v");		\
87     }						\
88   while (0)
89 
90 /* This declaration should be present.  */
91 extern int target_flags;
92 
93 #define MASK_NO_COND_MOVE	0x00000001	/* disable conditional moves */
94 
95 #define MASK_DEBUG_ARG		0x10000000	/* debug argument handling */
96 #define MASK_DEBUG_STACK	0x20000000	/* debug stack allocations */
97 #define MASK_DEBUG_ADDR		0x40000000	/* debug GO_IF_LEGITIMATE_ADDRESS */
98 
99 #define TARGET_NO_COND_MOVE	(target_flags & MASK_NO_COND_MOVE)
100 #define TARGET_DEBUG_ARG	(target_flags & MASK_DEBUG_ARG)
101 #define TARGET_DEBUG_STACK	(target_flags & MASK_DEBUG_STACK)
102 #define TARGET_DEBUG_ADDR	(target_flags & MASK_DEBUG_ADDR)
103 
104 #define TARGET_COND_MOVE	(! TARGET_NO_COND_MOVE)
105 
106 /* Default switches used.  */
107 #ifndef TARGET_DEFAULT
108 #define TARGET_DEFAULT 0
109 #endif
110 
111 #define TARGET_SWITCHES							\
112 {									\
113   { "cond-move",	-MASK_NO_COND_MOVE,				\
114       N_("Enable use of conditional move instructions") },		\
115 									\
116   { "no-cond-move",	MASK_NO_COND_MOVE,				\
117       N_("Disable use of conditional move instructions") },		\
118 									\
119   { "debug-arg",	 MASK_DEBUG_ARG,				\
120       N_("Debug argument support in compiler") },			\
121 									\
122   { "debug-stack",	 MASK_DEBUG_STACK,				\
123       N_("Debug stack support in compiler") },				\
124 									\
125   { "debug-addr",	 MASK_DEBUG_ADDR,				\
126       N_("Debug memory address support in compiler") },			\
127 									\
128   { "asm-optimize",	 0,						\
129       N_("Make adjacent short instructions parallel if possible") },	\
130 									\
131   { "no-asm-optimize",	 0,						\
132       N_("Do not make adjacent short instructions parallel") },	\
133 									\
134   { "extmem",		 0,						\
135       N_("Link programs/data to be in external memory by default") },	\
136 									\
137   { "extmemory",	 0,						\
138       N_("Link programs/data to be in external memory by default") },	\
139 									\
140   { "onchip",		 0,						\
141       N_("Link programs/data to be in onchip memory by default") },	\
142 									\
143   { "",			 TARGET_DEFAULT, "" },				\
144 }
145 
146 #define TARGET_OPTIONS							\
147 {									\
148   {"branch-cost=",  &d30v_branch_cost_string,				\
149      N_("Change the branch costs within the compiler") },		\
150 									\
151   {"cond-exec=",    &d30v_cond_exec_string,				\
152      N_("Change the threshold for conversion to conditional execution") }, \
153 }
154 
155 #define TARGET_VERSION fprintf (stderr, " d30v")
156 
157 #define OVERRIDE_OPTIONS override_options ()
158 
159 #define CAN_DEBUG_WITHOUT_FP
160 
161 
162 /* Storage Layout */
163 
164 #define BITS_BIG_ENDIAN 1
165 
166 #define BYTES_BIG_ENDIAN 1
167 
168 #define WORDS_BIG_ENDIAN 1
169 
170 #define UNITS_PER_WORD 4
171 
172 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)				\
173 do {									\
174   if (GET_MODE_CLASS (MODE) == MODE_INT					\
175       && GET_MODE_SIZE (MODE) < 4)					\
176     (MODE) = SImode;							\
177 } while (0)
178 
179 #define PARM_BOUNDARY 32
180 
181 #define STACK_BOUNDARY 64
182 
183 #define FUNCTION_BOUNDARY 64
184 
185 #define BIGGEST_ALIGNMENT 64
186 
187 /* Defined in svr4.h.  */
188 /* #define MAX_OFILE_ALIGNMENT */
189 
190 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
191   (TREE_CODE (TYPE) == ARRAY_TYPE		\
192    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
193    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
194 
195 #define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
196   (TREE_CODE (EXP) == STRING_CST	\
197    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
198 
199 #define STRICT_ALIGNMENT 1
200 
201 /* Defined in svr4.h.  */
202 
203 #define PCC_BITFIELD_TYPE_MATTERS 1
204 
205 /* Layout of Source Language Data Types */
206 
207 #define INT_TYPE_SIZE 32
208 
209 #define SHORT_TYPE_SIZE 16
210 
211 #define LONG_TYPE_SIZE 32
212 
213 #define LONG_LONG_TYPE_SIZE 64
214 
215 #define FLOAT_TYPE_SIZE 32
216 
217 #define DOUBLE_TYPE_SIZE 64
218 
219 #define LONG_DOUBLE_TYPE_SIZE 64
220 
221 #define DEFAULT_SIGNED_CHAR 1
222 
223 /* Defined in svr4.h.  */
224 /* #define SIZE_TYPE */
225 
226 /* Defined in svr4.h.  */
227 /* #define PTRDIFF_TYPE */
228 
229 /* Defined in svr4.h.  */
230 /* #define WCHAR_TYPE */
231 
232 /* Defined in svr4.h.  */
233 /* #define WCHAR_TYPE_SIZE */
234 
235 
236 /* D30V register layout.  */
237 
238 /* Return true if a value is inside a range */
239 #define IN_RANGE_P(VALUE, LOW, HIGH) \
240   (((unsigned)((VALUE) - (LOW))) <= ((unsigned)((HIGH) - (LOW))))
241 
242 /* General purpose registers.  */
243 #define GPR_FIRST	0			/* First gpr */
244 #define GPR_LAST	(GPR_FIRST + 63)	/* Last gpr */
245 #define GPR_R0		GPR_FIRST		/* R0, constant 0 */
246 #define GPR_ARG_FIRST	(GPR_FIRST + 2)		/* R2, first argument reg */
247 #define GPR_ARG_LAST	(GPR_FIRST + 17)	/* R17, last argument reg */
248 #define GPR_RET_VALUE	GPR_ARG_FIRST		/* R2, function return reg */
249 #define GPR_ATMP_FIRST	(GPR_FIRST + 20)	/* R20, tmp to save accs */
250 #define GPR_ATMP_LAST	(GPR_FIRST + 21)	/* R21, tmp to save accs */
251 #define GPR_STACK_TMP	(GPR_FIRST + 22)	/* R22, tmp for saving stack */
252 #define GPR_RES_FIRST	(GPR_FIRST + 32)	/* R32, first reserved reg */
253 #define GPR_RES_LAST	(GPR_FIRST + 35)	/* R35, last reserved reg */
254 #define GPR_FP		(GPR_FIRST + 61)	/* Frame pointer */
255 #define GPR_LINK	(GPR_FIRST + 62)	/* Return address register */
256 #define GPR_SP		(GPR_FIRST + 63)	/* Stack pointer */
257 
258 /* Argument register that is eliminated in favor of the frame and/or stack
259    pointer.  Also add register to point to where the return address is
260    stored.  */
261 #define SPECIAL_REG_FIRST		(GPR_LAST + 1)
262 #define SPECIAL_REG_LAST		(SPECIAL_REG_FIRST)
263 #define ARG_POINTER_REGNUM		(SPECIAL_REG_FIRST + 0)
264 #define SPECIAL_REG_P(R)		((R) == SPECIAL_REG_FIRST)
265 
266 #define GPR_OR_SPECIAL_REG_P(R)		IN_RANGE_P (R, GPR_FIRST, SPECIAL_REG_LAST)
267 #define GPR_P(R)			IN_RANGE_P (R, GPR_FIRST, GPR_LAST)
268 #define GPR_OR_PSEUDO_P(R)		(GPR_OR_SPECIAL_REG_P (R)	\
269 					 || (R) >= FIRST_PSEUDO_REGISTER)
270 
271 /* Flag bits.  */
272 #define FLAG_FIRST	(SPECIAL_REG_LAST + 1)	/* First flag */
273 #define FLAG_LAST	(FLAG_FIRST + 7)	/* Last flag */
274 #define FLAG_F0		(FLAG_FIRST)		/* F0, used in prediction */
275 #define FLAG_F1		(FLAG_FIRST + 1)	/* F1, used in prediction */
276 #define FLAG_F2		(FLAG_FIRST + 2)	/* F2, general flag */
277 #define FLAG_F3		(FLAG_FIRST + 3)	/* F3, general flag */
278 #define FLAG_SAT	(FLAG_FIRST + 4)	/* F4, saturation flag */
279 #define FLAG_OVERFLOW	(FLAG_FIRST + 5)	/* F5, overflow flag */
280 #define FLAG_ACC_OVER	(FLAG_FIRST + 6)	/* F6, accumulated overflow */
281 #define FLAG_CARRY	(FLAG_FIRST + 7)	/* F7, carry/borrow flag */
282 #define FLAG_BORROW	FLAG_CARRY
283 
284 #define FLAG_P(R)		IN_RANGE_P (R, FLAG_FIRST, FLAG_LAST)
285 #define FLAG_OR_PSEUDO_P(R)	(FLAG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
286 
287 #define BR_FLAG_P(R)		IN_RANGE_P (R, FLAG_F0, FLAG_F1)
288 #define BR_FLAG_OR_PSEUDO_P(R)	(BR_FLAG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
289 
290 /* Accumulators */
291 #define ACCUM_FIRST	(FLAG_LAST + 1)		/* First accumulator */
292 #define ACCUM_A0	ACCUM_FIRST		/* Register A0 */
293 #define ACCUM_A1	(ACCUM_FIRST + 1)	/* Register A1 */
294 #define ACCUM_LAST	(ACCUM_FIRST + 1)	/* Last accumulator */
295 
296 #define ACCUM_P(R)		IN_RANGE_P (R, ACCUM_FIRST, ACCUM_LAST)
297 #define ACCUM_OR_PSEUDO_P(R)	(ACCUM_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
298 
299 /* Special registers.  Note, we only define the registers that can actually
300    be used.  */
301 #define CR_FIRST	(ACCUM_LAST + 1)	/* First CR */
302 #define CR_LAST		(CR_FIRST + 14)		/* Last CR */
303 #define CR_PSW		(CR_FIRST + 0)		/* CR0, Program status word */
304 #define CR_BPSW		(CR_FIRST + 1)		/* CR1, Backup PSW */
305 #define CR_PC		(CR_FIRST + 2)		/* CR2, Program counter */
306 #define CR_BPC		(CR_FIRST + 3)		/* CR3, Backup PC */
307 #define CR_DPSW		(CR_FIRST + 4)		/* CR4, Debug PSW */
308 #define CR_DPC		(CR_FIRST + 5)		/* CR5, Debug PC */
309 #define CR_RPT_C	(CR_FIRST + 6)		/* CR7, loop count register */
310 #define CR_RPT_S	(CR_FIRST + 7)		/* CR8, loop start address */
311 #define CR_RPT_E	(CR_FIRST + 8)		/* CR9, loop end address */
312 #define CR_MOD_S	(CR_FIRST + 9)		/* CR10, modulo address start*/
313 #define CR_MOD_E	(CR_FIRST + 10)		/* CR11, modulo address */
314 #define CR_IBA		(CR_FIRST + 11)		/* CR14, Interrupt break addr */
315 #define CR_EIT_VB	(CR_FIRST + 12)		/* CR15, EIT vector address */
316 #define CR_INT_S	(CR_FIRST + 13)		/* CR16, Interrupt status */
317 #define CR_INT_M	(CR_FIRST + 14)		/* CR17, Interrupt mask */
318 
319 #define CR_P(R)			IN_RANGE_P (R, CR_FIRST, CR_LAST)
320 #define CR_OR_PSEUDO_P(R)	(CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
321 
322 
323 /* Register Basics */
324 
325 /* Number of hardware registers known to the compiler.  They receive numbers 0
326    through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
327    really is assigned the number `FIRST_PSEUDO_REGISTER'.  */
328 #define FIRST_PSEUDO_REGISTER (CR_LAST + 1)
329 
330 /* An initializer that says which registers are used for fixed purposes all
331    throughout the compiled code and are therefore not available for general
332    allocation.  These would include the stack pointer, the frame pointer
333    (except on machines where that can be used as a general register when no
334    frame pointer is needed), the program counter on machines where that is
335    considered one of the addressable registers, and any other numbered register
336    with a standard use.
337 
338    This information is expressed as a sequence of numbers, separated by commas
339    and surrounded by braces.  The Nth number is 1 if register N is fixed, 0
340    otherwise.
341 
342    The table initialized from this macro, and the table initialized by the
343    following one, may be overridden at run time either automatically, by the
344    actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
345    command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'.  */
346 #define FIXED_REGISTERS							\
347 {									\
348   1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* R0  - R15 */	\
349   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,  /* R16 - R31 */	\
350   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* R32 - R47 */	\
351   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,  /* R48 - R63 */	\
352   1,						   /* ARG ptr */	\
353   0, 0, 0, 0, 1, 1, 1, 1,			   /* F0 - F7 */	\
354   0, 0,						   /* A0 - A1 */	\
355   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	   /* CRs */		\
356 }
357 
358 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
359    general) by function calls as well as for fixed registers.  This macro
360    therefore identifies the registers that are not available for general
361    allocation of values that must live across function calls.
362 
363    If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
364    saves it on function entry and restores it on function exit, if the register
365    is used within the function.  */
366 #define CALL_USED_REGISTERS		        			\
367 {					        			\
368   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* R0  - R15 */	\
369   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* R16 - R31 */	\
370   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* R32 - R47 */	\
371   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,  /* R48 - R63 */	\
372   1,						   /* ARG ptr */	\
373   1, 1, 1, 1, 1, 1, 1, 1,			   /* F0 - F7 */	\
374   1, 0,						   /* A0 - A1 */	\
375   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	   /* CRs */		\
376 }
377 
378 /* Zero or more C statements that may conditionally modify two variables
379    `fixed_regs' and `call_used_regs' (both of type `char []') after they have
380    been initialized from the two preceding macros.
381 
382    This is necessary in case the fixed or call-clobbered registers depend on
383    target flags.
384 
385    You need not define this macro if it has no work to do.
386 
387    If the usage of an entire class of registers depends on the target flags,
388    you may indicate this to GCC by using this macro to modify `fixed_regs' and
389    `call_used_regs' to 1 for each of the registers in the classes which should
390    not be used by GCC.  Also define the macro `REG_CLASS_FROM_LETTER' to return
391    `NO_REGS' if it is called with a letter for a class that shouldn't be used.
392 
393    (However, if this class is not included in `GENERAL_REGS' and all of the
394    insn patterns whose constraints permit this class are controlled by target
395    switches, then GCC will automatically avoid using these registers when the
396    target switches are opposed to them.)  */
397 /* #define CONDITIONAL_REGISTER_USAGE */
398 
399 /* If this macro is defined and has a nonzero value, it means that `setjmp' and
400    related functions fail to save the registers, or that `longjmp' fails to
401    restore them.  To compensate, the compiler avoids putting variables in
402    registers in functions that use `setjmp'.  */
403 /* #define NON_SAVING_SETJMP */
404 
405 /* Define this macro if the target machine has register windows.  This C
406    expression returns the register number as seen by the called function
407    corresponding to the register number OUT as seen by the calling function.
408    Return OUT if register number OUT is not an outbound register.  */
409 /* #define INCOMING_REGNO(OUT) */
410 
411 /* Define this macro if the target machine has register windows.  This C
412    expression returns the register number as seen by the calling function
413    corresponding to the register number IN as seen by the called function.
414    Return IN if register number IN is not an inbound register.  */
415 /* #define OUTGOING_REGNO(IN) */
416 
417 
418 /* Order of allocation of registers */
419 
420 /* If defined, an initializer for a vector of integers, containing the numbers
421    of hard registers in the order in which GNU CC should prefer to use them
422    (from most preferred to least).
423 
424    If this macro is not defined, registers are used lowest numbered first (all
425    else being equal).
426 
427    One use of this macro is on machines where the highest numbered registers
428    must always be saved and the save-multiple-registers instruction supports
429    only sequences of consecutive registers.  On such machines, define
430    `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
431    allocatable register first.  */
432 
433 #define REG_ALLOC_ORDER							\
434 {									\
435   /* volatile registers */						\
436   GPR_FIRST + 2,    GPR_FIRST + 3,    GPR_FIRST + 4,    GPR_FIRST + 5,	\
437   GPR_FIRST + 6,    GPR_FIRST + 7,    GPR_FIRST + 8,    GPR_FIRST + 9,	\
438   GPR_FIRST + 10,   GPR_FIRST + 11,   GPR_FIRST + 12,   GPR_FIRST + 13,	\
439   GPR_FIRST + 14,   GPR_FIRST + 15,   GPR_FIRST + 16,   GPR_FIRST + 17,	\
440   GPR_FIRST + 18,   GPR_FIRST + 19,   GPR_FIRST + 20,   GPR_FIRST + 21,	\
441   GPR_FIRST + 22,   GPR_FIRST + 23,   GPR_FIRST + 24,   GPR_FIRST + 25, \
442   GPR_FIRST + 1,							\
443 									\
444   /* saved registers */							\
445   GPR_FIRST + 34,   GPR_FIRST + 35,   GPR_FIRST + 36,   GPR_FIRST + 37,	\
446   GPR_FIRST + 38,   GPR_FIRST + 39,   GPR_FIRST + 40,   GPR_FIRST + 41,	\
447   GPR_FIRST + 42,   GPR_FIRST + 43,   GPR_FIRST + 44,   GPR_FIRST + 45,	\
448   GPR_FIRST + 46,   GPR_FIRST + 47,   GPR_FIRST + 48,   GPR_FIRST + 49,	\
449   GPR_FIRST + 50,   GPR_FIRST + 51,   GPR_FIRST + 52,   GPR_FIRST + 53,	\
450   GPR_FIRST + 54,   GPR_FIRST + 55,   GPR_FIRST + 56,   GPR_FIRST + 57,	\
451   GPR_FIRST + 58,   GPR_FIRST + 59,   GPR_FIRST + 60,   GPR_FIRST + 61,	\
452   GPR_FIRST + 62,							\
453 									\
454   /* flags */								\
455   FLAG_F2,          FLAG_F3,          FLAG_F0,          FLAG_F1,	\
456   FLAG_SAT,         FLAG_OVERFLOW,    FLAG_ACC_OVER,    FLAG_CARRY,	\
457 									\
458   /* accumultors */							\
459   ACCUM_FIRST + 0,  ACCUM_FIRST + 1,					\
460 									\
461   /* fixed registers */							\
462   GPR_FIRST + 0,    GPR_FIRST + 26,   GPR_FIRST + 27,   GPR_FIRST + 28,	\
463   GPR_FIRST + 29,   GPR_FIRST + 30,   GPR_FIRST + 31,   GPR_FIRST + 32,	\
464   GPR_FIRST + 33,   GPR_FIRST + 63,					\
465   CR_PSW,	    CR_BPSW,	      CR_PC,		CR_BPC,		\
466   CR_DPSW,	    CR_DPC,	      CR_RPT_C,		CR_RPT_S,	\
467   CR_RPT_E,	    CR_MOD_S,	      CR_MOD_E,		CR_IBA,		\
468   CR_EIT_VB,	    CR_INT_S,	      CR_INT_M,				\
469   ARG_POINTER_REGNUM,							\
470 }
471 
472 /* A C statement (sans semicolon) to choose the order in which to allocate hard
473    registers for pseudo-registers local to a basic block.
474 
475    Store the desired register order in the array `reg_alloc_order'.  Element 0
476    should be the register to allocate first; element 1, the next register; and
477    so on.
478 
479    The macro body should not assume anything about the contents of
480    `reg_alloc_order' before execution of the macro.
481 
482    On most machines, it is not necessary to define this macro.  */
483 /* #define ORDER_REGS_FOR_LOCAL_ALLOC */
484 
485 
486 /* How Values Fit in Registers */
487 
488 /* A C expression for the number of consecutive hard registers, starting at
489    register number REGNO, required to hold a value of mode MODE.
490 
491    On a machine where all registers are exactly one word, a suitable definition
492    of this macro is
493 
494         #define HARD_REGNO_NREGS(REGNO, MODE)            \
495            ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1)  \
496             / UNITS_PER_WORD))  */
497 
498 #define HARD_REGNO_NREGS(REGNO, MODE)					\
499 (ACCUM_P (REGNO) ? ((GET_MODE_SIZE (MODE) + 2*UNITS_PER_WORD - 1)	\
500 		    / (2*UNITS_PER_WORD))				\
501 		 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1)		\
502 		    / UNITS_PER_WORD))
503 
504 /* A C expression that is nonzero if it is permissible to store a value of mode
505    MODE in hard register number REGNO (or in several registers starting with
506    that one).  For a machine where all registers are equivalent, a suitable
507    definition is
508 
509         #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
510 
511    It is not necessary for this macro to check for the numbers of fixed
512    registers, because the allocation mechanism considers them to be always
513    occupied.
514 
515    On some machines, double-precision values must be kept in even/odd register
516    pairs.  The way to implement that is to define this macro to reject odd
517    register numbers for such modes.
518 
519    The minimum requirement for a mode to be OK in a register is that the
520    `movMODE' instruction pattern support moves between the register and any
521    other hard register for which the mode is OK; and that moving a value into
522    the register and back out not alter it.
523 
524    Since the same instruction used to move `SImode' will work for all narrower
525    integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
526    to distinguish between these modes, provided you define patterns `movhi',
527    etc., to take advantage of this.  This is useful because of the interaction
528    between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
529    all integer modes to be tieable.
530 
531    Many machines have special registers for floating point arithmetic.  Often
532    people assume that floating point machine modes are allowed only in floating
533    point registers.  This is not true.  Any registers that can hold integers
534    can safely *hold* a floating point machine mode, whether or not floating
535    arithmetic can be done on it in those registers.  Integer move instructions
536    can be used to move the values.
537 
538    On some machines, though, the converse is true: fixed-point machine modes
539    may not go in floating registers.  This is true if the floating registers
540    normalize any value stored in them, because storing a non-floating value
541    there would garble it.  In this case, `HARD_REGNO_MODE_OK' should reject
542    fixed-point machine modes in floating registers.  But if the floating
543    registers do not automatically normalize, if you can store any bit pattern
544    in one and retrieve it unchanged without a trap, then any machine mode may
545    go in a floating register, so you can define this macro to say so.
546 
547    The primary significance of special floating registers is rather that they
548    are the registers acceptable in floating point arithmetic instructions.
549    However, this is of no concern to `HARD_REGNO_MODE_OK'.  You handle it by
550    writing the proper constraints for those instructions.
551 
552    On some machines, the floating registers are especially slow to access, so
553    that it is better to store a value in a stack frame than in such a register
554    if floating point arithmetic is not being done.  As long as the floating
555    registers are not in class `GENERAL_REGS', they will not be used unless some
556    pattern's constraint asks for one.  */
557 
558 extern unsigned char hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
559 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok[ (int)MODE ][ REGNO ]
560 
561 /* A C expression that is nonzero if it is desirable to choose register
562    allocation so as to avoid move instructions between a value of mode MODE1
563    and a value of mode MODE2.
564 
565    If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
566    ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
567    zero.  */
568 
569 extern unsigned char modes_tieable_p[];
570 #define MODES_TIEABLE_P(MODE1, MODE2) \
571   modes_tieable_p[ (((int)(MODE1)) * (NUM_MACHINE_MODES)) + (int)(MODE2) ]
572 
573 /* Define this macro if the compiler should avoid copies to/from CCmode
574    registers.  You should only define this macro if support fo copying to/from
575    CCmode is incomplete.  */
576 
577 /* On the D30V, copying to/from CCmode is complete, but since there are only
578    two CC registers usable for conditional tests, this helps gcse not compound
579    the reload problem.  */
580 #define AVOID_CCMODE_COPIES
581 
582 
583 /* Handling Leaf Functions */
584 
585 /* A C initializer for a vector, indexed by hard register number, which
586    contains 1 for a register that is allowable in a candidate for leaf function
587    treatment.
588 
589    If leaf function treatment involves renumbering the registers, then the
590    registers marked here should be the ones before renumbering--those that GNU
591    CC would ordinarily allocate.  The registers which will actually be used in
592    the assembler code, after renumbering, should not be marked with 1 in this
593    vector.
594 
595    Define this macro only if the target machine offers a way to optimize the
596    treatment of leaf functions.  */
597 /* #define LEAF_REGISTERS */
598 
599 /* A C expression whose value is the register number to which REGNO should be
600    renumbered, when a function is treated as a leaf function.
601 
602    If REGNO is a register number which should not appear in a leaf function
603    before renumbering, then the expression should yield -1, which will cause
604    the compiler to abort.
605 
606    Define this macro only if the target machine offers a way to optimize the
607    treatment of leaf functions, and registers need to be renumbered to do this.  */
608 /* #define LEAF_REG_REMAP(REGNO) */
609 
610 
611 /* Register Classes */
612 
613 /* An enumeral type that must be defined with all the register class names as
614    enumeral values.  `NO_REGS' must be first.  `ALL_REGS' must be the last
615    register class, followed by one more enumeral value, `LIM_REG_CLASSES',
616    which is not a register class but rather tells how many classes there are.
617 
618    Each register class has a number, which is the value of casting the class
619    name to type `int'.  The number serves as an index in many of the tables
620    described below.  */
621 enum reg_class
622 {
623   NO_REGS,
624   REPEAT_REGS,
625   CR_REGS,
626   ACCUM_REGS,
627   OTHER_FLAG_REGS,
628   F0_REGS,
629   F1_REGS,
630   BR_FLAG_REGS,
631   FLAG_REGS,
632   EVEN_REGS,
633   GPR_REGS,
634   ALL_REGS,
635   LIM_REG_CLASSES
636 };
637 
638 #define GENERAL_REGS GPR_REGS
639 
640 /* The number of distinct register classes, defined as follows:
641 
642         #define N_REG_CLASSES (int) LIM_REG_CLASSES  */
643 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
644 
645 /* An initializer containing the names of the register classes as C string
646    constants.  These names are used in writing some of the debugging dumps.  */
647 #define REG_CLASS_NAMES							\
648 {									\
649   "NO_REGS",								\
650   "REPEAT_REGS",							\
651   "CR_REGS",								\
652   "ACCUM_REGS",								\
653   "OTHER_FLAG_REGS",							\
654   "F0_REGS",								\
655   "F1_REGS",								\
656   "BR_FLAG_REGS",							\
657   "FLAG_REGS",								\
658   "EVEN_REGS",								\
659   "GPR_REGS",								\
660   "ALL_REGS",								\
661 }
662 
663 /* Create mask bits for 3rd word of REG_CLASS_CONTENTS */
664 #define MASK_WORD3(REG) ((long)1 << ((REG) - 64))
665 
666 #define NO_MASK		0
667 #define REPEAT_MASK	MASK_WORD3 (CR_RPT_C)
668 #define CR_MASK		(MASK_WORD3 (CR_PSW)	 | MASK_WORD3 (CR_BPSW)	  \
669 			 | MASK_WORD3 (CR_PC)	 | MASK_WORD3 (CR_BPC)	  \
670 			 | MASK_WORD3 (CR_DPSW)	 | MASK_WORD3 (CR_DPC)	  \
671 			 | MASK_WORD3 (CR_RPT_C) | MASK_WORD3 (CR_RPT_S)  \
672 			 | MASK_WORD3 (CR_RPT_E) | MASK_WORD3 (CR_MOD_S)  \
673 			 | MASK_WORD3 (CR_MOD_E) | MASK_WORD3 (CR_IBA)	  \
674 			 | MASK_WORD3 (CR_EIT_VB) | MASK_WORD3 (CR_INT_S) \
675 			 | MASK_WORD3 (CR_INT_M))
676 
677 #define ACCUM_MASK	(MASK_WORD3 (ACCUM_A0)	 | MASK_WORD3 (ACCUM_A1))
678 #define OTHER_FLAG_MASK	(MASK_WORD3 (FLAG_F2)	 | MASK_WORD3 (FLAG_F3)	\
679 			 | MASK_WORD3 (FLAG_SAT) | MASK_WORD3 (FLAG_OVERFLOW) \
680 			 | MASK_WORD3 (FLAG_ACC_OVER) | MASK_WORD3 (FLAG_CARRY))
681 
682 #define F0_MASK		MASK_WORD3 (FLAG_F0)
683 #define F1_MASK		MASK_WORD3 (FLAG_F1)
684 #define BR_FLAG_MASK	(F0_MASK | F1_MASK)
685 #define FLAG_MASK	(BR_FLAG_MASK | OTHER_FLAG_MASK)
686 #define SPECIAL_MASK	MASK_WORD3 (ARG_POINTER_REGNUM)
687 
688 #define ALL_MASK	(CR_MASK | ACCUM_MASK | FLAG_MASK | SPECIAL_MASK)
689 
690 /* An initializer containing the contents of the register classes, as integers
691    which are bit masks.  The Nth integer specifies the contents of class N.
692    The way the integer MASK is interpreted is that register R is in the class
693    if `MASK & (1 << R)' is 1.
694 
695    When the machine has more than 32 registers, an integer does not suffice.
696    Then the integers are replaced by sub-initializers, braced groupings
697    containing several integers.  Each sub-initializer must be suitable as an
698    initializer for the type `HARD_REG_SET' which is defined in
699    `hard-reg-set.h'.  */
700 #define REG_CLASS_CONTENTS						\
701 {									\
702   { 0x00000000, 0x00000000, NO_MASK },		/* NO_REGS */		\
703   { 0x00000000, 0x00000000, REPEAT_MASK },	/* REPEAT_REGS */	\
704   { 0x00000000, 0x00000000, CR_MASK },		/* CR_REGS */		\
705   { 0x00000000, 0x00000000, ACCUM_MASK },	/* ACCUM_REGS */	\
706   { 0x00000000, 0x00000000, OTHER_FLAG_MASK },	/* OTHER_FLAG_REGS */	\
707   { 0x00000000, 0x00000000, F0_MASK },		/* F0_REGS */		\
708   { 0x00000000, 0x00000000, F1_MASK },		/* F1_REGS */		\
709   { 0x00000000, 0x00000000, BR_FLAG_MASK },	/* BR_FLAG_REGS */	\
710   { 0x00000000, 0x00000000, FLAG_MASK },	/* FLAG_REGS */		\
711   { 0xfffffffc, 0x3fffffff, NO_MASK },		/* EVEN_REGS */		\
712   { 0xffffffff, 0xffffffff, SPECIAL_MASK },	/* GPR_REGS */		\
713   { 0xffffffff, 0xffffffff, ALL_MASK },		/* ALL_REGS */		\
714 }
715 
716 /* A C expression whose value is a register class containing hard register
717    REGNO.  In general there is more than one such class; choose a class which
718    is "minimal", meaning that no smaller class also contains the register.  */
719 
720 extern enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
721 #define REGNO_REG_CLASS(REGNO) regno_reg_class[ (REGNO) ]
722 
723 /* A macro whose definition is the name of the class to which a valid base
724    register must belong.  A base register is one used in an address which is
725    the register value plus a displacement.  */
726 #define BASE_REG_CLASS GPR_REGS
727 
728 /* A macro whose definition is the name of the class to which a valid index
729    register must belong.  An index register is one used in an address where its
730    value is either multiplied by a scale factor or added to another register
731    (as well as added to a displacement).  */
732 #define INDEX_REG_CLASS GPR_REGS
733 
734 /* A C expression which defines the machine-dependent operand constraint
735    letters for register classes.  If CHAR is such a letter, the value should be
736    the register class corresponding to it.  Otherwise, the value should be
737    `NO_REGS'.  The register letter `r', corresponding to class `GENERAL_REGS',
738    will not be passed to this macro; you do not need to handle it.
739 
740    The following letters are unavailable, due to being used as
741    constraints:
742 	'0'..'9'
743 	'<', '>'
744 	'E', 'F', 'G', 'H'
745 	'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P'
746 	'Q', 'R', 'S', 'T', 'U'
747 	'V', 'X'
748 	'g', 'i', 'm', 'n', 'o', 'p', 'r', 's' */
749 
750 extern enum reg_class reg_class_from_letter[256];
751 #define REG_CLASS_FROM_LETTER(CHAR) reg_class_from_letter[(unsigned char)(CHAR)]
752 
753 /* A C expression which is nonzero if register number NUM is suitable for use
754    as a base register in operand addresses.  It may be either a suitable hard
755    register or a pseudo register that has been allocated such a hard register.  */
756 
757 #define REGNO_OK_FOR_BASE_P(NUM) 					\
758 ((NUM) < FIRST_PSEUDO_REGISTER						\
759  ? GPR_P (NUM)								\
760  : (reg_renumber[NUM] >= 0 && GPR_P (reg_renumber[NUM])))
761 
762 
763 /* A C expression which is nonzero if register number NUM is suitable for use
764    as an index register in operand addresses.  It may be either a suitable hard
765    register or a pseudo register that has been allocated such a hard register.
766 
767    The difference between an index register and a base register is that the
768    index register may be scaled.  If an address involves the sum of two
769    registers, neither one of them scaled, then either one may be labeled the
770    "base" and the other the "index"; but whichever labeling is used must fit
771    the machine's constraints of which registers may serve in each capacity.
772    The compiler will try both labelings, looking for one that is valid, and
773    will reload one or both registers only if neither labeling works.  */
774 
775 #define REGNO_OK_FOR_INDEX_P(NUM)					\
776 ((NUM) < FIRST_PSEUDO_REGISTER						\
777  ? GPR_P (NUM)								\
778  : (reg_renumber[NUM] >= 0 && GPR_P (reg_renumber[NUM])))
779 
780 /* A C expression that places additional restrictions on the register class to
781    use when it is necessary to copy value X into a register in class CLASS.
782    The value is a register class; perhaps CLASS, or perhaps another, smaller
783    class.  On many machines, the following definition is safe:
784 
785         #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
786 
787    Sometimes returning a more restrictive class makes better code.  For
788    example, on the 68000, when X is an integer constant that is in range for a
789    `moveq' instruction, the value of this macro is always `DATA_REGS' as long
790    as CLASS includes the data registers.  Requiring a data register guarantees
791    that a `moveq' will be used.
792 
793    If X is a `const_double', by returning `NO_REGS' you can force X into a
794    memory constant.  This is useful on certain machines where immediate
795    floating values cannot be loaded into certain kinds of registers.  */
796 #define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
797 
798 /* Like `PREFERRED_RELOAD_CLASS', but for output reloads instead of input
799    reloads.  If you don't define this macro, the default is to use CLASS,
800    unchanged.  */
801 /* #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) */
802 
803 /* A C expression that places additional restrictions on the register class to
804    use when it is necessary to be able to hold a value of mode MODE in a reload
805    register for which class CLASS would ordinarily be used.
806 
807    Unlike `PREFERRED_RELOAD_CLASS', this macro should be used when there are
808    certain modes that simply can't go in certain reload classes.
809 
810    The value is a register class; perhaps CLASS, or perhaps another, smaller
811    class.
812 
813    Don't define this macro unless the target machine has limitations which
814    require the macro to do something nontrivial.  */
815 /* #define LIMIT_RELOAD_CLASS(MODE, CLASS) */
816 
817 /* Many machines have some registers that cannot be copied directly to or from
818    memory or even from other types of registers.  An example is the `MQ'
819    register, which on most machines, can only be copied to or from general
820    registers, but not memory.  Some machines allow copying all registers to and
821    from memory, but require a scratch register for stores to some memory
822    locations (e.g., those with symbolic address on the RT, and those with
823    certain symbolic address on the SPARC when compiling PIC).  In some cases,
824    both an intermediate and a scratch register are required.
825 
826    You should define these macros to indicate to the reload phase that it may
827    need to allocate at least one register for a reload in addition to the
828    register to contain the data.  Specifically, if copying X to a register
829    CLASS in MODE requires an intermediate register, you should define
830    `SECONDARY_INPUT_RELOAD_CLASS' to return the largest register class all of
831    whose registers can be used as intermediate registers or scratch registers.
832 
833    If copying a register CLASS in MODE to X requires an intermediate or scratch
834    register, `SECONDARY_OUTPUT_RELOAD_CLASS' should be defined to return the
835    largest register class required.  If the requirements for input and output
836    reloads are the same, the macro `SECONDARY_RELOAD_CLASS' should be used
837    instead of defining both macros identically.
838 
839    The values returned by these macros are often `GENERAL_REGS'.  Return
840    `NO_REGS' if no spare register is needed; i.e., if X can be directly copied
841    to or from a register of CLASS in MODE without requiring a scratch register.
842    Do not define this macro if it would always return `NO_REGS'.
843 
844    If a scratch register is required (either with or without an intermediate
845    register), you should define patterns for `reload_inM' or `reload_outM', as
846    required (*note Standard Names::..  These patterns, which will normally be
847    implemented with a `define_expand', should be similar to the `movM'
848    patterns, except that operand 2 is the scratch register.
849 
850    Define constraints for the reload register and scratch register that contain
851    a single register class.  If the original reload register (whose class is
852    CLASS) can meet the constraint given in the pattern, the value returned by
853    these macros is used for the class of the scratch register.  Otherwise, two
854    additional reload registers are required.  Their classes are obtained from
855    the constraints in the insn pattern.
856 
857    X might be a pseudo-register or a `subreg' of a pseudo-register, which could
858    either be in a hard register or in memory.  Use `true_regnum' to find out;
859    it will return -1 if the pseudo is in memory and the hard register number if
860    it is in a register.
861 
862    These macros should not be used in the case where a particular class of
863    registers can only be copied to memory and not to another class of
864    registers.  In that case, secondary reload registers are not needed and
865    would not be helpful.  Instead, a stack location must be used to perform the
866    copy and the `movM' pattern should use memory as an intermediate storage.
867    This case often occurs between floating-point and general registers.  */
868 
869 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X)				\
870 ((CLASS) == GPR_REGS		? NO_REGS				\
871  : (CLASS) == EVEN_REGS		? NO_REGS				\
872  : (CLASS) == ACCUM_REGS	? EVEN_REGS				\
873  :				  GPR_REGS)
874 
875 /* #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) */
876 /* #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) */
877 
878 /* Certain machines have the property that some registers cannot be copied to
879    some other registers without using memory.  Define this macro on those
880    machines to be a C expression that is nonzero if objects of mode M in
881    registers of CLASS1 can only be copied to registers of class CLASS2 by
882    storing a register of CLASS1 into memory and loading that memory location
883    into a register of CLASS2.
884 
885    Do not define this macro if its value would always be zero.  */
886 /* #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, M) */
887 
888 /* Normally when `SECONDARY_MEMORY_NEEDED' is defined, the compiler allocates a
889    stack slot for a memory location needed for register copies.  If this macro
890    is defined, the compiler instead uses the memory location defined by this
891    macro.
892 
893    Do not define this macro if you do not define
894    `SECONDARY_MEMORY_NEEDED'.  */
895 /* #define SECONDARY_MEMORY_NEEDED_RTX(MODE) */
896 
897 /* When the compiler needs a secondary memory location to copy between two
898    registers of mode MODE, it normally allocates sufficient memory to hold a
899    quantity of `BITS_PER_WORD' bits and performs the store and load operations
900    in a mode that many bits wide and whose class is the same as that of MODE.
901 
902    This is right thing to do on most machines because it ensures that all bits
903    of the register are copied and prevents accesses to the registers in a
904    narrower mode, which some machines prohibit for floating-point registers.
905 
906    However, this default behavior is not correct on some machines, such as the
907    DEC Alpha, that store short integers in floating-point registers differently
908    than in integer registers.  On those machines, the default widening will not
909    work correctly and you must define this macro to suppress that widening in
910    some cases.  See the file `alpha.h' for details.
911 
912    Do not define this macro if you do not define `SECONDARY_MEMORY_NEEDED' or
913    if widening MODE to a mode that is `BITS_PER_WORD' bits wide is correct for
914    your machine.  */
915 /* #define SECONDARY_MEMORY_NEEDED_MODE(MODE) */
916 
917 /* Normally the compiler avoids choosing registers that have been explicitly
918    mentioned in the rtl as spill registers (these registers are normally those
919    used to pass parameters and return values).  However, some machines have so
920    few registers of certain classes that there would not be enough registers to
921    use as spill registers if this were done.
922 
923    Define `SMALL_REGISTER_CLASSES' to be an expression with a nonzero value on
924    these machines.  When this macro has a nonzero value, the compiler allows
925    registers explicitly used in the rtl to be used as spill registers but
926    avoids extending the lifetime of these registers.
927 
928    It is always safe to define this macro with a nonzero value, but if you
929    unnecessarily define it, you will reduce the amount of optimizations that
930    can be performed in some cases.  If you do not define this macro with a
931    nonzero value when it is required, the compiler will run out of spill
932    registers and print a fatal error message.  For most machines, you should
933    not define this macro at all.  */
934 /* #define SMALL_REGISTER_CLASSES */
935 
936 /* A C expression whose value is nonzero if pseudos that have been assigned to
937    registers of class CLASS would likely be spilled because registers of CLASS
938    are needed for spill registers.
939 
940    The default value of this macro returns 1 if CLASS has exactly one register
941    and zero otherwise.  On most machines, this default should be used.  Only
942    define this macro to some other expression if pseudo allocated by
943    `local-alloc.c' end up in memory because their hard registers were needed
944    for spill registers.  If this macro returns nonzero for those classes, those
945    pseudos will only be allocated by `global.c', which knows how to reallocate
946    the pseudo to another register.  If there would not be another register
947    available for reallocation, you should not change the definition of this
948    macro since the only effect of such a definition would be to slow down
949    register allocation.  */
950 #define CLASS_LIKELY_SPILLED_P(CLASS) \
951   ((CLASS) != GPR_REGS && (CLASS) != EVEN_REGS)
952 
953 /* A C expression for the maximum number of consecutive registers of
954    class CLASS needed to hold a value of mode MODE.
955 
956    This is closely related to the macro `HARD_REGNO_NREGS'.  In fact, the value
957    of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
958    `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
959 
960    This macro helps control the handling of multiple-word values in
961    the reload pass.  */
962 
963 #define CLASS_MAX_NREGS(CLASS, MODE)					\
964 (((CLASS) == ACCUM_REGS)						\
965  ? ((GET_MODE_SIZE (MODE) + 8 - 1) / 8)					\
966  : ((GET_MODE_SIZE (MODE) + 4 - 1) / 4))
967 
968 /* A C expression that defines the machine-dependent operand constraint letters
969    (`I', `J', `K', .. 'P') that specify particular ranges of integer values.
970    If C is one of those letters, the expression should check that VALUE, an
971    integer, is in the appropriate range and return 1 if so, 0 otherwise.  If C
972    is not one of those letters, the value should be 0 regardless of VALUE.  */
973 #define CONST_OK_FOR_LETTER_P(VALUE, C)					\
974 ((C) == 'I'	? IN_RANGE_P (VALUE, -32, 31)				\
975  : (C) == 'J'	? IN_RANGE_P (VALUE, 0, 31)				\
976  : (C) == 'K'	? IN_RANGE_P (exact_log2 (VALUE), 0, 31)		\
977  : (C) == 'L'	? IN_RANGE_P (exact_log2 (~ (VALUE)), 0, 31)		\
978  : (C) == 'M'	? ((VALUE) == 32)					\
979  : (C) == 'N'	? ((VALUE) == 1)					\
980  : (C) == 'O'	? ((VALUE) == 0)					\
981  : (C) == 'P'	? IN_RANGE_P (VALUE, 32, 63)				\
982  :		  FALSE)
983 
984 /* A C expression that defines the machine-dependent operand constraint letters
985    (`G', `H') that specify particular ranges of `const_double' values.
986 
987    If C is one of those letters, the expression should check that VALUE, an RTX
988    of code `const_double', is in the appropriate range and return 1 if so, 0
989    otherwise.  If C is not one of those letters, the value should be 0
990    regardless of VALUE.
991 
992    `const_double' is used for all floating-point constants and for `DImode'
993    fixed-point constants.  A given letter can accept either or both kinds of
994    values.  It can use `GET_MODE' to distinguish between these kinds.  */
995 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)				\
996 ((C) == 'G'	? (CONST_DOUBLE_LOW (VALUE) == 0			\
997 		   && CONST_DOUBLE_HIGH (VALUE) == 0)			\
998  : (C) == 'H'	? FALSE							\
999  :		  FALSE)
1000 
1001 /* A C expression that defines the optional machine-dependent constraint
1002    letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1003    types of operands, usually memory references, for the target machine.
1004    Normally this macro will not be defined.  If it is required for a particular
1005    target machine, it should return 1 if VALUE corresponds to the operand type
1006    represented by the constraint letter C.  If C is not defined as an extra
1007    constraint, the value returned should be 0 regardless of VALUE.
1008 
1009    For example, on the ROMP, load instructions cannot have their output in r0
1010    if the memory reference contains a symbolic address.  Constraint letter `Q'
1011    is defined as representing a memory address that does *not* contain a
1012    symbolic address.  An alternative is specified with a `Q' constraint on the
1013    input and `r' on the output.  The next alternative specifies `m' on the
1014    input and a register class that does not include r0 on the output.  */
1015 
1016 #define EXTRA_CONSTRAINT(VALUE, C)					\
1017 (((C) == 'Q')	? short_memory_operand ((VALUE), GET_MODE (VALUE))	\
1018  : ((C) == 'R')	? single_reg_memory_operand ((VALUE), GET_MODE (VALUE))	\
1019  : ((C) == 'S')	? const_addr_memory_operand ((VALUE), GET_MODE (VALUE))	\
1020  : ((C) == 'T')	? long_memory_operand ((VALUE), GET_MODE (VALUE))	\
1021  : ((C) == 'U')	? FALSE							\
1022  :		  FALSE)
1023 
1024 
1025 /* Basic Stack Layout */
1026 
1027 /* Stack layout */
1028 
1029 /* Structure used to define the d30v stack */
1030 typedef struct d30v_stack {
1031   int varargs_p;		/* whether this is a varargs function */
1032   int varargs_size;		/* size to hold varargs args passed in regs */
1033   int vars_size;		/* variable save area size */
1034   int parm_size;		/* outgoing parameter size */
1035   int gpr_size;			/* size of saved GPR registers */
1036   int accum_size;		/* size of saved ACCUM registers */
1037   int total_size;		/* total bytes allocated for stack */
1038 				/* which registers are to be saved */
1039   int save_offset;		/* offset from new sp to start saving vars at */
1040   int link_offset;		/* offset r62 is saved at */
1041   int memrefs_varargs;		/* # of 2 word memory references for varargs */
1042   int memrefs_2words;		/* # of 2 word memory references */
1043   int memrefs_1word;		/* # of 1 word memory references */
1044 				/* 1 for ldw/stw ops; 2 for ld2w/st2w ops */
1045   unsigned char save_p[FIRST_PSEUDO_REGISTER];
1046 } d30v_stack_t;
1047 
1048 /* Define this macro if pushing a word onto the stack moves the stack pointer
1049    to a smaller address.
1050 
1051    When we say, "define this macro if ...," it means that the compiler checks
1052    this macro only with `#ifdef' so the precise definition used does not
1053    matter.  */
1054 #define STACK_GROWS_DOWNWARD 1
1055 
1056 /* Define this macro if the addresses of local variable slots are at negative
1057    offsets from the frame pointer.  */
1058 /* #define FRAME_GROWS_DOWNWARD */
1059 
1060 /* Define this macro if successive arguments to a function occupy decreasing
1061    addresses on the stack.  */
1062 /* #define ARGS_GROW_DOWNWARD */
1063 
1064 /* Offset from the frame pointer to the first local variable slot to be
1065    allocated.
1066 
1067    If `FRAME_GROWS_DOWNWARD', find the next slot's offset by subtracting the
1068    first slot's length from `STARTING_FRAME_OFFSET'.  Otherwise, it is found by
1069    adding the length of the first slot to the value `STARTING_FRAME_OFFSET'.  */
1070 
1071 #define STARTING_FRAME_OFFSET						\
1072   (D30V_ALIGN (current_function_outgoing_args_size,			\
1073 	       (STACK_BOUNDARY / BITS_PER_UNIT)))
1074 
1075 /* Offset from the stack pointer register to the first location at which
1076    outgoing arguments are placed.  If not specified, the default value of zero
1077    is used.  This is the proper value for most machines.
1078 
1079    If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1080    location at which outgoing arguments are placed.  */
1081 /* #define STACK_POINTER_OFFSET */
1082 
1083 /* Offset from the argument pointer register to the first argument's address.
1084    On some machines it may depend on the data type of the function.
1085 
1086    If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1087    argument's address.  */
1088 #define FIRST_PARM_OFFSET(FUNDECL) 0
1089 
1090 /* Offset from the stack pointer register to an item dynamically allocated on
1091    the stack, e.g., by `alloca'.
1092 
1093    The default value for this macro is `STACK_POINTER_OFFSET' plus the length
1094    of the outgoing arguments.  The default is correct for most machines.  See
1095    `function.c' for details.  */
1096 /* #define STACK_DYNAMIC_OFFSET(FUNDECL) */
1097 
1098 /* A C expression whose value is RTL representing the address in a stack frame
1099    where the pointer to the caller's frame is stored.  Assume that FRAMEADDR is
1100    an RTL expression for the address of the stack frame itself.
1101 
1102    If you don't define this macro, the default is to return the value of
1103    FRAMEADDR--that is, the stack frame address is also the address of the stack
1104    word that points to the previous frame.  */
1105 /* #define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) */
1106 
1107 /* If defined, a C expression that produces the machine-specific code to setup
1108    the stack so that arbitrary frames can be accessed.  For example, on the
1109    SPARC, we must flush all of the register windows to the stack before we can
1110    access arbitrary stack frames.  This macro will seldom need to be defined.  */
1111 /* #define SETUP_FRAME_ADDRESSES() */
1112 
1113 /* A C expression whose value is RTL representing the value of the return
1114    address for the frame COUNT steps up from the current frame, after the
1115    prologue.  FRAMEADDR is the frame pointer of the COUNT frame, or the frame
1116    pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
1117    defined.
1118 
1119    The value of the expression must always be the correct address when COUNT is
1120    zero, but may be `NULL_RTX' if there is not way to determine the return
1121    address of other frames.  */
1122 
1123 /* ??? This definition fails for leaf functions.  There is currently no
1124    general solution for this problem.  */
1125 
1126 /* ??? There appears to be no way to get the return address of any previous
1127    frame except by disassembling instructions in the prologue/epilogue.
1128    So currently we support only the current frame.  */
1129 
1130 #define RETURN_ADDR_RTX(COUNT, FRAME)					\
1131   ((COUNT) == 0 ? d30v_return_addr() : const0_rtx)
1132 
1133 /* Define this if the return address of a particular stack frame is
1134    accessed from the frame pointer of the previous stack frame.  */
1135 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1136 
1137 /* A C expression whose value is RTL representing the location of the incoming
1138    return address at the beginning of any function, before the prologue.  This
1139    RTL is either a `REG', indicating that the return value is saved in `REG',
1140    or a `MEM' representing a location in the stack.
1141 
1142    You only need to define this macro if you want to support call frame
1143    debugging information like that provided by DWARF 2.  */
1144 
1145 /* Before the prologue, RA lives in r62.  */
1146 #define INCOMING_RETURN_ADDR_RTX  gen_rtx (REG, Pmode, GPR_LINK)
1147 
1148 /* A C expression whose value is an integer giving the offset, in bytes, from
1149    the value of the stack pointer register to the top of the stack frame at the
1150    beginning of any function, before the prologue.  The top of the frame is
1151    defined to be the value of the stack pointer in the previous frame, just
1152    before the call instruction.
1153 
1154    You only need to define this macro if you want to support call frame
1155    debugging information like that provided by DWARF 2.  */
1156 #define INCOMING_FRAME_SP_OFFSET 0
1157 
1158 /* Initialize data used by insn expanders.  This is called from insn_emit,
1159    once for every function before code is generated.  */
1160 
1161 #define INIT_EXPANDERS  d30v_init_expanders ()
1162 
1163 
1164 /* Stack Checking.  */
1165 
1166 /* A nonzero value if stack checking is done by the configuration files in a
1167    machine-dependent manner.  You should define this macro if stack checking is
1168    require by the ABI of your machine or if you would like to have to stack
1169    checking in some more efficient way than GNU CC's portable approach.  The
1170    default value of this macro is zero.  */
1171 /* #define STACK_CHECK_BUILTIN */
1172 
1173 /* An integer representing the interval at which GNU CC must generate stack
1174    probe instructions.  You will normally define this macro to be no larger
1175    than the size of the "guard pages" at the end of a stack area.  The default
1176    value of 4096 is suitable for most systems.  */
1177 /* #define STACK_CHECK_PROBE_INTERVAL */
1178 
1179 /* An integer which is nonzero if GNU CC should perform the stack probe as a
1180    load instruction and zero if GNU CC should use a store instruction.  The
1181    default is zero, which is the most efficient choice on most systems.  */
1182 /* #define STACK_CHECK_PROBE_LOAD */
1183 
1184 /* The number of bytes of stack needed to recover from a stack overflow, for
1185    languages where such a recovery is supported.  The default value of 75 words
1186    should be adequate for most machines.  */
1187 /* #define STACK_CHECK_PROTECT */
1188 
1189 /* The maximum size of a stack frame, in bytes.  GNU CC will generate probe
1190    instructions in non-leaf functions to ensure at least this many bytes of
1191    stack are available.  If a stack frame is larger than this size, stack
1192    checking will not be reliable and GNU CC will issue a warning.  The default
1193    is chosen so that GNU CC only generates one instruction on most systems.
1194    You should normally not change the default value of this macro.  */
1195 /* #define STACK_CHECK_MAX_FRAME_SIZE */
1196 
1197 /* GNU CC uses this value to generate the above warning message.  It represents
1198    the amount of fixed frame used by a function, not including space for any
1199    callee-saved registers, temporaries and user variables.  You need only
1200    specify an upper bound for this amount and will normally use the default of
1201    four words.  */
1202 /* #define STACK_CHECK_FIXED_FRAME_SIZE */
1203 
1204 /* The maximum size, in bytes, of an object that GNU CC will place in the fixed
1205    area of the stack frame when the user specifies `-fstack-check'.  GNU CC
1206    computed the default from the values of the above macros and you will
1207    normally not need to override that default.  */
1208 /* #define STACK_CHECK_MAX_VAR_SIZE */
1209 
1210 
1211 /* Register That Address the Stack Frame.  */
1212 
1213 /* The register number of the stack pointer register, which must also be a
1214    fixed register according to `FIXED_REGISTERS'.  On most machines, the
1215    hardware determines which register this is.  */
1216 #define STACK_POINTER_REGNUM GPR_SP
1217 
1218 /* The register number of the frame pointer register, which is used to access
1219    automatic variables in the stack frame.  On some machines, the hardware
1220    determines which register this is.  On other machines, you can choose any
1221    register you wish for this purpose.  */
1222 #define FRAME_POINTER_REGNUM GPR_FP
1223 
1224 /* On some machines the offset between the frame pointer and starting offset of
1225    the automatic variables is not known until after register allocation has
1226    been done (for example, because the saved registers are between these two
1227    locations).  On those machines, define `FRAME_POINTER_REGNUM' the number of
1228    a special, fixed register to be used internally until the offset is known,
1229    and define `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
1230    used for the frame pointer.
1231 
1232    You should define this macro only in the very rare circumstances when it is
1233    not possible to calculate the offset between the frame pointer and the
1234    automatic variables until after register allocation has been completed.
1235    When this macro is defined, you must also indicate in your definition of
1236    `ELIMINABLE_REGS' how to eliminate `FRAME_POINTER_REGNUM' into either
1237    `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
1238 
1239    Do not define this macro if it would be the same as `FRAME_POINTER_REGNUM'.  */
1240 /* #define HARD_FRAME_POINTER_REGNUM */
1241 
1242 /* The register number of the arg pointer register, which is used to access the
1243    function's argument list.  On some machines, this is the same as the frame
1244    pointer register.  On some machines, the hardware determines which register
1245    this is.  On other machines, you can choose any register you wish for this
1246    purpose.  If this is not the same register as the frame pointer register,
1247    then you must mark it as a fixed register according to `FIXED_REGISTERS', or
1248    arrange to be able to eliminate it (*note Elimination::.).  */
1249 /* #define ARG_POINTER_REGNUM */
1250 
1251 /* The register number of the return address pointer register, which is used to
1252    access the current function's return address from the stack.  On some
1253    machines, the return address is not at a fixed offset from the frame pointer
1254    or stack pointer or argument pointer.  This register can be defined to point
1255    to the return address on the stack, and then be converted by
1256    `ELIMINABLE_REGS' into either the frame pointer or stack pointer.
1257 
1258    Do not define this macro unless there is no other way to get the return
1259    address from the stack.  */
1260 /* #define RETURN_ADDRESS_POINTER_REGNUM */
1261 
1262 /* Register numbers used for passing a function's static chain pointer.  If
1263    register windows are used, the register number as seen by the called
1264    function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
1265    seen by the calling function is `STATIC_CHAIN_REGNUM'.  If these registers
1266    are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
1267 
1268    The static chain register need not be a fixed register.
1269 
1270    If the static chain is passed in memory, these macros should not be defined;
1271    instead, the next two macros should be defined.  */
1272 
1273 #define STATIC_CHAIN_REGNUM (GPR_FIRST + 18)
1274 /* #define STATIC_CHAIN_INCOMING_REGNUM */
1275 
1276 /* If the static chain is passed in memory, these macros provide rtx giving
1277    `mem' expressions that denote where they are stored.  `STATIC_CHAIN' and
1278    `STATIC_CHAIN_INCOMING' give the locations as seen by the calling and called
1279    functions, respectively.  Often the former will be at an offset from the
1280    stack pointer and the latter at an offset from the frame pointer.
1281 
1282    The variables `stack_pointer_rtx', `frame_pointer_rtx', and
1283    `arg_pointer_rtx' will have been initialized prior to the use of these
1284    macros and should be used to refer to those items.
1285 
1286    If the static chain is passed in a register, the two previous
1287    macros should be defined instead.  */
1288 /* #define STATIC_CHAIN */
1289 /* #define STATIC_CHAIN_INCOMING */
1290 
1291 
1292 /* Eliminating the Frame Pointer and the Arg Pointer */
1293 
1294 /* A C expression which is nonzero if a function must have and use a frame
1295    pointer.  This expression is evaluated in the reload pass.  If its value is
1296    nonzero the function will have a frame pointer.
1297 
1298    The expression can in principle examine the current function and decide
1299    according to the facts, but on most machines the constant 0 or the constant
1300    1 suffices.  Use 0 when the machine allows code to be generated with no
1301    frame pointer, and doing so saves some time or space.  Use 1 when there is
1302    no possible advantage to avoiding a frame pointer.
1303 
1304    In certain cases, the compiler does not know how to produce valid code
1305    without a frame pointer.  The compiler recognizes those cases and
1306    automatically gives the function a frame pointer regardless of what
1307    `FRAME_POINTER_REQUIRED' says.  You don't need to worry about them.
1308 
1309    In a function that does not require a frame pointer, the frame pointer
1310    register can be allocated for ordinary usage, unless you mark it as a fixed
1311    register.  See `FIXED_REGISTERS' for more information.  */
1312 #define FRAME_POINTER_REQUIRED 0
1313 
1314 /* A C statement to store in the variable DEPTH-VAR the difference between the
1315    frame pointer and the stack pointer values immediately after the function
1316    prologue.  The value would be computed from information such as the result
1317    of `get_frame_size ()' and the tables of registers `regs_ever_live' and
1318    `call_used_regs'.
1319 
1320    If `ELIMINABLE_REGS' is defined, this macro will be not be used and need not
1321    be defined.  Otherwise, it must be defined even if `FRAME_POINTER_REQUIRED'
1322    is defined to always be true; in that case, you may set DEPTH-VAR to
1323    anything.  */
1324 /* #define INITIAL_FRAME_POINTER_OFFSET(DEPTH_VAR) */
1325 
1326 /* If defined, this macro specifies a table of register pairs used to eliminate
1327    unneeded registers that point into the stack frame.  If it is not defined,
1328    the only elimination attempted by the compiler is to replace references to
1329    the frame pointer with references to the stack pointer.
1330 
1331    The definition of this macro is a list of structure initializations, each of
1332    which specifies an original and replacement register.
1333 
1334    On some machines, the position of the argument pointer is not known until
1335    the compilation is completed.  In such a case, a separate hard register must
1336    be used for the argument pointer.  This register can be eliminated by
1337    replacing it with either the frame pointer or the argument pointer,
1338    depending on whether or not the frame pointer has been eliminated.
1339 
1340    In this case, you might specify:
1341         #define ELIMINABLE_REGS  \
1342         {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1343          {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1344          {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1345 
1346    Note that the elimination of the argument pointer with the stack pointer is
1347    specified first since that is the preferred elimination.  */
1348 #define ELIMINABLE_REGS							\
1349 {									\
1350   { ARG_POINTER_REGNUM,		STACK_POINTER_REGNUM },			\
1351   { ARG_POINTER_REGNUM,		FRAME_POINTER_REGNUM },			\
1352   { FRAME_POINTER_REGNUM,	STACK_POINTER_REGNUM }			\
1353 }
1354 
1355 /* A C expression that returns nonzero if the compiler is allowed to try to
1356    replace register number FROM-REG with register number TO-REG.  This macro
1357    need only be defined if `ELIMINABLE_REGS' is defined, and will usually be
1358    the constant 1, since most of the cases preventing register elimination are
1359    things that the compiler already knows about.  */
1360 
1361 #define CAN_ELIMINATE(FROM, TO)						\
1362  ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM		\
1363   ? ! frame_pointer_needed						\
1364   : 1)
1365 
1366 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It specifies the
1367    initial difference between the specified pair of registers.  This macro must
1368    be defined if `ELIMINABLE_REGS' is defined.  */
1369 
1370 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1371 {									\
1372   d30v_stack_t *info = d30v_stack_info ();				\
1373 									\
1374   if ((FROM) == FRAME_POINTER_REGNUM)					\
1375     (OFFSET) = 0;							\
1376   else if ((FROM) == ARG_POINTER_REGNUM)				\
1377     (OFFSET) = info->total_size - current_function_pretend_args_size;	\
1378   else									\
1379     abort ();								\
1380 }
1381 
1382 
1383 /* Passing Function Arguments on the Stack */
1384 
1385 /* Define this macro if an argument declared in a prototype as an integral type
1386    smaller than `int' should actually be passed as an `int'.  In addition to
1387    avoiding errors in certain cases of mismatch, it also makes for better code
1388    on certain machines.  */
1389 /* #define PROMOTE_PROTOTYPES */
1390 
1391 /* A C expression that is the number of bytes actually pushed onto the stack
1392    when an instruction attempts to push NPUSHED bytes.
1393 
1394    If the target machine does not have a push instruction, do not define this
1395    macro.  That directs GNU CC to use an alternate strategy: to allocate the
1396    entire argument block and then store the arguments into it.
1397 
1398    On some machines, the definition
1399 
1400         #define PUSH_ROUNDING(BYTES) (BYTES)
1401 
1402    will suffice.  But on other machines, instructions that appear to push one
1403    byte actually push two bytes in an attempt to maintain alignment.  Then the
1404    definition should be
1405 
1406         #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)  */
1407 /* #define PUSH_ROUNDING(NPUSHED) */
1408 
1409 /* If defined, the maximum amount of space required for outgoing arguments will
1410    be computed and placed into the variable
1411    `current_function_outgoing_args_size'.  No space will be pushed onto the
1412    stack for each call; instead, the function prologue should increase the
1413    stack frame size by this amount.
1414 
1415    Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
1416    proper.  */
1417 #define ACCUMULATE_OUTGOING_ARGS 1
1418 
1419 /* Define this macro if functions should assume that stack space has been
1420    allocated for arguments even when their values are passed in registers.
1421 
1422    The value of this macro is the size, in bytes, of the area reserved for
1423    arguments passed in registers for the function represented by FNDECL.
1424 
1425    This space can be allocated by the caller, or be a part of the
1426    machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1427    which.  */
1428 /* #define REG_PARM_STACK_SPACE(FNDECL) */
1429 
1430 /* Define these macros in addition to the one above if functions might allocate
1431    stack space for arguments even when their values are passed in registers.
1432    These should be used when the stack space allocated for arguments in
1433    registers is not a simple constant independent of the function declaration.
1434 
1435    The value of the first macro is the size, in bytes, of the area that we
1436    should initially assume would be reserved for arguments passed in registers.
1437 
1438    The value of the second macro is the actual size, in bytes, of the area that
1439    will be reserved for arguments passed in registers.  This takes two
1440    arguments: an integer representing the number of bytes of fixed sized
1441    arguments on the stack, and a tree representing the number of bytes of
1442    variable sized arguments on the stack.
1443 
1444    When these macros are defined, `REG_PARM_STACK_SPACE' will only be called
1445    for libcall functions, the current function, or for a function being called
1446    when it is known that such stack space must be allocated.  In each case this
1447    value can be easily computed.
1448 
1449    When deciding whether a called function needs such stack space, and how much
1450    space to reserve, GNU CC uses these two macros instead of
1451    `REG_PARM_STACK_SPACE'.  */
1452 /* #define MAYBE_REG_PARM_STACK_SPACE */
1453 /* #define FINAL_REG_PARM_STACK_SPACE(CONST_SIZE, VAR_SIZE) */
1454 
1455 /* Define this if it is the responsibility of the caller to allocate the area
1456    reserved for arguments passed in registers.
1457 
1458    If `ACCUMULATE_OUTGOING_ARGS' is defined, this macro controls whether the
1459    space for these arguments counts in the value of
1460    `current_function_outgoing_args_size'.  */
1461 /* #define OUTGOING_REG_PARM_STACK_SPACE */
1462 
1463 /* Define this macro if `REG_PARM_STACK_SPACE' is defined, but the stack
1464    parameters don't skip the area specified by it.
1465 
1466    Normally, when a parameter is not passed in registers, it is placed on the
1467    stack beyond the `REG_PARM_STACK_SPACE' area.  Defining this macro
1468    suppresses this behavior and causes the parameter to be passed on the stack
1469    in its natural location.  */
1470 /* #define STACK_PARMS_IN_REG_PARM_AREA */
1471 
1472 /* A C expression that should indicate the number of bytes of its own arguments
1473    that a function pops on returning, or 0 if the function pops no arguments
1474    and the caller must therefore pop them all after the function returns.
1475 
1476    FUNDECL is a C variable whose value is a tree node that describes the
1477    function in question.  Normally it is a node of type `FUNCTION_DECL' that
1478    describes the declaration of the function.  From this it is possible to
1479    obtain the DECL_ATTRIBUTES of the function.
1480 
1481    FUNTYPE is a C variable whose value is a tree node that describes the
1482    function in question.  Normally it is a node of type `FUNCTION_TYPE' that
1483    describes the data type of the function.  From this it is possible to obtain
1484    the data types of the value and arguments (if known).
1485 
1486    When a call to a library function is being considered, FUNTYPE will contain
1487    an identifier node for the library function.  Thus, if you need to
1488    distinguish among various library functions, you can do so by their names.
1489    Note that "library function" in this context means a function used to
1490    perform arithmetic, whose name is known specially in the compiler and was
1491    not mentioned in the C code being compiled.
1492 
1493    STACK-SIZE is the number of bytes of arguments passed on the stack.  If a
1494    variable number of bytes is passed, it is zero, and argument popping will
1495    always be the responsibility of the calling function.
1496 
1497    On the VAX, all functions always pop their arguments, so the definition of
1498    this macro is STACK-SIZE.  On the 68000, using the standard calling
1499    convention, no functions pop their arguments, so the value of the macro is
1500    always 0 in this case.  But an alternative calling convention is available
1501    in which functions that take a fixed number of arguments pop them but other
1502    functions (such as `printf') pop nothing (the caller pops all).  When this
1503    convention is in use, FUNTYPE is examined to determine whether a function
1504    takes a fixed number of arguments.  */
1505 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1506 
1507 
1508 /* Function Arguments in Registers */
1509 
1510 /* A C expression that controls whether a function argument is passed in a
1511    register, and which register.
1512 
1513    The arguments are CUM, which summarizes all the previous arguments; MODE,
1514    the machine mode of the argument; TYPE, the data type of the argument as a
1515    tree node or 0 if that is not known (which happens for C support library
1516    functions); and NAMED, which is 1 for an ordinary argument and 0 for
1517    nameless arguments that correspond to `...' in the called function's
1518    prototype.
1519 
1520    The value of the expression should either be a `reg' RTX for the hard
1521    register in which to pass the argument, or zero to pass the argument on the
1522    stack.
1523 
1524    For machines like the VAX and 68000, where normally all arguments are
1525    pushed, zero suffices as a definition.
1526 
1527    The usual way to make the ANSI library `stdarg.h' work on a machine where
1528    some arguments are usually passed in registers, is to cause nameless
1529    arguments to be passed on the stack instead.  This is done by making
1530    `FUNCTION_ARG' return 0 whenever NAMED is 0.
1531 
1532    You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the definition of
1533    this macro to determine if this argument is of a type that must be passed in
1534    the stack.  If `REG_PARM_STACK_SPACE' is not defined and `FUNCTION_ARG'
1535    returns nonzero for such an argument, the compiler will abort.  If
1536    `REG_PARM_STACK_SPACE' is defined, the argument will be computed in the
1537    stack and then loaded into a register.  */
1538 
1539 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1540   d30v_function_arg (&CUM, (int)MODE, TYPE, NAMED, FALSE)
1541 
1542 /* Define this macro if the target machine has "register windows", so that the
1543    register in which a function sees an arguments is not necessarily the same
1544    as the one in which the caller passed the argument.
1545 
1546    For such machines, `FUNCTION_ARG' computes the register in which the caller
1547    passes the value, and `FUNCTION_INCOMING_ARG' should be defined in a similar
1548    fashion to tell the function being called where the arguments will arrive.
1549 
1550    If `FUNCTION_INCOMING_ARG' is not defined, `FUNCTION_ARG' serves both
1551    purposes.  */
1552 
1553 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1554   d30v_function_arg (&CUM, (int)MODE, TYPE, NAMED, TRUE)
1555 
1556 /* A C expression for the number of words, at the beginning of an argument,
1557    must be put in registers.  The value must be zero for arguments that are
1558    passed entirely in registers or that are entirely pushed on the stack.
1559 
1560    On some machines, certain arguments must be passed partially in registers
1561    and partially in memory.  On these machines, typically the first N words of
1562    arguments are passed in registers, and the rest on the stack.  If a
1563    multi-word argument (a `double' or a structure) crosses that boundary, its
1564    first few words must be passed in registers and the rest must be pushed.
1565    This macro tells the compiler when this occurs, and how many of the words
1566    should go in registers.
1567 
1568    `FUNCTION_ARG' for these arguments should return the first register to be
1569    used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for
1570    the called function.  */
1571 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1572   d30v_function_arg_partial_nregs (&CUM, (int)MODE, TYPE, NAMED)
1573 
1574 /* A C expression that indicates when an argument must be passed by reference.
1575    If nonzero for an argument, a copy of that argument is made in memory and a
1576    pointer to the argument is passed instead of the argument itself.  The
1577    pointer is passed in whatever way is appropriate for passing a pointer to
1578    that type.
1579 
1580    On machines where `REG_PARM_STACK_SPACE' is not defined, a suitable
1581    definition of this macro might be
1582         #define FUNCTION_ARG_PASS_BY_REFERENCE\
1583         (CUM, MODE, TYPE, NAMED)  \
1584           MUST_PASS_IN_STACK (MODE, TYPE)  */
1585 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) 0
1586 
1587 /* If defined, a C expression that indicates when it is the called function's
1588    responsibility to make a copy of arguments passed by invisible reference.
1589    Normally, the caller makes a copy and passes the address of the copy to the
1590    routine being called.  When FUNCTION_ARG_CALLEE_COPIES is defined and is
1591    nonzero, the caller does not make a copy.  Instead, it passes a pointer to
1592    the "live" value.  The called function must not modify this value.  If it
1593    can be determined that the value won't be modified, it need not make a copy;
1594    otherwise a copy must be made.  */
1595 /* #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) */
1596 
1597 /* A C type for declaring a variable that is used as the first argument of
1598    `FUNCTION_ARG' and other related values.  For some target machines, the type
1599    `int' suffices and can hold the number of bytes of argument so far.
1600 
1601    There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
1602    that have been passed on the stack.  The compiler has other variables to
1603    keep track of that.  For target machines on which all arguments are passed
1604    on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
1605    however, the data structure must exist and should not be empty, so use
1606    `int'.  */
1607 #define CUMULATIVE_ARGS int
1608 
1609 /* A C statement (sans semicolon) for initializing the variable CUM for the
1610    state at the beginning of the argument list.  The variable has type
1611    `CUMULATIVE_ARGS'.  The value of FNTYPE is the tree node for the data type
1612    of the function which will receive the args, or 0 if the args are to a
1613    compiler support library function.  The value of INDIRECT is nonzero when
1614    processing an indirect call, for example a call through a function pointer.
1615    The value of INDIRECT is zero for a call to an explicitly named function, a
1616    library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
1617    arguments for the function being compiled.
1618 
1619    When processing a call to a compiler support library function, LIBNAME
1620    identifies which one.  It is a `symbol_ref' rtx which contains the name of
1621    the function, as a string.  LIBNAME is 0 when an ordinary C function call is
1622    being processed.  Thus, each time this macro is called, either LIBNAME or
1623    FNTYPE is nonzero, but never both of them at once.  */
1624 
1625 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1626   d30v_init_cumulative_args (&CUM, FNTYPE, LIBNAME, INDIRECT, FALSE)
1627 
1628 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1629    arguments for the function being compiled.  If this macro is undefined,
1630    `INIT_CUMULATIVE_ARGS' is used instead.
1631 
1632    The value passed for LIBNAME is always 0, since library routines with
1633    special calling conventions are never compiled with GNU CC.  The argument
1634    LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'.  */
1635 
1636 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1637   d30v_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, TRUE)
1638 
1639 /* A C statement (sans semicolon) to update the summarizer variable CUM to
1640    advance past an argument in the argument list.  The values MODE, TYPE and
1641    NAMED describe that argument.  Once this is done, the variable CUM is
1642    suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
1643 
1644    This macro need not do anything if the argument in question was passed on
1645    the stack.  The compiler knows how to track the amount of stack space used
1646    for arguments without any special help.  */
1647 
1648 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1649   d30v_function_arg_advance (&CUM, (int) MODE, TYPE, NAMED)
1650 
1651 /* If defined, a C expression which determines whether, and in which direction,
1652    to pad out an argument with extra space.  The value should be of type `enum
1653    direction': either `upward' to pad above the argument, `downward' to pad
1654    below, or `none' to inhibit padding.
1655 
1656    The *amount* of padding is always just enough to reach the next multiple of
1657    `FUNCTION_ARG_BOUNDARY'; this macro does not control it.
1658 
1659    This macro has a default definition which is right for most systems.  For
1660    little-endian machines, the default is to pad upward.  For big-endian
1661    machines, the default is to pad downward for an argument of constant size
1662    shorter than an `int', and upward otherwise.  */
1663 /* #define FUNCTION_ARG_PADDING(MODE, TYPE) */
1664 
1665 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1666    argument with the specified mode and type.  If it is not defined,
1667    `PARM_BOUNDARY' is used for all arguments.  */
1668 
1669 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1670   d30v_function_arg_boundary ((int) MODE, TYPE)
1671 
1672 /* A C expression that is nonzero if REGNO is the number of a hard register in
1673    which function arguments are sometimes passed.  This does *not* include
1674    implicit arguments such as the static chain and the structure-value address.
1675    On many machines, no registers can be used for this purpose since all
1676    function arguments are pushed on the stack.  */
1677 
1678 #define FUNCTION_ARG_REGNO_P(REGNO) \
1679   IN_RANGE_P (REGNO, GPR_ARG_FIRST, GPR_ARG_LAST)
1680 
1681 
1682 /* How Scalar Function Values are Returned */
1683 
1684 /* A C expression to create an RTX representing the place where a function
1685    returns a value of data type VALTYPE.  VALTYPE is a tree node representing a
1686    data type.  Write `TYPE_MODE (VALTYPE)' to get the machine mode used to
1687    represent that type.  On many machines, only the mode is relevant.
1688    (Actually, on most machines, scalar values are returned in the same place
1689    regardless of mode).
1690 
1691    If `PROMOTE_FUNCTION_RETURN' is defined, you must apply the same promotion
1692    rules specified in `PROMOTE_MODE' if VALTYPE is a scalar type.
1693 
1694    If the precise function being called is known, FUNC is a tree node
1695    (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer.  This makes it
1696    possible to use a different value-returning convention for specific
1697    functions when all their calls are known.
1698 
1699    `FUNCTION_VALUE' is not used for return vales with aggregate data types,
1700    because these are returned in another way.  See `STRUCT_VALUE_REGNUM' and
1701    related macros, below.  */
1702 
1703 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1704   gen_rtx (REG, TYPE_MODE (VALTYPE), GPR_RET_VALUE)
1705 
1706 /* Define this macro if the target machine has "register windows" so that the
1707    register in which a function returns its value is not the same as the one in
1708    which the caller sees the value.
1709 
1710    For such machines, `FUNCTION_VALUE' computes the register in which the
1711    caller will see the value.  `FUNCTION_OUTGOING_VALUE' should be defined in a
1712    similar fashion to tell the function where to put the value.
1713 
1714    If `FUNCTION_OUTGOING_VALUE' is not defined, `FUNCTION_VALUE' serves both
1715    purposes.
1716 
1717    `FUNCTION_OUTGOING_VALUE' is not used for return vales with aggregate data
1718    types, because these are returned in another way.  See `STRUCT_VALUE_REGNUM'
1719    and related macros, below.  */
1720 /* #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) */
1721 
1722 /* A C expression to create an RTX representing the place where a library
1723    function returns a value of mode MODE.  If the precise function being called
1724    is known, FUNC is a tree node (`FUNCTION_DECL') for it; otherwise, FUNC is a
1725    null pointer.  This makes it possible to use a different value-returning
1726    convention for specific functions when all their calls are known.
1727 
1728    Note that "library function" in this context means a compiler support
1729    routine, used to perform arithmetic, whose name is known specially by the
1730    compiler and was not mentioned in the C code being compiled.
1731 
1732    The definition of `LIBRARY_VALUE' need not be concerned aggregate data
1733    types, because none of the library functions returns such types.  */
1734 
1735 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, GPR_RET_VALUE)
1736 
1737 /* A C expression that is nonzero if REGNO is the number of a hard register in
1738    which the values of called function may come back.
1739 
1740    A register whose use for returning values is limited to serving as the
1741    second of a pair (for a value of type `double', say) need not be recognized
1742    by this macro.  So for most machines, this definition suffices:
1743 
1744         #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
1745 
1746    If the machine has register windows, so that the caller and the called
1747    function use different registers for the return value, this macro should
1748    recognize only the caller's register numbers.  */
1749 
1750 #define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == GPR_RET_VALUE)
1751 
1752 /* Define this macro if `untyped_call' and `untyped_return' need more space
1753    than is implied by `FUNCTION_VALUE_REGNO_P' for saving and restoring an
1754    arbitrary return value.  */
1755 /* #define APPLY_RESULT_SIZE */
1756 
1757 
1758 /* How Large Values are Returned */
1759 
1760 /* A C expression which can inhibit the returning of certain function values in
1761    registers, based on the type of value.  A nonzero value says to return the
1762    function value in memory, just as large structures are always returned.
1763    Here TYPE will be a C expression of type `tree', representing the data type
1764    of the value.
1765 
1766    Note that values of mode `BLKmode' must be explicitly handled by this macro.
1767    Also, the option `-fpcc-struct-return' takes effect regardless of this
1768    macro.  On most systems, it is possible to leave the macro undefined; this
1769    causes a default definition to be used, whose value is the constant 1 for
1770    `BLKmode' values, and 0 otherwise.
1771 
1772    Do not use this macro to indicate that structures and unions should always
1773    be returned in memory.  You should instead use `DEFAULT_PCC_STRUCT_RETURN'
1774    to indicate this.  */
1775 /* #define RETURN_IN_MEMORY(TYPE) */
1776 
1777 /* Define this macro to be 1 if all structure and union return values must be
1778    in memory.  Since this results in slower code, this should be defined only
1779    if needed for compatibility with other compilers or with an ABI.  If you
1780    define this macro to be 0, then the conventions used for structure and union
1781    return values are decided by the `RETURN_IN_MEMORY' macro.
1782 
1783    If not defined, this defaults to the value 1.  */
1784 /* #define DEFAULT_PCC_STRUCT_RETURN */
1785 
1786 /* If the structure value address is passed in a register, then
1787    `STRUCT_VALUE_REGNUM' should be the number of that register.  */
1788 
1789 #define STRUCT_VALUE_REGNUM GPR_ARG_FIRST
1790 
1791 /* If the structure value address is not passed in a register, define
1792    `STRUCT_VALUE' as an expression returning an RTX for the place where the
1793    address is passed.  If it returns 0, the address is passed as an "invisible"
1794    first argument.  */
1795 
1796 #define STRUCT_VALUE 0
1797 
1798 /* On some architectures the place where the structure value address is found
1799    by the called function is not the same place that the caller put it.  This
1800    can be due to register windows, or it could be because the function prologue
1801    moves it to a different place.
1802 
1803    If the incoming location of the structure value address is in a register,
1804    define this macro as the register number.  */
1805 /* #define STRUCT_VALUE_INCOMING_REGNUM */
1806 
1807 /* If the incoming location is not a register, then you should define
1808    `STRUCT_VALUE_INCOMING' as an expression for an RTX for where the called
1809    function should find the value.  If it should find the value on the stack,
1810    define this to create a `mem' which refers to the frame pointer.  A
1811    definition of 0 means that the address is passed as an "invisible" first
1812    argument.  */
1813 /* #define STRUCT_VALUE_INCOMING */
1814 
1815 /* Define this macro if the usual system convention on the target machine for
1816    returning structures and unions is for the called function to return the
1817    address of a static variable containing the value.
1818 
1819    Do not define this if the usual system convention is for the caller to pass
1820    an address to the subroutine.
1821 
1822    This macro has effect in `-fpcc-struct-return' mode, but it does nothing
1823    when you use `-freg-struct-return' mode.  */
1824 /* #define PCC_STATIC_STRUCT_RETURN */
1825 
1826 
1827 /* Caller-Saves Register Allocation */
1828 
1829 /* Define this macro if function calls on the target machine do not preserve
1830    any registers; in other words, if `CALL_USED_REGISTERS' has 1 for all
1831    registers.  This macro enables `-fcaller-saves' by default.  Eventually that
1832    option will be enabled by default on all machines and both the option and
1833    this macro will be eliminated.  */
1834 /* #define DEFAULT_CALLER_SAVES */
1835 
1836 /* A C expression to determine whether it is worthwhile to consider placing a
1837    pseudo-register in a call-clobbered hard register and saving and restoring
1838    it around each function call.  The expression should be 1 when this is worth
1839    doing, and 0 otherwise.
1840 
1841    If you don't define this macro, a default is used which is good on most
1842    machines: `4 * CALLS < REFS'.  */
1843 /* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1844 
1845 
1846 /* #define EXIT_IGNORE_STACK */
1847 
1848 /* Define this macro as a C expression that is nonzero for registers
1849    are used by the epilogue or the `return' pattern.  The stack and
1850    frame pointer registers are already be assumed to be used as
1851    needed.  */
1852 #define EPILOGUE_USES(REGNO)  ((REGNO) == GPR_LINK)
1853 
1854 /* Define this macro if the function epilogue contains delay slots to which
1855    instructions from the rest of the function can be "moved".  The definition
1856    should be a C expression whose value is an integer representing the number
1857    of delay slots there.  */
1858 /* #define DELAY_SLOTS_FOR_EPILOGUE */
1859 
1860 /* A C expression that returns 1 if INSN can be placed in delay slot number N
1861    of the epilogue.
1862 
1863    The argument N is an integer which identifies the delay slot now being
1864    considered (since different slots may have different rules of eligibility).
1865    It is never negative and is always less than the number of epilogue delay
1866    slots (what `DELAY_SLOTS_FOR_EPILOGUE' returns).  If you reject a particular
1867    insn for a given delay slot, in principle, it may be reconsidered for a
1868    subsequent delay slot.  Also, other insns may (at least in principle) be
1869    considered for the so far unfilled delay slot.
1870 
1871    The insns accepted to fill the epilogue delay slots are put in an
1872    RTL list made with `insn_list' objects, stored in the variable
1873    `current_function_epilogue_delay_list'.  The insn for the first
1874    delay slot comes first in the list.  Your definition of the function
1875    output_function_epilogue() should fill the delay slots by outputting the
1876    insns in this list, usually by calling `final_scan_insn'.
1877 
1878    You need not define this macro if you did not define
1879    `DELAY_SLOTS_FOR_EPILOGUE'.  */
1880 /* #define ELIGIBLE_FOR_EPILOGUE_DELAY(INSN, N) */
1881 
1882 /* A C structure for machine-specific, per-function data.
1883    This is added to the cfun structure.  */
1884 typedef struct machine_function GTY(())
1885 {
1886   /* Additionsl stack adjustment in __builtin_eh_throw.  */
1887   rtx eh_epilogue_sp_ofs;
1888 } machine_function;
1889 
1890 
1891 /* Generating Code for Profiling.  */
1892 
1893 /* A C statement or compound statement to output to FILE some assembler code to
1894    call the profiling subroutine `mcount'.  Before calling, the assembler code
1895    must load the address of a counter variable into a register where `mcount'
1896    expects to find the address.  The name of this variable is `LP' followed by
1897    the number LABELNO, so you would generate the name using `LP%d' in a
1898    `fprintf'.
1899 
1900    The details of how the address should be passed to `mcount' are determined
1901    by your operating system environment, not by GNU CC.  To figure them out,
1902    compile a small program for profiling using the system's installed C
1903    compiler and look at the assembler code that results.  */
1904 
1905 #define FUNCTION_PROFILER(FILE, LABELNO) d30v_function_profiler (FILE, LABELNO)
1906 
1907 /* Define this macro if the code for function profiling should come before the
1908    function prologue.  Normally, the profiling code comes after.  */
1909 /* #define PROFILE_BEFORE_PROLOGUE */
1910 
1911 
1912 /* Implementing the Varargs Macros.  */
1913 
1914 /* If defined, is a C expression that produces the machine-specific code for a
1915    call to `__builtin_saveregs'.  This code will be moved to the very beginning
1916    of the function, before any parameter access are made.  The return value of
1917    this function should be an RTX that contains the value to use as the return
1918    of `__builtin_saveregs'.
1919 
1920    If this macro is not defined, the compiler will output an ordinary call to
1921    the library function `__builtin_saveregs'.  */
1922 
1923 #define EXPAND_BUILTIN_SAVEREGS() d30v_expand_builtin_saveregs ()
1924 
1925 /* This macro offers an alternative to using `__builtin_saveregs' and defining
1926    the macro `EXPAND_BUILTIN_SAVEREGS'.  Use it to store the anonymous register
1927    arguments into the stack so that all the arguments appear to have been
1928    passed consecutively on the stack.  Once this is done, you can use the
1929    standard implementation of varargs that works for machines that pass all
1930    their arguments on the stack.
1931 
1932    The argument ARGS_SO_FAR is the `CUMULATIVE_ARGS' data structure, containing
1933    the values that obtain after processing of the named arguments.  The
1934    arguments MODE and TYPE describe the last named argument--its machine mode
1935    and its data type as a tree node.
1936 
1937    The macro implementation should do two things: first, push onto the stack
1938    all the argument registers *not* used for the named arguments, and second,
1939    store the size of the data thus pushed into the `int'-valued variable whose
1940    name is supplied as the argument PRETEND_ARGS_SIZE.  The value that you
1941    store here will serve as additional offset for setting up the stack frame.
1942 
1943    Because you must generate code to push the anonymous arguments at compile
1944    time without knowing their data types, `SETUP_INCOMING_VARARGS' is only
1945    useful on machines that have just a single category of argument register and
1946    use it uniformly for all data types.
1947 
1948    If the argument SECOND_TIME is nonzero, it means that the arguments of the
1949    function are being analyzed for the second time.  This happens for an inline
1950    function, which is not actually compiled until the end of the source file.
1951    The macro `SETUP_INCOMING_VARARGS' should not generate any instructions in
1952    this case.  */
1953 
1954 #define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_ARGS_SIZE, SECOND_TIME) \
1955   d30v_setup_incoming_varargs (&ARGS_SO_FAR, (int) MODE, TYPE,		\
1956 			       &PRETEND_ARGS_SIZE, SECOND_TIME)
1957 
1958 /* Define this macro if the location where a function argument is passed
1959    depends on whether or not it is a named argument.
1960 
1961    This macro controls how the NAMED argument to `FUNCTION_ARG' is set for
1962    varargs and stdarg functions.  With this macro defined, the NAMED argument
1963    is always true for named arguments, and false for unnamed arguments.  If
1964    this is not defined, but `SETUP_INCOMING_VARARGS' is defined, then all
1965    arguments are treated as named.  Otherwise, all named arguments except the
1966    last are treated as named.  */
1967 /* #define STRICT_ARGUMENT_NAMING */
1968 
1969 /* Build up the stdarg/varargs va_list type tree, assinging it to NODE.  If not
1970    defined, it is assumed that va_list is a void * pointer.  */
1971 
1972 #define BUILD_VA_LIST_TYPE(VALIST) \
1973   (VALIST) = d30v_build_va_list ()
1974 
1975 
1976 /* Implement the stdarg/varargs va_start macro.  STDARG_P is nonzero if this
1977    is stdarg.h instead of varargs.h.  VALIST is the tree of the va_list
1978    variable to initialize.  NEXTARG is the machine independent notion of the
1979    'next' argument after the variable arguments.  If not defined, a standard
1980    implementation will be defined that works for arguments passed on the stack.  */
1981 
1982 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG)		\
1983   d30v_expand_builtin_va_start(VALIST, NEXTARG)
1984 
1985 /* Implement the stdarg/varargs va_arg macro.  VALIST is the variable of type
1986    va_list as a tree, TYPE is the type passed to va_arg.  */
1987 
1988 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE)				\
1989 (d30v_expand_builtin_va_arg (VALIST, TYPE))
1990 
1991 /* Implement the stdarg/varargs va_end macro.
1992    VALIST is the variable of type va_list as a tree.  */
1993 
1994 /* #define EXPAND_BUILTIN_VA_END(VALIST) */
1995 
1996 
1997 
1998 /* Trampolines for Nested Functions.  */
1999 
2000 /* A C statement to output, on the stream FILE, assembler code for a block of
2001    data that contains the constant parts of a trampoline.  This code should not
2002    include a label--the label is taken care of automatically.  */
2003 /* #define TRAMPOLINE_TEMPLATE(FILE) d30v_trampoline_template (FILE) */
2004 
2005 /* The name of a subroutine to switch to the section in which the trampoline
2006    template is to be placed (*note Sections::.).  The default is a value of
2007    `readonly_data_section', which places the trampoline in the section
2008    containing read-only data.  */
2009 /* #define TRAMPOLINE_SECTION */
2010 
2011 /* A C expression for the size in bytes of the trampoline, as an integer.  */
2012 #define TRAMPOLINE_SIZE (d30v_trampoline_size ())
2013 
2014 /* Alignment required for trampolines, in bits.
2015 
2016    If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
2017    aligning trampolines.  */
2018 #define TRAMPOLINE_ALIGNMENT 64
2019 
2020 /* A C statement to initialize the variable parts of a trampoline.  ADDR is an
2021    RTX for the address of the trampoline; FNADDR is an RTX for the address of
2022    the nested function; STATIC_CHAIN is an RTX for the static chain value that
2023    should be passed to the function when it is called.  */
2024 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
2025   d30v_initialize_trampoline (ADDR, FNADDR, STATIC_CHAIN)
2026 
2027 /* A C expression to allocate run-time space for a trampoline.  The expression
2028    value should be an RTX representing a memory reference to the space for the
2029    trampoline.
2030 
2031    If this macro is not defined, by default the trampoline is allocated as a
2032    stack slot.  This default is right for most machines.  The exceptions are
2033    machines where it is impossible to execute instructions in the stack area.
2034    On such machines, you may have to implement a separate stack, using this
2035    macro in conjunction with output_function_prologue () and
2036    output_function_epilogue ().
2037 
2038    FP points to a data structure, a `struct function', which describes the
2039    compilation status of the immediate containing function of the function
2040    which the trampoline is for.  Normally (when `ALLOCATE_TRAMPOLINE' is not
2041    defined), the stack slot for the trampoline is in the stack frame of this
2042    containing function.  Other allocation strategies probably must do something
2043    analogous with this information.  */
2044 /* #define ALLOCATE_TRAMPOLINE(FP) */
2045 
2046 /* Implementing trampolines is difficult on many machines because they have
2047    separate instruction and data caches.  Writing into a stack location fails
2048    to clear the memory in the instruction cache, so when the program jumps to
2049    that location, it executes the old contents.
2050 
2051    Here are two possible solutions.  One is to clear the relevant parts of the
2052    instruction cache whenever a trampoline is set up.  The other is to make all
2053    trampolines identical, by having them jump to a standard subroutine.  The
2054    former technique makes trampoline execution faster; the latter makes
2055    initialization faster.
2056 
2057    To clear the instruction cache when a trampoline is initialized, define the
2058    following macros which describe the shape of the cache.  */
2059 
2060 /* The total size in bytes of the cache.  */
2061 /* #define INSN_CACHE_SIZE */
2062 
2063 /* The length in bytes of each cache line.  The cache is divided into cache
2064    lines which are disjoint slots, each holding a contiguous chunk of data
2065    fetched from memory.  Each time data is brought into the cache, an entire
2066    line is read at once.  The data loaded into a cache line is always aligned
2067    on a boundary equal to the line size.  */
2068 /* #define INSN_CACHE_LINE_WIDTH */
2069 
2070 /* The number of alternative cache lines that can hold any particular memory
2071    location.  */
2072 /* #define INSN_CACHE_DEPTH */
2073 
2074 /* Alternatively, if the machine has system calls or instructions to clear the
2075    instruction cache directly, you can define the following macro.  */
2076 
2077 /* If defined, expands to a C expression clearing the *instruction cache* in
2078    the specified interval.  If it is not defined, and the macro INSN_CACHE_SIZE
2079    is defined, some generic code is generated to clear the cache.  The
2080    definition of this macro would typically be a series of `asm' statements.
2081    Both BEG and END are both pointer expressions.  */
2082 /* #define CLEAR_INSN_CACHE (BEG, END) */
2083 
2084 /* To use a standard subroutine, define the following macro.  In addition, you
2085    must make sure that the instructions in a trampoline fill an entire cache
2086    line with identical instructions, or else ensure that the beginning of the
2087    trampoline code is always aligned at the same point in its cache line.  Look
2088    in `m68k.h' as a guide.  */
2089 
2090 /* Define this macro if trampolines need a special subroutine to do their work.
2091    The macro should expand to a series of `asm' statements which will be
2092    compiled with GNU CC.  They go in a library function named
2093    `__transfer_from_trampoline'.
2094 
2095    If you need to avoid executing the ordinary prologue code of a compiled C
2096    function when you jump to the subroutine, you can do so by placing a special
2097    label of your own in the assembler code.  Use one `asm' statement to
2098    generate an assembler label, and another to make the label global.  Then
2099    trampolines can use that label to jump directly to your special assembler
2100    code.  */
2101 /* #define TRANSFER_FROM_TRAMPOLINE */
2102 
2103 
2104 /* Implicit Calls to Library Routines */
2105 
2106 /* A C string constant giving the name of the function to call for
2107    multiplication of one signed full-word by another.  If you do not define
2108    this macro, the default name is used, which is `__mulsi3', a function
2109    defined in `libgcc.a'.  */
2110 /* #define MULSI3_LIBCALL */
2111 
2112 /* A C string constant giving the name of the function to call for division of
2113    one signed full-word by another.  If you do not define this macro, the
2114    default name is used, which is `__divsi3', a function defined in `libgcc.a'.  */
2115 /* #define DIVSI3_LIBCALL */
2116 
2117 /* A C string constant giving the name of the function to call for division of
2118    one unsigned full-word by another.  If you do not define this macro, the
2119    default name is used, which is `__udivsi3', a function defined in
2120    `libgcc.a'.  */
2121 /* #define UDIVSI3_LIBCALL */
2122 
2123 /* A C string constant giving the name of the function to call for the
2124    remainder in division of one signed full-word by another.  If you do not
2125    define this macro, the default name is used, which is `__modsi3', a function
2126    defined in `libgcc.a'.  */
2127 /* #define MODSI3_LIBCALL */
2128 
2129 /* A C string constant giving the name of the function to call for the
2130    remainder in division of one unsigned full-word by another.  If you do not
2131    define this macro, the default name is used, which is `__umodsi3', a
2132    function defined in `libgcc.a'.  */
2133 /* #define UMODSI3_LIBCALL */
2134 
2135 /* A C string constant giving the name of the function to call for
2136    multiplication of one signed double-word by another.  If you do not define
2137    this macro, the default name is used, which is `__muldi3', a function
2138    defined in `libgcc.a'.  */
2139 /* #define MULDI3_LIBCALL */
2140 
2141 /* A C string constant giving the name of the function to call for division of
2142    one signed double-word by another.  If you do not define this macro, the
2143    default name is used, which is `__divdi3', a function defined in `libgcc.a'.  */
2144 /* #define DIVDI3_LIBCALL */
2145 
2146 /* A C string constant giving the name of the function to call for division of
2147    one unsigned full-word by another.  If you do not define this macro, the
2148    default name is used, which is `__udivdi3', a function defined in
2149    `libgcc.a'.  */
2150 /* #define UDIVDI3_LIBCALL */
2151 
2152 /* A C string constant giving the name of the function to call for the
2153    remainder in division of one signed double-word by another.  If you do not
2154    define this macro, the default name is used, which is `__moddi3', a function
2155    defined in `libgcc.a'.  */
2156 /* #define MODDI3_LIBCALL */
2157 
2158 /* A C string constant giving the name of the function to call for the
2159    remainder in division of one unsigned full-word by another.  If you do not
2160    define this macro, the default name is used, which is `__umoddi3', a
2161    function defined in `libgcc.a'.  */
2162 /* #define UMODDI3_LIBCALL */
2163 
2164 /* Define this macro as a C statement that declares additional library routines
2165    renames existing ones. `init_optabs' calls this macro after initializing all
2166    the normal library routines.  */
2167 /* #define INIT_TARGET_OPTABS */
2168 
2169 /* The value of `EDOM' on the target machine, as a C integer constant
2170    expression.  If you don't define this macro, GNU CC does not attempt to
2171    deposit the value of `EDOM' into `errno' directly.  Look in
2172    `/usr/include/errno.h' to find the value of `EDOM' on your system.
2173 
2174    If you do not define `TARGET_EDOM', then compiled code reports domain errors
2175    by calling the library function and letting it report the error.  If
2176    mathematical functions on your system use `matherr' when there is an error,
2177    then you should leave `TARGET_EDOM' undefined so that `matherr' is used
2178    normally.  */
2179 /* #define TARGET_EDOM */
2180 
2181 /* Define this macro as a C expression to create an rtl expression that refers
2182    to the global "variable" `errno'.  (On certain systems, `errno' may not
2183    actually be a variable.)  If you don't define this macro, a reasonable
2184    default is used.  */
2185 /* #define GEN_ERRNO_RTX */
2186 
2187 /* Define this macro if GNU CC should generate calls to the System V (and ANSI
2188    C) library functions `memcpy' and `memset' rather than the BSD functions
2189    `bcopy' and `bzero'.
2190 
2191    Defined in svr4.h.  */
2192 /* #define TARGET_MEM_FUNCTIONS */
2193 
2194 /* Define this macro to generate code for Objective-C message sending using the
2195    calling convention of the NeXT system.  This calling convention involves
2196    passing the object, the selector and the method arguments all at once to the
2197    method-lookup library function.
2198 
2199    The default calling convention passes just the object and the selector to
2200    the lookup function, which returns a pointer to the method.  */
2201 /* #define NEXT_OBJC_RUNTIME */
2202 
2203 
2204 /* Addressing Modes */
2205 
2206 /* Define this macro if the machine supports post-increment addressing.  */
2207 #define HAVE_POST_INCREMENT 1
2208 
2209 /* Similar for other kinds of addressing.  */
2210 /* #define HAVE_PRE_INCREMENT 0 */
2211 #define HAVE_POST_DECREMENT 1
2212 /* #define HAVE_PRE_DECREMENT 0 */
2213 
2214 /* A C expression that is 1 if the RTX X is a constant which is a valid
2215    address.  On most machines, this can be defined as `CONSTANT_P (X)', but a
2216    few machines are more restrictive in which constant addresses are supported.
2217 
2218    `CONSTANT_P' accepts integer-values expressions whose values are not
2219    explicitly known, such as `symbol_ref', `label_ref', and `high' expressions
2220    and `const' arithmetic expressions, in addition to `const_int' and
2221    `const_double' expressions.  */
2222 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
2223 
2224 /* A number, the maximum number of registers that can appear in a valid memory
2225    address.  Note that it is up to you to specify a value equal to the maximum
2226    number that `GO_IF_LEGITIMATE_ADDRESS' would ever accept.  */
2227 #define MAX_REGS_PER_ADDRESS 2
2228 
2229 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
2230    RTX) is a legitimate memory address on the target machine for a memory
2231    operand of mode MODE.  */
2232 
2233 #ifdef	REG_OK_STRICT
2234 #define REG_OK_STRICT_P 1
2235 #else
2236 #define REG_OK_STRICT_P 0
2237 #endif
2238 
2239 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
2240 do {									\
2241     if (d30v_legitimate_address_p ((int)MODE, X, REG_OK_STRICT_P))	\
2242       goto ADDR;							\
2243 } while (0)
2244 
2245 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
2246    use as a base register.  For hard registers, it should always accept those
2247    which the hardware permits and reject the others.  Whether the macro accepts
2248    or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
2249    described above.  This usually requires two variant definitions, of which
2250    `REG_OK_STRICT' controls the one actually used.  */
2251 
2252 #ifdef REG_OK_STRICT
2253 #define REG_OK_FOR_BASE_P(X) (GPR_P (REGNO (X)))
2254 #else
2255 #define REG_OK_FOR_BASE_P(X) (GPR_OR_PSEUDO_P (REGNO (X)))
2256 #endif
2257 
2258 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
2259    use as an index register.
2260 
2261    The difference between an index register and a base register is that the
2262    index register may be scaled.  If an address involves the sum of two
2263    registers, neither one of them scaled, then either one may be labeled the
2264    "base" and the other the "index"; but whichever labeling is used must fit
2265    the machine's constraints of which registers may serve in each capacity.
2266    The compiler will try both labelings, looking for one that is valid, and
2267    will reload one or both registers only if neither labeling works.  */
2268 
2269 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
2270 
2271 /* A C compound statement that attempts to replace X with a valid memory
2272    address for an operand of mode MODE.  WIN will be a C statement label
2273    elsewhere in the code; the macro definition may use
2274 
2275         GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
2276 
2277    to avoid further processing if the address has become legitimate.
2278 
2279    X will always be the result of a call to `break_out_memory_refs', and OLDX
2280    will be the operand that was given to that function to produce X.
2281 
2282    The code generated by this macro should not alter the substructure of X.  If
2283    it transforms X into a more legitimate form, it should assign X (which will
2284    always be a C variable) a new value.
2285 
2286    It is not necessary for this macro to come up with a legitimate address.
2287    The compiler has standard ways of doing so in all cases.  In fact, it is
2288    safe for this macro to do nothing.  But often a machine-dependent strategy
2289    can generate better code.  */
2290 
2291 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)				\
2292 do {									\
2293   rtx y = d30v_legitimize_address (X, OLDX, (int)MODE, REG_OK_STRICT_P); \
2294   if (y)								\
2295     {									\
2296       X = y;								\
2297       GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);				\
2298     }									\
2299 } while (0)
2300 
2301 /* A C statement or compound statement with a conditional `goto LABEL;'
2302    executed if memory address X (an RTX) can have different meanings depending
2303    on the machine mode of the memory reference it is used for or if the address
2304    is valid for some modes but not others.
2305 
2306    Autoincrement and autodecrement addresses typically have mode-dependent
2307    effects because the amount of the increment or decrement is the size of the
2308    operand being addressed.  Some machines have other mode-dependent addresses.
2309    Many RISC machines have no mode-dependent addresses.
2310 
2311    You may assume that ADDR is a valid address for the machine.  */
2312 
2313 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)			\
2314 do {									\
2315   if (d30v_mode_dependent_address_p (ADDR))				\
2316     goto LABEL;								\
2317 } while (0)								\
2318 
2319 /* A C expression that is nonzero if X is a legitimate constant for an
2320    immediate operand on the target machine.  You can assume that X satisfies
2321    `CONSTANT_P', so you need not check this.  In fact, `1' is a suitable
2322    definition for this macro on machines where anything `CONSTANT_P' is valid.  */
2323 #define LEGITIMATE_CONSTANT_P(X) 1
2324 
2325 
2326 /* Condition Code Status */
2327 
2328 /* C code for a data type which is used for declaring the `mdep' component of
2329    `cc_status'.  It defaults to `int'.
2330 
2331    This macro is not used on machines that do not use `cc0'.  */
2332 /* #define CC_STATUS_MDEP */
2333 
2334 /* A C expression to initialize the `mdep' field to "empty".  The default
2335    definition does nothing, since most machines don't use the field anyway.  If
2336    you want to use the field, you should probably define this macro to
2337    initialize it.
2338 
2339    This macro is not used on machines that do not use `cc0'.  */
2340 /* #define CC_STATUS_MDEP_INIT */
2341 
2342 /* A C compound statement to set the components of `cc_status' appropriately
2343    for an insn INSN whose body is EXP.  It is this macro's responsibility to
2344    recognize insns that set the condition code as a byproduct of other activity
2345    as well as those that explicitly set `(cc0)'.
2346 
2347    This macro is not used on machines that do not use `cc0'.
2348 
2349    If there are insns that do not set the condition code but do alter other
2350    machine registers, this macro must check to see whether they invalidate the
2351    expressions that the condition code is recorded as reflecting.  For example,
2352    on the 68000, insns that store in address registers do not set the condition
2353    code, which means that usually `NOTICE_UPDATE_CC' can leave `cc_status'
2354    unaltered for such insns.  But suppose that the previous insn set the
2355    condition code based on location `a4@(102)' and the current insn stores a
2356    new value in `a4'.  Although the condition code is not changed by this, it
2357    will no longer be true that it reflects the contents of `a4@(102)'.
2358    Therefore, `NOTICE_UPDATE_CC' must alter `cc_status' in this case to say
2359    that nothing is known about the condition code value.
2360 
2361    The definition of `NOTICE_UPDATE_CC' must be prepared to deal with the
2362    results of peephole optimization: insns whose patterns are `parallel' RTXs
2363    containing various `reg', `mem' or constants which are just the operands.
2364    The RTL structure of these insns is not sufficient to indicate what the
2365    insns actually do.  What `NOTICE_UPDATE_CC' should do when it sees one is
2366    just to run `CC_STATUS_INIT'.
2367 
2368    A possible definition of `NOTICE_UPDATE_CC' is to call a function that looks
2369    at an attribute (*note Insn Attributes::.) named, for example, `cc'.  This
2370    avoids having detailed information about patterns in two places, the `md'
2371    file and in `NOTICE_UPDATE_CC'.  */
2372 /* #define NOTICE_UPDATE_CC(EXP, INSN) */
2373 
2374 /* A list of names to be used for additional modes for condition code values in
2375    registers (*note Jump Patterns::.).  These names are added to `enum
2376    machine_mode' and all have class `MODE_CC'.  By convention, they should
2377    start with `CC' and end with `mode'.
2378 
2379    You should only define this macro if your machine does not use `cc0' and
2380    only if additional modes are required.  */
2381 /* #define EXTRA_CC_MODES */
2382 
2383 /* Returns a mode from class `MODE_CC' to be used when comparison operation
2384    code OP is applied to rtx X and Y.  For example, on the SPARC,
2385    `SELECT_CC_MODE' is defined as (see *note Jump Patterns::.  for a
2386    description of the reason for this definition)
2387 
2388         #define SELECT_CC_MODE(OP,X,Y) \
2389           (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT          \
2390            ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode)    \
2391            : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS    \
2392                || GET_CODE (X) == NEG) \
2393               ? CC_NOOVmode : CCmode))
2394 
2395    You need not define this macro if `EXTRA_CC_MODES' is not defined.  */
2396 /* #define SELECT_CC_MODE(OP, X, Y) */
2397 
2398 /* One some machines not all possible comparisons are defined, but you can
2399    convert an invalid comparison into a valid one.  For example, the Alpha does
2400    not have a `GT' comparison, but you can use an `LT' comparison instead and
2401    swap the order of the operands.
2402 
2403    On such machines, define this macro to be a C statement to do any required
2404    conversions.  CODE is the initial comparison code and OP0 and OP1 are the
2405    left and right operands of the comparison, respectively.  You should modify
2406    CODE, OP0, and OP1 as required.
2407 
2408    GNU CC will not assume that the comparison resulting from this macro is
2409    valid but will see if the resulting insn matches a pattern in the `md' file.
2410 
2411    You need not define this macro if it would never change the comparison code
2412    or operands.  */
2413 /* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
2414 
2415 /* A C expression whose value is one if it is always safe to reverse a
2416    comparison whose mode is MODE.  If `SELECT_CC_MODE' can ever return MODE for
2417    a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
2418    must be zero.
2419 
2420    You need not define this macro if it would always returns zero or if the
2421    floating-point format is anything other than `IEEE_FLOAT_FORMAT'.  For
2422    example, here is the definition used on the SPARC, where floating-point
2423    inequality comparisons are always given `CCFPEmode':
2424 
2425         #define REVERSIBLE_CC_MODE(MODE)  ((MODE) != CCFPEmode)  */
2426 /* #define REVERSIBLE_CC_MODE(MODE) */
2427 
2428 
2429 /* Describing Relative Costs of Operations */
2430 
2431 /* A part of a C `switch' statement that describes the relative costs of
2432    constant RTL expressions.  It must contain `case' labels for expression
2433    codes `const_int', `const', `symbol_ref', `label_ref' and `const_double'.
2434    Each case must ultimately reach a `return' statement to return the relative
2435    cost of the use of that kind of constant value in an expression.  The cost
2436    may depend on the precise value of the constant, which is available for
2437    examination in X, and the rtx code of the expression in which it is
2438    contained, found in OUTER_CODE.
2439 
2440    CODE is the expression code--redundant, since it can be obtained with
2441    `GET_CODE (X)'.  */
2442 
2443 /* On the d30v, consider operatnds that fit in a short instruction very
2444    cheap.  However, at this time, it causes cse to generate incorrect
2445    code, so disable it for now.  */
2446 #if 0
2447 #define CONST_COSTS(X, CODE, OUTER_CODE)				\
2448   case CONST_INT:							\
2449     if (IN_RANGE_P (INTVAL (X), 0, 31))					\
2450       return 0;								\
2451     else if ((OUTER_CODE) == LEU && (OUTER_CODE) == LTU			\
2452 	     && (OUTER_CODE) == GEU && (OUTER_CODE) == GTU)		\
2453       return IN_RANGE_P (INTVAL (X), 32, 63) ? 0 : COSTS_N_INSNS (2);	\
2454     else								\
2455       return IN_RANGE_P (INTVAL (X), -31, -1) ? 0 : COSTS_N_INSNS (2);	\
2456   case SYMBOL_REF:							\
2457   case LABEL_REF:							\
2458   case CONST:								\
2459     return COSTS_N_INSNS (2);						\
2460   case CONST_DOUBLE:							\
2461     return COSTS_N_INSNS ((GET_MODE (X) == SFmode) ? 2 : 4);
2462 #else
2463 #define CONST_COSTS(X, CODE, OUTER_CODE)
2464 #endif
2465 
2466 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.  This can be
2467    used, for example, to indicate how costly a multiply instruction is.  In
2468    writing this macro, you can use the construct `COSTS_N_INSNS (N)' to specify
2469    a cost equal to N fast instructions.  OUTER_CODE is the code of the
2470    expression in which X is contained.
2471 
2472    This macro is optional; do not define it if the default cost assumptions are
2473    adequate for the target machine.  */
2474 #define RTX_COSTS(X, CODE, OUTER_CODE)					\
2475   case MULT:								\
2476     return COSTS_N_INSNS ((GET_CODE (XEXP (x, 1)) == CONST_INT		\
2477 			   && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)	\
2478 			  ? 1 : 2);
2479 
2480 /* An expression giving the cost of an addressing mode that contains ADDRESS.
2481    If not defined, the cost is computed from the ADDRESS expression and the
2482    `CONST_COSTS' values.
2483 
2484    For most CISC machines, the default cost is a good approximation of the true
2485    cost of the addressing mode.  However, on RISC machines, all instructions
2486    normally have the same length and execution time.  Hence all addresses will
2487    have equal costs.
2488 
2489    In cases where more than one form of an address is known, the form with the
2490    lowest cost will be used.  If multiple forms have the same, lowest, cost,
2491    the one that is the most complex will be used.
2492 
2493    For example, suppose an address that is equal to the sum of a register and a
2494    constant is used twice in the same basic block.  When this macro is not
2495    defined, the address will be computed in a register and memory references
2496    will be indirect through that register.  On machines where the cost of the
2497    addressing mode containing the sum is no higher than that of a simple
2498    indirect reference, this will produce an additional instruction and possibly
2499    require an additional register.  Proper specification of this macro
2500    eliminates this overhead for such machines.
2501 
2502    Similar use of this macro is made in strength reduction of loops.
2503 
2504    ADDRESS need not be valid as an address.  In such a case, the cost is not
2505    relevant and can be any value; invalid addresses need not be assigned a
2506    different cost.
2507 
2508    On machines where an address involving more than one register is as cheap as
2509    an address computation involving only one register, defining `ADDRESS_COST'
2510    to reflect this can cause two registers to be live over a region of code
2511    where only one would have been if `ADDRESS_COST' were not defined in that
2512    manner.  This effect should be considered in the definition of this macro.
2513    Equivalent costs should probably only be given to addresses with different
2514    numbers of registers on machines with lots of registers.
2515 
2516    This macro will normally either not be defined or be defined as a constant.  */
2517 #define ADDRESS_COST(ADDRESS) 0
2518 
2519 /* A C expression for the cost of moving data from a register in class FROM to
2520    one in class TO.  The classes are expressed using the enumeration values
2521    such as `GENERAL_REGS'.  A value of 4 is the default; other values are
2522    interpreted relative to that.
2523 
2524    It is not required that the cost always equal 2 when FROM is the same as TO;
2525    on some machines it is expensive to move between registers if they are not
2526    general registers.
2527 
2528    If reload sees an insn consisting of a single `set' between two hard
2529    registers, and if `REGISTER_MOVE_COST' applied to their classes returns a
2530    value of 2, reload does not check to ensure that the constraints of the insn
2531    are met.  Setting a cost of other than 2 will allow reload to verify that
2532    the constraints are met.  You should do this if the `movM' pattern's
2533    constraints do not allow such copying.  */
2534 
2535 #define REGISTER_MOVE_COST(MODE, FROM, TO)				\
2536   (((FROM) != GPR_REGS && (FROM) != EVEN_REGS				\
2537    && (TO) != GPR_REGS && (TO) != EVEN_REGS) ? 4 : 2)
2538 
2539 /* A C expression for the cost of moving data of mode M between a register and
2540    memory.  A value of 2 is the default; this cost is relative to those in
2541    `REGISTER_MOVE_COST'.
2542 
2543    If moving between registers and memory is more expensive than between two
2544    registers, you should define this macro to express the relative cost.  */
2545 #define MEMORY_MOVE_COST(M,C,I) 4
2546 
2547 /* A C expression for the cost of a branch instruction.  A value of 1 is the
2548    default; other values are interpreted relative to that.  */
2549 
2550 #define BRANCH_COST d30v_branch_cost
2551 
2552 #define D30V_DEFAULT_BRANCH_COST 2
2553 
2554 /* Values of the -mbranch-cost=n string.  */
2555 extern int d30v_branch_cost;
2556 extern const char *d30v_branch_cost_string;
2557 
2558 /* Here are additional macros which do not specify precise relative costs, but
2559    only that certain actions are more expensive than GNU CC would ordinarily
2560    expect.  */
2561 
2562 /* Define this macro as a C expression which is nonzero if accessing less than
2563    a word of memory (i.e. a `char' or a `short') is no faster than accessing a
2564    word of memory, i.e., if such access require more than one instruction or if
2565    there is no difference in cost between byte and (aligned) word loads.
2566 
2567    When this macro is not defined, the compiler will access a field by finding
2568    the smallest containing object; when it is defined, a fullword load will be
2569    used if alignment permits.  Unless bytes accesses are faster than word
2570    accesses, using word accesses is preferable since it may eliminate
2571    subsequent memory access if subsequent accesses occur to other fields in the
2572    same word of the structure, but to different bytes.  */
2573 #define SLOW_BYTE_ACCESS 1
2574 
2575 /* Define this macro to be the value 1 if unaligned accesses have a cost many
2576    times greater than aligned accesses, for example if they are emulated in a
2577    trap handler.
2578 
2579    When this macro is nonzero, the compiler will act as if `STRICT_ALIGNMENT'
2580    were nonzero when generating code for block moves.  This can cause
2581    significantly more instructions to be produced.  Therefore, do not set this
2582    macro nonzero if unaligned accesses only add a cycle or two to the time for
2583    a memory access.
2584 
2585    If the value of this macro is always zero, it need not be defined.  */
2586 /* #define SLOW_UNALIGNED_ACCESS */
2587 
2588 /* Define this macro to inhibit strength reduction of memory addresses.  (On
2589    some machines, such strength reduction seems to do harm rather than good.)  */
2590 /* #define DONT_REDUCE_ADDR */
2591 
2592 /* The number of scalar move insns which should be generated instead of a
2593    string move insn or a library call.  Increasing the value will always make
2594    code faster, but eventually incurs high cost in increased code size.
2595 
2596    If you don't define this, a reasonable default is used.  */
2597 /* #define MOVE_RATIO */
2598 
2599 /* Define this macro if it is as good or better to call a constant function
2600    address than to call an address kept in a register.  */
2601 #define NO_FUNCTION_CSE
2602 
2603 /* Define this macro if it is as good or better for a function to call itself
2604    with an explicit address than to call an address kept in a register.  */
2605 /* #define NO_RECURSIVE_FUNCTION_CSE */
2606 
2607 
2608 /* Dividing the output into sections.  */
2609 
2610 /* A C expression whose value is a string containing the assembler operation
2611    that should precede instructions and read-only data.  Normally `".text"' is
2612    right.  */
2613 #define TEXT_SECTION_ASM_OP "\t.text"
2614 
2615 /* A C expression whose value is a string containing the assembler operation to
2616    identify the following data as writable initialized data.  Normally
2617    `".data"' is right.  */
2618 #define DATA_SECTION_ASM_OP "\t.data"
2619 
2620 /* if defined, a C expression whose value is a string containing the assembler
2621    operation to identify the following data as shared data.  If not defined,
2622    `DATA_SECTION_ASM_OP' will be used.  */
2623 /* #define SHARED_SECTION_ASM_OP */
2624 
2625 /* If defined, a C expression whose value is a string containing the
2626    assembler operation to identify the following data as
2627    uninitialized global data.  If not defined, and neither
2628    `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
2629    uninitialized global data will be output in the data section if
2630    `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
2631    used.  */
2632 #define BSS_SECTION_ASM_OP "\t.section .bss"
2633 
2634 /* If defined, a C expression whose value is a string containing the
2635    assembler operation to identify the following data as
2636    uninitialized global shared data.  If not defined, and
2637    `BSS_SECTION_ASM_OP' is, the latter will be used.  */
2638 /* #define SHARED_BSS_SECTION_ASM_OP */
2639 
2640 /* A list of names for sections other than the standard two, which are
2641    `in_text' and `in_data'.  You need not define this macro on a system with no
2642    other sections (that GCC needs to use).
2643 
2644    Defined in svr4.h.  */
2645 /* #define EXTRA_SECTIONS */
2646 
2647 /* One or more functions to be defined in `varasm.c'.  These functions should
2648    do jobs analogous to those of `text_section' and `data_section', for your
2649    additional sections.  Do not define this macro if you do not define
2650    `EXTRA_SECTIONS'.
2651 
2652    Defined in svr4.h.  */
2653 /* #define EXTRA_SECTION_FUNCTIONS */
2654 
2655 /* Define this macro if jump tables (for `tablejump' insns) should be output in
2656    the text section, along with the assembler instructions.  Otherwise, the
2657    readonly data section is used.
2658 
2659    This macro is irrelevant if there is no separate readonly data section.  */
2660 /* #define JUMP_TABLES_IN_TEXT_SECTION */
2661 
2662 /* Position Independent Code.  */
2663 
2664 /* The register number of the register used to address a table of static data
2665    addresses in memory.  In some cases this register is defined by a
2666    processor's "application binary interface" (ABI).  When this macro is
2667    defined, RTL is generated for this register once, as with the stack pointer
2668    and frame pointer registers.  If this macro is not defined, it is up to the
2669    machine-dependent files to allocate such a register (if necessary).  */
2670 /* #define PIC_OFFSET_TABLE_REGNUM */
2671 
2672 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
2673    clobbered by calls.  Do not define this macro if `PIC_OFFSET_TABLE_REGNUM'
2674    is not defined.  */
2675 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2676 
2677 /* By generating position-independent code, when two different programs (A and
2678    B) share a common library (libC.a), the text of the library can be shared
2679    whether or not the library is linked at the same address for both programs.
2680    In some of these environments, position-independent code requires not only
2681    the use of different addressing modes, but also special code to enable the
2682    use of these addressing modes.
2683 
2684    The `FINALIZE_PIC' macro serves as a hook to emit these special codes once
2685    the function is being compiled into assembly code, but not before.  (It is
2686    not done before, because in the case of compiling an inline function, it
2687    would lead to multiple PIC prologues being included in functions which used
2688    inline functions and were compiled to assembly language.)  */
2689 /* #define FINALIZE_PIC */
2690 
2691 /* A C expression that is nonzero if X is a legitimate immediate operand on the
2692    target machine when generating position independent code.  You can assume
2693    that X satisfies `CONSTANT_P', so you need not check this.  You can also
2694    assume FLAG_PIC is true, so you need not check it either.  You need not
2695    define this macro if all constants (including `SYMBOL_REF') can be immediate
2696    operands when generating position independent code.  */
2697 /* #define LEGITIMATE_PIC_OPERAND_P(X) */
2698 
2699 
2700 /* The Overall Framework of an Assembler File.  */
2701 
2702 /* A C expression which outputs to the stdio stream STREAM some appropriate
2703    text to go at the start of an assembler file.
2704 
2705    Normally this macro is defined to output a line containing `#NO_APP', which
2706    is a comment that has no effect on most assemblers but tells the GNU
2707    assembler that it can save time by not checking for certain assembler
2708    constructs.
2709 
2710    On systems that use SDB, it is necessary to output certain commands; see
2711    `attasm.h'.
2712 
2713    Defined in svr4.h.  */
2714 
2715 /* #define ASM_FILE_START(STREAM) \
2716   output_file_directive ((STREAM), main_input_filename) */
2717 
2718 /* A C expression which outputs to the stdio stream STREAM some appropriate
2719    text to go at the end of an assembler file.
2720 
2721    If this macro is not defined, the default is to output nothing special at
2722    the end of the file.  Most systems don't require any definition.
2723 
2724    On systems that use SDB, it is necessary to output certain commands; see
2725    `attasm.h'.
2726 
2727    Defined in svr4.h.  */
2728 /* #define ASM_FILE_END(STREAM) */
2729 
2730 /* A C string constant describing how to begin a comment in the target
2731    assembler language.  The compiler assumes that the comment will end at the
2732    end of the line.  */
2733 #define ASM_COMMENT_START ";"
2734 
2735 /* A C string constant for text to be output before each `asm' statement or
2736    group of consecutive ones.  Normally this is `"#APP"', which is a comment
2737    that has no effect on most assemblers but tells the GNU assembler that it
2738    must check the lines that follow for all valid assembler constructs.  */
2739 #define ASM_APP_ON "#APP\n"
2740 
2741 /* A C string constant for text to be output after each `asm' statement or
2742    group of consecutive ones.  Normally this is `"#NO_APP"', which tells the
2743    GNU assembler to resume making the time-saving assumptions that are valid
2744    for ordinary compiler output.  */
2745 #define ASM_APP_OFF "#NO_APP\n"
2746 
2747 /* A C statement to output COFF information or DWARF debugging information
2748    which indicates that filename NAME is the current source file to the stdio
2749    stream STREAM.
2750 
2751    This macro need not be defined if the standard form of output for the file
2752    format in use is appropriate.  */
2753 /* #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) */
2754 
2755 /* A C statement to output DBX or SDB debugging information before code for
2756    line number LINE of the current source file to the stdio stream STREAM.
2757 
2758    This macro need not be defined if the standard form of debugging information
2759    for the debugger in use is appropriate.
2760 
2761    Defined in svr4.h.  */
2762 /* #define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) */
2763 
2764 /* A C statement to output something to the assembler file to handle a `#ident'
2765    directive containing the text STRING.  If this macro is not defined, nothing
2766    is output for a `#ident' directive.
2767 
2768    Defined in svr4.h.  */
2769 /* #define ASM_OUTPUT_IDENT(STREAM, STRING) */
2770 
2771 /* A C statement to output any assembler statements which are required to
2772    precede any Objective-C object definitions or message sending.  The
2773    statement is executed only when compiling an Objective-C program.  */
2774 /* #define OBJC_PROLOGUE */
2775 
2776 
2777 /* Output of Data.  */
2778 
2779 /* A C statement to output to the stdio stream STREAM an assembler instruction
2780    to assemble a string constant containing the LEN bytes at PTR.  PTR will be
2781    a C expression of type `char *' and LEN a C expression of type `int'.
2782 
2783    If the assembler has a `.ascii' pseudo-op as found in the Berkeley Unix
2784    assembler, do not define the macro `ASM_OUTPUT_ASCII'.
2785 
2786    Defined in svr4.h.  */
2787 /* #define ASM_OUTPUT_ASCII(STREAM, PTR, LEN) */
2788 
2789 /* You may define this macro as a C expression.  You should define the
2790    expression to have a nonzero value if GNU CC should output the
2791    constant pool for a function before the code for the function, or
2792    a zero value if GNU CC should output the constant pool after the
2793    function.  If you do not define this macro, the usual case, GNU CC
2794    will output the constant pool before the function.  */
2795 /* #define CONSTANT_POOL_BEFORE_FUNCTION */
2796 
2797 /* A C statement to output assembler commands to define the start of the
2798    constant pool for a function.  FUNNAME is a string giving the name of the
2799    function.  Should the return type of the function be required, it can be
2800    obtained via FUNDECL.  SIZE is the size, in bytes, of the constant pool that
2801    will be written immediately after this call.
2802 
2803    If no constant-pool prefix is required, the usual case, this macro need not
2804    be defined.  */
2805 /* #define ASM_OUTPUT_POOL_PROLOGUE(FILE FUNNAME FUNDECL SIZE) */
2806 
2807 /* A C statement (with or without semicolon) to output a constant in the
2808    constant pool, if it needs special treatment.  (This macro need not do
2809    anything for RTL expressions that can be output normally.)
2810 
2811    The argument FILE is the standard I/O stream to output the assembler code
2812    on.  X is the RTL expression for the constant to output, and MODE is the
2813    machine mode (in case X is a `const_int').  ALIGN is the required alignment
2814    for the value X; you should output an assembler directive to force this much
2815    alignment.
2816 
2817    The argument LABELNO is a number to use in an internal label for the address
2818    of this pool entry.  The definition of this macro is responsible for
2819    outputting the label definition at the proper place.  Here is how to do
2820    this:
2821 
2822         ASM_OUTPUT_INTERNAL_LABEL (FILE, "LC", LABELNO);
2823 
2824    When you output a pool entry specially, you should end with a `goto' to the
2825    label JUMPTO.  This will prevent the same pool entry from being output a
2826    second time in the usual manner.
2827 
2828    You need not define this macro if it would do nothing.  */
2829 /* #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) */
2830 
2831 /* Define this macro as a C expression which is nonzero if the constant EXP, of
2832    type `tree', should be output after the code for a function.  The compiler
2833    will normally output all constants before the function; you need not define
2834    this macro if this is OK.  */
2835 /* #define CONSTANT_AFTER_FUNCTION_P(EXP) */
2836 
2837 /* A C statement to output assembler commands to at the end of the constant
2838    pool for a function.  FUNNAME is a string giving the name of the function.
2839    Should the return type of the function be required, you can obtain it via
2840    FUNDECL.  SIZE is the size, in bytes, of the constant pool that GNU CC wrote
2841    immediately before this call.
2842 
2843    If no constant-pool epilogue is required, the usual case, you need not
2844    define this macro.  */
2845 /* #define ASM_OUTPUT_POOL_EPILOGUE (FILE FUNNAME FUNDECL SIZE) */
2846 
2847 /* Define this macro as a C expression which is nonzero if C is used as a
2848    logical line separator by the assembler.
2849 
2850    If you do not define this macro, the default is that only the character `;'
2851    is treated as a logical line separator.  */
2852 /* #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) */
2853 
2854 /* These macros are provided by `real.h' for writing the definitions of
2855    `ASM_OUTPUT_DOUBLE' and the like: */
2856 
2857 
2858 /* Output of Uninitialized Variables.  */
2859 
2860 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
2861    assembler definition of a common-label named NAME whose size is SIZE bytes.
2862    The variable ROUNDED is the size rounded up to whatever alignment the caller
2863    wants.
2864 
2865    Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
2866    before and after that, output the additional assembler syntax for defining
2867    the name, and a newline.
2868 
2869    This macro controls how the assembler definitions of uninitialized global
2870    variables are output.  */
2871 /* #define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) */
2872 
2873 /* Like `ASM_OUTPUT_COMMON' except takes the required alignment as a separate,
2874    explicit argument.  If you define this macro, it is used in place of
2875    `ASM_OUTPUT_COMMON', and gives you more flexibility in handling the required
2876    alignment of the variable.  The alignment is specified as the number of
2877    bits.
2878 
2879    Defined in svr4.h.  */
2880 /* #define ASM_OUTPUT_ALIGNED_COMMON(STREAM, NAME, SIZE, ALIGNMENT) */
2881 
2882 /* Like ASM_OUTPUT_ALIGNED_COMMON except that it takes an additional argument -
2883    the DECL of the variable to be output, if there is one.  This macro can be
2884    called with DECL == NULL_TREE.  If you define this macro, it is used in
2885    place of both ASM_OUTPUT_COMMON and ASM_OUTPUT_ALIGNED_COMMON, and gives you
2886    more flexibility in handling the destination of the variable.  */
2887 /* #define ASM_OUTPUT_DECL_COMMON (STREAM, DECL, NAME, SIZE, ALIGNMENT) */
2888 
2889 /* If defined, it is similar to `ASM_OUTPUT_COMMON', except that it is used
2890    when NAME is shared.  If not defined, `ASM_OUTPUT_COMMON' will be used.  */
2891 /* #define ASM_OUTPUT_SHARED_COMMON(STREAM, NAME, SIZE, ROUNDED) */
2892 
2893 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
2894    assembler definition of uninitialized global DECL named NAME whose size is
2895    SIZE bytes.  The variable ROUNDED is the size rounded up to whatever
2896    alignment the caller wants.
2897 
2898    Try to use function `asm_output_bss' defined in `varasm.c' when defining
2899    this macro.  If unable, use the expression `assemble_name (STREAM, NAME)' to
2900    output the name itself; before and after that, output the additional
2901    assembler syntax for defining the name, and a newline.
2902 
2903    This macro controls how the assembler definitions of uninitialized global
2904    variables are output.  This macro exists to properly support languages like
2905    `c++' which do not have `common' data.  However, this macro currently is not
2906    defined for all targets.  If this macro and `ASM_OUTPUT_ALIGNED_BSS' are not
2907    defined then `ASM_OUTPUT_COMMON' or `ASM_OUTPUT_ALIGNED_COMMON' or
2908    `ASM_OUTPUT_DECL_COMMON' is used.  */
2909 /* #define ASM_OUTPUT_BSS(STREAM, DECL, NAME, SIZE, ROUNDED) */
2910 
2911 /* Like `ASM_OUTPUT_BSS' except takes the required alignment as a separate,
2912    explicit argument.  If you define this macro, it is used in place of
2913    `ASM_OUTPUT_BSS', and gives you more flexibility in handling the required
2914    alignment of the variable.  The alignment is specified as the number of
2915    bits.
2916 
2917    Try to use function `asm_output_aligned_bss' defined in file `varasm.c' when
2918    defining this macro.  */
2919 /* #define ASM_OUTPUT_ALIGNED_BSS(STREAM, DECL, NAME, SIZE, ALIGNMENT) */
2920 
2921 /* If defined, it is similar to `ASM_OUTPUT_BSS', except that it is used when
2922    NAME is shared.  If not defined, `ASM_OUTPUT_BSS' will be used.  */
2923 /* #define ASM_OUTPUT_SHARED_BSS(STREAM, DECL, NAME, SIZE, ROUNDED) */
2924 
2925 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
2926    assembler definition of a local-common-label named NAME whose size is SIZE
2927    bytes.  The variable ROUNDED is the size rounded up to whatever alignment
2928    the caller wants.
2929 
2930    Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
2931    before and after that, output the additional assembler syntax for defining
2932    the name, and a newline.
2933 
2934    This macro controls how the assembler definitions of uninitialized static
2935    variables are output.  */
2936 /* #define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED) */
2937 
2938 /* Like `ASM_OUTPUT_LOCAL' except takes the required alignment as a separate,
2939    explicit argument.  If you define this macro, it is used in place of
2940    `ASM_OUTPUT_LOCAL', and gives you more flexibility in handling the required
2941    alignment of the variable.  The alignment is specified as the number of
2942    bits.
2943 
2944    Defined in svr4.h.  */
2945 /* #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGNMENT) */
2946 
2947 /* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
2948    parameter - the DECL of variable to be output, if there is one.
2949    This macro can be called with DECL == NULL_TREE.  If you define
2950    this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
2951    `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
2952    handling the destination of the variable.  */
2953 /* #define ASM_OUTPUT_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGNMENT) */
2954 
2955 /* If defined, it is similar to `ASM_OUTPUT_LOCAL', except that it is used when
2956    NAME is shared.  If not defined, `ASM_OUTPUT_LOCAL' will be used.  */
2957 /* #define ASM_OUTPUT_SHARED_LOCAL (STREAM, NAME, SIZE, ROUNDED) */
2958 
2959 
2960 /* Output and Generation of Labels.  */
2961 
2962 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
2963    necessary for declaring the name NAME of a function which is being defined.
2964    This macro is responsible for outputting the label definition (perhaps using
2965    `ASM_OUTPUT_LABEL').  The argument DECL is the `FUNCTION_DECL' tree node
2966    representing the function.
2967 
2968    If this macro is not defined, then the function name is defined in the usual
2969    manner as a label (by means of `ASM_OUTPUT_LABEL').
2970 
2971    Defined in svr4.h.  */
2972 /* #define ASM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) */
2973 
2974 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
2975    necessary for declaring the size of a function which is being defined.  The
2976    argument NAME is the name of the function.  The argument DECL is the
2977    `FUNCTION_DECL' tree node representing the function.
2978 
2979    If this macro is not defined, then the function size is not defined.
2980 
2981    Defined in svr4.h.  */
2982 /* #define ASM_DECLARE_FUNCTION_SIZE(STREAM, NAME, DECL) */
2983 
2984 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
2985    necessary for declaring the name NAME of an initialized variable which is
2986    being defined.  This macro must output the label definition (perhaps using
2987    `ASM_OUTPUT_LABEL').  The argument DECL is the `VAR_DECL' tree node
2988    representing the variable.
2989 
2990    If this macro is not defined, then the variable name is defined in the usual
2991    manner as a label (by means of `ASM_OUTPUT_LABEL').
2992 
2993    Defined in svr4.h.  */
2994 /* #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) */
2995 
2996 /* A C statement (sans semicolon) to finish up declaring a variable name once
2997    the compiler has processed its initializer fully and thus has had a chance
2998    to determine the size of an array when controlled by an initializer.  This
2999    is used on systems where it's necessary to declare something about the size
3000    of the object.
3001 
3002    If you don't define this macro, that is equivalent to defining it to do
3003    nothing.
3004 
3005    Defined in svr4.h.  */
3006 /* #define ASM_FINISH_DECLARE_OBJECT(STREAM, DECL, TOPLEVEL, ATEND) */
3007 
3008 /* Globalizing directive for a label.  */
3009 #define GLOBAL_ASM_OP "\t.globl "
3010 
3011 /* A C statement (sans semicolon) to output to the stdio stream STREAM some
3012    commands that will make the label NAME weak; that is, available for
3013    reference from other files but only used if no other definition is
3014    available.  Use the expression `assemble_name (STREAM, NAME)' to output the
3015    name itself; before and after that, output the additional assembler syntax
3016    for making that name weak, and a newline.
3017 
3018    If you don't define this macro, GNU CC will not support weak symbols and you
3019    should not define the `SUPPORTS_WEAK' macro.
3020 
3021    Defined in svr4.h.  */
3022 /* #define ASM_WEAKEN_LABEL */
3023 
3024 /* A C expression which evaluates to true if the target supports weak symbols.
3025 
3026    If you don't define this macro, `defaults.h' provides a default definition.
3027    If `ASM_WEAKEN_LABEL' is defined, the default definition is `1'; otherwise,
3028    it is `0'.  Define this macro if you want to control weak symbol support
3029    with a compiler flag such as `-melf'.  */
3030 /* #define SUPPORTS_WEAK */
3031 
3032 /* A C statement (sans semicolon) to mark DECL to be emitted as a
3033    public symbol such that extra copies in multiple translation units
3034    will be discarded by the linker.  Define this macro if your object
3035    file format provides support for this concept, such as the `COMDAT'
3036    section flags in the Microsoft Windows PE/COFF format, and this
3037    support requires changes to DECL, such as putting it in a separate
3038    section.
3039 
3040    Defined in svr4.h.  */
3041 /* #define MAKE_DECL_ONE_ONLY */
3042 
3043 /* A C expression which evaluates to true if the target supports one-only
3044    semantics.
3045 
3046    If you don't define this macro, `varasm.c' provides a default definition.
3047    If `MAKE_DECL_ONE_ONLY' is defined, the default definition is `1';
3048    otherwise, it is `0'.  Define this macro if you want to control one-only
3049    symbol support with a compiler flag, or if setting the `DECL_ONE_ONLY' flag
3050    is enough to mark a declaration to be emitted as one-only.  */
3051 /* #define SUPPORTS_ONE_ONLY */
3052 
3053 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
3054    necessary for declaring the name of an external symbol named NAME which is
3055    referenced in this compilation but not defined.  The value of DECL is the
3056    tree node for the declaration.
3057 
3058    This macro need not be defined if it does not need to output anything.  The
3059    GNU assembler and most Unix assemblers don't require anything.  */
3060 /* #define ASM_OUTPUT_EXTERNAL(STREAM, DECL, NAME) */
3061 
3062 /* A C statement (sans semicolon) to output on STREAM an assembler pseudo-op to
3063    declare a library function name external.  The name of the library function
3064    is given by SYMREF, which has type `rtx' and is a `symbol_ref'.
3065 
3066    This macro need not be defined if it does not need to output anything.  The
3067    GNU assembler and most Unix assemblers don't require anything.
3068 
3069    Defined in svr4.h.  */
3070 /* #define ASM_OUTPUT_EXTERNAL_LIBCALL(STREAM, SYMREF) */
3071 
3072 /* A C statement (sans semicolon) to output to the stdio stream STREAM a
3073    reference in assembler syntax to a label named NAME.  This should add `_' to
3074    the front of the name, if that is customary on your operating system, as it
3075    is in most Berkeley Unix systems.  This macro is used in `assemble_name'.  */
3076 /* #define ASM_OUTPUT_LABELREF(STREAM, NAME) */
3077 
3078 /* A C statement to output to the stdio stream STREAM a label whose name is
3079    made from the string PREFIX and the number NUM.
3080 
3081    It is absolutely essential that these labels be distinct from the labels
3082    used for user-level functions and variables.  Otherwise, certain programs
3083    will have name conflicts with internal labels.
3084 
3085    It is desirable to exclude internal labels from the symbol table of the
3086    object file.  Most assemblers have a naming convention for labels that
3087    should be excluded; on many systems, the letter `L' at the beginning of a
3088    label has this effect.  You should find out what convention your system
3089    uses, and follow it.
3090 
3091    The usual definition of this macro is as follows:
3092 
3093         fprintf (STREAM, "L%s%d:\n", PREFIX, NUM)
3094 
3095    Defined in svr4.h.  */
3096 /* #define ASM_OUTPUT_INTERNAL_LABEL(STREAM, PREFIX, NUM) */
3097 
3098 /* A C statement to store into the string STRING a label whose name is made
3099    from the string PREFIX and the number NUM.
3100 
3101    This string, when output subsequently by `assemble_name', should produce the
3102    output that `ASM_OUTPUT_INTERNAL_LABEL' would produce with the same PREFIX
3103    and NUM.
3104 
3105    If the string begins with `*', then `assemble_name' will output the rest of
3106    the string unchanged.  It is often convenient for
3107    `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way.  If the string doesn't
3108    start with `*', then `ASM_OUTPUT_LABELREF' gets to output the string, and
3109    may change it.  (Of course, `ASM_OUTPUT_LABELREF' is also part of your
3110    machine description, so you should know what it does on your machine.)
3111 
3112    Defined in svr4.h.  */
3113 
3114 /*
3115 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM)			\
3116 do {									\
3117   sprintf (LABEL, "*.%s%d", PREFIX, NUM);				\
3118 } while (0)
3119 */
3120 
3121 /* A C expression to assign to OUTVAR (which is a variable of type `char *') a
3122    newly allocated string made from the string NAME and the number NUMBER, with
3123    some suitable punctuation added.  Use `alloca' to get space for the string.
3124 
3125    The string will be used as an argument to `ASM_OUTPUT_LABELREF' to produce
3126    an assembler label for an internal static variable whose name is NAME.
3127    Therefore, the string must be such as to result in valid assembler code.
3128    The argument NUMBER is different each time this macro is executed; it
3129    prevents conflicts between similarly-named internal static variables in
3130    different scopes.
3131 
3132    Ideally this string should not be a valid C identifier, to prevent any
3133    conflict with the user's own symbols.  Most assemblers allow periods or
3134    percent signs in assembler symbols; putting at least one of these between
3135    the name and the number will suffice.  */
3136 
3137 #define ASM_FORMAT_PRIVATE_NAME(OUTVAR, NAME, NUMBER)			\
3138 do {									\
3139   (OUTVAR) = (char *) alloca (strlen ((NAME)) + 12);			\
3140   sprintf ((OUTVAR), "%s.%ld", (NAME), (long)(NUMBER));			\
3141 } while (0)
3142 
3143 /* A C statement to output to the stdio stream STREAM assembler code which
3144    defines (equates) the symbol NAME to have the value VALUE.
3145 
3146    If SET_ASM_OP is defined, a default definition is provided which is correct
3147    for most systems.
3148 
3149    Defined in svr4.h.  */
3150 /* #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) */
3151 
3152 /* A C statement to output to the stdio stream STREAM assembler code which
3153    defines (equates) the weak symbol NAME to have the value VALUE.
3154 
3155    Define this macro if the target only supports weak aliases; define
3156    ASM_OUTPUT_DEF instead if possible.  */
3157 /* #define ASM_OUTPUT_WEAK_ALIAS (STREAM, NAME, VALUE) */
3158 
3159 /* Define this macro to override the default assembler names used for Objective
3160    C methods.
3161 
3162    The default name is a unique method number followed by the name of the class
3163    (e.g. `_1_Foo').  For methods in categories, the name of the category is
3164    also included in the assembler name (e.g.  `_1_Foo_Bar').
3165 
3166    These names are safe on most systems, but make debugging difficult since the
3167    method's selector is not present in the name.  Therefore, particular systems
3168    define other ways of computing names.
3169 
3170    BUF is an expression of type `char *' which gives you a buffer in which to
3171    store the name; its length is as long as CLASS_NAME, CAT_NAME and SEL_NAME
3172    put together, plus 50 characters extra.
3173 
3174    The argument IS_INST specifies whether the method is an instance method or a
3175    class method; CLASS_NAME is the name of the class; CAT_NAME is the name of
3176    the category (or NULL if the method is not in a category); and SEL_NAME is
3177    the name of the selector.
3178 
3179    On systems where the assembler can handle quoted names, you can use this
3180    macro to provide more human-readable names.  */
3181 /* #define OBJC_GEN_METHOD_LABEL(BUF, IS_INST, CLASS_NAME, CAT_NAME, SEL_NAME) */
3182 
3183 
3184 /* Macros Controlling Initialization Routines.  */
3185 
3186 /* If defined, a C string constant for the assembler operation to identify the
3187    following data as initialization code.  If not defined, GNU CC will assume
3188    such a section does not exist.  When you are using special sections for
3189    initialization and termination functions, this macro also controls how
3190    `crtstuff.c' and `libgcc2.c' arrange to run the initialization functions.
3191 
3192    Defined in svr4.h.  */
3193 /* #define INIT_SECTION_ASM_OP */
3194 
3195 /* If defined, `main' will not call `__main' as described above.  This macro
3196    should be defined for systems that control the contents of the init section
3197    on a symbol-by-symbol basis, such as OSF/1, and should not be defined
3198    explicitly for systems that support `INIT_SECTION_ASM_OP'.  */
3199 /* #define HAS_INIT_SECTION */
3200 
3201 /* If defined, a C string constant for a switch that tells the linker that the
3202    following symbol is an initialization routine.  */
3203 /* #define LD_INIT_SWITCH */
3204 
3205 /* If defined, a C string constant for a switch that tells the linker that the
3206    following symbol is a finalization routine.  */
3207 /* #define LD_FINI_SWITCH */
3208 
3209 /* If defined, `main' will call `__main' despite the presence of
3210    `INIT_SECTION_ASM_OP'.  This macro should be defined for systems where the
3211    init section is not actually run automatically, but is still useful for
3212    collecting the lists of constructors and destructors.  */
3213 #define INVOKE__main
3214 
3215 /* If your system uses `collect2' as the means of processing constructors, then
3216    that program normally uses `nm' to scan an object file for constructor
3217    functions to be called.  On certain kinds of systems, you can define these
3218    macros to make `collect2' work faster (and, in some cases, make it work at
3219    all): */
3220 
3221 /* Define this macro if the system uses COFF (Common Object File Format) object
3222    files, so that `collect2' can assume this format and scan object files
3223    directly for dynamic constructor/destructor functions.  */
3224 /* #define OBJECT_FORMAT_COFF */
3225 
3226 /* Define this macro if the system uses ROSE format object files, so that
3227    `collect2' can assume this format and scan object files directly for dynamic
3228    constructor/destructor functions.
3229 
3230    These macros are effective only in a native compiler; `collect2' as
3231    part of a cross compiler always uses `nm' for the target machine.  */
3232 /* #define OBJECT_FORMAT_ROSE */
3233 
3234 /* Define this macro if the system uses ELF format object files.
3235 
3236    Defined in svr4.h.  */
3237 /* #define OBJECT_FORMAT_ELF */
3238 
3239 /* Define this macro as a C string constant containing the file name to use to
3240    execute `nm'.  The default is to search the path normally for `nm'.
3241 
3242    If your system supports shared libraries and has a program to list the
3243    dynamic dependencies of a given library or executable, you can define these
3244    macros to enable support for running initialization and termination
3245    functions in shared libraries: */
3246 /* #define REAL_NM_FILE_NAME */
3247 
3248 /* Define this macro to a C string constant containing the name of the program
3249    which lists dynamic dependencies, like `"ldd"' under SunOS 4.  */
3250 /* #define LDD_SUFFIX */
3251 
3252 /* Define this macro to be C code that extracts filenames from the output of
3253    the program denoted by `LDD_SUFFIX'.  PTR is a variable of type `char *'
3254    that points to the beginning of a line of output from `LDD_SUFFIX'.  If the
3255    line lists a dynamic dependency, the code must advance PTR to the beginning
3256    of the filename on that line.  Otherwise, it must set PTR to `NULL'.  */
3257 /* #define PARSE_LDD_OUTPUT (PTR) */
3258 
3259 
3260 /* Output of Assembler Instructions.  */
3261 
3262 /* A C initializer containing the assembler's names for the machine registers,
3263    each one as a C string constant.  This is what translates register numbers
3264    in the compiler into assembler language.  */
3265 #define REGISTER_NAMES							\
3266 {									\
3267   "r0",		"r1",		"r2",		"r3",			\
3268   "r4",		"r5",		"r6",		"r7",			\
3269   "r8",		"r9",		"r10",		"r11",			\
3270   "r12",	"r13",		"r14",		"r15",			\
3271   "r16",	"r17",		"r18",		"r19",			\
3272   "r20",	"r21",		"r22",		"r23",			\
3273   "r24",	"r25",		"r26",		"r27",			\
3274   "r28",	"r29",		"r30",		"r31",			\
3275   "r32",	"r33",		"r34",		"r35",			\
3276   "r36",	"r37",		"r38",		"r39",			\
3277   "r40",	"r41",		"r42",		"r43",			\
3278   "r44",	"r45",		"r46",		"r47",			\
3279   "r48",	"r49",		"r50",		"r51",			\
3280   "r52",	"r53",		"r54",		"r55",			\
3281   "r56",	"r57",		"r58",		"r59",			\
3282   "r60",	"r61",		"link",		"sp",			\
3283   "ap",									\
3284   "f0",		"f1",		"f2",		"f3",			\
3285   "s",		"v",		"va",		"c",			\
3286   "a0",		"a1",							\
3287   "psw",	"bpsw",		"pc",		"bpc",			\
3288   "dpsw",	"dpc",		"rpt_c",	"rpt_s",		\
3289   "rpt_e",	"mod_s",	"mod_e",	"iba",			\
3290   "eit_vb",	"int_s",	"int_m",				\
3291 }
3292 
3293 /* If defined, a C initializer for an array of structures containing a name and
3294    a register number.  This macro defines additional names for hard registers,
3295    thus allowing the `asm' option in declarations to refer to registers using
3296    alternate names.  */
3297 #define ADDITIONAL_REGISTER_NAMES		\
3298 {						\
3299   {"r62",	GPR_LINK},			\
3300   {"r63",	GPR_SP},			\
3301   {"f4",	FLAG_SAT},			\
3302   {"f5",	FLAG_OVERFLOW},			\
3303   {"f6",	FLAG_ACC_OVER},			\
3304   {"f7",	FLAG_CARRY},			\
3305   {"carry",	FLAG_CARRY},			\
3306   {"borrow",	FLAG_BORROW},			\
3307   {"b",		FLAG_BORROW},			\
3308   {"cr0",	CR_PSW},			\
3309   {"cr1",	CR_BPSW},			\
3310   {"cr2",	CR_PC},				\
3311   {"cr3",	CR_BPC},			\
3312   {"cr4",	CR_DPSW},			\
3313   {"cr5",	CR_DPC},			\
3314   {"cr7",	CR_RPT_C},			\
3315   {"cr8",	CR_RPT_S},			\
3316   {"cr9",	CR_RPT_E},			\
3317   {"cr10",	CR_MOD_S},			\
3318   {"cr11",	CR_MOD_E},			\
3319   {"cr14",	CR_IBA},			\
3320   {"cr15",	CR_EIT_VB},			\
3321   {"cr16",	CR_INT_S},			\
3322   {"cr17",	CR_INT_M}			\
3323 }
3324 
3325 /* Define this macro if you are using an unusual assembler that requires
3326    different names for the machine instructions.
3327 
3328    The definition is a C statement or statements which output an assembler
3329    instruction opcode to the stdio stream STREAM.  The macro-operand PTR is a
3330    variable of type `char *' which points to the opcode name in its "internal"
3331    form--the form that is written in the machine description.  The definition
3332    should output the opcode name to STREAM, performing any translation you
3333    desire, and increment the variable PTR to point at the end of the opcode so
3334    that it will not be output twice.
3335 
3336    In fact, your macro definition may process less than the entire opcode name,
3337    or more than the opcode name; but if you want to process text that includes
3338    `%'-sequences to substitute operands, you must take care of the substitution
3339    yourself.  Just be sure to increment PTR over whatever text should not be
3340    output normally.
3341 
3342    If you need to look at the operand values, they can be found as the elements
3343    of `recog_data.operand'.
3344 
3345    If the macro definition does nothing, the instruction is output in the usual
3346    way.  */
3347 /* #define ASM_OUTPUT_OPCODE(STREAM, PTR) */
3348 
3349 /* If defined, a C statement to be executed just prior to the output of
3350    assembler code for INSN, to modify the extracted operands so they will be
3351    output differently.
3352 
3353    Here the argument OPVEC is the vector containing the operands extracted from
3354    INSN, and NOPERANDS is the number of elements of the vector which contain
3355    meaningful data for this insn.  The contents of this vector are what will be
3356    used to convert the insn template into assembler code, so you can change the
3357    assembler output by changing the contents of the vector.
3358 
3359    This macro is useful when various assembler syntaxes share a single file of
3360    instruction patterns; by defining this macro differently, you can cause a
3361    large class of instructions to be output differently (such as with
3362    rearranged operands).  Naturally, variations in assembler syntax affecting
3363    individual insn patterns ought to be handled by writing conditional output
3364    routines in those patterns.
3365 
3366    If this macro is not defined, it is equivalent to a null statement.  */
3367 /* #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) */
3368 
3369 /* If defined, `FINAL_PRESCAN_INSN' will be called on each
3370    `CODE_LABEL'.  In that case, OPVEC will be a null pointer and
3371    NOPERANDS will be zero.  */
3372 /* #define FINAL_PRESCAN_LABEL */
3373 
3374 /* A C compound statement to output to stdio stream STREAM the assembler syntax
3375    for an instruction operand X.  X is an RTL expression.
3376 
3377    CODE is a value that can be used to specify one of several ways of printing
3378    the operand.  It is used when identical operands must be printed differently
3379    depending on the context.  CODE comes from the `%' specification that was
3380    used to request printing of the operand.  If the specification was just
3381    `%DIGIT' then CODE is 0; if the specification was `%LTR DIGIT' then CODE is
3382    the ASCII code for LTR.
3383 
3384    If X is a register, this macro should print the register's name.  The names
3385    can be found in an array `reg_names' whose type is `char *[]'.  `reg_names'
3386    is initialized from `REGISTER_NAMES'.
3387 
3388    When the machine description has a specification `%PUNCT' (a `%' followed by
3389    a punctuation character), this macro is called with a null pointer for X and
3390    the punctuation character for CODE.
3391 
3392    Standard operand flags that are handled elsewhere:
3393 	`='  Output a number unique to each instruction in the compilation.
3394 	`a'  Substitute an operand as if it were a memory reference.
3395 	`c'  Omit the syntax that indicates an immediate operand.
3396 	`l'  Substitute a LABEL_REF into a jump instruction.
3397 	`n'  Like %cDIGIT, except negate the value before printing.
3398 
3399    The d30v specific operand flags are:
3400 	`.'  Print r0.
3401 	`f'  Print a SF constant as an int.
3402 	`s'  Subtract 32 and negate.
3403 	`A'  Print accumulator number without an `a' in front of it.
3404 	`B'  Print bit offset for BSET, etc. instructions.
3405 	`E'  Print u if this is zero extend, nothing if this is sign extend.
3406 	`F'  Emit /{f,t,x}{f,t,x} for executing a false condition.
3407 	`L'  Print the lower half of a 64 bit item.
3408 	`M'  Print a memory reference for ld/st instructions.
3409 	`R'  Return appropriate cmp instruction for relational test.
3410 	`S'  Subtract 32.
3411 	`T'  Emit /{f,t,x}{f,t,x} for executing a true condition.
3412 	`U'  Print the upper half of a 64 bit item.  */
3413 
3414 #define PRINT_OPERAND(STREAM, X, CODE) d30v_print_operand (STREAM, X, CODE)
3415 
3416 /* A C expression which evaluates to true if CODE is a valid punctuation
3417    character for use in the `PRINT_OPERAND' macro.  If
3418    `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no punctuation
3419    characters (except for the standard one, `%') are used in this way.  */
3420 
3421 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '.' || (CODE) == ':')
3422 
3423 /* A C compound statement to output to stdio stream STREAM the assembler syntax
3424    for an instruction operand that is a memory reference whose address is X.  X
3425    is an RTL expression.  */
3426 
3427 #define PRINT_OPERAND_ADDRESS(STREAM, X) d30v_print_operand_address (STREAM, X)
3428 
3429 /* A C statement, to be executed after all slot-filler instructions have been
3430    output.  If necessary, call `dbr_sequence_length' to determine the number of
3431    slots filled in a sequence (zero if not currently outputting a sequence), to
3432    decide how many no-ops to output, or whatever.
3433 
3434    Don't define this macro if it has nothing to do, but it is helpful in
3435    reading assembly output if the extent of the delay sequence is made explicit
3436    (e.g. with white space).
3437 
3438    Note that output routines for instructions with delay slots must be prepared
3439    to deal with not being output as part of a sequence (i.e.  when the
3440    scheduling pass is not run, or when no slot fillers could be found.)  The
3441    variable `final_sequence' is null when not processing a sequence, otherwise
3442    it contains the `sequence' rtx being output.  */
3443 /* #define DBR_OUTPUT_SEQEND(FILE) */
3444 
3445 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
3446    `%I' options of `asm_fprintf' (see `final.c').  These are useful when a
3447    single `md' file must support multiple assembler formats.  In that case, the
3448    various `tm.h' files can define these macros differently.
3449 
3450    USER_LABEL_PREFIX is defined in svr4.h.  */
3451 
3452 #define REGISTER_PREFIX "%"
3453 #define LOCAL_LABEL_PREFIX "."
3454 #define USER_LABEL_PREFIX ""
3455 #define IMMEDIATE_PREFIX ""
3456 
3457 /* If your target supports multiple dialects of assembler language (such as
3458    different opcodes), define this macro as a C expression that gives the
3459    numeric index of the assembler language dialect to use, with zero as the
3460    first variant.
3461 
3462    If this macro is defined, you may use `{option0|option1|option2...}'
3463    constructs in the output templates of patterns (*note Output Template::.) or
3464    in the first argument of `asm_fprintf'.  This construct outputs `option0',
3465    `option1' or `option2', etc., if the value of `ASSEMBLER_DIALECT' is zero,
3466    one or two, etc.  Any special characters within these strings retain their
3467    usual meaning.
3468 
3469    If you do not define this macro, the characters `{', `|' and `}' do not have
3470    any special meaning when used in templates or operands to `asm_fprintf'.
3471 
3472    Define the macros `REGISTER_PREFIX', `LOCAL_LABEL_PREFIX',
3473    `USER_LABEL_PREFIX' and `IMMEDIATE_PREFIX' if you can express the variations
3474    in assemble language syntax with that mechanism.  Define `ASSEMBLER_DIALECT'
3475    and use the `{option0|option1}' syntax if the syntax variant are larger and
3476    involve such things as different opcodes or operand order.  */
3477 /* #define ASSEMBLER_DIALECT */
3478 
3479 /* A C expression to output to STREAM some assembler code which will push hard
3480    register number REGNO onto the stack.  The code need not be optimal, since
3481    this macro is used only when profiling.  */
3482 /* #define ASM_OUTPUT_REG_PUSH (STREAM, REGNO) */
3483 
3484 /* A C expression to output to STREAM some assembler code which will pop hard
3485    register number REGNO off of the stack.  The code need not be optimal, since
3486    this macro is used only when profiling.  */
3487 /* #define ASM_OUTPUT_REG_POP (STREAM, REGNO) */
3488 
3489 
3490 /* Output of dispatch tables.  */
3491 
3492 /* This macro should be provided on machines where the addresses in a dispatch
3493    table are relative to the table's own address.
3494 
3495    The definition should be a C statement to output to the stdio stream STREAM
3496    an assembler pseudo-instruction to generate a difference between two labels.
3497    VALUE and REL are the numbers of two internal labels.  The definitions of
3498    these labels are output using `ASM_OUTPUT_INTERNAL_LABEL', and they must be
3499    printed in the same way here.  For example,
3500 
3501         fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL)  */
3502 
3503 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
3504 fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
3505 
3506 /* This macro should be provided on machines where the addresses in a dispatch
3507    table are absolute.
3508 
3509    The definition should be a C statement to output to the stdio stream STREAM
3510    an assembler pseudo-instruction to generate a reference to a label.  VALUE
3511    is the number of an internal label whose definition is output using
3512    `ASM_OUTPUT_INTERNAL_LABEL'.  For example,
3513 
3514         fprintf (STREAM, "\t.word L%d\n", VALUE)  */
3515 
3516 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
3517 fprintf (STREAM, "\t.word .L%d\n", VALUE)
3518 
3519 /* Define this if the label before a jump-table needs to be output specially.
3520    The first three arguments are the same as for `ASM_OUTPUT_INTERNAL_LABEL';
3521    the fourth argument is the jump-table which follows (a `jump_insn'
3522    containing an `addr_vec' or `addr_diff_vec').
3523 
3524    This feature is used on system V to output a `swbeg' statement for the
3525    table.
3526 
3527    If this macro is not defined, these labels are output with
3528    `ASM_OUTPUT_INTERNAL_LABEL'.
3529 
3530    Defined in svr4.h.  */
3531 /* #define ASM_OUTPUT_CASE_LABEL(STREAM, PREFIX, NUM, TABLE) */
3532 
3533 /* Define this if something special must be output at the end of a jump-table.
3534    The definition should be a C statement to be executed after the assembler
3535    code for the table is written.  It should write the appropriate code to
3536    stdio stream STREAM.  The argument TABLE is the jump-table insn, and NUM is
3537    the label-number of the preceding label.
3538 
3539    If this macro is not defined, nothing special is output at the end of the
3540    jump-table.  */
3541 /* #define ASM_OUTPUT_CASE_END(STREAM, NUM, TABLE) */
3542 
3543 
3544 /* Assembler Commands for Exception Regions.  */
3545 
3546 /* An rtx used to mask the return address found via RETURN_ADDR_RTX, so that it
3547    does not contain any extraneous set bits in it.  */
3548 /* #define MASK_RETURN_ADDR */
3549 
3550 /* Define this macro to 0 if your target supports DWARF 2 frame unwind
3551    information, but it does not yet work with exception handling.  Otherwise,
3552    if your target supports this information (if it defines
3553    `INCOMING_RETURN_ADDR_RTX'), GCC will provide a default definition of 1.
3554 
3555    If this macro is defined to 1, the DWARF 2 unwinder will be the default
3556    exception handling mechanism; otherwise, setjmp/longjmp will be used by
3557    default.
3558 
3559    If this macro is defined to anything, the DWARF 2 unwinder will be used
3560    instead of inline unwinders and __unwind_function in the non-setjmp case.  */
3561 /* #define DWARF2_UNWIND_INFO */
3562 
3563 
3564 /* Assembler Commands for Alignment.  */
3565 
3566 /* The alignment (log base 2) to put in front of LABEL, which follows
3567    a BARRIER.
3568 
3569    This macro need not be defined if you don't want any special alignment to be
3570    done at such a time.  Most machine descriptions do not currently define the
3571    macro.  */
3572 /* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
3573 
3574 /* The desired alignment for the location counter at the beginning
3575    of a loop.
3576 
3577    This macro need not be defined if you don't want any special alignment to be
3578    done at such a time.  Most machine descriptions do not currently define the
3579    macro.  */
3580 /* #define LOOP_ALIGN(LABEL) */
3581 
3582 /* A C statement to output to the stdio stream STREAM an assembler instruction
3583    to advance the location counter by NBYTES bytes.  Those bytes should be zero
3584    when loaded.  NBYTES will be a C expression of type `int'.
3585 
3586    Defined in svr4.h.  */
3587 /* #define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
3588   fprintf (STREAM, "\t.zero\t%u\n", (NBYTES)) */
3589 
3590 /* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
3591    section because it fails put zeros in the bytes that are skipped.  This is
3592    true on many Unix systems, where the pseudo-op to skip bytes produces no-op
3593    instructions rather than zeros when used in the text section.  */
3594 /* #define ASM_NO_SKIP_IN_TEXT */
3595 
3596 /* A C statement to output to the stdio stream STREAM an assembler command to
3597    advance the location counter to a multiple of 2 to the POWER bytes.  POWER
3598    will be a C expression of type `int'.  */
3599 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
3600   fprintf ((STREAM), "\t.p2align %d\n", (POWER))
3601 
3602 
3603 /* Macros Affecting all Debug Formats.  */
3604 
3605 /* A C expression that returns the DBX register number for the compiler
3606    register number REGNO.  In simple cases, the value of this expression may be
3607    REGNO itself.  But sometimes there are some registers that the compiler
3608    knows about and DBX does not, or vice versa.  In such cases, some register
3609    may need to have one number in the compiler and another for DBX.
3610 
3611    If two registers have consecutive numbers inside GNU CC, and they can be
3612    used as a pair to hold a multiword value, then they *must* have consecutive
3613    numbers after renumbering with `DBX_REGISTER_NUMBER'.  Otherwise, debuggers
3614    will be unable to access such a pair, because they expect register pairs to
3615    be consecutive in their own numbering scheme.
3616 
3617    If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
3618    preserve register pairs, then what you must do instead is redefine the
3619    actual register numbering scheme.  */
3620 #define DBX_REGISTER_NUMBER(REGNO)					\
3621 (GPR_P (REGNO)			 ? ((REGNO) - GPR_FIRST)		\
3622  : ACCUM_P (REGNO)		 ? ((REGNO) - ACCUM_FIRST + 84)		\
3623  : FLAG_P (REGNO)		 ? 66 /* return psw for all flags */	\
3624  : (REGNO) == ARG_POINTER_REGNUM ? (GPR_SP - GPR_FIRST)			\
3625  : (REGNO) == CR_PSW		 ? (66 + 0)				\
3626  : (REGNO) == CR_BPSW		 ? (66 + 1)				\
3627  : (REGNO) == CR_PC		 ? (66 + 2)				\
3628  : (REGNO) == CR_BPC		 ? (66 + 3)				\
3629  : (REGNO) == CR_DPSW		 ? (66 + 4)				\
3630  : (REGNO) == CR_DPC		 ? (66 + 5)				\
3631  : (REGNO) == CR_RPT_C		 ? (66 + 7)				\
3632  : (REGNO) == CR_RPT_S		 ? (66 + 8)				\
3633  : (REGNO) == CR_RPT_E		 ? (66 + 9)				\
3634  : (REGNO) == CR_MOD_S		 ? (66 + 10)				\
3635  : (REGNO) == CR_MOD_E		 ? (66 + 11)				\
3636  : (REGNO) == CR_IBA		 ? (66 + 14)				\
3637  : (REGNO) == CR_EIT_VB		 ? (66 + 15)				\
3638  : (REGNO) == CR_INT_S		 ? (66 + 16)				\
3639  : (REGNO) == CR_INT_M		 ? (66 + 17)				\
3640  :				   -1)
3641 
3642 /* A C expression that returns the integer offset value for an automatic
3643    variable having address X (an RTL expression).  The default computation
3644    assumes that X is based on the frame-pointer and gives the offset from the
3645    frame-pointer.  This is required for targets that produce debugging output
3646    for DBX or COFF-style debugging output for SDB and allow the frame-pointer
3647    to be eliminated when the `-g' options is used.  */
3648 /* #define DEBUGGER_AUTO_OFFSET(X) */
3649 
3650 /* A C expression that returns the integer offset value for an argument having
3651    address X (an RTL expression).  The nominal offset is OFFSET.  */
3652 /* #define DEBUGGER_ARG_OFFSET(OFFSET, X) */
3653 
3654 /* A C expression that returns the type of debugging output GNU CC produces
3655    when the user specifies `-g' or `-ggdb'.  Define this if you have arranged
3656    for GNU CC to support more than one format of debugging output.  Currently,
3657    the allowable values are `DBX_DEBUG', `SDB_DEBUG', `DWARF_DEBUG',
3658    `DWARF2_DEBUG', and `XCOFF_DEBUG'.
3659 
3660    The value of this macro only affects the default debugging output; the user
3661    can always get a specific type of output by using `-gstabs', `-gcoff',
3662    `-gdwarf-1', `-gdwarf-2', or `-gxcoff'.
3663 
3664    Defined in svr4.h.  */
3665 
3666 #undef	PREFERRED_DEBUGGING_TYPE
3667 #define	PREFERRED_DEBUGGING_TYPE DBX_DEBUG
3668 
3669 
3670 /* Specific Options for DBX Output.  */
3671 
3672 /* Define this macro if GNU CC should produce debugging output for DBX in
3673    response to the `-g' option.
3674 
3675    Defined in svr4.h.  */
3676 /* #define DBX_DEBUGGING_INFO */
3677 
3678 /* Define this macro if GNU CC should produce XCOFF format debugging output in
3679    response to the `-g' option.  This is a variant of DBX format.  */
3680 /* #define XCOFF_DEBUGGING_INFO */
3681 
3682 /* Define this macro to control whether GNU CC should by default generate GDB's
3683    extended version of DBX debugging information (assuming DBX-format debugging
3684    information is enabled at all).  If you don't define the macro, the default
3685    is 1: always generate the extended information if there is any occasion to.  */
3686 /* #define DEFAULT_GDB_EXTENSIONS */
3687 
3688 /* Define this macro if all `.stabs' commands should be output while in the
3689    text section.  */
3690 /* #define DEBUG_SYMS_TEXT */
3691 
3692 /* A C string constant naming the assembler pseudo op to use instead of
3693    `.stabs' to define an ordinary debugging symbol.  If you don't define this
3694    macro, `.stabs' is used.  This macro applies only to DBX debugging
3695    information format.  */
3696 /* #define ASM_STABS_OP */
3697 
3698 /* A C string constant naming the assembler pseudo op to use instead of
3699    `.stabd' to define a debugging symbol whose value is the current location.
3700    If you don't define this macro, `.stabd' is used.  This macro applies only
3701    to DBX debugging information format.  */
3702 /* #define ASM_STABD_OP */
3703 
3704 /* A C string constant naming the assembler pseudo op to use instead of
3705    `.stabn' to define a debugging symbol with no name.  If you don't define
3706    this macro, `.stabn' is used.  This macro applies only to DBX debugging
3707    information format.  */
3708 /* #define ASM_STABN_OP */
3709 
3710 /* Define this macro if DBX on your system does not support the construct
3711    `xsTAGNAME'.  On some systems, this construct is used to describe a forward
3712    reference to a structure named TAGNAME.  On other systems, this construct is
3713    not supported at all.  */
3714 /* #define DBX_NO_XREFS */
3715 
3716 /* A symbol name in DBX-format debugging information is normally continued
3717    (split into two separate `.stabs' directives) when it exceeds a certain
3718    length (by default, 80 characters).  On some operating systems, DBX requires
3719    this splitting; on others, splitting must not be done.  You can inhibit
3720    splitting by defining this macro with the value zero.  You can override the
3721    default splitting-length by defining this macro as an expression for the
3722    length you desire.  */
3723 /* #define DBX_CONTIN_LENGTH */
3724 
3725 /* Normally continuation is indicated by adding a `\' character to the end of a
3726    `.stabs' string when a continuation follows.  To use a different character
3727    instead, define this macro as a character constant for the character you
3728    want to use.  Do not define this macro if backslash is correct for your
3729    system.  */
3730 /* #define DBX_CONTIN_CHAR */
3731 
3732 /* Define this macro if it is necessary to go to the data section before
3733    outputting the `.stabs' pseudo-op for a non-global static variable.  */
3734 /* #define DBX_STATIC_STAB_DATA_SECTION */
3735 
3736 /* The value to use in the "code" field of the `.stabs' directive for a
3737    typedef.  The default is `N_LSYM'.  */
3738 /* #define DBX_TYPE_DECL_STABS_CODE */
3739 
3740 /* The value to use in the "code" field of the `.stabs' directive for a static
3741    variable located in the text section.  DBX format does not provide any
3742    "right" way to do this.  The default is `N_FUN'.  */
3743 /* #define DBX_STATIC_CONST_VAR_CODE */
3744 
3745 /* The value to use in the "code" field of the `.stabs' directive for a
3746    parameter passed in registers.  DBX format does not provide any "right" way
3747    to do this.  The default is `N_RSYM'.  */
3748 /* #define DBX_REGPARM_STABS_CODE */
3749 
3750 /* The letter to use in DBX symbol data to identify a symbol as a parameter
3751    passed in registers.  DBX format does not customarily provide any way to do
3752    this.  The default is `'P''.  */
3753 /* #define DBX_REGPARM_STABS_LETTER */
3754 
3755 /* The letter to use in DBX symbol data to identify a symbol as a stack
3756    parameter.  The default is `'p''.  */
3757 /* #define DBX_MEMPARM_STABS_LETTER */
3758 
3759 /* Define this macro if the DBX information for a function and its arguments
3760    should precede the assembler code for the function.  Normally, in DBX
3761    format, the debugging information entirely follows the assembler code.
3762 
3763    Defined in svr4.h.  */
3764 /* #define DBX_FUNCTION_FIRST */
3765 
3766 /* Define this macro if the `N_LBRAC' symbol for a block should precede the
3767    debugging information for variables and functions defined in that block.
3768    Normally, in DBX format, the `N_LBRAC' symbol comes first.  */
3769 /* #define DBX_LBRAC_FIRST */
3770 
3771 /* Define this macro if the value of a symbol describing the scope of a block
3772    (`N_LBRAC' or `N_RBRAC') should be relative to the start of the enclosing
3773    function.  Normally, GNU C uses an absolute address.
3774 
3775    Defined in svr4.h.  */
3776 /* #define DBX_BLOCKS_FUNCTION_RELATIVE */
3777 
3778 /* Define this macro if GNU C should generate `N_BINCL' and `N_EINCL'
3779    stabs for included header files, as on Sun systems.  This macro
3780    also directs GNU C to output a type number as a pair of a file
3781    number and a type number within the file.  Normally, GNU C does not
3782    generate `N_BINCL' or `N_EINCL' stabs, and it outputs a single
3783    number for a type number.  */
3784 /* #define DBX_USE_BINCL */
3785 
3786 
3787 /* Open ended Hooks for DBX Output.  */
3788 
3789 /* Define this macro to say how to output to STREAM the debugging information
3790    for the start of a scope level for variable names.  The argument NAME is the
3791    name of an assembler symbol (for use with `assemble_name') whose value is
3792    the address where the scope begins.  */
3793 /* #define DBX_OUTPUT_LBRAC(STREAM, NAME) */
3794 
3795 /* Like `DBX_OUTPUT_LBRAC', but for the end of a scope level.  */
3796 /* #define DBX_OUTPUT_RBRAC(STREAM, NAME) */
3797 
3798 /* Define this macro if the target machine requires special handling to output
3799    an enumeration type.  The definition should be a C statement (sans
3800    semicolon) to output the appropriate information to STREAM for the type
3801    TYPE.  */
3802 /* #define DBX_OUTPUT_ENUM(STREAM, TYPE) */
3803 
3804 /* Define this macro if the target machine requires special output at the end
3805    of the debugging information for a function.  The definition should be a C
3806    statement (sans semicolon) to output the appropriate information to STREAM.
3807    FUNCTION is the `FUNCTION_DECL' node for the function.  */
3808 /* #define DBX_OUTPUT_FUNCTION_END(STREAM, FUNCTION) */
3809 
3810 /* Define this macro if you need to control the order of output of the standard
3811    data types at the beginning of compilation.  The argument SYMS is a `tree'
3812    which is a chain of all the predefined global symbols, including names of
3813    data types.
3814 
3815    Normally, DBX output starts with definitions of the types for integers and
3816    characters, followed by all the other predefined types of the particular
3817    language in no particular order.
3818 
3819    On some machines, it is necessary to output different particular types
3820    first.  To do this, define `DBX_OUTPUT_STANDARD_TYPES' to output those
3821    symbols in the necessary order.  Any predefined types that you don't
3822    explicitly output will be output afterward in no particular order.
3823 
3824    Be careful not to define this macro so that it works only for C.  There are
3825    no global variables to access most of the built-in types, because another
3826    language may have another set of types.  The way to output a particular type
3827    is to look through SYMS to see if you can find it.  Here is an example:
3828 
3829         {
3830           tree decl;
3831           for (decl = syms; decl; decl = TREE_CHAIN (decl))
3832             if (!strcmp (IDENTIFIER_POINTER (DECL_NAME (decl)),
3833                          "long int"))
3834               dbxout_symbol (decl);
3835           ...
3836         }
3837 
3838    This does nothing if the expected type does not exist.
3839 
3840    See the function `init_decl_processing' in `c-decl.c' to find the names to
3841    use for all the built-in C types. */
3842 /* #define DBX_OUTPUT_STANDARD_TYPES(SYMS) */
3843 
3844 /* Some stabs encapsulation formats (in particular ECOFF), cannot
3845    handle the `.stabs "",N_FUN,,0,0,Lscope-function-1' gdb dbx
3846    extension construct.  On those machines, define this macro to turn
3847    this feature off without disturbing the rest of the gdb extensions.  */
3848 /* #define NO_DBX_FUNCTION_END */
3849 
3850 
3851 /* File names in DBX format.  */
3852 
3853 /* Define this if DBX wants to have the current directory recorded in each
3854    object file.
3855 
3856    Note that the working directory is always recorded if GDB extensions are
3857    enabled.  */
3858 /* #define DBX_WORKING_DIRECTORY */
3859 
3860 /* A C statement to output DBX debugging information to the stdio stream STREAM
3861    which indicates that file NAME is the main source file--the file specified
3862    as the input file for compilation.  This macro is called only once, at the
3863    beginning of compilation.
3864 
3865    This macro need not be defined if the standard form of output for DBX
3866    debugging information is appropriate.
3867 
3868    Defined in svr4.h.  */
3869 /* #define DBX_OUTPUT_MAIN_SOURCE_FILENAME(STREAM, NAME) */
3870 
3871 /* A C statement to output DBX debugging information to the stdio stream STREAM
3872    which indicates that the current directory during compilation is named NAME.
3873 
3874    This macro need not be defined if the standard form of output for DBX
3875    debugging information is appropriate.  */
3876 /* #define DBX_OUTPUT_MAIN_SOURCE_DIRECTORY(STREAM, NAME) */
3877 
3878 /* A C statement to output DBX debugging information at the end of compilation
3879    of the main source file NAME.
3880 
3881    If you don't define this macro, nothing special is output at the end of
3882    compilation, which is correct for most machines.  */
3883 /* #define DBX_OUTPUT_MAIN_SOURCE_FILE_END(STREAM, NAME) */
3884 
3885 /* A C statement to output DBX debugging information to the stdio stream STREAM
3886    which indicates that file NAME is the current source file.  This output is
3887    generated each time input shifts to a different source file as a result of
3888    `#include', the end of an included file, or a `#line' command.
3889 
3890    This macro need not be defined if the standard form of output for DBX
3891    debugging information is appropriate.  */
3892 /* #define DBX_OUTPUT_SOURCE_FILENAME(STREAM, NAME) */
3893 
3894 
3895 /* Macros for SDB and Dwarf Output.  */
3896 
3897 /* Define this macro if GNU CC should produce COFF-style debugging output for
3898    SDB in response to the `-g' option.  */
3899 /* #define SDB_DEBUGGING_INFO */
3900 
3901 /* Define this macro if GNU CC should produce dwarf format debugging output in
3902    response to the `-g' option.
3903 
3904    Defined in svr4.h.  */
3905 /* #define DWARF_DEBUGGING_INFO */
3906 
3907 /* Define this macro if GNU CC should produce dwarf version 2 format debugging
3908    output in response to the `-g' option.
3909 
3910    To support optional call frame debugging information, you must also define
3911    `INCOMING_RETURN_ADDR_RTX' and either set `RTX_FRAME_RELATED_P' on the
3912    prologue insns if you use RTL for the prologue, or call `dwarf2out_def_cfa'
3913    and `dwarf2out_reg_save' as appropriate from output_function_prologue() if
3914    you don't.
3915 
3916    Defined in svr4.h.  */
3917 /* #define DWARF2_DEBUGGING_INFO */
3918 
3919 /* Define these macros to override the assembler syntax for the special SDB
3920    assembler directives.  See `sdbout.c' for a list of these macros and their
3921    arguments.  If the standard syntax is used, you need not define them
3922    yourself.  */
3923 /* #define PUT_SDB_... */
3924 
3925 /* Some assemblers do not support a semicolon as a delimiter, even between SDB
3926    assembler directives.  In that case, define this macro to be the delimiter
3927    to use (usually `\n').  It is not necessary to define a new set of
3928    `PUT_SDB_OP' macros if this is the only change required.  */
3929 /* #define SDB_DELIM */
3930 
3931 /* Define this macro to override the usual method of constructing a dummy name
3932    for anonymous structure and union types.  See `sdbout.c' for more
3933    information.  */
3934 /* #define SDB_GENERATE_FAKE */
3935 
3936 /* Define this macro to allow references to unknown structure, union, or
3937    enumeration tags to be emitted.  Standard COFF does not allow handling of
3938    unknown references, MIPS ECOFF has support for it.  */
3939 /* #define SDB_ALLOW_UNKNOWN_REFERENCES */
3940 
3941 /* Define this macro to allow references to structure, union, or enumeration
3942    tags that have not yet been seen to be handled.  Some assemblers choke if
3943    forward tags are used, while some require it.  */
3944 /* #define SDB_ALLOW_FORWARD_REFERENCES */
3945 
3946 
3947 
3948 /* Miscellaneous Parameters.  */
3949 
3950 /* Define this if you have defined special-purpose predicates in the file
3951    `MACHINE.c'.  This macro is called within an initializer of an array of
3952    structures.  The first field in the structure is the name of a predicate and
3953    the second field is an array of rtl codes.  For each predicate, list all rtl
3954    codes that can be in expressions matched by the predicate.  The list should
3955    have a trailing comma.  Here is an example of two entries in the list for a
3956    typical RISC machine:
3957 
3958         #define PREDICATE_CODES \
3959           {"gen_reg_rtx_operand", {SUBREG, REG}},  \
3960           {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
3961 
3962    Defining this macro does not affect the generated code (however, incorrect
3963    definitions that omit an rtl code that may be matched by the predicate can
3964    cause the compiler to malfunction).  Instead, it allows the table built by
3965    `genrecog' to be more compact and efficient, thus speeding up the compiler.
3966    The most important predicates to include in the list specified by this macro
3967    are thoses used in the most insn patterns.  */
3968 
3969 #define PREDICATE_CODES							\
3970   { "short_memory_operand",		{ MEM }},			\
3971   { "long_memory_operand",		{ MEM }},			\
3972   { "d30v_memory_operand",		{ MEM }},			\
3973   { "single_reg_memory_operand",	{ MEM }},			\
3974   { "const_addr_memory_operand",	{ MEM }},			\
3975   { "call_operand",			{ MEM }},			\
3976   { "gpr_operand",			{ REG, SUBREG }},		\
3977   { "accum_operand",			{ REG, SUBREG }},		\
3978   { "gpr_or_accum_operand",		{ REG, SUBREG }},		\
3979   { "cr_operand",			{ REG, SUBREG }},		\
3980   { "repeat_operand",			{ REG, SUBREG }},		\
3981   { "flag_operand",			{ REG, SUBREG }},		\
3982   { "br_flag_operand",			{ REG, SUBREG }},		\
3983   { "br_flag_or_constant_operand",	{ REG, SUBREG, CONST_INT }},	\
3984   { "gpr_or_br_flag_operand",		{ REG, SUBREG }},		\
3985   { "f0_operand",			{ REG, SUBREG }},		\
3986   { "f1_operand",			{ REG, SUBREG }},		\
3987   { "carry_operand",			{ REG, SUBREG }},		\
3988   { "reg_or_0_operand",			{ REG, SUBREG, CONST_INT,	\
3989 					  CONST_DOUBLE }},		\
3990   { "gpr_or_signed6_operand",		{ REG, SUBREG, CONST_INT }},	\
3991   { "gpr_or_unsigned5_operand",		{ REG, SUBREG, CONST_INT }},	\
3992   { "gpr_or_unsigned6_operand",		{ REG, SUBREG, CONST_INT }},	\
3993   { "gpr_or_constant_operand",		{ REG, SUBREG, CONST_INT,	\
3994 					  CONST, SYMBOL_REF,		\
3995 					  LABEL_REF }},			\
3996   { "gpr_or_dbl_const_operand",		{ REG, SUBREG, CONST_INT,	\
3997 					  CONST, SYMBOL_REF,		\
3998 					  LABEL_REF, CONST_DOUBLE }},	\
3999   { "gpr_or_memory_operand",		{ REG, SUBREG, MEM }},		\
4000   { "move_input_operand",		{ REG, SUBREG, MEM, CONST_INT,	\
4001 					  CONST, SYMBOL_REF,		\
4002 					  LABEL_REF, CONST_DOUBLE }},	\
4003   { "move_output_operand",		{ REG, SUBREG, MEM }},		\
4004   { "signed6_operand",			{ CONST_INT }},			\
4005   { "unsigned5_operand",		{ CONST_INT }},			\
4006   { "unsigned6_operand",		{ CONST_INT }},			\
4007   { "bitset_operand",			{ CONST_INT }},			\
4008   { "condexec_test_operator",		{ EQ, NE }},			\
4009   { "condexec_branch_operator",		{ EQ, NE }},			\
4010   { "condexec_unary_operator",		{ ABS, NEG, NOT, ZERO_EXTEND }}, \
4011   { "condexec_addsub_operator",		{ PLUS, MINUS }},		\
4012   { "condexec_binary_operator",		{ MULT, AND, IOR, XOR,		\
4013 					  ASHIFT, ASHIFTRT, LSHIFTRT,	\
4014 					  ROTATE, ROTATERT }},		\
4015   { "condexec_shiftl_operator",		{ ASHIFT, ROTATE }},		\
4016   { "condexec_extend_operator",		{ SIGN_EXTEND, ZERO_EXTEND }},	\
4017   { "branch_zero_operator",		{ EQ, NE }},			\
4018   { "cond_move_dest_operand",		{ REG, SUBREG, MEM }},		\
4019   { "cond_move_operand",		{ REG, SUBREG, CONST_INT,	\
4020 					  CONST, SYMBOL_REF,		\
4021 					  LABEL_REF, MEM }},		\
4022   { "cond_exec_operand",		{ REG, SUBREG, CONST_INT,	\
4023 					  CONST, SYMBOL_REF,		\
4024 					  LABEL_REF, MEM }},		\
4025   { "srelational_si_operator",		{ EQ, NE, LT, LE, GT, GE }},	\
4026   { "urelational_si_operator",		{ LTU, LEU, GTU, GEU }},	\
4027   { "relational_di_operator",		{ EQ, NE, LT, LE, GT, GE,	\
4028 					  LTU, LEU, GTU, GEU }},
4029 
4030 /* An alias for a machine mode name.  This is the machine mode that elements of
4031    a jump-table should have.  */
4032 #define CASE_VECTOR_MODE SImode
4033 
4034 /* Define as C expression which evaluates to nonzero if the tablejump
4035    instruction expects the table to contain offsets from the address of the
4036    table.
4037    Do not define this if the table should contain absolute addresses. */
4038 /* #define CASE_VECTOR_PC_RELATIVE 1 */
4039 
4040 /* Define this if control falls through a `case' insn when the index value is
4041    out of range.  This means the specified default-label is actually ignored by
4042    the `case' insn proper.  */
4043 /* #define CASE_DROPS_THROUGH */
4044 
4045 /* Define this to be the smallest number of different values for which it is
4046    best to use a jump-table instead of a tree of conditional branches.  The
4047    default is four for machines with a `casesi' instruction and five otherwise.
4048    This is best for most machines.  */
4049 /* #define CASE_VALUES_THRESHOLD */
4050 
4051 /* Define this macro if operations between registers with integral mode smaller
4052    than a word are always performed on the entire register.  Most RISC machines
4053    have this property and most CISC machines do not.  */
4054 #define WORD_REGISTER_OPERATIONS 1
4055 
4056 /* Define this macro to be a C expression indicating when insns that read
4057    memory in MODE, an integral mode narrower than a word, set the bits outside
4058    of MODE to be either the sign-extension or the zero-extension of the data
4059    read.  Return `SIGN_EXTEND' for values of MODE for which the insn
4060    sign-extends, `ZERO_EXTEND' for which it zero-extends, and `NIL' for other
4061    modes.
4062 
4063    This macro is not called with MODE non-integral or with a width greater than
4064    or equal to `BITS_PER_WORD', so you may return any value in this case.  Do
4065    not define this macro if it would always return `NIL'.  On machines where
4066    this macro is defined, you will normally define it as the constant
4067    `SIGN_EXTEND' or `ZERO_EXTEND'.  */
4068 
4069 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
4070 
4071 /* Define if loading short immediate values into registers sign extends.  */
4072 #define SHORT_IMMEDIATES_SIGN_EXTEND
4073 
4074 /* Define this macro if the same instructions that convert a floating point
4075    number to a signed fixed point number also convert validly to an unsigned
4076    one.  */
4077 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
4078 
4079 /* The maximum number of bytes that a single instruction can move quickly from
4080    memory to memory.  */
4081 #define MOVE_MAX 8
4082 
4083 /* The maximum number of bytes that a single instruction can move quickly from
4084    memory to memory.  If this is undefined, the default is `MOVE_MAX'.
4085    Otherwise, it is the constant value that is the largest value that
4086    `MOVE_MAX' can have at run-time.  */
4087 /* #define MAX_MOVE_MAX */
4088 
4089 /* A C expression that is nonzero if on this machine the number of bits
4090    actually used for the count of a shift operation is equal to the number of
4091    bits needed to represent the size of the object being shifted.  When this
4092    macro is nonzero, the compiler will assume that it is safe to omit a
4093    sign-extend, zero-extend, and certain bitwise `and' instructions that
4094    truncates the count of a shift operation.  On machines that have
4095    instructions that act on bitfields at variable positions, which may include
4096    `bit test' instructions, a nonzero `SHIFT_COUNT_TRUNCATED' also enables
4097    deletion of truncations of the values that serve as arguments to bitfield
4098    instructions.
4099 
4100    If both types of instructions truncate the count (for shifts) and position
4101    (for bit-field operations), or if no variable-position bit-field instructions
4102    exist, you should define this macro.
4103 
4104    However, on some machines, such as the 80386 and the 680x0, truncation only
4105    applies to shift operations and not the (real or pretended) bitfield
4106    operations.  Define `SHIFT_COUNT_TRUNCATED' to be zero on such machines.
4107    Instead, add patterns to the `md' file that include the implied truncation
4108    of the shift instructions.
4109 
4110    You need not define this macro if it would always have the value of zero.  */
4111 /* #define SHIFT_COUNT_TRUNCATED */
4112 
4113 /* A C expression which is nonzero if on this machine it is safe to "convert"
4114    an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
4115    than INPREC) by merely operating on it as if it had only OUTPREC bits.
4116 
4117    On many machines, this expression can be 1.
4118 
4119    When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
4120    which `MODES_TIEABLE_P' is 0, suboptimal code can result.  If this is the
4121    case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
4122    things.  */
4123 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
4124 
4125 /* A C expression describing the value returned by a comparison operator with
4126    an integral mode and stored by a store-flag instruction (`sCOND') when the
4127    condition is true.  This description must apply to *all* the `sCOND'
4128    patterns and all the comparison operators whose results have a `MODE_INT'
4129    mode.
4130 
4131    A value of 1 or -1 means that the instruction implementing the comparison
4132    operator returns exactly 1 or -1 when the comparison is true and 0 when the
4133    comparison is false.  Otherwise, the value indicates which bits of the
4134    result are guaranteed to be 1 when the comparison is true.  This value is
4135    interpreted in the mode of the comparison operation, which is given by the
4136    mode of the first operand in the `sCOND' pattern.  Either the low bit or the
4137    sign bit of `STORE_FLAG_VALUE' be on.  Presently, only those bits are used
4138    by the compiler.
4139 
4140    If `STORE_FLAG_VALUE' is neither 1 or -1, the compiler will generate code
4141    that depends only on the specified bits.  It can also replace comparison
4142    operators with equivalent operations if they cause the required bits to be
4143    set, even if the remaining bits are undefined.  For example, on a machine
4144    whose comparison operators return an `SImode' value and where
4145    `STORE_FLAG_VALUE' is defined as `0x80000000', saying that just the sign bit
4146    is relevant, the expression
4147 
4148         (ne:SI (and:SI X (const_int POWER-OF-2)) (const_int 0))
4149 
4150    can be converted to
4151 
4152         (ashift:SI X (const_int N))
4153 
4154    where N is the appropriate shift count to move the bit being tested into the
4155    sign bit.
4156 
4157    There is no way to describe a machine that always sets the low-order bit for
4158    a true value, but does not guarantee the value of any other bits, but we do
4159    not know of any machine that has such an instruction.  If you are trying to
4160    port GNU CC to such a machine, include an instruction to perform a
4161    logical-and of the result with 1 in the pattern for the comparison operators
4162    and let us know (*note How to Report Bugs: Bug Reporting.).
4163 
4164    Often, a machine will have multiple instructions that obtain a value from a
4165    comparison (or the condition codes).  Here are rules to guide the choice of
4166    value for `STORE_FLAG_VALUE', and hence the instructions to be used:
4167 
4168       * Use the shortest sequence that yields a valid definition for
4169         `STORE_FLAG_VALUE'.  It is more efficient for the compiler to
4170         "normalize" the value (convert it to, e.g., 1 or 0) than for
4171         the comparison operators to do so because there may be
4172         opportunities to combine the normalization with other
4173         operations.
4174 
4175       * For equal-length sequences, use a value of 1 or -1, with -1
4176         being slightly preferred on machines with expensive jumps and
4177         1 preferred on other machines.
4178 
4179       * As a second choice, choose a value of `0x80000001' if
4180         instructions exist that set both the sign and low-order bits
4181         but do not define the others.
4182 
4183       * Otherwise, use a value of `0x80000000'.
4184 
4185    Many machines can produce both the value chosen for `STORE_FLAG_VALUE' and
4186    its negation in the same number of instructions.  On those machines, you
4187    should also define a pattern for those cases, e.g., one matching
4188 
4189         (set A (neg:M (ne:M B C)))
4190 
4191    Some machines can also perform `and' or `plus' operations on condition code
4192    values with less instructions than the corresponding `sCOND' insn followed
4193    by `and' or `plus'.  On those machines, define the appropriate patterns.
4194    Use the names `incscc' and `decscc', respectively, for the patterns
4195    which perform `plus' or `minus' operations on condition code values.  See
4196    `rs6000.md' for some examples.  The GNU Superoptizer can be used to find
4197    such instruction sequences on other machines.
4198 
4199    You need not define `STORE_FLAG_VALUE' if the machine has no store-flag
4200    instructions.  */
4201 /* #define STORE_FLAG_VALUE */
4202 
4203 /* A C expression that gives a nonzero floating point value that is returned
4204    when comparison operators with floating-point results are true.  Define this
4205    macro on machine that have comparison operations that return floating-point
4206    values.  If there are no such operations, do not define this macro.  */
4207 /* #define FLOAT_STORE_FLAG_VALUE */
4208 
4209 /* An alias for the machine mode for pointers.  On most machines, define this
4210    to be the integer mode corresponding to the width of a hardware pointer;
4211    `SImode' on 32-bit machine or `DImode' on 64-bit machines.  On some machines
4212    you must define this to be one of the partial integer modes, such as
4213    `PSImode'.
4214 
4215    The width of `Pmode' must be at least as large as the value of
4216    `POINTER_SIZE'.  If it is not equal, you must define the macro
4217    `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'.  */
4218 #define Pmode SImode
4219 
4220 /* An alias for the machine mode used for memory references to functions being
4221    called, in `call' RTL expressions.  On most machines this should be
4222    `QImode'.  */
4223 #define FUNCTION_MODE QImode
4224 
4225 /* A C expression for the maximum number of instructions above which the
4226    function DECL should not be inlined.  DECL is a `FUNCTION_DECL' node.
4227 
4228    The default definition of this macro is 64 plus 8 times the number of
4229    arguments that the function accepts.  Some people think a larger threshold
4230    should be used on RISC machines.  */
4231 /* #define INTEGRATE_THRESHOLD(DECL) */
4232 
4233 /* Define this macro if the system header files support C++ as well as C.  This
4234    macro inhibits the usual method of using system header files in C++, which
4235    is to pretend that the file's contents are enclosed in `extern "C" {...}'.  */
4236 /* #define NO_IMPLICIT_EXTERN_C */
4237 
4238 /* Define this macro to handle System V style pragmas (particularly #pack).
4239 
4240    Defined in svr4.h.  */
4241 #define HANDLE_SYSV_PRAGMA 1
4242 
4243 /* Define this macro if you want to handle #pragma weak (HANDLE_SYSV_PRAGMA
4244    must also be defined).  */
4245 /* #define HANDLE_WEAK_PRAGMA */
4246 
4247 /* Define this macro if the assembler does not accept the character `$' in
4248    label names.  By default constructors and destructors in G++ have `$' in the
4249    identifiers.  If this macro is defined, `.' is used instead.
4250 
4251    Defined in svr4.h.  */
4252 /* #define NO_DOLLAR_IN_LABEL */
4253 
4254 /* Define this macro if the assembler does not accept the character `.' in
4255    label names.  By default constructors and destructors in G++ have names that
4256    use `.'.  If this macro is defined, these names are rewritten to avoid `.'.  */
4257 /* #define NO_DOT_IN_LABEL */
4258 
4259 /* Define this macro if the target system expects every program's `main'
4260    function to return a standard "success" value by default (if no other value
4261    is explicitly returned).
4262 
4263    The definition should be a C statement (sans semicolon) to generate the
4264    appropriate rtl instructions.  It is used only when compiling the end of
4265    `main'.  */
4266 /* #define DEFAULT_MAIN_RETURN */
4267 
4268 /* Define this if your `exit' function needs to do something besides calling an
4269    external function `_cleanup' before terminating with `_exit'.  The
4270    `EXIT_BODY' macro is only needed if `NEED_ATEXIT' is defined and
4271    `ON_EXIT' is not defined.  */
4272 /* #define EXIT_BODY */
4273 
4274 /* Define this macro as a C expression that is nonzero if it is safe for the
4275    delay slot scheduler to place instructions in the delay slot of INSN, even
4276    if they appear to use a resource set or clobbered in INSN.  INSN is always a
4277    `jump_insn' or an `insn'; GNU CC knows that every `call_insn' has this
4278    behavior.  On machines where some `insn' or `jump_insn' is really a function
4279    call and hence has this behavior, you should define this macro.
4280 
4281    You need not define this macro if it would always return zero.  */
4282 /* #define INSN_SETS_ARE_DELAYED(INSN) */
4283 
4284 /* Define this macro as a C expression that is nonzero if it is safe for the
4285    delay slot scheduler to place instructions in the delay slot of INSN, even
4286    if they appear to set or clobber a resource referenced in INSN.  INSN is
4287    always a `jump_insn' or an `insn'.  On machines where some `insn' or
4288    `jump_insn' is really a function call and its operands are registers whose
4289    use is actually in the subroutine it calls, you should define this macro.
4290    Doing so allows the delay slot scheduler to move instructions which copy
4291    arguments into the argument registers into the delay slot of INSN.
4292 
4293    You need not define this macro if it would always return zero.  */
4294 /* #define INSN_REFERENCES_ARE_DELAYED(INSN) */
4295 
4296 /* In rare cases, correct code generation requires extra machine dependent
4297    processing between the second jump optimization pass and delayed branch
4298    scheduling.  On those machines, define this macro as a C statement to act on
4299    the code starting at INSN.  */
4300 #define MACHINE_DEPENDENT_REORG(INSN) d30v_machine_dependent_reorg (INSN)
4301 
4302 /* Define this macro if in some cases global symbols from one translation unit
4303    may not be bound to undefined symbols in another translation unit without
4304    user intervention.  For instance, under Microsoft Windows symbols must be
4305    explicitly imported from shared libraries (DLLs).  */
4306 /* #define MULTIPLE_SYMBOL_SPACES */
4307 
4308 /* A C expression for the maximum number of instructions to execute via
4309    conditional execution instructions instead of a branch.  A value of
4310    BRANCH_COST+1 is the default if the machine does not use cc0, and 1 if it
4311    does use cc0. */
4312 #define MAX_CONDITIONAL_EXECUTE d30v_cond_exec
4313 
4314 #define D30V_DEFAULT_MAX_CONDITIONAL_EXECUTE 4
4315 
4316 /* Values of the -mcond-exec=n string.  */
4317 extern int d30v_cond_exec;
4318 extern const char *d30v_cond_exec_string;
4319 
4320 #endif /* GCC_D30V_H */
4321