xref: /freebsd/sys/vm/uma_core.c (revision d25ed650)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org>
5  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6  * Copyright (c) 2004-2006 Robert N. M. Watson
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 /*
32  * uma_core.c  Implementation of the Universal Memory allocator
33  *
34  * This allocator is intended to replace the multitude of similar object caches
35  * in the standard FreeBSD kernel.  The intent is to be flexible as well as
36  * efficient.  A primary design goal is to return unused memory to the rest of
37  * the system.  This will make the system as a whole more flexible due to the
38  * ability to move memory to subsystems which most need it instead of leaving
39  * pools of reserved memory unused.
40  *
41  * The basic ideas stem from similar slab/zone based allocators whose algorithms
42  * are well known.
43  *
44  */
45 
46 /*
47  * TODO:
48  *	- Improve memory usage for large allocations
49  *	- Investigate cache size adjustments
50  */
51 
52 #include <sys/cdefs.h>
53 #include "opt_ddb.h"
54 #include "opt_param.h"
55 #include "opt_vm.h"
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/asan.h>
60 #include <sys/bitset.h>
61 #include <sys/domainset.h>
62 #include <sys/eventhandler.h>
63 #include <sys/kernel.h>
64 #include <sys/types.h>
65 #include <sys/limits.h>
66 #include <sys/queue.h>
67 #include <sys/malloc.h>
68 #include <sys/ktr.h>
69 #include <sys/lock.h>
70 #include <sys/msan.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/random.h>
74 #include <sys/rwlock.h>
75 #include <sys/sbuf.h>
76 #include <sys/sched.h>
77 #include <sys/sleepqueue.h>
78 #include <sys/smp.h>
79 #include <sys/smr.h>
80 #include <sys/sysctl.h>
81 #include <sys/taskqueue.h>
82 #include <sys/vmmeter.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/vm_domainset.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_phys.h>
91 #include <vm/vm_pagequeue.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vm_dumpset.h>
96 #include <vm/uma.h>
97 #include <vm/uma_int.h>
98 #include <vm/uma_dbg.h>
99 
100 #include <ddb/ddb.h>
101 
102 #ifdef DEBUG_MEMGUARD
103 #include <vm/memguard.h>
104 #endif
105 
106 #include <machine/md_var.h>
107 
108 #ifdef INVARIANTS
109 #define	UMA_ALWAYS_CTORDTOR	1
110 #else
111 #define	UMA_ALWAYS_CTORDTOR	0
112 #endif
113 
114 /*
115  * This is the zone and keg from which all zones are spawned.
116  */
117 static uma_zone_t kegs;
118 static uma_zone_t zones;
119 
120 /*
121  * On INVARIANTS builds, the slab contains a second bitset of the same size,
122  * "dbg_bits", which is laid out immediately after us_free.
123  */
124 #ifdef INVARIANTS
125 #define	SLAB_BITSETS	2
126 #else
127 #define	SLAB_BITSETS	1
128 #endif
129 
130 /*
131  * These are the two zones from which all offpage uma_slab_ts are allocated.
132  *
133  * One zone is for slab headers that can represent a larger number of items,
134  * making the slabs themselves more efficient, and the other zone is for
135  * headers that are smaller and represent fewer items, making the headers more
136  * efficient.
137  */
138 #define	SLABZONE_SIZE(setsize)					\
139     (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS)
140 #define	SLABZONE0_SETSIZE	(PAGE_SIZE / 16)
141 #define	SLABZONE1_SETSIZE	SLAB_MAX_SETSIZE
142 #define	SLABZONE0_SIZE	SLABZONE_SIZE(SLABZONE0_SETSIZE)
143 #define	SLABZONE1_SIZE	SLABZONE_SIZE(SLABZONE1_SETSIZE)
144 static uma_zone_t slabzones[2];
145 
146 /*
147  * The initial hash tables come out of this zone so they can be allocated
148  * prior to malloc coming up.
149  */
150 static uma_zone_t hashzone;
151 
152 /* The boot-time adjusted value for cache line alignment. */
153 static unsigned int uma_cache_align_mask = 64 - 1;
154 
155 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
156 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc");
157 
158 /*
159  * Are we allowed to allocate buckets?
160  */
161 static int bucketdisable = 1;
162 
163 /* Linked list of all kegs in the system */
164 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
165 
166 /* Linked list of all cache-only zones in the system */
167 static LIST_HEAD(,uma_zone) uma_cachezones =
168     LIST_HEAD_INITIALIZER(uma_cachezones);
169 
170 /*
171  * Mutex for global lists: uma_kegs, uma_cachezones, and the per-keg list of
172  * zones.
173  */
174 static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
175 
176 static struct sx uma_reclaim_lock;
177 
178 /*
179  * First available virual address for boot time allocations.
180  */
181 static vm_offset_t bootstart;
182 static vm_offset_t bootmem;
183 
184 /*
185  * kmem soft limit, initialized by uma_set_limit().  Ensure that early
186  * allocations don't trigger a wakeup of the reclaim thread.
187  */
188 unsigned long uma_kmem_limit = LONG_MAX;
189 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0,
190     "UMA kernel memory soft limit");
191 unsigned long uma_kmem_total;
192 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0,
193     "UMA kernel memory usage");
194 
195 /* Is the VM done starting up? */
196 static enum {
197 	BOOT_COLD,
198 	BOOT_KVA,
199 	BOOT_PCPU,
200 	BOOT_RUNNING,
201 	BOOT_SHUTDOWN,
202 } booted = BOOT_COLD;
203 
204 /*
205  * This is the handle used to schedule events that need to happen
206  * outside of the allocation fast path.
207  */
208 static struct timeout_task uma_timeout_task;
209 #define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
210 
211 /*
212  * This structure is passed as the zone ctor arg so that I don't have to create
213  * a special allocation function just for zones.
214  */
215 struct uma_zctor_args {
216 	const char *name;
217 	size_t size;
218 	uma_ctor ctor;
219 	uma_dtor dtor;
220 	uma_init uminit;
221 	uma_fini fini;
222 	uma_import import;
223 	uma_release release;
224 	void *arg;
225 	uma_keg_t keg;
226 	int align;
227 	uint32_t flags;
228 };
229 
230 struct uma_kctor_args {
231 	uma_zone_t zone;
232 	size_t size;
233 	uma_init uminit;
234 	uma_fini fini;
235 	int align;
236 	uint32_t flags;
237 };
238 
239 struct uma_bucket_zone {
240 	uma_zone_t	ubz_zone;
241 	const char	*ubz_name;
242 	int		ubz_entries;	/* Number of items it can hold. */
243 	int		ubz_maxsize;	/* Maximum allocation size per-item. */
244 };
245 
246 /*
247  * Compute the actual number of bucket entries to pack them in power
248  * of two sizes for more efficient space utilization.
249  */
250 #define	BUCKET_SIZE(n)						\
251     (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
252 
253 #define	BUCKET_MAX	BUCKET_SIZE(256)
254 
255 struct uma_bucket_zone bucket_zones[] = {
256 	/* Literal bucket sizes. */
257 	{ NULL, "2 Bucket", 2, 4096 },
258 	{ NULL, "4 Bucket", 4, 3072 },
259 	{ NULL, "8 Bucket", 8, 2048 },
260 	{ NULL, "16 Bucket", 16, 1024 },
261 	/* Rounded down power of 2 sizes for efficiency. */
262 	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
263 	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
264 	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
265 	{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
266 	{ NULL, NULL, 0}
267 };
268 
269 /*
270  * Flags and enumerations to be passed to internal functions.
271  */
272 enum zfreeskip {
273 	SKIP_NONE =	0,
274 	SKIP_CNT =	0x00000001,
275 	SKIP_DTOR =	0x00010000,
276 	SKIP_FINI =	0x00020000,
277 };
278 
279 /* Prototypes.. */
280 
281 void	uma_startup1(vm_offset_t);
282 void	uma_startup2(void);
283 
284 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
285 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
286 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
287 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
288 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
289 static void page_free(void *, vm_size_t, uint8_t);
290 static void pcpu_page_free(void *, vm_size_t, uint8_t);
291 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int);
292 static void cache_drain(uma_zone_t);
293 static void bucket_drain(uma_zone_t, uma_bucket_t);
294 static void bucket_cache_reclaim(uma_zone_t zone, bool, int);
295 static bool bucket_cache_reclaim_domain(uma_zone_t, bool, bool, int);
296 static int keg_ctor(void *, int, void *, int);
297 static void keg_dtor(void *, int, void *);
298 static void keg_drain(uma_keg_t keg, int domain);
299 static int zone_ctor(void *, int, void *, int);
300 static void zone_dtor(void *, int, void *);
301 static inline void item_dtor(uma_zone_t zone, void *item, int size,
302     void *udata, enum zfreeskip skip);
303 static int zero_init(void *, int, int);
304 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
305     int itemdomain, bool ws);
306 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *);
307 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *);
308 static void zone_timeout(uma_zone_t zone, void *);
309 static int hash_alloc(struct uma_hash *, u_int);
310 static int hash_expand(struct uma_hash *, struct uma_hash *);
311 static void hash_free(struct uma_hash *hash);
312 static void uma_timeout(void *, int);
313 static void uma_shutdown(void);
314 static void *zone_alloc_item(uma_zone_t, void *, int, int);
315 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
316 static int zone_alloc_limit(uma_zone_t zone, int count, int flags);
317 static void zone_free_limit(uma_zone_t zone, int count);
318 static void bucket_enable(void);
319 static void bucket_init(void);
320 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
321 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
322 static void bucket_zone_drain(int domain);
323 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int);
324 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
325 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item);
326 static size_t slab_sizeof(int nitems);
327 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
328     uma_fini fini, int align, uint32_t flags);
329 static int zone_import(void *, void **, int, int, int);
330 static void zone_release(void *, void **, int);
331 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int);
332 static bool cache_free(uma_zone_t, uma_cache_t, void *, int);
333 
334 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
335 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
336 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS);
337 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS);
338 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS);
339 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS);
340 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS);
341 
342 static uint64_t uma_zone_get_allocs(uma_zone_t zone);
343 
344 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
345     "Memory allocation debugging");
346 
347 #ifdef INVARIANTS
348 static uint64_t uma_keg_get_allocs(uma_keg_t zone);
349 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg);
350 
351 static bool uma_dbg_kskip(uma_keg_t keg, void *mem);
352 static bool uma_dbg_zskip(uma_zone_t zone, void *mem);
353 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
354 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
355 
356 static u_int dbg_divisor = 1;
357 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor,
358     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0,
359     "Debug & thrash every this item in memory allocator");
360 
361 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER;
362 static counter_u64_t uma_skip_cnt = EARLY_COUNTER;
363 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD,
364     &uma_dbg_cnt, "memory items debugged");
365 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD,
366     &uma_skip_cnt, "memory items skipped, not debugged");
367 #endif
368 
369 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
370     "Universal Memory Allocator");
371 
372 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT,
373     0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
374 
375 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT,
376     0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
377 
378 static int zone_warnings = 1;
379 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
380     "Warn when UMA zones becomes full");
381 
382 static int multipage_slabs = 1;
383 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs);
384 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs,
385     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0,
386     "UMA may choose larger slab sizes for better efficiency");
387 
388 /*
389  * Select the slab zone for an offpage slab with the given maximum item count.
390  */
391 static inline uma_zone_t
slabzone(int ipers)392 slabzone(int ipers)
393 {
394 
395 	return (slabzones[ipers > SLABZONE0_SETSIZE]);
396 }
397 
398 /*
399  * This routine checks to see whether or not it's safe to enable buckets.
400  */
401 static void
bucket_enable(void)402 bucket_enable(void)
403 {
404 
405 	KASSERT(booted >= BOOT_KVA, ("Bucket enable before init"));
406 	bucketdisable = vm_page_count_min();
407 }
408 
409 /*
410  * Initialize bucket_zones, the array of zones of buckets of various sizes.
411  *
412  * For each zone, calculate the memory required for each bucket, consisting
413  * of the header and an array of pointers.
414  */
415 static void
bucket_init(void)416 bucket_init(void)
417 {
418 	struct uma_bucket_zone *ubz;
419 	int size;
420 
421 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
422 		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
423 		size += sizeof(void *) * ubz->ubz_entries;
424 		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
425 		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
426 		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET |
427 		    UMA_ZONE_FIRSTTOUCH);
428 	}
429 }
430 
431 /*
432  * Given a desired number of entries for a bucket, return the zone from which
433  * to allocate the bucket.
434  */
435 static struct uma_bucket_zone *
bucket_zone_lookup(int entries)436 bucket_zone_lookup(int entries)
437 {
438 	struct uma_bucket_zone *ubz;
439 
440 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
441 		if (ubz->ubz_entries >= entries)
442 			return (ubz);
443 	ubz--;
444 	return (ubz);
445 }
446 
447 static int
bucket_select(int size)448 bucket_select(int size)
449 {
450 	struct uma_bucket_zone *ubz;
451 
452 	ubz = &bucket_zones[0];
453 	if (size > ubz->ubz_maxsize)
454 		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
455 
456 	for (; ubz->ubz_entries != 0; ubz++)
457 		if (ubz->ubz_maxsize < size)
458 			break;
459 	ubz--;
460 	return (ubz->ubz_entries);
461 }
462 
463 static uma_bucket_t
bucket_alloc(uma_zone_t zone,void * udata,int flags)464 bucket_alloc(uma_zone_t zone, void *udata, int flags)
465 {
466 	struct uma_bucket_zone *ubz;
467 	uma_bucket_t bucket;
468 
469 	/*
470 	 * Don't allocate buckets early in boot.
471 	 */
472 	if (__predict_false(booted < BOOT_KVA))
473 		return (NULL);
474 
475 	/*
476 	 * To limit bucket recursion we store the original zone flags
477 	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
478 	 * NOVM flag to persist even through deep recursions.  We also
479 	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
480 	 * a bucket for a bucket zone so we do not allow infinite bucket
481 	 * recursion.  This cookie will even persist to frees of unused
482 	 * buckets via the allocation path or bucket allocations in the
483 	 * free path.
484 	 */
485 	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
486 		udata = (void *)(uintptr_t)zone->uz_flags;
487 	else {
488 		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
489 			return (NULL);
490 		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
491 	}
492 	if (((uintptr_t)udata & UMA_ZONE_VM) != 0)
493 		flags |= M_NOVM;
494 	ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size));
495 	if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
496 		ubz++;
497 	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
498 	if (bucket) {
499 #ifdef INVARIANTS
500 		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
501 #endif
502 		bucket->ub_cnt = 0;
503 		bucket->ub_entries = min(ubz->ubz_entries,
504 		    zone->uz_bucket_size_max);
505 		bucket->ub_seq = SMR_SEQ_INVALID;
506 		CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p",
507 		    zone->uz_name, zone, bucket);
508 	}
509 
510 	return (bucket);
511 }
512 
513 static void
bucket_free(uma_zone_t zone,uma_bucket_t bucket,void * udata)514 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
515 {
516 	struct uma_bucket_zone *ubz;
517 
518 	if (bucket->ub_cnt != 0)
519 		bucket_drain(zone, bucket);
520 
521 	KASSERT(bucket->ub_cnt == 0,
522 	    ("bucket_free: Freeing a non free bucket."));
523 	KASSERT(bucket->ub_seq == SMR_SEQ_INVALID,
524 	    ("bucket_free: Freeing an SMR bucket."));
525 	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
526 		udata = (void *)(uintptr_t)zone->uz_flags;
527 	ubz = bucket_zone_lookup(bucket->ub_entries);
528 	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
529 }
530 
531 static void
bucket_zone_drain(int domain)532 bucket_zone_drain(int domain)
533 {
534 	struct uma_bucket_zone *ubz;
535 
536 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
537 		uma_zone_reclaim_domain(ubz->ubz_zone, UMA_RECLAIM_DRAIN,
538 		    domain);
539 }
540 
541 #ifdef KASAN
542 _Static_assert(UMA_SMALLEST_UNIT % KASAN_SHADOW_SCALE == 0,
543     "Base UMA allocation size not a multiple of the KASAN scale factor");
544 
545 static void
kasan_mark_item_valid(uma_zone_t zone,void * item)546 kasan_mark_item_valid(uma_zone_t zone, void *item)
547 {
548 	void *pcpu_item;
549 	size_t sz, rsz;
550 	int i;
551 
552 	if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0)
553 		return;
554 
555 	sz = zone->uz_size;
556 	rsz = roundup2(sz, KASAN_SHADOW_SCALE);
557 	if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
558 		kasan_mark(item, sz, rsz, KASAN_GENERIC_REDZONE);
559 	} else {
560 		pcpu_item = zpcpu_base_to_offset(item);
561 		for (i = 0; i <= mp_maxid; i++)
562 			kasan_mark(zpcpu_get_cpu(pcpu_item, i), sz, rsz,
563 			    KASAN_GENERIC_REDZONE);
564 	}
565 }
566 
567 static void
kasan_mark_item_invalid(uma_zone_t zone,void * item)568 kasan_mark_item_invalid(uma_zone_t zone, void *item)
569 {
570 	void *pcpu_item;
571 	size_t sz;
572 	int i;
573 
574 	if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0)
575 		return;
576 
577 	sz = roundup2(zone->uz_size, KASAN_SHADOW_SCALE);
578 	if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
579 		kasan_mark(item, 0, sz, KASAN_UMA_FREED);
580 	} else {
581 		pcpu_item = zpcpu_base_to_offset(item);
582 		for (i = 0; i <= mp_maxid; i++)
583 			kasan_mark(zpcpu_get_cpu(pcpu_item, i), 0, sz,
584 			    KASAN_UMA_FREED);
585 	}
586 }
587 
588 static void
kasan_mark_slab_valid(uma_keg_t keg,void * mem)589 kasan_mark_slab_valid(uma_keg_t keg, void *mem)
590 {
591 	size_t sz;
592 
593 	if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) {
594 		sz = keg->uk_ppera * PAGE_SIZE;
595 		kasan_mark(mem, sz, sz, 0);
596 	}
597 }
598 
599 static void
kasan_mark_slab_invalid(uma_keg_t keg,void * mem)600 kasan_mark_slab_invalid(uma_keg_t keg, void *mem)
601 {
602 	size_t sz;
603 
604 	if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) {
605 		if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
606 			sz = keg->uk_ppera * PAGE_SIZE;
607 		else
608 			sz = keg->uk_pgoff;
609 		kasan_mark(mem, 0, sz, KASAN_UMA_FREED);
610 	}
611 }
612 #else /* !KASAN */
613 static void
kasan_mark_item_valid(uma_zone_t zone __unused,void * item __unused)614 kasan_mark_item_valid(uma_zone_t zone __unused, void *item __unused)
615 {
616 }
617 
618 static void
kasan_mark_item_invalid(uma_zone_t zone __unused,void * item __unused)619 kasan_mark_item_invalid(uma_zone_t zone __unused, void *item __unused)
620 {
621 }
622 
623 static void
kasan_mark_slab_valid(uma_keg_t keg __unused,void * mem __unused)624 kasan_mark_slab_valid(uma_keg_t keg __unused, void *mem __unused)
625 {
626 }
627 
628 static void
kasan_mark_slab_invalid(uma_keg_t keg __unused,void * mem __unused)629 kasan_mark_slab_invalid(uma_keg_t keg __unused, void *mem __unused)
630 {
631 }
632 #endif /* KASAN */
633 
634 #ifdef KMSAN
635 static inline void
kmsan_mark_item_uninitialized(uma_zone_t zone,void * item)636 kmsan_mark_item_uninitialized(uma_zone_t zone, void *item)
637 {
638 	void *pcpu_item;
639 	size_t sz;
640 	int i;
641 
642 	if ((zone->uz_flags &
643 	    (UMA_ZFLAG_CACHE | UMA_ZONE_SECONDARY | UMA_ZONE_MALLOC)) != 0) {
644 		/*
645 		 * Cache zones should not be instrumented by default, as UMA
646 		 * does not have enough information to do so correctly.
647 		 * Consumers can mark items themselves if it makes sense to do
648 		 * so.
649 		 *
650 		 * Items from secondary zones are initialized by the parent
651 		 * zone and thus cannot safely be marked by UMA.
652 		 *
653 		 * malloc zones are handled directly by malloc(9) and friends,
654 		 * since they can provide more precise origin tracking.
655 		 */
656 		return;
657 	}
658 	if (zone->uz_keg->uk_init != NULL) {
659 		/*
660 		 * By definition, initialized items cannot be marked.  The
661 		 * best we can do is mark items from these zones after they
662 		 * are freed to the keg.
663 		 */
664 		return;
665 	}
666 
667 	sz = zone->uz_size;
668 	if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
669 		kmsan_orig(item, sz, KMSAN_TYPE_UMA, KMSAN_RET_ADDR);
670 		kmsan_mark(item, sz, KMSAN_STATE_UNINIT);
671 	} else {
672 		pcpu_item = zpcpu_base_to_offset(item);
673 		for (i = 0; i <= mp_maxid; i++) {
674 			kmsan_orig(zpcpu_get_cpu(pcpu_item, i), sz,
675 			    KMSAN_TYPE_UMA, KMSAN_RET_ADDR);
676 			kmsan_mark(zpcpu_get_cpu(pcpu_item, i), sz,
677 			    KMSAN_STATE_INITED);
678 		}
679 	}
680 }
681 #else /* !KMSAN */
682 static inline void
kmsan_mark_item_uninitialized(uma_zone_t zone __unused,void * item __unused)683 kmsan_mark_item_uninitialized(uma_zone_t zone __unused, void *item __unused)
684 {
685 }
686 #endif /* KMSAN */
687 
688 /*
689  * Acquire the domain lock and record contention.
690  */
691 static uma_zone_domain_t
zone_domain_lock(uma_zone_t zone,int domain)692 zone_domain_lock(uma_zone_t zone, int domain)
693 {
694 	uma_zone_domain_t zdom;
695 	bool lockfail;
696 
697 	zdom = ZDOM_GET(zone, domain);
698 	lockfail = false;
699 	if (ZDOM_OWNED(zdom))
700 		lockfail = true;
701 	ZDOM_LOCK(zdom);
702 	/* This is unsynchronized.  The counter does not need to be precise. */
703 	if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max)
704 		zone->uz_bucket_size++;
705 	return (zdom);
706 }
707 
708 /*
709  * Search for the domain with the least cached items and return it if it
710  * is out of balance with the preferred domain.
711  */
712 static __noinline int
zone_domain_lowest(uma_zone_t zone,int pref)713 zone_domain_lowest(uma_zone_t zone, int pref)
714 {
715 	long least, nitems, prefitems;
716 	int domain;
717 	int i;
718 
719 	prefitems = least = LONG_MAX;
720 	domain = 0;
721 	for (i = 0; i < vm_ndomains; i++) {
722 		nitems = ZDOM_GET(zone, i)->uzd_nitems;
723 		if (nitems < least) {
724 			domain = i;
725 			least = nitems;
726 		}
727 		if (domain == pref)
728 			prefitems = nitems;
729 	}
730 	if (prefitems < least * 2)
731 		return (pref);
732 
733 	return (domain);
734 }
735 
736 /*
737  * Search for the domain with the most cached items and return it or the
738  * preferred domain if it has enough to proceed.
739  */
740 static __noinline int
zone_domain_highest(uma_zone_t zone,int pref)741 zone_domain_highest(uma_zone_t zone, int pref)
742 {
743 	long most, nitems;
744 	int domain;
745 	int i;
746 
747 	if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX)
748 		return (pref);
749 
750 	most = 0;
751 	domain = 0;
752 	for (i = 0; i < vm_ndomains; i++) {
753 		nitems = ZDOM_GET(zone, i)->uzd_nitems;
754 		if (nitems > most) {
755 			domain = i;
756 			most = nitems;
757 		}
758 	}
759 
760 	return (domain);
761 }
762 
763 /*
764  * Set the maximum imax value.
765  */
766 static void
zone_domain_imax_set(uma_zone_domain_t zdom,int nitems)767 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems)
768 {
769 	long old;
770 
771 	old = zdom->uzd_imax;
772 	do {
773 		if (old >= nitems)
774 			return;
775 	} while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0);
776 
777 	/*
778 	 * We are at new maximum, so do the last WSS update for the old
779 	 * bimin and prepare to measure next allocation batch.
780 	 */
781 	if (zdom->uzd_wss < old - zdom->uzd_bimin)
782 		zdom->uzd_wss = old - zdom->uzd_bimin;
783 	zdom->uzd_bimin = nitems;
784 }
785 
786 /*
787  * Attempt to satisfy an allocation by retrieving a full bucket from one of the
788  * zone's caches.  If a bucket is found the zone is not locked on return.
789  */
790 static uma_bucket_t
zone_fetch_bucket(uma_zone_t zone,uma_zone_domain_t zdom,bool reclaim)791 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim)
792 {
793 	uma_bucket_t bucket;
794 	long cnt;
795 	int i;
796 	bool dtor = false;
797 
798 	ZDOM_LOCK_ASSERT(zdom);
799 
800 	if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL)
801 		return (NULL);
802 
803 	/* SMR Buckets can not be re-used until readers expire. */
804 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
805 	    bucket->ub_seq != SMR_SEQ_INVALID) {
806 		if (!smr_poll(zone->uz_smr, bucket->ub_seq, false))
807 			return (NULL);
808 		bucket->ub_seq = SMR_SEQ_INVALID;
809 		dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR;
810 		if (STAILQ_NEXT(bucket, ub_link) != NULL)
811 			zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq;
812 	}
813 	STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link);
814 
815 	KASSERT(zdom->uzd_nitems >= bucket->ub_cnt,
816 	    ("%s: item count underflow (%ld, %d)",
817 	    __func__, zdom->uzd_nitems, bucket->ub_cnt));
818 	KASSERT(bucket->ub_cnt > 0,
819 	    ("%s: empty bucket in bucket cache", __func__));
820 	zdom->uzd_nitems -= bucket->ub_cnt;
821 
822 	if (reclaim) {
823 		/*
824 		 * Shift the bounds of the current WSS interval to avoid
825 		 * perturbing the estimates.
826 		 */
827 		cnt = lmin(zdom->uzd_bimin, bucket->ub_cnt);
828 		atomic_subtract_long(&zdom->uzd_imax, cnt);
829 		zdom->uzd_bimin -= cnt;
830 		zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt);
831 		if (zdom->uzd_limin >= bucket->ub_cnt) {
832 			zdom->uzd_limin -= bucket->ub_cnt;
833 		} else {
834 			zdom->uzd_limin = 0;
835 			zdom->uzd_timin = 0;
836 		}
837 	} else if (zdom->uzd_bimin > zdom->uzd_nitems) {
838 		zdom->uzd_bimin = zdom->uzd_nitems;
839 		if (zdom->uzd_imin > zdom->uzd_nitems)
840 			zdom->uzd_imin = zdom->uzd_nitems;
841 	}
842 
843 	ZDOM_UNLOCK(zdom);
844 	if (dtor)
845 		for (i = 0; i < bucket->ub_cnt; i++)
846 			item_dtor(zone, bucket->ub_bucket[i], zone->uz_size,
847 			    NULL, SKIP_NONE);
848 
849 	return (bucket);
850 }
851 
852 /*
853  * Insert a full bucket into the specified cache.  The "ws" parameter indicates
854  * whether the bucket's contents should be counted as part of the zone's working
855  * set.  The bucket may be freed if it exceeds the bucket limit.
856  */
857 static void
zone_put_bucket(uma_zone_t zone,int domain,uma_bucket_t bucket,void * udata,const bool ws)858 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata,
859     const bool ws)
860 {
861 	uma_zone_domain_t zdom;
862 
863 	/* We don't cache empty buckets.  This can happen after a reclaim. */
864 	if (bucket->ub_cnt == 0)
865 		goto out;
866 	zdom = zone_domain_lock(zone, domain);
867 
868 	/*
869 	 * Conditionally set the maximum number of items.
870 	 */
871 	zdom->uzd_nitems += bucket->ub_cnt;
872 	if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) {
873 		if (ws) {
874 			zone_domain_imax_set(zdom, zdom->uzd_nitems);
875 		} else {
876 			/*
877 			 * Shift the bounds of the current WSS interval to
878 			 * avoid perturbing the estimates.
879 			 */
880 			atomic_add_long(&zdom->uzd_imax, bucket->ub_cnt);
881 			zdom->uzd_imin += bucket->ub_cnt;
882 			zdom->uzd_bimin += bucket->ub_cnt;
883 			zdom->uzd_limin += bucket->ub_cnt;
884 		}
885 		if (STAILQ_EMPTY(&zdom->uzd_buckets))
886 			zdom->uzd_seq = bucket->ub_seq;
887 
888 		/*
889 		 * Try to promote reuse of recently used items.  For items
890 		 * protected by SMR, try to defer reuse to minimize polling.
891 		 */
892 		if (bucket->ub_seq == SMR_SEQ_INVALID)
893 			STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link);
894 		else
895 			STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link);
896 		ZDOM_UNLOCK(zdom);
897 		return;
898 	}
899 	zdom->uzd_nitems -= bucket->ub_cnt;
900 	ZDOM_UNLOCK(zdom);
901 out:
902 	bucket_free(zone, bucket, udata);
903 }
904 
905 /* Pops an item out of a per-cpu cache bucket. */
906 static inline void *
cache_bucket_pop(uma_cache_t cache,uma_cache_bucket_t bucket)907 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket)
908 {
909 	void *item;
910 
911 	CRITICAL_ASSERT(curthread);
912 
913 	bucket->ucb_cnt--;
914 	item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt];
915 #ifdef INVARIANTS
916 	bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL;
917 	KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
918 #endif
919 	cache->uc_allocs++;
920 
921 	return (item);
922 }
923 
924 /* Pushes an item into a per-cpu cache bucket. */
925 static inline void
cache_bucket_push(uma_cache_t cache,uma_cache_bucket_t bucket,void * item)926 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item)
927 {
928 
929 	CRITICAL_ASSERT(curthread);
930 	KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL,
931 	    ("uma_zfree: Freeing to non free bucket index."));
932 
933 	bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item;
934 	bucket->ucb_cnt++;
935 	cache->uc_frees++;
936 }
937 
938 /*
939  * Unload a UMA bucket from a per-cpu cache.
940  */
941 static inline uma_bucket_t
cache_bucket_unload(uma_cache_bucket_t bucket)942 cache_bucket_unload(uma_cache_bucket_t bucket)
943 {
944 	uma_bucket_t b;
945 
946 	b = bucket->ucb_bucket;
947 	if (b != NULL) {
948 		MPASS(b->ub_entries == bucket->ucb_entries);
949 		b->ub_cnt = bucket->ucb_cnt;
950 		bucket->ucb_bucket = NULL;
951 		bucket->ucb_entries = bucket->ucb_cnt = 0;
952 	}
953 
954 	return (b);
955 }
956 
957 static inline uma_bucket_t
cache_bucket_unload_alloc(uma_cache_t cache)958 cache_bucket_unload_alloc(uma_cache_t cache)
959 {
960 
961 	return (cache_bucket_unload(&cache->uc_allocbucket));
962 }
963 
964 static inline uma_bucket_t
cache_bucket_unload_free(uma_cache_t cache)965 cache_bucket_unload_free(uma_cache_t cache)
966 {
967 
968 	return (cache_bucket_unload(&cache->uc_freebucket));
969 }
970 
971 static inline uma_bucket_t
cache_bucket_unload_cross(uma_cache_t cache)972 cache_bucket_unload_cross(uma_cache_t cache)
973 {
974 
975 	return (cache_bucket_unload(&cache->uc_crossbucket));
976 }
977 
978 /*
979  * Load a bucket into a per-cpu cache bucket.
980  */
981 static inline void
cache_bucket_load(uma_cache_bucket_t bucket,uma_bucket_t b)982 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b)
983 {
984 
985 	CRITICAL_ASSERT(curthread);
986 	MPASS(bucket->ucb_bucket == NULL);
987 	MPASS(b->ub_seq == SMR_SEQ_INVALID);
988 
989 	bucket->ucb_bucket = b;
990 	bucket->ucb_cnt = b->ub_cnt;
991 	bucket->ucb_entries = b->ub_entries;
992 }
993 
994 static inline void
cache_bucket_load_alloc(uma_cache_t cache,uma_bucket_t b)995 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b)
996 {
997 
998 	cache_bucket_load(&cache->uc_allocbucket, b);
999 }
1000 
1001 static inline void
cache_bucket_load_free(uma_cache_t cache,uma_bucket_t b)1002 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b)
1003 {
1004 
1005 	cache_bucket_load(&cache->uc_freebucket, b);
1006 }
1007 
1008 #ifdef NUMA
1009 static inline void
cache_bucket_load_cross(uma_cache_t cache,uma_bucket_t b)1010 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b)
1011 {
1012 
1013 	cache_bucket_load(&cache->uc_crossbucket, b);
1014 }
1015 #endif
1016 
1017 /*
1018  * Copy and preserve ucb_spare.
1019  */
1020 static inline void
cache_bucket_copy(uma_cache_bucket_t b1,uma_cache_bucket_t b2)1021 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
1022 {
1023 
1024 	b1->ucb_bucket = b2->ucb_bucket;
1025 	b1->ucb_entries = b2->ucb_entries;
1026 	b1->ucb_cnt = b2->ucb_cnt;
1027 }
1028 
1029 /*
1030  * Swap two cache buckets.
1031  */
1032 static inline void
cache_bucket_swap(uma_cache_bucket_t b1,uma_cache_bucket_t b2)1033 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
1034 {
1035 	struct uma_cache_bucket b3;
1036 
1037 	CRITICAL_ASSERT(curthread);
1038 
1039 	cache_bucket_copy(&b3, b1);
1040 	cache_bucket_copy(b1, b2);
1041 	cache_bucket_copy(b2, &b3);
1042 }
1043 
1044 /*
1045  * Attempt to fetch a bucket from a zone on behalf of the current cpu cache.
1046  */
1047 static uma_bucket_t
cache_fetch_bucket(uma_zone_t zone,uma_cache_t cache,int domain)1048 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain)
1049 {
1050 	uma_zone_domain_t zdom;
1051 	uma_bucket_t bucket;
1052 	smr_seq_t seq;
1053 
1054 	/*
1055 	 * Avoid the lock if possible.
1056 	 */
1057 	zdom = ZDOM_GET(zone, domain);
1058 	if (zdom->uzd_nitems == 0)
1059 		return (NULL);
1060 
1061 	if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 &&
1062 	    (seq = atomic_load_32(&zdom->uzd_seq)) != SMR_SEQ_INVALID &&
1063 	    !smr_poll(zone->uz_smr, seq, false))
1064 		return (NULL);
1065 
1066 	/*
1067 	 * Check the zone's cache of buckets.
1068 	 */
1069 	zdom = zone_domain_lock(zone, domain);
1070 	if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL)
1071 		return (bucket);
1072 	ZDOM_UNLOCK(zdom);
1073 
1074 	return (NULL);
1075 }
1076 
1077 static void
zone_log_warning(uma_zone_t zone)1078 zone_log_warning(uma_zone_t zone)
1079 {
1080 	static const struct timeval warninterval = { 300, 0 };
1081 
1082 	if (!zone_warnings || zone->uz_warning == NULL)
1083 		return;
1084 
1085 	if (ratecheck(&zone->uz_ratecheck, &warninterval))
1086 		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
1087 }
1088 
1089 static inline void
zone_maxaction(uma_zone_t zone)1090 zone_maxaction(uma_zone_t zone)
1091 {
1092 
1093 	if (zone->uz_maxaction.ta_func != NULL)
1094 		taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
1095 }
1096 
1097 /*
1098  * Routine called by timeout which is used to fire off some time interval
1099  * based calculations.  (stats, hash size, etc.)
1100  *
1101  * Arguments:
1102  *	arg   Unused
1103  *
1104  * Returns:
1105  *	Nothing
1106  */
1107 static void
uma_timeout(void * context __unused,int pending __unused)1108 uma_timeout(void *context __unused, int pending __unused)
1109 {
1110 	bucket_enable();
1111 	zone_foreach(zone_timeout, NULL);
1112 
1113 	/* Reschedule this event */
1114 	taskqueue_enqueue_timeout(taskqueue_thread, &uma_timeout_task,
1115 	    UMA_TIMEOUT * hz);
1116 }
1117 
1118 /*
1119  * Update the working set size estimates for the zone's bucket cache.
1120  * The constants chosen here are somewhat arbitrary.
1121  */
1122 static void
zone_domain_update_wss(uma_zone_domain_t zdom)1123 zone_domain_update_wss(uma_zone_domain_t zdom)
1124 {
1125 	long m;
1126 
1127 	ZDOM_LOCK_ASSERT(zdom);
1128 	MPASS(zdom->uzd_imax >= zdom->uzd_nitems);
1129 	MPASS(zdom->uzd_nitems >= zdom->uzd_bimin);
1130 	MPASS(zdom->uzd_bimin >= zdom->uzd_imin);
1131 
1132 	/*
1133 	 * Estimate WSS as modified moving average of biggest allocation
1134 	 * batches for each period over few minutes (UMA_TIMEOUT of 20s).
1135 	 */
1136 	zdom->uzd_wss = lmax(zdom->uzd_wss * 3 / 4,
1137 	    zdom->uzd_imax - zdom->uzd_bimin);
1138 
1139 	/*
1140 	 * Estimate longtime minimum item count as a combination of recent
1141 	 * minimum item count, adjusted by WSS for safety, and the modified
1142 	 * moving average over the last several hours (UMA_TIMEOUT of 20s).
1143 	 * timin measures time since limin tried to go negative, that means
1144 	 * we were dangerously close to or got out of cache.
1145 	 */
1146 	m = zdom->uzd_imin - zdom->uzd_wss;
1147 	if (m >= 0) {
1148 		if (zdom->uzd_limin >= m)
1149 			zdom->uzd_limin = m;
1150 		else
1151 			zdom->uzd_limin = (m + zdom->uzd_limin * 255) / 256;
1152 		zdom->uzd_timin++;
1153 	} else {
1154 		zdom->uzd_limin = 0;
1155 		zdom->uzd_timin = 0;
1156 	}
1157 
1158 	/* To reduce period edge effects on WSS keep half of the imax. */
1159 	atomic_subtract_long(&zdom->uzd_imax,
1160 	    (zdom->uzd_imax - zdom->uzd_nitems + 1) / 2);
1161 	zdom->uzd_imin = zdom->uzd_bimin = zdom->uzd_nitems;
1162 }
1163 
1164 /*
1165  * Routine to perform timeout driven calculations.  This expands the
1166  * hashes and does per cpu statistics aggregation.
1167  *
1168  *  Returns nothing.
1169  */
1170 static void
zone_timeout(uma_zone_t zone,void * unused)1171 zone_timeout(uma_zone_t zone, void *unused)
1172 {
1173 	uma_keg_t keg;
1174 	u_int slabs, pages;
1175 
1176 	if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
1177 		goto trim;
1178 
1179 	keg = zone->uz_keg;
1180 
1181 	/*
1182 	 * Hash zones are non-numa by definition so the first domain
1183 	 * is the only one present.
1184 	 */
1185 	KEG_LOCK(keg, 0);
1186 	pages = keg->uk_domain[0].ud_pages;
1187 
1188 	/*
1189 	 * Expand the keg hash table.
1190 	 *
1191 	 * This is done if the number of slabs is larger than the hash size.
1192 	 * What I'm trying to do here is completely reduce collisions.  This
1193 	 * may be a little aggressive.  Should I allow for two collisions max?
1194 	 */
1195 	if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) {
1196 		struct uma_hash newhash;
1197 		struct uma_hash oldhash;
1198 		int ret;
1199 
1200 		/*
1201 		 * This is so involved because allocating and freeing
1202 		 * while the keg lock is held will lead to deadlock.
1203 		 * I have to do everything in stages and check for
1204 		 * races.
1205 		 */
1206 		KEG_UNLOCK(keg, 0);
1207 		ret = hash_alloc(&newhash, 1 << fls(slabs));
1208 		KEG_LOCK(keg, 0);
1209 		if (ret) {
1210 			if (hash_expand(&keg->uk_hash, &newhash)) {
1211 				oldhash = keg->uk_hash;
1212 				keg->uk_hash = newhash;
1213 			} else
1214 				oldhash = newhash;
1215 
1216 			KEG_UNLOCK(keg, 0);
1217 			hash_free(&oldhash);
1218 			goto trim;
1219 		}
1220 	}
1221 	KEG_UNLOCK(keg, 0);
1222 
1223 trim:
1224 	/* Trim caches not used for a long time. */
1225 	if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0) {
1226 		for (int i = 0; i < vm_ndomains; i++) {
1227 			if (bucket_cache_reclaim_domain(zone, false, false, i) &&
1228 			    (zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
1229 				keg_drain(zone->uz_keg, i);
1230 		}
1231 	}
1232 }
1233 
1234 /*
1235  * Allocate and zero fill the next sized hash table from the appropriate
1236  * backing store.
1237  *
1238  * Arguments:
1239  *	hash  A new hash structure with the old hash size in uh_hashsize
1240  *
1241  * Returns:
1242  *	1 on success and 0 on failure.
1243  */
1244 static int
hash_alloc(struct uma_hash * hash,u_int size)1245 hash_alloc(struct uma_hash *hash, u_int size)
1246 {
1247 	size_t alloc;
1248 
1249 	KASSERT(powerof2(size), ("hash size must be power of 2"));
1250 	if (size > UMA_HASH_SIZE_INIT)  {
1251 		hash->uh_hashsize = size;
1252 		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
1253 		hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT);
1254 	} else {
1255 		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
1256 		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
1257 		    UMA_ANYDOMAIN, M_WAITOK);
1258 		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
1259 	}
1260 	if (hash->uh_slab_hash) {
1261 		bzero(hash->uh_slab_hash, alloc);
1262 		hash->uh_hashmask = hash->uh_hashsize - 1;
1263 		return (1);
1264 	}
1265 
1266 	return (0);
1267 }
1268 
1269 /*
1270  * Expands the hash table for HASH zones.  This is done from zone_timeout
1271  * to reduce collisions.  This must not be done in the regular allocation
1272  * path, otherwise, we can recurse on the vm while allocating pages.
1273  *
1274  * Arguments:
1275  *	oldhash  The hash you want to expand
1276  *	newhash  The hash structure for the new table
1277  *
1278  * Returns:
1279  *	Nothing
1280  *
1281  * Discussion:
1282  */
1283 static int
hash_expand(struct uma_hash * oldhash,struct uma_hash * newhash)1284 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
1285 {
1286 	uma_hash_slab_t slab;
1287 	u_int hval;
1288 	u_int idx;
1289 
1290 	if (!newhash->uh_slab_hash)
1291 		return (0);
1292 
1293 	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
1294 		return (0);
1295 
1296 	/*
1297 	 * I need to investigate hash algorithms for resizing without a
1298 	 * full rehash.
1299 	 */
1300 
1301 	for (idx = 0; idx < oldhash->uh_hashsize; idx++)
1302 		while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) {
1303 			slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]);
1304 			LIST_REMOVE(slab, uhs_hlink);
1305 			hval = UMA_HASH(newhash, slab->uhs_data);
1306 			LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
1307 			    slab, uhs_hlink);
1308 		}
1309 
1310 	return (1);
1311 }
1312 
1313 /*
1314  * Free the hash bucket to the appropriate backing store.
1315  *
1316  * Arguments:
1317  *	slab_hash  The hash bucket we're freeing
1318  *	hashsize   The number of entries in that hash bucket
1319  *
1320  * Returns:
1321  *	Nothing
1322  */
1323 static void
hash_free(struct uma_hash * hash)1324 hash_free(struct uma_hash *hash)
1325 {
1326 	if (hash->uh_slab_hash == NULL)
1327 		return;
1328 	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
1329 		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
1330 	else
1331 		free(hash->uh_slab_hash, M_UMAHASH);
1332 }
1333 
1334 /*
1335  * Frees all outstanding items in a bucket
1336  *
1337  * Arguments:
1338  *	zone   The zone to free to, must be unlocked.
1339  *	bucket The free/alloc bucket with items.
1340  *
1341  * Returns:
1342  *	Nothing
1343  */
1344 static void
bucket_drain(uma_zone_t zone,uma_bucket_t bucket)1345 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
1346 {
1347 	int i;
1348 
1349 	if (bucket->ub_cnt == 0)
1350 		return;
1351 
1352 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
1353 	    bucket->ub_seq != SMR_SEQ_INVALID) {
1354 		smr_wait(zone->uz_smr, bucket->ub_seq);
1355 		bucket->ub_seq = SMR_SEQ_INVALID;
1356 		for (i = 0; i < bucket->ub_cnt; i++)
1357 			item_dtor(zone, bucket->ub_bucket[i],
1358 			    zone->uz_size, NULL, SKIP_NONE);
1359 	}
1360 	if (zone->uz_fini)
1361 		for (i = 0; i < bucket->ub_cnt; i++) {
1362 			kasan_mark_item_valid(zone, bucket->ub_bucket[i]);
1363 			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
1364 			kasan_mark_item_invalid(zone, bucket->ub_bucket[i]);
1365 		}
1366 	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
1367 	if (zone->uz_max_items > 0)
1368 		zone_free_limit(zone, bucket->ub_cnt);
1369 #ifdef INVARIANTS
1370 	bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt);
1371 #endif
1372 	bucket->ub_cnt = 0;
1373 }
1374 
1375 /*
1376  * Drains the per cpu caches for a zone.
1377  *
1378  * NOTE: This may only be called while the zone is being torn down, and not
1379  * during normal operation.  This is necessary in order that we do not have
1380  * to migrate CPUs to drain the per-CPU caches.
1381  *
1382  * Arguments:
1383  *	zone     The zone to drain, must be unlocked.
1384  *
1385  * Returns:
1386  *	Nothing
1387  */
1388 static void
cache_drain(uma_zone_t zone)1389 cache_drain(uma_zone_t zone)
1390 {
1391 	uma_cache_t cache;
1392 	uma_bucket_t bucket;
1393 	smr_seq_t seq;
1394 	int cpu;
1395 
1396 	/*
1397 	 * XXX: It is safe to not lock the per-CPU caches, because we're
1398 	 * tearing down the zone anyway.  I.e., there will be no further use
1399 	 * of the caches at this point.
1400 	 *
1401 	 * XXX: It would good to be able to assert that the zone is being
1402 	 * torn down to prevent improper use of cache_drain().
1403 	 */
1404 	seq = SMR_SEQ_INVALID;
1405 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
1406 		seq = smr_advance(zone->uz_smr);
1407 	CPU_FOREACH(cpu) {
1408 		cache = &zone->uz_cpu[cpu];
1409 		bucket = cache_bucket_unload_alloc(cache);
1410 		if (bucket != NULL)
1411 			bucket_free(zone, bucket, NULL);
1412 		bucket = cache_bucket_unload_free(cache);
1413 		if (bucket != NULL) {
1414 			bucket->ub_seq = seq;
1415 			bucket_free(zone, bucket, NULL);
1416 		}
1417 		bucket = cache_bucket_unload_cross(cache);
1418 		if (bucket != NULL) {
1419 			bucket->ub_seq = seq;
1420 			bucket_free(zone, bucket, NULL);
1421 		}
1422 	}
1423 	bucket_cache_reclaim(zone, true, UMA_ANYDOMAIN);
1424 }
1425 
1426 static void
cache_shrink(uma_zone_t zone,void * unused)1427 cache_shrink(uma_zone_t zone, void *unused)
1428 {
1429 
1430 	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1431 		return;
1432 
1433 	ZONE_LOCK(zone);
1434 	zone->uz_bucket_size =
1435 	    (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2;
1436 	ZONE_UNLOCK(zone);
1437 }
1438 
1439 static void
cache_drain_safe_cpu(uma_zone_t zone,void * unused)1440 cache_drain_safe_cpu(uma_zone_t zone, void *unused)
1441 {
1442 	uma_cache_t cache;
1443 	uma_bucket_t b1, b2, b3;
1444 	int domain;
1445 
1446 	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1447 		return;
1448 
1449 	b1 = b2 = b3 = NULL;
1450 	critical_enter();
1451 	cache = &zone->uz_cpu[curcpu];
1452 	domain = PCPU_GET(domain);
1453 	b1 = cache_bucket_unload_alloc(cache);
1454 
1455 	/*
1456 	 * Don't flush SMR zone buckets.  This leaves the zone without a
1457 	 * bucket and forces every free to synchronize().
1458 	 */
1459 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0) {
1460 		b2 = cache_bucket_unload_free(cache);
1461 		b3 = cache_bucket_unload_cross(cache);
1462 	}
1463 	critical_exit();
1464 
1465 	if (b1 != NULL)
1466 		zone_free_bucket(zone, b1, NULL, domain, false);
1467 	if (b2 != NULL)
1468 		zone_free_bucket(zone, b2, NULL, domain, false);
1469 	if (b3 != NULL) {
1470 		/* Adjust the domain so it goes to zone_free_cross. */
1471 		domain = (domain + 1) % vm_ndomains;
1472 		zone_free_bucket(zone, b3, NULL, domain, false);
1473 	}
1474 }
1475 
1476 /*
1477  * Safely drain per-CPU caches of a zone(s) to alloc bucket.
1478  * This is an expensive call because it needs to bind to all CPUs
1479  * one by one and enter a critical section on each of them in order
1480  * to safely access their cache buckets.
1481  * Zone lock must not be held on call this function.
1482  */
1483 static void
pcpu_cache_drain_safe(uma_zone_t zone)1484 pcpu_cache_drain_safe(uma_zone_t zone)
1485 {
1486 	int cpu;
1487 
1488 	/*
1489 	 * Polite bucket sizes shrinking was not enough, shrink aggressively.
1490 	 */
1491 	if (zone)
1492 		cache_shrink(zone, NULL);
1493 	else
1494 		zone_foreach(cache_shrink, NULL);
1495 
1496 	CPU_FOREACH(cpu) {
1497 		thread_lock(curthread);
1498 		sched_bind(curthread, cpu);
1499 		thread_unlock(curthread);
1500 
1501 		if (zone)
1502 			cache_drain_safe_cpu(zone, NULL);
1503 		else
1504 			zone_foreach(cache_drain_safe_cpu, NULL);
1505 	}
1506 	thread_lock(curthread);
1507 	sched_unbind(curthread);
1508 	thread_unlock(curthread);
1509 }
1510 
1511 /*
1512  * Reclaim cached buckets from a zone.  All buckets are reclaimed if the caller
1513  * requested a drain, otherwise the per-domain caches are trimmed to either
1514  * estimated working set size.
1515  */
1516 static bool
bucket_cache_reclaim_domain(uma_zone_t zone,bool drain,bool trim,int domain)1517 bucket_cache_reclaim_domain(uma_zone_t zone, bool drain, bool trim, int domain)
1518 {
1519 	uma_zone_domain_t zdom;
1520 	uma_bucket_t bucket;
1521 	long target;
1522 	bool done = false;
1523 
1524 	/*
1525 	 * The cross bucket is partially filled and not part of
1526 	 * the item count.  Reclaim it individually here.
1527 	 */
1528 	zdom = ZDOM_GET(zone, domain);
1529 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) {
1530 		ZONE_CROSS_LOCK(zone);
1531 		bucket = zdom->uzd_cross;
1532 		zdom->uzd_cross = NULL;
1533 		ZONE_CROSS_UNLOCK(zone);
1534 		if (bucket != NULL)
1535 			bucket_free(zone, bucket, NULL);
1536 	}
1537 
1538 	/*
1539 	 * If we were asked to drain the zone, we are done only once
1540 	 * this bucket cache is empty.  If trim, we reclaim items in
1541 	 * excess of the zone's estimated working set size.  Multiple
1542 	 * consecutive calls will shrink the WSS and so reclaim more.
1543 	 * If neither drain nor trim, then voluntarily reclaim 1/4
1544 	 * (to reduce first spike) of items not used for a long time.
1545 	 */
1546 	ZDOM_LOCK(zdom);
1547 	zone_domain_update_wss(zdom);
1548 	if (drain)
1549 		target = 0;
1550 	else if (trim)
1551 		target = zdom->uzd_wss;
1552 	else if (zdom->uzd_timin > 900 / UMA_TIMEOUT)
1553 		target = zdom->uzd_nitems - zdom->uzd_limin / 4;
1554 	else {
1555 		ZDOM_UNLOCK(zdom);
1556 		return (done);
1557 	}
1558 	while ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) != NULL &&
1559 	    zdom->uzd_nitems >= target + bucket->ub_cnt) {
1560 		bucket = zone_fetch_bucket(zone, zdom, true);
1561 		if (bucket == NULL)
1562 			break;
1563 		bucket_free(zone, bucket, NULL);
1564 		done = true;
1565 		ZDOM_LOCK(zdom);
1566 	}
1567 	ZDOM_UNLOCK(zdom);
1568 	return (done);
1569 }
1570 
1571 static void
bucket_cache_reclaim(uma_zone_t zone,bool drain,int domain)1572 bucket_cache_reclaim(uma_zone_t zone, bool drain, int domain)
1573 {
1574 	int i;
1575 
1576 	/*
1577 	 * Shrink the zone bucket size to ensure that the per-CPU caches
1578 	 * don't grow too large.
1579 	 */
1580 	if (zone->uz_bucket_size > zone->uz_bucket_size_min)
1581 		zone->uz_bucket_size--;
1582 
1583 	if (domain != UMA_ANYDOMAIN &&
1584 	    (zone->uz_flags & UMA_ZONE_ROUNDROBIN) == 0) {
1585 		bucket_cache_reclaim_domain(zone, drain, true, domain);
1586 	} else {
1587 		for (i = 0; i < vm_ndomains; i++)
1588 			bucket_cache_reclaim_domain(zone, drain, true, i);
1589 	}
1590 }
1591 
1592 static void
keg_free_slab(uma_keg_t keg,uma_slab_t slab,int start)1593 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
1594 {
1595 	uint8_t *mem;
1596 	size_t size;
1597 	int i;
1598 	uint8_t flags;
1599 
1600 	CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes",
1601 	    keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera);
1602 
1603 	mem = slab_data(slab, keg);
1604 	size = PAGE_SIZE * keg->uk_ppera;
1605 
1606 	kasan_mark_slab_valid(keg, mem);
1607 	if (keg->uk_fini != NULL) {
1608 		for (i = start - 1; i > -1; i--)
1609 #ifdef INVARIANTS
1610 		/*
1611 		 * trash_fini implies that dtor was trash_dtor. trash_fini
1612 		 * would check that memory hasn't been modified since free,
1613 		 * which executed trash_dtor.
1614 		 * That's why we need to run uma_dbg_kskip() check here,
1615 		 * albeit we don't make skip check for other init/fini
1616 		 * invocations.
1617 		 */
1618 		if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) ||
1619 		    keg->uk_fini != trash_fini)
1620 #endif
1621 			keg->uk_fini(slab_item(slab, keg, i), keg->uk_size);
1622 	}
1623 	flags = slab->us_flags;
1624 	if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
1625 		zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab),
1626 		    NULL, SKIP_NONE);
1627 	}
1628 	keg->uk_freef(mem, size, flags);
1629 	uma_total_dec(size);
1630 }
1631 
1632 static void
keg_drain_domain(uma_keg_t keg,int domain)1633 keg_drain_domain(uma_keg_t keg, int domain)
1634 {
1635 	struct slabhead freeslabs;
1636 	uma_domain_t dom;
1637 	uma_slab_t slab, tmp;
1638 	uint32_t i, stofree, stokeep, partial;
1639 
1640 	dom = &keg->uk_domain[domain];
1641 	LIST_INIT(&freeslabs);
1642 
1643 	CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u",
1644 	    keg->uk_name, keg, domain, dom->ud_free_items);
1645 
1646 	KEG_LOCK(keg, domain);
1647 
1648 	/*
1649 	 * Are the free items in partially allocated slabs sufficient to meet
1650 	 * the reserve? If not, compute the number of fully free slabs that must
1651 	 * be kept.
1652 	 */
1653 	partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers;
1654 	if (partial < keg->uk_reserve) {
1655 		stokeep = min(dom->ud_free_slabs,
1656 		    howmany(keg->uk_reserve - partial, keg->uk_ipers));
1657 	} else {
1658 		stokeep = 0;
1659 	}
1660 	stofree = dom->ud_free_slabs - stokeep;
1661 
1662 	/*
1663 	 * Partition the free slabs into two sets: those that must be kept in
1664 	 * order to maintain the reserve, and those that may be released back to
1665 	 * the system.  Since one set may be much larger than the other,
1666 	 * populate the smaller of the two sets and swap them if necessary.
1667 	 */
1668 	for (i = min(stofree, stokeep); i > 0; i--) {
1669 		slab = LIST_FIRST(&dom->ud_free_slab);
1670 		LIST_REMOVE(slab, us_link);
1671 		LIST_INSERT_HEAD(&freeslabs, slab, us_link);
1672 	}
1673 	if (stofree > stokeep)
1674 		LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link);
1675 
1676 	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) {
1677 		LIST_FOREACH(slab, &freeslabs, us_link)
1678 			UMA_HASH_REMOVE(&keg->uk_hash, slab);
1679 	}
1680 	dom->ud_free_items -= stofree * keg->uk_ipers;
1681 	dom->ud_free_slabs -= stofree;
1682 	dom->ud_pages -= stofree * keg->uk_ppera;
1683 	KEG_UNLOCK(keg, domain);
1684 
1685 	LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp)
1686 		keg_free_slab(keg, slab, keg->uk_ipers);
1687 }
1688 
1689 /*
1690  * Frees pages from a keg back to the system.  This is done on demand from
1691  * the pageout daemon.
1692  *
1693  * Returns nothing.
1694  */
1695 static void
keg_drain(uma_keg_t keg,int domain)1696 keg_drain(uma_keg_t keg, int domain)
1697 {
1698 	int i;
1699 
1700 	if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0)
1701 		return;
1702 	if (domain != UMA_ANYDOMAIN) {
1703 		keg_drain_domain(keg, domain);
1704 	} else {
1705 		for (i = 0; i < vm_ndomains; i++)
1706 			keg_drain_domain(keg, i);
1707 	}
1708 }
1709 
1710 static void
zone_reclaim(uma_zone_t zone,int domain,int waitok,bool drain)1711 zone_reclaim(uma_zone_t zone, int domain, int waitok, bool drain)
1712 {
1713 	/*
1714 	 * Count active reclaim operations in order to interlock with
1715 	 * zone_dtor(), which removes the zone from global lists before
1716 	 * attempting to reclaim items itself.
1717 	 *
1718 	 * The zone may be destroyed while sleeping, so only zone_dtor() should
1719 	 * specify M_WAITOK.
1720 	 */
1721 	ZONE_LOCK(zone);
1722 	if (waitok == M_WAITOK) {
1723 		while (zone->uz_reclaimers > 0)
1724 			msleep(zone, ZONE_LOCKPTR(zone), PVM, "zonedrain", 1);
1725 	}
1726 	zone->uz_reclaimers++;
1727 	ZONE_UNLOCK(zone);
1728 	bucket_cache_reclaim(zone, drain, domain);
1729 
1730 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
1731 		keg_drain(zone->uz_keg, domain);
1732 	ZONE_LOCK(zone);
1733 	zone->uz_reclaimers--;
1734 	if (zone->uz_reclaimers == 0)
1735 		wakeup(zone);
1736 	ZONE_UNLOCK(zone);
1737 }
1738 
1739 /*
1740  * Allocate a new slab for a keg and inserts it into the partial slab list.
1741  * The keg should be unlocked on entry.  If the allocation succeeds it will
1742  * be locked on return.
1743  *
1744  * Arguments:
1745  *	flags   Wait flags for the item initialization routine
1746  *	aflags  Wait flags for the slab allocation
1747  *
1748  * Returns:
1749  *	The slab that was allocated or NULL if there is no memory and the
1750  *	caller specified M_NOWAIT.
1751  */
1752 static uma_slab_t
keg_alloc_slab(uma_keg_t keg,uma_zone_t zone,int domain,int flags,int aflags)1753 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags,
1754     int aflags)
1755 {
1756 	uma_domain_t dom;
1757 	uma_slab_t slab;
1758 	unsigned long size;
1759 	uint8_t *mem;
1760 	uint8_t sflags;
1761 	int i;
1762 
1763 	TSENTER();
1764 
1765 	KASSERT(domain >= 0 && domain < vm_ndomains,
1766 	    ("keg_alloc_slab: domain %d out of range", domain));
1767 
1768 	slab = NULL;
1769 	mem = NULL;
1770 	if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
1771 		uma_hash_slab_t hslab;
1772 		hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL,
1773 		    domain, aflags);
1774 		if (hslab == NULL)
1775 			goto fail;
1776 		slab = &hslab->uhs_slab;
1777 	}
1778 
1779 	/*
1780 	 * This reproduces the old vm_zone behavior of zero filling pages the
1781 	 * first time they are added to a zone.
1782 	 *
1783 	 * Malloced items are zeroed in uma_zalloc.
1784 	 */
1785 
1786 	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
1787 		aflags |= M_ZERO;
1788 	else
1789 		aflags &= ~M_ZERO;
1790 
1791 	if (keg->uk_flags & UMA_ZONE_NODUMP)
1792 		aflags |= M_NODUMP;
1793 
1794 	/* zone is passed for legacy reasons. */
1795 	size = keg->uk_ppera * PAGE_SIZE;
1796 	mem = keg->uk_allocf(zone, size, domain, &sflags, aflags);
1797 	if (mem == NULL) {
1798 		if (keg->uk_flags & UMA_ZFLAG_OFFPAGE)
1799 			zone_free_item(slabzone(keg->uk_ipers),
1800 			    slab_tohashslab(slab), NULL, SKIP_NONE);
1801 		goto fail;
1802 	}
1803 	uma_total_inc(size);
1804 
1805 	/* For HASH zones all pages go to the same uma_domain. */
1806 	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
1807 		domain = 0;
1808 
1809 	kmsan_mark(mem, size,
1810 	    (aflags & M_ZERO) != 0 ? KMSAN_STATE_INITED : KMSAN_STATE_UNINIT);
1811 
1812 	/* Point the slab into the allocated memory */
1813 	if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE))
1814 		slab = (uma_slab_t)(mem + keg->uk_pgoff);
1815 	else
1816 		slab_tohashslab(slab)->uhs_data = mem;
1817 
1818 	if (keg->uk_flags & UMA_ZFLAG_VTOSLAB)
1819 		for (i = 0; i < keg->uk_ppera; i++)
1820 			vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE),
1821 			    zone, slab);
1822 
1823 	slab->us_freecount = keg->uk_ipers;
1824 	slab->us_flags = sflags;
1825 	slab->us_domain = domain;
1826 
1827 	BIT_FILL(keg->uk_ipers, &slab->us_free);
1828 #ifdef INVARIANTS
1829 	BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg));
1830 #endif
1831 
1832 	if (keg->uk_init != NULL) {
1833 		for (i = 0; i < keg->uk_ipers; i++)
1834 			if (keg->uk_init(slab_item(slab, keg, i),
1835 			    keg->uk_size, flags) != 0)
1836 				break;
1837 		if (i != keg->uk_ipers) {
1838 			keg_free_slab(keg, slab, i);
1839 			goto fail;
1840 		}
1841 	}
1842 	kasan_mark_slab_invalid(keg, mem);
1843 	KEG_LOCK(keg, domain);
1844 
1845 	CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)",
1846 	    slab, keg->uk_name, keg);
1847 
1848 	if (keg->uk_flags & UMA_ZFLAG_HASH)
1849 		UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1850 
1851 	/*
1852 	 * If we got a slab here it's safe to mark it partially used
1853 	 * and return.  We assume that the caller is going to remove
1854 	 * at least one item.
1855 	 */
1856 	dom = &keg->uk_domain[domain];
1857 	LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
1858 	dom->ud_pages += keg->uk_ppera;
1859 	dom->ud_free_items += keg->uk_ipers;
1860 
1861 	TSEXIT();
1862 	return (slab);
1863 
1864 fail:
1865 	return (NULL);
1866 }
1867 
1868 /*
1869  * This function is intended to be used early on in place of page_alloc().  It
1870  * performs contiguous physical memory allocations and uses a bump allocator for
1871  * KVA, so is usable before the kernel map is initialized.
1872  */
1873 static void *
startup_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)1874 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1875     int wait)
1876 {
1877 	vm_paddr_t pa;
1878 	vm_page_t m;
1879 	int i, pages;
1880 
1881 	pages = howmany(bytes, PAGE_SIZE);
1882 	KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__));
1883 
1884 	*pflag = UMA_SLAB_BOOT;
1885 	m = vm_page_alloc_noobj_contig_domain(domain, malloc2vm_flags(wait) |
1886 	    VM_ALLOC_WIRED, pages, (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0,
1887 	    VM_MEMATTR_DEFAULT);
1888 	if (m == NULL)
1889 		return (NULL);
1890 
1891 	pa = VM_PAGE_TO_PHYS(m);
1892 	for (i = 0; i < pages; i++, pa += PAGE_SIZE) {
1893 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
1894 		if ((wait & M_NODUMP) == 0)
1895 			dump_add_page(pa);
1896 #endif
1897 	}
1898 
1899 	/* Allocate KVA and indirectly advance bootmem. */
1900 	return ((void *)pmap_map(&bootmem, m->phys_addr,
1901 	    m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE));
1902 }
1903 
1904 static void
startup_free(void * mem,vm_size_t bytes)1905 startup_free(void *mem, vm_size_t bytes)
1906 {
1907 	vm_offset_t va;
1908 	vm_page_t m;
1909 
1910 	va = (vm_offset_t)mem;
1911 	m = PHYS_TO_VM_PAGE(pmap_kextract(va));
1912 
1913 	/*
1914 	 * startup_alloc() returns direct-mapped slabs on some platforms.  Avoid
1915 	 * unmapping ranges of the direct map.
1916 	 */
1917 	if (va >= bootstart && va + bytes <= bootmem)
1918 		pmap_remove(kernel_pmap, va, va + bytes);
1919 	for (; bytes != 0; bytes -= PAGE_SIZE, m++) {
1920 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
1921 		dump_drop_page(VM_PAGE_TO_PHYS(m));
1922 #endif
1923 		vm_page_unwire_noq(m);
1924 		vm_page_free(m);
1925 	}
1926 }
1927 
1928 /*
1929  * Allocates a number of pages from the system
1930  *
1931  * Arguments:
1932  *	bytes  The number of bytes requested
1933  *	wait  Shall we wait?
1934  *
1935  * Returns:
1936  *	A pointer to the alloced memory or possibly
1937  *	NULL if M_NOWAIT is set.
1938  */
1939 static void *
page_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)1940 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1941     int wait)
1942 {
1943 	void *p;	/* Returned page */
1944 
1945 	*pflag = UMA_SLAB_KERNEL;
1946 	p = kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait);
1947 
1948 	return (p);
1949 }
1950 
1951 static void *
pcpu_page_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)1952 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1953     int wait)
1954 {
1955 	struct pglist alloctail;
1956 	vm_offset_t addr, zkva;
1957 	int cpu, flags;
1958 	vm_page_t p, p_next;
1959 #ifdef NUMA
1960 	struct pcpu *pc;
1961 #endif
1962 
1963 	MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE);
1964 
1965 	TAILQ_INIT(&alloctail);
1966 	flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | malloc2vm_flags(wait);
1967 	*pflag = UMA_SLAB_KERNEL;
1968 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
1969 		if (CPU_ABSENT(cpu)) {
1970 			p = vm_page_alloc_noobj(flags);
1971 		} else {
1972 #ifndef NUMA
1973 			p = vm_page_alloc_noobj(flags);
1974 #else
1975 			pc = pcpu_find(cpu);
1976 			if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain)))
1977 				p = NULL;
1978 			else
1979 				p = vm_page_alloc_noobj_domain(pc->pc_domain,
1980 				    flags);
1981 			if (__predict_false(p == NULL))
1982 				p = vm_page_alloc_noobj(flags);
1983 #endif
1984 		}
1985 		if (__predict_false(p == NULL))
1986 			goto fail;
1987 		TAILQ_INSERT_TAIL(&alloctail, p, listq);
1988 	}
1989 	if ((addr = kva_alloc(bytes)) == 0)
1990 		goto fail;
1991 	zkva = addr;
1992 	TAILQ_FOREACH(p, &alloctail, listq) {
1993 		pmap_qenter(zkva, &p, 1);
1994 		zkva += PAGE_SIZE;
1995 	}
1996 	return ((void*)addr);
1997 fail:
1998 	TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1999 		vm_page_unwire_noq(p);
2000 		vm_page_free(p);
2001 	}
2002 	return (NULL);
2003 }
2004 
2005 /*
2006  * Allocates a number of pages not belonging to a VM object
2007  *
2008  * Arguments:
2009  *	bytes  The number of bytes requested
2010  *	wait   Shall we wait?
2011  *
2012  * Returns:
2013  *	A pointer to the alloced memory or possibly
2014  *	NULL if M_NOWAIT is set.
2015  */
2016 static void *
noobj_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * flags,int wait)2017 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
2018     int wait)
2019 {
2020 	TAILQ_HEAD(, vm_page) alloctail;
2021 	u_long npages;
2022 	vm_offset_t retkva, zkva;
2023 	vm_page_t p, p_next;
2024 	uma_keg_t keg;
2025 	int req;
2026 
2027 	TAILQ_INIT(&alloctail);
2028 	keg = zone->uz_keg;
2029 	req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
2030 	if ((wait & M_WAITOK) != 0)
2031 		req |= VM_ALLOC_WAITOK;
2032 
2033 	npages = howmany(bytes, PAGE_SIZE);
2034 	while (npages > 0) {
2035 		p = vm_page_alloc_noobj_domain(domain, req);
2036 		if (p != NULL) {
2037 			/*
2038 			 * Since the page does not belong to an object, its
2039 			 * listq is unused.
2040 			 */
2041 			TAILQ_INSERT_TAIL(&alloctail, p, listq);
2042 			npages--;
2043 			continue;
2044 		}
2045 		/*
2046 		 * Page allocation failed, free intermediate pages and
2047 		 * exit.
2048 		 */
2049 		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
2050 			vm_page_unwire_noq(p);
2051 			vm_page_free(p);
2052 		}
2053 		return (NULL);
2054 	}
2055 	*flags = UMA_SLAB_PRIV;
2056 	zkva = keg->uk_kva +
2057 	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
2058 	retkva = zkva;
2059 	TAILQ_FOREACH(p, &alloctail, listq) {
2060 		pmap_qenter(zkva, &p, 1);
2061 		zkva += PAGE_SIZE;
2062 	}
2063 
2064 	return ((void *)retkva);
2065 }
2066 
2067 /*
2068  * Allocate physically contiguous pages.
2069  */
2070 static void *
contig_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)2071 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
2072     int wait)
2073 {
2074 
2075 	*pflag = UMA_SLAB_KERNEL;
2076 	return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
2077 	    bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT));
2078 }
2079 
2080 #if defined(UMA_USE_DMAP) && !defined(UMA_MD_SMALL_ALLOC)
2081 void *
uma_small_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * flags,int wait)2082 uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
2083     int wait)
2084 {
2085 	vm_page_t m;
2086 	vm_paddr_t pa;
2087 	void *va;
2088 
2089 	*flags = UMA_SLAB_PRIV;
2090 	m = vm_page_alloc_noobj_domain(domain,
2091 	    malloc2vm_flags(wait) | VM_ALLOC_WIRED);
2092 	if (m == NULL)
2093 		return (NULL);
2094 	pa = m->phys_addr;
2095 	if ((wait & M_NODUMP) == 0)
2096 		dump_add_page(pa);
2097 	va = (void *)PHYS_TO_DMAP(pa);
2098 	return (va);
2099 }
2100 #endif
2101 
2102 /*
2103  * Frees a number of pages to the system
2104  *
2105  * Arguments:
2106  *	mem   A pointer to the memory to be freed
2107  *	size  The size of the memory being freed
2108  *	flags The original p->us_flags field
2109  *
2110  * Returns:
2111  *	Nothing
2112  */
2113 static void
page_free(void * mem,vm_size_t size,uint8_t flags)2114 page_free(void *mem, vm_size_t size, uint8_t flags)
2115 {
2116 
2117 	if ((flags & UMA_SLAB_BOOT) != 0) {
2118 		startup_free(mem, size);
2119 		return;
2120 	}
2121 
2122 	KASSERT((flags & UMA_SLAB_KERNEL) != 0,
2123 	    ("UMA: page_free used with invalid flags %x", flags));
2124 
2125 	kmem_free(mem, size);
2126 }
2127 
2128 /*
2129  * Frees pcpu zone allocations
2130  *
2131  * Arguments:
2132  *	mem   A pointer to the memory to be freed
2133  *	size  The size of the memory being freed
2134  *	flags The original p->us_flags field
2135  *
2136  * Returns:
2137  *	Nothing
2138  */
2139 static void
pcpu_page_free(void * mem,vm_size_t size,uint8_t flags)2140 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags)
2141 {
2142 	vm_offset_t sva, curva;
2143 	vm_paddr_t paddr;
2144 	vm_page_t m;
2145 
2146 	MPASS(size == (mp_maxid+1)*PAGE_SIZE);
2147 
2148 	if ((flags & UMA_SLAB_BOOT) != 0) {
2149 		startup_free(mem, size);
2150 		return;
2151 	}
2152 
2153 	sva = (vm_offset_t)mem;
2154 	for (curva = sva; curva < sva + size; curva += PAGE_SIZE) {
2155 		paddr = pmap_kextract(curva);
2156 		m = PHYS_TO_VM_PAGE(paddr);
2157 		vm_page_unwire_noq(m);
2158 		vm_page_free(m);
2159 	}
2160 	pmap_qremove(sva, size >> PAGE_SHIFT);
2161 	kva_free(sva, size);
2162 }
2163 
2164 #if defined(UMA_USE_DMAP) && !defined(UMA_MD_SMALL_ALLOC)
2165 void
uma_small_free(void * mem,vm_size_t size,uint8_t flags)2166 uma_small_free(void *mem, vm_size_t size, uint8_t flags)
2167 {
2168 	vm_page_t m;
2169 	vm_paddr_t pa;
2170 
2171 	pa = DMAP_TO_PHYS((vm_offset_t)mem);
2172 	dump_drop_page(pa);
2173 	m = PHYS_TO_VM_PAGE(pa);
2174 	vm_page_unwire_noq(m);
2175 	vm_page_free(m);
2176 }
2177 #endif
2178 
2179 /*
2180  * Zero fill initializer
2181  *
2182  * Arguments/Returns follow uma_init specifications
2183  */
2184 static int
zero_init(void * mem,int size,int flags)2185 zero_init(void *mem, int size, int flags)
2186 {
2187 	bzero(mem, size);
2188 	return (0);
2189 }
2190 
2191 #ifdef INVARIANTS
2192 static struct noslabbits *
slab_dbg_bits(uma_slab_t slab,uma_keg_t keg)2193 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg)
2194 {
2195 
2196 	return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers)));
2197 }
2198 #endif
2199 
2200 /*
2201  * Actual size of embedded struct slab (!OFFPAGE).
2202  */
2203 static size_t
slab_sizeof(int nitems)2204 slab_sizeof(int nitems)
2205 {
2206 	size_t s;
2207 
2208 	s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS;
2209 	return (roundup(s, UMA_ALIGN_PTR + 1));
2210 }
2211 
2212 #define	UMA_FIXPT_SHIFT	31
2213 #define	UMA_FRAC_FIXPT(n, d)						\
2214 	((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d)))
2215 #define	UMA_FIXPT_PCT(f)						\
2216 	((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT))
2217 #define	UMA_PCT_FIXPT(pct)	UMA_FRAC_FIXPT((pct), 100)
2218 #define	UMA_MIN_EFF	UMA_PCT_FIXPT(100 - UMA_MAX_WASTE)
2219 
2220 /*
2221  * Compute the number of items that will fit in a slab.  If hdr is true, the
2222  * item count may be limited to provide space in the slab for an inline slab
2223  * header.  Otherwise, all slab space will be provided for item storage.
2224  */
2225 static u_int
slab_ipers_hdr(u_int size,u_int rsize,u_int slabsize,bool hdr)2226 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr)
2227 {
2228 	u_int ipers;
2229 	u_int padpi;
2230 
2231 	/* The padding between items is not needed after the last item. */
2232 	padpi = rsize - size;
2233 
2234 	if (hdr) {
2235 		/*
2236 		 * Start with the maximum item count and remove items until
2237 		 * the slab header first alongside the allocatable memory.
2238 		 */
2239 		for (ipers = MIN(SLAB_MAX_SETSIZE,
2240 		    (slabsize + padpi - slab_sizeof(1)) / rsize);
2241 		    ipers > 0 &&
2242 		    ipers * rsize - padpi + slab_sizeof(ipers) > slabsize;
2243 		    ipers--)
2244 			continue;
2245 	} else {
2246 		ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE);
2247 	}
2248 
2249 	return (ipers);
2250 }
2251 
2252 struct keg_layout_result {
2253 	u_int format;
2254 	u_int slabsize;
2255 	u_int ipers;
2256 	u_int eff;
2257 };
2258 
2259 static void
keg_layout_one(uma_keg_t keg,u_int rsize,u_int slabsize,u_int fmt,struct keg_layout_result * kl)2260 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt,
2261     struct keg_layout_result *kl)
2262 {
2263 	u_int total;
2264 
2265 	kl->format = fmt;
2266 	kl->slabsize = slabsize;
2267 
2268 	/* Handle INTERNAL as inline with an extra page. */
2269 	if ((fmt & UMA_ZFLAG_INTERNAL) != 0) {
2270 		kl->format &= ~UMA_ZFLAG_INTERNAL;
2271 		kl->slabsize += PAGE_SIZE;
2272 	}
2273 
2274 	kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize,
2275 	    (fmt & UMA_ZFLAG_OFFPAGE) == 0);
2276 
2277 	/* Account for memory used by an offpage slab header. */
2278 	total = kl->slabsize;
2279 	if ((fmt & UMA_ZFLAG_OFFPAGE) != 0)
2280 		total += slabzone(kl->ipers)->uz_keg->uk_rsize;
2281 
2282 	kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total);
2283 }
2284 
2285 /*
2286  * Determine the format of a uma keg.  This determines where the slab header
2287  * will be placed (inline or offpage) and calculates ipers, rsize, and ppera.
2288  *
2289  * Arguments
2290  *	keg  The zone we should initialize
2291  *
2292  * Returns
2293  *	Nothing
2294  */
2295 static void
keg_layout(uma_keg_t keg)2296 keg_layout(uma_keg_t keg)
2297 {
2298 	struct keg_layout_result kl = {}, kl_tmp;
2299 	u_int fmts[2];
2300 	u_int alignsize;
2301 	u_int nfmt;
2302 	u_int pages;
2303 	u_int rsize;
2304 	u_int slabsize;
2305 	u_int i, j;
2306 
2307 	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
2308 	    (keg->uk_size <= UMA_PCPU_ALLOC_SIZE &&
2309 	     (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0),
2310 	    ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b",
2311 	     __func__, keg->uk_name, keg->uk_size, keg->uk_flags,
2312 	     PRINT_UMA_ZFLAGS));
2313 	KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 ||
2314 	    (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0,
2315 	    ("%s: incompatible flags 0x%b", __func__, keg->uk_flags,
2316 	     PRINT_UMA_ZFLAGS));
2317 
2318 	alignsize = keg->uk_align + 1;
2319 #ifdef KASAN
2320 	/*
2321 	 * ASAN requires that each allocation be aligned to the shadow map
2322 	 * scale factor.
2323 	 */
2324 	if (alignsize < KASAN_SHADOW_SCALE)
2325 		alignsize = KASAN_SHADOW_SCALE;
2326 #endif
2327 
2328 	/*
2329 	 * Calculate the size of each allocation (rsize) according to
2330 	 * alignment.  If the requested size is smaller than we have
2331 	 * allocation bits for we round it up.
2332 	 */
2333 	rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT);
2334 	rsize = roundup2(rsize, alignsize);
2335 
2336 	if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) {
2337 		/*
2338 		 * We want one item to start on every align boundary in a page.
2339 		 * To do this we will span pages.  We will also extend the item
2340 		 * by the size of align if it is an even multiple of align.
2341 		 * Otherwise, it would fall on the same boundary every time.
2342 		 */
2343 		if ((rsize & alignsize) == 0)
2344 			rsize += alignsize;
2345 		slabsize = rsize * (PAGE_SIZE / alignsize);
2346 		slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE);
2347 		slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE);
2348 		slabsize = round_page(slabsize);
2349 	} else {
2350 		/*
2351 		 * Start with a slab size of as many pages as it takes to
2352 		 * represent a single item.  We will try to fit as many
2353 		 * additional items into the slab as possible.
2354 		 */
2355 		slabsize = round_page(keg->uk_size);
2356 	}
2357 
2358 	/* Build a list of all of the available formats for this keg. */
2359 	nfmt = 0;
2360 
2361 	/* Evaluate an inline slab layout. */
2362 	if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0)
2363 		fmts[nfmt++] = 0;
2364 
2365 	/* TODO: vm_page-embedded slab. */
2366 
2367 	/*
2368 	 * We can't do OFFPAGE if we're internal or if we've been
2369 	 * asked to not go to the VM for buckets.  If we do this we
2370 	 * may end up going to the VM for slabs which we do not want
2371 	 * to do if we're UMA_ZONE_VM, which clearly forbids it.
2372 	 * In those cases, evaluate a pseudo-format called INTERNAL
2373 	 * which has an inline slab header and one extra page to
2374 	 * guarantee that it fits.
2375 	 *
2376 	 * Otherwise, see if using an OFFPAGE slab will improve our
2377 	 * efficiency.
2378 	 */
2379 	if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0)
2380 		fmts[nfmt++] = UMA_ZFLAG_INTERNAL;
2381 	else
2382 		fmts[nfmt++] = UMA_ZFLAG_OFFPAGE;
2383 
2384 	/*
2385 	 * Choose a slab size and format which satisfy the minimum efficiency.
2386 	 * Prefer the smallest slab size that meets the constraints.
2387 	 *
2388 	 * Start with a minimum slab size, to accommodate CACHESPREAD.  Then,
2389 	 * for small items (up to PAGE_SIZE), the iteration increment is one
2390 	 * page; and for large items, the increment is one item.
2391 	 */
2392 	i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize);
2393 	KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u",
2394 	    keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize,
2395 	    rsize, i));
2396 	for ( ; ; i++) {
2397 		slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) :
2398 		    round_page(rsize * (i - 1) + keg->uk_size);
2399 
2400 		for (j = 0; j < nfmt; j++) {
2401 			/* Only if we have no viable format yet. */
2402 			if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 &&
2403 			    kl.ipers > 0)
2404 				continue;
2405 
2406 			keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp);
2407 			if (kl_tmp.eff <= kl.eff)
2408 				continue;
2409 
2410 			kl = kl_tmp;
2411 
2412 			CTR6(KTR_UMA, "keg %s layout: format %#x "
2413 			    "(ipers %u * rsize %u) / slabsize %#x = %u%% eff",
2414 			    keg->uk_name, kl.format, kl.ipers, rsize,
2415 			    kl.slabsize, UMA_FIXPT_PCT(kl.eff));
2416 
2417 			/* Stop when we reach the minimum efficiency. */
2418 			if (kl.eff >= UMA_MIN_EFF)
2419 				break;
2420 		}
2421 
2422 		if (kl.eff >= UMA_MIN_EFF || !multipage_slabs ||
2423 		    slabsize >= SLAB_MAX_SETSIZE * rsize ||
2424 		    (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0)
2425 			break;
2426 	}
2427 
2428 	pages = atop(kl.slabsize);
2429 	if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
2430 		pages *= mp_maxid + 1;
2431 
2432 	keg->uk_rsize = rsize;
2433 	keg->uk_ipers = kl.ipers;
2434 	keg->uk_ppera = pages;
2435 	keg->uk_flags |= kl.format;
2436 
2437 	/*
2438 	 * How do we find the slab header if it is offpage or if not all item
2439 	 * start addresses are in the same page?  We could solve the latter
2440 	 * case with vaddr alignment, but we don't.
2441 	 */
2442 	if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 ||
2443 	    (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) {
2444 		if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0)
2445 			keg->uk_flags |= UMA_ZFLAG_HASH;
2446 		else
2447 			keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2448 	}
2449 
2450 	CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u",
2451 	    __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers,
2452 	    pages);
2453 	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE,
2454 	    ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__,
2455 	     keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize,
2456 	     keg->uk_ipers, pages));
2457 }
2458 
2459 /*
2460  * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
2461  * the keg onto the global keg list.
2462  *
2463  * Arguments/Returns follow uma_ctor specifications
2464  *	udata  Actually uma_kctor_args
2465  */
2466 static int
keg_ctor(void * mem,int size,void * udata,int flags)2467 keg_ctor(void *mem, int size, void *udata, int flags)
2468 {
2469 	struct uma_kctor_args *arg = udata;
2470 	uma_keg_t keg = mem;
2471 	uma_zone_t zone;
2472 	int i;
2473 
2474 	bzero(keg, size);
2475 	keg->uk_size = arg->size;
2476 	keg->uk_init = arg->uminit;
2477 	keg->uk_fini = arg->fini;
2478 	keg->uk_align = arg->align;
2479 	keg->uk_reserve = 0;
2480 	keg->uk_flags = arg->flags;
2481 
2482 	/*
2483 	 * We use a global round-robin policy by default.  Zones with
2484 	 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which
2485 	 * case the iterator is never run.
2486 	 */
2487 	keg->uk_dr.dr_policy = DOMAINSET_RR();
2488 	keg->uk_dr.dr_iter = 0;
2489 
2490 	/*
2491 	 * The primary zone is passed to us at keg-creation time.
2492 	 */
2493 	zone = arg->zone;
2494 	keg->uk_name = zone->uz_name;
2495 
2496 	if (arg->flags & UMA_ZONE_ZINIT)
2497 		keg->uk_init = zero_init;
2498 
2499 	if (arg->flags & UMA_ZONE_MALLOC)
2500 		keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2501 
2502 #ifndef SMP
2503 	keg->uk_flags &= ~UMA_ZONE_PCPU;
2504 #endif
2505 
2506 	keg_layout(keg);
2507 
2508 	/*
2509 	 * Use a first-touch NUMA policy for kegs that pmap_extract() will
2510 	 * work on.  Use round-robin for everything else.
2511 	 *
2512 	 * Zones may override the default by specifying either.
2513 	 */
2514 #ifdef NUMA
2515 	if ((keg->uk_flags &
2516 	    (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0)
2517 		keg->uk_flags |= UMA_ZONE_FIRSTTOUCH;
2518 	else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2519 		keg->uk_flags |= UMA_ZONE_ROUNDROBIN;
2520 #endif
2521 
2522 	/*
2523 	 * If we haven't booted yet we need allocations to go through the
2524 	 * startup cache until the vm is ready.
2525 	 */
2526 #ifdef UMA_USE_DMAP
2527 	if (keg->uk_ppera == 1)
2528 		keg->uk_allocf = uma_small_alloc;
2529 	else
2530 #endif
2531 	if (booted < BOOT_KVA)
2532 		keg->uk_allocf = startup_alloc;
2533 	else if (keg->uk_flags & UMA_ZONE_PCPU)
2534 		keg->uk_allocf = pcpu_page_alloc;
2535 	else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1)
2536 		keg->uk_allocf = contig_alloc;
2537 	else
2538 		keg->uk_allocf = page_alloc;
2539 #ifdef UMA_USE_DMAP
2540 	if (keg->uk_ppera == 1)
2541 		keg->uk_freef = uma_small_free;
2542 	else
2543 #endif
2544 	if (keg->uk_flags & UMA_ZONE_PCPU)
2545 		keg->uk_freef = pcpu_page_free;
2546 	else
2547 		keg->uk_freef = page_free;
2548 
2549 	/*
2550 	 * Initialize keg's locks.
2551 	 */
2552 	for (i = 0; i < vm_ndomains; i++)
2553 		KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS));
2554 
2555 	/*
2556 	 * If we're putting the slab header in the actual page we need to
2557 	 * figure out where in each page it goes.  See slab_sizeof
2558 	 * definition.
2559 	 */
2560 	if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) {
2561 		size_t shsize;
2562 
2563 		shsize = slab_sizeof(keg->uk_ipers);
2564 		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize;
2565 		/*
2566 		 * The only way the following is possible is if with our
2567 		 * UMA_ALIGN_PTR adjustments we are now bigger than
2568 		 * UMA_SLAB_SIZE.  I haven't checked whether this is
2569 		 * mathematically possible for all cases, so we make
2570 		 * sure here anyway.
2571 		 */
2572 		KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera,
2573 		    ("zone %s ipers %d rsize %d size %d slab won't fit",
2574 		    zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size));
2575 	}
2576 
2577 	if (keg->uk_flags & UMA_ZFLAG_HASH)
2578 		hash_alloc(&keg->uk_hash, 0);
2579 
2580 	CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone);
2581 
2582 	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
2583 
2584 	rw_wlock(&uma_rwlock);
2585 	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
2586 	rw_wunlock(&uma_rwlock);
2587 	return (0);
2588 }
2589 
2590 static void
zone_kva_available(uma_zone_t zone,void * unused)2591 zone_kva_available(uma_zone_t zone, void *unused)
2592 {
2593 	uma_keg_t keg;
2594 
2595 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
2596 		return;
2597 	KEG_GET(zone, keg);
2598 
2599 	if (keg->uk_allocf == startup_alloc) {
2600 		/* Switch to the real allocator. */
2601 		if (keg->uk_flags & UMA_ZONE_PCPU)
2602 			keg->uk_allocf = pcpu_page_alloc;
2603 		else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 &&
2604 		    keg->uk_ppera > 1)
2605 			keg->uk_allocf = contig_alloc;
2606 		else
2607 			keg->uk_allocf = page_alloc;
2608 	}
2609 }
2610 
2611 static void
zone_alloc_counters(uma_zone_t zone,void * unused)2612 zone_alloc_counters(uma_zone_t zone, void *unused)
2613 {
2614 
2615 	zone->uz_allocs = counter_u64_alloc(M_WAITOK);
2616 	zone->uz_frees = counter_u64_alloc(M_WAITOK);
2617 	zone->uz_fails = counter_u64_alloc(M_WAITOK);
2618 	zone->uz_xdomain = counter_u64_alloc(M_WAITOK);
2619 }
2620 
2621 static void
zone_alloc_sysctl(uma_zone_t zone,void * unused)2622 zone_alloc_sysctl(uma_zone_t zone, void *unused)
2623 {
2624 	uma_zone_domain_t zdom;
2625 	uma_domain_t dom;
2626 	uma_keg_t keg;
2627 	struct sysctl_oid *oid, *domainoid;
2628 	int domains, i, cnt;
2629 	static const char *nokeg = "cache zone";
2630 	char *c;
2631 
2632 	/*
2633 	 * Make a sysctl safe copy of the zone name by removing
2634 	 * any special characters and handling dups by appending
2635 	 * an index.
2636 	 */
2637 	if (zone->uz_namecnt != 0) {
2638 		/* Count the number of decimal digits and '_' separator. */
2639 		for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++)
2640 			cnt /= 10;
2641 		zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1,
2642 		    M_UMA, M_WAITOK);
2643 		sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name,
2644 		    zone->uz_namecnt);
2645 	} else
2646 		zone->uz_ctlname = strdup(zone->uz_name, M_UMA);
2647 	for (c = zone->uz_ctlname; *c != '\0'; c++)
2648 		if (strchr("./\\ -", *c) != NULL)
2649 			*c = '_';
2650 
2651 	/*
2652 	 * Basic parameters at the root.
2653 	 */
2654 	zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma),
2655 	    OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2656 	oid = zone->uz_oid;
2657 	SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2658 	    "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size");
2659 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2660 	    "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE,
2661 	    zone, 0, sysctl_handle_uma_zone_flags, "A",
2662 	    "Allocator configuration flags");
2663 	SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2664 	    "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0,
2665 	    "Desired per-cpu cache size");
2666 	SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2667 	    "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0,
2668 	    "Maximum allowed per-cpu cache size");
2669 
2670 	/*
2671 	 * keg if present.
2672 	 */
2673 	if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
2674 		domains = vm_ndomains;
2675 	else
2676 		domains = 1;
2677 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2678 	    "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2679 	keg = zone->uz_keg;
2680 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) {
2681 		SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2682 		    "name", CTLFLAG_RD, keg->uk_name, "Keg name");
2683 		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2684 		    "rsize", CTLFLAG_RD, &keg->uk_rsize, 0,
2685 		    "Real object size with alignment");
2686 		SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2687 		    "ppera", CTLFLAG_RD, &keg->uk_ppera, 0,
2688 		    "pages per-slab allocation");
2689 		SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2690 		    "ipers", CTLFLAG_RD, &keg->uk_ipers, 0,
2691 		    "items available per-slab");
2692 		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2693 		    "align", CTLFLAG_RD, &keg->uk_align, 0,
2694 		    "item alignment mask");
2695 		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2696 		    "reserve", CTLFLAG_RD, &keg->uk_reserve, 0,
2697 		    "number of reserved items");
2698 		SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2699 		    "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2700 		    keg, 0, sysctl_handle_uma_slab_efficiency, "I",
2701 		    "Slab utilization (100 - internal fragmentation %)");
2702 		domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid),
2703 		    OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2704 		for (i = 0; i < domains; i++) {
2705 			dom = &keg->uk_domain[i];
2706 			oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2707 			    OID_AUTO, VM_DOMAIN(i)->vmd_name,
2708 			    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2709 			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2710 			    "pages", CTLFLAG_RD, &dom->ud_pages, 0,
2711 			    "Total pages currently allocated from VM");
2712 			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2713 			    "free_items", CTLFLAG_RD, &dom->ud_free_items, 0,
2714 			    "Items free in the slab layer");
2715 			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2716 			    "free_slabs", CTLFLAG_RD, &dom->ud_free_slabs, 0,
2717 			    "Unused slabs");
2718 		}
2719 	} else
2720 		SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2721 		    "name", CTLFLAG_RD, nokeg, "Keg name");
2722 
2723 	/*
2724 	 * Information about zone limits.
2725 	 */
2726 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2727 	    "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2728 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2729 	    "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2730 	    zone, 0, sysctl_handle_uma_zone_items, "QU",
2731 	    "Current number of allocated items if limit is set");
2732 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2733 	    "max_items", CTLFLAG_RD, &zone->uz_max_items, 0,
2734 	    "Maximum number of allocated and cached items");
2735 	SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2736 	    "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0,
2737 	    "Number of threads sleeping at limit");
2738 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2739 	    "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0,
2740 	    "Total zone limit sleeps");
2741 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2742 	    "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0,
2743 	    "Maximum number of items in each domain's bucket cache");
2744 
2745 	/*
2746 	 * Per-domain zone information.
2747 	 */
2748 	domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid),
2749 	    OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2750 	for (i = 0; i < domains; i++) {
2751 		zdom = ZDOM_GET(zone, i);
2752 		oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2753 		    OID_AUTO, VM_DOMAIN(i)->vmd_name,
2754 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2755 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2756 		    "nitems", CTLFLAG_RD, &zdom->uzd_nitems,
2757 		    "number of items in this domain");
2758 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2759 		    "imax", CTLFLAG_RD, &zdom->uzd_imax,
2760 		    "maximum item count in this period");
2761 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2762 		    "imin", CTLFLAG_RD, &zdom->uzd_imin,
2763 		    "minimum item count in this period");
2764 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2765 		    "bimin", CTLFLAG_RD, &zdom->uzd_bimin,
2766 		    "Minimum item count in this batch");
2767 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2768 		    "wss", CTLFLAG_RD, &zdom->uzd_wss,
2769 		    "Working set size");
2770 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2771 		    "limin", CTLFLAG_RD, &zdom->uzd_limin,
2772 		    "Long time minimum item count");
2773 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2774 		    "timin", CTLFLAG_RD, &zdom->uzd_timin, 0,
2775 		    "Time since zero long time minimum item count");
2776 	}
2777 
2778 	/*
2779 	 * General statistics.
2780 	 */
2781 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2782 	    "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2783 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2784 	    "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2785 	    zone, 1, sysctl_handle_uma_zone_cur, "I",
2786 	    "Current number of allocated items");
2787 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2788 	    "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2789 	    zone, 0, sysctl_handle_uma_zone_allocs, "QU",
2790 	    "Total allocation calls");
2791 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2792 	    "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2793 	    zone, 0, sysctl_handle_uma_zone_frees, "QU",
2794 	    "Total free calls");
2795 	SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2796 	    "fails", CTLFLAG_RD, &zone->uz_fails,
2797 	    "Number of allocation failures");
2798 	SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2799 	    "xdomain", CTLFLAG_RD, &zone->uz_xdomain,
2800 	    "Free calls from the wrong domain");
2801 }
2802 
2803 struct uma_zone_count {
2804 	const char	*name;
2805 	int		count;
2806 };
2807 
2808 static void
zone_count(uma_zone_t zone,void * arg)2809 zone_count(uma_zone_t zone, void *arg)
2810 {
2811 	struct uma_zone_count *cnt;
2812 
2813 	cnt = arg;
2814 	/*
2815 	 * Some zones are rapidly created with identical names and
2816 	 * destroyed out of order.  This can lead to gaps in the count.
2817 	 * Use one greater than the maximum observed for this name.
2818 	 */
2819 	if (strcmp(zone->uz_name, cnt->name) == 0)
2820 		cnt->count = MAX(cnt->count,
2821 		    zone->uz_namecnt + 1);
2822 }
2823 
2824 static void
zone_update_caches(uma_zone_t zone)2825 zone_update_caches(uma_zone_t zone)
2826 {
2827 	int i;
2828 
2829 	for (i = 0; i <= mp_maxid; i++) {
2830 		cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size);
2831 		cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags);
2832 	}
2833 }
2834 
2835 /*
2836  * Zone header ctor.  This initializes all fields, locks, etc.
2837  *
2838  * Arguments/Returns follow uma_ctor specifications
2839  *	udata  Actually uma_zctor_args
2840  */
2841 static int
zone_ctor(void * mem,int size,void * udata,int flags)2842 zone_ctor(void *mem, int size, void *udata, int flags)
2843 {
2844 	struct uma_zone_count cnt;
2845 	struct uma_zctor_args *arg = udata;
2846 	uma_zone_domain_t zdom;
2847 	uma_zone_t zone = mem;
2848 	uma_zone_t z;
2849 	uma_keg_t keg;
2850 	int i;
2851 
2852 	bzero(zone, size);
2853 	zone->uz_name = arg->name;
2854 	zone->uz_ctor = arg->ctor;
2855 	zone->uz_dtor = arg->dtor;
2856 	zone->uz_init = NULL;
2857 	zone->uz_fini = NULL;
2858 	zone->uz_sleeps = 0;
2859 	zone->uz_bucket_size = 0;
2860 	zone->uz_bucket_size_min = 0;
2861 	zone->uz_bucket_size_max = BUCKET_MAX;
2862 	zone->uz_flags = (arg->flags & UMA_ZONE_SMR);
2863 	zone->uz_warning = NULL;
2864 	/* The domain structures follow the cpu structures. */
2865 	zone->uz_bucket_max = ULONG_MAX;
2866 	timevalclear(&zone->uz_ratecheck);
2867 
2868 	/* Count the number of duplicate names. */
2869 	cnt.name = arg->name;
2870 	cnt.count = 0;
2871 	zone_foreach(zone_count, &cnt);
2872 	zone->uz_namecnt = cnt.count;
2873 	ZONE_CROSS_LOCK_INIT(zone);
2874 
2875 	for (i = 0; i < vm_ndomains; i++) {
2876 		zdom = ZDOM_GET(zone, i);
2877 		ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS));
2878 		STAILQ_INIT(&zdom->uzd_buckets);
2879 	}
2880 
2881 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN)
2882 	if (arg->uminit == trash_init && arg->fini == trash_fini)
2883 		zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR;
2884 #elif defined(KASAN)
2885 	if ((arg->flags & (UMA_ZONE_NOFREE | UMA_ZFLAG_CACHE)) != 0)
2886 		arg->flags |= UMA_ZONE_NOKASAN;
2887 #endif
2888 
2889 	/*
2890 	 * This is a pure cache zone, no kegs.
2891 	 */
2892 	if (arg->import) {
2893 		KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0,
2894 		    ("zone_ctor: Import specified for non-cache zone."));
2895 		zone->uz_flags = arg->flags;
2896 		zone->uz_size = arg->size;
2897 		zone->uz_import = arg->import;
2898 		zone->uz_release = arg->release;
2899 		zone->uz_arg = arg->arg;
2900 #ifdef NUMA
2901 		/*
2902 		 * Cache zones are round-robin unless a policy is
2903 		 * specified because they may have incompatible
2904 		 * constraints.
2905 		 */
2906 		if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2907 			zone->uz_flags |= UMA_ZONE_ROUNDROBIN;
2908 #endif
2909 		rw_wlock(&uma_rwlock);
2910 		LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
2911 		rw_wunlock(&uma_rwlock);
2912 		goto out;
2913 	}
2914 
2915 	/*
2916 	 * Use the regular zone/keg/slab allocator.
2917 	 */
2918 	zone->uz_import = zone_import;
2919 	zone->uz_release = zone_release;
2920 	zone->uz_arg = zone;
2921 	keg = arg->keg;
2922 
2923 	if (arg->flags & UMA_ZONE_SECONDARY) {
2924 		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
2925 		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
2926 		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
2927 		zone->uz_init = arg->uminit;
2928 		zone->uz_fini = arg->fini;
2929 		zone->uz_flags |= UMA_ZONE_SECONDARY;
2930 		rw_wlock(&uma_rwlock);
2931 		ZONE_LOCK(zone);
2932 		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
2933 			if (LIST_NEXT(z, uz_link) == NULL) {
2934 				LIST_INSERT_AFTER(z, zone, uz_link);
2935 				break;
2936 			}
2937 		}
2938 		ZONE_UNLOCK(zone);
2939 		rw_wunlock(&uma_rwlock);
2940 	} else if (keg == NULL) {
2941 		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
2942 		    arg->align, arg->flags)) == NULL)
2943 			return (ENOMEM);
2944 	} else {
2945 		struct uma_kctor_args karg;
2946 		int error;
2947 
2948 		/* We should only be here from uma_startup() */
2949 		karg.size = arg->size;
2950 		karg.uminit = arg->uminit;
2951 		karg.fini = arg->fini;
2952 		karg.align = arg->align;
2953 		karg.flags = (arg->flags & ~UMA_ZONE_SMR);
2954 		karg.zone = zone;
2955 		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
2956 		    flags);
2957 		if (error)
2958 			return (error);
2959 	}
2960 
2961 	/* Inherit properties from the keg. */
2962 	zone->uz_keg = keg;
2963 	zone->uz_size = keg->uk_size;
2964 	zone->uz_flags |= (keg->uk_flags &
2965 	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
2966 
2967 out:
2968 	if (booted >= BOOT_PCPU) {
2969 		zone_alloc_counters(zone, NULL);
2970 		if (booted >= BOOT_RUNNING)
2971 			zone_alloc_sysctl(zone, NULL);
2972 	} else {
2973 		zone->uz_allocs = EARLY_COUNTER;
2974 		zone->uz_frees = EARLY_COUNTER;
2975 		zone->uz_fails = EARLY_COUNTER;
2976 	}
2977 
2978 	/* Caller requests a private SMR context. */
2979 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
2980 		zone->uz_smr = smr_create(zone->uz_name, 0, 0);
2981 
2982 	KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) !=
2983 	    (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET),
2984 	    ("Invalid zone flag combination"));
2985 	if (arg->flags & UMA_ZFLAG_INTERNAL)
2986 		zone->uz_bucket_size_max = zone->uz_bucket_size = 0;
2987 	if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0)
2988 		zone->uz_bucket_size = BUCKET_MAX;
2989 	else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0)
2990 		zone->uz_bucket_size = 0;
2991 	else
2992 		zone->uz_bucket_size = bucket_select(zone->uz_size);
2993 	zone->uz_bucket_size_min = zone->uz_bucket_size;
2994 	if (zone->uz_dtor != NULL || zone->uz_ctor != NULL)
2995 		zone->uz_flags |= UMA_ZFLAG_CTORDTOR;
2996 	zone_update_caches(zone);
2997 
2998 	return (0);
2999 }
3000 
3001 /*
3002  * Keg header dtor.  This frees all data, destroys locks, frees the hash
3003  * table and removes the keg from the global list.
3004  *
3005  * Arguments/Returns follow uma_dtor specifications
3006  *	udata  unused
3007  */
3008 static void
keg_dtor(void * arg,int size,void * udata)3009 keg_dtor(void *arg, int size, void *udata)
3010 {
3011 	uma_keg_t keg;
3012 	uint32_t free, pages;
3013 	int i;
3014 
3015 	keg = (uma_keg_t)arg;
3016 	free = pages = 0;
3017 	for (i = 0; i < vm_ndomains; i++) {
3018 		free += keg->uk_domain[i].ud_free_items;
3019 		pages += keg->uk_domain[i].ud_pages;
3020 		KEG_LOCK_FINI(keg, i);
3021 	}
3022 	if (pages != 0)
3023 		printf("Freed UMA keg (%s) was not empty (%u items). "
3024 		    " Lost %u pages of memory.\n",
3025 		    keg->uk_name ? keg->uk_name : "",
3026 		    pages / keg->uk_ppera * keg->uk_ipers - free, pages);
3027 
3028 	hash_free(&keg->uk_hash);
3029 }
3030 
3031 /*
3032  * Zone header dtor.
3033  *
3034  * Arguments/Returns follow uma_dtor specifications
3035  *	udata  unused
3036  */
3037 static void
zone_dtor(void * arg,int size,void * udata)3038 zone_dtor(void *arg, int size, void *udata)
3039 {
3040 	uma_zone_t zone;
3041 	uma_keg_t keg;
3042 	int i;
3043 
3044 	zone = (uma_zone_t)arg;
3045 
3046 	sysctl_remove_oid(zone->uz_oid, 1, 1);
3047 
3048 	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
3049 		cache_drain(zone);
3050 
3051 	rw_wlock(&uma_rwlock);
3052 	LIST_REMOVE(zone, uz_link);
3053 	rw_wunlock(&uma_rwlock);
3054 	if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
3055 		keg = zone->uz_keg;
3056 		keg->uk_reserve = 0;
3057 	}
3058 	zone_reclaim(zone, UMA_ANYDOMAIN, M_WAITOK, true);
3059 
3060 	/*
3061 	 * We only destroy kegs from non secondary/non cache zones.
3062 	 */
3063 	if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
3064 		keg = zone->uz_keg;
3065 		rw_wlock(&uma_rwlock);
3066 		LIST_REMOVE(keg, uk_link);
3067 		rw_wunlock(&uma_rwlock);
3068 		zone_free_item(kegs, keg, NULL, SKIP_NONE);
3069 	}
3070 	counter_u64_free(zone->uz_allocs);
3071 	counter_u64_free(zone->uz_frees);
3072 	counter_u64_free(zone->uz_fails);
3073 	counter_u64_free(zone->uz_xdomain);
3074 	free(zone->uz_ctlname, M_UMA);
3075 	for (i = 0; i < vm_ndomains; i++)
3076 		ZDOM_LOCK_FINI(ZDOM_GET(zone, i));
3077 	ZONE_CROSS_LOCK_FINI(zone);
3078 }
3079 
3080 static void
zone_foreach_unlocked(void (* zfunc)(uma_zone_t,void * arg),void * arg)3081 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg)
3082 {
3083 	uma_keg_t keg;
3084 	uma_zone_t zone;
3085 
3086 	LIST_FOREACH(keg, &uma_kegs, uk_link) {
3087 		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
3088 			zfunc(zone, arg);
3089 	}
3090 	LIST_FOREACH(zone, &uma_cachezones, uz_link)
3091 		zfunc(zone, arg);
3092 }
3093 
3094 /*
3095  * Traverses every zone in the system and calls a callback
3096  *
3097  * Arguments:
3098  *	zfunc  A pointer to a function which accepts a zone
3099  *		as an argument.
3100  *
3101  * Returns:
3102  *	Nothing
3103  */
3104 static void
zone_foreach(void (* zfunc)(uma_zone_t,void * arg),void * arg)3105 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg)
3106 {
3107 
3108 	rw_rlock(&uma_rwlock);
3109 	zone_foreach_unlocked(zfunc, arg);
3110 	rw_runlock(&uma_rwlock);
3111 }
3112 
3113 /*
3114  * Initialize the kernel memory allocator.  This is done after pages can be
3115  * allocated but before general KVA is available.
3116  */
3117 void
uma_startup1(vm_offset_t virtual_avail)3118 uma_startup1(vm_offset_t virtual_avail)
3119 {
3120 	struct uma_zctor_args args;
3121 	size_t ksize, zsize, size;
3122 	uma_keg_t primarykeg;
3123 	uintptr_t m;
3124 	int domain;
3125 	uint8_t pflag;
3126 
3127 	bootstart = bootmem = virtual_avail;
3128 
3129 	rw_init(&uma_rwlock, "UMA lock");
3130 	sx_init(&uma_reclaim_lock, "umareclaim");
3131 
3132 	ksize = sizeof(struct uma_keg) +
3133 	    (sizeof(struct uma_domain) * vm_ndomains);
3134 	ksize = roundup(ksize, UMA_SUPER_ALIGN);
3135 	zsize = sizeof(struct uma_zone) +
3136 	    (sizeof(struct uma_cache) * (mp_maxid + 1)) +
3137 	    (sizeof(struct uma_zone_domain) * vm_ndomains);
3138 	zsize = roundup(zsize, UMA_SUPER_ALIGN);
3139 
3140 	/* Allocate the zone of zones, zone of kegs, and zone of zones keg. */
3141 	size = (zsize * 2) + ksize;
3142 	for (domain = 0; domain < vm_ndomains; domain++) {
3143 		m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag,
3144 		    M_NOWAIT | M_ZERO);
3145 		if (m != 0)
3146 			break;
3147 	}
3148 	zones = (uma_zone_t)m;
3149 	m += zsize;
3150 	kegs = (uma_zone_t)m;
3151 	m += zsize;
3152 	primarykeg = (uma_keg_t)m;
3153 
3154 	/* "manually" create the initial zone */
3155 	memset(&args, 0, sizeof(args));
3156 	args.name = "UMA Kegs";
3157 	args.size = ksize;
3158 	args.ctor = keg_ctor;
3159 	args.dtor = keg_dtor;
3160 	args.uminit = zero_init;
3161 	args.fini = NULL;
3162 	args.keg = primarykeg;
3163 	args.align = UMA_SUPER_ALIGN - 1;
3164 	args.flags = UMA_ZFLAG_INTERNAL;
3165 	zone_ctor(kegs, zsize, &args, M_WAITOK);
3166 
3167 	args.name = "UMA Zones";
3168 	args.size = zsize;
3169 	args.ctor = zone_ctor;
3170 	args.dtor = zone_dtor;
3171 	args.uminit = zero_init;
3172 	args.fini = NULL;
3173 	args.keg = NULL;
3174 	args.align = UMA_SUPER_ALIGN - 1;
3175 	args.flags = UMA_ZFLAG_INTERNAL;
3176 	zone_ctor(zones, zsize, &args, M_WAITOK);
3177 
3178 	/* Now make zones for slab headers */
3179 	slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE,
3180 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3181 	slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE,
3182 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3183 
3184 	hashzone = uma_zcreate("UMA Hash",
3185 	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
3186 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3187 
3188 	bucket_init();
3189 	smr_init();
3190 }
3191 
3192 #ifndef UMA_USE_DMAP
3193 extern void vm_radix_reserve_kva(void);
3194 #endif
3195 
3196 /*
3197  * Advertise the availability of normal kva allocations and switch to
3198  * the default back-end allocator.  Marks the KVA we consumed on startup
3199  * as used in the map.
3200  */
3201 void
uma_startup2(void)3202 uma_startup2(void)
3203 {
3204 
3205 	if (bootstart != bootmem) {
3206 		vm_map_lock(kernel_map);
3207 		(void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem,
3208 		    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
3209 		vm_map_unlock(kernel_map);
3210 	}
3211 
3212 #ifndef UMA_USE_DMAP
3213 	/* Set up radix zone to use noobj_alloc. */
3214 	vm_radix_reserve_kva();
3215 #endif
3216 
3217 	booted = BOOT_KVA;
3218 	zone_foreach_unlocked(zone_kva_available, NULL);
3219 	bucket_enable();
3220 }
3221 
3222 /*
3223  * Allocate counters as early as possible so that boot-time allocations are
3224  * accounted more precisely.
3225  */
3226 static void
uma_startup_pcpu(void * arg __unused)3227 uma_startup_pcpu(void *arg __unused)
3228 {
3229 
3230 	zone_foreach_unlocked(zone_alloc_counters, NULL);
3231 	booted = BOOT_PCPU;
3232 }
3233 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL);
3234 
3235 /*
3236  * Finish our initialization steps.
3237  */
3238 static void
uma_startup3(void * arg __unused)3239 uma_startup3(void *arg __unused)
3240 {
3241 
3242 #ifdef INVARIANTS
3243 	TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor);
3244 	uma_dbg_cnt = counter_u64_alloc(M_WAITOK);
3245 	uma_skip_cnt = counter_u64_alloc(M_WAITOK);
3246 #endif
3247 	zone_foreach_unlocked(zone_alloc_sysctl, NULL);
3248 	booted = BOOT_RUNNING;
3249 
3250 	EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL,
3251 	    EVENTHANDLER_PRI_FIRST);
3252 }
3253 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
3254 
3255 static void
uma_startup4(void * arg __unused)3256 uma_startup4(void *arg __unused)
3257 {
3258 	TIMEOUT_TASK_INIT(taskqueue_thread, &uma_timeout_task, 0, uma_timeout,
3259 	    NULL);
3260 	taskqueue_enqueue_timeout(taskqueue_thread, &uma_timeout_task,
3261 	    UMA_TIMEOUT * hz);
3262 }
3263 SYSINIT(uma_startup4, SI_SUB_TASKQ, SI_ORDER_ANY, uma_startup4, NULL);
3264 
3265 static void
uma_shutdown(void)3266 uma_shutdown(void)
3267 {
3268 
3269 	booted = BOOT_SHUTDOWN;
3270 }
3271 
3272 static uma_keg_t
uma_kcreate(uma_zone_t zone,size_t size,uma_init uminit,uma_fini fini,int align,uint32_t flags)3273 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
3274 		int align, uint32_t flags)
3275 {
3276 	struct uma_kctor_args args;
3277 
3278 	args.size = size;
3279 	args.uminit = uminit;
3280 	args.fini = fini;
3281 	args.align = align;
3282 	args.flags = flags;
3283 	args.zone = zone;
3284 	return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK));
3285 }
3286 
3287 
3288 static void
check_align_mask(unsigned int mask)3289 check_align_mask(unsigned int mask)
3290 {
3291 
3292 	KASSERT(powerof2(mask + 1),
3293 	    ("UMA: %s: Not the mask of a power of 2 (%#x)", __func__, mask));
3294 	/*
3295 	 * Make sure the stored align mask doesn't have its highest bit set,
3296 	 * which would cause implementation-defined behavior when passing it as
3297 	 * the 'align' argument of uma_zcreate().  Such very large alignments do
3298 	 * not make sense anyway.
3299 	 */
3300 	KASSERT(mask <= INT_MAX,
3301 	    ("UMA: %s: Mask too big (%#x)", __func__, mask));
3302 }
3303 
3304 /* Public functions */
3305 /* See uma.h */
3306 void
uma_set_cache_align_mask(unsigned int mask)3307 uma_set_cache_align_mask(unsigned int mask)
3308 {
3309 
3310 	check_align_mask(mask);
3311 	uma_cache_align_mask = mask;
3312 }
3313 
3314 /* Returns the alignment mask to use to request cache alignment. */
3315 unsigned int
uma_get_cache_align_mask(void)3316 uma_get_cache_align_mask(void)
3317 {
3318 	return (uma_cache_align_mask);
3319 }
3320 
3321 /* See uma.h */
3322 uma_zone_t
uma_zcreate(const char * name,size_t size,uma_ctor ctor,uma_dtor dtor,uma_init uminit,uma_fini fini,int align,uint32_t flags)3323 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
3324 		uma_init uminit, uma_fini fini, int align, uint32_t flags)
3325 
3326 {
3327 	struct uma_zctor_args args;
3328 	uma_zone_t res;
3329 
3330 	check_align_mask(align);
3331 
3332 	/* This stuff is essential for the zone ctor */
3333 	memset(&args, 0, sizeof(args));
3334 	args.name = name;
3335 	args.size = size;
3336 	args.ctor = ctor;
3337 	args.dtor = dtor;
3338 	args.uminit = uminit;
3339 	args.fini = fini;
3340 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN)
3341 	/*
3342 	 * Inject procedures which check for memory use after free if we are
3343 	 * allowed to scramble the memory while it is not allocated.  This
3344 	 * requires that: UMA is actually able to access the memory, no init
3345 	 * or fini procedures, no dependency on the initial value of the
3346 	 * memory, and no (legitimate) use of the memory after free.  Note,
3347 	 * the ctor and dtor do not need to be empty.
3348 	 */
3349 	if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH |
3350 	    UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) {
3351 		args.uminit = trash_init;
3352 		args.fini = trash_fini;
3353 	}
3354 #endif
3355 	args.align = align;
3356 	args.flags = flags;
3357 	args.keg = NULL;
3358 
3359 	sx_xlock(&uma_reclaim_lock);
3360 	res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3361 	sx_xunlock(&uma_reclaim_lock);
3362 
3363 	return (res);
3364 }
3365 
3366 /* See uma.h */
3367 uma_zone_t
uma_zsecond_create(const char * name,uma_ctor ctor,uma_dtor dtor,uma_init zinit,uma_fini zfini,uma_zone_t primary)3368 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor,
3369     uma_init zinit, uma_fini zfini, uma_zone_t primary)
3370 {
3371 	struct uma_zctor_args args;
3372 	uma_keg_t keg;
3373 	uma_zone_t res;
3374 
3375 	keg = primary->uz_keg;
3376 	memset(&args, 0, sizeof(args));
3377 	args.name = name;
3378 	args.size = keg->uk_size;
3379 	args.ctor = ctor;
3380 	args.dtor = dtor;
3381 	args.uminit = zinit;
3382 	args.fini = zfini;
3383 	args.align = keg->uk_align;
3384 	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
3385 	args.keg = keg;
3386 
3387 	sx_xlock(&uma_reclaim_lock);
3388 	res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3389 	sx_xunlock(&uma_reclaim_lock);
3390 
3391 	return (res);
3392 }
3393 
3394 /* See uma.h */
3395 uma_zone_t
uma_zcache_create(const char * name,int size,uma_ctor ctor,uma_dtor dtor,uma_init zinit,uma_fini zfini,uma_import zimport,uma_release zrelease,void * arg,int flags)3396 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor,
3397     uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease,
3398     void *arg, int flags)
3399 {
3400 	struct uma_zctor_args args;
3401 
3402 	memset(&args, 0, sizeof(args));
3403 	args.name = name;
3404 	args.size = size;
3405 	args.ctor = ctor;
3406 	args.dtor = dtor;
3407 	args.uminit = zinit;
3408 	args.fini = zfini;
3409 	args.import = zimport;
3410 	args.release = zrelease;
3411 	args.arg = arg;
3412 	args.align = 0;
3413 	args.flags = flags | UMA_ZFLAG_CACHE;
3414 
3415 	return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK));
3416 }
3417 
3418 /* See uma.h */
3419 void
uma_zdestroy(uma_zone_t zone)3420 uma_zdestroy(uma_zone_t zone)
3421 {
3422 
3423 	/*
3424 	 * Large slabs are expensive to reclaim, so don't bother doing
3425 	 * unnecessary work if we're shutting down.
3426 	 */
3427 	if (booted == BOOT_SHUTDOWN &&
3428 	    zone->uz_fini == NULL && zone->uz_release == zone_release)
3429 		return;
3430 	sx_xlock(&uma_reclaim_lock);
3431 	zone_free_item(zones, zone, NULL, SKIP_NONE);
3432 	sx_xunlock(&uma_reclaim_lock);
3433 }
3434 
3435 void
uma_zwait(uma_zone_t zone)3436 uma_zwait(uma_zone_t zone)
3437 {
3438 
3439 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
3440 		uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK));
3441 	else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0)
3442 		uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK));
3443 	else
3444 		uma_zfree(zone, uma_zalloc(zone, M_WAITOK));
3445 }
3446 
3447 void *
uma_zalloc_pcpu_arg(uma_zone_t zone,void * udata,int flags)3448 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags)
3449 {
3450 	void *item, *pcpu_item;
3451 #ifdef SMP
3452 	int i;
3453 
3454 	MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3455 #endif
3456 	item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO);
3457 	if (item == NULL)
3458 		return (NULL);
3459 	pcpu_item = zpcpu_base_to_offset(item);
3460 	if (flags & M_ZERO) {
3461 #ifdef SMP
3462 		for (i = 0; i <= mp_maxid; i++)
3463 			bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size);
3464 #else
3465 		bzero(item, zone->uz_size);
3466 #endif
3467 	}
3468 	return (pcpu_item);
3469 }
3470 
3471 /*
3472  * A stub while both regular and pcpu cases are identical.
3473  */
3474 void
uma_zfree_pcpu_arg(uma_zone_t zone,void * pcpu_item,void * udata)3475 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata)
3476 {
3477 	void *item;
3478 
3479 #ifdef SMP
3480 	MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3481 #endif
3482 
3483         /* uma_zfree_pcu_*(..., NULL) does nothing, to match free(9). */
3484         if (pcpu_item == NULL)
3485                 return;
3486 
3487 	item = zpcpu_offset_to_base(pcpu_item);
3488 	uma_zfree_arg(zone, item, udata);
3489 }
3490 
3491 static inline void *
item_ctor(uma_zone_t zone,int uz_flags,int size,void * udata,int flags,void * item)3492 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags,
3493     void *item)
3494 {
3495 #ifdef INVARIANTS
3496 	bool skipdbg;
3497 #endif
3498 
3499 	kasan_mark_item_valid(zone, item);
3500 	kmsan_mark_item_uninitialized(zone, item);
3501 
3502 #ifdef INVARIANTS
3503 	skipdbg = uma_dbg_zskip(zone, item);
3504 	if (!skipdbg && (uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3505 	    zone->uz_ctor != trash_ctor)
3506 		trash_ctor(item, size, zone, flags);
3507 #endif
3508 
3509 	/* Check flags before loading ctor pointer. */
3510 	if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) &&
3511 	    __predict_false(zone->uz_ctor != NULL) &&
3512 	    zone->uz_ctor(item, size, udata, flags) != 0) {
3513 		counter_u64_add(zone->uz_fails, 1);
3514 		zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT);
3515 		return (NULL);
3516 	}
3517 #ifdef INVARIANTS
3518 	if (!skipdbg)
3519 		uma_dbg_alloc(zone, NULL, item);
3520 #endif
3521 	if (__predict_false(flags & M_ZERO))
3522 		return (memset(item, 0, size));
3523 
3524 	return (item);
3525 }
3526 
3527 static inline void
item_dtor(uma_zone_t zone,void * item,int size,void * udata,enum zfreeskip skip)3528 item_dtor(uma_zone_t zone, void *item, int size, void *udata,
3529     enum zfreeskip skip)
3530 {
3531 #ifdef INVARIANTS
3532 	bool skipdbg;
3533 
3534 	skipdbg = uma_dbg_zskip(zone, item);
3535 	if (skip == SKIP_NONE && !skipdbg) {
3536 		if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0)
3537 			uma_dbg_free(zone, udata, item);
3538 		else
3539 			uma_dbg_free(zone, NULL, item);
3540 	}
3541 #endif
3542 	if (__predict_true(skip < SKIP_DTOR)) {
3543 		if (zone->uz_dtor != NULL)
3544 			zone->uz_dtor(item, size, udata);
3545 #ifdef INVARIANTS
3546 		if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3547 		    zone->uz_dtor != trash_dtor)
3548 			trash_dtor(item, size, zone);
3549 #endif
3550 	}
3551 	kasan_mark_item_invalid(zone, item);
3552 }
3553 
3554 #ifdef NUMA
3555 static int
item_domain(void * item)3556 item_domain(void *item)
3557 {
3558 	int domain;
3559 
3560 	domain = vm_phys_domain(vtophys(item));
3561 	KASSERT(domain >= 0 && domain < vm_ndomains,
3562 	    ("%s: unknown domain for item %p", __func__, item));
3563 	return (domain);
3564 }
3565 #endif
3566 
3567 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS)
3568 #if defined(INVARIANTS) && (defined(DDB) || defined(STACK))
3569 #include <sys/stack.h>
3570 #endif
3571 #define	UMA_ZALLOC_DEBUG
3572 static int
uma_zalloc_debug(uma_zone_t zone,void ** itemp,void * udata,int flags)3573 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags)
3574 {
3575 	int error;
3576 
3577 	error = 0;
3578 #ifdef WITNESS
3579 	if (flags & M_WAITOK) {
3580 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
3581 		    "uma_zalloc_debug: zone \"%s\"", zone->uz_name);
3582 	}
3583 #endif
3584 
3585 #ifdef INVARIANTS
3586 	KASSERT((flags & M_EXEC) == 0,
3587 	    ("uma_zalloc_debug: called with M_EXEC"));
3588 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3589 	    ("uma_zalloc_debug: called within spinlock or critical section"));
3590 	KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0,
3591 	    ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO"));
3592 
3593 	_Static_assert(M_NOWAIT != 0 && M_WAITOK != 0,
3594 	    "M_NOWAIT and M_WAITOK must be non-zero for this assertion:");
3595 #if 0
3596 	/*
3597 	 * Give the #elif clause time to find problems, then remove it
3598 	 * and enable this.  (Remove <sys/stack.h> above, too.)
3599 	 */
3600 	KASSERT((flags & (M_NOWAIT|M_WAITOK)) == M_NOWAIT ||
3601 	    (flags & (M_NOWAIT|M_WAITOK)) == M_WAITOK,
3602 	    ("uma_zalloc_debug: must pass one of M_NOWAIT or M_WAITOK"));
3603 #elif defined(DDB) || defined(STACK)
3604 	if (__predict_false((flags & (M_NOWAIT|M_WAITOK)) != M_NOWAIT &&
3605 	    (flags & (M_NOWAIT|M_WAITOK)) != M_WAITOK)) {
3606 		static int stack_count;
3607 		struct stack st;
3608 
3609 		if (stack_count < 10) {
3610 			++stack_count;
3611 			printf("uma_zalloc* called with bad WAIT flags:\n");
3612 			stack_save(&st);
3613 			stack_print(&st);
3614 		}
3615 	}
3616 #endif
3617 #endif
3618 
3619 #ifdef DEBUG_MEMGUARD
3620 	if ((zone->uz_flags & (UMA_ZONE_SMR | UMA_ZFLAG_CACHE)) == 0 &&
3621 	    memguard_cmp_zone(zone)) {
3622 		void *item;
3623 		item = memguard_alloc(zone->uz_size, flags);
3624 		if (item != NULL) {
3625 			error = EJUSTRETURN;
3626 			if (zone->uz_init != NULL &&
3627 			    zone->uz_init(item, zone->uz_size, flags) != 0) {
3628 				*itemp = NULL;
3629 				return (error);
3630 			}
3631 			if (zone->uz_ctor != NULL &&
3632 			    zone->uz_ctor(item, zone->uz_size, udata,
3633 			    flags) != 0) {
3634 				counter_u64_add(zone->uz_fails, 1);
3635 				if (zone->uz_fini != NULL)
3636 					zone->uz_fini(item, zone->uz_size);
3637 				*itemp = NULL;
3638 				return (error);
3639 			}
3640 			*itemp = item;
3641 			return (error);
3642 		}
3643 		/* This is unfortunate but should not be fatal. */
3644 	}
3645 #endif
3646 	return (error);
3647 }
3648 
3649 static int
uma_zfree_debug(uma_zone_t zone,void * item,void * udata)3650 uma_zfree_debug(uma_zone_t zone, void *item, void *udata)
3651 {
3652 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3653 	    ("uma_zfree_debug: called with spinlock or critical section held"));
3654 
3655 #ifdef DEBUG_MEMGUARD
3656 	if ((zone->uz_flags & (UMA_ZONE_SMR | UMA_ZFLAG_CACHE)) == 0 &&
3657 	    is_memguard_addr(item)) {
3658 		if (zone->uz_dtor != NULL)
3659 			zone->uz_dtor(item, zone->uz_size, udata);
3660 		if (zone->uz_fini != NULL)
3661 			zone->uz_fini(item, zone->uz_size);
3662 		memguard_free(item);
3663 		return (EJUSTRETURN);
3664 	}
3665 #endif
3666 	return (0);
3667 }
3668 #endif
3669 
3670 static inline void *
cache_alloc_item(uma_zone_t zone,uma_cache_t cache,uma_cache_bucket_t bucket,void * udata,int flags)3671 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket,
3672     void *udata, int flags)
3673 {
3674 	void *item;
3675 	int size, uz_flags;
3676 
3677 	item = cache_bucket_pop(cache, bucket);
3678 	size = cache_uz_size(cache);
3679 	uz_flags = cache_uz_flags(cache);
3680 	critical_exit();
3681 	return (item_ctor(zone, uz_flags, size, udata, flags, item));
3682 }
3683 
3684 static __noinline void *
cache_alloc_retry(uma_zone_t zone,uma_cache_t cache,void * udata,int flags)3685 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3686 {
3687 	uma_cache_bucket_t bucket;
3688 	int domain;
3689 
3690 	while (cache_alloc(zone, cache, udata, flags)) {
3691 		cache = &zone->uz_cpu[curcpu];
3692 		bucket = &cache->uc_allocbucket;
3693 		if (__predict_false(bucket->ucb_cnt == 0))
3694 			continue;
3695 		return (cache_alloc_item(zone, cache, bucket, udata, flags));
3696 	}
3697 	critical_exit();
3698 
3699 	/*
3700 	 * We can not get a bucket so try to return a single item.
3701 	 */
3702 	if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH)
3703 		domain = PCPU_GET(domain);
3704 	else
3705 		domain = UMA_ANYDOMAIN;
3706 	return (zone_alloc_item(zone, udata, domain, flags));
3707 }
3708 
3709 /* See uma.h */
3710 void *
uma_zalloc_smr(uma_zone_t zone,int flags)3711 uma_zalloc_smr(uma_zone_t zone, int flags)
3712 {
3713 	uma_cache_bucket_t bucket;
3714 	uma_cache_t cache;
3715 
3716 	CTR3(KTR_UMA, "uma_zalloc_smr zone %s(%p) flags %d", zone->uz_name,
3717 	    zone, flags);
3718 
3719 #ifdef UMA_ZALLOC_DEBUG
3720 	void *item;
3721 
3722 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
3723 	    ("uma_zalloc_arg: called with non-SMR zone."));
3724 	if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN)
3725 		return (item);
3726 #endif
3727 
3728 	critical_enter();
3729 	cache = &zone->uz_cpu[curcpu];
3730 	bucket = &cache->uc_allocbucket;
3731 	if (__predict_false(bucket->ucb_cnt == 0))
3732 		return (cache_alloc_retry(zone, cache, NULL, flags));
3733 	return (cache_alloc_item(zone, cache, bucket, NULL, flags));
3734 }
3735 
3736 /* See uma.h */
3737 void *
uma_zalloc_arg(uma_zone_t zone,void * udata,int flags)3738 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
3739 {
3740 	uma_cache_bucket_t bucket;
3741 	uma_cache_t cache;
3742 
3743 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3744 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3745 
3746 	/* This is the fast path allocation */
3747 	CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name,
3748 	    zone, flags);
3749 
3750 #ifdef UMA_ZALLOC_DEBUG
3751 	void *item;
3752 
3753 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3754 	    ("uma_zalloc_arg: called with SMR zone."));
3755 	if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
3756 		return (item);
3757 #endif
3758 
3759 	/*
3760 	 * If possible, allocate from the per-CPU cache.  There are two
3761 	 * requirements for safe access to the per-CPU cache: (1) the thread
3762 	 * accessing the cache must not be preempted or yield during access,
3763 	 * and (2) the thread must not migrate CPUs without switching which
3764 	 * cache it accesses.  We rely on a critical section to prevent
3765 	 * preemption and migration.  We release the critical section in
3766 	 * order to acquire the zone mutex if we are unable to allocate from
3767 	 * the current cache; when we re-acquire the critical section, we
3768 	 * must detect and handle migration if it has occurred.
3769 	 */
3770 	critical_enter();
3771 	cache = &zone->uz_cpu[curcpu];
3772 	bucket = &cache->uc_allocbucket;
3773 	if (__predict_false(bucket->ucb_cnt == 0))
3774 		return (cache_alloc_retry(zone, cache, udata, flags));
3775 	return (cache_alloc_item(zone, cache, bucket, udata, flags));
3776 }
3777 
3778 /*
3779  * Replenish an alloc bucket and possibly restore an old one.  Called in
3780  * a critical section.  Returns in a critical section.
3781  *
3782  * A false return value indicates an allocation failure.
3783  * A true return value indicates success and the caller should retry.
3784  */
3785 static __noinline bool
cache_alloc(uma_zone_t zone,uma_cache_t cache,void * udata,int flags)3786 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3787 {
3788 	uma_bucket_t bucket;
3789 	int curdomain, domain;
3790 	bool new;
3791 
3792 	CRITICAL_ASSERT(curthread);
3793 
3794 	/*
3795 	 * If we have run out of items in our alloc bucket see
3796 	 * if we can switch with the free bucket.
3797 	 *
3798 	 * SMR Zones can't re-use the free bucket until the sequence has
3799 	 * expired.
3800 	 */
3801 	if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 &&
3802 	    cache->uc_freebucket.ucb_cnt != 0) {
3803 		cache_bucket_swap(&cache->uc_freebucket,
3804 		    &cache->uc_allocbucket);
3805 		return (true);
3806 	}
3807 
3808 	/*
3809 	 * Discard any empty allocation bucket while we hold no locks.
3810 	 */
3811 	bucket = cache_bucket_unload_alloc(cache);
3812 	critical_exit();
3813 
3814 	if (bucket != NULL) {
3815 		KASSERT(bucket->ub_cnt == 0,
3816 		    ("cache_alloc: Entered with non-empty alloc bucket."));
3817 		bucket_free(zone, bucket, udata);
3818 	}
3819 
3820 	/*
3821 	 * Attempt to retrieve the item from the per-CPU cache has failed, so
3822 	 * we must go back to the zone.  This requires the zdom lock, so we
3823 	 * must drop the critical section, then re-acquire it when we go back
3824 	 * to the cache.  Since the critical section is released, we may be
3825 	 * preempted or migrate.  As such, make sure not to maintain any
3826 	 * thread-local state specific to the cache from prior to releasing
3827 	 * the critical section.
3828 	 */
3829 	domain = PCPU_GET(domain);
3830 	if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 ||
3831 	    VM_DOMAIN_EMPTY(domain))
3832 		domain = zone_domain_highest(zone, domain);
3833 	bucket = cache_fetch_bucket(zone, cache, domain);
3834 	if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) {
3835 		bucket = zone_alloc_bucket(zone, udata, domain, flags);
3836 		new = true;
3837 	} else {
3838 		new = false;
3839 	}
3840 
3841 	CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p",
3842 	    zone->uz_name, zone, bucket);
3843 	if (bucket == NULL) {
3844 		critical_enter();
3845 		return (false);
3846 	}
3847 
3848 	/*
3849 	 * See if we lost the race or were migrated.  Cache the
3850 	 * initialized bucket to make this less likely or claim
3851 	 * the memory directly.
3852 	 */
3853 	critical_enter();
3854 	cache = &zone->uz_cpu[curcpu];
3855 	if (cache->uc_allocbucket.ucb_bucket == NULL &&
3856 	    ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 ||
3857 	    (curdomain = PCPU_GET(domain)) == domain ||
3858 	    VM_DOMAIN_EMPTY(curdomain))) {
3859 		if (new)
3860 			atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax,
3861 			    bucket->ub_cnt);
3862 		cache_bucket_load_alloc(cache, bucket);
3863 		return (true);
3864 	}
3865 
3866 	/*
3867 	 * We lost the race, release this bucket and start over.
3868 	 */
3869 	critical_exit();
3870 	zone_put_bucket(zone, domain, bucket, udata, !new);
3871 	critical_enter();
3872 
3873 	return (true);
3874 }
3875 
3876 void *
uma_zalloc_domain(uma_zone_t zone,void * udata,int domain,int flags)3877 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags)
3878 {
3879 #ifdef NUMA
3880 	uma_bucket_t bucket;
3881 	uma_zone_domain_t zdom;
3882 	void *item;
3883 #endif
3884 
3885 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3886 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3887 
3888 	/* This is the fast path allocation */
3889 	CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d",
3890 	    zone->uz_name, zone, domain, flags);
3891 
3892 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3893 	    ("uma_zalloc_domain: called with SMR zone."));
3894 #ifdef NUMA
3895 	KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0,
3896 	    ("uma_zalloc_domain: called with non-FIRSTTOUCH zone."));
3897 
3898 	if (vm_ndomains == 1)
3899 		return (uma_zalloc_arg(zone, udata, flags));
3900 
3901 #ifdef UMA_ZALLOC_DEBUG
3902 	if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
3903 		return (item);
3904 #endif
3905 
3906 	/*
3907 	 * Try to allocate from the bucket cache before falling back to the keg.
3908 	 * We could try harder and attempt to allocate from per-CPU caches or
3909 	 * the per-domain cross-domain buckets, but the complexity is probably
3910 	 * not worth it.  It is more important that frees of previous
3911 	 * cross-domain allocations do not blow up the cache.
3912 	 */
3913 	zdom = zone_domain_lock(zone, domain);
3914 	if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) {
3915 		item = bucket->ub_bucket[bucket->ub_cnt - 1];
3916 #ifdef INVARIANTS
3917 		bucket->ub_bucket[bucket->ub_cnt - 1] = NULL;
3918 #endif
3919 		bucket->ub_cnt--;
3920 		zone_put_bucket(zone, domain, bucket, udata, true);
3921 		item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata,
3922 		    flags, item);
3923 		if (item != NULL) {
3924 			KASSERT(item_domain(item) == domain,
3925 			    ("%s: bucket cache item %p from wrong domain",
3926 			    __func__, item));
3927 			counter_u64_add(zone->uz_allocs, 1);
3928 		}
3929 		return (item);
3930 	}
3931 	ZDOM_UNLOCK(zdom);
3932 	return (zone_alloc_item(zone, udata, domain, flags));
3933 #else
3934 	return (uma_zalloc_arg(zone, udata, flags));
3935 #endif
3936 }
3937 
3938 /*
3939  * Find a slab with some space.  Prefer slabs that are partially used over those
3940  * that are totally full.  This helps to reduce fragmentation.
3941  *
3942  * If 'rr' is 1, search all domains starting from 'domain'.  Otherwise check
3943  * only 'domain'.
3944  */
3945 static uma_slab_t
keg_first_slab(uma_keg_t keg,int domain,bool rr)3946 keg_first_slab(uma_keg_t keg, int domain, bool rr)
3947 {
3948 	uma_domain_t dom;
3949 	uma_slab_t slab;
3950 	int start;
3951 
3952 	KASSERT(domain >= 0 && domain < vm_ndomains,
3953 	    ("keg_first_slab: domain %d out of range", domain));
3954 	KEG_LOCK_ASSERT(keg, domain);
3955 
3956 	slab = NULL;
3957 	start = domain;
3958 	do {
3959 		dom = &keg->uk_domain[domain];
3960 		if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL)
3961 			return (slab);
3962 		if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) {
3963 			LIST_REMOVE(slab, us_link);
3964 			dom->ud_free_slabs--;
3965 			LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
3966 			return (slab);
3967 		}
3968 		if (rr)
3969 			domain = (domain + 1) % vm_ndomains;
3970 	} while (domain != start);
3971 
3972 	return (NULL);
3973 }
3974 
3975 /*
3976  * Fetch an existing slab from a free or partial list.  Returns with the
3977  * keg domain lock held if a slab was found or unlocked if not.
3978  */
3979 static uma_slab_t
keg_fetch_free_slab(uma_keg_t keg,int domain,bool rr,int flags)3980 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags)
3981 {
3982 	uma_slab_t slab;
3983 	uint32_t reserve;
3984 
3985 	/* HASH has a single free list. */
3986 	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
3987 		domain = 0;
3988 
3989 	KEG_LOCK(keg, domain);
3990 	reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve;
3991 	if (keg->uk_domain[domain].ud_free_items <= reserve ||
3992 	    (slab = keg_first_slab(keg, domain, rr)) == NULL) {
3993 		KEG_UNLOCK(keg, domain);
3994 		return (NULL);
3995 	}
3996 	return (slab);
3997 }
3998 
3999 static uma_slab_t
keg_fetch_slab(uma_keg_t keg,uma_zone_t zone,int rdomain,const int flags)4000 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags)
4001 {
4002 	struct vm_domainset_iter di;
4003 	uma_slab_t slab;
4004 	int aflags, domain;
4005 	bool rr;
4006 
4007 	KASSERT((flags & (M_WAITOK | M_NOVM)) != (M_WAITOK | M_NOVM),
4008 	    ("%s: invalid flags %#x", __func__, flags));
4009 
4010 restart:
4011 	/*
4012 	 * Use the keg's policy if upper layers haven't already specified a
4013 	 * domain (as happens with first-touch zones).
4014 	 *
4015 	 * To avoid races we run the iterator with the keg lock held, but that
4016 	 * means that we cannot allow the vm_domainset layer to sleep.  Thus,
4017 	 * clear M_WAITOK and handle low memory conditions locally.
4018 	 */
4019 	rr = rdomain == UMA_ANYDOMAIN;
4020 	if (rr) {
4021 		aflags = (flags & ~M_WAITOK) | M_NOWAIT;
4022 		vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
4023 		    &aflags);
4024 	} else {
4025 		aflags = flags;
4026 		domain = rdomain;
4027 	}
4028 
4029 	for (;;) {
4030 		slab = keg_fetch_free_slab(keg, domain, rr, flags);
4031 		if (slab != NULL)
4032 			return (slab);
4033 
4034 		/*
4035 		 * M_NOVM is used to break the recursion that can otherwise
4036 		 * occur if low-level memory management routines use UMA.
4037 		 */
4038 		if ((flags & M_NOVM) == 0) {
4039 			slab = keg_alloc_slab(keg, zone, domain, flags, aflags);
4040 			if (slab != NULL)
4041 				return (slab);
4042 		}
4043 
4044 		if (!rr) {
4045 			if ((flags & M_USE_RESERVE) != 0) {
4046 				/*
4047 				 * Drain reserves from other domains before
4048 				 * giving up or sleeping.  It may be useful to
4049 				 * support per-domain reserves eventually.
4050 				 */
4051 				rdomain = UMA_ANYDOMAIN;
4052 				goto restart;
4053 			}
4054 			if ((flags & M_WAITOK) == 0)
4055 				break;
4056 			vm_wait_domain(domain);
4057 		} else if (vm_domainset_iter_policy(&di, &domain) != 0) {
4058 			if ((flags & M_WAITOK) != 0) {
4059 				vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
4060 				goto restart;
4061 			}
4062 			break;
4063 		}
4064 	}
4065 
4066 	/*
4067 	 * We might not have been able to get a slab but another cpu
4068 	 * could have while we were unlocked.  Check again before we
4069 	 * fail.
4070 	 */
4071 	if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL)
4072 		return (slab);
4073 
4074 	return (NULL);
4075 }
4076 
4077 static void *
slab_alloc_item(uma_keg_t keg,uma_slab_t slab)4078 slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
4079 {
4080 	uma_domain_t dom;
4081 	void *item;
4082 	int freei;
4083 
4084 	KEG_LOCK_ASSERT(keg, slab->us_domain);
4085 
4086 	dom = &keg->uk_domain[slab->us_domain];
4087 	freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1;
4088 	BIT_CLR(keg->uk_ipers, freei, &slab->us_free);
4089 	item = slab_item(slab, keg, freei);
4090 	slab->us_freecount--;
4091 	dom->ud_free_items--;
4092 
4093 	/*
4094 	 * Move this slab to the full list.  It must be on the partial list, so
4095 	 * we do not need to update the free slab count.  In particular,
4096 	 * keg_fetch_slab() always returns slabs on the partial list.
4097 	 */
4098 	if (slab->us_freecount == 0) {
4099 		LIST_REMOVE(slab, us_link);
4100 		LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link);
4101 	}
4102 
4103 	return (item);
4104 }
4105 
4106 static int
zone_import(void * arg,void ** bucket,int max,int domain,int flags)4107 zone_import(void *arg, void **bucket, int max, int domain, int flags)
4108 {
4109 	uma_domain_t dom;
4110 	uma_zone_t zone;
4111 	uma_slab_t slab;
4112 	uma_keg_t keg;
4113 #ifdef NUMA
4114 	int stripe;
4115 #endif
4116 	int i;
4117 
4118 	zone = arg;
4119 	slab = NULL;
4120 	keg = zone->uz_keg;
4121 	/* Try to keep the buckets totally full */
4122 	for (i = 0; i < max; ) {
4123 		if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL)
4124 			break;
4125 #ifdef NUMA
4126 		stripe = howmany(max, vm_ndomains);
4127 #endif
4128 		dom = &keg->uk_domain[slab->us_domain];
4129 		do {
4130 			bucket[i++] = slab_alloc_item(keg, slab);
4131 			if (keg->uk_reserve > 0 &&
4132 			    dom->ud_free_items <= keg->uk_reserve) {
4133 				/*
4134 				 * Avoid depleting the reserve after a
4135 				 * successful item allocation, even if
4136 				 * M_USE_RESERVE is specified.
4137 				 */
4138 				KEG_UNLOCK(keg, slab->us_domain);
4139 				goto out;
4140 			}
4141 #ifdef NUMA
4142 			/*
4143 			 * If the zone is striped we pick a new slab for every
4144 			 * N allocations.  Eliminating this conditional will
4145 			 * instead pick a new domain for each bucket rather
4146 			 * than stripe within each bucket.  The current option
4147 			 * produces more fragmentation and requires more cpu
4148 			 * time but yields better distribution.
4149 			 */
4150 			if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 &&
4151 			    vm_ndomains > 1 && --stripe == 0)
4152 				break;
4153 #endif
4154 		} while (slab->us_freecount != 0 && i < max);
4155 		KEG_UNLOCK(keg, slab->us_domain);
4156 
4157 		/* Don't block if we allocated any successfully. */
4158 		flags &= ~M_WAITOK;
4159 		flags |= M_NOWAIT;
4160 	}
4161 out:
4162 	return i;
4163 }
4164 
4165 static int
zone_alloc_limit_hard(uma_zone_t zone,int count,int flags)4166 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags)
4167 {
4168 	uint64_t old, new, total, max;
4169 
4170 	/*
4171 	 * The hard case.  We're going to sleep because there were existing
4172 	 * sleepers or because we ran out of items.  This routine enforces
4173 	 * fairness by keeping fifo order.
4174 	 *
4175 	 * First release our ill gotten gains and make some noise.
4176 	 */
4177 	for (;;) {
4178 		zone_free_limit(zone, count);
4179 		zone_log_warning(zone);
4180 		zone_maxaction(zone);
4181 		if (flags & M_NOWAIT)
4182 			return (0);
4183 
4184 		/*
4185 		 * We need to allocate an item or set ourself as a sleeper
4186 		 * while the sleepq lock is held to avoid wakeup races.  This
4187 		 * is essentially a home rolled semaphore.
4188 		 */
4189 		sleepq_lock(&zone->uz_max_items);
4190 		old = zone->uz_items;
4191 		do {
4192 			MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX);
4193 			/* Cache the max since we will evaluate twice. */
4194 			max = zone->uz_max_items;
4195 			if (UZ_ITEMS_SLEEPERS(old) != 0 ||
4196 			    UZ_ITEMS_COUNT(old) >= max)
4197 				new = old + UZ_ITEMS_SLEEPER;
4198 			else
4199 				new = old + MIN(count, max - old);
4200 		} while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0);
4201 
4202 		/* We may have successfully allocated under the sleepq lock. */
4203 		if (UZ_ITEMS_SLEEPERS(new) == 0) {
4204 			sleepq_release(&zone->uz_max_items);
4205 			return (new - old);
4206 		}
4207 
4208 		/*
4209 		 * This is in a different cacheline from uz_items so that we
4210 		 * don't constantly invalidate the fastpath cacheline when we
4211 		 * adjust item counts.  This could be limited to toggling on
4212 		 * transitions.
4213 		 */
4214 		atomic_add_32(&zone->uz_sleepers, 1);
4215 		atomic_add_64(&zone->uz_sleeps, 1);
4216 
4217 		/*
4218 		 * We have added ourselves as a sleeper.  The sleepq lock
4219 		 * protects us from wakeup races.  Sleep now and then retry.
4220 		 */
4221 		sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0);
4222 		sleepq_wait(&zone->uz_max_items, PVM);
4223 
4224 		/*
4225 		 * After wakeup, remove ourselves as a sleeper and try
4226 		 * again.  We no longer have the sleepq lock for protection.
4227 		 *
4228 		 * Subract ourselves as a sleeper while attempting to add
4229 		 * our count.
4230 		 */
4231 		atomic_subtract_32(&zone->uz_sleepers, 1);
4232 		old = atomic_fetchadd_64(&zone->uz_items,
4233 		    -(UZ_ITEMS_SLEEPER - count));
4234 		/* We're no longer a sleeper. */
4235 		old -= UZ_ITEMS_SLEEPER;
4236 
4237 		/*
4238 		 * If we're still at the limit, restart.  Notably do not
4239 		 * block on other sleepers.  Cache the max value to protect
4240 		 * against changes via sysctl.
4241 		 */
4242 		total = UZ_ITEMS_COUNT(old);
4243 		max = zone->uz_max_items;
4244 		if (total >= max)
4245 			continue;
4246 		/* Truncate if necessary, otherwise wake other sleepers. */
4247 		if (total + count > max) {
4248 			zone_free_limit(zone, total + count - max);
4249 			count = max - total;
4250 		} else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0)
4251 			wakeup_one(&zone->uz_max_items);
4252 
4253 		return (count);
4254 	}
4255 }
4256 
4257 /*
4258  * Allocate 'count' items from our max_items limit.  Returns the number
4259  * available.  If M_NOWAIT is not specified it will sleep until at least
4260  * one item can be allocated.
4261  */
4262 static int
zone_alloc_limit(uma_zone_t zone,int count,int flags)4263 zone_alloc_limit(uma_zone_t zone, int count, int flags)
4264 {
4265 	uint64_t old;
4266 	uint64_t max;
4267 
4268 	max = zone->uz_max_items;
4269 	MPASS(max > 0);
4270 
4271 	/*
4272 	 * We expect normal allocations to succeed with a simple
4273 	 * fetchadd.
4274 	 */
4275 	old = atomic_fetchadd_64(&zone->uz_items, count);
4276 	if (__predict_true(old + count <= max))
4277 		return (count);
4278 
4279 	/*
4280 	 * If we had some items and no sleepers just return the
4281 	 * truncated value.  We have to release the excess space
4282 	 * though because that may wake sleepers who weren't woken
4283 	 * because we were temporarily over the limit.
4284 	 */
4285 	if (old < max) {
4286 		zone_free_limit(zone, (old + count) - max);
4287 		return (max - old);
4288 	}
4289 	return (zone_alloc_limit_hard(zone, count, flags));
4290 }
4291 
4292 /*
4293  * Free a number of items back to the limit.
4294  */
4295 static void
zone_free_limit(uma_zone_t zone,int count)4296 zone_free_limit(uma_zone_t zone, int count)
4297 {
4298 	uint64_t old;
4299 
4300 	MPASS(count > 0);
4301 
4302 	/*
4303 	 * In the common case we either have no sleepers or
4304 	 * are still over the limit and can just return.
4305 	 */
4306 	old = atomic_fetchadd_64(&zone->uz_items, -count);
4307 	if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 ||
4308 	   UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items))
4309 		return;
4310 
4311 	/*
4312 	 * Moderate the rate of wakeups.  Sleepers will continue
4313 	 * to generate wakeups if necessary.
4314 	 */
4315 	wakeup_one(&zone->uz_max_items);
4316 }
4317 
4318 static uma_bucket_t
zone_alloc_bucket(uma_zone_t zone,void * udata,int domain,int flags)4319 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags)
4320 {
4321 	uma_bucket_t bucket;
4322 	int error, maxbucket, cnt;
4323 
4324 	CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name,
4325 	    zone, domain);
4326 
4327 	/* Avoid allocs targeting empty domains. */
4328 	if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
4329 		domain = UMA_ANYDOMAIN;
4330 	else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
4331 		domain = UMA_ANYDOMAIN;
4332 
4333 	if (zone->uz_max_items > 0)
4334 		maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size,
4335 		    M_NOWAIT);
4336 	else
4337 		maxbucket = zone->uz_bucket_size;
4338 	if (maxbucket == 0)
4339 		return (NULL);
4340 
4341 	/* Don't wait for buckets, preserve caller's NOVM setting. */
4342 	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
4343 	if (bucket == NULL) {
4344 		cnt = 0;
4345 		goto out;
4346 	}
4347 
4348 	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
4349 	    MIN(maxbucket, bucket->ub_entries), domain, flags);
4350 
4351 	/*
4352 	 * Initialize the memory if necessary.
4353 	 */
4354 	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
4355 		int i;
4356 
4357 		for (i = 0; i < bucket->ub_cnt; i++) {
4358 			kasan_mark_item_valid(zone, bucket->ub_bucket[i]);
4359 			error = zone->uz_init(bucket->ub_bucket[i],
4360 			    zone->uz_size, flags);
4361 			kasan_mark_item_invalid(zone, bucket->ub_bucket[i]);
4362 			if (error != 0)
4363 				break;
4364 		}
4365 
4366 		/*
4367 		 * If we couldn't initialize the whole bucket, put the
4368 		 * rest back onto the freelist.
4369 		 */
4370 		if (i != bucket->ub_cnt) {
4371 			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
4372 			    bucket->ub_cnt - i);
4373 #ifdef INVARIANTS
4374 			bzero(&bucket->ub_bucket[i],
4375 			    sizeof(void *) * (bucket->ub_cnt - i));
4376 #endif
4377 			bucket->ub_cnt = i;
4378 		}
4379 	}
4380 
4381 	cnt = bucket->ub_cnt;
4382 	if (bucket->ub_cnt == 0) {
4383 		bucket_free(zone, bucket, udata);
4384 		counter_u64_add(zone->uz_fails, 1);
4385 		bucket = NULL;
4386 	}
4387 out:
4388 	if (zone->uz_max_items > 0 && cnt < maxbucket)
4389 		zone_free_limit(zone, maxbucket - cnt);
4390 
4391 	return (bucket);
4392 }
4393 
4394 /*
4395  * Allocates a single item from a zone.
4396  *
4397  * Arguments
4398  *	zone   The zone to alloc for.
4399  *	udata  The data to be passed to the constructor.
4400  *	domain The domain to allocate from or UMA_ANYDOMAIN.
4401  *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
4402  *
4403  * Returns
4404  *	NULL if there is no memory and M_NOWAIT is set
4405  *	An item if successful
4406  */
4407 
4408 static void *
zone_alloc_item(uma_zone_t zone,void * udata,int domain,int flags)4409 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags)
4410 {
4411 	void *item;
4412 
4413 	if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) {
4414 		counter_u64_add(zone->uz_fails, 1);
4415 		return (NULL);
4416 	}
4417 
4418 	/* Avoid allocs targeting empty domains. */
4419 	if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
4420 		domain = UMA_ANYDOMAIN;
4421 
4422 	if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1)
4423 		goto fail_cnt;
4424 
4425 	/*
4426 	 * We have to call both the zone's init (not the keg's init)
4427 	 * and the zone's ctor.  This is because the item is going from
4428 	 * a keg slab directly to the user, and the user is expecting it
4429 	 * to be both zone-init'd as well as zone-ctor'd.
4430 	 */
4431 	if (zone->uz_init != NULL) {
4432 		int error;
4433 
4434 		kasan_mark_item_valid(zone, item);
4435 		error = zone->uz_init(item, zone->uz_size, flags);
4436 		kasan_mark_item_invalid(zone, item);
4437 		if (error != 0) {
4438 			zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT);
4439 			goto fail_cnt;
4440 		}
4441 	}
4442 	item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags,
4443 	    item);
4444 	if (item == NULL)
4445 		goto fail;
4446 
4447 	counter_u64_add(zone->uz_allocs, 1);
4448 	CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item,
4449 	    zone->uz_name, zone);
4450 
4451 	return (item);
4452 
4453 fail_cnt:
4454 	counter_u64_add(zone->uz_fails, 1);
4455 fail:
4456 	if (zone->uz_max_items > 0)
4457 		zone_free_limit(zone, 1);
4458 	CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)",
4459 	    zone->uz_name, zone);
4460 
4461 	return (NULL);
4462 }
4463 
4464 /* See uma.h */
4465 void
uma_zfree_smr(uma_zone_t zone,void * item)4466 uma_zfree_smr(uma_zone_t zone, void *item)
4467 {
4468 	uma_cache_t cache;
4469 	uma_cache_bucket_t bucket;
4470 	int itemdomain;
4471 #ifdef NUMA
4472 	int uz_flags;
4473 #endif
4474 
4475 	CTR3(KTR_UMA, "uma_zfree_smr zone %s(%p) item %p",
4476 	    zone->uz_name, zone, item);
4477 
4478 #ifdef UMA_ZALLOC_DEBUG
4479 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
4480 	    ("uma_zfree_smr: called with non-SMR zone."));
4481 	KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer."));
4482 	SMR_ASSERT_NOT_ENTERED(zone->uz_smr);
4483 	if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN)
4484 		return;
4485 #endif
4486 	cache = &zone->uz_cpu[curcpu];
4487 	itemdomain = 0;
4488 #ifdef NUMA
4489 	uz_flags = cache_uz_flags(cache);
4490 	if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4491 		itemdomain = item_domain(item);
4492 #endif
4493 	critical_enter();
4494 	do {
4495 		cache = &zone->uz_cpu[curcpu];
4496 		/* SMR Zones must free to the free bucket. */
4497 		bucket = &cache->uc_freebucket;
4498 #ifdef NUMA
4499 		if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4500 		    PCPU_GET(domain) != itemdomain) {
4501 			bucket = &cache->uc_crossbucket;
4502 		}
4503 #endif
4504 		if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4505 			cache_bucket_push(cache, bucket, item);
4506 			critical_exit();
4507 			return;
4508 		}
4509 	} while (cache_free(zone, cache, NULL, itemdomain));
4510 	critical_exit();
4511 
4512 	/*
4513 	 * If nothing else caught this, we'll just do an internal free.
4514 	 */
4515 	zone_free_item(zone, item, NULL, SKIP_NONE);
4516 }
4517 
4518 /* See uma.h */
4519 void
uma_zfree_arg(uma_zone_t zone,void * item,void * udata)4520 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
4521 {
4522 	uma_cache_t cache;
4523 	uma_cache_bucket_t bucket;
4524 	int itemdomain, uz_flags;
4525 
4526 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
4527 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
4528 
4529 	CTR3(KTR_UMA, "uma_zfree_arg zone %s(%p) item %p",
4530 	    zone->uz_name, zone, item);
4531 
4532 #ifdef UMA_ZALLOC_DEBUG
4533 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
4534 	    ("uma_zfree_arg: called with SMR zone."));
4535 	if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN)
4536 		return;
4537 #endif
4538         /* uma_zfree(..., NULL) does nothing, to match free(9). */
4539         if (item == NULL)
4540                 return;
4541 
4542 	/*
4543 	 * We are accessing the per-cpu cache without a critical section to
4544 	 * fetch size and flags.  This is acceptable, if we are preempted we
4545 	 * will simply read another cpu's line.
4546 	 */
4547 	cache = &zone->uz_cpu[curcpu];
4548 	uz_flags = cache_uz_flags(cache);
4549 	if (UMA_ALWAYS_CTORDTOR ||
4550 	    __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0))
4551 		item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE);
4552 
4553 	/*
4554 	 * The race here is acceptable.  If we miss it we'll just have to wait
4555 	 * a little longer for the limits to be reset.
4556 	 */
4557 	if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) {
4558 		if (atomic_load_32(&zone->uz_sleepers) > 0)
4559 			goto zfree_item;
4560 	}
4561 
4562 	/*
4563 	 * If possible, free to the per-CPU cache.  There are two
4564 	 * requirements for safe access to the per-CPU cache: (1) the thread
4565 	 * accessing the cache must not be preempted or yield during access,
4566 	 * and (2) the thread must not migrate CPUs without switching which
4567 	 * cache it accesses.  We rely on a critical section to prevent
4568 	 * preemption and migration.  We release the critical section in
4569 	 * order to acquire the zone mutex if we are unable to free to the
4570 	 * current cache; when we re-acquire the critical section, we must
4571 	 * detect and handle migration if it has occurred.
4572 	 */
4573 	itemdomain = 0;
4574 #ifdef NUMA
4575 	if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4576 		itemdomain = item_domain(item);
4577 #endif
4578 	critical_enter();
4579 	do {
4580 		cache = &zone->uz_cpu[curcpu];
4581 		/*
4582 		 * Try to free into the allocbucket first to give LIFO
4583 		 * ordering for cache-hot datastructures.  Spill over
4584 		 * into the freebucket if necessary.  Alloc will swap
4585 		 * them if one runs dry.
4586 		 */
4587 		bucket = &cache->uc_allocbucket;
4588 #ifdef NUMA
4589 		if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4590 		    PCPU_GET(domain) != itemdomain) {
4591 			bucket = &cache->uc_crossbucket;
4592 		} else
4593 #endif
4594 		if (bucket->ucb_cnt == bucket->ucb_entries &&
4595 		   cache->uc_freebucket.ucb_cnt <
4596 		   cache->uc_freebucket.ucb_entries)
4597 			cache_bucket_swap(&cache->uc_freebucket,
4598 			    &cache->uc_allocbucket);
4599 		if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4600 			cache_bucket_push(cache, bucket, item);
4601 			critical_exit();
4602 			return;
4603 		}
4604 	} while (cache_free(zone, cache, udata, itemdomain));
4605 	critical_exit();
4606 
4607 	/*
4608 	 * If nothing else caught this, we'll just do an internal free.
4609 	 */
4610 zfree_item:
4611 	zone_free_item(zone, item, udata, SKIP_DTOR);
4612 }
4613 
4614 #ifdef NUMA
4615 /*
4616  * sort crossdomain free buckets to domain correct buckets and cache
4617  * them.
4618  */
4619 static void
zone_free_cross(uma_zone_t zone,uma_bucket_t bucket,void * udata)4620 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata)
4621 {
4622 	struct uma_bucketlist emptybuckets, fullbuckets;
4623 	uma_zone_domain_t zdom;
4624 	uma_bucket_t b;
4625 	smr_seq_t seq;
4626 	void *item;
4627 	int domain;
4628 
4629 	CTR3(KTR_UMA,
4630 	    "uma_zfree: zone %s(%p) draining cross bucket %p",
4631 	    zone->uz_name, zone, bucket);
4632 
4633 	/*
4634 	 * It is possible for buckets to arrive here out of order so we fetch
4635 	 * the current smr seq rather than accepting the bucket's.
4636 	 */
4637 	seq = SMR_SEQ_INVALID;
4638 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
4639 		seq = smr_advance(zone->uz_smr);
4640 
4641 	/*
4642 	 * To avoid having ndomain * ndomain buckets for sorting we have a
4643 	 * lock on the current crossfree bucket.  A full matrix with
4644 	 * per-domain locking could be used if necessary.
4645 	 */
4646 	STAILQ_INIT(&emptybuckets);
4647 	STAILQ_INIT(&fullbuckets);
4648 	ZONE_CROSS_LOCK(zone);
4649 	for (; bucket->ub_cnt > 0; bucket->ub_cnt--) {
4650 		item = bucket->ub_bucket[bucket->ub_cnt - 1];
4651 		domain = item_domain(item);
4652 		zdom = ZDOM_GET(zone, domain);
4653 		if (zdom->uzd_cross == NULL) {
4654 			if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4655 				STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4656 				zdom->uzd_cross = b;
4657 			} else {
4658 				/*
4659 				 * Avoid allocating a bucket with the cross lock
4660 				 * held, since allocation can trigger a
4661 				 * cross-domain free and bucket zones may
4662 				 * allocate from each other.
4663 				 */
4664 				ZONE_CROSS_UNLOCK(zone);
4665 				b = bucket_alloc(zone, udata, M_NOWAIT);
4666 				if (b == NULL)
4667 					goto out;
4668 				ZONE_CROSS_LOCK(zone);
4669 				if (zdom->uzd_cross != NULL) {
4670 					STAILQ_INSERT_HEAD(&emptybuckets, b,
4671 					    ub_link);
4672 				} else {
4673 					zdom->uzd_cross = b;
4674 				}
4675 			}
4676 		}
4677 		b = zdom->uzd_cross;
4678 		b->ub_bucket[b->ub_cnt++] = item;
4679 		b->ub_seq = seq;
4680 		if (b->ub_cnt == b->ub_entries) {
4681 			STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link);
4682 			if ((b = STAILQ_FIRST(&emptybuckets)) != NULL)
4683 				STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4684 			zdom->uzd_cross = b;
4685 		}
4686 	}
4687 	ZONE_CROSS_UNLOCK(zone);
4688 out:
4689 	if (bucket->ub_cnt == 0)
4690 		bucket->ub_seq = SMR_SEQ_INVALID;
4691 	bucket_free(zone, bucket, udata);
4692 
4693 	while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4694 		STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4695 		bucket_free(zone, b, udata);
4696 	}
4697 	while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) {
4698 		STAILQ_REMOVE_HEAD(&fullbuckets, ub_link);
4699 		domain = item_domain(b->ub_bucket[0]);
4700 		zone_put_bucket(zone, domain, b, udata, true);
4701 	}
4702 }
4703 #endif
4704 
4705 static void
zone_free_bucket(uma_zone_t zone,uma_bucket_t bucket,void * udata,int itemdomain,bool ws)4706 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
4707     int itemdomain, bool ws)
4708 {
4709 
4710 #ifdef NUMA
4711 	/*
4712 	 * Buckets coming from the wrong domain will be entirely for the
4713 	 * only other domain on two domain systems.  In this case we can
4714 	 * simply cache them.  Otherwise we need to sort them back to
4715 	 * correct domains.
4716 	 */
4717 	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4718 	    vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) {
4719 		zone_free_cross(zone, bucket, udata);
4720 		return;
4721 	}
4722 #endif
4723 
4724 	/*
4725 	 * Attempt to save the bucket in the zone's domain bucket cache.
4726 	 */
4727 	CTR3(KTR_UMA,
4728 	    "uma_zfree: zone %s(%p) putting bucket %p on free list",
4729 	    zone->uz_name, zone, bucket);
4730 	/* ub_cnt is pointing to the last free item */
4731 	if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
4732 		itemdomain = zone_domain_lowest(zone, itemdomain);
4733 	zone_put_bucket(zone, itemdomain, bucket, udata, ws);
4734 }
4735 
4736 /*
4737  * Populate a free or cross bucket for the current cpu cache.  Free any
4738  * existing full bucket either to the zone cache or back to the slab layer.
4739  *
4740  * Enters and returns in a critical section.  false return indicates that
4741  * we can not satisfy this free in the cache layer.  true indicates that
4742  * the caller should retry.
4743  */
4744 static __noinline bool
cache_free(uma_zone_t zone,uma_cache_t cache,void * udata,int itemdomain)4745 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, int itemdomain)
4746 {
4747 	uma_cache_bucket_t cbucket;
4748 	uma_bucket_t newbucket, bucket;
4749 
4750 	CRITICAL_ASSERT(curthread);
4751 
4752 	if (zone->uz_bucket_size == 0)
4753 		return false;
4754 
4755 	cache = &zone->uz_cpu[curcpu];
4756 	newbucket = NULL;
4757 
4758 	/*
4759 	 * FIRSTTOUCH domains need to free to the correct zdom.  When
4760 	 * enabled this is the zdom of the item.   The bucket is the
4761 	 * cross bucket if the current domain and itemdomain do not match.
4762 	 */
4763 	cbucket = &cache->uc_freebucket;
4764 #ifdef NUMA
4765 	if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4766 		if (PCPU_GET(domain) != itemdomain) {
4767 			cbucket = &cache->uc_crossbucket;
4768 			if (cbucket->ucb_cnt != 0)
4769 				counter_u64_add(zone->uz_xdomain,
4770 				    cbucket->ucb_cnt);
4771 		}
4772 	}
4773 #endif
4774 	bucket = cache_bucket_unload(cbucket);
4775 	KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries,
4776 	    ("cache_free: Entered with non-full free bucket."));
4777 
4778 	/* We are no longer associated with this CPU. */
4779 	critical_exit();
4780 
4781 	/*
4782 	 * Don't let SMR zones operate without a free bucket.  Force
4783 	 * a synchronize and re-use this one.  We will only degrade
4784 	 * to a synchronize every bucket_size items rather than every
4785 	 * item if we fail to allocate a bucket.
4786 	 */
4787 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0) {
4788 		if (bucket != NULL)
4789 			bucket->ub_seq = smr_advance(zone->uz_smr);
4790 		newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4791 		if (newbucket == NULL && bucket != NULL) {
4792 			bucket_drain(zone, bucket);
4793 			newbucket = bucket;
4794 			bucket = NULL;
4795 		}
4796 	} else if (!bucketdisable)
4797 		newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4798 
4799 	if (bucket != NULL)
4800 		zone_free_bucket(zone, bucket, udata, itemdomain, true);
4801 
4802 	critical_enter();
4803 	if ((bucket = newbucket) == NULL)
4804 		return (false);
4805 	cache = &zone->uz_cpu[curcpu];
4806 #ifdef NUMA
4807 	/*
4808 	 * Check to see if we should be populating the cross bucket.  If it
4809 	 * is already populated we will fall through and attempt to populate
4810 	 * the free bucket.
4811 	 */
4812 	if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4813 		if (PCPU_GET(domain) != itemdomain &&
4814 		    cache->uc_crossbucket.ucb_bucket == NULL) {
4815 			cache_bucket_load_cross(cache, bucket);
4816 			return (true);
4817 		}
4818 	}
4819 #endif
4820 	/*
4821 	 * We may have lost the race to fill the bucket or switched CPUs.
4822 	 */
4823 	if (cache->uc_freebucket.ucb_bucket != NULL) {
4824 		critical_exit();
4825 		bucket_free(zone, bucket, udata);
4826 		critical_enter();
4827 	} else
4828 		cache_bucket_load_free(cache, bucket);
4829 
4830 	return (true);
4831 }
4832 
4833 static void
slab_free_item(uma_zone_t zone,uma_slab_t slab,void * item)4834 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item)
4835 {
4836 	uma_keg_t keg;
4837 	uma_domain_t dom;
4838 	int freei;
4839 
4840 	keg = zone->uz_keg;
4841 	KEG_LOCK_ASSERT(keg, slab->us_domain);
4842 
4843 	/* Do we need to remove from any lists? */
4844 	dom = &keg->uk_domain[slab->us_domain];
4845 	if (slab->us_freecount + 1 == keg->uk_ipers) {
4846 		LIST_REMOVE(slab, us_link);
4847 		LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link);
4848 		dom->ud_free_slabs++;
4849 	} else if (slab->us_freecount == 0) {
4850 		LIST_REMOVE(slab, us_link);
4851 		LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
4852 	}
4853 
4854 	/* Slab management. */
4855 	freei = slab_item_index(slab, keg, item);
4856 	BIT_SET(keg->uk_ipers, freei, &slab->us_free);
4857 	slab->us_freecount++;
4858 
4859 	/* Keg statistics. */
4860 	dom->ud_free_items++;
4861 }
4862 
4863 static void
zone_release(void * arg,void ** bucket,int cnt)4864 zone_release(void *arg, void **bucket, int cnt)
4865 {
4866 	struct mtx *lock;
4867 	uma_zone_t zone;
4868 	uma_slab_t slab;
4869 	uma_keg_t keg;
4870 	uint8_t *mem;
4871 	void *item;
4872 	int i;
4873 
4874 	zone = arg;
4875 	keg = zone->uz_keg;
4876 	lock = NULL;
4877 	if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0))
4878 		lock = KEG_LOCK(keg, 0);
4879 	for (i = 0; i < cnt; i++) {
4880 		item = bucket[i];
4881 		if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) {
4882 			slab = vtoslab((vm_offset_t)item);
4883 		} else {
4884 			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
4885 			if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0)
4886 				slab = hash_sfind(&keg->uk_hash, mem);
4887 			else
4888 				slab = (uma_slab_t)(mem + keg->uk_pgoff);
4889 		}
4890 		if (lock != KEG_LOCKPTR(keg, slab->us_domain)) {
4891 			if (lock != NULL)
4892 				mtx_unlock(lock);
4893 			lock = KEG_LOCK(keg, slab->us_domain);
4894 		}
4895 		slab_free_item(zone, slab, item);
4896 	}
4897 	if (lock != NULL)
4898 		mtx_unlock(lock);
4899 }
4900 
4901 /*
4902  * Frees a single item to any zone.
4903  *
4904  * Arguments:
4905  *	zone   The zone to free to
4906  *	item   The item we're freeing
4907  *	udata  User supplied data for the dtor
4908  *	skip   Skip dtors and finis
4909  */
4910 static __noinline void
zone_free_item(uma_zone_t zone,void * item,void * udata,enum zfreeskip skip)4911 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
4912 {
4913 
4914 	/*
4915 	 * If a free is sent directly to an SMR zone we have to
4916 	 * synchronize immediately because the item can instantly
4917 	 * be reallocated. This should only happen in degenerate
4918 	 * cases when no memory is available for per-cpu caches.
4919 	 */
4920 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE)
4921 		smr_synchronize(zone->uz_smr);
4922 
4923 	item_dtor(zone, item, zone->uz_size, udata, skip);
4924 
4925 	if (skip < SKIP_FINI && zone->uz_fini) {
4926 		kasan_mark_item_valid(zone, item);
4927 		zone->uz_fini(item, zone->uz_size);
4928 		kasan_mark_item_invalid(zone, item);
4929 	}
4930 
4931 	zone->uz_release(zone->uz_arg, &item, 1);
4932 
4933 	if (skip & SKIP_CNT)
4934 		return;
4935 
4936 	counter_u64_add(zone->uz_frees, 1);
4937 
4938 	if (zone->uz_max_items > 0)
4939 		zone_free_limit(zone, 1);
4940 }
4941 
4942 /* See uma.h */
4943 int
uma_zone_set_max(uma_zone_t zone,int nitems)4944 uma_zone_set_max(uma_zone_t zone, int nitems)
4945 {
4946 
4947 	/*
4948 	 * If the limit is small, we may need to constrain the maximum per-CPU
4949 	 * cache size, or disable caching entirely.
4950 	 */
4951 	uma_zone_set_maxcache(zone, nitems);
4952 
4953 	/*
4954 	 * XXX This can misbehave if the zone has any allocations with
4955 	 * no limit and a limit is imposed.  There is currently no
4956 	 * way to clear a limit.
4957 	 */
4958 	ZONE_LOCK(zone);
4959 	if (zone->uz_max_items == 0)
4960 		ZONE_ASSERT_COLD(zone);
4961 	zone->uz_max_items = nitems;
4962 	zone->uz_flags |= UMA_ZFLAG_LIMIT;
4963 	zone_update_caches(zone);
4964 	/* We may need to wake waiters. */
4965 	wakeup(&zone->uz_max_items);
4966 	ZONE_UNLOCK(zone);
4967 
4968 	return (nitems);
4969 }
4970 
4971 /* See uma.h */
4972 void
uma_zone_set_maxcache(uma_zone_t zone,int nitems)4973 uma_zone_set_maxcache(uma_zone_t zone, int nitems)
4974 {
4975 	int bpcpu, bpdom, bsize, nb;
4976 
4977 	ZONE_LOCK(zone);
4978 
4979 	/*
4980 	 * Compute a lower bound on the number of items that may be cached in
4981 	 * the zone.  Each CPU gets at least two buckets, and for cross-domain
4982 	 * frees we use an additional bucket per CPU and per domain.  Select the
4983 	 * largest bucket size that does not exceed half of the requested limit,
4984 	 * with the left over space given to the full bucket cache.
4985 	 */
4986 	bpdom = 0;
4987 	bpcpu = 2;
4988 #ifdef NUMA
4989 	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) {
4990 		bpcpu++;
4991 		bpdom++;
4992 	}
4993 #endif
4994 	nb = bpcpu * mp_ncpus + bpdom * vm_ndomains;
4995 	bsize = nitems / nb / 2;
4996 	if (bsize > BUCKET_MAX)
4997 		bsize = BUCKET_MAX;
4998 	else if (bsize == 0 && nitems / nb > 0)
4999 		bsize = 1;
5000 	zone->uz_bucket_size_max = zone->uz_bucket_size = bsize;
5001 	if (zone->uz_bucket_size_min > zone->uz_bucket_size_max)
5002 		zone->uz_bucket_size_min = zone->uz_bucket_size_max;
5003 	zone->uz_bucket_max = nitems - nb * bsize;
5004 	ZONE_UNLOCK(zone);
5005 }
5006 
5007 /* See uma.h */
5008 int
uma_zone_get_max(uma_zone_t zone)5009 uma_zone_get_max(uma_zone_t zone)
5010 {
5011 	int nitems;
5012 
5013 	nitems = atomic_load_64(&zone->uz_max_items);
5014 
5015 	return (nitems);
5016 }
5017 
5018 /* See uma.h */
5019 void
uma_zone_set_warning(uma_zone_t zone,const char * warning)5020 uma_zone_set_warning(uma_zone_t zone, const char *warning)
5021 {
5022 
5023 	ZONE_ASSERT_COLD(zone);
5024 	zone->uz_warning = warning;
5025 }
5026 
5027 /* See uma.h */
5028 void
uma_zone_set_maxaction(uma_zone_t zone,uma_maxaction_t maxaction)5029 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
5030 {
5031 
5032 	ZONE_ASSERT_COLD(zone);
5033 	TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
5034 }
5035 
5036 /* See uma.h */
5037 int
uma_zone_get_cur(uma_zone_t zone)5038 uma_zone_get_cur(uma_zone_t zone)
5039 {
5040 	int64_t nitems;
5041 	u_int i;
5042 
5043 	nitems = 0;
5044 	if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER)
5045 		nitems = counter_u64_fetch(zone->uz_allocs) -
5046 		    counter_u64_fetch(zone->uz_frees);
5047 	CPU_FOREACH(i)
5048 		nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) -
5049 		    atomic_load_64(&zone->uz_cpu[i].uc_frees);
5050 
5051 	return (nitems < 0 ? 0 : nitems);
5052 }
5053 
5054 static uint64_t
uma_zone_get_allocs(uma_zone_t zone)5055 uma_zone_get_allocs(uma_zone_t zone)
5056 {
5057 	uint64_t nitems;
5058 	u_int i;
5059 
5060 	nitems = 0;
5061 	if (zone->uz_allocs != EARLY_COUNTER)
5062 		nitems = counter_u64_fetch(zone->uz_allocs);
5063 	CPU_FOREACH(i)
5064 		nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs);
5065 
5066 	return (nitems);
5067 }
5068 
5069 static uint64_t
uma_zone_get_frees(uma_zone_t zone)5070 uma_zone_get_frees(uma_zone_t zone)
5071 {
5072 	uint64_t nitems;
5073 	u_int i;
5074 
5075 	nitems = 0;
5076 	if (zone->uz_frees != EARLY_COUNTER)
5077 		nitems = counter_u64_fetch(zone->uz_frees);
5078 	CPU_FOREACH(i)
5079 		nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees);
5080 
5081 	return (nitems);
5082 }
5083 
5084 #ifdef INVARIANTS
5085 /* Used only for KEG_ASSERT_COLD(). */
5086 static uint64_t
uma_keg_get_allocs(uma_keg_t keg)5087 uma_keg_get_allocs(uma_keg_t keg)
5088 {
5089 	uma_zone_t z;
5090 	uint64_t nitems;
5091 
5092 	nitems = 0;
5093 	LIST_FOREACH(z, &keg->uk_zones, uz_link)
5094 		nitems += uma_zone_get_allocs(z);
5095 
5096 	return (nitems);
5097 }
5098 #endif
5099 
5100 /* See uma.h */
5101 void
uma_zone_set_init(uma_zone_t zone,uma_init uminit)5102 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
5103 {
5104 	uma_keg_t keg;
5105 
5106 	KEG_GET(zone, keg);
5107 	KEG_ASSERT_COLD(keg);
5108 	keg->uk_init = uminit;
5109 }
5110 
5111 /* See uma.h */
5112 void
uma_zone_set_fini(uma_zone_t zone,uma_fini fini)5113 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
5114 {
5115 	uma_keg_t keg;
5116 
5117 	KEG_GET(zone, keg);
5118 	KEG_ASSERT_COLD(keg);
5119 	keg->uk_fini = fini;
5120 }
5121 
5122 /* See uma.h */
5123 void
uma_zone_set_zinit(uma_zone_t zone,uma_init zinit)5124 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
5125 {
5126 
5127 	ZONE_ASSERT_COLD(zone);
5128 	zone->uz_init = zinit;
5129 }
5130 
5131 /* See uma.h */
5132 void
uma_zone_set_zfini(uma_zone_t zone,uma_fini zfini)5133 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
5134 {
5135 
5136 	ZONE_ASSERT_COLD(zone);
5137 	zone->uz_fini = zfini;
5138 }
5139 
5140 /* See uma.h */
5141 void
uma_zone_set_freef(uma_zone_t zone,uma_free freef)5142 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
5143 {
5144 	uma_keg_t keg;
5145 
5146 	KEG_GET(zone, keg);
5147 	KEG_ASSERT_COLD(keg);
5148 	keg->uk_freef = freef;
5149 }
5150 
5151 /* See uma.h */
5152 void
uma_zone_set_allocf(uma_zone_t zone,uma_alloc allocf)5153 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
5154 {
5155 	uma_keg_t keg;
5156 
5157 	KEG_GET(zone, keg);
5158 	KEG_ASSERT_COLD(keg);
5159 	keg->uk_allocf = allocf;
5160 }
5161 
5162 /* See uma.h */
5163 void
uma_zone_set_smr(uma_zone_t zone,smr_t smr)5164 uma_zone_set_smr(uma_zone_t zone, smr_t smr)
5165 {
5166 
5167 	ZONE_ASSERT_COLD(zone);
5168 
5169 	KASSERT(smr != NULL, ("Got NULL smr"));
5170 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
5171 	    ("zone %p (%s) already uses SMR", zone, zone->uz_name));
5172 	zone->uz_flags |= UMA_ZONE_SMR;
5173 	zone->uz_smr = smr;
5174 	zone_update_caches(zone);
5175 }
5176 
5177 smr_t
uma_zone_get_smr(uma_zone_t zone)5178 uma_zone_get_smr(uma_zone_t zone)
5179 {
5180 
5181 	return (zone->uz_smr);
5182 }
5183 
5184 /* See uma.h */
5185 void
uma_zone_reserve(uma_zone_t zone,int items)5186 uma_zone_reserve(uma_zone_t zone, int items)
5187 {
5188 	uma_keg_t keg;
5189 
5190 	KEG_GET(zone, keg);
5191 	KEG_ASSERT_COLD(keg);
5192 	keg->uk_reserve = items;
5193 }
5194 
5195 /* See uma.h */
5196 int
uma_zone_reserve_kva(uma_zone_t zone,int count)5197 uma_zone_reserve_kva(uma_zone_t zone, int count)
5198 {
5199 	uma_keg_t keg;
5200 	vm_offset_t kva;
5201 	u_int pages;
5202 
5203 	KEG_GET(zone, keg);
5204 	KEG_ASSERT_COLD(keg);
5205 	ZONE_ASSERT_COLD(zone);
5206 
5207 	pages = howmany(count, keg->uk_ipers) * keg->uk_ppera;
5208 
5209 #ifdef UMA_USE_DMAP
5210 	if (keg->uk_ppera > 1) {
5211 #else
5212 	if (1) {
5213 #endif
5214 		kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
5215 		if (kva == 0)
5216 			return (0);
5217 	} else
5218 		kva = 0;
5219 
5220 	MPASS(keg->uk_kva == 0);
5221 	keg->uk_kva = kva;
5222 	keg->uk_offset = 0;
5223 	zone->uz_max_items = pages * keg->uk_ipers;
5224 #ifdef UMA_USE_DMAP
5225 	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
5226 #else
5227 	keg->uk_allocf = noobj_alloc;
5228 #endif
5229 	keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
5230 	zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
5231 	zone_update_caches(zone);
5232 
5233 	return (1);
5234 }
5235 
5236 /* See uma.h */
5237 void
5238 uma_prealloc(uma_zone_t zone, int items)
5239 {
5240 	struct vm_domainset_iter di;
5241 	uma_domain_t dom;
5242 	uma_slab_t slab;
5243 	uma_keg_t keg;
5244 	int aflags, domain, slabs;
5245 
5246 	KEG_GET(zone, keg);
5247 	slabs = howmany(items, keg->uk_ipers);
5248 	while (slabs-- > 0) {
5249 		aflags = M_NOWAIT;
5250 		vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
5251 		    &aflags);
5252 		for (;;) {
5253 			slab = keg_alloc_slab(keg, zone, domain, M_WAITOK,
5254 			    aflags);
5255 			if (slab != NULL) {
5256 				dom = &keg->uk_domain[slab->us_domain];
5257 				/*
5258 				 * keg_alloc_slab() always returns a slab on the
5259 				 * partial list.
5260 				 */
5261 				LIST_REMOVE(slab, us_link);
5262 				LIST_INSERT_HEAD(&dom->ud_free_slab, slab,
5263 				    us_link);
5264 				dom->ud_free_slabs++;
5265 				KEG_UNLOCK(keg, slab->us_domain);
5266 				break;
5267 			}
5268 			if (vm_domainset_iter_policy(&di, &domain) != 0)
5269 				vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
5270 		}
5271 	}
5272 }
5273 
5274 /*
5275  * Returns a snapshot of memory consumption in bytes.
5276  */
5277 size_t
5278 uma_zone_memory(uma_zone_t zone)
5279 {
5280 	size_t sz;
5281 	int i;
5282 
5283 	sz = 0;
5284 	if (zone->uz_flags & UMA_ZFLAG_CACHE) {
5285 		for (i = 0; i < vm_ndomains; i++)
5286 			sz += ZDOM_GET(zone, i)->uzd_nitems;
5287 		return (sz * zone->uz_size);
5288 	}
5289 	for (i = 0; i < vm_ndomains; i++)
5290 		sz += zone->uz_keg->uk_domain[i].ud_pages;
5291 
5292 	return (sz * PAGE_SIZE);
5293 }
5294 
5295 struct uma_reclaim_args {
5296 	int	domain;
5297 	int	req;
5298 };
5299 
5300 static void
5301 uma_reclaim_domain_cb(uma_zone_t zone, void *arg)
5302 {
5303 	struct uma_reclaim_args *args;
5304 
5305 	args = arg;
5306 	if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0)
5307 		uma_zone_reclaim_domain(zone, args->req, args->domain);
5308 }
5309 
5310 /* See uma.h */
5311 void
5312 uma_reclaim(int req)
5313 {
5314 	uma_reclaim_domain(req, UMA_ANYDOMAIN);
5315 }
5316 
5317 void
5318 uma_reclaim_domain(int req, int domain)
5319 {
5320 	struct uma_reclaim_args args;
5321 
5322 	bucket_enable();
5323 
5324 	args.domain = domain;
5325 	args.req = req;
5326 
5327 	sx_slock(&uma_reclaim_lock);
5328 	switch (req) {
5329 	case UMA_RECLAIM_TRIM:
5330 	case UMA_RECLAIM_DRAIN:
5331 		zone_foreach(uma_reclaim_domain_cb, &args);
5332 		break;
5333 	case UMA_RECLAIM_DRAIN_CPU:
5334 		zone_foreach(uma_reclaim_domain_cb, &args);
5335 		pcpu_cache_drain_safe(NULL);
5336 		zone_foreach(uma_reclaim_domain_cb, &args);
5337 		break;
5338 	default:
5339 		panic("unhandled reclamation request %d", req);
5340 	}
5341 
5342 	/*
5343 	 * Some slabs may have been freed but this zone will be visited early
5344 	 * we visit again so that we can free pages that are empty once other
5345 	 * zones are drained.  We have to do the same for buckets.
5346 	 */
5347 	uma_zone_reclaim_domain(slabzones[0], UMA_RECLAIM_DRAIN, domain);
5348 	uma_zone_reclaim_domain(slabzones[1], UMA_RECLAIM_DRAIN, domain);
5349 	bucket_zone_drain(domain);
5350 	sx_sunlock(&uma_reclaim_lock);
5351 }
5352 
5353 static volatile int uma_reclaim_needed;
5354 
5355 void
5356 uma_reclaim_wakeup(void)
5357 {
5358 
5359 	if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0)
5360 		wakeup(uma_reclaim);
5361 }
5362 
5363 void
5364 uma_reclaim_worker(void *arg __unused)
5365 {
5366 
5367 	for (;;) {
5368 		sx_xlock(&uma_reclaim_lock);
5369 		while (atomic_load_int(&uma_reclaim_needed) == 0)
5370 			sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl",
5371 			    hz);
5372 		sx_xunlock(&uma_reclaim_lock);
5373 		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
5374 		uma_reclaim(UMA_RECLAIM_DRAIN_CPU);
5375 		atomic_store_int(&uma_reclaim_needed, 0);
5376 		/* Don't fire more than once per-second. */
5377 		pause("umarclslp", hz);
5378 	}
5379 }
5380 
5381 /* See uma.h */
5382 void
5383 uma_zone_reclaim(uma_zone_t zone, int req)
5384 {
5385 	uma_zone_reclaim_domain(zone, req, UMA_ANYDOMAIN);
5386 }
5387 
5388 void
5389 uma_zone_reclaim_domain(uma_zone_t zone, int req, int domain)
5390 {
5391 	switch (req) {
5392 	case UMA_RECLAIM_TRIM:
5393 		zone_reclaim(zone, domain, M_NOWAIT, false);
5394 		break;
5395 	case UMA_RECLAIM_DRAIN:
5396 		zone_reclaim(zone, domain, M_NOWAIT, true);
5397 		break;
5398 	case UMA_RECLAIM_DRAIN_CPU:
5399 		pcpu_cache_drain_safe(zone);
5400 		zone_reclaim(zone, domain, M_NOWAIT, true);
5401 		break;
5402 	default:
5403 		panic("unhandled reclamation request %d", req);
5404 	}
5405 }
5406 
5407 /* See uma.h */
5408 int
5409 uma_zone_exhausted(uma_zone_t zone)
5410 {
5411 
5412 	return (atomic_load_32(&zone->uz_sleepers) > 0);
5413 }
5414 
5415 unsigned long
5416 uma_limit(void)
5417 {
5418 
5419 	return (uma_kmem_limit);
5420 }
5421 
5422 void
5423 uma_set_limit(unsigned long limit)
5424 {
5425 
5426 	uma_kmem_limit = limit;
5427 }
5428 
5429 unsigned long
5430 uma_size(void)
5431 {
5432 
5433 	return (atomic_load_long(&uma_kmem_total));
5434 }
5435 
5436 long
5437 uma_avail(void)
5438 {
5439 
5440 	return (uma_kmem_limit - uma_size());
5441 }
5442 
5443 #ifdef DDB
5444 /*
5445  * Generate statistics across both the zone and its per-cpu cache's.  Return
5446  * desired statistics if the pointer is non-NULL for that statistic.
5447  *
5448  * Note: does not update the zone statistics, as it can't safely clear the
5449  * per-CPU cache statistic.
5450  *
5451  */
5452 static void
5453 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp,
5454     uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp)
5455 {
5456 	uma_cache_t cache;
5457 	uint64_t allocs, frees, sleeps, xdomain;
5458 	int cachefree, cpu;
5459 
5460 	allocs = frees = sleeps = xdomain = 0;
5461 	cachefree = 0;
5462 	CPU_FOREACH(cpu) {
5463 		cache = &z->uz_cpu[cpu];
5464 		cachefree += cache->uc_allocbucket.ucb_cnt;
5465 		cachefree += cache->uc_freebucket.ucb_cnt;
5466 		xdomain += cache->uc_crossbucket.ucb_cnt;
5467 		cachefree += cache->uc_crossbucket.ucb_cnt;
5468 		allocs += cache->uc_allocs;
5469 		frees += cache->uc_frees;
5470 	}
5471 	allocs += counter_u64_fetch(z->uz_allocs);
5472 	frees += counter_u64_fetch(z->uz_frees);
5473 	xdomain += counter_u64_fetch(z->uz_xdomain);
5474 	sleeps += z->uz_sleeps;
5475 	if (cachefreep != NULL)
5476 		*cachefreep = cachefree;
5477 	if (allocsp != NULL)
5478 		*allocsp = allocs;
5479 	if (freesp != NULL)
5480 		*freesp = frees;
5481 	if (sleepsp != NULL)
5482 		*sleepsp = sleeps;
5483 	if (xdomainp != NULL)
5484 		*xdomainp = xdomain;
5485 }
5486 #endif /* DDB */
5487 
5488 static int
5489 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
5490 {
5491 	uma_keg_t kz;
5492 	uma_zone_t z;
5493 	int count;
5494 
5495 	count = 0;
5496 	rw_rlock(&uma_rwlock);
5497 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
5498 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
5499 			count++;
5500 	}
5501 	LIST_FOREACH(z, &uma_cachezones, uz_link)
5502 		count++;
5503 
5504 	rw_runlock(&uma_rwlock);
5505 	return (sysctl_handle_int(oidp, &count, 0, req));
5506 }
5507 
5508 static void
5509 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf,
5510     struct uma_percpu_stat *ups, bool internal)
5511 {
5512 	uma_zone_domain_t zdom;
5513 	uma_cache_t cache;
5514 	int i;
5515 
5516 	for (i = 0; i < vm_ndomains; i++) {
5517 		zdom = ZDOM_GET(z, i);
5518 		uth->uth_zone_free += zdom->uzd_nitems;
5519 	}
5520 	uth->uth_allocs = counter_u64_fetch(z->uz_allocs);
5521 	uth->uth_frees = counter_u64_fetch(z->uz_frees);
5522 	uth->uth_fails = counter_u64_fetch(z->uz_fails);
5523 	uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain);
5524 	uth->uth_sleeps = z->uz_sleeps;
5525 
5526 	for (i = 0; i < mp_maxid + 1; i++) {
5527 		bzero(&ups[i], sizeof(*ups));
5528 		if (internal || CPU_ABSENT(i))
5529 			continue;
5530 		cache = &z->uz_cpu[i];
5531 		ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt;
5532 		ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt;
5533 		ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt;
5534 		ups[i].ups_allocs = cache->uc_allocs;
5535 		ups[i].ups_frees = cache->uc_frees;
5536 	}
5537 }
5538 
5539 static int
5540 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
5541 {
5542 	struct uma_stream_header ush;
5543 	struct uma_type_header uth;
5544 	struct uma_percpu_stat *ups;
5545 	struct sbuf sbuf;
5546 	uma_keg_t kz;
5547 	uma_zone_t z;
5548 	uint64_t items;
5549 	uint32_t kfree, pages;
5550 	int count, error, i;
5551 
5552 	error = sysctl_wire_old_buffer(req, 0);
5553 	if (error != 0)
5554 		return (error);
5555 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
5556 	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
5557 	ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);
5558 
5559 	count = 0;
5560 	rw_rlock(&uma_rwlock);
5561 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
5562 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
5563 			count++;
5564 	}
5565 
5566 	LIST_FOREACH(z, &uma_cachezones, uz_link)
5567 		count++;
5568 
5569 	/*
5570 	 * Insert stream header.
5571 	 */
5572 	bzero(&ush, sizeof(ush));
5573 	ush.ush_version = UMA_STREAM_VERSION;
5574 	ush.ush_maxcpus = (mp_maxid + 1);
5575 	ush.ush_count = count;
5576 	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
5577 
5578 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
5579 		kfree = pages = 0;
5580 		for (i = 0; i < vm_ndomains; i++) {
5581 			kfree += kz->uk_domain[i].ud_free_items;
5582 			pages += kz->uk_domain[i].ud_pages;
5583 		}
5584 		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5585 			bzero(&uth, sizeof(uth));
5586 			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5587 			uth.uth_align = kz->uk_align;
5588 			uth.uth_size = kz->uk_size;
5589 			uth.uth_rsize = kz->uk_rsize;
5590 			if (z->uz_max_items > 0) {
5591 				items = UZ_ITEMS_COUNT(z->uz_items);
5592 				uth.uth_pages = (items / kz->uk_ipers) *
5593 					kz->uk_ppera;
5594 			} else
5595 				uth.uth_pages = pages;
5596 			uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) *
5597 			    kz->uk_ppera;
5598 			uth.uth_limit = z->uz_max_items;
5599 			uth.uth_keg_free = kfree;
5600 
5601 			/*
5602 			 * A zone is secondary is it is not the first entry
5603 			 * on the keg's zone list.
5604 			 */
5605 			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
5606 			    (LIST_FIRST(&kz->uk_zones) != z))
5607 				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
5608 			uma_vm_zone_stats(&uth, z, &sbuf, ups,
5609 			    kz->uk_flags & UMA_ZFLAG_INTERNAL);
5610 			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5611 			for (i = 0; i < mp_maxid + 1; i++)
5612 				(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5613 		}
5614 	}
5615 	LIST_FOREACH(z, &uma_cachezones, uz_link) {
5616 		bzero(&uth, sizeof(uth));
5617 		strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5618 		uth.uth_size = z->uz_size;
5619 		uma_vm_zone_stats(&uth, z, &sbuf, ups, false);
5620 		(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5621 		for (i = 0; i < mp_maxid + 1; i++)
5622 			(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5623 	}
5624 
5625 	rw_runlock(&uma_rwlock);
5626 	error = sbuf_finish(&sbuf);
5627 	sbuf_delete(&sbuf);
5628 	free(ups, M_TEMP);
5629 	return (error);
5630 }
5631 
5632 int
5633 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
5634 {
5635 	uma_zone_t zone = *(uma_zone_t *)arg1;
5636 	int error, max;
5637 
5638 	max = uma_zone_get_max(zone);
5639 	error = sysctl_handle_int(oidp, &max, 0, req);
5640 	if (error || !req->newptr)
5641 		return (error);
5642 
5643 	uma_zone_set_max(zone, max);
5644 
5645 	return (0);
5646 }
5647 
5648 int
5649 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
5650 {
5651 	uma_zone_t zone;
5652 	int cur;
5653 
5654 	/*
5655 	 * Some callers want to add sysctls for global zones that
5656 	 * may not yet exist so they pass a pointer to a pointer.
5657 	 */
5658 	if (arg2 == 0)
5659 		zone = *(uma_zone_t *)arg1;
5660 	else
5661 		zone = arg1;
5662 	cur = uma_zone_get_cur(zone);
5663 	return (sysctl_handle_int(oidp, &cur, 0, req));
5664 }
5665 
5666 static int
5667 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS)
5668 {
5669 	uma_zone_t zone = arg1;
5670 	uint64_t cur;
5671 
5672 	cur = uma_zone_get_allocs(zone);
5673 	return (sysctl_handle_64(oidp, &cur, 0, req));
5674 }
5675 
5676 static int
5677 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS)
5678 {
5679 	uma_zone_t zone = arg1;
5680 	uint64_t cur;
5681 
5682 	cur = uma_zone_get_frees(zone);
5683 	return (sysctl_handle_64(oidp, &cur, 0, req));
5684 }
5685 
5686 static int
5687 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS)
5688 {
5689 	struct sbuf sbuf;
5690 	uma_zone_t zone = arg1;
5691 	int error;
5692 
5693 	sbuf_new_for_sysctl(&sbuf, NULL, 0, req);
5694 	if (zone->uz_flags != 0)
5695 		sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS);
5696 	else
5697 		sbuf_printf(&sbuf, "0");
5698 	error = sbuf_finish(&sbuf);
5699 	sbuf_delete(&sbuf);
5700 
5701 	return (error);
5702 }
5703 
5704 static int
5705 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS)
5706 {
5707 	uma_keg_t keg = arg1;
5708 	int avail, effpct, total;
5709 
5710 	total = keg->uk_ppera * PAGE_SIZE;
5711 	if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
5712 		total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize;
5713 	/*
5714 	 * We consider the client's requested size and alignment here, not the
5715 	 * real size determination uk_rsize, because we also adjust the real
5716 	 * size for internal implementation reasons (max bitset size).
5717 	 */
5718 	avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1);
5719 	if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
5720 		avail *= mp_maxid + 1;
5721 	effpct = 100 * avail / total;
5722 	return (sysctl_handle_int(oidp, &effpct, 0, req));
5723 }
5724 
5725 static int
5726 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS)
5727 {
5728 	uma_zone_t zone = arg1;
5729 	uint64_t cur;
5730 
5731 	cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items));
5732 	return (sysctl_handle_64(oidp, &cur, 0, req));
5733 }
5734 
5735 #ifdef INVARIANTS
5736 static uma_slab_t
5737 uma_dbg_getslab(uma_zone_t zone, void *item)
5738 {
5739 	uma_slab_t slab;
5740 	uma_keg_t keg;
5741 	uint8_t *mem;
5742 
5743 	/*
5744 	 * It is safe to return the slab here even though the
5745 	 * zone is unlocked because the item's allocation state
5746 	 * essentially holds a reference.
5747 	 */
5748 	mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
5749 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5750 		return (NULL);
5751 	if (zone->uz_flags & UMA_ZFLAG_VTOSLAB)
5752 		return (vtoslab((vm_offset_t)mem));
5753 	keg = zone->uz_keg;
5754 	if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0)
5755 		return ((uma_slab_t)(mem + keg->uk_pgoff));
5756 	KEG_LOCK(keg, 0);
5757 	slab = hash_sfind(&keg->uk_hash, mem);
5758 	KEG_UNLOCK(keg, 0);
5759 
5760 	return (slab);
5761 }
5762 
5763 static bool
5764 uma_dbg_zskip(uma_zone_t zone, void *mem)
5765 {
5766 
5767 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5768 		return (true);
5769 
5770 	return (uma_dbg_kskip(zone->uz_keg, mem));
5771 }
5772 
5773 static bool
5774 uma_dbg_kskip(uma_keg_t keg, void *mem)
5775 {
5776 	uintptr_t idx;
5777 
5778 	if (dbg_divisor == 0)
5779 		return (true);
5780 
5781 	if (dbg_divisor == 1)
5782 		return (false);
5783 
5784 	idx = (uintptr_t)mem >> PAGE_SHIFT;
5785 	if (keg->uk_ipers > 1) {
5786 		idx *= keg->uk_ipers;
5787 		idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize;
5788 	}
5789 
5790 	if ((idx / dbg_divisor) * dbg_divisor != idx) {
5791 		counter_u64_add(uma_skip_cnt, 1);
5792 		return (true);
5793 	}
5794 	counter_u64_add(uma_dbg_cnt, 1);
5795 
5796 	return (false);
5797 }
5798 
5799 /*
5800  * Set up the slab's freei data such that uma_dbg_free can function.
5801  *
5802  */
5803 static void
5804 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
5805 {
5806 	uma_keg_t keg;
5807 	int freei;
5808 
5809 	if (slab == NULL) {
5810 		slab = uma_dbg_getslab(zone, item);
5811 		if (slab == NULL)
5812 			panic("uma: item %p did not belong to zone %s",
5813 			    item, zone->uz_name);
5814 	}
5815 	keg = zone->uz_keg;
5816 	freei = slab_item_index(slab, keg, item);
5817 
5818 	if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei,
5819 	    slab_dbg_bits(slab, keg)))
5820 		panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)",
5821 		    item, zone, zone->uz_name, slab, freei);
5822 }
5823 
5824 /*
5825  * Verifies freed addresses.  Checks for alignment, valid slab membership
5826  * and duplicate frees.
5827  *
5828  */
5829 static void
5830 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
5831 {
5832 	uma_keg_t keg;
5833 	int freei;
5834 
5835 	if (slab == NULL) {
5836 		slab = uma_dbg_getslab(zone, item);
5837 		if (slab == NULL)
5838 			panic("uma: Freed item %p did not belong to zone %s",
5839 			    item, zone->uz_name);
5840 	}
5841 	keg = zone->uz_keg;
5842 	freei = slab_item_index(slab, keg, item);
5843 
5844 	if (freei >= keg->uk_ipers)
5845 		panic("Invalid free of %p from zone %p(%s) slab %p(%d)",
5846 		    item, zone, zone->uz_name, slab, freei);
5847 
5848 	if (slab_item(slab, keg, freei) != item)
5849 		panic("Unaligned free of %p from zone %p(%s) slab %p(%d)",
5850 		    item, zone, zone->uz_name, slab, freei);
5851 
5852 	if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei,
5853 	    slab_dbg_bits(slab, keg)))
5854 		panic("Duplicate free of %p from zone %p(%s) slab %p(%d)",
5855 		    item, zone, zone->uz_name, slab, freei);
5856 }
5857 #endif /* INVARIANTS */
5858 
5859 #ifdef DDB
5860 static int64_t
5861 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used,
5862     uint64_t *sleeps, long *cachefree, uint64_t *xdomain)
5863 {
5864 	uint64_t frees;
5865 	int i;
5866 
5867 	if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
5868 		*allocs = counter_u64_fetch(z->uz_allocs);
5869 		frees = counter_u64_fetch(z->uz_frees);
5870 		*sleeps = z->uz_sleeps;
5871 		*cachefree = 0;
5872 		*xdomain = 0;
5873 	} else
5874 		uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps,
5875 		    xdomain);
5876 	for (i = 0; i < vm_ndomains; i++) {
5877 		*cachefree += ZDOM_GET(z, i)->uzd_nitems;
5878 		if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
5879 		    (LIST_FIRST(&kz->uk_zones) != z)))
5880 			*cachefree += kz->uk_domain[i].ud_free_items;
5881 	}
5882 	*used = *allocs - frees;
5883 	return (((int64_t)*used + *cachefree) * kz->uk_size);
5884 }
5885 
5886 DB_SHOW_COMMAND_FLAGS(uma, db_show_uma, DB_CMD_MEMSAFE)
5887 {
5888 	const char *fmt_hdr, *fmt_entry;
5889 	uma_keg_t kz;
5890 	uma_zone_t z;
5891 	uint64_t allocs, used, sleeps, xdomain;
5892 	long cachefree;
5893 	/* variables for sorting */
5894 	uma_keg_t cur_keg;
5895 	uma_zone_t cur_zone, last_zone;
5896 	int64_t cur_size, last_size, size;
5897 	int ties;
5898 
5899 	/* /i option produces machine-parseable CSV output */
5900 	if (modif[0] == 'i') {
5901 		fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n";
5902 		fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n";
5903 	} else {
5904 		fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n";
5905 		fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n";
5906 	}
5907 
5908 	db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests",
5909 	    "Sleeps", "Bucket", "Total Mem", "XFree");
5910 
5911 	/* Sort the zones with largest size first. */
5912 	last_zone = NULL;
5913 	last_size = INT64_MAX;
5914 	for (;;) {
5915 		cur_zone = NULL;
5916 		cur_size = -1;
5917 		ties = 0;
5918 		LIST_FOREACH(kz, &uma_kegs, uk_link) {
5919 			LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5920 				/*
5921 				 * In the case of size ties, print out zones
5922 				 * in the order they are encountered.  That is,
5923 				 * when we encounter the most recently output
5924 				 * zone, we have already printed all preceding
5925 				 * ties, and we must print all following ties.
5926 				 */
5927 				if (z == last_zone) {
5928 					ties = 1;
5929 					continue;
5930 				}
5931 				size = get_uma_stats(kz, z, &allocs, &used,
5932 				    &sleeps, &cachefree, &xdomain);
5933 				if (size > cur_size && size < last_size + ties)
5934 				{
5935 					cur_size = size;
5936 					cur_zone = z;
5937 					cur_keg = kz;
5938 				}
5939 			}
5940 		}
5941 		if (cur_zone == NULL)
5942 			break;
5943 
5944 		size = get_uma_stats(cur_keg, cur_zone, &allocs, &used,
5945 		    &sleeps, &cachefree, &xdomain);
5946 		db_printf(fmt_entry, cur_zone->uz_name,
5947 		    (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree,
5948 		    (uintmax_t)allocs, (uintmax_t)sleeps,
5949 		    (unsigned)cur_zone->uz_bucket_size, (intmax_t)size,
5950 		    xdomain);
5951 
5952 		if (db_pager_quit)
5953 			return;
5954 		last_zone = cur_zone;
5955 		last_size = cur_size;
5956 	}
5957 }
5958 
5959 DB_SHOW_COMMAND_FLAGS(umacache, db_show_umacache, DB_CMD_MEMSAFE)
5960 {
5961 	uma_zone_t z;
5962 	uint64_t allocs, frees;
5963 	long cachefree;
5964 	int i;
5965 
5966 	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
5967 	    "Requests", "Bucket");
5968 	LIST_FOREACH(z, &uma_cachezones, uz_link) {
5969 		uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL);
5970 		for (i = 0; i < vm_ndomains; i++)
5971 			cachefree += ZDOM_GET(z, i)->uzd_nitems;
5972 		db_printf("%18s %8ju %8jd %8ld %12ju %8u\n",
5973 		    z->uz_name, (uintmax_t)z->uz_size,
5974 		    (intmax_t)(allocs - frees), cachefree,
5975 		    (uintmax_t)allocs, z->uz_bucket_size);
5976 		if (db_pager_quit)
5977 			return;
5978 	}
5979 }
5980 #endif	/* DDB */
5981