1 //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interface for the loop memory dependence framework that
10 // was originally developed for the Loop Vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
15 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
16
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/Analysis/LoopAnalysisManager.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include "llvm/Pass.h"
22 #include <optional>
23
24 namespace llvm {
25
26 class AAResults;
27 class DataLayout;
28 class Loop;
29 class LoopAccessInfo;
30 class raw_ostream;
31 class SCEV;
32 class SCEVUnionPredicate;
33 class Value;
34
35 /// Collection of parameters shared beetween the Loop Vectorizer and the
36 /// Loop Access Analysis.
37 struct VectorizerParams {
38 /// Maximum SIMD width.
39 static const unsigned MaxVectorWidth;
40
41 /// VF as overridden by the user.
42 static unsigned VectorizationFactor;
43 /// Interleave factor as overridden by the user.
44 static unsigned VectorizationInterleave;
45 /// True if force-vector-interleave was specified by the user.
46 static bool isInterleaveForced();
47
48 /// \When performing memory disambiguation checks at runtime do not
49 /// make more than this number of comparisons.
50 static unsigned RuntimeMemoryCheckThreshold;
51 };
52
53 /// Checks memory dependences among accesses to the same underlying
54 /// object to determine whether there vectorization is legal or not (and at
55 /// which vectorization factor).
56 ///
57 /// Note: This class will compute a conservative dependence for access to
58 /// different underlying pointers. Clients, such as the loop vectorizer, will
59 /// sometimes deal these potential dependencies by emitting runtime checks.
60 ///
61 /// We use the ScalarEvolution framework to symbolically evalutate access
62 /// functions pairs. Since we currently don't restructure the loop we can rely
63 /// on the program order of memory accesses to determine their safety.
64 /// At the moment we will only deem accesses as safe for:
65 /// * A negative constant distance assuming program order.
66 ///
67 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x;
68 /// a[i] = tmp; y = a[i];
69 ///
70 /// The latter case is safe because later checks guarantuee that there can't
71 /// be a cycle through a phi node (that is, we check that "x" and "y" is not
72 /// the same variable: a header phi can only be an induction or a reduction, a
73 /// reduction can't have a memory sink, an induction can't have a memory
74 /// source). This is important and must not be violated (or we have to
75 /// resort to checking for cycles through memory).
76 ///
77 /// * A positive constant distance assuming program order that is bigger
78 /// than the biggest memory access.
79 ///
80 /// tmp = a[i] OR b[i] = x
81 /// a[i+2] = tmp y = b[i+2];
82 ///
83 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
84 ///
85 /// * Zero distances and all accesses have the same size.
86 ///
87 class MemoryDepChecker {
88 public:
89 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
90 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
91 /// Set of potential dependent memory accesses.
92 typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
93
94 /// Type to keep track of the status of the dependence check. The order of
95 /// the elements is important and has to be from most permissive to least
96 /// permissive.
97 enum class VectorizationSafetyStatus {
98 // Can vectorize safely without RT checks. All dependences are known to be
99 // safe.
100 Safe,
101 // Can possibly vectorize with RT checks to overcome unknown dependencies.
102 PossiblySafeWithRtChecks,
103 // Cannot vectorize due to known unsafe dependencies.
104 Unsafe,
105 };
106
107 /// Dependece between memory access instructions.
108 struct Dependence {
109 /// The type of the dependence.
110 enum DepType {
111 // No dependence.
112 NoDep,
113 // We couldn't determine the direction or the distance.
114 Unknown,
115 // Lexically forward.
116 //
117 // FIXME: If we only have loop-independent forward dependences (e.g. a
118 // read and write of A[i]), LAA will locally deem the dependence "safe"
119 // without querying the MemoryDepChecker. Therefore we can miss
120 // enumerating loop-independent forward dependences in
121 // getDependences. Note that as soon as there are different
122 // indices used to access the same array, the MemoryDepChecker *is*
123 // queried and the dependence list is complete.
124 Forward,
125 // Forward, but if vectorized, is likely to prevent store-to-load
126 // forwarding.
127 ForwardButPreventsForwarding,
128 // Lexically backward.
129 Backward,
130 // Backward, but the distance allows a vectorization factor of
131 // MaxSafeDepDistBytes.
132 BackwardVectorizable,
133 // Same, but may prevent store-to-load forwarding.
134 BackwardVectorizableButPreventsForwarding
135 };
136
137 /// String version of the types.
138 static const char *DepName[];
139
140 /// Index of the source of the dependence in the InstMap vector.
141 unsigned Source;
142 /// Index of the destination of the dependence in the InstMap vector.
143 unsigned Destination;
144 /// The type of the dependence.
145 DepType Type;
146
DependenceDependence147 Dependence(unsigned Source, unsigned Destination, DepType Type)
148 : Source(Source), Destination(Destination), Type(Type) {}
149
150 /// Return the source instruction of the dependence.
151 Instruction *getSource(const LoopAccessInfo &LAI) const;
152 /// Return the destination instruction of the dependence.
153 Instruction *getDestination(const LoopAccessInfo &LAI) const;
154
155 /// Dependence types that don't prevent vectorization.
156 static VectorizationSafetyStatus isSafeForVectorization(DepType Type);
157
158 /// Lexically forward dependence.
159 bool isForward() const;
160 /// Lexically backward dependence.
161 bool isBackward() const;
162
163 /// May be a lexically backward dependence type (includes Unknown).
164 bool isPossiblyBackward() const;
165
166 /// Print the dependence. \p Instr is used to map the instruction
167 /// indices to instructions.
168 void print(raw_ostream &OS, unsigned Depth,
169 const SmallVectorImpl<Instruction *> &Instrs) const;
170 };
171
MemoryDepChecker(PredicatedScalarEvolution & PSE,const Loop * L)172 MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
173 : PSE(PSE), InnermostLoop(L) {}
174
175 /// Register the location (instructions are given increasing numbers)
176 /// of a write access.
177 void addAccess(StoreInst *SI);
178
179 /// Register the location (instructions are given increasing numbers)
180 /// of a write access.
181 void addAccess(LoadInst *LI);
182
183 /// Check whether the dependencies between the accesses are safe.
184 ///
185 /// Only checks sets with elements in \p CheckDeps.
186 bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
187 const ValueToValueMap &Strides);
188
189 /// No memory dependence was encountered that would inhibit
190 /// vectorization.
isSafeForVectorization()191 bool isSafeForVectorization() const {
192 return Status == VectorizationSafetyStatus::Safe;
193 }
194
195 /// Return true if the number of elements that are safe to operate on
196 /// simultaneously is not bounded.
isSafeForAnyVectorWidth()197 bool isSafeForAnyVectorWidth() const {
198 return MaxSafeVectorWidthInBits == UINT_MAX;
199 }
200
201 /// The maximum number of bytes of a vector register we can vectorize
202 /// the accesses safely with.
getMaxSafeDepDistBytes()203 uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
204
205 /// Return the number of elements that are safe to operate on
206 /// simultaneously, multiplied by the size of the element in bits.
getMaxSafeVectorWidthInBits()207 uint64_t getMaxSafeVectorWidthInBits() const {
208 return MaxSafeVectorWidthInBits;
209 }
210
211 /// In same cases when the dependency check fails we can still
212 /// vectorize the loop with a dynamic array access check.
shouldRetryWithRuntimeCheck()213 bool shouldRetryWithRuntimeCheck() const {
214 return FoundNonConstantDistanceDependence &&
215 Status == VectorizationSafetyStatus::PossiblySafeWithRtChecks;
216 }
217
218 /// Returns the memory dependences. If null is returned we exceeded
219 /// the MaxDependences threshold and this information is not
220 /// available.
getDependences()221 const SmallVectorImpl<Dependence> *getDependences() const {
222 return RecordDependences ? &Dependences : nullptr;
223 }
224
clearDependences()225 void clearDependences() { Dependences.clear(); }
226
227 /// The vector of memory access instructions. The indices are used as
228 /// instruction identifiers in the Dependence class.
getMemoryInstructions()229 const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
230 return InstMap;
231 }
232
233 /// Generate a mapping between the memory instructions and their
234 /// indices according to program order.
generateInstructionOrderMap()235 DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
236 DenseMap<Instruction *, unsigned> OrderMap;
237
238 for (unsigned I = 0; I < InstMap.size(); ++I)
239 OrderMap[InstMap[I]] = I;
240
241 return OrderMap;
242 }
243
244 /// Find the set of instructions that read or write via \p Ptr.
245 SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
246 bool isWrite) const;
247
248 /// Return the program order indices for the access location (Ptr, IsWrite).
249 /// Returns an empty ArrayRef if there are no accesses for the location.
getOrderForAccess(Value * Ptr,bool IsWrite)250 ArrayRef<unsigned> getOrderForAccess(Value *Ptr, bool IsWrite) const {
251 auto I = Accesses.find({Ptr, IsWrite});
252 if (I != Accesses.end())
253 return I->second;
254 return {};
255 }
256
getInnermostLoop()257 const Loop *getInnermostLoop() const { return InnermostLoop; }
258
259 private:
260 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
261 /// applies dynamic knowledge to simplify SCEV expressions and convert them
262 /// to a more usable form. We need this in case assumptions about SCEV
263 /// expressions need to be made in order to avoid unknown dependences. For
264 /// example we might assume a unit stride for a pointer in order to prove
265 /// that a memory access is strided and doesn't wrap.
266 PredicatedScalarEvolution &PSE;
267 const Loop *InnermostLoop;
268
269 /// Maps access locations (ptr, read/write) to program order.
270 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
271
272 /// Memory access instructions in program order.
273 SmallVector<Instruction *, 16> InstMap;
274
275 /// The program order index to be used for the next instruction.
276 unsigned AccessIdx = 0;
277
278 // We can access this many bytes in parallel safely.
279 uint64_t MaxSafeDepDistBytes = 0;
280
281 /// Number of elements (from consecutive iterations) that are safe to
282 /// operate on simultaneously, multiplied by the size of the element in bits.
283 /// The size of the element is taken from the memory access that is most
284 /// restrictive.
285 uint64_t MaxSafeVectorWidthInBits = -1U;
286
287 /// If we see a non-constant dependence distance we can still try to
288 /// vectorize this loop with runtime checks.
289 bool FoundNonConstantDistanceDependence = false;
290
291 /// Result of the dependence checks, indicating whether the checked
292 /// dependences are safe for vectorization, require RT checks or are known to
293 /// be unsafe.
294 VectorizationSafetyStatus Status = VectorizationSafetyStatus::Safe;
295
296 //// True if Dependences reflects the dependences in the
297 //// loop. If false we exceeded MaxDependences and
298 //// Dependences is invalid.
299 bool RecordDependences = true;
300
301 /// Memory dependences collected during the analysis. Only valid if
302 /// RecordDependences is true.
303 SmallVector<Dependence, 8> Dependences;
304
305 /// Check whether there is a plausible dependence between the two
306 /// accesses.
307 ///
308 /// Access \p A must happen before \p B in program order. The two indices
309 /// identify the index into the program order map.
310 ///
311 /// This function checks whether there is a plausible dependence (or the
312 /// absence of such can't be proved) between the two accesses. If there is a
313 /// plausible dependence but the dependence distance is bigger than one
314 /// element access it records this distance in \p MaxSafeDepDistBytes (if this
315 /// distance is smaller than any other distance encountered so far).
316 /// Otherwise, this function returns true signaling a possible dependence.
317 Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
318 const MemAccessInfo &B, unsigned BIdx,
319 const ValueToValueMap &Strides);
320
321 /// Check whether the data dependence could prevent store-load
322 /// forwarding.
323 ///
324 /// \return false if we shouldn't vectorize at all or avoid larger
325 /// vectorization factors by limiting MaxSafeDepDistBytes.
326 bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize);
327
328 /// Updates the current safety status with \p S. We can go from Safe to
329 /// either PossiblySafeWithRtChecks or Unsafe and from
330 /// PossiblySafeWithRtChecks to Unsafe.
331 void mergeInStatus(VectorizationSafetyStatus S);
332 };
333
334 class RuntimePointerChecking;
335 /// A grouping of pointers. A single memcheck is required between
336 /// two groups.
337 struct RuntimeCheckingPtrGroup {
338 /// Create a new pointer checking group containing a single
339 /// pointer, with index \p Index in RtCheck.
340 RuntimeCheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck);
341
342 /// Tries to add the pointer recorded in RtCheck at index
343 /// \p Index to this pointer checking group. We can only add a pointer
344 /// to a checking group if we will still be able to get
345 /// the upper and lower bounds of the check. Returns true in case
346 /// of success, false otherwise.
347 bool addPointer(unsigned Index, RuntimePointerChecking &RtCheck);
348 bool addPointer(unsigned Index, const SCEV *Start, const SCEV *End,
349 unsigned AS, bool NeedsFreeze, ScalarEvolution &SE);
350
351 /// The SCEV expression which represents the upper bound of all the
352 /// pointers in this group.
353 const SCEV *High;
354 /// The SCEV expression which represents the lower bound of all the
355 /// pointers in this group.
356 const SCEV *Low;
357 /// Indices of all the pointers that constitute this grouping.
358 SmallVector<unsigned, 2> Members;
359 /// Address space of the involved pointers.
360 unsigned AddressSpace;
361 /// Whether the pointer needs to be frozen after expansion, e.g. because it
362 /// may be poison outside the loop.
363 bool NeedsFreeze = false;
364 };
365
366 /// A memcheck which made up of a pair of grouped pointers.
367 typedef std::pair<const RuntimeCheckingPtrGroup *,
368 const RuntimeCheckingPtrGroup *>
369 RuntimePointerCheck;
370
371 struct PointerDiffInfo {
372 const SCEV *SrcStart;
373 const SCEV *SinkStart;
374 unsigned AccessSize;
375 bool NeedsFreeze;
376
PointerDiffInfoPointerDiffInfo377 PointerDiffInfo(const SCEV *SrcStart, const SCEV *SinkStart,
378 unsigned AccessSize, bool NeedsFreeze)
379 : SrcStart(SrcStart), SinkStart(SinkStart), AccessSize(AccessSize),
380 NeedsFreeze(NeedsFreeze) {}
381 };
382
383 /// Holds information about the memory runtime legality checks to verify
384 /// that a group of pointers do not overlap.
385 class RuntimePointerChecking {
386 friend struct RuntimeCheckingPtrGroup;
387
388 public:
389 struct PointerInfo {
390 /// Holds the pointer value that we need to check.
391 TrackingVH<Value> PointerValue;
392 /// Holds the smallest byte address accessed by the pointer throughout all
393 /// iterations of the loop.
394 const SCEV *Start;
395 /// Holds the largest byte address accessed by the pointer throughout all
396 /// iterations of the loop, plus 1.
397 const SCEV *End;
398 /// Holds the information if this pointer is used for writing to memory.
399 bool IsWritePtr;
400 /// Holds the id of the set of pointers that could be dependent because of a
401 /// shared underlying object.
402 unsigned DependencySetId;
403 /// Holds the id of the disjoint alias set to which this pointer belongs.
404 unsigned AliasSetId;
405 /// SCEV for the access.
406 const SCEV *Expr;
407 /// True if the pointer expressions needs to be frozen after expansion.
408 bool NeedsFreeze;
409
PointerInfoPointerInfo410 PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
411 bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
412 const SCEV *Expr, bool NeedsFreeze)
413 : PointerValue(PointerValue), Start(Start), End(End),
414 IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
415 AliasSetId(AliasSetId), Expr(Expr), NeedsFreeze(NeedsFreeze) {}
416 };
417
RuntimePointerChecking(MemoryDepChecker & DC,ScalarEvolution * SE)418 RuntimePointerChecking(MemoryDepChecker &DC, ScalarEvolution *SE)
419 : DC(DC), SE(SE) {}
420
421 /// Reset the state of the pointer runtime information.
reset()422 void reset() {
423 Need = false;
424 Pointers.clear();
425 Checks.clear();
426 }
427
428 /// Insert a pointer and calculate the start and end SCEVs.
429 /// We need \p PSE in order to compute the SCEV expression of the pointer
430 /// according to the assumptions that we've made during the analysis.
431 /// The method might also version the pointer stride according to \p Strides,
432 /// and add new predicates to \p PSE.
433 void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy,
434 bool WritePtr, unsigned DepSetId, unsigned ASId,
435 PredicatedScalarEvolution &PSE, bool NeedsFreeze);
436
437 /// No run-time memory checking is necessary.
empty()438 bool empty() const { return Pointers.empty(); }
439
440 /// Generate the checks and store it. This also performs the grouping
441 /// of pointers to reduce the number of memchecks necessary.
442 void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
443 bool UseDependencies);
444
445 /// Returns the checks that generateChecks created. They can be used to ensure
446 /// no read/write accesses overlap across all loop iterations.
getChecks()447 const SmallVectorImpl<RuntimePointerCheck> &getChecks() const {
448 return Checks;
449 }
450
451 // Returns an optional list of (pointer-difference expressions, access size)
452 // pairs that can be used to prove that there are no vectorization-preventing
453 // dependencies at runtime. There are is a vectorization-preventing dependency
454 // if any pointer-difference is <u VF * InterleaveCount * access size. Returns
455 // std::nullopt if pointer-difference checks cannot be used.
getDiffChecks()456 std::optional<ArrayRef<PointerDiffInfo>> getDiffChecks() const {
457 if (!CanUseDiffCheck)
458 return std::nullopt;
459 return {DiffChecks};
460 }
461
462 /// Decide if we need to add a check between two groups of pointers,
463 /// according to needsChecking.
464 bool needsChecking(const RuntimeCheckingPtrGroup &M,
465 const RuntimeCheckingPtrGroup &N) const;
466
467 /// Returns the number of run-time checks required according to
468 /// needsChecking.
getNumberOfChecks()469 unsigned getNumberOfChecks() const { return Checks.size(); }
470
471 /// Print the list run-time memory checks necessary.
472 void print(raw_ostream &OS, unsigned Depth = 0) const;
473
474 /// Print \p Checks.
475 void printChecks(raw_ostream &OS,
476 const SmallVectorImpl<RuntimePointerCheck> &Checks,
477 unsigned Depth = 0) const;
478
479 /// This flag indicates if we need to add the runtime check.
480 bool Need = false;
481
482 /// Information about the pointers that may require checking.
483 SmallVector<PointerInfo, 2> Pointers;
484
485 /// Holds a partitioning of pointers into "check groups".
486 SmallVector<RuntimeCheckingPtrGroup, 2> CheckingGroups;
487
488 /// Check if pointers are in the same partition
489 ///
490 /// \p PtrToPartition contains the partition number for pointers (-1 if the
491 /// pointer belongs to multiple partitions).
492 static bool
493 arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
494 unsigned PtrIdx1, unsigned PtrIdx2);
495
496 /// Decide whether we need to issue a run-time check for pointer at
497 /// index \p I and \p J to prove their independence.
498 bool needsChecking(unsigned I, unsigned J) const;
499
500 /// Return PointerInfo for pointer at index \p PtrIdx.
getPointerInfo(unsigned PtrIdx)501 const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
502 return Pointers[PtrIdx];
503 }
504
getSE()505 ScalarEvolution *getSE() const { return SE; }
506
507 private:
508 /// Groups pointers such that a single memcheck is required
509 /// between two different groups. This will clear the CheckingGroups vector
510 /// and re-compute it. We will only group dependecies if \p UseDependencies
511 /// is true, otherwise we will create a separate group for each pointer.
512 void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
513 bool UseDependencies);
514
515 /// Generate the checks and return them.
516 SmallVector<RuntimePointerCheck, 4> generateChecks();
517
518 /// Try to create add a new (pointer-difference, access size) pair to
519 /// DiffCheck for checking groups \p CGI and \p CGJ. If pointer-difference
520 /// checks cannot be used for the groups, set CanUseDiffCheck to false.
521 void tryToCreateDiffCheck(const RuntimeCheckingPtrGroup &CGI,
522 const RuntimeCheckingPtrGroup &CGJ);
523
524 MemoryDepChecker &DC;
525
526 /// Holds a pointer to the ScalarEvolution analysis.
527 ScalarEvolution *SE;
528
529 /// Set of run-time checks required to establish independence of
530 /// otherwise may-aliasing pointers in the loop.
531 SmallVector<RuntimePointerCheck, 4> Checks;
532
533 /// Flag indicating if pointer-difference checks can be used
534 bool CanUseDiffCheck = true;
535
536 /// A list of (pointer-difference, access size) pairs that can be used to
537 /// prove that there are no vectorization-preventing dependencies.
538 SmallVector<PointerDiffInfo> DiffChecks;
539 };
540
541 /// Drive the analysis of memory accesses in the loop
542 ///
543 /// This class is responsible for analyzing the memory accesses of a loop. It
544 /// collects the accesses and then its main helper the AccessAnalysis class
545 /// finds and categorizes the dependences in buildDependenceSets.
546 ///
547 /// For memory dependences that can be analyzed at compile time, it determines
548 /// whether the dependence is part of cycle inhibiting vectorization. This work
549 /// is delegated to the MemoryDepChecker class.
550 ///
551 /// For memory dependences that cannot be determined at compile time, it
552 /// generates run-time checks to prove independence. This is done by
553 /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
554 /// RuntimePointerCheck class.
555 ///
556 /// If pointers can wrap or can't be expressed as affine AddRec expressions by
557 /// ScalarEvolution, we will generate run-time checks by emitting a
558 /// SCEVUnionPredicate.
559 ///
560 /// Checks for both memory dependences and the SCEV predicates contained in the
561 /// PSE must be emitted in order for the results of this analysis to be valid.
562 class LoopAccessInfo {
563 public:
564 LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI,
565 AAResults *AA, DominatorTree *DT, LoopInfo *LI);
566
567 /// Return true we can analyze the memory accesses in the loop and there are
568 /// no memory dependence cycles.
canVectorizeMemory()569 bool canVectorizeMemory() const { return CanVecMem; }
570
571 /// Return true if there is a convergent operation in the loop. There may
572 /// still be reported runtime pointer checks that would be required, but it is
573 /// not legal to insert them.
hasConvergentOp()574 bool hasConvergentOp() const { return HasConvergentOp; }
575
getRuntimePointerChecking()576 const RuntimePointerChecking *getRuntimePointerChecking() const {
577 return PtrRtChecking.get();
578 }
579
580 /// Number of memchecks required to prove independence of otherwise
581 /// may-alias pointers.
getNumRuntimePointerChecks()582 unsigned getNumRuntimePointerChecks() const {
583 return PtrRtChecking->getNumberOfChecks();
584 }
585
586 /// Return true if the block BB needs to be predicated in order for the loop
587 /// to be vectorized.
588 static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
589 DominatorTree *DT);
590
591 /// Returns true if the value V is uniform within the loop.
592 bool isUniform(Value *V) const;
593
getMaxSafeDepDistBytes()594 uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
getNumStores()595 unsigned getNumStores() const { return NumStores; }
getNumLoads()596 unsigned getNumLoads() const { return NumLoads;}
597
598 /// The diagnostics report generated for the analysis. E.g. why we
599 /// couldn't analyze the loop.
getReport()600 const OptimizationRemarkAnalysis *getReport() const { return Report.get(); }
601
602 /// the Memory Dependence Checker which can determine the
603 /// loop-independent and loop-carried dependences between memory accesses.
getDepChecker()604 const MemoryDepChecker &getDepChecker() const { return *DepChecker; }
605
606 /// Return the list of instructions that use \p Ptr to read or write
607 /// memory.
getInstructionsForAccess(Value * Ptr,bool isWrite)608 SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
609 bool isWrite) const {
610 return DepChecker->getInstructionsForAccess(Ptr, isWrite);
611 }
612
613 /// If an access has a symbolic strides, this maps the pointer value to
614 /// the stride symbol.
getSymbolicStrides()615 const ValueToValueMap &getSymbolicStrides() const { return SymbolicStrides; }
616
617 /// Pointer has a symbolic stride.
hasStride(Value * V)618 bool hasStride(Value *V) const { return StrideSet.count(V); }
619
620 /// Print the information about the memory accesses in the loop.
621 void print(raw_ostream &OS, unsigned Depth = 0) const;
622
623 /// If the loop has memory dependence involving an invariant address, i.e. two
624 /// stores or a store and a load, then return true, else return false.
hasDependenceInvolvingLoopInvariantAddress()625 bool hasDependenceInvolvingLoopInvariantAddress() const {
626 return HasDependenceInvolvingLoopInvariantAddress;
627 }
628
629 /// Return the list of stores to invariant addresses.
getStoresToInvariantAddresses()630 ArrayRef<StoreInst *> getStoresToInvariantAddresses() const {
631 return StoresToInvariantAddresses;
632 }
633
634 /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
635 /// them to a more usable form. All SCEV expressions during the analysis
636 /// should be re-written (and therefore simplified) according to PSE.
637 /// A user of LoopAccessAnalysis will need to emit the runtime checks
638 /// associated with this predicate.
getPSE()639 const PredicatedScalarEvolution &getPSE() const { return *PSE; }
640
641 private:
642 /// Analyze the loop.
643 void analyzeLoop(AAResults *AA, LoopInfo *LI,
644 const TargetLibraryInfo *TLI, DominatorTree *DT);
645
646 /// Check if the structure of the loop allows it to be analyzed by this
647 /// pass.
648 bool canAnalyzeLoop();
649
650 /// Save the analysis remark.
651 ///
652 /// LAA does not directly emits the remarks. Instead it stores it which the
653 /// client can retrieve and presents as its own analysis
654 /// (e.g. -Rpass-analysis=loop-vectorize).
655 OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName,
656 Instruction *Instr = nullptr);
657
658 /// Collect memory access with loop invariant strides.
659 ///
660 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
661 /// invariant.
662 void collectStridedAccess(Value *LoadOrStoreInst);
663
664 // Emits the first unsafe memory dependence in a loop.
665 // Emits nothing if there are no unsafe dependences
666 // or if the dependences were not recorded.
667 void emitUnsafeDependenceRemark();
668
669 std::unique_ptr<PredicatedScalarEvolution> PSE;
670
671 /// We need to check that all of the pointers in this list are disjoint
672 /// at runtime. Using std::unique_ptr to make using move ctor simpler.
673 std::unique_ptr<RuntimePointerChecking> PtrRtChecking;
674
675 /// the Memory Dependence Checker which can determine the
676 /// loop-independent and loop-carried dependences between memory accesses.
677 std::unique_ptr<MemoryDepChecker> DepChecker;
678
679 Loop *TheLoop;
680
681 unsigned NumLoads = 0;
682 unsigned NumStores = 0;
683
684 uint64_t MaxSafeDepDistBytes = -1;
685
686 /// Cache the result of analyzeLoop.
687 bool CanVecMem = false;
688 bool HasConvergentOp = false;
689
690 /// Indicator that there are non vectorizable stores to a uniform address.
691 bool HasDependenceInvolvingLoopInvariantAddress = false;
692
693 /// List of stores to invariant addresses.
694 SmallVector<StoreInst *> StoresToInvariantAddresses;
695
696 /// The diagnostics report generated for the analysis. E.g. why we
697 /// couldn't analyze the loop.
698 std::unique_ptr<OptimizationRemarkAnalysis> Report;
699
700 /// If an access has a symbolic strides, this maps the pointer value to
701 /// the stride symbol.
702 ValueToValueMap SymbolicStrides;
703
704 /// Set of symbolic strides values.
705 SmallPtrSet<Value *, 8> StrideSet;
706 };
707
708 Value *stripIntegerCast(Value *V);
709
710 /// Return the SCEV corresponding to a pointer with the symbolic stride
711 /// replaced with constant one, assuming the SCEV predicate associated with
712 /// \p PSE is true.
713 ///
714 /// If necessary this method will version the stride of the pointer according
715 /// to \p PtrToStride and therefore add further predicates to \p PSE.
716 ///
717 /// \p PtrToStride provides the mapping between the pointer value and its
718 /// stride as collected by LoopVectorizationLegality::collectStridedAccess.
719 const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
720 const ValueToValueMap &PtrToStride,
721 Value *Ptr);
722
723 /// If the pointer has a constant stride return it in units of the access type
724 /// size. Otherwise return std::nullopt.
725 ///
726 /// Ensure that it does not wrap in the address space, assuming the predicate
727 /// associated with \p PSE is true.
728 ///
729 /// If necessary this method will version the stride of the pointer according
730 /// to \p PtrToStride and therefore add further predicates to \p PSE.
731 /// The \p Assume parameter indicates if we are allowed to make additional
732 /// run-time assumptions.
733 std::optional<int64_t>
734 getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr,
735 const Loop *Lp,
736 const ValueToValueMap &StridesMap = ValueToValueMap(),
737 bool Assume = false, bool ShouldCheckWrap = true);
738
739 /// Returns the distance between the pointers \p PtrA and \p PtrB iff they are
740 /// compatible and it is possible to calculate the distance between them. This
741 /// is a simple API that does not depend on the analysis pass.
742 /// \param StrictCheck Ensure that the calculated distance matches the
743 /// type-based one after all the bitcasts removal in the provided pointers.
744 std::optional<int> getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB,
745 Value *PtrB, const DataLayout &DL,
746 ScalarEvolution &SE,
747 bool StrictCheck = false,
748 bool CheckType = true);
749
750 /// Attempt to sort the pointers in \p VL and return the sorted indices
751 /// in \p SortedIndices, if reordering is required.
752 ///
753 /// Returns 'true' if sorting is legal, otherwise returns 'false'.
754 ///
755 /// For example, for a given \p VL of memory accesses in program order, a[i+4],
756 /// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the
757 /// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and
758 /// saves the mask for actual memory accesses in program order in
759 /// \p SortedIndices as <1,2,0,3>
760 bool sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, const DataLayout &DL,
761 ScalarEvolution &SE,
762 SmallVectorImpl<unsigned> &SortedIndices);
763
764 /// Returns true if the memory operations \p A and \p B are consecutive.
765 /// This is a simple API that does not depend on the analysis pass.
766 bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
767 ScalarEvolution &SE, bool CheckType = true);
768
769 class LoopAccessInfoManager {
770 /// The cache.
771 DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
772
773 // The used analysis passes.
774 ScalarEvolution &SE;
775 AAResults &AA;
776 DominatorTree &DT;
777 LoopInfo &LI;
778 const TargetLibraryInfo *TLI = nullptr;
779
780 public:
LoopAccessInfoManager(ScalarEvolution & SE,AAResults & AA,DominatorTree & DT,LoopInfo & LI,const TargetLibraryInfo * TLI)781 LoopAccessInfoManager(ScalarEvolution &SE, AAResults &AA, DominatorTree &DT,
782 LoopInfo &LI, const TargetLibraryInfo *TLI)
783 : SE(SE), AA(AA), DT(DT), LI(LI), TLI(TLI) {}
784
785 const LoopAccessInfo &getInfo(Loop &L);
786
clear()787 void clear() { LoopAccessInfoMap.clear(); }
788 };
789
790 /// This analysis provides dependence information for the memory accesses
791 /// of a loop.
792 ///
793 /// It runs the analysis for a loop on demand. This can be initiated by
794 /// querying the loop access info via LAA::getInfo. getInfo return a
795 /// LoopAccessInfo object. See this class for the specifics of what information
796 /// is provided.
797 class LoopAccessLegacyAnalysis : public FunctionPass {
798 public:
799 static char ID;
800
801 LoopAccessLegacyAnalysis();
802
803 bool runOnFunction(Function &F) override;
804
805 void getAnalysisUsage(AnalysisUsage &AU) const override;
806
807 /// Return the proxy object for retrieving LoopAccessInfo for individual
808 /// loops.
809 ///
810 /// If there is no cached result available run the analysis.
getLAIs()811 LoopAccessInfoManager &getLAIs() { return *LAIs; }
812
releaseMemory()813 void releaseMemory() override {
814 // Invalidate the cache when the pass is freed.
815 LAIs->clear();
816 }
817
818 private:
819 std::unique_ptr<LoopAccessInfoManager> LAIs;
820 };
821
822 /// This analysis provides dependence information for the memory
823 /// accesses of a loop.
824 ///
825 /// It runs the analysis for a loop on demand. This can be initiated by
826 /// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
827 /// getResult return a LoopAccessInfo object. See this class for the
828 /// specifics of what information is provided.
829 class LoopAccessAnalysis
830 : public AnalysisInfoMixin<LoopAccessAnalysis> {
831 friend AnalysisInfoMixin<LoopAccessAnalysis>;
832 static AnalysisKey Key;
833
834 public:
835 typedef LoopAccessInfoManager Result;
836
837 Result run(Function &F, FunctionAnalysisManager &AM);
838 };
839
getSource(const LoopAccessInfo & LAI)840 inline Instruction *MemoryDepChecker::Dependence::getSource(
841 const LoopAccessInfo &LAI) const {
842 return LAI.getDepChecker().getMemoryInstructions()[Source];
843 }
844
getDestination(const LoopAccessInfo & LAI)845 inline Instruction *MemoryDepChecker::Dependence::getDestination(
846 const LoopAccessInfo &LAI) const {
847 return LAI.getDepChecker().getMemoryInstructions()[Destination];
848 }
849
850 } // End llvm namespace
851
852 #endif
853