1 ///////////////////////////////////////////////////////////////////////
2 // File: baselinedetect.cpp
3 // Description: Initial Baseline Determination.
4 // Copyright 2012 Google Inc. All Rights Reserved.
5 // Author: rays@google.com (Ray Smith)
6 //
7 // Licensed under the Apache License, Version 2.0 (the "License");
8 // you may not use this file except in compliance with the License.
9 // You may obtain a copy of the License at
10 // http://www.apache.org/licenses/LICENSE-2.0
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS,
13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 // See the License for the specific language governing permissions and
15 // limitations under the License.
16 //
17 ///////////////////////////////////////////////////////////////////////
18
19 #define _USE_MATH_DEFINES // for M_PI
20
21 #ifdef HAVE_CONFIG_H
22 # include "config_auto.h"
23 #endif
24
25 #include "baselinedetect.h"
26
27 #include <allheaders.h>
28 #include <algorithm>
29 #include <cfloat> // for FLT_MAX
30 #include <cmath> // for M_PI
31 #include "blobbox.h"
32 #include "detlinefit.h"
33 #include "drawtord.h"
34 #include "helpers.h"
35 #include "linlsq.h"
36 #include "makerow.h"
37 #include "textord.h"
38 #include "tprintf.h"
39 #include "underlin.h"
40
41 // Number of displacement modes kept in displacement_modes_;
42 const int kMaxDisplacementsModes = 3;
43 // Number of points to skip when retrying initial fit.
44 const int kNumSkipPoints = 3;
45 // Max angle deviation (in radians) allowed to keep the independent baseline.
46 const double kMaxSkewDeviation = 1.0 / 64;
47 // Fraction of line spacing estimate for quantization of blob displacements.
48 const double kOffsetQuantizationFactor = 3.0 / 64;
49 // Fraction of line spacing estimate for computing blob fit error.
50 const double kFitHalfrangeFactor = 6.0 / 64;
51 // Max fraction of line spacing allowed before a baseline counts as badly
52 // fitting.
53 const double kMaxBaselineError = 3.0 / 64;
54 // Multiple of linespacing that sets max_blob_size in TO_BLOCK.
55 // Copied from textord_excess_blobsize.
56 const double kMaxBlobSizeMultiple = 1.3;
57 // Min fraction of linespacing gaps that should be close to the model before
58 // we will force the linespacing model on all the lines.
59 const double kMinFittingLinespacings = 0.25;
60 // A y-coordinate within a textline that is to be debugged.
61 //#define kDebugYCoord 1525
62
63 namespace tesseract {
64
BaselineRow(double line_spacing,TO_ROW * to_row)65 BaselineRow::BaselineRow(double line_spacing, TO_ROW *to_row)
66 : blobs_(to_row->blob_list()),
67 baseline_pt1_(0.0f, 0.0f),
68 baseline_pt2_(0.0f, 0.0f),
69 baseline_error_(0.0),
70 good_baseline_(false) {
71 ComputeBoundingBox();
72 // Compute a scale factor for rounding to ints.
73 disp_quant_factor_ = kOffsetQuantizationFactor * line_spacing;
74 fit_halfrange_ = kFitHalfrangeFactor * line_spacing;
75 max_baseline_error_ = kMaxBaselineError * line_spacing;
76 }
77
78 // Sets the TO_ROW with the output straight line.
SetupOldLineParameters(TO_ROW * row) const79 void BaselineRow::SetupOldLineParameters(TO_ROW *row) const {
80 // TODO(rays) get rid of this when m and c are no longer used.
81 double gradient = tan(BaselineAngle());
82 // para_c is the actual intercept of the baseline on the y-axis.
83 float para_c = StraightYAtX(0.0);
84 row->set_line(gradient, para_c, baseline_error_);
85 row->set_parallel_line(gradient, para_c, baseline_error_);
86 }
87
88 // Outputs diagnostic information.
Print() const89 void BaselineRow::Print() const {
90 tprintf("Baseline (%g,%g)->(%g,%g), angle=%g, intercept=%g\n",
91 baseline_pt1_.x(), baseline_pt1_.y(), baseline_pt2_.x(),
92 baseline_pt2_.y(), BaselineAngle(), StraightYAtX(0.0));
93 tprintf("Quant factor=%g, error=%g, good=%d, box:", disp_quant_factor_,
94 baseline_error_, good_baseline_);
95 bounding_box_.print();
96 }
97
98 // Returns the skew angle (in radians) of the current baseline in [-pi,pi].
BaselineAngle() const99 double BaselineRow::BaselineAngle() const {
100 FCOORD baseline_dir(baseline_pt2_ - baseline_pt1_);
101 double angle = baseline_dir.angle();
102 // Baseline directions are only unique in a range of pi so constrain to
103 // [-pi/2, pi/2].
104 return fmod(angle + M_PI * 1.5, M_PI) - M_PI * 0.5;
105 }
106
107 // Computes and returns the linespacing at the middle of the overlap
108 // between this and other.
SpaceBetween(const BaselineRow & other) const109 double BaselineRow::SpaceBetween(const BaselineRow &other) const {
110 // Find the x-centre of overlap of the lines.
111 float x = (std::max(bounding_box_.left(), other.bounding_box_.left()) +
112 std::min(bounding_box_.right(), other.bounding_box_.right())) /
113 2.0f;
114 // Find the vertical centre between them.
115 float y = (StraightYAtX(x) + other.StraightYAtX(x)) / 2.0f;
116 // Find the perpendicular distance of (x,y) from each line.
117 FCOORD pt(x, y);
118 return PerpDistanceFromBaseline(pt) + other.PerpDistanceFromBaseline(pt);
119 }
120
121 // Computes and returns the displacement of the center of the line
122 // perpendicular to the given direction.
PerpDisp(const FCOORD & direction) const123 double BaselineRow::PerpDisp(const FCOORD &direction) const {
124 float middle_x = (bounding_box_.left() + bounding_box_.right()) / 2.0f;
125 FCOORD middle_pos(middle_x, StraightYAtX(middle_x));
126 return direction * middle_pos / direction.length();
127 }
128
129 // Computes the y coordinate at the given x using the straight baseline
130 // defined by baseline_pt1_ and baseline_pt2__.
StraightYAtX(double x) const131 double BaselineRow::StraightYAtX(double x) const {
132 double denominator = baseline_pt2_.x() - baseline_pt1_.x();
133 if (denominator == 0.0) {
134 return (baseline_pt1_.y() + baseline_pt2_.y()) / 2.0;
135 }
136 return baseline_pt1_.y() + (x - baseline_pt1_.x()) *
137 (baseline_pt2_.y() - baseline_pt1_.y()) /
138 denominator;
139 }
140
141 // Fits a straight baseline to the points. Returns true if it had enough
142 // points to be reasonably sure of the fitted baseline.
143 // If use_box_bottoms is false, baselines positions are formed by
144 // considering the outlines of the blobs.
FitBaseline(bool use_box_bottoms)145 bool BaselineRow::FitBaseline(bool use_box_bottoms) {
146 // Deterministic fitting is used wherever possible.
147 fitter_.Clear();
148 // Linear least squares is a backup if the DetLineFit produces a bad line.
149 LLSQ llsq;
150 BLOBNBOX_IT blob_it(blobs_);
151
152 for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
153 BLOBNBOX *blob = blob_it.data();
154 if (!use_box_bottoms) {
155 blob->EstimateBaselinePosition();
156 }
157 const TBOX &box = blob->bounding_box();
158 int x_middle = (box.left() + box.right()) / 2;
159 #ifdef kDebugYCoord
160 if (box.bottom() < kDebugYCoord && box.top() > kDebugYCoord) {
161 tprintf("Box bottom = %d, baseline pos=%d for box at:", box.bottom(),
162 blob->baseline_position());
163 box.print();
164 }
165 #endif
166 fitter_.Add(ICOORD(x_middle, blob->baseline_position()), box.width() / 2);
167 llsq.add(x_middle, blob->baseline_position());
168 }
169 // Fit the line.
170 ICOORD pt1, pt2;
171 baseline_error_ = fitter_.Fit(&pt1, &pt2);
172 baseline_pt1_ = pt1;
173 baseline_pt2_ = pt2;
174 if (baseline_error_ > max_baseline_error_ &&
175 fitter_.SufficientPointsForIndependentFit()) {
176 // The fit was bad but there were plenty of points, so try skipping
177 // the first and last few, and use the new line if it dramatically improves
178 // the error of fit.
179 double error = fitter_.Fit(kNumSkipPoints, kNumSkipPoints, &pt1, &pt2);
180 if (error < baseline_error_ / 2.0) {
181 baseline_error_ = error;
182 baseline_pt1_ = pt1;
183 baseline_pt2_ = pt2;
184 }
185 }
186 int debug = 0;
187 #ifdef kDebugYCoord
188 Print();
189 debug = bounding_box_.bottom() < kDebugYCoord &&
190 bounding_box_.top() > kDebugYCoord
191 ? 3
192 : 2;
193 #endif
194 // Now we obtained a direction from that fit, see if we can improve the
195 // fit using the same direction and some other start point.
196 FCOORD direction(pt2 - pt1);
197 double target_offset = direction * pt1;
198 good_baseline_ = false;
199 FitConstrainedIfBetter(debug, direction, 0.0, target_offset);
200 // Wild lines can be produced because DetLineFit allows vertical lines, but
201 // vertical text has been rotated so angles over pi/4 should be disallowed.
202 // Near vertical lines can still be produced by vertically aligned components
203 // on very short lines.
204 double angle = BaselineAngle();
205 if (fabs(angle) > M_PI * 0.25) {
206 // Use the llsq fit as a backup.
207 baseline_pt1_ = llsq.mean_point();
208 baseline_pt2_ = baseline_pt1_ + FCOORD(1.0f, llsq.m());
209 // TODO(rays) get rid of this when m and c are no longer used.
210 double m = llsq.m();
211 double c = llsq.c(m);
212 baseline_error_ = llsq.rms(m, c);
213 good_baseline_ = false;
214 }
215 return good_baseline_;
216 }
217
218 // Modifies an existing result of FitBaseline to be parallel to the given
219 // direction vector if that produces a better result.
AdjustBaselineToParallel(int debug,const FCOORD & direction)220 void BaselineRow::AdjustBaselineToParallel(int debug, const FCOORD &direction) {
221 SetupBlobDisplacements(direction);
222 if (displacement_modes_.empty()) {
223 return;
224 }
225 #ifdef kDebugYCoord
226 if (bounding_box_.bottom() < kDebugYCoord &&
227 bounding_box_.top() > kDebugYCoord && debug < 3)
228 debug = 3;
229 #endif
230 FitConstrainedIfBetter(debug, direction, 0.0, displacement_modes_[0]);
231 }
232
233 // Modifies the baseline to snap to the textline grid if the existing
234 // result is not good enough.
AdjustBaselineToGrid(int debug,const FCOORD & direction,double line_spacing,double line_offset)235 double BaselineRow::AdjustBaselineToGrid(int debug, const FCOORD &direction,
236 double line_spacing,
237 double line_offset) {
238 if (blobs_->empty()) {
239 if (debug > 1) {
240 tprintf("Row empty at:");
241 bounding_box_.print();
242 }
243 return line_offset;
244 }
245 // Find the displacement_modes_ entry nearest to the grid.
246 double best_error = 0.0;
247 int best_index = -1;
248 for (unsigned i = 0; i < displacement_modes_.size(); ++i) {
249 double blob_y = displacement_modes_[i];
250 double error =
251 BaselineBlock::SpacingModelError(blob_y, line_spacing, line_offset);
252 if (debug > 1) {
253 tprintf("Mode at %g has error %g from model \n", blob_y, error);
254 }
255 if (best_index < 0 || error < best_error) {
256 best_error = error;
257 best_index = i;
258 }
259 }
260 // We will move the baseline only if the chosen mode is close enough to the
261 // model.
262 double model_margin = max_baseline_error_ - best_error;
263 if (best_index >= 0 && model_margin > 0.0) {
264 // But if the current baseline is already close to the mode there is no
265 // point, and only the potential to damage accuracy by changing its angle.
266 double perp_disp = PerpDisp(direction);
267 double shift = displacement_modes_[best_index] - perp_disp;
268 if (fabs(shift) > max_baseline_error_) {
269 if (debug > 1) {
270 tprintf("Attempting linespacing model fit with mode %g to row at:",
271 displacement_modes_[best_index]);
272 bounding_box_.print();
273 }
274 FitConstrainedIfBetter(debug, direction, model_margin,
275 displacement_modes_[best_index]);
276 } else if (debug > 1) {
277 tprintf("Linespacing model only moves current line by %g for row at:",
278 shift);
279 bounding_box_.print();
280 }
281 } else if (debug > 1) {
282 tprintf("Linespacing model not close enough to any mode for row at:");
283 bounding_box_.print();
284 }
285 return fmod(PerpDisp(direction), line_spacing);
286 }
287
288 // Sets up displacement_modes_ with the top few modes of the perpendicular
289 // distance of each blob from the given direction vector, after rounding.
SetupBlobDisplacements(const FCOORD & direction)290 void BaselineRow::SetupBlobDisplacements(const FCOORD &direction) {
291 // Set of perpendicular displacements of the blob bottoms from the required
292 // baseline direction.
293 std::vector<double> perp_blob_dists;
294 displacement_modes_.clear();
295 // Gather the skew-corrected position of every blob.
296 double min_dist = FLT_MAX;
297 double max_dist = -FLT_MAX;
298 BLOBNBOX_IT blob_it(blobs_);
299 #ifdef kDebugYCoord
300 bool debug = false;
301 #endif
302 for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
303 BLOBNBOX *blob = blob_it.data();
304 const TBOX &box = blob->bounding_box();
305 #ifdef kDebugYCoord
306 if (box.bottom() < kDebugYCoord && box.top() > kDebugYCoord)
307 debug = true;
308 #endif
309 FCOORD blob_pos((box.left() + box.right()) / 2.0f,
310 blob->baseline_position());
311 double offset = direction * blob_pos;
312 perp_blob_dists.push_back(offset);
313 #ifdef kDebugYCoord
314 if (debug) {
315 tprintf("Displacement %g for blob at:", offset);
316 box.print();
317 }
318 #endif
319 UpdateRange(offset, &min_dist, &max_dist);
320 }
321 // Set up a histogram using disp_quant_factor_ as the bucket size.
322 STATS dist_stats(IntCastRounded(min_dist / disp_quant_factor_),
323 IntCastRounded(max_dist / disp_quant_factor_) + 1);
324 for (double perp_blob_dist : perp_blob_dists) {
325 dist_stats.add(IntCastRounded(perp_blob_dist / disp_quant_factor_), 1);
326 }
327 std::vector<KDPairInc<float, int>> scaled_modes;
328 dist_stats.top_n_modes(kMaxDisplacementsModes, scaled_modes);
329 #ifdef kDebugYCoord
330 if (debug) {
331 for (int i = 0; i < scaled_modes.size(); ++i) {
332 tprintf("Top mode = %g * %d\n", scaled_modes[i].key * disp_quant_factor_,
333 scaled_modes[i].data());
334 }
335 }
336 #endif
337 for (auto &scaled_mode : scaled_modes) {
338 displacement_modes_.push_back(disp_quant_factor_ * scaled_mode.key());
339 }
340 }
341
342 // Fits a line in the given direction to blobs that are close to the given
343 // target_offset perpendicular displacement from the direction. The fit
344 // error is allowed to be cheat_allowance worse than the existing fit, and
345 // will still be used.
346 // If cheat_allowance > 0, the new fit will be good and replace the current
347 // fit if it has better fit (with cheat) OR its error is below
348 // max_baseline_error_ and the old fit is marked bad.
349 // Otherwise the new fit will only replace the old if it is really better,
350 // or the old fit is marked bad and the new fit has sufficient points, as
351 // well as being within the max_baseline_error_.
FitConstrainedIfBetter(int debug,const FCOORD & direction,double cheat_allowance,double target_offset)352 void BaselineRow::FitConstrainedIfBetter(int debug, const FCOORD &direction,
353 double cheat_allowance,
354 double target_offset) {
355 double halfrange = fit_halfrange_ * direction.length();
356 double min_dist = target_offset - halfrange;
357 double max_dist = target_offset + halfrange;
358 ICOORD line_pt;
359 double new_error = fitter_.ConstrainedFit(direction, min_dist, max_dist,
360 debug > 2, &line_pt);
361 // Allow cheat_allowance off the new error
362 new_error -= cheat_allowance;
363 double old_angle = BaselineAngle();
364 double new_angle = direction.angle();
365 if (debug > 1) {
366 tprintf("Constrained error = %g, original = %g", new_error,
367 baseline_error_);
368 tprintf(" angles = %g, %g, delta=%g vs threshold %g\n", old_angle,
369 new_angle, new_angle - old_angle, kMaxSkewDeviation);
370 }
371 bool new_good_baseline =
372 new_error <= max_baseline_error_ &&
373 (cheat_allowance > 0.0 || fitter_.SufficientPointsForIndependentFit());
374 // The new will replace the old if any are true:
375 // 1. the new error is better
376 // 2. the old is NOT good, but the new is
377 // 3. there is a wild angular difference between them (assuming that the new
378 // is a better guess at the angle.)
379 if (new_error <= baseline_error_ || (!good_baseline_ && new_good_baseline) ||
380 fabs(new_angle - old_angle) > kMaxSkewDeviation) {
381 baseline_error_ = new_error;
382 baseline_pt1_ = line_pt;
383 baseline_pt2_ = baseline_pt1_ + direction;
384 good_baseline_ = new_good_baseline;
385 if (debug > 1) {
386 tprintf("Replacing with constrained baseline, good = %d\n",
387 good_baseline_);
388 }
389 } else if (debug > 1) {
390 tprintf("Keeping old baseline\n");
391 }
392 }
393
394 // Returns the perpendicular distance of the point from the straight
395 // baseline.
PerpDistanceFromBaseline(const FCOORD & pt) const396 float BaselineRow::PerpDistanceFromBaseline(const FCOORD &pt) const {
397 FCOORD baseline_vector(baseline_pt2_ - baseline_pt1_);
398 FCOORD offset_vector(pt - baseline_pt1_);
399 float distance = baseline_vector * offset_vector;
400 float sqlength = baseline_vector.sqlength();
401 if (sqlength == 0.0f) {
402 tprintf("unexpected baseline vector (0,0)\n");
403 return 0.0f;
404 }
405 return std::sqrt(distance * distance / sqlength);
406 }
407
408 // Computes the bounding box of the row.
ComputeBoundingBox()409 void BaselineRow::ComputeBoundingBox() {
410 BLOBNBOX_IT it(blobs_);
411 TBOX box;
412 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
413 box += it.data()->bounding_box();
414 }
415 bounding_box_ = box;
416 }
417
BaselineBlock(int debug_level,bool non_text,TO_BLOCK * block)418 BaselineBlock::BaselineBlock(int debug_level, bool non_text, TO_BLOCK *block)
419 : block_(block),
420 debug_level_(debug_level),
421 non_text_block_(non_text),
422 good_skew_angle_(false),
423 skew_angle_(0.0),
424 line_spacing_(block->line_spacing),
425 line_offset_(0.0),
426 model_error_(0.0) {
427 TO_ROW_IT row_it(block_->get_rows());
428 for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) {
429 // Sort the blobs on the rows.
430 row_it.data()->blob_list()->sort(blob_x_order);
431 rows_.push_back(new BaselineRow(block->line_spacing, row_it.data()));
432 }
433 }
434
435 // Computes and returns the absolute error of the given perp_disp from the
436 // given linespacing model.
SpacingModelError(double perp_disp,double line_spacing,double line_offset)437 double BaselineBlock::SpacingModelError(double perp_disp, double line_spacing,
438 double line_offset) {
439 // Round to the nearest multiple of line_spacing + line offset.
440 int multiple = IntCastRounded((perp_disp - line_offset) / line_spacing);
441 double model_y = line_spacing * multiple + line_offset;
442 return fabs(perp_disp - model_y);
443 }
444
445 // Fits straight line baselines and computes the skew angle from the
446 // median angle. Returns true if a good angle is found.
447 // If use_box_bottoms is false, baseline positions are formed by
448 // considering the outlines of the blobs.
FitBaselinesAndFindSkew(bool use_box_bottoms)449 bool BaselineBlock::FitBaselinesAndFindSkew(bool use_box_bottoms) {
450 if (non_text_block_) {
451 return false;
452 }
453 std::vector<double> angles;
454 for (auto row : rows_) {
455 if (row->FitBaseline(use_box_bottoms)) {
456 double angle = row->BaselineAngle();
457 angles.push_back(angle);
458 }
459 if (debug_level_ > 1) {
460 row->Print();
461 }
462 }
463
464 if (!angles.empty()) {
465 skew_angle_ = MedianOfCircularValues(M_PI, angles);
466 good_skew_angle_ = true;
467 } else {
468 skew_angle_ = 0.0f;
469 good_skew_angle_ = false;
470 }
471 if (debug_level_ > 0) {
472 tprintf("Initial block skew angle = %g, good = %d\n", skew_angle_,
473 good_skew_angle_);
474 }
475 return good_skew_angle_;
476 }
477
478 // Refits the baseline to a constrained angle, using the stored block
479 // skew if good enough, otherwise the supplied default skew.
ParallelizeBaselines(double default_block_skew)480 void BaselineBlock::ParallelizeBaselines(double default_block_skew) {
481 if (non_text_block_) {
482 return;
483 }
484 if (!good_skew_angle_) {
485 skew_angle_ = default_block_skew;
486 }
487 if (debug_level_ > 0) {
488 tprintf("Adjusting block to skew angle %g\n", skew_angle_);
489 }
490 FCOORD direction(cos(skew_angle_), sin(skew_angle_));
491 for (auto row : rows_) {
492 row->AdjustBaselineToParallel(debug_level_, direction);
493 if (debug_level_ > 1) {
494 row->Print();
495 }
496 }
497 if (rows_.size() < 3 || !ComputeLineSpacing()) {
498 return;
499 }
500 // Enforce the line spacing model on all lines that don't yet have a good
501 // baseline.
502 // Start by finding the row that is best fitted to the model.
503 unsigned best_row = 0;
504 double best_error = SpacingModelError(rows_[0]->PerpDisp(direction),
505 line_spacing_, line_offset_);
506 for (unsigned r = 1; r < rows_.size(); ++r) {
507 double error = SpacingModelError(rows_[r]->PerpDisp(direction),
508 line_spacing_, line_offset_);
509 if (error < best_error) {
510 best_error = error;
511 best_row = r;
512 }
513 }
514 // Starting at the best fitting row, work outwards, syncing the offset.
515 double offset = line_offset_;
516 for (auto r = best_row + 1; r < rows_.size(); ++r) {
517 offset = rows_[r]->AdjustBaselineToGrid(debug_level_, direction,
518 line_spacing_, offset);
519 }
520 offset = line_offset_;
521 for (int r = best_row - 1; r >= 0; --r) {
522 offset = rows_[r]->AdjustBaselineToGrid(debug_level_, direction,
523 line_spacing_, offset);
524 }
525 }
526
527 // Sets the parameters in TO_BLOCK that are needed by subsequent processes.
SetupBlockParameters() const528 void BaselineBlock::SetupBlockParameters() const {
529 if (line_spacing_ > 0.0) {
530 // Where was block_line_spacing set before?
531 float min_spacing =
532 std::min(block_->line_spacing, static_cast<float>(line_spacing_));
533 if (min_spacing < block_->line_size) {
534 block_->line_size = min_spacing;
535 }
536 block_->line_spacing = line_spacing_;
537 block_->baseline_offset = line_offset_;
538 block_->max_blob_size = line_spacing_ * kMaxBlobSizeMultiple;
539 }
540 // Setup the parameters on all the rows.
541 TO_ROW_IT row_it(block_->get_rows());
542 for (unsigned r = 0; r < rows_.size(); ++r, row_it.forward()) {
543 BaselineRow *row = rows_[r];
544 TO_ROW *to_row = row_it.data();
545 row->SetupOldLineParameters(to_row);
546 }
547 }
548
549 // Processing that is required before fitting baseline splines, but requires
550 // linear baselines in order to be successful:
551 // Removes noise if required
552 // Separates out underlines
553 // Pre-associates blob fragments.
554 // TODO(rays/joeliu) This entire section of code is inherited from the past
555 // and could be improved/eliminated.
556 // page_tr is used to size a debug window.
PrepareForSplineFitting(ICOORD page_tr,bool remove_noise)557 void BaselineBlock::PrepareForSplineFitting(ICOORD page_tr, bool remove_noise) {
558 if (non_text_block_) {
559 return;
560 }
561 if (remove_noise) {
562 vigorous_noise_removal(block_);
563 }
564 FCOORD rotation(1.0f, 0.0f);
565 double gradient = tan(skew_angle_);
566 separate_underlines(block_, gradient, rotation, true);
567 pre_associate_blobs(page_tr, block_, rotation, true);
568 }
569
570 // Fits splines to the textlines, or creates fake QSPLINES from the straight
571 // baselines that are already on the TO_ROWs.
572 // As a side-effect, computes the xheights of the rows and the block.
573 // Although x-height estimation is conceptually separate, it is part of
574 // detecting perspective distortion and therefore baseline fitting.
FitBaselineSplines(bool enable_splines,bool show_final_rows,Textord * textord)575 void BaselineBlock::FitBaselineSplines(bool enable_splines,
576 bool show_final_rows, Textord *textord) {
577 double gradient = tan(skew_angle_);
578 FCOORD rotation(1.0f, 0.0f);
579
580 if (enable_splines) {
581 textord->make_spline_rows(block_, gradient, show_final_rows);
582 } else {
583 // Make a fake spline from the existing line.
584 TBOX block_box = block_->block->pdblk.bounding_box();
585 TO_ROW_IT row_it = block_->get_rows();
586 for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) {
587 TO_ROW *row = row_it.data();
588 int32_t xstarts[2] = {block_box.left(), block_box.right()};
589 double coeffs[3] = {0.0, row->line_m(), row->line_c()};
590 row->baseline = QSPLINE(1, xstarts, coeffs);
591 textord->compute_row_xheight(row, block_->block->classify_rotation(),
592 row->line_m(), block_->line_size);
593 }
594 }
595 textord->compute_block_xheight(block_, gradient);
596 block_->block->set_xheight(block_->xheight);
597 if (textord_restore_underlines) { // fix underlines
598 restore_underlined_blobs(block_);
599 }
600 }
601
602 #ifndef GRAPHICS_DISABLED
603
604 // Draws the (straight) baselines and final blobs colored according to
605 // what was discarded as noise and what is associated with each row.
DrawFinalRows(const ICOORD & page_tr)606 void BaselineBlock::DrawFinalRows(const ICOORD &page_tr) {
607 if (non_text_block_) {
608 return;
609 }
610 double gradient = tan(skew_angle_);
611 FCOORD rotation(1.0f, 0.0f);
612 int left_edge = block_->block->pdblk.bounding_box().left();
613 ScrollView *win = create_to_win(page_tr);
614 ScrollView::Color colour = ScrollView::RED;
615 TO_ROW_IT row_it = block_->get_rows();
616 for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) {
617 plot_parallel_row(row_it.data(), gradient, left_edge, colour, rotation);
618 colour = static_cast<ScrollView::Color>(colour + 1);
619 if (colour > ScrollView::MAGENTA) {
620 colour = ScrollView::RED;
621 }
622 }
623 plot_blob_list(win, &block_->blobs, ScrollView::MAGENTA, ScrollView::WHITE);
624 // Show discarded blobs.
625 plot_blob_list(win, &block_->underlines, ScrollView::YELLOW,
626 ScrollView::CORAL);
627 if (block_->blobs.length() > 0) {
628 tprintf("%d blobs discarded as noise\n", block_->blobs.length());
629 }
630 draw_meanlines(block_, gradient, left_edge, ScrollView::WHITE, rotation);
631 }
632
633 #endif // !GRAPHICS_DISABLED
634
DrawPixSpline(Image pix_in)635 void BaselineBlock::DrawPixSpline(Image pix_in) {
636 if (non_text_block_) {
637 return;
638 }
639 TO_ROW_IT row_it = block_->get_rows();
640 for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) {
641 row_it.data()->baseline.plot(pix_in);
642 }
643 }
644
645 // Top-level line-spacing calculation. Computes an estimate of the line-
646 // spacing, using the current baselines in the TO_ROWS of the block, and
647 // then refines it by fitting a regression line to the baseline positions
648 // as a function of their integer index.
649 // Returns true if it seems that the model is a reasonable fit to the
650 // observations.
ComputeLineSpacing()651 bool BaselineBlock::ComputeLineSpacing() {
652 FCOORD direction(cos(skew_angle_), sin(skew_angle_));
653 std::vector<double> row_positions;
654 ComputeBaselinePositions(direction, &row_positions);
655 if (row_positions.size() < 2) {
656 return false;
657 }
658 EstimateLineSpacing();
659 RefineLineSpacing(row_positions);
660 // Verify that the model is reasonable.
661 double max_baseline_error = kMaxBaselineError * line_spacing_;
662 int non_trivial_gaps = 0;
663 int fitting_gaps = 0;
664 for (unsigned i = 1; i < row_positions.size(); ++i) {
665 double row_gap = fabs(row_positions[i - 1] - row_positions[i]);
666 if (row_gap > max_baseline_error) {
667 ++non_trivial_gaps;
668 if (fabs(row_gap - line_spacing_) <= max_baseline_error) {
669 ++fitting_gaps;
670 }
671 }
672 }
673 if (debug_level_ > 0) {
674 tprintf("Spacing %g, in %zu rows, %d gaps fitted out of %d non-trivial\n",
675 line_spacing_, row_positions.size(), fitting_gaps,
676 non_trivial_gaps);
677 }
678 return fitting_gaps > non_trivial_gaps * kMinFittingLinespacings;
679 }
680
681 // Computes the deskewed vertical position of each baseline in the block and
682 // stores them in the given vector.
683 // This is calculated as the perpendicular distance of the middle of each
684 // baseline (in case it has a different skew angle) from the line passing
685 // through the origin parallel to the block baseline angle.
686 // NOTE that "distance" above is a signed quantity so we can tell which side
687 // of the block baseline a line sits, hence the function and argument name
688 // positions not distances.
ComputeBaselinePositions(const FCOORD & direction,std::vector<double> * positions)689 void BaselineBlock::ComputeBaselinePositions(const FCOORD &direction,
690 std::vector<double> *positions) {
691 positions->clear();
692 for (auto row : rows_) {
693 const TBOX &row_box = row->bounding_box();
694 float x_middle = (row_box.left() + row_box.right()) / 2.0f;
695 FCOORD row_pos(x_middle, static_cast<float>(row->StraightYAtX(x_middle)));
696 float offset = direction * row_pos;
697 positions->push_back(offset);
698 }
699 }
700
701 // Computes an estimate of the line spacing of the block from the median
702 // of the spacings between adjacent overlapping textlines.
EstimateLineSpacing()703 void BaselineBlock::EstimateLineSpacing() {
704 std::vector<float> spacings;
705 for (unsigned r = 0; r < rows_.size(); ++r) {
706 BaselineRow *row = rows_[r];
707 // Exclude silly lines.
708 if (fabs(row->BaselineAngle()) > M_PI * 0.25) {
709 continue;
710 }
711 // Find the first row after row that overlaps it significantly.
712 const TBOX &row_box = row->bounding_box();
713 unsigned r2;
714 for (r2 = r + 1; r2 < rows_.size() &&
715 !row_box.major_x_overlap(rows_[r2]->bounding_box());
716 ++r2) {
717 ;
718 }
719 if (r2 < rows_.size()) {
720 BaselineRow *row2 = rows_[r2];
721 // Exclude silly lines.
722 if (fabs(row2->BaselineAngle()) > M_PI * 0.25) {
723 continue;
724 }
725 float spacing = row->SpaceBetween(*row2);
726 spacings.push_back(spacing);
727 }
728 }
729 // If we have at least one value, use it, otherwise leave the previous
730 // value unchanged.
731 if (!spacings.empty()) {
732 std::nth_element(spacings.begin(), spacings.begin() + spacings.size() / 2,
733 spacings.end());
734 line_spacing_ = spacings[spacings.size() / 2];
735 if (debug_level_ > 1) {
736 tprintf("Estimate of linespacing = %g\n", line_spacing_);
737 }
738 }
739 }
740
741 // Refines the line spacing of the block by fitting a regression
742 // line to the deskewed y-position of each baseline as a function of its
743 // estimated line index, allowing for a small error in the initial linespacing
744 // and choosing the best available model.
RefineLineSpacing(const std::vector<double> & positions)745 void BaselineBlock::RefineLineSpacing(const std::vector<double> &positions) {
746 double spacings[3], offsets[3], errors[3];
747 int index_range;
748 errors[0] = FitLineSpacingModel(positions, line_spacing_, &spacings[0],
749 &offsets[0], &index_range);
750 if (index_range > 1) {
751 double spacing_plus = line_spacing_ / (1.0 + 1.0 / index_range);
752 // Try the hypotheses that there might be index_range +/- 1 line spaces.
753 errors[1] = FitLineSpacingModel(positions, spacing_plus, &spacings[1],
754 &offsets[1], nullptr);
755 double spacing_minus = line_spacing_ / (1.0 - 1.0 / index_range);
756 errors[2] = FitLineSpacingModel(positions, spacing_minus, &spacings[2],
757 &offsets[2], nullptr);
758 for (int i = 1; i <= 2; ++i) {
759 if (errors[i] < errors[0]) {
760 spacings[0] = spacings[i];
761 offsets[0] = offsets[i];
762 errors[0] = errors[i];
763 }
764 }
765 }
766 if (spacings[0] > 0.0) {
767 line_spacing_ = spacings[0];
768 line_offset_ = offsets[0];
769 model_error_ = errors[0];
770 if (debug_level_ > 0) {
771 tprintf("Final linespacing model = %g + offset %g, error %g\n",
772 line_spacing_, line_offset_, model_error_);
773 }
774 }
775 }
776
777 // Given an initial estimate of line spacing (m_in) and the positions of each
778 // baseline, computes the line spacing of the block more accurately in m_out,
779 // and the corresponding intercept in c_out, and the number of spacings seen
780 // in index_delta. Returns the error of fit to the line spacing model.
781 // Uses a simple linear regression, but optimized the offset using the median.
FitLineSpacingModel(const std::vector<double> & positions,double m_in,double * m_out,double * c_out,int * index_delta)782 double BaselineBlock::FitLineSpacingModel(const std::vector<double> &positions,
783 double m_in, double *m_out,
784 double *c_out, int *index_delta) {
785 if (m_in == 0.0f || positions.size() < 2) {
786 *m_out = m_in;
787 *c_out = 0.0;
788 if (index_delta != nullptr) {
789 *index_delta = 0;
790 }
791 return 0.0;
792 }
793 std::vector<double> offsets;
794 // Get the offset (remainder) linespacing for each line and choose the median.
795 offsets.reserve(positions.size());
796 for (double position : positions) {
797 offsets.push_back(fmod(position, m_in));
798 }
799 // Get the median offset.
800 double median_offset = MedianOfCircularValues(m_in, offsets);
801 // Now fit a line to quantized line number and offset.
802 LLSQ llsq;
803 int min_index = INT32_MAX;
804 int max_index = -INT32_MAX;
805 for (double y_pos : positions) {
806 int row_index = IntCastRounded((y_pos - median_offset) / m_in);
807 UpdateRange(row_index, &min_index, &max_index);
808 llsq.add(row_index, y_pos);
809 }
810 // Get the refined line spacing.
811 *m_out = llsq.m();
812 // Use the median offset rather than the mean.
813 offsets.clear();
814 if (*m_out != 0.0) {
815 for (double position : positions) {
816 offsets.push_back(fmod(position, *m_out));
817 }
818 // Get the median offset.
819 if (debug_level_ > 2) {
820 for (unsigned i = 0; i < offsets.size(); ++i) {
821 tprintf("%u: %g\n", i, offsets[i]);
822 }
823 }
824 *c_out = MedianOfCircularValues(*m_out, offsets);
825 } else {
826 *c_out = 0.0;
827 }
828 if (debug_level_ > 1) {
829 tprintf("Median offset = %g, compared to mean of %g.\n", *c_out,
830 llsq.c(*m_out));
831 }
832 // Index_delta is the number of hypothesized line gaps present.
833 if (index_delta != nullptr) {
834 *index_delta = max_index - min_index;
835 }
836 // Use the regression model's intercept to compute the error, as it may be
837 // a full line-spacing in disagreement with the median.
838 double rms_error = llsq.rms(*m_out, llsq.c(*m_out));
839 if (debug_level_ > 1) {
840 tprintf("Linespacing of y=%g x + %g improved to %g x + %g, rms=%g\n", m_in,
841 median_offset, *m_out, *c_out, rms_error);
842 }
843 return rms_error;
844 }
845
BaselineDetect(int debug_level,const FCOORD & page_skew,TO_BLOCK_LIST * blocks)846 BaselineDetect::BaselineDetect(int debug_level, const FCOORD &page_skew,
847 TO_BLOCK_LIST *blocks)
848 : page_skew_(page_skew), debug_level_(debug_level) {
849 TO_BLOCK_IT it(blocks);
850 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
851 TO_BLOCK *to_block = it.data();
852 BLOCK *block = to_block->block;
853 POLY_BLOCK *pb = block->pdblk.poly_block();
854 // A note about non-text blocks.
855 // On output, non-text blocks are supposed to contain a single empty word
856 // in each incoming text line. These mark out the polygonal bounds of the
857 // block. Ideally no baselines should be required, but currently
858 // make_words crashes if a baseline and xheight are not provided, so we
859 // include non-text blocks here, but flag them for special treatment.
860 bool non_text = pb != nullptr && !pb->IsText();
861 blocks_.push_back(new BaselineBlock(debug_level_, non_text, to_block));
862 }
863 }
864
865 // Finds the initial baselines for each TO_ROW in each TO_BLOCK, gathers
866 // block-wise and page-wise data to smooth small blocks/rows, and applies
867 // smoothing based on block/page-level skew and block-level linespacing.
ComputeStraightBaselines(bool use_box_bottoms)868 void BaselineDetect::ComputeStraightBaselines(bool use_box_bottoms) {
869 std::vector<double> block_skew_angles;
870 for (auto bl_block : blocks_) {
871 if (debug_level_ > 0) {
872 tprintf("Fitting initial baselines...\n");
873 }
874 if (bl_block->FitBaselinesAndFindSkew(use_box_bottoms)) {
875 block_skew_angles.push_back(bl_block->skew_angle());
876 }
877 }
878 // Compute a page-wide default skew for blocks with too little information.
879 double default_block_skew = page_skew_.angle();
880 if (!block_skew_angles.empty()) {
881 default_block_skew = MedianOfCircularValues(M_PI, block_skew_angles);
882 }
883 if (debug_level_ > 0) {
884 tprintf("Page skew angle = %g\n", default_block_skew);
885 }
886 // Set bad lines in each block to the default block skew and then force fit
887 // a linespacing model where it makes sense to do so.
888 for (auto bl_block : blocks_) {
889 bl_block->ParallelizeBaselines(default_block_skew);
890 bl_block->SetupBlockParameters(); // This replaced compute_row_stats.
891 }
892 }
893
894 // Computes the baseline splines for each TO_ROW in each TO_BLOCK and
895 // other associated side-effects, including pre-associating blobs, computing
896 // x-heights and displaying debug information.
897 // NOTE that ComputeStraightBaselines must have been called first as this
898 // sets up data in the TO_ROWs upon which this function depends.
ComputeBaselineSplinesAndXheights(const ICOORD & page_tr,bool enable_splines,bool remove_noise,bool show_final_rows,Textord * textord)899 void BaselineDetect::ComputeBaselineSplinesAndXheights(const ICOORD &page_tr,
900 bool enable_splines,
901 bool remove_noise,
902 bool show_final_rows,
903 Textord *textord) {
904 for (auto bl_block : blocks_) {
905 if (enable_splines) {
906 bl_block->PrepareForSplineFitting(page_tr, remove_noise);
907 }
908 bl_block->FitBaselineSplines(enable_splines, show_final_rows, textord);
909 #ifndef GRAPHICS_DISABLED
910 if (show_final_rows) {
911 bl_block->DrawFinalRows(page_tr);
912 }
913 #endif
914 }
915 }
916
917 } // namespace tesseract.
918