1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller.  It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopPass.h"
32 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Scalar/LoopPassManager.h"
58 #include "llvm/Transforms/Utils.h"
59 #include "llvm/Transforms/Utils/LoopPeel.h"
60 #include "llvm/Transforms/Utils/LoopSimplify.h"
61 #include "llvm/Transforms/Utils/LoopUtils.h"
62 #include "llvm/Transforms/Utils/SizeOpts.h"
63 #include "llvm/Transforms/Utils/UnrollLoop.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstdint>
67 #include <limits>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "loop-unroll"
75 
76 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
77     "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
78     cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
79              " the current top-most loop. This is sometimes preferred to reduce"
80              " compile time."));
81 
82 static cl::opt<unsigned>
83     UnrollThreshold("unroll-threshold", cl::Hidden,
84                     cl::desc("The cost threshold for loop unrolling"));
85 
86 static cl::opt<unsigned>
87     UnrollOptSizeThreshold(
88       "unroll-optsize-threshold", cl::init(0), cl::Hidden,
89       cl::desc("The cost threshold for loop unrolling when optimizing for "
90                "size"));
91 
92 static cl::opt<unsigned> UnrollPartialThreshold(
93     "unroll-partial-threshold", cl::Hidden,
94     cl::desc("The cost threshold for partial loop unrolling"));
95 
96 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
97     "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
98     cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
99              "to the threshold when aggressively unrolling a loop due to the "
100              "dynamic cost savings. If completely unrolling a loop will reduce "
101              "the total runtime from X to Y, we boost the loop unroll "
102              "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
103              "X/Y). This limit avoids excessive code bloat."));
104 
105 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
106     "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
107     cl::desc("Don't allow loop unrolling to simulate more than this number of"
108              "iterations when checking full unroll profitability"));
109 
110 static cl::opt<unsigned> UnrollCount(
111     "unroll-count", cl::Hidden,
112     cl::desc("Use this unroll count for all loops including those with "
113              "unroll_count pragma values, for testing purposes"));
114 
115 static cl::opt<unsigned> UnrollMaxCount(
116     "unroll-max-count", cl::Hidden,
117     cl::desc("Set the max unroll count for partial and runtime unrolling, for"
118              "testing purposes"));
119 
120 static cl::opt<unsigned> UnrollFullMaxCount(
121     "unroll-full-max-count", cl::Hidden,
122     cl::desc(
123         "Set the max unroll count for full unrolling, for testing purposes"));
124 
125 static cl::opt<bool>
126     UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
127                        cl::desc("Allows loops to be partially unrolled until "
128                                 "-unroll-threshold loop size is reached."));
129 
130 static cl::opt<bool> UnrollAllowRemainder(
131     "unroll-allow-remainder", cl::Hidden,
132     cl::desc("Allow generation of a loop remainder (extra iterations) "
133              "when unrolling a loop."));
134 
135 static cl::opt<bool>
136     UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
137                   cl::desc("Unroll loops with run-time trip counts"));
138 
139 static cl::opt<unsigned> UnrollMaxUpperBound(
140     "unroll-max-upperbound", cl::init(8), cl::Hidden,
141     cl::desc(
142         "The max of trip count upper bound that is considered in unrolling"));
143 
144 static cl::opt<unsigned> PragmaUnrollThreshold(
145     "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
146     cl::desc("Unrolled size limit for loops with an unroll(full) or "
147              "unroll_count pragma."));
148 
149 static cl::opt<unsigned> FlatLoopTripCountThreshold(
150     "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
151     cl::desc("If the runtime tripcount for the loop is lower than the "
152              "threshold, the loop is considered as flat and will be less "
153              "aggressively unrolled."));
154 
155 static cl::opt<bool> UnrollUnrollRemainder(
156   "unroll-remainder", cl::Hidden,
157   cl::desc("Allow the loop remainder to be unrolled."));
158 
159 // This option isn't ever intended to be enabled, it serves to allow
160 // experiments to check the assumptions about when this kind of revisit is
161 // necessary.
162 static cl::opt<bool> UnrollRevisitChildLoops(
163     "unroll-revisit-child-loops", cl::Hidden,
164     cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
165              "This shouldn't typically be needed as child loops (or their "
166              "clones) were already visited."));
167 
168 static cl::opt<unsigned> UnrollThresholdAggressive(
169     "unroll-threshold-aggressive", cl::init(300), cl::Hidden,
170     cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
171              "optimizations"));
172 static cl::opt<unsigned>
173     UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
174                            cl::Hidden,
175                            cl::desc("Default threshold (max size of unrolled "
176                                     "loop), used in all but O3 optimizations"));
177 
178 /// A magic value for use with the Threshold parameter to indicate
179 /// that the loop unroll should be performed regardless of how much
180 /// code expansion would result.
181 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
182 
183 /// Gather the various unrolling parameters based on the defaults, compiler
184 /// flags, TTI overrides and user specified parameters.
gatherUnrollingPreferences(Loop * L,ScalarEvolution & SE,const TargetTransformInfo & TTI,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,int OptLevel,Optional<unsigned> UserThreshold,Optional<unsigned> UserCount,Optional<bool> UserAllowPartial,Optional<bool> UserRuntime,Optional<bool> UserUpperBound,Optional<unsigned> UserFullUnrollMaxCount)185 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
186     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
187     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel,
188     Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
189     Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
190     Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) {
191   TargetTransformInfo::UnrollingPreferences UP;
192 
193   // Set up the defaults
194   UP.Threshold =
195       OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
196   UP.MaxPercentThresholdBoost = 400;
197   UP.OptSizeThreshold = UnrollOptSizeThreshold;
198   UP.PartialThreshold = 150;
199   UP.PartialOptSizeThreshold = UnrollOptSizeThreshold;
200   UP.Count = 0;
201   UP.DefaultUnrollRuntimeCount = 8;
202   UP.MaxCount = std::numeric_limits<unsigned>::max();
203   UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
204   UP.BEInsns = 2;
205   UP.Partial = false;
206   UP.Runtime = false;
207   UP.AllowRemainder = true;
208   UP.UnrollRemainder = false;
209   UP.AllowExpensiveTripCount = false;
210   UP.Force = false;
211   UP.UpperBound = false;
212   UP.UnrollAndJam = false;
213   UP.UnrollAndJamInnerLoopThreshold = 60;
214   UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
215 
216   // Override with any target specific settings
217   TTI.getUnrollingPreferences(L, SE, UP);
218 
219   // Apply size attributes
220   bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
221                     // Let unroll hints / pragmas take precedence over PGSO.
222                     (hasUnrollTransformation(L) != TM_ForcedByUser &&
223                      llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
224                                                  PGSOQueryType::IRPass));
225   if (OptForSize) {
226     UP.Threshold = UP.OptSizeThreshold;
227     UP.PartialThreshold = UP.PartialOptSizeThreshold;
228     UP.MaxPercentThresholdBoost = 100;
229   }
230 
231   // Apply any user values specified by cl::opt
232   if (UnrollThreshold.getNumOccurrences() > 0)
233     UP.Threshold = UnrollThreshold;
234   if (UnrollPartialThreshold.getNumOccurrences() > 0)
235     UP.PartialThreshold = UnrollPartialThreshold;
236   if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
237     UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
238   if (UnrollMaxCount.getNumOccurrences() > 0)
239     UP.MaxCount = UnrollMaxCount;
240   if (UnrollFullMaxCount.getNumOccurrences() > 0)
241     UP.FullUnrollMaxCount = UnrollFullMaxCount;
242   if (UnrollAllowPartial.getNumOccurrences() > 0)
243     UP.Partial = UnrollAllowPartial;
244   if (UnrollAllowRemainder.getNumOccurrences() > 0)
245     UP.AllowRemainder = UnrollAllowRemainder;
246   if (UnrollRuntime.getNumOccurrences() > 0)
247     UP.Runtime = UnrollRuntime;
248   if (UnrollMaxUpperBound == 0)
249     UP.UpperBound = false;
250   if (UnrollUnrollRemainder.getNumOccurrences() > 0)
251     UP.UnrollRemainder = UnrollUnrollRemainder;
252   if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
253     UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
254 
255   // Apply user values provided by argument
256   if (UserThreshold.hasValue()) {
257     UP.Threshold = *UserThreshold;
258     UP.PartialThreshold = *UserThreshold;
259   }
260   if (UserCount.hasValue())
261     UP.Count = *UserCount;
262   if (UserAllowPartial.hasValue())
263     UP.Partial = *UserAllowPartial;
264   if (UserRuntime.hasValue())
265     UP.Runtime = *UserRuntime;
266   if (UserUpperBound.hasValue())
267     UP.UpperBound = *UserUpperBound;
268   if (UserFullUnrollMaxCount.hasValue())
269     UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
270 
271   return UP;
272 }
273 
274 namespace {
275 
276 /// A struct to densely store the state of an instruction after unrolling at
277 /// each iteration.
278 ///
279 /// This is designed to work like a tuple of <Instruction *, int> for the
280 /// purposes of hashing and lookup, but to be able to associate two boolean
281 /// states with each key.
282 struct UnrolledInstState {
283   Instruction *I;
284   int Iteration : 30;
285   unsigned IsFree : 1;
286   unsigned IsCounted : 1;
287 };
288 
289 /// Hashing and equality testing for a set of the instruction states.
290 struct UnrolledInstStateKeyInfo {
291   using PtrInfo = DenseMapInfo<Instruction *>;
292   using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
293 
getEmptyKey__anon43c653410111::UnrolledInstStateKeyInfo294   static inline UnrolledInstState getEmptyKey() {
295     return {PtrInfo::getEmptyKey(), 0, 0, 0};
296   }
297 
getTombstoneKey__anon43c653410111::UnrolledInstStateKeyInfo298   static inline UnrolledInstState getTombstoneKey() {
299     return {PtrInfo::getTombstoneKey(), 0, 0, 0};
300   }
301 
getHashValue__anon43c653410111::UnrolledInstStateKeyInfo302   static inline unsigned getHashValue(const UnrolledInstState &S) {
303     return PairInfo::getHashValue({S.I, S.Iteration});
304   }
305 
isEqual__anon43c653410111::UnrolledInstStateKeyInfo306   static inline bool isEqual(const UnrolledInstState &LHS,
307                              const UnrolledInstState &RHS) {
308     return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
309   }
310 };
311 
312 struct EstimatedUnrollCost {
313   /// The estimated cost after unrolling.
314   unsigned UnrolledCost;
315 
316   /// The estimated dynamic cost of executing the instructions in the
317   /// rolled form.
318   unsigned RolledDynamicCost;
319 };
320 
321 } // end anonymous namespace
322 
323 /// Figure out if the loop is worth full unrolling.
324 ///
325 /// Complete loop unrolling can make some loads constant, and we need to know
326 /// if that would expose any further optimization opportunities.  This routine
327 /// estimates this optimization.  It computes cost of unrolled loop
328 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
329 /// dynamic cost we mean that we won't count costs of blocks that are known not
330 /// to be executed (i.e. if we have a branch in the loop and we know that at the
331 /// given iteration its condition would be resolved to true, we won't add up the
332 /// cost of the 'false'-block).
333 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
334 /// the analysis failed (no benefits expected from the unrolling, or the loop is
335 /// too big to analyze), the returned value is None.
analyzeLoopUnrollCost(const Loop * L,unsigned TripCount,DominatorTree & DT,ScalarEvolution & SE,const SmallPtrSetImpl<const Value * > & EphValues,const TargetTransformInfo & TTI,unsigned MaxUnrolledLoopSize,unsigned MaxIterationsCountToAnalyze)336 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
337     const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
338     const SmallPtrSetImpl<const Value *> &EphValues,
339     const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
340     unsigned MaxIterationsCountToAnalyze) {
341   // We want to be able to scale offsets by the trip count and add more offsets
342   // to them without checking for overflows, and we already don't want to
343   // analyze *massive* trip counts, so we force the max to be reasonably small.
344   assert(MaxIterationsCountToAnalyze <
345              (unsigned)(std::numeric_limits<int>::max() / 2) &&
346          "The unroll iterations max is too large!");
347 
348   // Only analyze inner loops. We can't properly estimate cost of nested loops
349   // and we won't visit inner loops again anyway.
350   if (!L->isInnermost())
351     return None;
352 
353   // Don't simulate loops with a big or unknown tripcount
354   if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
355     return None;
356 
357   SmallSetVector<BasicBlock *, 16> BBWorklist;
358   SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
359   DenseMap<Value *, Constant *> SimplifiedValues;
360   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
361 
362   // The estimated cost of the unrolled form of the loop. We try to estimate
363   // this by simplifying as much as we can while computing the estimate.
364   InstructionCost UnrolledCost = 0;
365 
366   // We also track the estimated dynamic (that is, actually executed) cost in
367   // the rolled form. This helps identify cases when the savings from unrolling
368   // aren't just exposing dead control flows, but actual reduced dynamic
369   // instructions due to the simplifications which we expect to occur after
370   // unrolling.
371   InstructionCost RolledDynamicCost = 0;
372 
373   // We track the simplification of each instruction in each iteration. We use
374   // this to recursively merge costs into the unrolled cost on-demand so that
375   // we don't count the cost of any dead code. This is essentially a map from
376   // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
377   DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
378 
379   // A small worklist used to accumulate cost of instructions from each
380   // observable and reached root in the loop.
381   SmallVector<Instruction *, 16> CostWorklist;
382 
383   // PHI-used worklist used between iterations while accumulating cost.
384   SmallVector<Instruction *, 4> PHIUsedList;
385 
386   // Helper function to accumulate cost for instructions in the loop.
387   auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
388     assert(Iteration >= 0 && "Cannot have a negative iteration!");
389     assert(CostWorklist.empty() && "Must start with an empty cost list");
390     assert(PHIUsedList.empty() && "Must start with an empty phi used list");
391     CostWorklist.push_back(&RootI);
392     TargetTransformInfo::TargetCostKind CostKind =
393       RootI.getFunction()->hasMinSize() ?
394       TargetTransformInfo::TCK_CodeSize :
395       TargetTransformInfo::TCK_SizeAndLatency;
396     for (;; --Iteration) {
397       do {
398         Instruction *I = CostWorklist.pop_back_val();
399 
400         // InstCostMap only uses I and Iteration as a key, the other two values
401         // don't matter here.
402         auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
403         if (CostIter == InstCostMap.end())
404           // If an input to a PHI node comes from a dead path through the loop
405           // we may have no cost data for it here. What that actually means is
406           // that it is free.
407           continue;
408         auto &Cost = *CostIter;
409         if (Cost.IsCounted)
410           // Already counted this instruction.
411           continue;
412 
413         // Mark that we are counting the cost of this instruction now.
414         Cost.IsCounted = true;
415 
416         // If this is a PHI node in the loop header, just add it to the PHI set.
417         if (auto *PhiI = dyn_cast<PHINode>(I))
418           if (PhiI->getParent() == L->getHeader()) {
419             assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
420                                   "inherently simplify during unrolling.");
421             if (Iteration == 0)
422               continue;
423 
424             // Push the incoming value from the backedge into the PHI used list
425             // if it is an in-loop instruction. We'll use this to populate the
426             // cost worklist for the next iteration (as we count backwards).
427             if (auto *OpI = dyn_cast<Instruction>(
428                     PhiI->getIncomingValueForBlock(L->getLoopLatch())))
429               if (L->contains(OpI))
430                 PHIUsedList.push_back(OpI);
431             continue;
432           }
433 
434         // First accumulate the cost of this instruction.
435         if (!Cost.IsFree) {
436           UnrolledCost += TTI.getUserCost(I, CostKind);
437           LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
438                             << Iteration << "): ");
439           LLVM_DEBUG(I->dump());
440         }
441 
442         // We must count the cost of every operand which is not free,
443         // recursively. If we reach a loop PHI node, simply add it to the set
444         // to be considered on the next iteration (backwards!).
445         for (Value *Op : I->operands()) {
446           // Check whether this operand is free due to being a constant or
447           // outside the loop.
448           auto *OpI = dyn_cast<Instruction>(Op);
449           if (!OpI || !L->contains(OpI))
450             continue;
451 
452           // Otherwise accumulate its cost.
453           CostWorklist.push_back(OpI);
454         }
455       } while (!CostWorklist.empty());
456 
457       if (PHIUsedList.empty())
458         // We've exhausted the search.
459         break;
460 
461       assert(Iteration > 0 &&
462              "Cannot track PHI-used values past the first iteration!");
463       CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
464       PHIUsedList.clear();
465     }
466   };
467 
468   // Ensure that we don't violate the loop structure invariants relied on by
469   // this analysis.
470   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
471   assert(L->isLCSSAForm(DT) &&
472          "Must have loops in LCSSA form to track live-out values.");
473 
474   LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
475 
476   TargetTransformInfo::TargetCostKind CostKind =
477     L->getHeader()->getParent()->hasMinSize() ?
478     TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency;
479   // Simulate execution of each iteration of the loop counting instructions,
480   // which would be simplified.
481   // Since the same load will take different values on different iterations,
482   // we literally have to go through all loop's iterations.
483   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
484     LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
485 
486     // Prepare for the iteration by collecting any simplified entry or backedge
487     // inputs.
488     for (Instruction &I : *L->getHeader()) {
489       auto *PHI = dyn_cast<PHINode>(&I);
490       if (!PHI)
491         break;
492 
493       // The loop header PHI nodes must have exactly two input: one from the
494       // loop preheader and one from the loop latch.
495       assert(
496           PHI->getNumIncomingValues() == 2 &&
497           "Must have an incoming value only for the preheader and the latch.");
498 
499       Value *V = PHI->getIncomingValueForBlock(
500           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
501       Constant *C = dyn_cast<Constant>(V);
502       if (Iteration != 0 && !C)
503         C = SimplifiedValues.lookup(V);
504       if (C)
505         SimplifiedInputValues.push_back({PHI, C});
506     }
507 
508     // Now clear and re-populate the map for the next iteration.
509     SimplifiedValues.clear();
510     while (!SimplifiedInputValues.empty())
511       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
512 
513     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
514 
515     BBWorklist.clear();
516     BBWorklist.insert(L->getHeader());
517     // Note that we *must not* cache the size, this loop grows the worklist.
518     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
519       BasicBlock *BB = BBWorklist[Idx];
520 
521       // Visit all instructions in the given basic block and try to simplify
522       // it.  We don't change the actual IR, just count optimization
523       // opportunities.
524       for (Instruction &I : *BB) {
525         // These won't get into the final code - don't even try calculating the
526         // cost for them.
527         if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
528           continue;
529 
530         // Track this instruction's expected baseline cost when executing the
531         // rolled loop form.
532         RolledDynamicCost += TTI.getUserCost(&I, CostKind);
533 
534         // Visit the instruction to analyze its loop cost after unrolling,
535         // and if the visitor returns true, mark the instruction as free after
536         // unrolling and continue.
537         bool IsFree = Analyzer.visit(I);
538         bool Inserted = InstCostMap.insert({&I, (int)Iteration,
539                                            (unsigned)IsFree,
540                                            /*IsCounted*/ false}).second;
541         (void)Inserted;
542         assert(Inserted && "Cannot have a state for an unvisited instruction!");
543 
544         if (IsFree)
545           continue;
546 
547         // Can't properly model a cost of a call.
548         // FIXME: With a proper cost model we should be able to do it.
549         if (auto *CI = dyn_cast<CallInst>(&I)) {
550           const Function *Callee = CI->getCalledFunction();
551           if (!Callee || TTI.isLoweredToCall(Callee)) {
552             LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
553             return None;
554           }
555         }
556 
557         // If the instruction might have a side-effect recursively account for
558         // the cost of it and all the instructions leading up to it.
559         if (I.mayHaveSideEffects())
560           AddCostRecursively(I, Iteration);
561 
562         // If unrolled body turns out to be too big, bail out.
563         if (UnrolledCost > MaxUnrolledLoopSize) {
564           LLVM_DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
565                             << "  UnrolledCost: " << UnrolledCost
566                             << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
567                             << "\n");
568           return None;
569         }
570       }
571 
572       Instruction *TI = BB->getTerminator();
573 
574       // Add in the live successors by first checking whether we have terminator
575       // that may be simplified based on the values simplified by this call.
576       BasicBlock *KnownSucc = nullptr;
577       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
578         if (BI->isConditional()) {
579           if (Constant *SimpleCond =
580                   SimplifiedValues.lookup(BI->getCondition())) {
581             // Just take the first successor if condition is undef
582             if (isa<UndefValue>(SimpleCond))
583               KnownSucc = BI->getSuccessor(0);
584             else if (ConstantInt *SimpleCondVal =
585                          dyn_cast<ConstantInt>(SimpleCond))
586               KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
587           }
588         }
589       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
590         if (Constant *SimpleCond =
591                 SimplifiedValues.lookup(SI->getCondition())) {
592           // Just take the first successor if condition is undef
593           if (isa<UndefValue>(SimpleCond))
594             KnownSucc = SI->getSuccessor(0);
595           else if (ConstantInt *SimpleCondVal =
596                        dyn_cast<ConstantInt>(SimpleCond))
597             KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
598         }
599       }
600       if (KnownSucc) {
601         if (L->contains(KnownSucc))
602           BBWorklist.insert(KnownSucc);
603         else
604           ExitWorklist.insert({BB, KnownSucc});
605         continue;
606       }
607 
608       // Add BB's successors to the worklist.
609       for (BasicBlock *Succ : successors(BB))
610         if (L->contains(Succ))
611           BBWorklist.insert(Succ);
612         else
613           ExitWorklist.insert({BB, Succ});
614       AddCostRecursively(*TI, Iteration);
615     }
616 
617     // If we found no optimization opportunities on the first iteration, we
618     // won't find them on later ones too.
619     if (UnrolledCost == RolledDynamicCost) {
620       LLVM_DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
621                         << "  UnrolledCost: " << UnrolledCost << "\n");
622       return None;
623     }
624   }
625 
626   while (!ExitWorklist.empty()) {
627     BasicBlock *ExitingBB, *ExitBB;
628     std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
629 
630     for (Instruction &I : *ExitBB) {
631       auto *PN = dyn_cast<PHINode>(&I);
632       if (!PN)
633         break;
634 
635       Value *Op = PN->getIncomingValueForBlock(ExitingBB);
636       if (auto *OpI = dyn_cast<Instruction>(Op))
637         if (L->contains(OpI))
638           AddCostRecursively(*OpI, TripCount - 1);
639     }
640   }
641 
642   assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() &&
643          "All instructions must have a valid cost, whether the "
644          "loop is rolled or unrolled.");
645 
646   LLVM_DEBUG(dbgs() << "Analysis finished:\n"
647                     << "UnrolledCost: " << UnrolledCost << ", "
648                     << "RolledDynamicCost: " << RolledDynamicCost << "\n");
649   return {{unsigned(*UnrolledCost.getValue()),
650            unsigned(*RolledDynamicCost.getValue())}};
651 }
652 
653 /// ApproximateLoopSize - Approximate the size of the loop.
ApproximateLoopSize(const Loop * L,unsigned & NumCalls,bool & NotDuplicatable,bool & Convergent,const TargetTransformInfo & TTI,const SmallPtrSetImpl<const Value * > & EphValues,unsigned BEInsns)654 unsigned llvm::ApproximateLoopSize(
655     const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
656     const TargetTransformInfo &TTI,
657     const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
658   CodeMetrics Metrics;
659   for (BasicBlock *BB : L->blocks())
660     Metrics.analyzeBasicBlock(BB, TTI, EphValues);
661   NumCalls = Metrics.NumInlineCandidates;
662   NotDuplicatable = Metrics.notDuplicatable;
663   Convergent = Metrics.convergent;
664 
665   unsigned LoopSize = Metrics.NumInsts;
666 
667   // Don't allow an estimate of size zero.  This would allows unrolling of loops
668   // with huge iteration counts, which is a compile time problem even if it's
669   // not a problem for code quality. Also, the code using this size may assume
670   // that each loop has at least three instructions (likely a conditional
671   // branch, a comparison feeding that branch, and some kind of loop increment
672   // feeding that comparison instruction).
673   LoopSize = std::max(LoopSize, BEInsns + 1);
674 
675   return LoopSize;
676 }
677 
678 // Returns the loop hint metadata node with the given name (for example,
679 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
680 // returned.
getUnrollMetadataForLoop(const Loop * L,StringRef Name)681 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
682   if (MDNode *LoopID = L->getLoopID())
683     return GetUnrollMetadata(LoopID, Name);
684   return nullptr;
685 }
686 
687 // Returns true if the loop has an unroll(full) pragma.
hasUnrollFullPragma(const Loop * L)688 static bool hasUnrollFullPragma(const Loop *L) {
689   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
690 }
691 
692 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
693 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
hasUnrollEnablePragma(const Loop * L)694 static bool hasUnrollEnablePragma(const Loop *L) {
695   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
696 }
697 
698 // Returns true if the loop has an runtime unroll(disable) pragma.
hasRuntimeUnrollDisablePragma(const Loop * L)699 static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
700   return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
701 }
702 
703 // If loop has an unroll_count pragma return the (necessarily
704 // positive) value from the pragma.  Otherwise return 0.
unrollCountPragmaValue(const Loop * L)705 static unsigned unrollCountPragmaValue(const Loop *L) {
706   MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
707   if (MD) {
708     assert(MD->getNumOperands() == 2 &&
709            "Unroll count hint metadata should have two operands.");
710     unsigned Count =
711         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
712     assert(Count >= 1 && "Unroll count must be positive.");
713     return Count;
714   }
715   return 0;
716 }
717 
718 // Computes the boosting factor for complete unrolling.
719 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
720 // be beneficial to fully unroll the loop even if unrolledcost is large. We
721 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
722 // the unroll threshold.
getFullUnrollBoostingFactor(const EstimatedUnrollCost & Cost,unsigned MaxPercentThresholdBoost)723 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
724                                             unsigned MaxPercentThresholdBoost) {
725   if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
726     return 100;
727   else if (Cost.UnrolledCost != 0)
728     // The boosting factor is RolledDynamicCost / UnrolledCost
729     return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
730                     MaxPercentThresholdBoost);
731   else
732     return MaxPercentThresholdBoost;
733 }
734 
735 // Produce an estimate of the unrolled cost of the specified loop.  This
736 // is used to a) produce a cost estimate for partial unrolling and b) to
737 // cheaply estimate cost for full unrolling when we don't want to symbolically
738 // evaluate all iterations.
739 class UnrollCostEstimator {
740   const unsigned LoopSize;
741 
742 public:
UnrollCostEstimator(Loop & L,unsigned LoopSize)743   UnrollCostEstimator(Loop &L, unsigned LoopSize) : LoopSize(LoopSize) {}
744 
745   // Returns loop size estimation for unrolled loop, given the unrolling
746   // configuration specified by UP.
getUnrolledLoopSize(TargetTransformInfo::UnrollingPreferences & UP)747   uint64_t getUnrolledLoopSize(TargetTransformInfo::UnrollingPreferences &UP) {
748     assert(LoopSize >= UP.BEInsns &&
749            "LoopSize should not be less than BEInsns!");
750     return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
751   }
752 };
753 
754 // Returns true if unroll count was set explicitly.
755 // Calculates unroll count and writes it to UP.Count.
756 // Unless IgnoreUser is true, will also use metadata and command-line options
757 // that are specific to to the LoopUnroll pass (which, for instance, are
758 // irrelevant for the LoopUnrollAndJam pass).
759 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
760 // many LoopUnroll-specific options. The shared functionality should be
761 // refactored into it own function.
computeUnrollCount(Loop * L,const TargetTransformInfo & TTI,DominatorTree & DT,LoopInfo * LI,ScalarEvolution & SE,const SmallPtrSetImpl<const Value * > & EphValues,OptimizationRemarkEmitter * ORE,unsigned & TripCount,unsigned MaxTripCount,bool MaxOrZero,unsigned & TripMultiple,unsigned LoopSize,TargetTransformInfo::UnrollingPreferences & UP,TargetTransformInfo::PeelingPreferences & PP,bool & UseUpperBound)762 bool llvm::computeUnrollCount(
763     Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
764     ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
765     OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
766     bool MaxOrZero, unsigned &TripMultiple, unsigned LoopSize,
767     TargetTransformInfo::UnrollingPreferences &UP,
768     TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) {
769 
770   UnrollCostEstimator UCE(*L, LoopSize);
771 
772   // Check for explicit Count.
773   // 1st priority is unroll count set by "unroll-count" option.
774   bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
775   if (UserUnrollCount) {
776     UP.Count = UnrollCount;
777     UP.AllowExpensiveTripCount = true;
778     UP.Force = true;
779     if (UP.AllowRemainder && UCE.getUnrolledLoopSize(UP) < UP.Threshold)
780       return true;
781   }
782 
783   // 2nd priority is unroll count set by pragma.
784   unsigned PragmaCount = unrollCountPragmaValue(L);
785   if (PragmaCount > 0) {
786     UP.Count = PragmaCount;
787     UP.Runtime = true;
788     UP.AllowExpensiveTripCount = true;
789     UP.Force = true;
790     if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
791         UCE.getUnrolledLoopSize(UP) < PragmaUnrollThreshold)
792       return true;
793   }
794   bool PragmaFullUnroll = hasUnrollFullPragma(L);
795   if (PragmaFullUnroll && TripCount != 0) {
796     UP.Count = TripCount;
797     if (UCE.getUnrolledLoopSize(UP) < PragmaUnrollThreshold)
798       return false;
799   }
800 
801   bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
802   bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
803                         PragmaEnableUnroll || UserUnrollCount;
804 
805   if (ExplicitUnroll && TripCount != 0) {
806     // If the loop has an unrolling pragma, we want to be more aggressive with
807     // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
808     // value which is larger than the default limits.
809     UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
810     UP.PartialThreshold =
811         std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
812   }
813 
814   // 3rd priority is full unroll count.
815   // Full unroll makes sense only when TripCount or its upper bound could be
816   // statically calculated.
817   // Also we need to check if we exceed FullUnrollMaxCount.
818   // If using the upper bound to unroll, TripMultiple should be set to 1 because
819   // we do not know when loop may exit.
820 
821   // We can unroll by the upper bound amount if it's generally allowed or if
822   // we know that the loop is executed either the upper bound or zero times.
823   // (MaxOrZero unrolling keeps only the first loop test, so the number of
824   // loop tests remains the same compared to the non-unrolled version, whereas
825   // the generic upper bound unrolling keeps all but the last loop test so the
826   // number of loop tests goes up which may end up being worse on targets with
827   // constrained branch predictor resources so is controlled by an option.)
828   // In addition we only unroll small upper bounds.
829   unsigned FullUnrollMaxTripCount = MaxTripCount;
830   if (!(UP.UpperBound || MaxOrZero) ||
831       FullUnrollMaxTripCount > UnrollMaxUpperBound)
832     FullUnrollMaxTripCount = 0;
833 
834   // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only
835   // compute the former when the latter is zero.
836   unsigned ExactTripCount = TripCount;
837   assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) &&
838          "ExtractTripCount and UnrollByMaxCount cannot both be non zero.");
839 
840   unsigned FullUnrollTripCount =
841       ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount;
842   UP.Count = FullUnrollTripCount;
843   if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
844     // When computing the unrolled size, note that BEInsns are not replicated
845     // like the rest of the loop body.
846     if (UCE.getUnrolledLoopSize(UP) < UP.Threshold) {
847       UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
848       TripCount = FullUnrollTripCount;
849       TripMultiple = UP.UpperBound ? 1 : TripMultiple;
850       return ExplicitUnroll;
851     } else {
852       // The loop isn't that small, but we still can fully unroll it if that
853       // helps to remove a significant number of instructions.
854       // To check that, run additional analysis on the loop.
855       if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
856               L, FullUnrollTripCount, DT, SE, EphValues, TTI,
857               UP.Threshold * UP.MaxPercentThresholdBoost / 100,
858               UP.MaxIterationsCountToAnalyze)) {
859         unsigned Boost =
860             getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
861         if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
862           UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
863           TripCount = FullUnrollTripCount;
864           TripMultiple = UP.UpperBound ? 1 : TripMultiple;
865           return ExplicitUnroll;
866         }
867       }
868     }
869   }
870 
871   // 4th priority is loop peeling.
872   computePeelCount(L, LoopSize, PP, TripCount, SE, UP.Threshold);
873   if (PP.PeelCount) {
874     UP.Runtime = false;
875     UP.Count = 1;
876     return ExplicitUnroll;
877   }
878 
879   // 5th priority is partial unrolling.
880   // Try partial unroll only when TripCount could be statically calculated.
881   if (TripCount) {
882     UP.Partial |= ExplicitUnroll;
883     if (!UP.Partial) {
884       LLVM_DEBUG(dbgs() << "  will not try to unroll partially because "
885                         << "-unroll-allow-partial not given\n");
886       UP.Count = 0;
887       return false;
888     }
889     if (UP.Count == 0)
890       UP.Count = TripCount;
891     if (UP.PartialThreshold != NoThreshold) {
892       // Reduce unroll count to be modulo of TripCount for partial unrolling.
893       if (UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
894         UP.Count =
895             (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
896             (LoopSize - UP.BEInsns);
897       if (UP.Count > UP.MaxCount)
898         UP.Count = UP.MaxCount;
899       while (UP.Count != 0 && TripCount % UP.Count != 0)
900         UP.Count--;
901       if (UP.AllowRemainder && UP.Count <= 1) {
902         // If there is no Count that is modulo of TripCount, set Count to
903         // largest power-of-two factor that satisfies the threshold limit.
904         // As we'll create fixup loop, do the type of unrolling only if
905         // remainder loop is allowed.
906         UP.Count = UP.DefaultUnrollRuntimeCount;
907         while (UP.Count != 0 &&
908                UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
909           UP.Count >>= 1;
910       }
911       if (UP.Count < 2) {
912         if (PragmaEnableUnroll)
913           ORE->emit([&]() {
914             return OptimizationRemarkMissed(DEBUG_TYPE,
915                                             "UnrollAsDirectedTooLarge",
916                                             L->getStartLoc(), L->getHeader())
917                    << "Unable to unroll loop as directed by unroll(enable) "
918                       "pragma "
919                       "because unrolled size is too large.";
920           });
921         UP.Count = 0;
922       }
923     } else {
924       UP.Count = TripCount;
925     }
926     if (UP.Count > UP.MaxCount)
927       UP.Count = UP.MaxCount;
928     if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
929         UP.Count != TripCount)
930       ORE->emit([&]() {
931         return OptimizationRemarkMissed(DEBUG_TYPE,
932                                         "FullUnrollAsDirectedTooLarge",
933                                         L->getStartLoc(), L->getHeader())
934                << "Unable to fully unroll loop as directed by unroll pragma "
935                   "because "
936                   "unrolled size is too large.";
937       });
938     LLVM_DEBUG(dbgs() << "  partially unrolling with count: " << UP.Count
939                       << "\n");
940     return ExplicitUnroll;
941   }
942   assert(TripCount == 0 &&
943          "All cases when TripCount is constant should be covered here.");
944   if (PragmaFullUnroll)
945     ORE->emit([&]() {
946       return OptimizationRemarkMissed(
947                  DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
948                  L->getStartLoc(), L->getHeader())
949              << "Unable to fully unroll loop as directed by unroll(full) "
950                 "pragma "
951                 "because loop has a runtime trip count.";
952     });
953 
954   // 6th priority is runtime unrolling.
955   // Don't unroll a runtime trip count loop when it is disabled.
956   if (hasRuntimeUnrollDisablePragma(L)) {
957     UP.Count = 0;
958     return false;
959   }
960 
961   // Don't unroll a small upper bound loop unless user or TTI asked to do so.
962   if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) {
963     UP.Count = 0;
964     return false;
965   }
966 
967   // Check if the runtime trip count is too small when profile is available.
968   if (L->getHeader()->getParent()->hasProfileData()) {
969     if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
970       if (*ProfileTripCount < FlatLoopTripCountThreshold)
971         return false;
972       else
973         UP.AllowExpensiveTripCount = true;
974     }
975   }
976 
977   // Reduce count based on the type of unrolling and the threshold values.
978   UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
979   if (!UP.Runtime) {
980     LLVM_DEBUG(
981         dbgs() << "  will not try to unroll loop with runtime trip count "
982                << "-unroll-runtime not given\n");
983     UP.Count = 0;
984     return false;
985   }
986   if (UP.Count == 0)
987     UP.Count = UP.DefaultUnrollRuntimeCount;
988 
989   // Reduce unroll count to be the largest power-of-two factor of
990   // the original count which satisfies the threshold limit.
991   while (UP.Count != 0 &&
992          UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
993     UP.Count >>= 1;
994 
995 #ifndef NDEBUG
996   unsigned OrigCount = UP.Count;
997 #endif
998 
999   if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
1000     while (UP.Count != 0 && TripMultiple % UP.Count != 0)
1001       UP.Count >>= 1;
1002     LLVM_DEBUG(
1003         dbgs() << "Remainder loop is restricted (that could architecture "
1004                   "specific or because the loop contains a convergent "
1005                   "instruction), so unroll count must divide the trip "
1006                   "multiple, "
1007                << TripMultiple << ".  Reducing unroll count from " << OrigCount
1008                << " to " << UP.Count << ".\n");
1009 
1010     using namespace ore;
1011 
1012     if (PragmaCount > 0 && !UP.AllowRemainder)
1013       ORE->emit([&]() {
1014         return OptimizationRemarkMissed(DEBUG_TYPE,
1015                                         "DifferentUnrollCountFromDirected",
1016                                         L->getStartLoc(), L->getHeader())
1017                << "Unable to unroll loop the number of times directed by "
1018                   "unroll_count pragma because remainder loop is restricted "
1019                   "(that could architecture specific or because the loop "
1020                   "contains a convergent instruction) and so must have an "
1021                   "unroll "
1022                   "count that divides the loop trip multiple of "
1023                << NV("TripMultiple", TripMultiple) << ".  Unrolling instead "
1024                << NV("UnrollCount", UP.Count) << " time(s).";
1025       });
1026   }
1027 
1028   if (UP.Count > UP.MaxCount)
1029     UP.Count = UP.MaxCount;
1030 
1031   if (MaxTripCount && UP.Count > MaxTripCount)
1032     UP.Count = MaxTripCount;
1033 
1034   LLVM_DEBUG(dbgs() << "  runtime unrolling with count: " << UP.Count
1035                     << "\n");
1036   if (UP.Count < 2)
1037     UP.Count = 0;
1038   return ExplicitUnroll;
1039 }
1040 
tryToUnrollLoop(Loop * L,DominatorTree & DT,LoopInfo * LI,ScalarEvolution & SE,const TargetTransformInfo & TTI,AssumptionCache & AC,OptimizationRemarkEmitter & ORE,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,bool PreserveLCSSA,int OptLevel,bool OnlyWhenForced,bool ForgetAllSCEV,Optional<unsigned> ProvidedCount,Optional<unsigned> ProvidedThreshold,Optional<bool> ProvidedAllowPartial,Optional<bool> ProvidedRuntime,Optional<bool> ProvidedUpperBound,Optional<bool> ProvidedAllowPeeling,Optional<bool> ProvidedAllowProfileBasedPeeling,Optional<unsigned> ProvidedFullUnrollMaxCount)1041 static LoopUnrollResult tryToUnrollLoop(
1042     Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
1043     const TargetTransformInfo &TTI, AssumptionCache &AC,
1044     OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
1045     ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
1046     bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
1047     Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
1048     Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
1049     Optional<bool> ProvidedAllowPeeling,
1050     Optional<bool> ProvidedAllowProfileBasedPeeling,
1051     Optional<unsigned> ProvidedFullUnrollMaxCount) {
1052   LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1053                     << L->getHeader()->getParent()->getName() << "] Loop %"
1054                     << L->getHeader()->getName() << "\n");
1055   TransformationMode TM = hasUnrollTransformation(L);
1056   if (TM & TM_Disable)
1057     return LoopUnrollResult::Unmodified;
1058   if (!L->isLoopSimplifyForm()) {
1059     LLVM_DEBUG(
1060         dbgs() << "  Not unrolling loop which is not in loop-simplify form.\n");
1061     return LoopUnrollResult::Unmodified;
1062   }
1063 
1064   // When automatic unrolling is disabled, do not unroll unless overridden for
1065   // this loop.
1066   if (OnlyWhenForced && !(TM & TM_Enable))
1067     return LoopUnrollResult::Unmodified;
1068 
1069   bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1070   unsigned NumInlineCandidates;
1071   bool NotDuplicatable;
1072   bool Convergent;
1073   TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1074       L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount,
1075       ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1076       ProvidedFullUnrollMaxCount);
1077   TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(
1078       L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true);
1079 
1080   // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1081   // as threshold later on.
1082   if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1083       !OptForSize)
1084     return LoopUnrollResult::Unmodified;
1085 
1086   SmallPtrSet<const Value *, 32> EphValues;
1087   CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1088 
1089   unsigned LoopSize =
1090       ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1091                           TTI, EphValues, UP.BEInsns);
1092   LLVM_DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
1093   if (NotDuplicatable) {
1094     LLVM_DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
1095                       << " instructions.\n");
1096     return LoopUnrollResult::Unmodified;
1097   }
1098 
1099   // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1100   // later), to (fully) unroll loops, if it does not increase code size.
1101   if (OptForSize)
1102     UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
1103 
1104   if (NumInlineCandidates != 0) {
1105     LLVM_DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
1106     return LoopUnrollResult::Unmodified;
1107   }
1108 
1109   // Find trip count and trip multiple if count is not available
1110   unsigned TripCount = 0;
1111   unsigned TripMultiple = 1;
1112   // If there are multiple exiting blocks but one of them is the latch, use the
1113   // latch for the trip count estimation. Otherwise insist on a single exiting
1114   // block for the trip count estimation.
1115   BasicBlock *ExitingBlock = L->getLoopLatch();
1116   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1117     ExitingBlock = L->getExitingBlock();
1118   if (ExitingBlock) {
1119     TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
1120     TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1121   }
1122 
1123   // If the loop contains a convergent operation, the prelude we'd add
1124   // to do the first few instructions before we hit the unrolled loop
1125   // is unsafe -- it adds a control-flow dependency to the convergent
1126   // operation.  Therefore restrict remainder loop (try unrolling without).
1127   //
1128   // TODO: This is quite conservative.  In practice, convergent_op()
1129   // is likely to be called unconditionally in the loop.  In this
1130   // case, the program would be ill-formed (on most architectures)
1131   // unless n were the same on all threads in a thread group.
1132   // Assuming n is the same on all threads, any kind of unrolling is
1133   // safe.  But currently llvm's notion of convergence isn't powerful
1134   // enough to express this.
1135   if (Convergent)
1136     UP.AllowRemainder = false;
1137 
1138   // Try to find the trip count upper bound if we cannot find the exact trip
1139   // count.
1140   unsigned MaxTripCount = 0;
1141   bool MaxOrZero = false;
1142   if (!TripCount) {
1143     MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1144     MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1145   }
1146 
1147   // computeUnrollCount() decides whether it is beneficial to use upper bound to
1148   // fully unroll the loop.
1149   bool UseUpperBound = false;
1150   bool IsCountSetExplicitly = computeUnrollCount(
1151       L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero,
1152       TripMultiple, LoopSize, UP, PP, UseUpperBound);
1153   if (!UP.Count)
1154     return LoopUnrollResult::Unmodified;
1155   // Unroll factor (Count) must be less or equal to TripCount.
1156   if (TripCount && UP.Count > TripCount)
1157     UP.Count = TripCount;
1158 
1159   // Save loop properties before it is transformed.
1160   MDNode *OrigLoopID = L->getLoopID();
1161 
1162   // Unroll the loop.
1163   Loop *RemainderLoop = nullptr;
1164   LoopUnrollResult UnrollResult = UnrollLoop(
1165       L,
1166       {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1167        UseUpperBound, MaxOrZero, TripMultiple, PP.PeelCount, UP.UnrollRemainder,
1168        ForgetAllSCEV},
1169       LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop);
1170   if (UnrollResult == LoopUnrollResult::Unmodified)
1171     return LoopUnrollResult::Unmodified;
1172 
1173   if (RemainderLoop) {
1174     Optional<MDNode *> RemainderLoopID =
1175         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1176                                         LLVMLoopUnrollFollowupRemainder});
1177     if (RemainderLoopID.hasValue())
1178       RemainderLoop->setLoopID(RemainderLoopID.getValue());
1179   }
1180 
1181   if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1182     Optional<MDNode *> NewLoopID =
1183         makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1184                                         LLVMLoopUnrollFollowupUnrolled});
1185     if (NewLoopID.hasValue()) {
1186       L->setLoopID(NewLoopID.getValue());
1187 
1188       // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1189       // explicitly.
1190       return UnrollResult;
1191     }
1192   }
1193 
1194   // If loop has an unroll count pragma or unrolled by explicitly set count
1195   // mark loop as unrolled to prevent unrolling beyond that requested.
1196   // If the loop was peeled, we already "used up" the profile information
1197   // we had, so we don't want to unroll or peel again.
1198   if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
1199       (IsCountSetExplicitly || (PP.PeelProfiledIterations && PP.PeelCount)))
1200     L->setLoopAlreadyUnrolled();
1201 
1202   return UnrollResult;
1203 }
1204 
1205 namespace {
1206 
1207 class LoopUnroll : public LoopPass {
1208 public:
1209   static char ID; // Pass ID, replacement for typeid
1210 
1211   int OptLevel;
1212 
1213   /// If false, use a cost model to determine whether unrolling of a loop is
1214   /// profitable. If true, only loops that explicitly request unrolling via
1215   /// metadata are considered. All other loops are skipped.
1216   bool OnlyWhenForced;
1217 
1218   /// If false, when SCEV is invalidated, only forget everything in the
1219   /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1220   /// Otherwise, forgetAllLoops and rebuild when needed next.
1221   bool ForgetAllSCEV;
1222 
1223   Optional<unsigned> ProvidedCount;
1224   Optional<unsigned> ProvidedThreshold;
1225   Optional<bool> ProvidedAllowPartial;
1226   Optional<bool> ProvidedRuntime;
1227   Optional<bool> ProvidedUpperBound;
1228   Optional<bool> ProvidedAllowPeeling;
1229   Optional<bool> ProvidedAllowProfileBasedPeeling;
1230   Optional<unsigned> ProvidedFullUnrollMaxCount;
1231 
LoopUnroll(int OptLevel=2,bool OnlyWhenForced=false,bool ForgetAllSCEV=false,Optional<unsigned> Threshold=None,Optional<unsigned> Count=None,Optional<bool> AllowPartial=None,Optional<bool> Runtime=None,Optional<bool> UpperBound=None,Optional<bool> AllowPeeling=None,Optional<bool> AllowProfileBasedPeeling=None,Optional<unsigned> ProvidedFullUnrollMaxCount=None)1232   LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1233              bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
1234              Optional<unsigned> Count = None,
1235              Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1236              Optional<bool> UpperBound = None,
1237              Optional<bool> AllowPeeling = None,
1238              Optional<bool> AllowProfileBasedPeeling = None,
1239              Optional<unsigned> ProvidedFullUnrollMaxCount = None)
1240       : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1241         ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1242         ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1243         ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1244         ProvidedAllowPeeling(AllowPeeling),
1245         ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1246         ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1247     initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1248   }
1249 
runOnLoop(Loop * L,LPPassManager & LPM)1250   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1251     if (skipLoop(L))
1252       return false;
1253 
1254     Function &F = *L->getHeader()->getParent();
1255 
1256     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1257     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1258     ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1259     const TargetTransformInfo &TTI =
1260         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1261     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1262     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1263     // pass.  Function analyses need to be preserved across loop transformations
1264     // but ORE cannot be preserved (see comment before the pass definition).
1265     OptimizationRemarkEmitter ORE(&F);
1266     bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1267 
1268     LoopUnrollResult Result = tryToUnrollLoop(
1269         L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1270         OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
1271         ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1272         ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
1273         ProvidedFullUnrollMaxCount);
1274 
1275     if (Result == LoopUnrollResult::FullyUnrolled)
1276       LPM.markLoopAsDeleted(*L);
1277 
1278     return Result != LoopUnrollResult::Unmodified;
1279   }
1280 
1281   /// This transformation requires natural loop information & requires that
1282   /// loop preheaders be inserted into the CFG...
getAnalysisUsage(AnalysisUsage & AU) const1283   void getAnalysisUsage(AnalysisUsage &AU) const override {
1284     AU.addRequired<AssumptionCacheTracker>();
1285     AU.addRequired<TargetTransformInfoWrapperPass>();
1286     // FIXME: Loop passes are required to preserve domtree, and for now we just
1287     // recreate dom info if anything gets unrolled.
1288     getLoopAnalysisUsage(AU);
1289   }
1290 };
1291 
1292 } // end anonymous namespace
1293 
1294 char LoopUnroll::ID = 0;
1295 
1296 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1297 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1298 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1299 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1300 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1301 
1302 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1303                                  bool ForgetAllSCEV, int Threshold, int Count,
1304                                  int AllowPartial, int Runtime, int UpperBound,
1305                                  int AllowPeeling) {
1306   // TODO: It would make more sense for this function to take the optionals
1307   // directly, but that's dangerous since it would silently break out of tree
1308   // callers.
1309   return new LoopUnroll(
1310       OptLevel, OnlyWhenForced, ForgetAllSCEV,
1311       Threshold == -1 ? None : Optional<unsigned>(Threshold),
1312       Count == -1 ? None : Optional<unsigned>(Count),
1313       AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1314       Runtime == -1 ? None : Optional<bool>(Runtime),
1315       UpperBound == -1 ? None : Optional<bool>(UpperBound),
1316       AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1317 }
1318 
createSimpleLoopUnrollPass(int OptLevel,bool OnlyWhenForced,bool ForgetAllSCEV)1319 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1320                                        bool ForgetAllSCEV) {
1321   return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
1322                               0, 0, 0, 1);
1323 }
1324 
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & Updater)1325 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1326                                           LoopStandardAnalysisResults &AR,
1327                                           LPMUpdater &Updater) {
1328   // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1329   // pass. Function analyses need to be preserved across loop transformations
1330   // but ORE cannot be preserved (see comment before the pass definition).
1331   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
1332 
1333   // Keep track of the previous loop structure so we can identify new loops
1334   // created by unrolling.
1335   Loop *ParentL = L.getParentLoop();
1336   SmallPtrSet<Loop *, 4> OldLoops;
1337   if (ParentL)
1338     OldLoops.insert(ParentL->begin(), ParentL->end());
1339   else
1340     OldLoops.insert(AR.LI.begin(), AR.LI.end());
1341 
1342   std::string LoopName = std::string(L.getName());
1343 
1344   bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE,
1345                                  /*BFI*/ nullptr, /*PSI*/ nullptr,
1346                                  /*PreserveLCSSA*/ true, OptLevel,
1347                                  OnlyWhenForced, ForgetSCEV, /*Count*/ None,
1348                                  /*Threshold*/ None, /*AllowPartial*/ false,
1349                                  /*Runtime*/ false, /*UpperBound*/ false,
1350                                  /*AllowPeeling*/ true,
1351                                  /*AllowProfileBasedPeeling*/ false,
1352                                  /*FullUnrollMaxCount*/ None) !=
1353                  LoopUnrollResult::Unmodified;
1354   if (!Changed)
1355     return PreservedAnalyses::all();
1356 
1357   // The parent must not be damaged by unrolling!
1358 #ifndef NDEBUG
1359   if (ParentL)
1360     ParentL->verifyLoop();
1361 #endif
1362 
1363   // Unrolling can do several things to introduce new loops into a loop nest:
1364   // - Full unrolling clones child loops within the current loop but then
1365   //   removes the current loop making all of the children appear to be new
1366   //   sibling loops.
1367   //
1368   // When a new loop appears as a sibling loop after fully unrolling,
1369   // its nesting structure has fundamentally changed and we want to revisit
1370   // it to reflect that.
1371   //
1372   // When unrolling has removed the current loop, we need to tell the
1373   // infrastructure that it is gone.
1374   //
1375   // Finally, we support a debugging/testing mode where we revisit child loops
1376   // as well. These are not expected to require further optimizations as either
1377   // they or the loop they were cloned from have been directly visited already.
1378   // But the debugging mode allows us to check this assumption.
1379   bool IsCurrentLoopValid = false;
1380   SmallVector<Loop *, 4> SibLoops;
1381   if (ParentL)
1382     SibLoops.append(ParentL->begin(), ParentL->end());
1383   else
1384     SibLoops.append(AR.LI.begin(), AR.LI.end());
1385   erase_if(SibLoops, [&](Loop *SibLoop) {
1386     if (SibLoop == &L) {
1387       IsCurrentLoopValid = true;
1388       return true;
1389     }
1390 
1391     // Otherwise erase the loop from the list if it was in the old loops.
1392     return OldLoops.contains(SibLoop);
1393   });
1394   Updater.addSiblingLoops(SibLoops);
1395 
1396   if (!IsCurrentLoopValid) {
1397     Updater.markLoopAsDeleted(L, LoopName);
1398   } else {
1399     // We can only walk child loops if the current loop remained valid.
1400     if (UnrollRevisitChildLoops) {
1401       // Walk *all* of the child loops.
1402       SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1403       Updater.addChildLoops(ChildLoops);
1404     }
1405   }
1406 
1407   return getLoopPassPreservedAnalyses();
1408 }
1409 
run(Function & F,FunctionAnalysisManager & AM)1410 PreservedAnalyses LoopUnrollPass::run(Function &F,
1411                                       FunctionAnalysisManager &AM) {
1412   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1413   auto &LI = AM.getResult<LoopAnalysis>(F);
1414   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1415   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1416   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1417   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1418 
1419   LoopAnalysisManager *LAM = nullptr;
1420   if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1421     LAM = &LAMProxy->getManager();
1422 
1423   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1424   ProfileSummaryInfo *PSI =
1425       MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1426   auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1427       &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1428 
1429   bool Changed = false;
1430 
1431   // The unroller requires loops to be in simplified form, and also needs LCSSA.
1432   // Since simplification may add new inner loops, it has to run before the
1433   // legality and profitability checks. This means running the loop unroller
1434   // will simplify all loops, regardless of whether anything end up being
1435   // unrolled.
1436   for (auto &L : LI) {
1437     Changed |=
1438         simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1439     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1440   }
1441 
1442   // Add the loop nests in the reverse order of LoopInfo. See method
1443   // declaration.
1444   SmallPriorityWorklist<Loop *, 4> Worklist;
1445   appendLoopsToWorklist(LI, Worklist);
1446 
1447   while (!Worklist.empty()) {
1448     // Because the LoopInfo stores the loops in RPO, we walk the worklist
1449     // from back to front so that we work forward across the CFG, which
1450     // for unrolling is only needed to get optimization remarks emitted in
1451     // a forward order.
1452     Loop &L = *Worklist.pop_back_val();
1453 #ifndef NDEBUG
1454     Loop *ParentL = L.getParentLoop();
1455 #endif
1456 
1457     // Check if the profile summary indicates that the profiled application
1458     // has a huge working set size, in which case we disable peeling to avoid
1459     // bloating it further.
1460     Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1461     if (PSI && PSI->hasHugeWorkingSetSize())
1462       LocalAllowPeeling = false;
1463     std::string LoopName = std::string(L.getName());
1464     // The API here is quite complex to call and we allow to select some
1465     // flavors of unrolling during construction time (by setting UnrollOpts).
1466     LoopUnrollResult Result = tryToUnrollLoop(
1467         &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1468         /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1469         UnrollOpts.ForgetSCEV, /*Count*/ None,
1470         /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
1471         UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1472         UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
1473     Changed |= Result != LoopUnrollResult::Unmodified;
1474 
1475     // The parent must not be damaged by unrolling!
1476 #ifndef NDEBUG
1477     if (Result != LoopUnrollResult::Unmodified && ParentL)
1478       ParentL->verifyLoop();
1479 #endif
1480 
1481     // Clear any cached analysis results for L if we removed it completely.
1482     if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1483       LAM->clear(L, LoopName);
1484   }
1485 
1486   if (!Changed)
1487     return PreservedAnalyses::all();
1488 
1489   return getLoopPassPreservedAnalyses();
1490 }
1491