1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for modules (C++ modules syntax,
10 // Objective-C modules syntax, and Clang header modules).
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/Lex/HeaderSearch.h"
16 #include "clang/Lex/Preprocessor.h"
17 #include "clang/Sema/SemaInternal.h"
18 #include <optional>
19
20 using namespace clang;
21 using namespace sema;
22
checkModuleImportContext(Sema & S,Module * M,SourceLocation ImportLoc,DeclContext * DC,bool FromInclude=false)23 static void checkModuleImportContext(Sema &S, Module *M,
24 SourceLocation ImportLoc, DeclContext *DC,
25 bool FromInclude = false) {
26 SourceLocation ExternCLoc;
27
28 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
29 switch (LSD->getLanguage()) {
30 case LinkageSpecDecl::lang_c:
31 if (ExternCLoc.isInvalid())
32 ExternCLoc = LSD->getBeginLoc();
33 break;
34 case LinkageSpecDecl::lang_cxx:
35 break;
36 }
37 DC = LSD->getParent();
38 }
39
40 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC))
41 DC = DC->getParent();
42
43 if (!isa<TranslationUnitDecl>(DC)) {
44 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M))
45 ? diag::ext_module_import_not_at_top_level_noop
46 : diag::err_module_import_not_at_top_level_fatal)
47 << M->getFullModuleName() << DC;
48 S.Diag(cast<Decl>(DC)->getBeginLoc(),
49 diag::note_module_import_not_at_top_level)
50 << DC;
51 } else if (!M->IsExternC && ExternCLoc.isValid()) {
52 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c)
53 << M->getFullModuleName();
54 S.Diag(ExternCLoc, diag::note_extern_c_begins_here);
55 }
56 }
57
58 // We represent the primary and partition names as 'Paths' which are sections
59 // of the hierarchical access path for a clang module. However for C++20
60 // the periods in a name are just another character, and we will need to
61 // flatten them into a string.
stringFromPath(ModuleIdPath Path)62 static std::string stringFromPath(ModuleIdPath Path) {
63 std::string Name;
64 if (Path.empty())
65 return Name;
66
67 for (auto &Piece : Path) {
68 if (!Name.empty())
69 Name += ".";
70 Name += Piece.first->getName();
71 }
72 return Name;
73 }
74
75 Sema::DeclGroupPtrTy
ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc)76 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) {
77 if (!ModuleScopes.empty() &&
78 ModuleScopes.back().Module->Kind == Module::GlobalModuleFragment) {
79 // Under -std=c++2a -fmodules-ts, we can find an explicit 'module;' after
80 // already implicitly entering the global module fragment. That's OK.
81 assert(getLangOpts().CPlusPlusModules && getLangOpts().ModulesTS &&
82 "unexpectedly encountered multiple global module fragment decls");
83 ModuleScopes.back().BeginLoc = ModuleLoc;
84 return nullptr;
85 }
86
87 // We start in the global module; all those declarations are implicitly
88 // module-private (though they do not have module linkage).
89 Module *GlobalModule =
90 PushGlobalModuleFragment(ModuleLoc, /*IsImplicit=*/false);
91
92 // All declarations created from now on are owned by the global module.
93 auto *TU = Context.getTranslationUnitDecl();
94 // [module.global.frag]p2
95 // A global-module-fragment specifies the contents of the global module
96 // fragment for a module unit. The global module fragment can be used to
97 // provide declarations that are attached to the global module and usable
98 // within the module unit.
99 //
100 // So the declations in the global module shouldn't be visible by default.
101 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported);
102 TU->setLocalOwningModule(GlobalModule);
103
104 // FIXME: Consider creating an explicit representation of this declaration.
105 return nullptr;
106 }
107
HandleStartOfHeaderUnit()108 void Sema::HandleStartOfHeaderUnit() {
109 assert(getLangOpts().CPlusPlusModules &&
110 "Header units are only valid for C++20 modules");
111 SourceLocation StartOfTU =
112 SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID());
113
114 StringRef HUName = getLangOpts().CurrentModule;
115 if (HUName.empty()) {
116 HUName = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID())->getName();
117 const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str();
118 }
119
120 // TODO: Make the C++20 header lookup independent.
121 // When the input is pre-processed source, we need a file ref to the original
122 // file for the header map.
123 auto F = SourceMgr.getFileManager().getOptionalFileRef(HUName);
124 // For the sake of error recovery (if someone has moved the original header
125 // after creating the pre-processed output) fall back to obtaining the file
126 // ref for the input file, which must be present.
127 if (!F)
128 F = SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID());
129 assert(F && "failed to find the header unit source?");
130 Module::Header H{HUName.str(), HUName.str(), *F};
131 auto &Map = PP.getHeaderSearchInfo().getModuleMap();
132 Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H);
133 assert(Mod && "module creation should not fail");
134 ModuleScopes.push_back({}); // No GMF
135 ModuleScopes.back().BeginLoc = StartOfTU;
136 ModuleScopes.back().Module = Mod;
137 ModuleScopes.back().ModuleInterface = true;
138 ModuleScopes.back().IsPartition = false;
139 VisibleModules.setVisible(Mod, StartOfTU);
140
141 // From now on, we have an owning module for all declarations we see.
142 // All of these are implicitly exported.
143 auto *TU = Context.getTranslationUnitDecl();
144 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible);
145 TU->setLocalOwningModule(Mod);
146 }
147
148 /// Tests whether the given identifier is reserved as a module name and
149 /// diagnoses if it is. Returns true if a diagnostic is emitted and false
150 /// otherwise.
DiagReservedModuleName(Sema & S,const IdentifierInfo * II,SourceLocation Loc)151 static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II,
152 SourceLocation Loc) {
153 enum {
154 Valid = -1,
155 Invalid = 0,
156 Reserved = 1,
157 } Reason = Valid;
158
159 if (II->isStr("module") || II->isStr("import"))
160 Reason = Invalid;
161 else if (II->isReserved(S.getLangOpts()) !=
162 ReservedIdentifierStatus::NotReserved)
163 Reason = Reserved;
164
165 // If the identifier is reserved (not invalid) but is in a system header,
166 // we do not diagnose (because we expect system headers to use reserved
167 // identifiers).
168 if (Reason == Reserved && S.getSourceManager().isInSystemHeader(Loc))
169 Reason = Valid;
170
171 if (Reason != Valid) {
172 S.Diag(Loc, diag::err_invalid_module_name) << II << (int)Reason;
173 return true;
174 }
175 return false;
176 }
177
178 Sema::DeclGroupPtrTy
ActOnModuleDecl(SourceLocation StartLoc,SourceLocation ModuleLoc,ModuleDeclKind MDK,ModuleIdPath Path,ModuleIdPath Partition,ModuleImportState & ImportState)179 Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc,
180 ModuleDeclKind MDK, ModuleIdPath Path,
181 ModuleIdPath Partition, ModuleImportState &ImportState) {
182 assert((getLangOpts().ModulesTS || getLangOpts().CPlusPlusModules) &&
183 "should only have module decl in Modules TS or C++20");
184
185 bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl;
186 bool SeenGMF = ImportState == ModuleImportState::GlobalFragment;
187 // If any of the steps here fail, we count that as invalidating C++20
188 // module state;
189 ImportState = ModuleImportState::NotACXX20Module;
190
191 bool IsPartition = !Partition.empty();
192 if (IsPartition)
193 switch (MDK) {
194 case ModuleDeclKind::Implementation:
195 MDK = ModuleDeclKind::PartitionImplementation;
196 break;
197 case ModuleDeclKind::Interface:
198 MDK = ModuleDeclKind::PartitionInterface;
199 break;
200 default:
201 llvm_unreachable("how did we get a partition type set?");
202 }
203
204 // A (non-partition) module implementation unit requires that we are not
205 // compiling a module of any kind. A partition implementation emits an
206 // interface (and the AST for the implementation), which will subsequently
207 // be consumed to emit a binary.
208 // A module interface unit requires that we are not compiling a module map.
209 switch (getLangOpts().getCompilingModule()) {
210 case LangOptions::CMK_None:
211 // It's OK to compile a module interface as a normal translation unit.
212 break;
213
214 case LangOptions::CMK_ModuleInterface:
215 if (MDK != ModuleDeclKind::Implementation)
216 break;
217
218 // We were asked to compile a module interface unit but this is a module
219 // implementation unit.
220 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch)
221 << FixItHint::CreateInsertion(ModuleLoc, "export ");
222 MDK = ModuleDeclKind::Interface;
223 break;
224
225 case LangOptions::CMK_ModuleMap:
226 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module);
227 return nullptr;
228
229 case LangOptions::CMK_HeaderUnit:
230 Diag(ModuleLoc, diag::err_module_decl_in_header_unit);
231 return nullptr;
232 }
233
234 assert(ModuleScopes.size() <= 1 && "expected to be at global module scope");
235
236 // FIXME: Most of this work should be done by the preprocessor rather than
237 // here, in order to support macro import.
238
239 // Only one module-declaration is permitted per source file.
240 if (isCurrentModulePurview()) {
241 Diag(ModuleLoc, diag::err_module_redeclaration);
242 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module),
243 diag::note_prev_module_declaration);
244 return nullptr;
245 }
246
247 assert((!getLangOpts().CPlusPlusModules || getLangOpts().ModulesTS ||
248 SeenGMF == (bool)this->GlobalModuleFragment) &&
249 "mismatched global module state");
250
251 // In C++20, the module-declaration must be the first declaration if there
252 // is no global module fragment.
253 if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) {
254 Diag(ModuleLoc, diag::err_module_decl_not_at_start);
255 SourceLocation BeginLoc =
256 ModuleScopes.empty()
257 ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID())
258 : ModuleScopes.back().BeginLoc;
259 if (BeginLoc.isValid()) {
260 Diag(BeginLoc, diag::note_global_module_introducer_missing)
261 << FixItHint::CreateInsertion(BeginLoc, "module;\n");
262 }
263 }
264
265 // C++2b [module.unit]p1: ... The identifiers module and import shall not
266 // appear as identifiers in a module-name or module-partition. All
267 // module-names either beginning with an identifier consisting of std
268 // followed by zero or more digits or containing a reserved identifier
269 // ([lex.name]) are reserved and shall not be specified in a
270 // module-declaration; no diagnostic is required.
271
272 // Test the first part of the path to see if it's std[0-9]+ but allow the
273 // name in a system header.
274 StringRef FirstComponentName = Path[0].first->getName();
275 if (!getSourceManager().isInSystemHeader(Path[0].second) &&
276 (FirstComponentName == "std" ||
277 (FirstComponentName.startswith("std") &&
278 llvm::all_of(FirstComponentName.drop_front(3), &llvm::isDigit)))) {
279 Diag(Path[0].second, diag::err_invalid_module_name)
280 << Path[0].first << /*reserved*/ 1;
281 return nullptr;
282 }
283
284 // Then test all of the components in the path to see if any of them are
285 // using another kind of reserved or invalid identifier.
286 for (auto Part : Path) {
287 if (DiagReservedModuleName(*this, Part.first, Part.second))
288 return nullptr;
289 }
290
291 // Flatten the dots in a module name. Unlike Clang's hierarchical module map
292 // modules, the dots here are just another character that can appear in a
293 // module name.
294 std::string ModuleName = stringFromPath(Path);
295 if (IsPartition) {
296 ModuleName += ":";
297 ModuleName += stringFromPath(Partition);
298 }
299 // If a module name was explicitly specified on the command line, it must be
300 // correct.
301 if (!getLangOpts().CurrentModule.empty() &&
302 getLangOpts().CurrentModule != ModuleName) {
303 Diag(Path.front().second, diag::err_current_module_name_mismatch)
304 << SourceRange(Path.front().second, IsPartition
305 ? Partition.back().second
306 : Path.back().second)
307 << getLangOpts().CurrentModule;
308 return nullptr;
309 }
310 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;
311
312 auto &Map = PP.getHeaderSearchInfo().getModuleMap();
313 Module *Mod;
314
315 switch (MDK) {
316 case ModuleDeclKind::Interface:
317 case ModuleDeclKind::PartitionInterface: {
318 // We can't have parsed or imported a definition of this module or parsed a
319 // module map defining it already.
320 if (auto *M = Map.findModule(ModuleName)) {
321 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName;
322 if (M->DefinitionLoc.isValid())
323 Diag(M->DefinitionLoc, diag::note_prev_module_definition);
324 else if (OptionalFileEntryRef FE = M->getASTFile())
325 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file)
326 << FE->getName();
327 Mod = M;
328 break;
329 }
330
331 // Create a Module for the module that we're defining.
332 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName);
333 if (MDK == ModuleDeclKind::PartitionInterface)
334 Mod->Kind = Module::ModulePartitionInterface;
335 assert(Mod && "module creation should not fail");
336 break;
337 }
338
339 case ModuleDeclKind::Implementation: {
340 // C++20 A module-declaration that contains neither an export-
341 // keyword nor a module-partition implicitly imports the primary
342 // module interface unit of the module as if by a module-import-
343 // declaration.
344 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc(
345 PP.getIdentifierInfo(ModuleName), Path[0].second);
346
347 // The module loader will assume we're trying to import the module that
348 // we're building if `LangOpts.CurrentModule` equals to 'ModuleName'.
349 // Change the value for `LangOpts.CurrentModule` temporarily to make the
350 // module loader work properly.
351 const_cast<LangOptions&>(getLangOpts()).CurrentModule = "";
352 Mod = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc},
353 Module::AllVisible,
354 /*IsInclusionDirective=*/false);
355 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;
356
357 if (!Mod) {
358 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName;
359 // Create an empty module interface unit for error recovery.
360 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName);
361 }
362
363 } break;
364
365 case ModuleDeclKind::PartitionImplementation:
366 // Create an interface, but note that it is an implementation
367 // unit.
368 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName);
369 Mod->Kind = Module::ModulePartitionImplementation;
370 break;
371 }
372
373 if (!this->GlobalModuleFragment) {
374 ModuleScopes.push_back({});
375 if (getLangOpts().ModulesLocalVisibility)
376 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
377 } else {
378 // We're done with the global module fragment now.
379 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global);
380 }
381
382 // Switch from the global module fragment (if any) to the named module.
383 ModuleScopes.back().BeginLoc = StartLoc;
384 ModuleScopes.back().Module = Mod;
385 ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation;
386 ModuleScopes.back().IsPartition = IsPartition;
387 VisibleModules.setVisible(Mod, ModuleLoc);
388
389 // From now on, we have an owning module for all declarations we see.
390 // In C++20 modules, those declaration would be reachable when imported
391 // unless explicitily exported.
392 // Otherwise, those declarations are module-private unless explicitly
393 // exported.
394 auto *TU = Context.getTranslationUnitDecl();
395 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported);
396 TU->setLocalOwningModule(Mod);
397
398 // We are in the module purview, but before any other (non import)
399 // statements, so imports are allowed.
400 ImportState = ModuleImportState::ImportAllowed;
401
402 // For an implementation, We already made an implicit import (its interface).
403 // Make and return the import decl to be added to the current TU.
404 if (MDK == ModuleDeclKind::Implementation) {
405 // Make the import decl for the interface.
406 ImportDecl *Import =
407 ImportDecl::Create(Context, CurContext, ModuleLoc, Mod, Path[0].second);
408 // and return it to be added.
409 return ConvertDeclToDeclGroup(Import);
410 }
411
412 // FIXME: Create a ModuleDecl.
413 return nullptr;
414 }
415
416 Sema::DeclGroupPtrTy
ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,SourceLocation PrivateLoc)417 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,
418 SourceLocation PrivateLoc) {
419 // C++20 [basic.link]/2:
420 // A private-module-fragment shall appear only in a primary module
421 // interface unit.
422 switch (ModuleScopes.empty() ? Module::GlobalModuleFragment
423 : ModuleScopes.back().Module->Kind) {
424 case Module::ModuleMapModule:
425 case Module::GlobalModuleFragment:
426 case Module::ModulePartitionImplementation:
427 case Module::ModulePartitionInterface:
428 case Module::ModuleHeaderUnit:
429 Diag(PrivateLoc, diag::err_private_module_fragment_not_module);
430 return nullptr;
431
432 case Module::PrivateModuleFragment:
433 Diag(PrivateLoc, diag::err_private_module_fragment_redefined);
434 Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition);
435 return nullptr;
436
437 case Module::ModuleInterfaceUnit:
438 break;
439 }
440
441 if (!ModuleScopes.back().ModuleInterface) {
442 Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface);
443 Diag(ModuleScopes.back().BeginLoc,
444 diag::note_not_module_interface_add_export)
445 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export ");
446 return nullptr;
447 }
448
449 // FIXME: Check this isn't a module interface partition.
450 // FIXME: Check that this translation unit does not import any partitions;
451 // such imports would violate [basic.link]/2's "shall be the only module unit"
452 // restriction.
453
454 // We've finished the public fragment of the translation unit.
455 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal);
456
457 auto &Map = PP.getHeaderSearchInfo().getModuleMap();
458 Module *PrivateModuleFragment =
459 Map.createPrivateModuleFragmentForInterfaceUnit(
460 ModuleScopes.back().Module, PrivateLoc);
461 assert(PrivateModuleFragment && "module creation should not fail");
462
463 // Enter the scope of the private module fragment.
464 ModuleScopes.push_back({});
465 ModuleScopes.back().BeginLoc = ModuleLoc;
466 ModuleScopes.back().Module = PrivateModuleFragment;
467 ModuleScopes.back().ModuleInterface = true;
468 VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc);
469
470 // All declarations created from now on are scoped to the private module
471 // fragment (and are neither visible nor reachable in importers of the module
472 // interface).
473 auto *TU = Context.getTranslationUnitDecl();
474 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate);
475 TU->setLocalOwningModule(PrivateModuleFragment);
476
477 // FIXME: Consider creating an explicit representation of this declaration.
478 return nullptr;
479 }
480
ActOnModuleImport(SourceLocation StartLoc,SourceLocation ExportLoc,SourceLocation ImportLoc,ModuleIdPath Path,bool IsPartition)481 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
482 SourceLocation ExportLoc,
483 SourceLocation ImportLoc, ModuleIdPath Path,
484 bool IsPartition) {
485
486 bool Cxx20Mode = getLangOpts().CPlusPlusModules || getLangOpts().ModulesTS;
487 assert((!IsPartition || Cxx20Mode) && "partition seen in non-C++20 code?");
488
489 // For a C++20 module name, flatten into a single identifier with the source
490 // location of the first component.
491 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc;
492
493 std::string ModuleName;
494 if (IsPartition) {
495 // We already checked that we are in a module purview in the parser.
496 assert(!ModuleScopes.empty() && "in a module purview, but no module?");
497 Module *NamedMod = ModuleScopes.back().Module;
498 // If we are importing into a partition, find the owning named module,
499 // otherwise, the name of the importing named module.
500 ModuleName = NamedMod->getPrimaryModuleInterfaceName().str();
501 ModuleName += ":";
502 ModuleName += stringFromPath(Path);
503 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second};
504 Path = ModuleIdPath(ModuleNameLoc);
505 } else if (Cxx20Mode) {
506 ModuleName = stringFromPath(Path);
507 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second};
508 Path = ModuleIdPath(ModuleNameLoc);
509 }
510
511 // Diagnose self-import before attempting a load.
512 // [module.import]/9
513 // A module implementation unit of a module M that is not a module partition
514 // shall not contain a module-import-declaration nominating M.
515 // (for an implementation, the module interface is imported implicitly,
516 // but that's handled in the module decl code).
517
518 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() &&
519 getCurrentModule()->Name == ModuleName) {
520 Diag(ImportLoc, diag::err_module_self_import_cxx20)
521 << ModuleName << !ModuleScopes.back().ModuleInterface;
522 return true;
523 }
524
525 Module *Mod = getModuleLoader().loadModule(
526 ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false);
527 if (!Mod)
528 return true;
529
530 return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path);
531 }
532
533 /// Determine whether \p D is lexically within an export-declaration.
getEnclosingExportDecl(const Decl * D)534 static const ExportDecl *getEnclosingExportDecl(const Decl *D) {
535 for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent())
536 if (auto *ED = dyn_cast<ExportDecl>(DC))
537 return ED;
538 return nullptr;
539 }
540
ActOnModuleImport(SourceLocation StartLoc,SourceLocation ExportLoc,SourceLocation ImportLoc,Module * Mod,ModuleIdPath Path)541 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
542 SourceLocation ExportLoc,
543 SourceLocation ImportLoc, Module *Mod,
544 ModuleIdPath Path) {
545 VisibleModules.setVisible(Mod, ImportLoc);
546
547 checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
548
549 // FIXME: we should support importing a submodule within a different submodule
550 // of the same top-level module. Until we do, make it an error rather than
551 // silently ignoring the import.
552 // FIXME: Should we warn on a redundant import of the current module?
553 if (Mod->isForBuilding(getLangOpts()) &&
554 (getLangOpts().isCompilingModule() || !getLangOpts().ModulesTS)) {
555 Diag(ImportLoc, getLangOpts().isCompilingModule()
556 ? diag::err_module_self_import
557 : diag::err_module_import_in_implementation)
558 << Mod->getFullModuleName() << getLangOpts().CurrentModule;
559 }
560
561 SmallVector<SourceLocation, 2> IdentifierLocs;
562
563 if (Path.empty()) {
564 // If this was a header import, pad out with dummy locations.
565 // FIXME: Pass in and use the location of the header-name token in this
566 // case.
567 for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent)
568 IdentifierLocs.push_back(SourceLocation());
569 } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) {
570 // A single identifier for the whole name.
571 IdentifierLocs.push_back(Path[0].second);
572 } else {
573 Module *ModCheck = Mod;
574 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
575 // If we've run out of module parents, just drop the remaining
576 // identifiers. We need the length to be consistent.
577 if (!ModCheck)
578 break;
579 ModCheck = ModCheck->Parent;
580
581 IdentifierLocs.push_back(Path[I].second);
582 }
583 }
584
585 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc,
586 Mod, IdentifierLocs);
587 CurContext->addDecl(Import);
588
589 // Sequence initialization of the imported module before that of the current
590 // module, if any.
591 if (!ModuleScopes.empty())
592 Context.addModuleInitializer(ModuleScopes.back().Module, Import);
593
594 // A module (partition) implementation unit shall not be exported.
595 if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() &&
596 Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) {
597 Diag(ExportLoc, diag::err_export_partition_impl)
598 << SourceRange(ExportLoc, Path.back().second);
599 } else if (!ModuleScopes.empty() &&
600 (ModuleScopes.back().ModuleInterface ||
601 (getLangOpts().CPlusPlusModules &&
602 ModuleScopes.back().Module->isGlobalModule()))) {
603 // Re-export the module if the imported module is exported.
604 // Note that we don't need to add re-exported module to Imports field
605 // since `Exports` implies the module is imported already.
606 if (ExportLoc.isValid() || getEnclosingExportDecl(Import))
607 getCurrentModule()->Exports.emplace_back(Mod, false);
608 else
609 getCurrentModule()->Imports.insert(Mod);
610 } else if (ExportLoc.isValid()) {
611 // [module.interface]p1:
612 // An export-declaration shall inhabit a namespace scope and appear in the
613 // purview of a module interface unit.
614 Diag(ExportLoc, diag::err_export_not_in_module_interface)
615 << (!ModuleScopes.empty() &&
616 !ModuleScopes.back().ImplicitGlobalModuleFragment);
617 }
618
619 // In some cases we need to know if an entity was present in a directly-
620 // imported module (as opposed to a transitive import). This avoids
621 // searching both Imports and Exports.
622 DirectModuleImports.insert(Mod);
623
624 return Import;
625 }
626
ActOnModuleInclude(SourceLocation DirectiveLoc,Module * Mod)627 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
628 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
629 BuildModuleInclude(DirectiveLoc, Mod);
630 }
631
BuildModuleInclude(SourceLocation DirectiveLoc,Module * Mod)632 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
633 // Determine whether we're in the #include buffer for a module. The #includes
634 // in that buffer do not qualify as module imports; they're just an
635 // implementation detail of us building the module.
636 //
637 // FIXME: Should we even get ActOnModuleInclude calls for those?
638 bool IsInModuleIncludes =
639 TUKind == TU_Module &&
640 getSourceManager().isWrittenInMainFile(DirectiveLoc);
641
642 bool ShouldAddImport = !IsInModuleIncludes;
643
644 // If this module import was due to an inclusion directive, create an
645 // implicit import declaration to capture it in the AST.
646 if (ShouldAddImport) {
647 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
648 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
649 DirectiveLoc, Mod,
650 DirectiveLoc);
651 if (!ModuleScopes.empty())
652 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD);
653 TU->addDecl(ImportD);
654 Consumer.HandleImplicitImportDecl(ImportD);
655 }
656
657 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
658 VisibleModules.setVisible(Mod, DirectiveLoc);
659
660 if (getLangOpts().isCompilingModule()) {
661 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule(
662 getLangOpts().CurrentModule, DirectiveLoc, false, false);
663 (void)ThisModule;
664 assert(ThisModule && "was expecting a module if building one");
665 }
666 }
667
ActOnModuleBegin(SourceLocation DirectiveLoc,Module * Mod)668 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) {
669 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
670
671 ModuleScopes.push_back({});
672 ModuleScopes.back().Module = Mod;
673 if (getLangOpts().ModulesLocalVisibility)
674 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
675
676 VisibleModules.setVisible(Mod, DirectiveLoc);
677
678 // The enclosing context is now part of this module.
679 // FIXME: Consider creating a child DeclContext to hold the entities
680 // lexically within the module.
681 if (getLangOpts().trackLocalOwningModule()) {
682 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
683 cast<Decl>(DC)->setModuleOwnershipKind(
684 getLangOpts().ModulesLocalVisibility
685 ? Decl::ModuleOwnershipKind::VisibleWhenImported
686 : Decl::ModuleOwnershipKind::Visible);
687 cast<Decl>(DC)->setLocalOwningModule(Mod);
688 }
689 }
690 }
691
ActOnModuleEnd(SourceLocation EomLoc,Module * Mod)692 void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) {
693 if (getLangOpts().ModulesLocalVisibility) {
694 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules);
695 // Leaving a module hides namespace names, so our visible namespace cache
696 // is now out of date.
697 VisibleNamespaceCache.clear();
698 }
699
700 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod &&
701 "left the wrong module scope");
702 ModuleScopes.pop_back();
703
704 // We got to the end of processing a local module. Create an
705 // ImportDecl as we would for an imported module.
706 FileID File = getSourceManager().getFileID(EomLoc);
707 SourceLocation DirectiveLoc;
708 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) {
709 // We reached the end of a #included module header. Use the #include loc.
710 assert(File != getSourceManager().getMainFileID() &&
711 "end of submodule in main source file");
712 DirectiveLoc = getSourceManager().getIncludeLoc(File);
713 } else {
714 // We reached an EOM pragma. Use the pragma location.
715 DirectiveLoc = EomLoc;
716 }
717 BuildModuleInclude(DirectiveLoc, Mod);
718
719 // Any further declarations are in whatever module we returned to.
720 if (getLangOpts().trackLocalOwningModule()) {
721 // The parser guarantees that this is the same context that we entered
722 // the module within.
723 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
724 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule());
725 if (!getCurrentModule())
726 cast<Decl>(DC)->setModuleOwnershipKind(
727 Decl::ModuleOwnershipKind::Unowned);
728 }
729 }
730 }
731
createImplicitModuleImportForErrorRecovery(SourceLocation Loc,Module * Mod)732 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
733 Module *Mod) {
734 // Bail if we're not allowed to implicitly import a module here.
735 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery ||
736 VisibleModules.isVisible(Mod))
737 return;
738
739 // Create the implicit import declaration.
740 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
741 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
742 Loc, Mod, Loc);
743 TU->addDecl(ImportD);
744 Consumer.HandleImplicitImportDecl(ImportD);
745
746 // Make the module visible.
747 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
748 VisibleModules.setVisible(Mod, Loc);
749 }
750
751 /// We have parsed the start of an export declaration, including the '{'
752 /// (if present).
ActOnStartExportDecl(Scope * S,SourceLocation ExportLoc,SourceLocation LBraceLoc)753 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
754 SourceLocation LBraceLoc) {
755 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc);
756
757 // Set this temporarily so we know the export-declaration was braced.
758 D->setRBraceLoc(LBraceLoc);
759
760 CurContext->addDecl(D);
761 PushDeclContext(S, D);
762
763 // C++2a [module.interface]p1:
764 // An export-declaration shall appear only [...] in the purview of a module
765 // interface unit. An export-declaration shall not appear directly or
766 // indirectly within [...] a private-module-fragment.
767 if (!isCurrentModulePurview()) {
768 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0;
769 D->setInvalidDecl();
770 return D;
771 } else if (!ModuleScopes.back().ModuleInterface) {
772 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1;
773 Diag(ModuleScopes.back().BeginLoc,
774 diag::note_not_module_interface_add_export)
775 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export ");
776 D->setInvalidDecl();
777 return D;
778 } else if (ModuleScopes.back().Module->Kind ==
779 Module::PrivateModuleFragment) {
780 Diag(ExportLoc, diag::err_export_in_private_module_fragment);
781 Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment);
782 D->setInvalidDecl();
783 return D;
784 }
785
786 for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) {
787 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
788 // An export-declaration shall not appear directly or indirectly within
789 // an unnamed namespace [...]
790 if (ND->isAnonymousNamespace()) {
791 Diag(ExportLoc, diag::err_export_within_anonymous_namespace);
792 Diag(ND->getLocation(), diag::note_anonymous_namespace);
793 // Don't diagnose internal-linkage declarations in this region.
794 D->setInvalidDecl();
795 return D;
796 }
797
798 // A declaration is exported if it is [...] a namespace-definition
799 // that contains an exported declaration.
800 //
801 // Defer exporting the namespace until after we leave it, in order to
802 // avoid marking all subsequent declarations in the namespace as exported.
803 if (!DeferredExportedNamespaces.insert(ND).second)
804 break;
805 }
806 }
807
808 // [...] its declaration or declaration-seq shall not contain an
809 // export-declaration.
810 if (auto *ED = getEnclosingExportDecl(D)) {
811 Diag(ExportLoc, diag::err_export_within_export);
812 if (ED->hasBraces())
813 Diag(ED->getLocation(), diag::note_export);
814 D->setInvalidDecl();
815 return D;
816 }
817
818 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
819 return D;
820 }
821
822 static bool checkExportedDeclContext(Sema &S, DeclContext *DC,
823 SourceLocation BlockStart);
824
825 namespace {
826 enum class UnnamedDeclKind {
827 Empty,
828 StaticAssert,
829 Asm,
830 UsingDirective,
831 Namespace,
832 Context
833 };
834 }
835
getUnnamedDeclKind(Decl * D)836 static std::optional<UnnamedDeclKind> getUnnamedDeclKind(Decl *D) {
837 if (isa<EmptyDecl>(D))
838 return UnnamedDeclKind::Empty;
839 if (isa<StaticAssertDecl>(D))
840 return UnnamedDeclKind::StaticAssert;
841 if (isa<FileScopeAsmDecl>(D))
842 return UnnamedDeclKind::Asm;
843 if (isa<UsingDirectiveDecl>(D))
844 return UnnamedDeclKind::UsingDirective;
845 // Everything else either introduces one or more names or is ill-formed.
846 return std::nullopt;
847 }
848
getUnnamedDeclDiag(UnnamedDeclKind UDK,bool InBlock)849 unsigned getUnnamedDeclDiag(UnnamedDeclKind UDK, bool InBlock) {
850 switch (UDK) {
851 case UnnamedDeclKind::Empty:
852 case UnnamedDeclKind::StaticAssert:
853 // Allow empty-declarations and static_asserts in an export block as an
854 // extension.
855 return InBlock ? diag::ext_export_no_name_block : diag::err_export_no_name;
856
857 case UnnamedDeclKind::UsingDirective:
858 // Allow exporting using-directives as an extension.
859 return diag::ext_export_using_directive;
860
861 case UnnamedDeclKind::Namespace:
862 // Anonymous namespace with no content.
863 return diag::introduces_no_names;
864
865 case UnnamedDeclKind::Context:
866 // Allow exporting DeclContexts that transitively contain no declarations
867 // as an extension.
868 return diag::ext_export_no_names;
869
870 case UnnamedDeclKind::Asm:
871 return diag::err_export_no_name;
872 }
873 llvm_unreachable("unknown kind");
874 }
875
diagExportedUnnamedDecl(Sema & S,UnnamedDeclKind UDK,Decl * D,SourceLocation BlockStart)876 static void diagExportedUnnamedDecl(Sema &S, UnnamedDeclKind UDK, Decl *D,
877 SourceLocation BlockStart) {
878 S.Diag(D->getLocation(), getUnnamedDeclDiag(UDK, BlockStart.isValid()))
879 << (unsigned)UDK;
880 if (BlockStart.isValid())
881 S.Diag(BlockStart, diag::note_export);
882 }
883
884 /// Check that it's valid to export \p D.
checkExportedDecl(Sema & S,Decl * D,SourceLocation BlockStart)885 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) {
886 // C++2a [module.interface]p3:
887 // An exported declaration shall declare at least one name
888 if (auto UDK = getUnnamedDeclKind(D))
889 diagExportedUnnamedDecl(S, *UDK, D, BlockStart);
890
891 // [...] shall not declare a name with internal linkage.
892 bool HasName = false;
893 if (auto *ND = dyn_cast<NamedDecl>(D)) {
894 // Don't diagnose anonymous union objects; we'll diagnose their members
895 // instead.
896 HasName = (bool)ND->getDeclName();
897 if (HasName && ND->getFormalLinkage() == InternalLinkage) {
898 S.Diag(ND->getLocation(), diag::err_export_internal) << ND;
899 if (BlockStart.isValid())
900 S.Diag(BlockStart, diag::note_export);
901 }
902 }
903
904 // C++2a [module.interface]p5:
905 // all entities to which all of the using-declarators ultimately refer
906 // shall have been introduced with a name having external linkage
907 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) {
908 NamedDecl *Target = USD->getUnderlyingDecl();
909 Linkage Lk = Target->getFormalLinkage();
910 if (Lk == InternalLinkage || Lk == ModuleLinkage) {
911 S.Diag(USD->getLocation(), diag::err_export_using_internal)
912 << (Lk == InternalLinkage ? 0 : 1) << Target;
913 S.Diag(Target->getLocation(), diag::note_using_decl_target);
914 if (BlockStart.isValid())
915 S.Diag(BlockStart, diag::note_export);
916 }
917 }
918
919 // Recurse into namespace-scope DeclContexts. (Only namespace-scope
920 // declarations are exported.).
921 if (auto *DC = dyn_cast<DeclContext>(D)) {
922 if (isa<NamespaceDecl>(D) && DC->decls().empty()) {
923 if (!HasName)
924 // We don't allow an empty anonymous namespace (we don't allow decls
925 // in them either, but that's handled in the recursion).
926 diagExportedUnnamedDecl(S, UnnamedDeclKind::Namespace, D, BlockStart);
927 // We allow an empty named namespace decl.
928 } else if (DC->getRedeclContext()->isFileContext() && !isa<EnumDecl>(D))
929 return checkExportedDeclContext(S, DC, BlockStart);
930 }
931 return false;
932 }
933
934 /// Check that it's valid to export all the declarations in \p DC.
checkExportedDeclContext(Sema & S,DeclContext * DC,SourceLocation BlockStart)935 static bool checkExportedDeclContext(Sema &S, DeclContext *DC,
936 SourceLocation BlockStart) {
937 bool AllUnnamed = true;
938 for (auto *D : DC->decls())
939 AllUnnamed &= checkExportedDecl(S, D, BlockStart);
940 return AllUnnamed;
941 }
942
943 /// Complete the definition of an export declaration.
ActOnFinishExportDecl(Scope * S,Decl * D,SourceLocation RBraceLoc)944 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) {
945 auto *ED = cast<ExportDecl>(D);
946 if (RBraceLoc.isValid())
947 ED->setRBraceLoc(RBraceLoc);
948
949 PopDeclContext();
950
951 if (!D->isInvalidDecl()) {
952 SourceLocation BlockStart =
953 ED->hasBraces() ? ED->getBeginLoc() : SourceLocation();
954 for (auto *Child : ED->decls()) {
955 if (checkExportedDecl(*this, Child, BlockStart)) {
956 // If a top-level child is a linkage-spec declaration, it might contain
957 // no declarations (transitively), in which case it's ill-formed.
958 diagExportedUnnamedDecl(*this, UnnamedDeclKind::Context, Child,
959 BlockStart);
960 }
961 if (auto *FD = dyn_cast<FunctionDecl>(Child)) {
962 // [dcl.inline]/7
963 // If an inline function or variable that is attached to a named module
964 // is declared in a definition domain, it shall be defined in that
965 // domain.
966 // So, if the current declaration does not have a definition, we must
967 // check at the end of the TU (or when the PMF starts) to see that we
968 // have a definition at that point.
969 if (FD->isInlineSpecified() && !FD->isDefined())
970 PendingInlineFuncDecls.insert(FD);
971 }
972 }
973 }
974
975 return D;
976 }
977
PushGlobalModuleFragment(SourceLocation BeginLoc,bool IsImplicit)978 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc,
979 bool IsImplicit) {
980 // We shouldn't create new global module fragment if there is already
981 // one.
982 if (!GlobalModuleFragment) {
983 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap();
984 GlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit(
985 BeginLoc, getCurrentModule());
986 }
987
988 assert(GlobalModuleFragment && "module creation should not fail");
989
990 // Enter the scope of the global module.
991 ModuleScopes.push_back({BeginLoc, GlobalModuleFragment,
992 /*ModuleInterface=*/false,
993 /*IsPartition=*/false,
994 /*ImplicitGlobalModuleFragment=*/IsImplicit,
995 /*OuterVisibleModules=*/{}});
996 VisibleModules.setVisible(GlobalModuleFragment, BeginLoc);
997
998 return GlobalModuleFragment;
999 }
1000
PopGlobalModuleFragment()1001 void Sema::PopGlobalModuleFragment() {
1002 assert(!ModuleScopes.empty() && getCurrentModule()->isGlobalModule() &&
1003 "left the wrong module scope, which is not global module fragment");
1004 ModuleScopes.pop_back();
1005 }
1006
isModuleUnitOfCurrentTU(const Module * M) const1007 bool Sema::isModuleUnitOfCurrentTU(const Module *M) const {
1008 assert(M);
1009
1010 Module *CurrentModuleUnit = getCurrentModule();
1011
1012 // If we are not in a module currently, M must not be the module unit of
1013 // current TU.
1014 if (!CurrentModuleUnit)
1015 return false;
1016
1017 return M->isSubModuleOf(CurrentModuleUnit->getTopLevelModule());
1018 }
1019