xref: /netbsd/external/bsd/ntp/dist/ntpd/ntp_control.c (revision 9034ec65)
1 /*	$NetBSD: ntp_control.c,v 1.23 2020/05/25 20:47:25 christos Exp $	*/
2 
3 /*
4  * ntp_control.c - respond to mode 6 control messages and send async
5  *		   traps.  Provides service to ntpq and others.
6  */
7 
8 #ifdef HAVE_CONFIG_H
9 # include <config.h>
10 #endif
11 
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <signal.h>
15 #include <sys/stat.h>
16 #ifdef HAVE_NETINET_IN_H
17 # include <netinet/in.h>
18 #endif
19 #include <arpa/inet.h>
20 
21 #include "ntpd.h"
22 #include "ntp_io.h"
23 #include "ntp_refclock.h"
24 #include "ntp_control.h"
25 #include "ntp_unixtime.h"
26 #include "ntp_stdlib.h"
27 #include "ntp_config.h"
28 #include "ntp_crypto.h"
29 #include "ntp_assert.h"
30 #include "ntp_leapsec.h"
31 #include "ntp_md5.h"	/* provides OpenSSL digest API */
32 #include "lib_strbuf.h"
33 #include "timexsup.h"
34 
35 #include <rc_cmdlength.h>
36 #ifdef KERNEL_PLL
37 # include "ntp_syscall.h"
38 #endif
39 
40 /*
41  * Structure to hold request procedure information
42  */
43 
44 struct ctl_proc {
45 	short control_code;		/* defined request code */
46 #define NO_REQUEST	(-1)
47 	u_short flags;			/* flags word */
48 	/* Only one flag.  Authentication required or not. */
49 #define NOAUTH	0
50 #define AUTH	1
51 	void (*handler) (struct recvbuf *, int); /* handle request */
52 };
53 
54 
55 /*
56  * Request processing routines
57  */
58 static	void	ctl_error	(u_char);
59 #ifdef REFCLOCK
60 static	u_short ctlclkstatus	(struct refclockstat *);
61 #endif
62 static	void	ctl_flushpkt	(u_char);
63 static	void	ctl_putdata	(const char *, unsigned int, int);
64 static	void	ctl_putstr	(const char *, const char *, size_t);
65 static	void	ctl_putdblf	(const char *, int, int, double);
66 #define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
67 #define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
68 #define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
69 					    FPTOD(sfp))
70 static	void	ctl_putuint	(const char *, u_long);
71 static	void	ctl_puthex	(const char *, u_long);
72 static	void	ctl_putint	(const char *, long);
73 static	void	ctl_putts	(const char *, l_fp *);
74 static	void	ctl_putadr	(const char *, u_int32,
75 				 sockaddr_u *);
76 static	void	ctl_putrefid	(const char *, u_int32);
77 static	void	ctl_putarray	(const char *, double *, int);
78 static	void	ctl_putsys	(int);
79 static	void	ctl_putpeer	(int, struct peer *);
80 static	void	ctl_putfs	(const char *, tstamp_t);
81 static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
82 #ifdef REFCLOCK
83 static	void	ctl_putclock	(int, struct refclockstat *, int);
84 #endif	/* REFCLOCK */
85 static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
86 					  char **);
87 static	u_short	count_var	(const struct ctl_var *);
88 static	void	control_unspec	(struct recvbuf *, int);
89 static	void	read_status	(struct recvbuf *, int);
90 static	void	read_sysvars	(void);
91 static	void	read_peervars	(void);
92 static	void	read_variables	(struct recvbuf *, int);
93 static	void	write_variables (struct recvbuf *, int);
94 static	void	read_clockstatus(struct recvbuf *, int);
95 static	void	write_clockstatus(struct recvbuf *, int);
96 static	void	set_trap	(struct recvbuf *, int);
97 static	void	save_config	(struct recvbuf *, int);
98 static	void	configure	(struct recvbuf *, int);
99 static	void	send_mru_entry	(mon_entry *, int);
100 static	void	send_random_tag_value(int);
101 static	void	read_mru_list	(struct recvbuf *, int);
102 static	void	send_ifstats_entry(endpt *, u_int);
103 static	void	read_ifstats	(struct recvbuf *);
104 static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
105 					  restrict_u *, int);
106 static	void	send_restrict_entry(restrict_u *, int, u_int);
107 static	void	send_restrict_list(restrict_u *, int, u_int *);
108 static	void	read_addr_restrictions(struct recvbuf *);
109 static	void	read_ordlist	(struct recvbuf *, int);
110 static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
111 static	void	generate_nonce	(struct recvbuf *, char *, size_t);
112 static	int	validate_nonce	(const char *, struct recvbuf *);
113 static	void	req_nonce	(struct recvbuf *, int);
114 static	void	unset_trap	(struct recvbuf *, int);
115 static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
116 				     struct interface *);
117 
118 int/*BOOL*/ is_safe_filename(const char * name);
119 
120 static const struct ctl_proc control_codes[] = {
121 	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
122 	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
123 	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
124 	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
125 	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
126 	{ CTL_OP_WRITECLOCK,		AUTH,	write_clockstatus },
127 	{ CTL_OP_SETTRAP,		AUTH,	set_trap },
128 	{ CTL_OP_CONFIGURE,		AUTH,	configure },
129 	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
130 	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
131 	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
132 	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
133 	{ CTL_OP_UNSETTRAP,		AUTH,	unset_trap },
134 	{ NO_REQUEST,			0,	NULL }
135 };
136 
137 /*
138  * System variables we understand
139  */
140 #define	CS_LEAP			1
141 #define	CS_STRATUM		2
142 #define	CS_PRECISION		3
143 #define	CS_ROOTDELAY		4
144 #define	CS_ROOTDISPERSION	5
145 #define	CS_REFID		6
146 #define	CS_REFTIME		7
147 #define	CS_POLL			8
148 #define	CS_PEERID		9
149 #define	CS_OFFSET		10
150 #define	CS_DRIFT		11
151 #define	CS_JITTER		12
152 #define	CS_ERROR		13
153 #define	CS_CLOCK		14
154 #define	CS_PROCESSOR		15
155 #define	CS_SYSTEM		16
156 #define	CS_VERSION		17
157 #define	CS_STABIL		18
158 #define	CS_VARLIST		19
159 #define	CS_TAI			20
160 #define	CS_LEAPTAB		21
161 #define	CS_LEAPEND		22
162 #define	CS_RATE			23
163 #define	CS_MRU_ENABLED		24
164 #define	CS_MRU_DEPTH		25
165 #define	CS_MRU_DEEPEST		26
166 #define	CS_MRU_MINDEPTH		27
167 #define	CS_MRU_MAXAGE		28
168 #define	CS_MRU_MAXDEPTH		29
169 #define	CS_MRU_MEM		30
170 #define	CS_MRU_MAXMEM		31
171 #define	CS_SS_UPTIME		32
172 #define	CS_SS_RESET		33
173 #define	CS_SS_RECEIVED		34
174 #define	CS_SS_THISVER		35
175 #define	CS_SS_OLDVER		36
176 #define	CS_SS_BADFORMAT		37
177 #define	CS_SS_BADAUTH		38
178 #define	CS_SS_DECLINED		39
179 #define	CS_SS_RESTRICTED	40
180 #define	CS_SS_LIMITED		41
181 #define	CS_SS_KODSENT		42
182 #define	CS_SS_PROCESSED		43
183 #define	CS_SS_LAMPORT		44
184 #define	CS_SS_TSROUNDING	45
185 #define	CS_PEERADR		46
186 #define	CS_PEERMODE		47
187 #define	CS_BCASTDELAY		48
188 #define	CS_AUTHDELAY		49
189 #define	CS_AUTHKEYS		50
190 #define	CS_AUTHFREEK		51
191 #define	CS_AUTHKLOOKUPS		52
192 #define	CS_AUTHKNOTFOUND	53
193 #define	CS_AUTHKUNCACHED	54
194 #define	CS_AUTHKEXPIRED		55
195 #define	CS_AUTHENCRYPTS		56
196 #define	CS_AUTHDECRYPTS		57
197 #define	CS_AUTHRESET		58
198 #define	CS_K_OFFSET		59
199 #define	CS_K_FREQ		60
200 #define	CS_K_MAXERR		61
201 #define	CS_K_ESTERR		62
202 #define	CS_K_STFLAGS		63
203 #define	CS_K_TIMECONST		64
204 #define	CS_K_PRECISION		65
205 #define	CS_K_FREQTOL		66
206 #define	CS_K_PPS_FREQ		67
207 #define	CS_K_PPS_STABIL		68
208 #define	CS_K_PPS_JITTER		69
209 #define	CS_K_PPS_CALIBDUR	70
210 #define	CS_K_PPS_CALIBS		71
211 #define	CS_K_PPS_CALIBERRS	72
212 #define	CS_K_PPS_JITEXC		73
213 #define	CS_K_PPS_STBEXC		74
214 #define	CS_KERN_FIRST		CS_K_OFFSET
215 #define	CS_KERN_LAST		CS_K_PPS_STBEXC
216 #define	CS_IOSTATS_RESET	75
217 #define	CS_TOTAL_RBUF		76
218 #define	CS_FREE_RBUF		77
219 #define	CS_USED_RBUF		78
220 #define	CS_RBUF_LOWATER		79
221 #define	CS_IO_DROPPED		80
222 #define	CS_IO_IGNORED		81
223 #define	CS_IO_RECEIVED		82
224 #define	CS_IO_SENT		83
225 #define	CS_IO_SENDFAILED	84
226 #define	CS_IO_WAKEUPS		85
227 #define	CS_IO_GOODWAKEUPS	86
228 #define	CS_TIMERSTATS_RESET	87
229 #define	CS_TIMER_OVERRUNS	88
230 #define	CS_TIMER_XMTS		89
231 #define	CS_FUZZ			90
232 #define	CS_WANDER_THRESH	91
233 #define	CS_LEAPSMEARINTV	92
234 #define	CS_LEAPSMEAROFFS	93
235 #define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
236 #ifdef AUTOKEY
237 #define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
238 #define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
239 #define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
240 #define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
241 #define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
242 #define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
243 #define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
244 #define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
245 #define	CS_MAXCODE		CS_DIGEST
246 #else	/* !AUTOKEY follows */
247 #define	CS_MAXCODE		CS_MAX_NOAUTOKEY
248 #endif	/* !AUTOKEY */
249 
250 /*
251  * Peer variables we understand
252  */
253 #define	CP_CONFIG		1
254 #define	CP_AUTHENABLE		2
255 #define	CP_AUTHENTIC		3
256 #define	CP_SRCADR		4
257 #define	CP_SRCPORT		5
258 #define	CP_DSTADR		6
259 #define	CP_DSTPORT		7
260 #define	CP_LEAP			8
261 #define	CP_HMODE		9
262 #define	CP_STRATUM		10
263 #define	CP_PPOLL		11
264 #define	CP_HPOLL		12
265 #define	CP_PRECISION		13
266 #define	CP_ROOTDELAY		14
267 #define	CP_ROOTDISPERSION	15
268 #define	CP_REFID		16
269 #define	CP_REFTIME		17
270 #define	CP_ORG			18
271 #define	CP_REC			19
272 #define	CP_XMT			20
273 #define	CP_REACH		21
274 #define	CP_UNREACH		22
275 #define	CP_TIMER		23
276 #define	CP_DELAY		24
277 #define	CP_OFFSET		25
278 #define	CP_JITTER		26
279 #define	CP_DISPERSION		27
280 #define	CP_KEYID		28
281 #define	CP_FILTDELAY		29
282 #define	CP_FILTOFFSET		30
283 #define	CP_PMODE		31
284 #define	CP_RECEIVED		32
285 #define	CP_SENT			33
286 #define	CP_FILTERROR		34
287 #define	CP_FLASH		35
288 #define	CP_TTL			36
289 #define	CP_VARLIST		37
290 #define	CP_IN			38
291 #define	CP_OUT			39
292 #define	CP_RATE			40
293 #define	CP_BIAS			41
294 #define	CP_SRCHOST		42
295 #define	CP_TIMEREC		43
296 #define	CP_TIMEREACH		44
297 #define	CP_BADAUTH		45
298 #define	CP_BOGUSORG		46
299 #define	CP_OLDPKT		47
300 #define	CP_SELDISP		48
301 #define	CP_SELBROKEN		49
302 #define	CP_CANDIDATE		50
303 #define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
304 #ifdef AUTOKEY
305 #define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
306 #define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
307 #define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
308 #define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
309 #define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
310 #define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
311 #define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
312 #define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
313 #define	CP_MAXCODE		CP_IDENT
314 #else	/* !AUTOKEY follows */
315 #define	CP_MAXCODE		CP_MAX_NOAUTOKEY
316 #endif	/* !AUTOKEY */
317 
318 /*
319  * Clock variables we understand
320  */
321 #define	CC_TYPE		1
322 #define	CC_TIMECODE	2
323 #define	CC_POLL		3
324 #define	CC_NOREPLY	4
325 #define	CC_BADFORMAT	5
326 #define	CC_BADDATA	6
327 #define	CC_FUDGETIME1	7
328 #define	CC_FUDGETIME2	8
329 #define	CC_FUDGEVAL1	9
330 #define	CC_FUDGEVAL2	10
331 #define	CC_FLAGS	11
332 #define	CC_DEVICE	12
333 #define	CC_VARLIST	13
334 #define	CC_FUDGEMINJIT	14
335 #define	CC_MAXCODE	CC_FUDGEMINJIT
336 
337 /*
338  * System variable values. The array can be indexed by the variable
339  * index to find the textual name.
340  */
341 static const struct ctl_var sys_var[] = {
342 	{ 0,		PADDING, "" },		/* 0 */
343 	{ CS_LEAP,	RW, "leap" },		/* 1 */
344 	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
345 	{ CS_PRECISION, RO, "precision" },	/* 3 */
346 	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
347 	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
348 	{ CS_REFID,	RO, "refid" },		/* 6 */
349 	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
350 	{ CS_POLL,	RO, "tc" },		/* 8 */
351 	{ CS_PEERID,	RO, "peer" },		/* 9 */
352 	{ CS_OFFSET,	RO, "offset" },		/* 10 */
353 	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
354 	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
355 	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
356 	{ CS_CLOCK,	RO, "clock" },		/* 14 */
357 	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
358 	{ CS_SYSTEM,	RO, "system" },		/* 16 */
359 	{ CS_VERSION,	RO, "version" },	/* 17 */
360 	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
361 	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
362 	{ CS_TAI,	RO, "tai" },		/* 20 */
363 	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
364 	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
365 	{ CS_RATE,	RO, "mintc" },		/* 23 */
366 	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
367 	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
368 	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
369 	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
370 	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
371 	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
372 	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
373 	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
374 	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
375 	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
376 	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
377 	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
378 	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
379 	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
380 	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
381 	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
382 	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
383 	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
384 	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
385 	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
386 	{ CS_SS_LAMPORT,	RO, "ss_lamport" },	/* 44 */
387 	{ CS_SS_TSROUNDING,	RO, "ss_tsrounding" },	/* 45 */
388 	{ CS_PEERADR,		RO, "peeradr" },	/* 46 */
389 	{ CS_PEERMODE,		RO, "peermode" },	/* 47 */
390 	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 48 */
391 	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 49 */
392 	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 50 */
393 	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 51 */
394 	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 52 */
395 	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 53 */
396 	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 54 */
397 	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 55 */
398 	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 56 */
399 	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 57 */
400 	{ CS_AUTHRESET,		RO, "authreset" },	/* 58 */
401 	{ CS_K_OFFSET,		RO, "koffset" },	/* 59 */
402 	{ CS_K_FREQ,		RO, "kfreq" },		/* 60 */
403 	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 61 */
404 	{ CS_K_ESTERR,		RO, "kesterr" },	/* 62 */
405 	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 63 */
406 	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 64 */
407 	{ CS_K_PRECISION,	RO, "kprecis" },	/* 65 */
408 	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 66 */
409 	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 67 */
410 	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 68 */
411 	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 69 */
412 	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 70 */
413 	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 71 */
414 	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 72 */
415 	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 73 */
416 	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 74 */
417 	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 75 */
418 	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 76 */
419 	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 77 */
420 	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 78 */
421 	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 79 */
422 	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 80 */
423 	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 81 */
424 	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 82 */
425 	{ CS_IO_SENT,		RO, "io_sent" },	/* 83 */
426 	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 84 */
427 	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 85 */
428 	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 86 */
429 	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 87 */
430 	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 88 */
431 	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 89 */
432 	{ CS_FUZZ,		RO, "fuzz" },		/* 90 */
433 	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 91 */
434 
435 	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 92 */
436 	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 93 */
437 
438 #ifdef AUTOKEY
439 	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
440 	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
441 	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
442 	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
443 	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
444 	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
445 	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
446 	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
447 #endif	/* AUTOKEY */
448 	{ 0,		EOV, "" }		/* 94/102 */
449 };
450 
451 static struct ctl_var *ext_sys_var = NULL;
452 
453 /*
454  * System variables we print by default (in fuzzball order,
455  * more-or-less)
456  */
457 static const u_char def_sys_var[] = {
458 	CS_VERSION,
459 	CS_PROCESSOR,
460 	CS_SYSTEM,
461 	CS_LEAP,
462 	CS_STRATUM,
463 	CS_PRECISION,
464 	CS_ROOTDELAY,
465 	CS_ROOTDISPERSION,
466 	CS_REFID,
467 	CS_REFTIME,
468 	CS_CLOCK,
469 	CS_PEERID,
470 	CS_POLL,
471 	CS_RATE,
472 	CS_OFFSET,
473 	CS_DRIFT,
474 	CS_JITTER,
475 	CS_ERROR,
476 	CS_STABIL,
477 	CS_TAI,
478 	CS_LEAPTAB,
479 	CS_LEAPEND,
480 	CS_LEAPSMEARINTV,
481 	CS_LEAPSMEAROFFS,
482 #ifdef AUTOKEY
483 	CS_HOST,
484 	CS_IDENT,
485 	CS_FLAGS,
486 	CS_DIGEST,
487 	CS_SIGNATURE,
488 	CS_PUBLIC,
489 	CS_CERTIF,
490 #endif	/* AUTOKEY */
491 	0
492 };
493 
494 
495 /*
496  * Peer variable list
497  */
498 static const struct ctl_var peer_var[] = {
499 	{ 0,		PADDING, "" },		/* 0 */
500 	{ CP_CONFIG,	RO, "config" },		/* 1 */
501 	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
502 	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
503 	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
504 	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
505 	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
506 	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
507 	{ CP_LEAP,	RO, "leap" },		/* 8 */
508 	{ CP_HMODE,	RO, "hmode" },		/* 9 */
509 	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
510 	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
511 	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
512 	{ CP_PRECISION,	RO, "precision" },	/* 13 */
513 	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
514 	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
515 	{ CP_REFID,	RO, "refid" },		/* 16 */
516 	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
517 	{ CP_ORG,	RO, "org" },		/* 18 */
518 	{ CP_REC,	RO, "rec" },		/* 19 */
519 	{ CP_XMT,	RO, "xleave" },		/* 20 */
520 	{ CP_REACH,	RO, "reach" },		/* 21 */
521 	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
522 	{ CP_TIMER,	RO, "timer" },		/* 23 */
523 	{ CP_DELAY,	RO, "delay" },		/* 24 */
524 	{ CP_OFFSET,	RO, "offset" },		/* 25 */
525 	{ CP_JITTER,	RO, "jitter" },		/* 26 */
526 	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
527 	{ CP_KEYID,	RO, "keyid" },		/* 28 */
528 	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
529 	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
530 	{ CP_PMODE,	RO, "pmode" },		/* 31 */
531 	{ CP_RECEIVED,	RO, "received"},	/* 32 */
532 	{ CP_SENT,	RO, "sent" },		/* 33 */
533 	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
534 	{ CP_FLASH,	RO, "flash" },		/* 35 */
535 	{ CP_TTL,	RO, "ttl" },		/* 36 */
536 	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
537 	{ CP_IN,	RO, "in" },		/* 38 */
538 	{ CP_OUT,	RO, "out" },		/* 39 */
539 	{ CP_RATE,	RO, "headway" },	/* 40 */
540 	{ CP_BIAS,	RO, "bias" },		/* 41 */
541 	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
542 	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
543 	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
544 	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
545 	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
546 	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
547 	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
548 	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
549 	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
550 #ifdef AUTOKEY
551 	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
552 	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
553 	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
554 	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
555 	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
556 	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
557 	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
558 	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
559 #endif	/* AUTOKEY */
560 	{ 0,		EOV, "" }		/* 50/58 */
561 };
562 
563 
564 /*
565  * Peer variables we print by default
566  */
567 static const u_char def_peer_var[] = {
568 	CP_SRCADR,
569 	CP_SRCPORT,
570 	CP_SRCHOST,
571 	CP_DSTADR,
572 	CP_DSTPORT,
573 	CP_OUT,
574 	CP_IN,
575 	CP_LEAP,
576 	CP_STRATUM,
577 	CP_PRECISION,
578 	CP_ROOTDELAY,
579 	CP_ROOTDISPERSION,
580 	CP_REFID,
581 	CP_REFTIME,
582 	CP_REC,
583 	CP_REACH,
584 	CP_UNREACH,
585 	CP_HMODE,
586 	CP_PMODE,
587 	CP_HPOLL,
588 	CP_PPOLL,
589 	CP_RATE,
590 	CP_FLASH,
591 	CP_KEYID,
592 	CP_TTL,
593 	CP_OFFSET,
594 	CP_DELAY,
595 	CP_DISPERSION,
596 	CP_JITTER,
597 	CP_XMT,
598 	CP_BIAS,
599 	CP_FILTDELAY,
600 	CP_FILTOFFSET,
601 	CP_FILTERROR,
602 #ifdef AUTOKEY
603 	CP_HOST,
604 	CP_FLAGS,
605 	CP_SIGNATURE,
606 	CP_VALID,
607 	CP_INITSEQ,
608 	CP_IDENT,
609 #endif	/* AUTOKEY */
610 	0
611 };
612 
613 
614 #ifdef REFCLOCK
615 /*
616  * Clock variable list
617  */
618 static const struct ctl_var clock_var[] = {
619 	{ 0,		PADDING, "" },		/* 0 */
620 	{ CC_TYPE,	RO, "type" },		/* 1 */
621 	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
622 	{ CC_POLL,	RO, "poll" },		/* 3 */
623 	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
624 	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
625 	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
626 	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
627 	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
628 	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
629 	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
630 	{ CC_FLAGS,	RO, "flags" },		/* 11 */
631 	{ CC_DEVICE,	RO, "device" },		/* 12 */
632 	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
633 	{ CC_FUDGEMINJIT, RO, "minjitter" },	/* 14 */
634 	{ 0,		EOV, ""  }		/* 15 */
635 };
636 
637 
638 /*
639  * Clock variables printed by default
640  */
641 static const u_char def_clock_var[] = {
642 	CC_DEVICE,
643 	CC_TYPE,	/* won't be output if device = known */
644 	CC_TIMECODE,
645 	CC_POLL,
646 	CC_NOREPLY,
647 	CC_BADFORMAT,
648 	CC_BADDATA,
649 	CC_FUDGEMINJIT,
650 	CC_FUDGETIME1,
651 	CC_FUDGETIME2,
652 	CC_FUDGEVAL1,
653 	CC_FUDGEVAL2,
654 	CC_FLAGS,
655 	0
656 };
657 #endif
658 
659 /*
660  * MRU string constants shared by send_mru_entry() and read_mru_list().
661  */
662 static const char addr_fmt[] =		"addr.%d";
663 static const char last_fmt[] =		"last.%d";
664 
665 /*
666  * System and processor definitions.
667  */
668 #ifndef HAVE_UNAME
669 # ifndef STR_SYSTEM
670 #  define		STR_SYSTEM	"UNIX"
671 # endif
672 # ifndef STR_PROCESSOR
673 #  define		STR_PROCESSOR	"unknown"
674 # endif
675 
676 static const char str_system[] = STR_SYSTEM;
677 static const char str_processor[] = STR_PROCESSOR;
678 #else
679 # include <sys/utsname.h>
680 static struct utsname utsnamebuf;
681 #endif /* HAVE_UNAME */
682 
683 /*
684  * Trap structures. We only allow a few of these, and send a copy of
685  * each async message to each live one. Traps time out after an hour, it
686  * is up to the trap receipient to keep resetting it to avoid being
687  * timed out.
688  */
689 /* ntp_request.c */
690 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
691 int num_ctl_traps;
692 
693 /*
694  * Type bits, for ctlsettrap() call.
695  */
696 #define TRAP_TYPE_CONFIG	0	/* used by configuration code */
697 #define TRAP_TYPE_PRIO		1	/* priority trap */
698 #define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
699 
700 
701 /*
702  * List relating reference clock types to control message time sources.
703  * Index by the reference clock type. This list will only be used iff
704  * the reference clock driver doesn't set peer->sstclktype to something
705  * different than CTL_SST_TS_UNSPEC.
706  */
707 #ifdef REFCLOCK
708 static const u_char clocktypes[] = {
709 	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
710 	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
711 	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
712 	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
713 	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
714 	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
715 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
716 	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
717 	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
718 	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
719 	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
720 	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
721 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
722 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
723 	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
724 	CTL_SST_TS_NTP,		/* not used (15) */
725 	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
726 	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
727 	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
728 	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
729 	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
730 	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
731 	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
732 	CTL_SST_TS_NTP,		/* not used (23) */
733 	CTL_SST_TS_NTP,		/* not used (24) */
734 	CTL_SST_TS_NTP,		/* not used (25) */
735 	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
736 	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
737 	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
738 	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
739 	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
740 	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
741 	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
742 	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
743 	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
744 	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
745 	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
746 	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
747 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
748 	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
749 	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
750 	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
751 	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
752 	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
753 	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
754 	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
755 	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
756 };
757 #endif  /* REFCLOCK */
758 
759 
760 /*
761  * Keyid used for authenticating write requests.
762  */
763 keyid_t ctl_auth_keyid;
764 
765 /*
766  * We keep track of the last error reported by the system internally
767  */
768 static	u_char ctl_sys_last_event;
769 static	u_char ctl_sys_num_events;
770 
771 
772 /*
773  * Statistic counters to keep track of requests and responses.
774  */
775 u_long ctltimereset;		/* time stats reset */
776 u_long numctlreq;		/* number of requests we've received */
777 u_long numctlbadpkts;		/* number of bad control packets */
778 u_long numctlresponses;		/* number of resp packets sent with data */
779 u_long numctlfrags;		/* number of fragments sent */
780 u_long numctlerrors;		/* number of error responses sent */
781 u_long numctltooshort;		/* number of too short input packets */
782 u_long numctlinputresp;		/* number of responses on input */
783 u_long numctlinputfrag;		/* number of fragments on input */
784 u_long numctlinputerr;		/* number of input pkts with err bit set */
785 u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
786 u_long numctlbadversion;	/* number of input pkts with unknown version */
787 u_long numctldatatooshort;	/* data too short for count */
788 u_long numctlbadop;		/* bad op code found in packet */
789 u_long numasyncmsgs;		/* number of async messages we've sent */
790 
791 /*
792  * Response packet used by these routines. Also some state information
793  * so that we can handle packet formatting within a common set of
794  * subroutines.  Note we try to enter data in place whenever possible,
795  * but the need to set the more bit correctly means we occasionally
796  * use the extra buffer and copy.
797  */
798 static struct ntp_control rpkt;
799 static u_char	res_version;
800 static u_char	res_opcode;
801 static associd_t res_associd;
802 static u_short	res_frags;	/* datagrams in this response */
803 static int	res_offset;	/* offset of payload in response */
804 static u_char * datapt;
805 static u_char * dataend;
806 static int	datalinelen;
807 static int	datasent;	/* flag to avoid initial ", " */
808 static int	datanotbinflag;
809 static sockaddr_u *rmt_addr;
810 static struct interface *lcl_inter;
811 
812 static u_char	res_authenticate;
813 static u_char	res_authokay;
814 static keyid_t	res_keyid;
815 
816 #define MAXDATALINELEN	(72)
817 
818 static u_char	res_async;	/* sending async trap response? */
819 
820 /*
821  * Pointers for saving state when decoding request packets
822  */
823 static	char *reqpt;
824 static	char *reqend;
825 
826 #ifndef MIN
827 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
828 #endif
829 
830 /*
831  * init_control - initialize request data
832  */
833 void
init_control(void)834 init_control(void)
835 {
836 	size_t i;
837 
838 #ifdef HAVE_UNAME
839 	uname(&utsnamebuf);
840 #endif /* HAVE_UNAME */
841 
842 	ctl_clr_stats();
843 
844 	ctl_auth_keyid = 0;
845 	ctl_sys_last_event = EVNT_UNSPEC;
846 	ctl_sys_num_events = 0;
847 
848 	num_ctl_traps = 0;
849 	for (i = 0; i < COUNTOF(ctl_traps); i++)
850 		ctl_traps[i].tr_flags = 0;
851 }
852 
853 
854 /*
855  * ctl_error - send an error response for the current request
856  */
857 static void
ctl_error(u_char errcode)858 ctl_error(
859 	u_char errcode
860 	)
861 {
862 	size_t		maclen;
863 
864 	numctlerrors++;
865 	DPRINTF(3, ("sending control error %u\n", errcode));
866 
867 	/*
868 	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
869 	 * have already been filled in.
870 	 */
871 	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
872 			(res_opcode & CTL_OP_MASK);
873 	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
874 	rpkt.count = 0;
875 
876 	/*
877 	 * send packet and bump counters
878 	 */
879 	if (res_authenticate && sys_authenticate) {
880 		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
881 				     CTL_HEADER_LEN);
882 		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
883 			CTL_HEADER_LEN + maclen);
884 	} else
885 		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
886 			CTL_HEADER_LEN);
887 }
888 
889 int/*BOOL*/
is_safe_filename(const char * name)890 is_safe_filename(const char * name)
891 {
892 	/* We need a strict validation of filenames we should write: The
893 	 * daemon might run with special permissions and is remote
894 	 * controllable, so we better take care what we allow as file
895 	 * name!
896 	 *
897 	 * The first character must be digit or a letter from the ASCII
898 	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
899 	 * must be from [-._+A-Za-z0-9].
900 	 *
901 	 * We do not trust the character classification much here: Since
902 	 * the NTP protocol makes no provisions for UTF-8 or local code
903 	 * pages, we strictly require the 7bit ASCII code page.
904 	 *
905 	 * The following table is a packed bit field of 128 two-bit
906 	 * groups. The LSB in each group tells us if a character is
907 	 * acceptable at the first position, the MSB if the character is
908 	 * accepted at any other position.
909 	 *
910 	 * This does not ensure that the file name is syntactically
911 	 * correct (multiple dots will not work with VMS...) but it will
912 	 * exclude potential globbing bombs and directory traversal. It
913 	 * also rules out drive selection. (For systems that have this
914 	 * notion, like Windows or VMS.)
915 	 */
916 	static const uint32_t chclass[8] = {
917 		0x00000000, 0x00000000,
918 		0x28800000, 0x000FFFFF,
919 		0xFFFFFFFC, 0xC03FFFFF,
920 		0xFFFFFFFC, 0x003FFFFF
921 	};
922 
923 	u_int widx, bidx, mask;
924 	if ( ! (name && *name))
925 		return FALSE;
926 
927 	mask = 1u;
928 	while (0 != (widx = (u_char)*name++)) {
929 		bidx = (widx & 15) << 1;
930 		widx = widx >> 4;
931 		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
932 			return FALSE;
933 		if (0 == ((chclass[widx] >> bidx) & mask))
934 			return FALSE;
935 		mask = 2u;
936 	}
937 	return TRUE;
938 }
939 
940 
941 /*
942  * save_config - Implements ntpq -c "saveconfig <filename>"
943  *		 Writes current configuration including any runtime
944  *		 changes by ntpq's :config or config-from-file
945  *
946  * Note: There should be no buffer overflow or truncation in the
947  * processing of file names -- both cause security problems. This is bit
948  * painful to code but essential here.
949  */
950 void
save_config(struct recvbuf * rbufp,int restrict_mask)951 save_config(
952 	struct recvbuf *rbufp,
953 	int restrict_mask
954 	)
955 {
956 	/* block directory traversal by searching for characters that
957 	 * indicate directory components in a file path.
958 	 *
959 	 * Conceptually we should be searching for DIRSEP in filename,
960 	 * however Windows actually recognizes both forward and
961 	 * backslashes as equivalent directory separators at the API
962 	 * level.  On POSIX systems we could allow '\\' but such
963 	 * filenames are tricky to manipulate from a shell, so just
964 	 * reject both types of slashes on all platforms.
965 	 */
966 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
967 	static const char * illegal_in_filename =
968 #if defined(VMS)
969 	    ":[]"	/* do not allow drive and path components here */
970 #elif defined(SYS_WINNT)
971 	    ":\\/"	/* path and drive separators */
972 #else
973 	    "\\/"	/* separator and critical char for POSIX */
974 #endif
975 	    ;
976 	char reply[128];
977 #ifdef SAVECONFIG
978 	static const char savedconfig_eq[] = "savedconfig=";
979 
980 	/* Build a safe open mode from the available mode flags. We want
981 	 * to create a new file and write it in text mode (when
982 	 * applicable -- only Windows does this...)
983 	 */
984 	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
985 #  if defined(O_EXCL)		/* posix, vms */
986 	    | O_EXCL
987 #  elif defined(_O_EXCL)	/* windows is alway very special... */
988 	    | _O_EXCL
989 #  endif
990 #  if defined(_O_TEXT)		/* windows, again */
991 	    | _O_TEXT
992 #endif
993 	    ;
994 
995 	char filespec[128];
996 	char filename[128];
997 	char fullpath[512];
998 	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
999 	time_t now;
1000 	int fd;
1001 	FILE *fptr;
1002 	int prc;
1003 	size_t reqlen;
1004 #endif
1005 
1006 	if (RES_NOMODIFY & restrict_mask) {
1007 		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
1008 		ctl_flushpkt(0);
1009 		NLOG(NLOG_SYSINFO)
1010 			msyslog(LOG_NOTICE,
1011 				"saveconfig from %s rejected due to nomodify restriction",
1012 				stoa(&rbufp->recv_srcadr));
1013 		sys_restricted++;
1014 		return;
1015 	}
1016 
1017 #ifdef SAVECONFIG
1018 	if (NULL == saveconfigdir) {
1019 		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1020 		ctl_flushpkt(0);
1021 		NLOG(NLOG_SYSINFO)
1022 			msyslog(LOG_NOTICE,
1023 				"saveconfig from %s rejected, no saveconfigdir",
1024 				stoa(&rbufp->recv_srcadr));
1025 		return;
1026 	}
1027 
1028 	/* The length checking stuff gets serious. Do not assume a NUL
1029 	 * byte can be found, but if so, use it to calculate the needed
1030 	 * buffer size. If the available buffer is too short, bail out;
1031 	 * likewise if there is no file spec. (The latter will not
1032 	 * happen when using NTPQ, but there are other ways to craft a
1033 	 * network packet!)
1034 	 */
1035 	reqlen = (size_t)(reqend - reqpt);
1036 	if (0 != reqlen) {
1037 		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1038 		if (NULL != nulpos)
1039 			reqlen = (size_t)(nulpos - reqpt);
1040 	}
1041 	if (0 == reqlen)
1042 		return;
1043 	if (reqlen >= sizeof(filespec)) {
1044 		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1045 			   (u_int)sizeof(filespec));
1046 		ctl_flushpkt(0);
1047 		msyslog(LOG_NOTICE,
1048 			"saveconfig exceeded maximum raw name length from %s",
1049 			stoa(&rbufp->recv_srcadr));
1050 		return;
1051 	}
1052 
1053 	/* copy data directly as we exactly know the size */
1054 	memcpy(filespec, reqpt, reqlen);
1055 	filespec[reqlen] = '\0';
1056 
1057 	/*
1058 	 * allow timestamping of the saved config filename with
1059 	 * strftime() format such as:
1060 	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1061 	 * XXX: Nice feature, but not too safe.
1062 	 * YYY: The check for permitted characters in file names should
1063 	 *      weed out the worst. Let's hope 'strftime()' does not
1064 	 *      develop pathological problems.
1065 	 */
1066 	time(&now);
1067 	if (0 == strftime(filename, sizeof(filename), filespec,
1068 			  localtime(&now)))
1069 	{
1070 		/*
1071 		 * If we arrive here, 'strftime()' balked; most likely
1072 		 * the buffer was too short. (Or it encounterd an empty
1073 		 * format, or just a format that expands to an empty
1074 		 * string.) We try to use the original name, though this
1075 		 * is very likely to fail later if there are format
1076 		 * specs in the string. Note that truncation cannot
1077 		 * happen here as long as both buffers have the same
1078 		 * size!
1079 		 */
1080 		strlcpy(filename, filespec, sizeof(filename));
1081 	}
1082 
1083 	/*
1084 	 * Check the file name for sanity. This might/will rule out file
1085 	 * names that would be legal but problematic, and it blocks
1086 	 * directory traversal.
1087 	 */
1088 	if (!is_safe_filename(filename)) {
1089 		ctl_printf("saveconfig rejects unsafe file name '%s'",
1090 			   filename);
1091 		ctl_flushpkt(0);
1092 		msyslog(LOG_NOTICE,
1093 			"saveconfig rejects unsafe file name from %s",
1094 			stoa(&rbufp->recv_srcadr));
1095 		return;
1096 	}
1097 
1098 	/*
1099 	 * XXX: This next test may not be needed with is_safe_filename()
1100 	 */
1101 
1102 	/* block directory/drive traversal */
1103 	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1104 	if (NULL != strpbrk(filename, illegal_in_filename)) {
1105 		snprintf(reply, sizeof(reply),
1106 			 "saveconfig does not allow directory in filename");
1107 		ctl_putdata(reply, strlen(reply), 0);
1108 		ctl_flushpkt(0);
1109 		msyslog(LOG_NOTICE,
1110 			"saveconfig rejects unsafe file name from %s",
1111 			stoa(&rbufp->recv_srcadr));
1112 		return;
1113 	}
1114 
1115 	/* concatenation of directory and path can cause another
1116 	 * truncation...
1117 	 */
1118 	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1119 		       saveconfigdir, filename);
1120 	if (prc < 0 || (size_t)prc >= sizeof(fullpath)) {
1121 		ctl_printf("saveconfig exceeded maximum path length (%u)",
1122 			   (u_int)sizeof(fullpath));
1123 		ctl_flushpkt(0);
1124 		msyslog(LOG_NOTICE,
1125 			"saveconfig exceeded maximum path length from %s",
1126 			stoa(&rbufp->recv_srcadr));
1127 		return;
1128 	}
1129 
1130 	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1131 	if (-1 == fd)
1132 		fptr = NULL;
1133 	else
1134 		fptr = fdopen(fd, "w");
1135 
1136 	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1137 		ctl_printf("Unable to save configuration to file '%s': %s",
1138 			   filename, strerror(errno));
1139 		msyslog(LOG_ERR,
1140 			"saveconfig %s from %s failed", filename,
1141 			stoa(&rbufp->recv_srcadr));
1142 	} else {
1143 		ctl_printf("Configuration saved to '%s'", filename);
1144 		msyslog(LOG_NOTICE,
1145 			"Configuration saved to '%s' (requested by %s)",
1146 			fullpath, stoa(&rbufp->recv_srcadr));
1147 		/*
1148 		 * save the output filename in system variable
1149 		 * savedconfig, retrieved with:
1150 		 *   ntpq -c "rv 0 savedconfig"
1151 		 * Note: the way 'savedconfig' is defined makes overflow
1152 		 * checks unnecessary here.
1153 		 */
1154 		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1155 			 savedconfig_eq, filename);
1156 		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1157 	}
1158 
1159 	if (NULL != fptr)
1160 		fclose(fptr);
1161 #else	/* !SAVECONFIG follows */
1162 	ctl_printf("%s",
1163 		   "saveconfig unavailable, configured with --disable-saveconfig");
1164 #endif
1165 	ctl_flushpkt(0);
1166 }
1167 
1168 
1169 /*
1170  * process_control - process an incoming control message
1171  */
1172 void
process_control(struct recvbuf * rbufp,int restrict_mask)1173 process_control(
1174 	struct recvbuf *rbufp,
1175 	int restrict_mask
1176 	)
1177 {
1178 	struct ntp_control *pkt;
1179 	int req_count;
1180 	int req_data;
1181 	const struct ctl_proc *cc;
1182 	keyid_t *pkid;
1183 	int properlen;
1184 	size_t maclen;
1185 
1186 	DPRINTF(3, ("in process_control()\n"));
1187 
1188 	/*
1189 	 * Save the addresses for error responses
1190 	 */
1191 	numctlreq++;
1192 	rmt_addr = &rbufp->recv_srcadr;
1193 	lcl_inter = rbufp->dstadr;
1194 	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1195 
1196 	/*
1197 	 * If the length is less than required for the header,
1198 	 * ignore it.
1199 	 */
1200 	if (rbufp->recv_length < (int)CTL_HEADER_LEN) {
1201 		DPRINTF(1, ("Short control packet\n"));
1202 		numctltooshort++;
1203 		return;
1204 	}
1205 
1206 	/*
1207 	 * If this packet is a response or a fragment, ignore it.
1208 	 */
1209 	if (   (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1210 	    || pkt->offset != 0) {
1211 		DPRINTF(1, ("invalid format in control packet\n"));
1212 		if (CTL_RESPONSE & pkt->r_m_e_op)
1213 			numctlinputresp++;
1214 		if (CTL_MORE & pkt->r_m_e_op)
1215 			numctlinputfrag++;
1216 		if (CTL_ERROR & pkt->r_m_e_op)
1217 			numctlinputerr++;
1218 		if (pkt->offset != 0)
1219 			numctlbadoffset++;
1220 		return;
1221 	}
1222 
1223 	res_version = PKT_VERSION(pkt->li_vn_mode);
1224 	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1225 		DPRINTF(1, ("unknown version %d in control packet\n",
1226 			    res_version));
1227 		numctlbadversion++;
1228 		return;
1229 	}
1230 
1231 	/*
1232 	 * Pull enough data from the packet to make intelligent
1233 	 * responses
1234 	 */
1235 	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1236 					 MODE_CONTROL);
1237 	res_opcode = pkt->r_m_e_op;
1238 	rpkt.sequence = pkt->sequence;
1239 	rpkt.associd = pkt->associd;
1240 	rpkt.status = 0;
1241 	res_frags = 1;
1242 	res_offset = 0;
1243 	res_associd = htons(pkt->associd);
1244 	res_async = FALSE;
1245 	res_authenticate = FALSE;
1246 	res_keyid = 0;
1247 	res_authokay = FALSE;
1248 	req_count = (int)ntohs(pkt->count);
1249 	datanotbinflag = FALSE;
1250 	datalinelen = 0;
1251 	datasent = 0;
1252 	datapt = rpkt.u.data;
1253 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1254 
1255 	if ((rbufp->recv_length & 0x3) != 0)
1256 		DPRINTF(3, ("Control packet length %d unrounded\n",
1257 			    rbufp->recv_length));
1258 
1259 	/*
1260 	 * We're set up now. Make sure we've got at least enough
1261 	 * incoming data space to match the count.
1262 	 */
1263 	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1264 	if (req_data < req_count || rbufp->recv_length & 0x3) {
1265 		ctl_error(CERR_BADFMT);
1266 		numctldatatooshort++;
1267 		return;
1268 	}
1269 
1270 	properlen = req_count + CTL_HEADER_LEN;
1271 	/* round up proper len to a 8 octet boundary */
1272 
1273 	properlen = (properlen + 7) & ~7;
1274 	maclen = rbufp->recv_length - properlen;
1275 	if ((rbufp->recv_length & 3) == 0 &&
1276 	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1277 	    sys_authenticate) {
1278 		res_authenticate = TRUE;
1279 		pkid = (void *)((char *)pkt + properlen);
1280 		res_keyid = ntohl(*pkid);
1281 		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1282 			    rbufp->recv_length, properlen, res_keyid,
1283 			    maclen));
1284 
1285 		if (!authistrustedip(res_keyid, &rbufp->recv_srcadr))
1286 			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1287 		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1288 				     rbufp->recv_length - maclen,
1289 				     maclen)) {
1290 			res_authokay = TRUE;
1291 			DPRINTF(3, ("authenticated okay\n"));
1292 		} else {
1293 			res_keyid = 0;
1294 			DPRINTF(3, ("authentication failed\n"));
1295 		}
1296 	}
1297 
1298 	/*
1299 	 * Set up translate pointers
1300 	 */
1301 	reqpt = (char *)pkt->u.data;
1302 	reqend = reqpt + req_count;
1303 
1304 	/*
1305 	 * Look for the opcode processor
1306 	 */
1307 	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1308 		if (cc->control_code == res_opcode) {
1309 			DPRINTF(3, ("opcode %d, found command handler\n",
1310 				    res_opcode));
1311 			if (cc->flags == AUTH
1312 			    && (!res_authokay
1313 				|| res_keyid != ctl_auth_keyid)) {
1314 				ctl_error(CERR_PERMISSION);
1315 				return;
1316 			}
1317 			(cc->handler)(rbufp, restrict_mask);
1318 			return;
1319 		}
1320 	}
1321 
1322 	/*
1323 	 * Can't find this one, return an error.
1324 	 */
1325 	numctlbadop++;
1326 	ctl_error(CERR_BADOP);
1327 	return;
1328 }
1329 
1330 
1331 /*
1332  * ctlpeerstatus - return a status word for this peer
1333  */
1334 u_short
ctlpeerstatus(register struct peer * p)1335 ctlpeerstatus(
1336 	register struct peer *p
1337 	)
1338 {
1339 	u_short status;
1340 
1341 	status = p->status;
1342 	if (FLAG_CONFIG & p->flags)
1343 		status |= CTL_PST_CONFIG;
1344 	if (p->keyid)
1345 		status |= CTL_PST_AUTHENABLE;
1346 	if (FLAG_AUTHENTIC & p->flags)
1347 		status |= CTL_PST_AUTHENTIC;
1348 	if (p->reach)
1349 		status |= CTL_PST_REACH;
1350 	if (MDF_TXONLY_MASK & p->cast_flags)
1351 		status |= CTL_PST_BCAST;
1352 
1353 	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1354 }
1355 
1356 
1357 /*
1358  * ctlclkstatus - return a status word for this clock
1359  */
1360 #ifdef REFCLOCK
1361 static u_short
ctlclkstatus(struct refclockstat * pcs)1362 ctlclkstatus(
1363 	struct refclockstat *pcs
1364 	)
1365 {
1366 	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1367 }
1368 #endif
1369 
1370 
1371 /*
1372  * ctlsysstatus - return the system status word
1373  */
1374 u_short
ctlsysstatus(void)1375 ctlsysstatus(void)
1376 {
1377 	register u_char this_clock;
1378 
1379 	this_clock = CTL_SST_TS_UNSPEC;
1380 #ifdef REFCLOCK
1381 	if (sys_peer != NULL) {
1382 		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1383 			this_clock = sys_peer->sstclktype;
1384 		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1385 			this_clock = clocktypes[sys_peer->refclktype];
1386 	}
1387 #else /* REFCLOCK */
1388 	if (sys_peer != 0)
1389 		this_clock = CTL_SST_TS_NTP;
1390 #endif /* REFCLOCK */
1391 	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1392 			      ctl_sys_last_event);
1393 }
1394 
1395 
1396 /*
1397  * ctl_flushpkt - write out the current packet and prepare
1398  *		  another if necessary.
1399  */
1400 static void
ctl_flushpkt(u_char more)1401 ctl_flushpkt(
1402 	u_char more
1403 	)
1404 {
1405 	size_t i;
1406 	size_t dlen;
1407 	size_t sendlen;
1408 	size_t maclen;
1409 	size_t totlen;
1410 	keyid_t keyid;
1411 
1412 	dlen = datapt - rpkt.u.data;
1413 	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1414 		/*
1415 		 * Big hack, output a trailing \r\n
1416 		 */
1417 		*datapt++ = '\r';
1418 		*datapt++ = '\n';
1419 		dlen += 2;
1420 	}
1421 	sendlen = dlen + CTL_HEADER_LEN;
1422 
1423 	/*
1424 	 * Pad to a multiple of 32 bits
1425 	 */
1426 	while (sendlen & 0x3) {
1427 		*datapt++ = '\0';
1428 		sendlen++;
1429 	}
1430 
1431 	/*
1432 	 * Fill in the packet with the current info
1433 	 */
1434 	rpkt.r_m_e_op = CTL_RESPONSE | more |
1435 			(res_opcode & CTL_OP_MASK);
1436 	rpkt.count = htons((u_short)dlen);
1437 	rpkt.offset = htons((u_short)res_offset);
1438 	if (res_async) {
1439 		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1440 			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1441 				rpkt.li_vn_mode =
1442 				    PKT_LI_VN_MODE(
1443 					sys_leap,
1444 					ctl_traps[i].tr_version,
1445 					MODE_CONTROL);
1446 				rpkt.sequence =
1447 				    htons(ctl_traps[i].tr_sequence);
1448 				sendpkt(&ctl_traps[i].tr_addr,
1449 					ctl_traps[i].tr_localaddr, -4,
1450 					(struct pkt *)&rpkt, sendlen);
1451 				if (!more)
1452 					ctl_traps[i].tr_sequence++;
1453 				numasyncmsgs++;
1454 			}
1455 		}
1456 	} else {
1457 		if (res_authenticate && sys_authenticate) {
1458 			totlen = sendlen;
1459 			/*
1460 			 * If we are going to authenticate, then there
1461 			 * is an additional requirement that the MAC
1462 			 * begin on a 64 bit boundary.
1463 			 */
1464 			while (totlen & 7) {
1465 				*datapt++ = '\0';
1466 				totlen++;
1467 			}
1468 			keyid = htonl(res_keyid);
1469 			memcpy(datapt, &keyid, sizeof(keyid));
1470 			maclen = authencrypt(res_keyid,
1471 					     (u_int32 *)&rpkt, totlen);
1472 			sendpkt(rmt_addr, lcl_inter, -5,
1473 				(struct pkt *)&rpkt, totlen + maclen);
1474 		} else {
1475 			sendpkt(rmt_addr, lcl_inter, -6,
1476 				(struct pkt *)&rpkt, sendlen);
1477 		}
1478 		if (more)
1479 			numctlfrags++;
1480 		else
1481 			numctlresponses++;
1482 	}
1483 
1484 	/*
1485 	 * Set us up for another go around.
1486 	 */
1487 	res_frags++;
1488 	res_offset += dlen;
1489 	datapt = rpkt.u.data;
1490 }
1491 
1492 
1493 /* --------------------------------------------------------------------
1494  * block transfer API -- stream string/data fragments into xmit buffer
1495  * without additional copying
1496  */
1497 
1498 /* buffer descriptor: address & size of fragment
1499  * 'buf' may only be NULL when 'len' is zero!
1500  */
1501 typedef struct {
1502 	const void  *buf;
1503 	size_t       len;
1504 } CtlMemBufT;
1505 
1506 /* put ctl data in a gather-style operation */
1507 static void
ctl_putdata_ex(const CtlMemBufT * argv,size_t argc,int bin)1508 ctl_putdata_ex(
1509 	const CtlMemBufT * argv,
1510 	size_t             argc,
1511 	int/*BOOL*/        bin		/* set to 1 when data is binary */
1512 	)
1513 {
1514 	const char * src_ptr;
1515 	size_t       src_len, cur_len, add_len, argi;
1516 
1517 	/* text / binary preprocessing, possibly create new linefeed */
1518 	if (bin) {
1519 		add_len = 0;
1520 	} else {
1521 		datanotbinflag = TRUE;
1522 		add_len = 3;
1523 
1524 		if (datasent) {
1525 			*datapt++ = ',';
1526 			datalinelen++;
1527 
1528 			/* sum up total length */
1529 			for (argi = 0, src_len = 0; argi < argc; ++argi)
1530 				src_len += argv[argi].len;
1531 			/* possibly start a new line, assume no size_t overflow */
1532 			if ((src_len + datalinelen + 1) >= MAXDATALINELEN) {
1533 				*datapt++ = '\r';
1534 				*datapt++ = '\n';
1535 				datalinelen = 0;
1536 			} else {
1537 				*datapt++ = ' ';
1538 				datalinelen++;
1539 			}
1540 		}
1541 	}
1542 
1543 	/* now stream out all buffers */
1544 	for (argi = 0; argi < argc; ++argi) {
1545 		src_ptr = argv[argi].buf;
1546 		src_len = argv[argi].len;
1547 
1548 		if ( ! (src_ptr && src_len))
1549 			continue;
1550 
1551 		cur_len = (size_t)(dataend - datapt);
1552 		while ((src_len + add_len) > cur_len) {
1553 			/* Not enough room in this one, flush it out. */
1554 			if (src_len < cur_len)
1555 				cur_len = src_len;
1556 
1557 			memcpy(datapt, src_ptr, cur_len);
1558 			datapt      += cur_len;
1559 			datalinelen += cur_len;
1560 
1561 			src_ptr     += cur_len;
1562 			src_len     -= cur_len;
1563 
1564 			ctl_flushpkt(CTL_MORE);
1565 			cur_len = (size_t)(dataend - datapt);
1566 		}
1567 
1568 		memcpy(datapt, src_ptr, src_len);
1569 		datapt      += src_len;
1570 		datalinelen += src_len;
1571 
1572 		datasent = TRUE;
1573 	}
1574 }
1575 
1576 /*
1577  * ctl_putdata - write data into the packet, fragmenting and starting
1578  * another if this one is full.
1579  */
1580 static void
ctl_putdata(const char * dp,unsigned int dlen,int bin)1581 ctl_putdata(
1582 	const char *dp,
1583 	unsigned int dlen,
1584 	int bin			/* set to 1 when data is binary */
1585 	)
1586 {
1587 	CtlMemBufT args[1];
1588 
1589 	args[0].buf = dp;
1590 	args[0].len = dlen;
1591 	ctl_putdata_ex(args, 1, bin);
1592 }
1593 
1594 /*
1595  * ctl_putstr - write a tagged string into the response packet
1596  *		in the form:
1597  *
1598  *		tag="data"
1599  *
1600  *		len is the data length excluding the NUL terminator,
1601  *		as in ctl_putstr("var", "value", strlen("value"));
1602  */
1603 static void
ctl_putstr(const char * tag,const char * data,size_t len)1604 ctl_putstr(
1605 	const char *	tag,
1606 	const char *	data,
1607 	size_t		len
1608 	)
1609 {
1610 	CtlMemBufT args[4];
1611 
1612 	args[0].buf = tag;
1613 	args[0].len = strlen(tag);
1614 	if (data && len) {
1615 	    args[1].buf = "=\"";
1616 	    args[1].len = 2;
1617 	    args[2].buf = data;
1618 	    args[2].len = len;
1619 	    args[3].buf = "\"";
1620 	    args[3].len = 1;
1621 	    ctl_putdata_ex(args, 4, FALSE);
1622 	} else {
1623 	    args[1].buf = "=\"\"";
1624 	    args[1].len = 3;
1625 	    ctl_putdata_ex(args, 2, FALSE);
1626 	}
1627 }
1628 
1629 
1630 /*
1631  * ctl_putunqstr - write a tagged string into the response packet
1632  *		   in the form:
1633  *
1634  *		   tag=data
1635  *
1636  *	len is the data length excluding the NUL terminator.
1637  *	data must not contain a comma or whitespace.
1638  */
1639 static void
ctl_putunqstr(const char * tag,const char * data,size_t len)1640 ctl_putunqstr(
1641 	const char *	tag,
1642 	const char *	data,
1643 	size_t		len
1644 	)
1645 {
1646 	CtlMemBufT args[3];
1647 
1648 	args[0].buf = tag;
1649 	args[0].len = strlen(tag);
1650 	args[1].buf = "=";
1651 	args[1].len = 1;
1652 	if (data && len) {
1653 		args[2].buf = data;
1654 		args[2].len = len;
1655 		ctl_putdata_ex(args, 3, FALSE);
1656 	} else {
1657 		ctl_putdata_ex(args, 2, FALSE);
1658 	}
1659 }
1660 
1661 
1662 /*
1663  * ctl_putdblf - write a tagged, signed double into the response packet
1664  */
1665 static void
ctl_putdblf(const char * tag,int use_f,int precision,double d)1666 ctl_putdblf(
1667 	const char *	tag,
1668 	int		use_f,
1669 	int		precision,
1670 	double		d
1671 	)
1672 {
1673 	char buffer[40];
1674 	int  rc;
1675 
1676 	rc = snprintf(buffer, sizeof(buffer),
1677 		      (use_f ? "%.*f" : "%.*g"),
1678 		      precision, d);
1679 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1680 	ctl_putunqstr(tag, buffer, rc);
1681 }
1682 
1683 /*
1684  * ctl_putuint - write a tagged unsigned integer into the response
1685  */
1686 static void
ctl_putuint(const char * tag,u_long uval)1687 ctl_putuint(
1688 	const char *tag,
1689 	u_long uval
1690 	)
1691 {
1692 	char buffer[24]; /* needs to fit for 64 bits! */
1693 	int  rc;
1694 
1695 	rc = snprintf(buffer, sizeof(buffer), "%lu", uval);
1696 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1697 	ctl_putunqstr(tag, buffer, rc);
1698 }
1699 
1700 /*
1701  * ctl_putcal - write a decoded calendar data into the response.
1702  * only used with AUTOKEY currently, so compiled conditional
1703  */
1704 #ifdef AUTOKEY
1705 static void
ctl_putcal(const char * tag,const struct calendar * pcal)1706 ctl_putcal(
1707 	const char *tag,
1708 	const struct calendar *pcal
1709 	)
1710 {
1711 	char buffer[16];
1712 	int  rc;
1713 
1714 	rc = snprintf(buffer, sizeof(buffer),
1715 		      "%04d%02d%02d%02d%02d",
1716 		      pcal->year, pcal->month, pcal->monthday,
1717 		      pcal->hour, pcal->minute
1718 		);
1719 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1720 	ctl_putunqstr(tag, buffer, rc);
1721 }
1722 #endif
1723 
1724 /*
1725  * ctl_putfs - write a decoded filestamp into the response
1726  */
1727 static void
ctl_putfs(const char * tag,tstamp_t uval)1728 ctl_putfs(
1729 	const char *tag,
1730 	tstamp_t uval
1731 	)
1732 {
1733 	char buffer[16];
1734 	int  rc;
1735 
1736 	time_t fstamp = (time_t)uval - JAN_1970;
1737 	struct tm *tm = gmtime(&fstamp);
1738 
1739 	if (NULL == tm)
1740 		return;
1741 
1742 	rc = snprintf(buffer, sizeof(buffer),
1743 		      "%04d%02d%02d%02d%02d",
1744 		      tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
1745 		      tm->tm_hour, tm->tm_min);
1746 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1747 	ctl_putunqstr(tag, buffer, rc);
1748 }
1749 
1750 
1751 /*
1752  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1753  * response
1754  */
1755 static void
ctl_puthex(const char * tag,u_long uval)1756 ctl_puthex(
1757 	const char *tag,
1758 	u_long uval
1759 	)
1760 {
1761 	char buffer[24];	/* must fit 64bit int! */
1762 	int  rc;
1763 
1764 	rc = snprintf(buffer, sizeof(buffer), "0x%lx", uval);
1765 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1766 	ctl_putunqstr(tag, buffer, rc);
1767 }
1768 
1769 
1770 /*
1771  * ctl_putint - write a tagged signed integer into the response
1772  */
1773 static void
ctl_putint(const char * tag,long ival)1774 ctl_putint(
1775 	const char *tag,
1776 	long ival
1777 	)
1778 {
1779 	char buffer[24];	/*must fit 64bit int */
1780 	int  rc;
1781 
1782 	rc = snprintf(buffer, sizeof(buffer), "%ld", ival);
1783 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1784 	ctl_putunqstr(tag, buffer, rc);
1785 }
1786 
1787 
1788 /*
1789  * ctl_putts - write a tagged timestamp, in hex, into the response
1790  */
1791 static void
ctl_putts(const char * tag,l_fp * ts)1792 ctl_putts(
1793 	const char *tag,
1794 	l_fp *ts
1795 	)
1796 {
1797 	char buffer[24];
1798 	int  rc;
1799 
1800 	rc = snprintf(buffer, sizeof(buffer),
1801 		      "0x%08lx.%08lx",
1802 		      (u_long)ts->l_ui, (u_long)ts->l_uf);
1803 	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1804 	ctl_putunqstr(tag, buffer, rc);
1805 }
1806 
1807 
1808 /*
1809  * ctl_putadr - write an IP address into the response
1810  */
1811 static void
ctl_putadr(const char * tag,u_int32 addr32,sockaddr_u * addr)1812 ctl_putadr(
1813 	const char *tag,
1814 	u_int32 addr32,
1815 	sockaddr_u *addr
1816 	)
1817 {
1818 	const char *cq;
1819 
1820 	if (NULL == addr)
1821 		cq = numtoa(addr32);
1822 	else
1823 		cq = stoa(addr);
1824 	ctl_putunqstr(tag, cq, strlen(cq));
1825 }
1826 
1827 
1828 /*
1829  * ctl_putrefid - send a u_int32 refid as printable text
1830  */
1831 static void
ctl_putrefid(const char * tag,u_int32 refid)1832 ctl_putrefid(
1833 	const char *	tag,
1834 	u_int32		refid
1835 	)
1836 {
1837 	size_t nc;
1838 
1839 	union {
1840 		uint32_t w;
1841 		uint8_t  b[sizeof(uint32_t)];
1842 	} bytes;
1843 
1844 	bytes.w = refid;
1845 	for (nc = 0; nc < sizeof(bytes.b) && bytes.b[nc]; ++nc)
1846 		if (  !isprint(bytes.b[nc])
1847 		    || isspace(bytes.b[nc])
1848 		    || bytes.b[nc] == ','  )
1849 			bytes.b[nc] = '.';
1850 	ctl_putunqstr(tag, (const char*)bytes.b, nc);
1851 }
1852 
1853 
1854 /*
1855  * ctl_putarray - write a tagged eight element double array into the response
1856  */
1857 static void
ctl_putarray(const char * tag,double * arr,int start)1858 ctl_putarray(
1859 	const char *tag,
1860 	double *arr,
1861 	int start
1862 	)
1863 {
1864 	char *cp, *ep;
1865 	char buffer[200];
1866 	int  i, rc;
1867 
1868 	cp = buffer;
1869 	ep = buffer + sizeof(buffer);
1870 	i  = start;
1871 	do {
1872 		if (i == 0)
1873 			i = NTP_SHIFT;
1874 		i--;
1875 		rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3);
1876 		INSIST(rc >= 0 && (size_t)rc < (size_t)(ep - cp));
1877 		cp += rc;
1878 	} while (i != start);
1879 	ctl_putunqstr(tag, buffer, (size_t)(cp - buffer));
1880 }
1881 
1882 /*
1883  * ctl_printf - put a formatted string into the data buffer
1884  */
1885 static void
ctl_printf(const char * fmt,...)1886 ctl_printf(
1887 	const char * fmt,
1888 	...
1889 	)
1890 {
1891 	static const char * ellipsis = "[...]";
1892 	va_list va;
1893 	char    fmtbuf[128];
1894 	int     rc;
1895 
1896 	va_start(va, fmt);
1897 	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1898 	va_end(va);
1899 	if (rc < 0 || (size_t)rc >= sizeof(fmtbuf))
1900 		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1901 		       ellipsis);
1902 	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1903 }
1904 
1905 
1906 /*
1907  * ctl_putsys - output a system variable
1908  */
1909 static void
ctl_putsys(int varid)1910 ctl_putsys(
1911 	int varid
1912 	)
1913 {
1914 	l_fp tmp;
1915 #ifndef HAVE_UNAME
1916 	char str[256];
1917 #else
1918 	char str[sizeof utsnamebuf.sysname + sizeof utsnamebuf.release];
1919 #endif
1920 	u_int u;
1921 	double kb;
1922 	double dtemp;
1923 	const char *ss;
1924 #ifdef AUTOKEY
1925 	struct cert_info *cp;
1926 #endif	/* AUTOKEY */
1927 #ifdef KERNEL_PLL
1928 	static struct timex ntx;
1929 	static u_long ntp_adjtime_time;
1930 
1931 	/*
1932 	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1933 	 */
1934 	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1935 	    current_time != ntp_adjtime_time) {
1936 		ZERO(ntx);
1937 		if (ntp_adjtime(&ntx) < 0)
1938 			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1939 		else
1940 			ntp_adjtime_time = current_time;
1941 	}
1942 #endif	/* KERNEL_PLL */
1943 
1944 	switch (varid) {
1945 
1946 	case CS_LEAP:
1947 		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1948 		break;
1949 
1950 	case CS_STRATUM:
1951 		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1952 		break;
1953 
1954 	case CS_PRECISION:
1955 		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1956 		break;
1957 
1958 	case CS_ROOTDELAY:
1959 		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1960 			   1e3);
1961 		break;
1962 
1963 	case CS_ROOTDISPERSION:
1964 		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1965 			   sys_rootdisp * 1e3);
1966 		break;
1967 
1968 	case CS_REFID:
1969 		if (REFID_ISTEXT(sys_stratum))
1970 			ctl_putrefid(sys_var[varid].text, sys_refid);
1971 		else
1972 			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1973 		break;
1974 
1975 	case CS_REFTIME:
1976 		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1977 		break;
1978 
1979 	case CS_POLL:
1980 		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1981 		break;
1982 
1983 	case CS_PEERID:
1984 		if (sys_peer == NULL)
1985 			ctl_putuint(sys_var[CS_PEERID].text, 0);
1986 		else
1987 			ctl_putuint(sys_var[CS_PEERID].text,
1988 				    sys_peer->associd);
1989 		break;
1990 
1991 	case CS_PEERADR:
1992 		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1993 			ss = sptoa(&sys_peer->srcadr);
1994 		else
1995 			ss = "0.0.0.0:0";
1996 		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1997 		break;
1998 
1999 	case CS_PEERMODE:
2000 		u = (sys_peer != NULL)
2001 			? sys_peer->hmode
2002 			: MODE_UNSPEC;
2003 		ctl_putuint(sys_var[CS_PEERMODE].text, u);
2004 		break;
2005 
2006 	case CS_OFFSET:
2007 		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
2008 		break;
2009 
2010 	case CS_DRIFT:
2011 		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
2012 		break;
2013 
2014 	case CS_JITTER:
2015 		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
2016 		break;
2017 
2018 	case CS_ERROR:
2019 		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
2020 		break;
2021 
2022 	case CS_CLOCK:
2023 		get_systime(&tmp);
2024 		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
2025 		break;
2026 
2027 	case CS_PROCESSOR:
2028 #ifndef HAVE_UNAME
2029 		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
2030 			   sizeof(str_processor) - 1);
2031 #else
2032 		ctl_putstr(sys_var[CS_PROCESSOR].text,
2033 			   utsnamebuf.machine, strlen(utsnamebuf.machine));
2034 #endif /* HAVE_UNAME */
2035 		break;
2036 
2037 	case CS_SYSTEM:
2038 #ifndef HAVE_UNAME
2039 		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
2040 			   sizeof(str_system) - 1);
2041 #else
2042 		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
2043 			 utsnamebuf.release);
2044 		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
2045 #endif /* HAVE_UNAME */
2046 		break;
2047 
2048 	case CS_VERSION:
2049 		ctl_putstr(sys_var[CS_VERSION].text, Version,
2050 			   strlen(Version));
2051 		break;
2052 
2053 	case CS_STABIL:
2054 		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2055 			   1e6);
2056 		break;
2057 
2058 	case CS_VARLIST:
2059 	{
2060 		char buf[CTL_MAX_DATA_LEN];
2061 		//buffPointer, firstElementPointer, buffEndPointer
2062 		char *buffp, *buffend;
2063 		int firstVarName;
2064 		const char *ss1;
2065 		int len;
2066 		const struct ctl_var *k;
2067 
2068 		buffp = buf;
2069 		buffend = buf + sizeof(buf);
2070 		if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4))
2071 			break;	/* really long var name */
2072 
2073 		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2074 		buffp += strlen(buffp);
2075 		firstVarName = TRUE;
2076 		for (k = sys_var; !(k->flags & EOV); k++) {
2077 			if (k->flags & PADDING)
2078 				continue;
2079 			len = strlen(k->text);
2080 			if (len + 1 >= buffend - buffp)
2081 				break;
2082 			if (!firstVarName)
2083 				*buffp++ = ',';
2084 			else
2085 				firstVarName = FALSE;
2086 			memcpy(buffp, k->text, len);
2087 			buffp += len;
2088 		}
2089 
2090 		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2091 			if (k->flags & PADDING)
2092 				continue;
2093 			if (NULL == k->text)
2094 				continue;
2095 			ss1 = strchr(k->text, '=');
2096 			if (NULL == ss1)
2097 				len = strlen(k->text);
2098 			else
2099 				len = ss1 - k->text;
2100 			if (len + 1 >= buffend - buffp)
2101 				break;
2102 			if (firstVarName) {
2103 				*buffp++ = ',';
2104 				firstVarName = FALSE;
2105 			}
2106 			memcpy(buffp, k->text,(unsigned)len);
2107 			buffp += len;
2108 		}
2109 		if (2 >= buffend - buffp)
2110 			break;
2111 
2112 		*buffp++ = '"';
2113 		*buffp = '\0';
2114 
2115 		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2116 		break;
2117 	}
2118 
2119 	case CS_TAI:
2120 		if (sys_tai > 0)
2121 			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2122 		break;
2123 
2124 	case CS_LEAPTAB:
2125 	{
2126 		leap_signature_t lsig;
2127 		leapsec_getsig(&lsig);
2128 		if (lsig.ttime > 0)
2129 			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2130 		break;
2131 	}
2132 
2133 	case CS_LEAPEND:
2134 	{
2135 		leap_signature_t lsig;
2136 		leapsec_getsig(&lsig);
2137 		if (lsig.etime > 0)
2138 			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2139 		break;
2140 	}
2141 
2142 #ifdef LEAP_SMEAR
2143 	case CS_LEAPSMEARINTV:
2144 		if (leap_smear_intv > 0)
2145 			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2146 		break;
2147 
2148 	case CS_LEAPSMEAROFFS:
2149 		if (leap_smear_intv > 0)
2150 			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2151 				   leap_smear.doffset * 1e3);
2152 		break;
2153 #endif	/* LEAP_SMEAR */
2154 
2155 	case CS_RATE:
2156 		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2157 		break;
2158 
2159 	case CS_MRU_ENABLED:
2160 		ctl_puthex(sys_var[varid].text, mon_enabled);
2161 		break;
2162 
2163 	case CS_MRU_DEPTH:
2164 		ctl_putuint(sys_var[varid].text, mru_entries);
2165 		break;
2166 
2167 	case CS_MRU_MEM:
2168 		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2169 		u = (u_int)kb;
2170 		if (kb - u >= 0.5)
2171 			u++;
2172 		ctl_putuint(sys_var[varid].text, u);
2173 		break;
2174 
2175 	case CS_MRU_DEEPEST:
2176 		ctl_putuint(sys_var[varid].text, mru_peakentries);
2177 		break;
2178 
2179 	case CS_MRU_MINDEPTH:
2180 		ctl_putuint(sys_var[varid].text, mru_mindepth);
2181 		break;
2182 
2183 	case CS_MRU_MAXAGE:
2184 		ctl_putint(sys_var[varid].text, mru_maxage);
2185 		break;
2186 
2187 	case CS_MRU_MAXDEPTH:
2188 		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2189 		break;
2190 
2191 	case CS_MRU_MAXMEM:
2192 		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2193 		u = (u_int)kb;
2194 		if (kb - u >= 0.5)
2195 			u++;
2196 		ctl_putuint(sys_var[varid].text, u);
2197 		break;
2198 
2199 	case CS_SS_UPTIME:
2200 		ctl_putuint(sys_var[varid].text, current_time);
2201 		break;
2202 
2203 	case CS_SS_RESET:
2204 		ctl_putuint(sys_var[varid].text,
2205 			    current_time - sys_stattime);
2206 		break;
2207 
2208 	case CS_SS_RECEIVED:
2209 		ctl_putuint(sys_var[varid].text, sys_received);
2210 		break;
2211 
2212 	case CS_SS_THISVER:
2213 		ctl_putuint(sys_var[varid].text, sys_newversion);
2214 		break;
2215 
2216 	case CS_SS_OLDVER:
2217 		ctl_putuint(sys_var[varid].text, sys_oldversion);
2218 		break;
2219 
2220 	case CS_SS_BADFORMAT:
2221 		ctl_putuint(sys_var[varid].text, sys_badlength);
2222 		break;
2223 
2224 	case CS_SS_BADAUTH:
2225 		ctl_putuint(sys_var[varid].text, sys_badauth);
2226 		break;
2227 
2228 	case CS_SS_DECLINED:
2229 		ctl_putuint(sys_var[varid].text, sys_declined);
2230 		break;
2231 
2232 	case CS_SS_RESTRICTED:
2233 		ctl_putuint(sys_var[varid].text, sys_restricted);
2234 		break;
2235 
2236 	case CS_SS_LIMITED:
2237 		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2238 		break;
2239 
2240 	case CS_SS_LAMPORT:
2241 		ctl_putuint(sys_var[varid].text, sys_lamport);
2242 		break;
2243 
2244 	case CS_SS_TSROUNDING:
2245 		ctl_putuint(sys_var[varid].text, sys_tsrounding);
2246 		break;
2247 
2248 	case CS_SS_KODSENT:
2249 		ctl_putuint(sys_var[varid].text, sys_kodsent);
2250 		break;
2251 
2252 	case CS_SS_PROCESSED:
2253 		ctl_putuint(sys_var[varid].text, sys_processed);
2254 		break;
2255 
2256 	case CS_BCASTDELAY:
2257 		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2258 		break;
2259 
2260 	case CS_AUTHDELAY:
2261 		LFPTOD(&sys_authdelay, dtemp);
2262 		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2263 		break;
2264 
2265 	case CS_AUTHKEYS:
2266 		ctl_putuint(sys_var[varid].text, authnumkeys);
2267 		break;
2268 
2269 	case CS_AUTHFREEK:
2270 		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2271 		break;
2272 
2273 	case CS_AUTHKLOOKUPS:
2274 		ctl_putuint(sys_var[varid].text, authkeylookups);
2275 		break;
2276 
2277 	case CS_AUTHKNOTFOUND:
2278 		ctl_putuint(sys_var[varid].text, authkeynotfound);
2279 		break;
2280 
2281 	case CS_AUTHKUNCACHED:
2282 		ctl_putuint(sys_var[varid].text, authkeyuncached);
2283 		break;
2284 
2285 	case CS_AUTHKEXPIRED:
2286 		ctl_putuint(sys_var[varid].text, authkeyexpired);
2287 		break;
2288 
2289 	case CS_AUTHENCRYPTS:
2290 		ctl_putuint(sys_var[varid].text, authencryptions);
2291 		break;
2292 
2293 	case CS_AUTHDECRYPTS:
2294 		ctl_putuint(sys_var[varid].text, authdecryptions);
2295 		break;
2296 
2297 	case CS_AUTHRESET:
2298 		ctl_putuint(sys_var[varid].text,
2299 			    current_time - auth_timereset);
2300 		break;
2301 
2302 		/*
2303 		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2304 		 * unavailable, otherwise calls putfunc with args.
2305 		 */
2306 #ifndef KERNEL_PLL
2307 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2308 		ctl_putint(sys_var[varid].text, 0)
2309 #else
2310 # define	CTL_IF_KERNLOOP(putfunc, args)	\
2311 		putfunc args
2312 #endif
2313 
2314 		/*
2315 		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2316 		 * loop is unavailable, or kernel hard PPS is not
2317 		 * active, otherwise calls putfunc with args.
2318 		 */
2319 #ifndef KERNEL_PLL
2320 # define	CTL_IF_KERNPPS(putfunc, args)	\
2321 		ctl_putint(sys_var[varid].text, 0)
2322 #else
2323 # define	CTL_IF_KERNPPS(putfunc, args)			\
2324 		if (0 == ntx.shift)				\
2325 			ctl_putint(sys_var[varid].text, 0);	\
2326 		else						\
2327 			putfunc args	/* no trailing ; */
2328 #endif
2329 
2330 	case CS_K_OFFSET:
2331 		CTL_IF_KERNLOOP(
2332 			ctl_putdblf,
2333 			(sys_var[varid].text, 0, -1,
2334 			 1000 * dbl_from_var_long(ntx.offset, ntx.status))
2335 		);
2336 		break;
2337 
2338 	case CS_K_FREQ:
2339 		CTL_IF_KERNLOOP(
2340 			ctl_putsfp,
2341 			(sys_var[varid].text, ntx.freq)
2342 		);
2343 		break;
2344 
2345 	case CS_K_MAXERR:
2346 		CTL_IF_KERNLOOP(
2347 			ctl_putdblf,
2348 			(sys_var[varid].text, 0, 6,
2349 			 1000 * dbl_from_usec_long(ntx.maxerror))
2350 		);
2351 		break;
2352 
2353 	case CS_K_ESTERR:
2354 		CTL_IF_KERNLOOP(
2355 			ctl_putdblf,
2356 			(sys_var[varid].text, 0, 6,
2357 			 1000 * dbl_from_usec_long(ntx.esterror))
2358 		);
2359 		break;
2360 
2361 	case CS_K_STFLAGS:
2362 #ifndef KERNEL_PLL
2363 		ss = "";
2364 #else
2365 		ss = k_st_flags(ntx.status);
2366 #endif
2367 		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2368 		break;
2369 
2370 	case CS_K_TIMECONST:
2371 		CTL_IF_KERNLOOP(
2372 			ctl_putint,
2373 			(sys_var[varid].text, ntx.constant)
2374 		);
2375 		break;
2376 
2377 	case CS_K_PRECISION:
2378 		CTL_IF_KERNLOOP(
2379 			ctl_putdblf,
2380 			(sys_var[varid].text, 0, 6,
2381 			 1000 * dbl_from_var_long(ntx.precision, ntx.status))
2382 		);
2383 		break;
2384 
2385 	case CS_K_FREQTOL:
2386 		CTL_IF_KERNLOOP(
2387 			ctl_putsfp,
2388 			(sys_var[varid].text, ntx.tolerance)
2389 		);
2390 		break;
2391 
2392 	case CS_K_PPS_FREQ:
2393 		CTL_IF_KERNPPS(
2394 			ctl_putsfp,
2395 			(sys_var[varid].text, ntx.ppsfreq)
2396 		);
2397 		break;
2398 
2399 	case CS_K_PPS_STABIL:
2400 		CTL_IF_KERNPPS(
2401 			ctl_putsfp,
2402 			(sys_var[varid].text, ntx.stabil)
2403 		);
2404 		break;
2405 
2406 	case CS_K_PPS_JITTER:
2407 		CTL_IF_KERNPPS(
2408 			ctl_putdbl,
2409 			(sys_var[varid].text,
2410 			 1000 * dbl_from_var_long(ntx.jitter, ntx.status))
2411 		);
2412 		break;
2413 
2414 	case CS_K_PPS_CALIBDUR:
2415 		CTL_IF_KERNPPS(
2416 			ctl_putint,
2417 			(sys_var[varid].text, 1 << ntx.shift)
2418 		);
2419 		break;
2420 
2421 	case CS_K_PPS_CALIBS:
2422 		CTL_IF_KERNPPS(
2423 			ctl_putint,
2424 			(sys_var[varid].text, ntx.calcnt)
2425 		);
2426 		break;
2427 
2428 	case CS_K_PPS_CALIBERRS:
2429 		CTL_IF_KERNPPS(
2430 			ctl_putint,
2431 			(sys_var[varid].text, ntx.errcnt)
2432 		);
2433 		break;
2434 
2435 	case CS_K_PPS_JITEXC:
2436 		CTL_IF_KERNPPS(
2437 			ctl_putint,
2438 			(sys_var[varid].text, ntx.jitcnt)
2439 		);
2440 		break;
2441 
2442 	case CS_K_PPS_STBEXC:
2443 		CTL_IF_KERNPPS(
2444 			ctl_putint,
2445 			(sys_var[varid].text, ntx.stbcnt)
2446 		);
2447 		break;
2448 
2449 	case CS_IOSTATS_RESET:
2450 		ctl_putuint(sys_var[varid].text,
2451 			    current_time - io_timereset);
2452 		break;
2453 
2454 	case CS_TOTAL_RBUF:
2455 		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2456 		break;
2457 
2458 	case CS_FREE_RBUF:
2459 		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2460 		break;
2461 
2462 	case CS_USED_RBUF:
2463 		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2464 		break;
2465 
2466 	case CS_RBUF_LOWATER:
2467 		ctl_putuint(sys_var[varid].text, lowater_additions());
2468 		break;
2469 
2470 	case CS_IO_DROPPED:
2471 		ctl_putuint(sys_var[varid].text, packets_dropped);
2472 		break;
2473 
2474 	case CS_IO_IGNORED:
2475 		ctl_putuint(sys_var[varid].text, packets_ignored);
2476 		break;
2477 
2478 	case CS_IO_RECEIVED:
2479 		ctl_putuint(sys_var[varid].text, packets_received);
2480 		break;
2481 
2482 	case CS_IO_SENT:
2483 		ctl_putuint(sys_var[varid].text, packets_sent);
2484 		break;
2485 
2486 	case CS_IO_SENDFAILED:
2487 		ctl_putuint(sys_var[varid].text, packets_notsent);
2488 		break;
2489 
2490 	case CS_IO_WAKEUPS:
2491 		ctl_putuint(sys_var[varid].text, handler_calls);
2492 		break;
2493 
2494 	case CS_IO_GOODWAKEUPS:
2495 		ctl_putuint(sys_var[varid].text, handler_pkts);
2496 		break;
2497 
2498 	case CS_TIMERSTATS_RESET:
2499 		ctl_putuint(sys_var[varid].text,
2500 			    current_time - timer_timereset);
2501 		break;
2502 
2503 	case CS_TIMER_OVERRUNS:
2504 		ctl_putuint(sys_var[varid].text, alarm_overflow);
2505 		break;
2506 
2507 	case CS_TIMER_XMTS:
2508 		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2509 		break;
2510 
2511 	case CS_FUZZ:
2512 		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2513 		break;
2514 	case CS_WANDER_THRESH:
2515 		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2516 		break;
2517 #ifdef AUTOKEY
2518 	case CS_FLAGS:
2519 		if (crypto_flags)
2520 			ctl_puthex(sys_var[CS_FLAGS].text,
2521 			    crypto_flags);
2522 		break;
2523 
2524 	case CS_DIGEST:
2525 		if (crypto_flags) {
2526 			strlcpy(str, OBJ_nid2ln(crypto_nid),
2527 			    COUNTOF(str));
2528 			ctl_putstr(sys_var[CS_DIGEST].text, str,
2529 			    strlen(str));
2530 		}
2531 		break;
2532 
2533 	case CS_SIGNATURE:
2534 		if (crypto_flags) {
2535 			const EVP_MD *dp;
2536 
2537 			dp = EVP_get_digestbynid(crypto_flags >> 16);
2538 			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2539 			    COUNTOF(str));
2540 			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2541 			    strlen(str));
2542 		}
2543 		break;
2544 
2545 	case CS_HOST:
2546 		if (hostval.ptr != NULL)
2547 			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2548 			    strlen(hostval.ptr));
2549 		break;
2550 
2551 	case CS_IDENT:
2552 		if (sys_ident != NULL)
2553 			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2554 			    strlen(sys_ident));
2555 		break;
2556 
2557 	case CS_CERTIF:
2558 		for (cp = cinfo; cp != NULL; cp = cp->link) {
2559 			snprintf(str, sizeof(str), "%s %s 0x%x",
2560 			    cp->subject, cp->issuer, cp->flags);
2561 			ctl_putstr(sys_var[CS_CERTIF].text, str,
2562 			    strlen(str));
2563 			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2564 		}
2565 		break;
2566 
2567 	case CS_PUBLIC:
2568 		if (hostval.tstamp != 0)
2569 			ctl_putfs(sys_var[CS_PUBLIC].text,
2570 			    ntohl(hostval.tstamp));
2571 		break;
2572 #endif	/* AUTOKEY */
2573 
2574 	default:
2575 		break;
2576 	}
2577 }
2578 
2579 
2580 /*
2581  * ctl_putpeer - output a peer variable
2582  */
2583 static void
ctl_putpeer(int id,struct peer * p)2584 ctl_putpeer(
2585 	int id,
2586 	struct peer *p
2587 	)
2588 {
2589 	char buf[CTL_MAX_DATA_LEN];
2590 	char *s;
2591 	char *t;
2592 	char *be;
2593 	int i;
2594 	const struct ctl_var *k;
2595 #ifdef AUTOKEY
2596 	struct autokey *ap;
2597 	const EVP_MD *dp;
2598 	const char *str;
2599 #endif	/* AUTOKEY */
2600 
2601 	switch (id) {
2602 
2603 	case CP_CONFIG:
2604 		ctl_putuint(peer_var[id].text,
2605 			    !(FLAG_PREEMPT & p->flags));
2606 		break;
2607 
2608 	case CP_AUTHENABLE:
2609 		ctl_putuint(peer_var[id].text, !(p->keyid));
2610 		break;
2611 
2612 	case CP_AUTHENTIC:
2613 		ctl_putuint(peer_var[id].text,
2614 			    !!(FLAG_AUTHENTIC & p->flags));
2615 		break;
2616 
2617 	case CP_SRCADR:
2618 		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2619 		break;
2620 
2621 	case CP_SRCPORT:
2622 		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2623 		break;
2624 
2625 	case CP_SRCHOST:
2626 		if (p->hostname != NULL)
2627 			ctl_putstr(peer_var[id].text, p->hostname,
2628 				   strlen(p->hostname));
2629 		break;
2630 
2631 	case CP_DSTADR:
2632 		ctl_putadr(peer_var[id].text, 0,
2633 			   (p->dstadr != NULL)
2634 				? &p->dstadr->sin
2635 				: NULL);
2636 		break;
2637 
2638 	case CP_DSTPORT:
2639 		ctl_putuint(peer_var[id].text,
2640 			    (p->dstadr != NULL)
2641 				? SRCPORT(&p->dstadr->sin)
2642 				: 0);
2643 		break;
2644 
2645 	case CP_IN:
2646 		if (p->r21 > 0.)
2647 			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2648 		break;
2649 
2650 	case CP_OUT:
2651 		if (p->r34 > 0.)
2652 			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2653 		break;
2654 
2655 	case CP_RATE:
2656 		ctl_putuint(peer_var[id].text, p->throttle);
2657 		break;
2658 
2659 	case CP_LEAP:
2660 		ctl_putuint(peer_var[id].text, p->leap);
2661 		break;
2662 
2663 	case CP_HMODE:
2664 		ctl_putuint(peer_var[id].text, p->hmode);
2665 		break;
2666 
2667 	case CP_STRATUM:
2668 		ctl_putuint(peer_var[id].text, p->stratum);
2669 		break;
2670 
2671 	case CP_PPOLL:
2672 		ctl_putuint(peer_var[id].text, p->ppoll);
2673 		break;
2674 
2675 	case CP_HPOLL:
2676 		ctl_putuint(peer_var[id].text, p->hpoll);
2677 		break;
2678 
2679 	case CP_PRECISION:
2680 		ctl_putint(peer_var[id].text, p->precision);
2681 		break;
2682 
2683 	case CP_ROOTDELAY:
2684 		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2685 		break;
2686 
2687 	case CP_ROOTDISPERSION:
2688 		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2689 		break;
2690 
2691 	case CP_REFID:
2692 #ifdef REFCLOCK
2693 		if (p->flags & FLAG_REFCLOCK) {
2694 			ctl_putrefid(peer_var[id].text, p->refid);
2695 			break;
2696 		}
2697 #endif
2698 		if (REFID_ISTEXT(p->stratum))
2699 			ctl_putrefid(peer_var[id].text, p->refid);
2700 		else
2701 			ctl_putadr(peer_var[id].text, p->refid, NULL);
2702 		break;
2703 
2704 	case CP_REFTIME:
2705 		ctl_putts(peer_var[id].text, &p->reftime);
2706 		break;
2707 
2708 	case CP_ORG:
2709 		ctl_putts(peer_var[id].text, &p->aorg);
2710 		break;
2711 
2712 	case CP_REC:
2713 		ctl_putts(peer_var[id].text, &p->dst);
2714 		break;
2715 
2716 	case CP_XMT:
2717 		if (p->xleave)
2718 			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2719 		break;
2720 
2721 	case CP_BIAS:
2722 		if (p->bias != 0.)
2723 			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2724 		break;
2725 
2726 	case CP_REACH:
2727 		ctl_puthex(peer_var[id].text, p->reach);
2728 		break;
2729 
2730 	case CP_FLASH:
2731 		ctl_puthex(peer_var[id].text, p->flash);
2732 		break;
2733 
2734 	case CP_TTL:
2735 #ifdef REFCLOCK
2736 		if (p->flags & FLAG_REFCLOCK) {
2737 			ctl_putuint(peer_var[id].text, p->ttl);
2738 			break;
2739 		}
2740 #endif
2741 		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2742 			ctl_putint(peer_var[id].text,
2743 				   sys_ttl[p->ttl]);
2744 		break;
2745 
2746 	case CP_UNREACH:
2747 		ctl_putuint(peer_var[id].text, p->unreach);
2748 		break;
2749 
2750 	case CP_TIMER:
2751 		ctl_putuint(peer_var[id].text,
2752 			    p->nextdate - current_time);
2753 		break;
2754 
2755 	case CP_DELAY:
2756 		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2757 		break;
2758 
2759 	case CP_OFFSET:
2760 		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2761 		break;
2762 
2763 	case CP_JITTER:
2764 		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2765 		break;
2766 
2767 	case CP_DISPERSION:
2768 		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2769 		break;
2770 
2771 	case CP_KEYID:
2772 		if (p->keyid > NTP_MAXKEY)
2773 			ctl_puthex(peer_var[id].text, p->keyid);
2774 		else
2775 			ctl_putuint(peer_var[id].text, p->keyid);
2776 		break;
2777 
2778 	case CP_FILTDELAY:
2779 		ctl_putarray(peer_var[id].text, p->filter_delay,
2780 			     p->filter_nextpt);
2781 		break;
2782 
2783 	case CP_FILTOFFSET:
2784 		ctl_putarray(peer_var[id].text, p->filter_offset,
2785 			     p->filter_nextpt);
2786 		break;
2787 
2788 	case CP_FILTERROR:
2789 		ctl_putarray(peer_var[id].text, p->filter_disp,
2790 			     p->filter_nextpt);
2791 		break;
2792 
2793 	case CP_PMODE:
2794 		ctl_putuint(peer_var[id].text, p->pmode);
2795 		break;
2796 
2797 	case CP_RECEIVED:
2798 		ctl_putuint(peer_var[id].text, p->received);
2799 		break;
2800 
2801 	case CP_SENT:
2802 		ctl_putuint(peer_var[id].text, p->sent);
2803 		break;
2804 
2805 	case CP_VARLIST:
2806 		s = buf;
2807 		be = buf + sizeof(buf);
2808 		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2809 			break;	/* really long var name */
2810 
2811 		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2812 		s += strlen(s);
2813 		t = s;
2814 		for (k = peer_var; !(EOV & k->flags); k++) {
2815 			if (PADDING & k->flags)
2816 				continue;
2817 			i = strlen(k->text);
2818 			if (s + i + 1 >= be)
2819 				break;
2820 			if (s != t)
2821 				*s++ = ',';
2822 			memcpy(s, k->text, i);
2823 			s += i;
2824 		}
2825 		if (s + 2 < be) {
2826 			*s++ = '"';
2827 			*s = '\0';
2828 			ctl_putdata(buf, (u_int)(s - buf), 0);
2829 		}
2830 		break;
2831 
2832 	case CP_TIMEREC:
2833 		ctl_putuint(peer_var[id].text,
2834 			    current_time - p->timereceived);
2835 		break;
2836 
2837 	case CP_TIMEREACH:
2838 		ctl_putuint(peer_var[id].text,
2839 			    current_time - p->timereachable);
2840 		break;
2841 
2842 	case CP_BADAUTH:
2843 		ctl_putuint(peer_var[id].text, p->badauth);
2844 		break;
2845 
2846 	case CP_BOGUSORG:
2847 		ctl_putuint(peer_var[id].text, p->bogusorg);
2848 		break;
2849 
2850 	case CP_OLDPKT:
2851 		ctl_putuint(peer_var[id].text, p->oldpkt);
2852 		break;
2853 
2854 	case CP_SELDISP:
2855 		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2856 		break;
2857 
2858 	case CP_SELBROKEN:
2859 		ctl_putuint(peer_var[id].text, p->selbroken);
2860 		break;
2861 
2862 	case CP_CANDIDATE:
2863 		ctl_putuint(peer_var[id].text, p->status);
2864 		break;
2865 #ifdef AUTOKEY
2866 	case CP_FLAGS:
2867 		if (p->crypto)
2868 			ctl_puthex(peer_var[id].text, p->crypto);
2869 		break;
2870 
2871 	case CP_SIGNATURE:
2872 		if (p->crypto) {
2873 			dp = EVP_get_digestbynid(p->crypto >> 16);
2874 			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2875 			ctl_putstr(peer_var[id].text, str, strlen(str));
2876 		}
2877 		break;
2878 
2879 	case CP_HOST:
2880 		if (p->subject != NULL)
2881 			ctl_putstr(peer_var[id].text, p->subject,
2882 			    strlen(p->subject));
2883 		break;
2884 
2885 	case CP_VALID:		/* not used */
2886 		break;
2887 
2888 	case CP_INITSEQ:
2889 		if (NULL == (ap = p->recval.ptr))
2890 			break;
2891 
2892 		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2893 		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2894 		ctl_putfs(peer_var[CP_INITTSP].text,
2895 			  ntohl(p->recval.tstamp));
2896 		break;
2897 
2898 	case CP_IDENT:
2899 		if (p->ident != NULL)
2900 			ctl_putstr(peer_var[id].text, p->ident,
2901 			    strlen(p->ident));
2902 		break;
2903 
2904 
2905 #endif	/* AUTOKEY */
2906 	}
2907 }
2908 
2909 
2910 #ifdef REFCLOCK
2911 /*
2912  * ctl_putclock - output clock variables
2913  */
2914 static void
ctl_putclock(int id,struct refclockstat * pcs,int mustput)2915 ctl_putclock(
2916 	int id,
2917 	struct refclockstat *pcs,
2918 	int mustput
2919 	)
2920 {
2921 	char buf[CTL_MAX_DATA_LEN];
2922 	char *s, *t, *be;
2923 	const char *ss;
2924 	int i;
2925 	const struct ctl_var *k;
2926 
2927 	switch (id) {
2928 
2929 	case CC_TYPE:
2930 		if (mustput || pcs->clockdesc == NULL
2931 		    || *(pcs->clockdesc) == '\0') {
2932 			ctl_putuint(clock_var[id].text, pcs->type);
2933 		}
2934 		break;
2935 	case CC_TIMECODE:
2936 		ctl_putstr(clock_var[id].text,
2937 			   pcs->p_lastcode,
2938 			   (unsigned)pcs->lencode);
2939 		break;
2940 
2941 	case CC_POLL:
2942 		ctl_putuint(clock_var[id].text, pcs->polls);
2943 		break;
2944 
2945 	case CC_NOREPLY:
2946 		ctl_putuint(clock_var[id].text,
2947 			    pcs->noresponse);
2948 		break;
2949 
2950 	case CC_BADFORMAT:
2951 		ctl_putuint(clock_var[id].text,
2952 			    pcs->badformat);
2953 		break;
2954 
2955 	case CC_BADDATA:
2956 		ctl_putuint(clock_var[id].text,
2957 			    pcs->baddata);
2958 		break;
2959 
2960 	case CC_FUDGETIME1:
2961 		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2962 			ctl_putdbl(clock_var[id].text,
2963 				   pcs->fudgetime1 * 1e3);
2964 		break;
2965 
2966 	case CC_FUDGETIME2:
2967 		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2968 			ctl_putdbl(clock_var[id].text,
2969 				   pcs->fudgetime2 * 1e3);
2970 		break;
2971 
2972 	case CC_FUDGEVAL1:
2973 		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2974 			ctl_putint(clock_var[id].text,
2975 				   pcs->fudgeval1);
2976 		break;
2977 
2978 	case CC_FUDGEVAL2:
2979 		/* RefID of clocks are always text even if stratum is fudged */
2980 		if (mustput || (pcs->haveflags & CLK_HAVEVAL2))
2981 			ctl_putrefid(clock_var[id].text, pcs->fudgeval2);
2982 		break;
2983 
2984 	case CC_FLAGS:
2985 		ctl_putuint(clock_var[id].text, pcs->flags);
2986 		break;
2987 
2988 	case CC_DEVICE:
2989 		if (pcs->clockdesc == NULL ||
2990 		    *(pcs->clockdesc) == '\0') {
2991 			if (mustput)
2992 				ctl_putstr(clock_var[id].text,
2993 					   "", 0);
2994 		} else {
2995 			ctl_putstr(clock_var[id].text,
2996 				   pcs->clockdesc,
2997 				   strlen(pcs->clockdesc));
2998 		}
2999 		break;
3000 
3001 	case CC_VARLIST:
3002 		s = buf;
3003 		be = buf + sizeof(buf);
3004 		if (strlen(clock_var[CC_VARLIST].text) + 4 >
3005 		    sizeof(buf))
3006 			break;	/* really long var name */
3007 
3008 		snprintf(s, sizeof(buf), "%s=\"",
3009 			 clock_var[CC_VARLIST].text);
3010 		s += strlen(s);
3011 		t = s;
3012 
3013 		for (k = clock_var; !(EOV & k->flags); k++) {
3014 			if (PADDING & k->flags)
3015 				continue;
3016 
3017 			i = strlen(k->text);
3018 			if (s + i + 1 >= be)
3019 				break;
3020 
3021 			if (s != t)
3022 				*s++ = ',';
3023 			memcpy(s, k->text, i);
3024 			s += i;
3025 		}
3026 
3027 		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
3028 			if (PADDING & k->flags)
3029 				continue;
3030 
3031 			ss = k->text;
3032 			if (NULL == ss)
3033 				continue;
3034 
3035 			while (*ss && *ss != '=')
3036 				ss++;
3037 			i = ss - k->text;
3038 			if (s + i + 1 >= be)
3039 				break;
3040 
3041 			if (s != t)
3042 				*s++ = ',';
3043 			memcpy(s, k->text, (unsigned)i);
3044 			s += i;
3045 			*s = '\0';
3046 		}
3047 		if (s + 2 >= be)
3048 			break;
3049 
3050 		*s++ = '"';
3051 		*s = '\0';
3052 		ctl_putdata(buf, (unsigned)(s - buf), 0);
3053 		break;
3054 
3055 	case CC_FUDGEMINJIT:
3056 		if (mustput || (pcs->haveflags & CLK_HAVEMINJIT))
3057 			ctl_putdbl(clock_var[id].text,
3058 				   pcs->fudgeminjitter * 1e3);
3059 		break;
3060 
3061 	default:
3062 		break;
3063 
3064 	}
3065 }
3066 #endif
3067 
3068 
3069 
3070 /*
3071  * ctl_getitem - get the next data item from the incoming packet
3072  */
3073 static const struct ctl_var *
ctl_getitem(const struct ctl_var * var_list,char ** data)3074 ctl_getitem(
3075 	const struct ctl_var *var_list,
3076 	char **data
3077 	)
3078 {
3079 	/* [Bug 3008] First check the packet data sanity, then search
3080 	 * the key. This improves the consistency of result values: If
3081 	 * the result is NULL once, it will never be EOV again for this
3082 	 * packet; If it's EOV, it will never be NULL again until the
3083 	 * variable is found and processed in a given 'var_list'. (That
3084 	 * is, a result is returned that is neither NULL nor EOV).
3085 	 */
3086 	static const struct ctl_var eol = { 0, EOV, NULL };
3087 	static char buf[128];
3088 	static u_long quiet_until;
3089 	const struct ctl_var *v;
3090 	char *cp;
3091 	char *tp;
3092 
3093 	/*
3094 	 * Part One: Validate the packet state
3095 	 */
3096 
3097 	/* Delete leading commas and white space */
3098 	while (reqpt < reqend && (*reqpt == ',' ||
3099 				  isspace((unsigned char)*reqpt)))
3100 		reqpt++;
3101 	if (reqpt >= reqend)
3102 		return NULL;
3103 
3104 	/* Scan the string in the packet until we hit comma or
3105 	 * EoB. Register position of first '=' on the fly. */
3106 	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3107 		if (*cp == '=' && tp == NULL)
3108 			tp = cp;
3109 		if (*cp == ',')
3110 			break;
3111 	}
3112 
3113 	/* Process payload, if any. */
3114 	*data = NULL;
3115 	if (NULL != tp) {
3116 		/* eventually strip white space from argument. */
3117 		const char *plhead = tp + 1; /* skip the '=' */
3118 		const char *pltail = cp;
3119 		size_t      plsize;
3120 
3121 		while (plhead != pltail && isspace((u_char)plhead[0]))
3122 			++plhead;
3123 		while (plhead != pltail && isspace((u_char)pltail[-1]))
3124 			--pltail;
3125 
3126 		/* check payload size, terminate packet on overflow */
3127 		plsize = (size_t)(pltail - plhead);
3128 		if (plsize >= sizeof(buf))
3129 			goto badpacket;
3130 
3131 		/* copy data, NUL terminate, and set result data ptr */
3132 		memcpy(buf, plhead, plsize);
3133 		buf[plsize] = '\0';
3134 		*data = buf;
3135 	} else {
3136 		/* no payload, current end --> current name termination */
3137 		tp = cp;
3138 	}
3139 
3140 	/* Part Two
3141 	 *
3142 	 * Now we're sure that the packet data itself is sane. Scan the
3143 	 * list now. Make sure a NULL list is properly treated by
3144 	 * returning a synthetic End-Of-Values record. We must not
3145 	 * return NULL pointers after this point, or the behaviour would
3146 	 * become inconsistent if called several times with different
3147 	 * variable lists after an EoV was returned.  (Such a behavior
3148 	 * actually caused Bug 3008.)
3149 	 */
3150 
3151 	if (NULL == var_list)
3152 		return &eol;
3153 
3154 	for (v = var_list; !(EOV & v->flags); ++v)
3155 		if (!(PADDING & v->flags)) {
3156 			/* Check if the var name matches the buffer. The
3157 			 * name is bracketed by [reqpt..tp] and not NUL
3158 			 * terminated, and it contains no '=' char. The
3159 			 * lookup value IS NUL-terminated but might
3160 			 * include a '='... We have to look out for
3161 			 * that!
3162 			 */
3163 			const char *sp1 = reqpt;
3164 			const char *sp2 = v->text;
3165 
3166 			/* [Bug 3412] do not compare past NUL byte in name */
3167 			while (   (sp1 != tp)
3168 			       && ('\0' != *sp2) && (*sp1 == *sp2)) {
3169 				++sp1;
3170 				++sp2;
3171 			}
3172 			if (sp1 == tp && (*sp2 == '\0' || *sp2 == '='))
3173 				break;
3174 		}
3175 
3176 	/* See if we have found a valid entry or not. If found, advance
3177 	 * the request pointer for the next round; if not, clear the
3178 	 * data pointer so we have no dangling garbage here.
3179 	 */
3180 	if (EOV & v->flags)
3181 		*data = NULL;
3182 	else
3183 		reqpt = cp + (cp != reqend);
3184 	return v;
3185 
3186   badpacket:
3187 	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3188 	numctlbadpkts++;
3189 	NLOG(NLOG_SYSEVENT)
3190 	    if (quiet_until <= current_time) {
3191 		    quiet_until = current_time + 300;
3192 		    msyslog(LOG_WARNING,
3193 			    "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)",
3194 			    stoa(rmt_addr), SRCPORT(rmt_addr));
3195 	    }
3196 	reqpt = reqend; /* never again for this packet! */
3197 	return NULL;
3198 }
3199 
3200 
3201 /*
3202  * control_unspec - response to an unspecified op-code
3203  */
3204 /*ARGSUSED*/
3205 static void
control_unspec(struct recvbuf * rbufp,int restrict_mask)3206 control_unspec(
3207 	struct recvbuf *rbufp,
3208 	int restrict_mask
3209 	)
3210 {
3211 	struct peer *peer;
3212 
3213 	/*
3214 	 * What is an appropriate response to an unspecified op-code?
3215 	 * I return no errors and no data, unless a specified assocation
3216 	 * doesn't exist.
3217 	 */
3218 	if (res_associd) {
3219 		peer = findpeerbyassoc(res_associd);
3220 		if (NULL == peer) {
3221 			ctl_error(CERR_BADASSOC);
3222 			return;
3223 		}
3224 		rpkt.status = htons(ctlpeerstatus(peer));
3225 	} else
3226 		rpkt.status = htons(ctlsysstatus());
3227 	ctl_flushpkt(0);
3228 }
3229 
3230 
3231 /*
3232  * read_status - return either a list of associd's, or a particular
3233  * peer's status.
3234  */
3235 /*ARGSUSED*/
3236 static void
read_status(struct recvbuf * rbufp,int restrict_mask)3237 read_status(
3238 	struct recvbuf *rbufp,
3239 	int restrict_mask
3240 	)
3241 {
3242 	struct peer *peer;
3243 	const u_char *cp;
3244 	size_t n;
3245 	/* a_st holds association ID, status pairs alternating */
3246 	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3247 
3248 #ifdef DEBUG
3249 	if (debug > 2)
3250 		printf("read_status: ID %d\n", res_associd);
3251 #endif
3252 	/*
3253 	 * Two choices here. If the specified association ID is
3254 	 * zero we return all known assocation ID's.  Otherwise
3255 	 * we return a bunch of stuff about the particular peer.
3256 	 */
3257 	if (res_associd) {
3258 		peer = findpeerbyassoc(res_associd);
3259 		if (NULL == peer) {
3260 			ctl_error(CERR_BADASSOC);
3261 			return;
3262 		}
3263 		rpkt.status = htons(ctlpeerstatus(peer));
3264 		if (res_authokay)
3265 			peer->num_events = 0;
3266 		/*
3267 		 * For now, output everything we know about the
3268 		 * peer. May be more selective later.
3269 		 */
3270 		for (cp = def_peer_var; *cp != 0; cp++)
3271 			ctl_putpeer((int)*cp, peer);
3272 		ctl_flushpkt(0);
3273 		return;
3274 	}
3275 	n = 0;
3276 	rpkt.status = htons(ctlsysstatus());
3277 	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3278 		a_st[n++] = htons(peer->associd);
3279 		a_st[n++] = htons(ctlpeerstatus(peer));
3280 		/* two entries each loop iteration, so n + 1 */
3281 		if (n + 1 >= COUNTOF(a_st)) {
3282 			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3283 				    1);
3284 			n = 0;
3285 		}
3286 	}
3287 	if (n)
3288 		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3289 	ctl_flushpkt(0);
3290 }
3291 
3292 
3293 /*
3294  * read_peervars - half of read_variables() implementation
3295  */
3296 static void
read_peervars(void)3297 read_peervars(void)
3298 {
3299 	const struct ctl_var *v;
3300 	struct peer *peer;
3301 	const u_char *cp;
3302 	size_t i;
3303 	char *	valuep;
3304 	u_char	wants[CP_MAXCODE + 1];
3305 	u_int	gotvar;
3306 
3307 	/*
3308 	 * Wants info for a particular peer. See if we know
3309 	 * the guy.
3310 	 */
3311 	peer = findpeerbyassoc(res_associd);
3312 	if (NULL == peer) {
3313 		ctl_error(CERR_BADASSOC);
3314 		return;
3315 	}
3316 	rpkt.status = htons(ctlpeerstatus(peer));
3317 	if (res_authokay)
3318 		peer->num_events = 0;
3319 	ZERO(wants);
3320 	gotvar = 0;
3321 	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3322 		if (v->flags & EOV) {
3323 			ctl_error(CERR_UNKNOWNVAR);
3324 			return;
3325 		}
3326 		INSIST(v->code < COUNTOF(wants));
3327 		wants[v->code] = 1;
3328 		gotvar = 1;
3329 	}
3330 	if (gotvar) {
3331 		for (i = 1; i < COUNTOF(wants); i++)
3332 			if (wants[i])
3333 				ctl_putpeer(i, peer);
3334 	} else
3335 		for (cp = def_peer_var; *cp != 0; cp++)
3336 			ctl_putpeer((int)*cp, peer);
3337 	ctl_flushpkt(0);
3338 }
3339 
3340 
3341 /*
3342  * read_sysvars - half of read_variables() implementation
3343  */
3344 static void
read_sysvars(void)3345 read_sysvars(void)
3346 {
3347 	const struct ctl_var *v;
3348 	struct ctl_var *kv;
3349 	u_int	n;
3350 	u_int	gotvar;
3351 	const u_char *cs;
3352 	char *	valuep;
3353 	const char * pch;
3354 	u_char *wants;
3355 	size_t	wants_count;
3356 
3357 	/*
3358 	 * Wants system variables. Figure out which he wants
3359 	 * and give them to him.
3360 	 */
3361 	rpkt.status = htons(ctlsysstatus());
3362 	if (res_authokay)
3363 		ctl_sys_num_events = 0;
3364 	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3365 	wants = emalloc_zero(wants_count);
3366 	gotvar = 0;
3367 	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3368 		if (!(EOV & v->flags)) {
3369 			INSIST(v->code < wants_count);
3370 			wants[v->code] = 1;
3371 			gotvar = 1;
3372 		} else {
3373 			v = ctl_getitem(ext_sys_var, &valuep);
3374 			if (NULL == v) {
3375 				ctl_error(CERR_BADVALUE);
3376 				free(wants);
3377 				return;
3378 			}
3379 			if (EOV & v->flags) {
3380 				ctl_error(CERR_UNKNOWNVAR);
3381 				free(wants);
3382 				return;
3383 			}
3384 			n = v->code + CS_MAXCODE + 1;
3385 			INSIST(n < wants_count);
3386 			wants[n] = 1;
3387 			gotvar = 1;
3388 		}
3389 	}
3390 	if (gotvar) {
3391 		for (n = 1; n <= CS_MAXCODE; n++)
3392 			if (wants[n])
3393 				ctl_putsys(n);
3394 		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3395 			if (wants[n + CS_MAXCODE + 1]) {
3396 				pch = ext_sys_var[n].text;
3397 				ctl_putdata(pch, strlen(pch), 0);
3398 			}
3399 	} else {
3400 		for (cs = def_sys_var; *cs != 0; cs++)
3401 			ctl_putsys((int)*cs);
3402 		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3403 			if (DEF & kv->flags)
3404 				ctl_putdata(kv->text, strlen(kv->text),
3405 					    0);
3406 	}
3407 	free(wants);
3408 	ctl_flushpkt(0);
3409 }
3410 
3411 
3412 /*
3413  * read_variables - return the variables the caller asks for
3414  */
3415 /*ARGSUSED*/
3416 static void
read_variables(struct recvbuf * rbufp,int restrict_mask)3417 read_variables(
3418 	struct recvbuf *rbufp,
3419 	int restrict_mask
3420 	)
3421 {
3422 	if (res_associd)
3423 		read_peervars();
3424 	else
3425 		read_sysvars();
3426 }
3427 
3428 
3429 /*
3430  * write_variables - write into variables. We only allow leap bit
3431  * writing this way.
3432  */
3433 /*ARGSUSED*/
3434 static void
write_variables(struct recvbuf * rbufp,int restrict_mask)3435 write_variables(
3436 	struct recvbuf *rbufp,
3437 	int restrict_mask
3438 	)
3439 {
3440 	const struct ctl_var *v;
3441 	int ext_var;
3442 	char *valuep;
3443 	long val;
3444 	size_t octets;
3445 	char *vareqv;
3446 	const char *t;
3447 	char *tt;
3448 
3449 	val = 0;
3450 	/*
3451 	 * If he's trying to write into a peer tell him no way
3452 	 */
3453 	if (res_associd != 0) {
3454 		ctl_error(CERR_PERMISSION);
3455 		return;
3456 	}
3457 
3458 	/*
3459 	 * Set status
3460 	 */
3461 	rpkt.status = htons(ctlsysstatus());
3462 
3463 	/*
3464 	 * Look through the variables. Dump out at the first sign of
3465 	 * trouble.
3466 	 */
3467 	while ((v = ctl_getitem(sys_var, &valuep)) != NULL) {
3468 		ext_var = 0;
3469 		if (v->flags & EOV) {
3470 			v = ctl_getitem(ext_sys_var, &valuep);
3471 			if (v != NULL) {
3472 				if (v->flags & EOV) {
3473 					ctl_error(CERR_UNKNOWNVAR);
3474 					return;
3475 				}
3476 				ext_var = 1;
3477 			} else {
3478 				break;
3479 			}
3480 		}
3481 		if (!(v->flags & CAN_WRITE)) {
3482 			ctl_error(CERR_PERMISSION);
3483 			return;
3484 		}
3485 		/* [bug 3565] writing makes sense only if we *have* a
3486 		 * value in the packet!
3487 		 */
3488 		if (valuep == NULL) {
3489 			ctl_error(CERR_BADFMT);
3490 			return;
3491 		}
3492 		if (!ext_var) {
3493 			if ( !(*valuep && atoint(valuep, &val))) {
3494 				ctl_error(CERR_BADFMT);
3495 				return;
3496 			}
3497 			if ((val & ~LEAP_NOTINSYNC) != 0) {
3498 				ctl_error(CERR_BADVALUE);
3499 				return;
3500 			}
3501 		}
3502 
3503 		if (ext_var) {
3504 			octets = strlen(v->text) + strlen(valuep) + 2;
3505 			vareqv = emalloc(octets);
3506 			tt = vareqv;
3507 			t = v->text;
3508 			while (*t && *t != '=')
3509 				*tt++ = *t++;
3510 			*tt++ = '=';
3511 			memcpy(tt, valuep, 1 + strlen(valuep));
3512 			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3513 			free(vareqv);
3514 		} else {
3515 			ctl_error(CERR_UNSPEC); /* really */
3516 			return;
3517 		}
3518 	}
3519 
3520 	/*
3521 	 * If we got anything, do it. xxx nothing to do ***
3522 	 */
3523 	/*
3524 	  if (leapind != ~0 || leapwarn != ~0) {
3525 	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3526 	  ctl_error(CERR_PERMISSION);
3527 	  return;
3528 	  }
3529 	  }
3530 	*/
3531 	ctl_flushpkt(0);
3532 }
3533 
3534 
3535 /*
3536  * configure() processes ntpq :config/config-from-file, allowing
3537  *		generic runtime reconfiguration.
3538  */
configure(struct recvbuf * rbufp,int restrict_mask)3539 static void configure(
3540 	struct recvbuf *rbufp,
3541 	int restrict_mask
3542 	)
3543 {
3544 	size_t data_count;
3545 	int retval;
3546 
3547 	/* I haven't yet implemented changes to an existing association.
3548 	 * Hence check if the association id is 0
3549 	 */
3550 	if (res_associd != 0) {
3551 		ctl_error(CERR_BADVALUE);
3552 		return;
3553 	}
3554 
3555 	if (RES_NOMODIFY & restrict_mask) {
3556 		snprintf(remote_config.err_msg,
3557 			 sizeof(remote_config.err_msg),
3558 			 "runtime configuration prohibited by restrict ... nomodify");
3559 		ctl_putdata(remote_config.err_msg,
3560 			    strlen(remote_config.err_msg), 0);
3561 		ctl_flushpkt(0);
3562 		NLOG(NLOG_SYSINFO)
3563 			msyslog(LOG_NOTICE,
3564 				"runtime config from %s rejected due to nomodify restriction",
3565 				stoa(&rbufp->recv_srcadr));
3566 		sys_restricted++;
3567 		return;
3568 	}
3569 
3570 	/* Initialize the remote config buffer */
3571 	data_count = remoteconfig_cmdlength(reqpt, reqend);
3572 
3573 	if (data_count > sizeof(remote_config.buffer) - 2) {
3574 		snprintf(remote_config.err_msg,
3575 			 sizeof(remote_config.err_msg),
3576 			 "runtime configuration failed: request too long");
3577 		ctl_putdata(remote_config.err_msg,
3578 			    strlen(remote_config.err_msg), 0);
3579 		ctl_flushpkt(0);
3580 		msyslog(LOG_NOTICE,
3581 			"runtime config from %s rejected: request too long",
3582 			stoa(&rbufp->recv_srcadr));
3583 		return;
3584 	}
3585 	/* Bug 2853 -- check if all characters were acceptable */
3586 	if (data_count != (size_t)(reqend - reqpt)) {
3587 		snprintf(remote_config.err_msg,
3588 			 sizeof(remote_config.err_msg),
3589 			 "runtime configuration failed: request contains an unprintable character");
3590 		ctl_putdata(remote_config.err_msg,
3591 			    strlen(remote_config.err_msg), 0);
3592 		ctl_flushpkt(0);
3593 		msyslog(LOG_NOTICE,
3594 			"runtime config from %s rejected: request contains an unprintable character: %0x",
3595 			stoa(&rbufp->recv_srcadr),
3596 			reqpt[data_count]);
3597 		return;
3598 	}
3599 
3600 	memcpy(remote_config.buffer, reqpt, data_count);
3601 	/* The buffer has no trailing linefeed or NUL right now. For
3602 	 * logging, we do not want a newline, so we do that first after
3603 	 * adding the necessary NUL byte.
3604 	 */
3605 	remote_config.buffer[data_count] = '\0';
3606 	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3607 		remote_config.buffer));
3608 	msyslog(LOG_NOTICE, "%s config: %s",
3609 		stoa(&rbufp->recv_srcadr),
3610 		remote_config.buffer);
3611 
3612 	/* Now we have to make sure there is a NL/NUL sequence at the
3613 	 * end of the buffer before we parse it.
3614 	 */
3615 	remote_config.buffer[data_count++] = '\n';
3616 	remote_config.buffer[data_count] = '\0';
3617 	remote_config.pos = 0;
3618 	remote_config.err_pos = 0;
3619 	remote_config.no_errors = 0;
3620 	config_remotely(&rbufp->recv_srcadr);
3621 
3622 	/*
3623 	 * Check if errors were reported. If not, output 'Config
3624 	 * Succeeded'.  Else output the error count.  It would be nice
3625 	 * to output any parser error messages.
3626 	 */
3627 	if (0 == remote_config.no_errors) {
3628 		retval = snprintf(remote_config.err_msg,
3629 				  sizeof(remote_config.err_msg),
3630 				  "Config Succeeded");
3631 		if (retval > 0)
3632 			remote_config.err_pos += retval;
3633 	}
3634 
3635 	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3636 	ctl_flushpkt(0);
3637 
3638 	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3639 
3640 	if (remote_config.no_errors > 0)
3641 		msyslog(LOG_NOTICE, "%d error in %s config",
3642 			remote_config.no_errors,
3643 			stoa(&rbufp->recv_srcadr));
3644 }
3645 
3646 
3647 /*
3648  * derive_nonce - generate client-address-specific nonce value
3649  *		  associated with a given timestamp.
3650  */
derive_nonce(sockaddr_u * addr,u_int32 ts_i,u_int32 ts_f)3651 static u_int32 derive_nonce(
3652 	sockaddr_u *	addr,
3653 	u_int32		ts_i,
3654 	u_int32		ts_f
3655 	)
3656 {
3657 	static u_int32	salt[4];
3658 	static u_long	last_salt_update;
3659 	union d_tag {
3660 		u_char	digest[EVP_MAX_MD_SIZE];
3661 		u_int32 extract;
3662 	}		d;
3663 	EVP_MD_CTX	*ctx;
3664 	u_int		len;
3665 
3666 	while (!salt[0] || current_time - last_salt_update >= 3600) {
3667 		salt[0] = ntp_random();
3668 		salt[1] = ntp_random();
3669 		salt[2] = ntp_random();
3670 		salt[3] = ntp_random();
3671 		last_salt_update = current_time;
3672 	}
3673 
3674 	ctx = EVP_MD_CTX_new();
3675 #   if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW)
3676 	/* [Bug 3457] set flags and don't kill them again */
3677 	EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
3678 	EVP_DigestInit_ex(ctx, EVP_get_digestbynid(NID_md5), NULL);
3679 #   else
3680 	EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5));
3681 #   endif
3682 	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3683 	EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i));
3684 	EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f));
3685 	if (IS_IPV4(addr))
3686 		EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr),
3687 			         sizeof(SOCK_ADDR4(addr)));
3688 	else
3689 		EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr),
3690 			         sizeof(SOCK_ADDR6(addr)));
3691 	EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3692 	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3693 	EVP_DigestFinal(ctx, d.digest, &len);
3694 	EVP_MD_CTX_free(ctx);
3695 
3696 	return d.extract;
3697 }
3698 
3699 
3700 /*
3701  * generate_nonce - generate client-address-specific nonce string.
3702  */
generate_nonce(struct recvbuf * rbufp,char * nonce,size_t nonce_octets)3703 static void generate_nonce(
3704 	struct recvbuf *	rbufp,
3705 	char *			nonce,
3706 	size_t			nonce_octets
3707 	)
3708 {
3709 	u_int32 derived;
3710 
3711 	derived = derive_nonce(&rbufp->recv_srcadr,
3712 			       rbufp->recv_time.l_ui,
3713 			       rbufp->recv_time.l_uf);
3714 	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3715 		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3716 }
3717 
3718 
3719 /*
3720  * validate_nonce - validate client-address-specific nonce string.
3721  *
3722  * Returns TRUE if the local calculation of the nonce matches the
3723  * client-provided value and the timestamp is recent enough.
3724  */
validate_nonce(const char * pnonce,struct recvbuf * rbufp)3725 static int validate_nonce(
3726 	const char *		pnonce,
3727 	struct recvbuf *	rbufp
3728 	)
3729 {
3730 	u_int	ts_i;
3731 	u_int	ts_f;
3732 	l_fp	ts;
3733 	l_fp	now_delta;
3734 	u_int	supposed;
3735 	u_int	derived;
3736 
3737 	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3738 		return FALSE;
3739 
3740 	ts.l_ui = (u_int32)ts_i;
3741 	ts.l_uf = (u_int32)ts_f;
3742 	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3743 	get_systime(&now_delta);
3744 	L_SUB(&now_delta, &ts);
3745 
3746 	return (supposed == derived && now_delta.l_ui < 16);
3747 }
3748 
3749 
3750 /*
3751  * send_random_tag_value - send a randomly-generated three character
3752  *			   tag prefix, a '.', an index, a '=' and a
3753  *			   random integer value.
3754  *
3755  * To try to force clients to ignore unrecognized tags in mrulist,
3756  * reslist, and ifstats responses, the first and last rows are spiced
3757  * with randomly-generated tag names with correct .# index.  Make it
3758  * three characters knowing that none of the currently-used subscripted
3759  * tags have that length, avoiding the need to test for
3760  * tag collision.
3761  */
3762 static void
send_random_tag_value(int indx)3763 send_random_tag_value(
3764 	int	indx
3765 	)
3766 {
3767 	int	noise;
3768 	char	buf[32];
3769 
3770 	noise = rand() ^ (rand() << 16);
3771 	buf[0] = 'a' + noise % 26;
3772 	noise >>= 5;
3773 	buf[1] = 'a' + noise % 26;
3774 	noise >>= 5;
3775 	buf[2] = 'a' + noise % 26;
3776 	noise >>= 5;
3777 	buf[3] = '.';
3778 	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3779 	ctl_putuint(buf, noise);
3780 }
3781 
3782 
3783 /*
3784  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3785  *
3786  * To keep clients honest about not depending on the order of values,
3787  * and thereby avoid being locked into ugly workarounds to maintain
3788  * backward compatibility later as new fields are added to the response,
3789  * the order is random.
3790  */
3791 static void
send_mru_entry(mon_entry * mon,int count)3792 send_mru_entry(
3793 	mon_entry *	mon,
3794 	int		count
3795 	)
3796 {
3797 	const char first_fmt[] =	"first.%d";
3798 	const char ct_fmt[] =		"ct.%d";
3799 	const char mv_fmt[] =		"mv.%d";
3800 	const char rs_fmt[] =		"rs.%d";
3801 	char	tag[32];
3802 	u_char	sent[6]; /* 6 tag=value pairs */
3803 	u_int32 noise;
3804 	u_int	which;
3805 	u_int	remaining;
3806 	const char * pch;
3807 
3808 	remaining = COUNTOF(sent);
3809 	ZERO(sent);
3810 	noise = (u_int32)(rand() ^ (rand() << 16));
3811 	while (remaining > 0) {
3812 		which = (noise & 7) % COUNTOF(sent);
3813 		noise >>= 3;
3814 		while (sent[which])
3815 			which = (which + 1) % COUNTOF(sent);
3816 
3817 		switch (which) {
3818 
3819 		case 0:
3820 			snprintf(tag, sizeof(tag), addr_fmt, count);
3821 			pch = sptoa(&mon->rmtadr);
3822 			ctl_putunqstr(tag, pch, strlen(pch));
3823 			break;
3824 
3825 		case 1:
3826 			snprintf(tag, sizeof(tag), last_fmt, count);
3827 			ctl_putts(tag, &mon->last);
3828 			break;
3829 
3830 		case 2:
3831 			snprintf(tag, sizeof(tag), first_fmt, count);
3832 			ctl_putts(tag, &mon->first);
3833 			break;
3834 
3835 		case 3:
3836 			snprintf(tag, sizeof(tag), ct_fmt, count);
3837 			ctl_putint(tag, mon->count);
3838 			break;
3839 
3840 		case 4:
3841 			snprintf(tag, sizeof(tag), mv_fmt, count);
3842 			ctl_putuint(tag, mon->vn_mode);
3843 			break;
3844 
3845 		case 5:
3846 			snprintf(tag, sizeof(tag), rs_fmt, count);
3847 			ctl_puthex(tag, mon->flags);
3848 			break;
3849 		}
3850 		sent[which] = TRUE;
3851 		remaining--;
3852 	}
3853 }
3854 
3855 
3856 /*
3857  * read_mru_list - supports ntpq's mrulist command.
3858  *
3859  * The challenge here is to match ntpdc's monlist functionality without
3860  * being limited to hundreds of entries returned total, and without
3861  * requiring state on the server.  If state were required, ntpq's
3862  * mrulist command would require authentication.
3863  *
3864  * The approach was suggested by Ry Jones.  A finite and variable number
3865  * of entries are retrieved per request, to avoid having responses with
3866  * such large numbers of packets that socket buffers are overflowed and
3867  * packets lost.  The entries are retrieved oldest-first, taking into
3868  * account that the MRU list will be changing between each request.  We
3869  * can expect to see duplicate entries for addresses updated in the MRU
3870  * list during the fetch operation.  In the end, the client can assemble
3871  * a close approximation of the MRU list at the point in time the last
3872  * response was sent by ntpd.  The only difference is it may be longer,
3873  * containing some number of oldest entries which have since been
3874  * reclaimed.  If necessary, the protocol could be extended to zap those
3875  * from the client snapshot at the end, but so far that doesn't seem
3876  * useful.
3877  *
3878  * To accomodate the changing MRU list, the starting point for requests
3879  * after the first request is supplied as a series of last seen
3880  * timestamps and associated addresses, the newest ones the client has
3881  * received.  As long as at least one of those entries hasn't been
3882  * bumped to the head of the MRU list, ntpd can pick up at that point.
3883  * Otherwise, the request is failed and it is up to ntpq to back up and
3884  * provide the next newest entry's timestamps and addresses, conceivably
3885  * backing up all the way to the starting point.
3886  *
3887  * input parameters:
3888  *	nonce=		Regurgitated nonce retrieved by the client
3889  *			previously using CTL_OP_REQ_NONCE, demonstrating
3890  *			ability to receive traffic sent to its address.
3891  *	frags=		Limit on datagrams (fragments) in response.  Used
3892  *			by newer ntpq versions instead of limit= when
3893  *			retrieving multiple entries.
3894  *	limit=		Limit on MRU entries returned.  One of frags= or
3895  *			limit= must be provided.
3896  *			limit=1 is a special case:  Instead of fetching
3897  *			beginning with the supplied starting point's
3898  *			newer neighbor, fetch the supplied entry, and
3899  *			in that case the #.last timestamp can be zero.
3900  *			This enables fetching a single entry by IP
3901  *			address.  When limit is not one and frags= is
3902  *			provided, the fragment limit controls.
3903  *	mincount=	(decimal) Return entries with count >= mincount.
3904  *	laddr=		Return entries associated with the server's IP
3905  *			address given.  No port specification is needed,
3906  *			and any supplied is ignored.
3907  *	resall=		0x-prefixed hex restrict bits which must all be
3908  *			lit for an MRU entry to be included.
3909  *			Has precedence over any resany=.
3910  *	resany=		0x-prefixed hex restrict bits, at least one of
3911  *			which must be list for an MRU entry to be
3912  *			included.
3913  *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3914  *			which client previously received.
3915  *	addr.0=		text of newest entry's IP address and port,
3916  *			IPv6 addresses in bracketed form: [::]:123
3917  *	last.1=		timestamp of 2nd newest entry client has.
3918  *	addr.1=		address of 2nd newest entry.
3919  *	[...]
3920  *
3921  * ntpq provides as many last/addr pairs as will fit in a single request
3922  * packet, except for the first request in a MRU fetch operation.
3923  *
3924  * The response begins with a new nonce value to be used for any
3925  * followup request.  Following the nonce is the next newer entry than
3926  * referred to by last.0 and addr.0, if the "0" entry has not been
3927  * bumped to the front.  If it has, the first entry returned will be the
3928  * next entry newer than referred to by last.1 and addr.1, and so on.
3929  * If none of the referenced entries remain unchanged, the request fails
3930  * and ntpq backs up to the next earlier set of entries to resync.
3931  *
3932  * Except for the first response, the response begins with confirmation
3933  * of the entry that precedes the first additional entry provided:
3934  *
3935  *	last.older=	hex l_fp timestamp matching one of the input
3936  *			.last timestamps, which entry now precedes the
3937  *			response 0. entry in the MRU list.
3938  *	addr.older=	text of address corresponding to older.last.
3939  *
3940  * And in any case, a successful response contains sets of values
3941  * comprising entries, with the oldest numbered 0 and incrementing from
3942  * there:
3943  *
3944  *	addr.#		text of IPv4 or IPv6 address and port
3945  *	last.#		hex l_fp timestamp of last receipt
3946  *	first.#		hex l_fp timestamp of first receipt
3947  *	ct.#		count of packets received
3948  *	mv.#		mode and version
3949  *	rs.#		restriction mask (RES_* bits)
3950  *
3951  * Note the code currently assumes there are no valid three letter
3952  * tags sent with each row, and needs to be adjusted if that changes.
3953  *
3954  * The client should accept the values in any order, and ignore .#
3955  * values which it does not understand, to allow a smooth path to
3956  * future changes without requiring a new opcode.  Clients can rely
3957  * on all *.0 values preceding any *.1 values, that is all values for
3958  * a given index number are together in the response.
3959  *
3960  * The end of the response list is noted with one or two tag=value
3961  * pairs.  Unconditionally:
3962  *
3963  *	now=		0x-prefixed l_fp timestamp at the server marking
3964  *			the end of the operation.
3965  *
3966  * If any entries were returned, now= is followed by:
3967  *
3968  *	last.newest=	hex l_fp identical to last.# of the prior
3969  *			entry.
3970  */
read_mru_list(struct recvbuf * rbufp,int restrict_mask)3971 static void read_mru_list(
3972 	struct recvbuf *rbufp,
3973 	int restrict_mask
3974 	)
3975 {
3976 	static const char	nulltxt[1] = 		{ '\0' };
3977 	static const char	nonce_text[] =		"nonce";
3978 	static const char	frags_text[] =		"frags";
3979 	static const char	limit_text[] =		"limit";
3980 	static const char	mincount_text[] =	"mincount";
3981 	static const char	resall_text[] =		"resall";
3982 	static const char	resany_text[] =		"resany";
3983 	static const char	maxlstint_text[] =	"maxlstint";
3984 	static const char	laddr_text[] =		"laddr";
3985 	static const char	resaxx_fmt[] =		"0x%hx";
3986 
3987 	u_int			limit;
3988 	u_short			frags;
3989 	u_short			resall;
3990 	u_short			resany;
3991 	int			mincount;
3992 	u_int			maxlstint;
3993 	sockaddr_u		laddr;
3994 	struct interface *	lcladr;
3995 	u_int			count;
3996 	u_int			ui;
3997 	u_int			uf;
3998 	l_fp			last[16];
3999 	sockaddr_u		addr[COUNTOF(last)];
4000 	char			buf[128];
4001 	struct ctl_var *	in_parms;
4002 	const struct ctl_var *	v;
4003 	const char *		val;
4004 	const char *		pch;
4005 	char *			pnonce;
4006 	int			nonce_valid;
4007 	size_t			i;
4008 	int			priors;
4009 	u_short			hash;
4010 	mon_entry *		mon;
4011 	mon_entry *		prior_mon;
4012 	l_fp			now;
4013 
4014 	if (RES_NOMRULIST & restrict_mask) {
4015 		ctl_error(CERR_PERMISSION);
4016 		NLOG(NLOG_SYSINFO)
4017 			msyslog(LOG_NOTICE,
4018 				"mrulist from %s rejected due to nomrulist restriction",
4019 				stoa(&rbufp->recv_srcadr));
4020 		sys_restricted++;
4021 		return;
4022 	}
4023 	/*
4024 	 * fill in_parms var list with all possible input parameters.
4025 	 */
4026 	in_parms = NULL;
4027 	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
4028 	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
4029 	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
4030 	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
4031 	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
4032 	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
4033 	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
4034 	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
4035 	for (i = 0; i < COUNTOF(last); i++) {
4036 		snprintf(buf, sizeof(buf), last_fmt, (int)i);
4037 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4038 		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
4039 		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4040 	}
4041 
4042 	/* decode input parms */
4043 	pnonce = NULL;
4044 	frags = 0;
4045 	limit = 0;
4046 	mincount = 0;
4047 	resall = 0;
4048 	resany = 0;
4049 	maxlstint = 0;
4050 	lcladr = NULL;
4051 	priors = 0;
4052 	ZERO(last);
4053 	ZERO(addr);
4054 
4055 	/* have to go through '(void*)' to drop 'const' property from pointer.
4056 	 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org
4057 	 */
4058 	while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) &&
4059 	       !(EOV & v->flags)) {
4060 		int si;
4061 
4062 		if (NULL == val)
4063 			val = nulltxt;
4064 
4065 		if (!strcmp(nonce_text, v->text)) {
4066 			free(pnonce);
4067 			pnonce = (*val) ? estrdup(val) : NULL;
4068 		} else if (!strcmp(frags_text, v->text)) {
4069 			if (1 != sscanf(val, "%hu", &frags))
4070 				goto blooper;
4071 		} else if (!strcmp(limit_text, v->text)) {
4072 			if (1 != sscanf(val, "%u", &limit))
4073 				goto blooper;
4074 		} else if (!strcmp(mincount_text, v->text)) {
4075 			if (1 != sscanf(val, "%d", &mincount))
4076 				goto blooper;
4077 			if (mincount < 0)
4078 				mincount = 0;
4079 		} else if (!strcmp(resall_text, v->text)) {
4080 			if (1 != sscanf(val, resaxx_fmt, &resall))
4081 				goto blooper;
4082 		} else if (!strcmp(resany_text, v->text)) {
4083 			if (1 != sscanf(val, resaxx_fmt, &resany))
4084 				goto blooper;
4085 		} else if (!strcmp(maxlstint_text, v->text)) {
4086 			if (1 != sscanf(val, "%u", &maxlstint))
4087 				goto blooper;
4088 		} else if (!strcmp(laddr_text, v->text)) {
4089 			if (!decodenetnum(val, &laddr))
4090 				goto blooper;
4091 			lcladr = getinterface(&laddr, 0);
4092 		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4093 			   (size_t)si < COUNTOF(last)) {
4094 			if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf))
4095 				goto blooper;
4096 			last[si].l_ui = ui;
4097 			last[si].l_uf = uf;
4098 			if (!SOCK_UNSPEC(&addr[si]) && si == priors)
4099 				priors++;
4100 		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4101 			   (size_t)si < COUNTOF(addr)) {
4102 			if (!decodenetnum(val, &addr[si]))
4103 				goto blooper;
4104 			if (last[si].l_ui && last[si].l_uf && si == priors)
4105 				priors++;
4106 		} else {
4107 			DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n",
4108 				    v->text));
4109 			continue;
4110 
4111 		blooper:
4112 			DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n",
4113 				    v->text, val));
4114 			free(pnonce);
4115 			pnonce = NULL;
4116 			break;
4117 		}
4118 	}
4119 	free_varlist(in_parms);
4120 	in_parms = NULL;
4121 
4122 	/* return no responses until the nonce is validated */
4123 	if (NULL == pnonce)
4124 		return;
4125 
4126 	nonce_valid = validate_nonce(pnonce, rbufp);
4127 	free(pnonce);
4128 	if (!nonce_valid)
4129 		return;
4130 
4131 	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4132 	    frags > MRU_FRAGS_LIMIT) {
4133 		ctl_error(CERR_BADVALUE);
4134 		return;
4135 	}
4136 
4137 	/*
4138 	 * If either frags or limit is not given, use the max.
4139 	 */
4140 	if (0 != frags && 0 == limit)
4141 		limit = UINT_MAX;
4142 	else if (0 != limit && 0 == frags)
4143 		frags = MRU_FRAGS_LIMIT;
4144 
4145 	/*
4146 	 * Find the starting point if one was provided.
4147 	 */
4148 	mon = NULL;
4149 	for (i = 0; i < (size_t)priors; i++) {
4150 		hash = MON_HASH(&addr[i]);
4151 		for (mon = mon_hash[hash];
4152 		     mon != NULL;
4153 		     mon = mon->hash_next)
4154 			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4155 				break;
4156 		if (mon != NULL) {
4157 			if (L_ISEQU(&mon->last, &last[i]))
4158 				break;
4159 			mon = NULL;
4160 		}
4161 	}
4162 
4163 	/* If a starting point was provided... */
4164 	if (priors) {
4165 		/* and none could be found unmodified... */
4166 		if (NULL == mon) {
4167 			/* tell ntpq to try again with older entries */
4168 			ctl_error(CERR_UNKNOWNVAR);
4169 			return;
4170 		}
4171 		/* confirm the prior entry used as starting point */
4172 		ctl_putts("last.older", &mon->last);
4173 		pch = sptoa(&mon->rmtadr);
4174 		ctl_putunqstr("addr.older", pch, strlen(pch));
4175 
4176 		/*
4177 		 * Move on to the first entry the client doesn't have,
4178 		 * except in the special case of a limit of one.  In
4179 		 * that case return the starting point entry.
4180 		 */
4181 		if (limit > 1)
4182 			mon = PREV_DLIST(mon_mru_list, mon, mru);
4183 	} else {	/* start with the oldest */
4184 		mon = TAIL_DLIST(mon_mru_list, mru);
4185 	}
4186 
4187 	/*
4188 	 * send up to limit= entries in up to frags= datagrams
4189 	 */
4190 	get_systime(&now);
4191 	generate_nonce(rbufp, buf, sizeof(buf));
4192 	ctl_putunqstr("nonce", buf, strlen(buf));
4193 	prior_mon = NULL;
4194 	for (count = 0;
4195 	     mon != NULL && res_frags < frags && count < limit;
4196 	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4197 
4198 		if (mon->count < mincount)
4199 			continue;
4200 		if (resall && resall != (resall & mon->flags))
4201 			continue;
4202 		if (resany && !(resany & mon->flags))
4203 			continue;
4204 		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4205 		    maxlstint)
4206 			continue;
4207 		if (lcladr != NULL && mon->lcladr != lcladr)
4208 			continue;
4209 
4210 		send_mru_entry(mon, count);
4211 		if (!count)
4212 			send_random_tag_value(0);
4213 		count++;
4214 		prior_mon = mon;
4215 	}
4216 
4217 	/*
4218 	 * If this batch completes the MRU list, say so explicitly with
4219 	 * a now= l_fp timestamp.
4220 	 */
4221 	if (NULL == mon) {
4222 		if (count > 1)
4223 			send_random_tag_value(count - 1);
4224 		ctl_putts("now", &now);
4225 		/* if any entries were returned confirm the last */
4226 		if (prior_mon != NULL)
4227 			ctl_putts("last.newest", &prior_mon->last);
4228 	}
4229 	ctl_flushpkt(0);
4230 }
4231 
4232 
4233 /*
4234  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4235  *
4236  * To keep clients honest about not depending on the order of values,
4237  * and thereby avoid being locked into ugly workarounds to maintain
4238  * backward compatibility later as new fields are added to the response,
4239  * the order is random.
4240  */
4241 static void
send_ifstats_entry(endpt * la,u_int ifnum)4242 send_ifstats_entry(
4243 	endpt *	la,
4244 	u_int	ifnum
4245 	)
4246 {
4247 	const char addr_fmtu[] =	"addr.%u";
4248 	const char bcast_fmt[] =	"bcast.%u";
4249 	const char en_fmt[] =		"en.%u";	/* enabled */
4250 	const char name_fmt[] =		"name.%u";
4251 	const char flags_fmt[] =	"flags.%u";
4252 	const char tl_fmt[] =		"tl.%u";	/* ttl */
4253 	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4254 	const char rx_fmt[] =		"rx.%u";
4255 	const char tx_fmt[] =		"tx.%u";
4256 	const char txerr_fmt[] =	"txerr.%u";
4257 	const char pc_fmt[] =		"pc.%u";	/* peer count */
4258 	const char up_fmt[] =		"up.%u";	/* uptime */
4259 	char	tag[32];
4260 	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4261 	int	noisebits;
4262 	u_int32 noise;
4263 	u_int	which;
4264 	u_int	remaining;
4265 	const char *pch;
4266 
4267 	remaining = COUNTOF(sent);
4268 	ZERO(sent);
4269 	noise = 0;
4270 	noisebits = 0;
4271 	while (remaining > 0) {
4272 		if (noisebits < 4) {
4273 			noise = rand() ^ (rand() << 16);
4274 			noisebits = 31;
4275 		}
4276 		which = (noise & 0xf) % COUNTOF(sent);
4277 		noise >>= 4;
4278 		noisebits -= 4;
4279 
4280 		while (sent[which])
4281 			which = (which + 1) % COUNTOF(sent);
4282 
4283 		switch (which) {
4284 
4285 		case 0:
4286 			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4287 			pch = sptoa(&la->sin);
4288 			ctl_putunqstr(tag, pch, strlen(pch));
4289 			break;
4290 
4291 		case 1:
4292 			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4293 			if (INT_BCASTOPEN & la->flags)
4294 				pch = sptoa(&la->bcast);
4295 			else
4296 				pch = "";
4297 			ctl_putunqstr(tag, pch, strlen(pch));
4298 			break;
4299 
4300 		case 2:
4301 			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4302 			ctl_putint(tag, !la->ignore_packets);
4303 			break;
4304 
4305 		case 3:
4306 			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4307 			ctl_putstr(tag, la->name, strlen(la->name));
4308 			break;
4309 
4310 		case 4:
4311 			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4312 			ctl_puthex(tag, (u_int)la->flags);
4313 			break;
4314 
4315 		case 5:
4316 			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4317 			ctl_putint(tag, la->last_ttl);
4318 			break;
4319 
4320 		case 6:
4321 			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4322 			ctl_putint(tag, la->num_mcast);
4323 			break;
4324 
4325 		case 7:
4326 			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4327 			ctl_putint(tag, la->received);
4328 			break;
4329 
4330 		case 8:
4331 			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4332 			ctl_putint(tag, la->sent);
4333 			break;
4334 
4335 		case 9:
4336 			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4337 			ctl_putint(tag, la->notsent);
4338 			break;
4339 
4340 		case 10:
4341 			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4342 			ctl_putuint(tag, la->peercnt);
4343 			break;
4344 
4345 		case 11:
4346 			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4347 			ctl_putuint(tag, current_time - la->starttime);
4348 			break;
4349 		}
4350 		sent[which] = TRUE;
4351 		remaining--;
4352 	}
4353 	send_random_tag_value((int)ifnum);
4354 }
4355 
4356 
4357 /*
4358  * read_ifstats - send statistics for each local address, exposed by
4359  *		  ntpq -c ifstats
4360  */
4361 static void
read_ifstats(struct recvbuf * rbufp)4362 read_ifstats(
4363 	struct recvbuf *	rbufp
4364 	)
4365 {
4366 	u_int	ifidx;
4367 	endpt *	la;
4368 
4369 	/*
4370 	 * loop over [0..sys_ifnum] searching ep_list for each
4371 	 * ifnum in turn.
4372 	 */
4373 	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4374 		for (la = ep_list; la != NULL; la = la->elink)
4375 			if (ifidx == la->ifnum)
4376 				break;
4377 		if (NULL == la)
4378 			continue;
4379 		/* return stats for one local address */
4380 		send_ifstats_entry(la, ifidx);
4381 	}
4382 	ctl_flushpkt(0);
4383 }
4384 
4385 static void
sockaddrs_from_restrict_u(sockaddr_u * psaA,sockaddr_u * psaM,restrict_u * pres,int ipv6)4386 sockaddrs_from_restrict_u(
4387 	sockaddr_u *	psaA,
4388 	sockaddr_u *	psaM,
4389 	restrict_u *	pres,
4390 	int		ipv6
4391 	)
4392 {
4393 	ZERO(*psaA);
4394 	ZERO(*psaM);
4395 	if (!ipv6) {
4396 		psaA->sa.sa_family = AF_INET;
4397 		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4398 		psaM->sa.sa_family = AF_INET;
4399 		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4400 	} else {
4401 		psaA->sa.sa_family = AF_INET6;
4402 		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4403 		       sizeof(psaA->sa6.sin6_addr));
4404 		psaM->sa.sa_family = AF_INET6;
4405 		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4406 		       sizeof(psaA->sa6.sin6_addr));
4407 	}
4408 }
4409 
4410 
4411 /*
4412  * Send a restrict entry in response to a "ntpq -c reslist" request.
4413  *
4414  * To keep clients honest about not depending on the order of values,
4415  * and thereby avoid being locked into ugly workarounds to maintain
4416  * backward compatibility later as new fields are added to the response,
4417  * the order is random.
4418  */
4419 static void
send_restrict_entry(restrict_u * pres,int ipv6,u_int idx)4420 send_restrict_entry(
4421 	restrict_u *	pres,
4422 	int		ipv6,
4423 	u_int		idx
4424 	)
4425 {
4426 	const char addr_fmtu[] =	"addr.%u";
4427 	const char mask_fmtu[] =	"mask.%u";
4428 	const char hits_fmt[] =		"hits.%u";
4429 	const char flags_fmt[] =	"flags.%u";
4430 	char		tag[32];
4431 	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4432 	int		noisebits;
4433 	u_int32		noise;
4434 	u_int		which;
4435 	u_int		remaining;
4436 	sockaddr_u	addr;
4437 	sockaddr_u	mask;
4438 	const char *	pch;
4439 	char *		buf;
4440 	const char *	match_str;
4441 	const char *	access_str;
4442 
4443 	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4444 	remaining = COUNTOF(sent);
4445 	ZERO(sent);
4446 	noise = 0;
4447 	noisebits = 0;
4448 	while (remaining > 0) {
4449 		if (noisebits < 2) {
4450 			noise = rand() ^ (rand() << 16);
4451 			noisebits = 31;
4452 		}
4453 		which = (noise & 0x3) % COUNTOF(sent);
4454 		noise >>= 2;
4455 		noisebits -= 2;
4456 
4457 		while (sent[which])
4458 			which = (which + 1) % COUNTOF(sent);
4459 
4460 		/* XXX: Numbers?  Really? */
4461 		switch (which) {
4462 
4463 		case 0:
4464 			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4465 			pch = stoa(&addr);
4466 			ctl_putunqstr(tag, pch, strlen(pch));
4467 			break;
4468 
4469 		case 1:
4470 			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4471 			pch = stoa(&mask);
4472 			ctl_putunqstr(tag, pch, strlen(pch));
4473 			break;
4474 
4475 		case 2:
4476 			snprintf(tag, sizeof(tag), hits_fmt, idx);
4477 			ctl_putuint(tag, pres->count);
4478 			break;
4479 
4480 		case 3:
4481 			snprintf(tag, sizeof(tag), flags_fmt, idx);
4482 			match_str = res_match_flags(pres->mflags);
4483 			access_str = res_access_flags(pres->rflags);
4484 			if ('\0' == match_str[0]) {
4485 				pch = access_str;
4486 			} else {
4487 				LIB_GETBUF(buf);
4488 				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4489 					 match_str, access_str);
4490 				pch = buf;
4491 			}
4492 			ctl_putunqstr(tag, pch, strlen(pch));
4493 			break;
4494 		}
4495 		sent[which] = TRUE;
4496 		remaining--;
4497 	}
4498 	send_random_tag_value((int)idx);
4499 }
4500 
4501 
4502 static void
send_restrict_list(restrict_u * pres,int ipv6,u_int * pidx)4503 send_restrict_list(
4504 	restrict_u *	pres,
4505 	int		ipv6,
4506 	u_int *		pidx
4507 	)
4508 {
4509 	for ( ; pres != NULL; pres = pres->link) {
4510 		send_restrict_entry(pres, ipv6, *pidx);
4511 		(*pidx)++;
4512 	}
4513 }
4514 
4515 
4516 /*
4517  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4518  */
4519 static void
read_addr_restrictions(struct recvbuf * rbufp)4520 read_addr_restrictions(
4521 	struct recvbuf *	rbufp
4522 )
4523 {
4524 	u_int idx;
4525 
4526 	idx = 0;
4527 	send_restrict_list(restrictlist4, FALSE, &idx);
4528 	send_restrict_list(restrictlist6, TRUE, &idx);
4529 	ctl_flushpkt(0);
4530 }
4531 
4532 
4533 /*
4534  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4535  */
4536 static void
read_ordlist(struct recvbuf * rbufp,int restrict_mask)4537 read_ordlist(
4538 	struct recvbuf *	rbufp,
4539 	int			restrict_mask
4540 	)
4541 {
4542 	const char ifstats_s[] = "ifstats";
4543 	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4544 	const char addr_rst_s[] = "addr_restrictions";
4545 	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4546 	struct ntp_control *	cpkt;
4547 	u_short			qdata_octets;
4548 
4549 	/*
4550 	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4551 	 * used only for ntpq -c ifstats.  With the addition of reslist
4552 	 * the same opcode was generalized to retrieve ordered lists
4553 	 * which require authentication.  The request data is empty or
4554 	 * contains "ifstats" (not null terminated) to retrieve local
4555 	 * addresses and associated stats.  It is "addr_restrictions"
4556 	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4557 	 * which are access control lists.  Other request data return
4558 	 * CERR_UNKNOWNVAR.
4559 	 */
4560 	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4561 	qdata_octets = ntohs(cpkt->count);
4562 	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4563 	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4564 		read_ifstats(rbufp);
4565 		return;
4566 	}
4567 	if (a_r_chars == qdata_octets &&
4568 	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4569 		read_addr_restrictions(rbufp);
4570 		return;
4571 	}
4572 	ctl_error(CERR_UNKNOWNVAR);
4573 }
4574 
4575 
4576 /*
4577  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4578  */
req_nonce(struct recvbuf * rbufp,int restrict_mask)4579 static void req_nonce(
4580 	struct recvbuf *	rbufp,
4581 	int			restrict_mask
4582 	)
4583 {
4584 	char	buf[64];
4585 
4586 	generate_nonce(rbufp, buf, sizeof(buf));
4587 	ctl_putunqstr("nonce", buf, strlen(buf));
4588 	ctl_flushpkt(0);
4589 }
4590 
4591 
4592 /*
4593  * read_clockstatus - return clock radio status
4594  */
4595 /*ARGSUSED*/
4596 static void
read_clockstatus(struct recvbuf * rbufp,int restrict_mask)4597 read_clockstatus(
4598 	struct recvbuf *rbufp,
4599 	int restrict_mask
4600 	)
4601 {
4602 #ifndef REFCLOCK
4603 	/*
4604 	 * If no refclock support, no data to return
4605 	 */
4606 	ctl_error(CERR_BADASSOC);
4607 #else
4608 	const struct ctl_var *	v;
4609 	int			i;
4610 	struct peer *		peer;
4611 	char *			valuep;
4612 	u_char *		wants;
4613 	size_t			wants_alloc;
4614 	int			gotvar;
4615 	const u_char *		cc;
4616 	struct ctl_var *	kv;
4617 	struct refclockstat	cs;
4618 
4619 	if (res_associd != 0) {
4620 		peer = findpeerbyassoc(res_associd);
4621 	} else {
4622 		/*
4623 		 * Find a clock for this jerk.	If the system peer
4624 		 * is a clock use it, else search peer_list for one.
4625 		 */
4626 		if (sys_peer != NULL && (FLAG_REFCLOCK &
4627 		    sys_peer->flags))
4628 			peer = sys_peer;
4629 		else
4630 			for (peer = peer_list;
4631 			     peer != NULL;
4632 			     peer = peer->p_link)
4633 				if (FLAG_REFCLOCK & peer->flags)
4634 					break;
4635 	}
4636 	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4637 		ctl_error(CERR_BADASSOC);
4638 		return;
4639 	}
4640 	/*
4641 	 * If we got here we have a peer which is a clock. Get his
4642 	 * status.
4643 	 */
4644 	cs.kv_list = NULL;
4645 	refclock_control(&peer->srcadr, NULL, &cs);
4646 	kv = cs.kv_list;
4647 	/*
4648 	 * Look for variables in the packet.
4649 	 */
4650 	rpkt.status = htons(ctlclkstatus(&cs));
4651 	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4652 	wants = emalloc_zero(wants_alloc);
4653 	gotvar = FALSE;
4654 	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4655 		if (!(EOV & v->flags)) {
4656 			wants[v->code] = TRUE;
4657 			gotvar = TRUE;
4658 		} else {
4659 			v = ctl_getitem(kv, &valuep);
4660 			if (NULL == v) {
4661 				ctl_error(CERR_BADVALUE);
4662 				free(wants);
4663 				free_varlist(cs.kv_list);
4664 				return;
4665 			}
4666 			if (EOV & v->flags) {
4667 				ctl_error(CERR_UNKNOWNVAR);
4668 				free(wants);
4669 				free_varlist(cs.kv_list);
4670 				return;
4671 			}
4672 			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4673 			gotvar = TRUE;
4674 		}
4675 	}
4676 
4677 	if (gotvar) {
4678 		for (i = 1; i <= CC_MAXCODE; i++)
4679 			if (wants[i])
4680 				ctl_putclock(i, &cs, TRUE);
4681 		if (kv != NULL)
4682 			for (i = 0; !(EOV & kv[i].flags); i++)
4683 				if (wants[i + CC_MAXCODE + 1])
4684 					ctl_putdata(kv[i].text,
4685 						    strlen(kv[i].text),
4686 						    FALSE);
4687 	} else {
4688 		for (cc = def_clock_var; *cc != 0; cc++)
4689 			ctl_putclock((int)*cc, &cs, FALSE);
4690 		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4691 			if (DEF & kv->flags)
4692 				ctl_putdata(kv->text, strlen(kv->text),
4693 					    FALSE);
4694 	}
4695 
4696 	free(wants);
4697 	free_varlist(cs.kv_list);
4698 
4699 	ctl_flushpkt(0);
4700 #endif
4701 }
4702 
4703 
4704 /*
4705  * write_clockstatus - we don't do this
4706  */
4707 /*ARGSUSED*/
4708 static void
write_clockstatus(struct recvbuf * rbufp,int restrict_mask)4709 write_clockstatus(
4710 	struct recvbuf *rbufp,
4711 	int restrict_mask
4712 	)
4713 {
4714 	ctl_error(CERR_PERMISSION);
4715 }
4716 
4717 /*
4718  * Trap support from here on down. We send async trap messages when the
4719  * upper levels report trouble. Traps can by set either by control
4720  * messages or by configuration.
4721  */
4722 /*
4723  * set_trap - set a trap in response to a control message
4724  */
4725 static void
set_trap(struct recvbuf * rbufp,int restrict_mask)4726 set_trap(
4727 	struct recvbuf *rbufp,
4728 	int restrict_mask
4729 	)
4730 {
4731 	int traptype;
4732 
4733 	/*
4734 	 * See if this guy is allowed
4735 	 */
4736 	if (restrict_mask & RES_NOTRAP) {
4737 		ctl_error(CERR_PERMISSION);
4738 		return;
4739 	}
4740 
4741 	/*
4742 	 * Determine his allowed trap type.
4743 	 */
4744 	traptype = TRAP_TYPE_PRIO;
4745 	if (restrict_mask & RES_LPTRAP)
4746 		traptype = TRAP_TYPE_NONPRIO;
4747 
4748 	/*
4749 	 * Call ctlsettrap() to do the work.  Return
4750 	 * an error if it can't assign the trap.
4751 	 */
4752 	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4753 			(int)res_version))
4754 		ctl_error(CERR_NORESOURCE);
4755 	ctl_flushpkt(0);
4756 }
4757 
4758 
4759 /*
4760  * unset_trap - unset a trap in response to a control message
4761  */
4762 static void
unset_trap(struct recvbuf * rbufp,int restrict_mask)4763 unset_trap(
4764 	struct recvbuf *rbufp,
4765 	int restrict_mask
4766 	)
4767 {
4768 	int traptype;
4769 
4770 	/*
4771 	 * We don't prevent anyone from removing his own trap unless the
4772 	 * trap is configured. Note we also must be aware of the
4773 	 * possibility that restriction flags were changed since this
4774 	 * guy last set his trap. Set the trap type based on this.
4775 	 */
4776 	traptype = TRAP_TYPE_PRIO;
4777 	if (restrict_mask & RES_LPTRAP)
4778 		traptype = TRAP_TYPE_NONPRIO;
4779 
4780 	/*
4781 	 * Call ctlclrtrap() to clear this out.
4782 	 */
4783 	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4784 		ctl_error(CERR_BADASSOC);
4785 	ctl_flushpkt(0);
4786 }
4787 
4788 
4789 /*
4790  * ctlsettrap - called to set a trap
4791  */
4792 int
ctlsettrap(sockaddr_u * raddr,struct interface * linter,int traptype,int version)4793 ctlsettrap(
4794 	sockaddr_u *raddr,
4795 	struct interface *linter,
4796 	int traptype,
4797 	int version
4798 	)
4799 {
4800 	size_t n;
4801 	struct ctl_trap *tp;
4802 	struct ctl_trap *tptouse;
4803 
4804 	/*
4805 	 * See if we can find this trap.  If so, we only need update
4806 	 * the flags and the time.
4807 	 */
4808 	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4809 		switch (traptype) {
4810 
4811 		case TRAP_TYPE_CONFIG:
4812 			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4813 			break;
4814 
4815 		case TRAP_TYPE_PRIO:
4816 			if (tp->tr_flags & TRAP_CONFIGURED)
4817 				return (1); /* don't change anything */
4818 			tp->tr_flags = TRAP_INUSE;
4819 			break;
4820 
4821 		case TRAP_TYPE_NONPRIO:
4822 			if (tp->tr_flags & TRAP_CONFIGURED)
4823 				return (1); /* don't change anything */
4824 			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4825 			break;
4826 		}
4827 		tp->tr_settime = current_time;
4828 		tp->tr_resets++;
4829 		return (1);
4830 	}
4831 
4832 	/*
4833 	 * First we heard of this guy.	Try to find a trap structure
4834 	 * for him to use, clearing out lesser priority guys if we
4835 	 * have to. Clear out anyone who's expired while we're at it.
4836 	 */
4837 	tptouse = NULL;
4838 	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4839 		tp = &ctl_traps[n];
4840 		if ((TRAP_INUSE & tp->tr_flags) &&
4841 		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4842 		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4843 			tp->tr_flags = 0;
4844 			num_ctl_traps--;
4845 		}
4846 		if (!(TRAP_INUSE & tp->tr_flags)) {
4847 			tptouse = tp;
4848 		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4849 			switch (traptype) {
4850 
4851 			case TRAP_TYPE_CONFIG:
4852 				if (tptouse == NULL) {
4853 					tptouse = tp;
4854 					break;
4855 				}
4856 				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4857 				    !(TRAP_NONPRIO & tp->tr_flags))
4858 					break;
4859 
4860 				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4861 				    && (TRAP_NONPRIO & tp->tr_flags)) {
4862 					tptouse = tp;
4863 					break;
4864 				}
4865 				if (tptouse->tr_origtime <
4866 				    tp->tr_origtime)
4867 					tptouse = tp;
4868 				break;
4869 
4870 			case TRAP_TYPE_PRIO:
4871 				if ( TRAP_NONPRIO & tp->tr_flags) {
4872 					if (tptouse == NULL ||
4873 					    ((TRAP_INUSE &
4874 					      tptouse->tr_flags) &&
4875 					     tptouse->tr_origtime <
4876 					     tp->tr_origtime))
4877 						tptouse = tp;
4878 				}
4879 				break;
4880 
4881 			case TRAP_TYPE_NONPRIO:
4882 				break;
4883 			}
4884 		}
4885 	}
4886 
4887 	/*
4888 	 * If we don't have room for him return an error.
4889 	 */
4890 	if (tptouse == NULL)
4891 		return (0);
4892 
4893 	/*
4894 	 * Set up this structure for him.
4895 	 */
4896 	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4897 	tptouse->tr_count = tptouse->tr_resets = 0;
4898 	tptouse->tr_sequence = 1;
4899 	tptouse->tr_addr = *raddr;
4900 	tptouse->tr_localaddr = linter;
4901 	tptouse->tr_version = (u_char) version;
4902 	tptouse->tr_flags = TRAP_INUSE;
4903 	if (traptype == TRAP_TYPE_CONFIG)
4904 		tptouse->tr_flags |= TRAP_CONFIGURED;
4905 	else if (traptype == TRAP_TYPE_NONPRIO)
4906 		tptouse->tr_flags |= TRAP_NONPRIO;
4907 	num_ctl_traps++;
4908 	return (1);
4909 }
4910 
4911 
4912 /*
4913  * ctlclrtrap - called to clear a trap
4914  */
4915 int
ctlclrtrap(sockaddr_u * raddr,struct interface * linter,int traptype)4916 ctlclrtrap(
4917 	sockaddr_u *raddr,
4918 	struct interface *linter,
4919 	int traptype
4920 	)
4921 {
4922 	register struct ctl_trap *tp;
4923 
4924 	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4925 		return (0);
4926 
4927 	if (tp->tr_flags & TRAP_CONFIGURED
4928 	    && traptype != TRAP_TYPE_CONFIG)
4929 		return (0);
4930 
4931 	tp->tr_flags = 0;
4932 	num_ctl_traps--;
4933 	return (1);
4934 }
4935 
4936 
4937 /*
4938  * ctlfindtrap - find a trap given the remote and local addresses
4939  */
4940 static struct ctl_trap *
ctlfindtrap(sockaddr_u * raddr,struct interface * linter)4941 ctlfindtrap(
4942 	sockaddr_u *raddr,
4943 	struct interface *linter
4944 	)
4945 {
4946 	size_t	n;
4947 
4948 	for (n = 0; n < COUNTOF(ctl_traps); n++)
4949 		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4950 		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4951 		    && (linter == ctl_traps[n].tr_localaddr))
4952 			return &ctl_traps[n];
4953 
4954 	return NULL;
4955 }
4956 
4957 
4958 /*
4959  * report_event - report an event to the trappers
4960  */
4961 void
report_event(int err,struct peer * peer,const char * str)4962 report_event(
4963 	int	err,		/* error code */
4964 	struct peer *peer,	/* peer structure pointer */
4965 	const char *str		/* protostats string */
4966 	)
4967 {
4968 	char	statstr[NTP_MAXSTRLEN];
4969 	int	i;
4970 	size_t	len;
4971 
4972 	/*
4973 	 * Report the error to the protostats file, system log and
4974 	 * trappers.
4975 	 */
4976 	if (peer == NULL) {
4977 
4978 		/*
4979 		 * Discard a system report if the number of reports of
4980 		 * the same type exceeds the maximum.
4981 		 */
4982 		if (ctl_sys_last_event != (u_char)err)
4983 			ctl_sys_num_events= 0;
4984 		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4985 			return;
4986 
4987 		ctl_sys_last_event = (u_char)err;
4988 		ctl_sys_num_events++;
4989 		snprintf(statstr, sizeof(statstr),
4990 		    "0.0.0.0 %04x %02x %s",
4991 		    ctlsysstatus(), err, eventstr(err));
4992 		if (str != NULL) {
4993 			len = strlen(statstr);
4994 			snprintf(statstr + len, sizeof(statstr) - len,
4995 			    " %s", str);
4996 		}
4997 		NLOG(NLOG_SYSEVENT)
4998 			msyslog(LOG_INFO, "%s", statstr);
4999 	} else {
5000 
5001 		/*
5002 		 * Discard a peer report if the number of reports of
5003 		 * the same type exceeds the maximum for that peer.
5004 		 */
5005 		const char *	src;
5006 		u_char		errlast;
5007 
5008 		errlast = (u_char)err & ~PEER_EVENT;
5009 		if (peer->last_event != errlast)
5010 			peer->num_events = 0;
5011 		if (peer->num_events >= CTL_PEER_MAXEVENTS)
5012 			return;
5013 
5014 		peer->last_event = errlast;
5015 		peer->num_events++;
5016 		if (ISREFCLOCKADR(&peer->srcadr))
5017 			src = refnumtoa(&peer->srcadr);
5018 		else
5019 			src = stoa(&peer->srcadr);
5020 
5021 		snprintf(statstr, sizeof(statstr),
5022 		    "%s %04x %02x %s", src,
5023 		    ctlpeerstatus(peer), err, eventstr(err));
5024 		if (str != NULL) {
5025 			len = strlen(statstr);
5026 			snprintf(statstr + len, sizeof(statstr) - len,
5027 			    " %s", str);
5028 		}
5029 		NLOG(NLOG_PEEREVENT)
5030 			msyslog(LOG_INFO, "%s", statstr);
5031 	}
5032 	record_proto_stats(statstr);
5033 #if DEBUG
5034 	if (debug)
5035 		printf("event at %lu %s\n", current_time, statstr);
5036 #endif
5037 
5038 	/*
5039 	 * If no trappers, return.
5040 	 */
5041 	if (num_ctl_traps <= 0)
5042 		return;
5043 
5044 	/* [Bug 3119]
5045 	 * Peer Events should be associated with a peer -- hence the
5046 	 * name. But there are instances where this function is called
5047 	 * *without* a valid peer. This happens e.g. with an unsolicited
5048 	 * CryptoNAK, or when a leap second alarm is going off while
5049 	 * currently without a system peer.
5050 	 *
5051 	 * The most sensible approach to this seems to bail out here if
5052 	 * this happens. Avoiding to call this function would also
5053 	 * bypass the log reporting in the first part of this function,
5054 	 * and this is probably not the best of all options.
5055 	 *   -*-perlinger@ntp.org-*-
5056 	 */
5057 	if ((err & PEER_EVENT) && !peer)
5058 		return;
5059 
5060 	/*
5061 	 * Set up the outgoing packet variables
5062 	 */
5063 	res_opcode = CTL_OP_ASYNCMSG;
5064 	res_offset = 0;
5065 	res_async = TRUE;
5066 	res_authenticate = FALSE;
5067 	datapt = rpkt.u.data;
5068 	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
5069 	if (!(err & PEER_EVENT)) {
5070 		rpkt.associd = 0;
5071 		rpkt.status = htons(ctlsysstatus());
5072 
5073 		/* Include the core system variables and the list. */
5074 		for (i = 1; i <= CS_VARLIST; i++)
5075 			ctl_putsys(i);
5076 	} else if (NULL != peer) { /* paranoia -- skip output */
5077 		rpkt.associd = htons(peer->associd);
5078 		rpkt.status = htons(ctlpeerstatus(peer));
5079 
5080 		/* Dump it all. Later, maybe less. */
5081 		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
5082 			ctl_putpeer(i, peer);
5083 #	    ifdef REFCLOCK
5084 		/*
5085 		 * for clock exception events: add clock variables to
5086 		 * reflect info on exception
5087 		 */
5088 		if (err == PEVNT_CLOCK) {
5089 			struct refclockstat cs;
5090 			struct ctl_var *kv;
5091 
5092 			cs.kv_list = NULL;
5093 			refclock_control(&peer->srcadr, NULL, &cs);
5094 
5095 			ctl_puthex("refclockstatus",
5096 				   ctlclkstatus(&cs));
5097 
5098 			for (i = 1; i <= CC_MAXCODE; i++)
5099 				ctl_putclock(i, &cs, FALSE);
5100 			for (kv = cs.kv_list;
5101 			     kv != NULL && !(EOV & kv->flags);
5102 			     kv++)
5103 				if (DEF & kv->flags)
5104 					ctl_putdata(kv->text,
5105 						    strlen(kv->text),
5106 						    FALSE);
5107 			free_varlist(cs.kv_list);
5108 		}
5109 #	    endif /* REFCLOCK */
5110 	}
5111 
5112 	/*
5113 	 * We're done, return.
5114 	 */
5115 	ctl_flushpkt(0);
5116 }
5117 
5118 
5119 /*
5120  * mprintf_event - printf-style varargs variant of report_event()
5121  */
5122 int
mprintf_event(int evcode,struct peer * p,const char * fmt,...)5123 mprintf_event(
5124 	int		evcode,		/* event code */
5125 	struct peer *	p,		/* may be NULL */
5126 	const char *	fmt,		/* msnprintf format */
5127 	...
5128 	)
5129 {
5130 	va_list	ap;
5131 	int	rc;
5132 	char	msg[512];
5133 
5134 	va_start(ap, fmt);
5135 	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5136 	va_end(ap);
5137 	report_event(evcode, p, msg);
5138 
5139 	return rc;
5140 }
5141 
5142 
5143 /*
5144  * ctl_clr_stats - clear stat counters
5145  */
5146 void
ctl_clr_stats(void)5147 ctl_clr_stats(void)
5148 {
5149 	ctltimereset = current_time;
5150 	numctlreq = 0;
5151 	numctlbadpkts = 0;
5152 	numctlresponses = 0;
5153 	numctlfrags = 0;
5154 	numctlerrors = 0;
5155 	numctlfrags = 0;
5156 	numctltooshort = 0;
5157 	numctlinputresp = 0;
5158 	numctlinputfrag = 0;
5159 	numctlinputerr = 0;
5160 	numctlbadoffset = 0;
5161 	numctlbadversion = 0;
5162 	numctldatatooshort = 0;
5163 	numctlbadop = 0;
5164 	numasyncmsgs = 0;
5165 }
5166 
5167 static u_short
count_var(const struct ctl_var * k)5168 count_var(
5169 	const struct ctl_var *k
5170 	)
5171 {
5172 	u_int c;
5173 
5174 	if (NULL == k)
5175 		return 0;
5176 
5177 	c = 0;
5178 	while (!(EOV & (k++)->flags))
5179 		c++;
5180 
5181 	ENSURE(c <= USHRT_MAX);
5182 	return (u_short)c;
5183 }
5184 
5185 
5186 char *
add_var(struct ctl_var ** kv,u_long size,u_short def)5187 add_var(
5188 	struct ctl_var **kv,
5189 	u_long size,
5190 	u_short def
5191 	)
5192 {
5193 	u_short		c;
5194 	struct ctl_var *k;
5195 	char *		buf;
5196 
5197 	c = count_var(*kv);
5198 	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5199 	k = *kv;
5200 	buf = emalloc(size);
5201 	k[c].code  = c;
5202 	k[c].text  = buf;
5203 	k[c].flags = def;
5204 	k[c + 1].code  = 0;
5205 	k[c + 1].text  = NULL;
5206 	k[c + 1].flags = EOV;
5207 
5208 	return buf;
5209 }
5210 
5211 
5212 void
set_var(struct ctl_var ** kv,const char * data,u_long size,u_short def)5213 set_var(
5214 	struct ctl_var **kv,
5215 	const char *data,
5216 	u_long size,
5217 	u_short def
5218 	)
5219 {
5220 	struct ctl_var *k;
5221 	const char *s;
5222 	const char *t;
5223 	char *td;
5224 
5225 	if (NULL == data || !size)
5226 		return;
5227 
5228 	k = *kv;
5229 	if (k != NULL) {
5230 		while (!(EOV & k->flags)) {
5231 			if (NULL == k->text)	{
5232 				td = emalloc(size);
5233 				memcpy(td, data, size);
5234 				k->text = td;
5235 				k->flags = def;
5236 				return;
5237 			} else {
5238 				s = data;
5239 				t = k->text;
5240 				while (*t != '=' && *s == *t) {
5241 					s++;
5242 					t++;
5243 				}
5244 				if (*s == *t && ((*t == '=') || !*t)) {
5245 					td = erealloc((void *)(intptr_t)k->text, size);
5246 					memcpy(td, data, size);
5247 					k->text = td;
5248 					k->flags = def;
5249 					return;
5250 				}
5251 			}
5252 			k++;
5253 		}
5254 	}
5255 	td = add_var(kv, size, def);
5256 	memcpy(td, data, size);
5257 }
5258 
5259 
5260 void
set_sys_var(const char * data,u_long size,u_short def)5261 set_sys_var(
5262 	const char *data,
5263 	u_long size,
5264 	u_short def
5265 	)
5266 {
5267 	set_var(&ext_sys_var, data, size, def);
5268 }
5269 
5270 
5271 /*
5272  * get_ext_sys_var() retrieves the value of a user-defined variable or
5273  * NULL if the variable has not been setvar'd.
5274  */
5275 const char *
get_ext_sys_var(const char * tag)5276 get_ext_sys_var(const char *tag)
5277 {
5278 	struct ctl_var *	v;
5279 	size_t			c;
5280 	const char *		val;
5281 
5282 	val = NULL;
5283 	c = strlen(tag);
5284 	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5285 		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5286 			if ('=' == v->text[c]) {
5287 				val = v->text + c + 1;
5288 				break;
5289 			} else if ('\0' == v->text[c]) {
5290 				val = "";
5291 				break;
5292 			}
5293 		}
5294 	}
5295 
5296 	return val;
5297 }
5298 
5299 
5300 void
free_varlist(struct ctl_var * kv)5301 free_varlist(
5302 	struct ctl_var *kv
5303 	)
5304 {
5305 	struct ctl_var *k;
5306 	if (kv) {
5307 		for (k = kv; !(k->flags & EOV); k++)
5308 			free((void *)(intptr_t)k->text);
5309 		free((void *)kv);
5310 	}
5311 }
5312