1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "clang/Driver/Driver.h"
10 #include "ToolChains/AIX.h"
11 #include "ToolChains/AMDGPU.h"
12 #include "ToolChains/AMDGPUOpenMP.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Ananas.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/CSKYToolChain.h"
17 #include "ToolChains/Clang.h"
18 #include "ToolChains/CloudABI.h"
19 #include "ToolChains/Contiki.h"
20 #include "ToolChains/CrossWindows.h"
21 #include "ToolChains/Cuda.h"
22 #include "ToolChains/Darwin.h"
23 #include "ToolChains/DragonFly.h"
24 #include "ToolChains/FreeBSD.h"
25 #include "ToolChains/Fuchsia.h"
26 #include "ToolChains/Gnu.h"
27 #include "ToolChains/HIPAMD.h"
28 #include "ToolChains/HIPSPV.h"
29 #include "ToolChains/HLSL.h"
30 #include "ToolChains/Haiku.h"
31 #include "ToolChains/Hexagon.h"
32 #include "ToolChains/Hurd.h"
33 #include "ToolChains/Lanai.h"
34 #include "ToolChains/Linux.h"
35 #include "ToolChains/MSP430.h"
36 #include "ToolChains/MSVC.h"
37 #include "ToolChains/MinGW.h"
38 #include "ToolChains/Minix.h"
39 #include "ToolChains/MipsLinux.h"
40 #include "ToolChains/Myriad.h"
41 #include "ToolChains/NaCl.h"
42 #include "ToolChains/NetBSD.h"
43 #include "ToolChains/OpenBSD.h"
44 #include "ToolChains/PPCFreeBSD.h"
45 #include "ToolChains/PPCLinux.h"
46 #include "ToolChains/PS4CPU.h"
47 #include "ToolChains/RISCVToolchain.h"
48 #include "ToolChains/SPIRV.h"
49 #include "ToolChains/Solaris.h"
50 #include "ToolChains/TCE.h"
51 #include "ToolChains/VEToolchain.h"
52 #include "ToolChains/WebAssembly.h"
53 #include "ToolChains/XCore.h"
54 #include "ToolChains/ZOS.h"
55 #include "clang/Basic/TargetID.h"
56 #include "clang/Basic/Version.h"
57 #include "clang/Config/config.h"
58 #include "clang/Driver/Action.h"
59 #include "clang/Driver/Compilation.h"
60 #include "clang/Driver/DriverDiagnostic.h"
61 #include "clang/Driver/InputInfo.h"
62 #include "clang/Driver/Job.h"
63 #include "clang/Driver/Options.h"
64 #include "clang/Driver/Phases.h"
65 #include "clang/Driver/SanitizerArgs.h"
66 #include "clang/Driver/Tool.h"
67 #include "clang/Driver/ToolChain.h"
68 #include "clang/Driver/Types.h"
69 #include "llvm/ADT/ArrayRef.h"
70 #include "llvm/ADT/STLExtras.h"
71 #include "llvm/ADT/SmallSet.h"
72 #include "llvm/ADT/StringExtras.h"
73 #include "llvm/ADT/StringRef.h"
74 #include "llvm/ADT/StringSet.h"
75 #include "llvm/ADT/StringSwitch.h"
76 #include "llvm/Config/llvm-config.h"
77 #include "llvm/MC/TargetRegistry.h"
78 #include "llvm/Option/Arg.h"
79 #include "llvm/Option/ArgList.h"
80 #include "llvm/Option/OptSpecifier.h"
81 #include "llvm/Option/OptTable.h"
82 #include "llvm/Option/Option.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/ExitCodes.h"
86 #include "llvm/Support/FileSystem.h"
87 #include "llvm/Support/FormatVariadic.h"
88 #include "llvm/Support/Host.h"
89 #include "llvm/Support/MD5.h"
90 #include "llvm/Support/Path.h"
91 #include "llvm/Support/PrettyStackTrace.h"
92 #include "llvm/Support/Process.h"
93 #include "llvm/Support/Program.h"
94 #include "llvm/Support/StringSaver.h"
95 #include "llvm/Support/VirtualFileSystem.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include <cstdlib> // ::getenv
98 #include <map>
99 #include <memory>
100 #include <optional>
101 #include <utility>
102 #if LLVM_ON_UNIX
103 #include <unistd.h> // getpid
104 #endif
105
106 using namespace clang::driver;
107 using namespace clang;
108 using namespace llvm::opt;
109
getOffloadTargetTriple(const Driver & D,const ArgList & Args)110 static std::optional<llvm::Triple> getOffloadTargetTriple(const Driver &D,
111 const ArgList &Args) {
112 auto OffloadTargets = Args.getAllArgValues(options::OPT_offload_EQ);
113 // Offload compilation flow does not support multiple targets for now. We
114 // need the HIPActionBuilder (and possibly the CudaActionBuilder{,Base}too)
115 // to support multiple tool chains first.
116 switch (OffloadTargets.size()) {
117 default:
118 D.Diag(diag::err_drv_only_one_offload_target_supported);
119 return std::nullopt;
120 case 0:
121 D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << "";
122 return std::nullopt;
123 case 1:
124 break;
125 }
126 return llvm::Triple(OffloadTargets[0]);
127 }
128
129 static std::optional<llvm::Triple>
getNVIDIAOffloadTargetTriple(const Driver & D,const ArgList & Args,const llvm::Triple & HostTriple)130 getNVIDIAOffloadTargetTriple(const Driver &D, const ArgList &Args,
131 const llvm::Triple &HostTriple) {
132 if (!Args.hasArg(options::OPT_offload_EQ)) {
133 return llvm::Triple(HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda"
134 : "nvptx-nvidia-cuda");
135 }
136 auto TT = getOffloadTargetTriple(D, Args);
137 if (TT && (TT->getArch() == llvm::Triple::spirv32 ||
138 TT->getArch() == llvm::Triple::spirv64)) {
139 if (Args.hasArg(options::OPT_emit_llvm))
140 return TT;
141 D.Diag(diag::err_drv_cuda_offload_only_emit_bc);
142 return std::nullopt;
143 }
144 D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
145 return std::nullopt;
146 }
147 static std::optional<llvm::Triple>
getHIPOffloadTargetTriple(const Driver & D,const ArgList & Args)148 getHIPOffloadTargetTriple(const Driver &D, const ArgList &Args) {
149 if (!Args.hasArg(options::OPT_offload_EQ)) {
150 return llvm::Triple("amdgcn-amd-amdhsa"); // Default HIP triple.
151 }
152 auto TT = getOffloadTargetTriple(D, Args);
153 if (!TT)
154 return std::nullopt;
155 if (TT->getArch() == llvm::Triple::amdgcn &&
156 TT->getVendor() == llvm::Triple::AMD &&
157 TT->getOS() == llvm::Triple::AMDHSA)
158 return TT;
159 if (TT->getArch() == llvm::Triple::spirv64)
160 return TT;
161 D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
162 return std::nullopt;
163 }
164
165 // static
GetResourcesPath(StringRef BinaryPath,StringRef CustomResourceDir)166 std::string Driver::GetResourcesPath(StringRef BinaryPath,
167 StringRef CustomResourceDir) {
168 // Since the resource directory is embedded in the module hash, it's important
169 // that all places that need it call this function, so that they get the
170 // exact same string ("a/../b/" and "b/" get different hashes, for example).
171
172 // Dir is bin/ or lib/, depending on where BinaryPath is.
173 std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
174
175 SmallString<128> P(Dir);
176 if (CustomResourceDir != "") {
177 llvm::sys::path::append(P, CustomResourceDir);
178 } else {
179 // On Windows, libclang.dll is in bin/.
180 // On non-Windows, libclang.so/.dylib is in lib/.
181 // With a static-library build of libclang, LibClangPath will contain the
182 // path of the embedding binary, which for LLVM binaries will be in bin/.
183 // ../lib gets us to lib/ in both cases.
184 P = llvm::sys::path::parent_path(Dir);
185 llvm::sys::path::append(P, CLANG_INSTALL_LIBDIR_BASENAME, "clang",
186 CLANG_VERSION_MAJOR_STRING);
187 }
188
189 return std::string(P.str());
190 }
191
Driver(StringRef ClangExecutable,StringRef TargetTriple,DiagnosticsEngine & Diags,std::string Title,IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)192 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
193 DiagnosticsEngine &Diags, std::string Title,
194 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
195 : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
196 SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
197 Offload(OffloadHostDevice), CXX20HeaderType(HeaderMode_None),
198 ModulesModeCXX20(false), LTOMode(LTOK_None),
199 ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
200 DriverTitle(Title), CCCPrintBindings(false), CCPrintOptions(false),
201 CCLogDiagnostics(false), CCGenDiagnostics(false),
202 CCPrintProcessStats(false), TargetTriple(TargetTriple), Saver(Alloc),
203 CheckInputsExist(true), ProbePrecompiled(true),
204 SuppressMissingInputWarning(false) {
205 // Provide a sane fallback if no VFS is specified.
206 if (!this->VFS)
207 this->VFS = llvm::vfs::getRealFileSystem();
208
209 Name = std::string(llvm::sys::path::filename(ClangExecutable));
210 Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
211 InstalledDir = Dir; // Provide a sensible default installed dir.
212
213 if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
214 // Prepend InstalledDir if SysRoot is relative
215 SmallString<128> P(InstalledDir);
216 llvm::sys::path::append(P, SysRoot);
217 SysRoot = std::string(P);
218 }
219
220 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
221 SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
222 #endif
223 #if defined(CLANG_CONFIG_FILE_USER_DIR)
224 {
225 SmallString<128> P;
226 llvm::sys::fs::expand_tilde(CLANG_CONFIG_FILE_USER_DIR, P);
227 UserConfigDir = static_cast<std::string>(P);
228 }
229 #endif
230
231 // Compute the path to the resource directory.
232 ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
233 }
234
setDriverMode(StringRef Value)235 void Driver::setDriverMode(StringRef Value) {
236 static const std::string OptName =
237 getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
238 if (auto M = llvm::StringSwitch<std::optional<DriverMode>>(Value)
239 .Case("gcc", GCCMode)
240 .Case("g++", GXXMode)
241 .Case("cpp", CPPMode)
242 .Case("cl", CLMode)
243 .Case("flang", FlangMode)
244 .Case("dxc", DXCMode)
245 .Default(std::nullopt))
246 Mode = *M;
247 else
248 Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
249 }
250
ParseArgStrings(ArrayRef<const char * > ArgStrings,bool IsClCompatMode,bool & ContainsError)251 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
252 bool IsClCompatMode,
253 bool &ContainsError) {
254 llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
255 ContainsError = false;
256
257 unsigned IncludedFlagsBitmask;
258 unsigned ExcludedFlagsBitmask;
259 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
260 getIncludeExcludeOptionFlagMasks(IsClCompatMode);
261
262 // Make sure that Flang-only options don't pollute the Clang output
263 // TODO: Make sure that Clang-only options don't pollute Flang output
264 if (!IsFlangMode())
265 ExcludedFlagsBitmask |= options::FlangOnlyOption;
266
267 unsigned MissingArgIndex, MissingArgCount;
268 InputArgList Args =
269 getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
270 IncludedFlagsBitmask, ExcludedFlagsBitmask);
271
272 // Check for missing argument error.
273 if (MissingArgCount) {
274 Diag(diag::err_drv_missing_argument)
275 << Args.getArgString(MissingArgIndex) << MissingArgCount;
276 ContainsError |=
277 Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
278 SourceLocation()) > DiagnosticsEngine::Warning;
279 }
280
281 // Check for unsupported options.
282 for (const Arg *A : Args) {
283 if (A->getOption().hasFlag(options::Unsupported)) {
284 unsigned DiagID;
285 auto ArgString = A->getAsString(Args);
286 std::string Nearest;
287 if (getOpts().findNearest(
288 ArgString, Nearest, IncludedFlagsBitmask,
289 ExcludedFlagsBitmask | options::Unsupported) > 1) {
290 DiagID = diag::err_drv_unsupported_opt;
291 Diag(DiagID) << ArgString;
292 } else {
293 DiagID = diag::err_drv_unsupported_opt_with_suggestion;
294 Diag(DiagID) << ArgString << Nearest;
295 }
296 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
297 DiagnosticsEngine::Warning;
298 continue;
299 }
300
301 // Warn about -mcpu= without an argument.
302 if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
303 Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
304 ContainsError |= Diags.getDiagnosticLevel(
305 diag::warn_drv_empty_joined_argument,
306 SourceLocation()) > DiagnosticsEngine::Warning;
307 }
308 }
309
310 for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
311 unsigned DiagID;
312 auto ArgString = A->getAsString(Args);
313 std::string Nearest;
314 if (getOpts().findNearest(ArgString, Nearest, IncludedFlagsBitmask,
315 ExcludedFlagsBitmask) > 1) {
316 if (!IsCLMode() &&
317 getOpts().findExact(ArgString, Nearest, options::CC1Option)) {
318 DiagID = diag::err_drv_unknown_argument_with_suggestion;
319 Diags.Report(DiagID) << ArgString << "-Xclang " + Nearest;
320 } else {
321 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
322 : diag::err_drv_unknown_argument;
323 Diags.Report(DiagID) << ArgString;
324 }
325 } else {
326 DiagID = IsCLMode()
327 ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
328 : diag::err_drv_unknown_argument_with_suggestion;
329 Diags.Report(DiagID) << ArgString << Nearest;
330 }
331 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
332 DiagnosticsEngine::Warning;
333 }
334
335 for (const Arg *A : Args.filtered(options::OPT_o)) {
336 if (ArgStrings[A->getIndex()] == A->getSpelling())
337 continue;
338
339 // Warn on joined arguments that are similar to a long argument.
340 std::string ArgString = ArgStrings[A->getIndex()];
341 std::string Nearest;
342 if (getOpts().findExact("-" + ArgString, Nearest, IncludedFlagsBitmask,
343 ExcludedFlagsBitmask))
344 Diags.Report(diag::warn_drv_potentially_misspelled_joined_argument)
345 << A->getAsString(Args) << Nearest;
346 }
347
348 return Args;
349 }
350
351 // Determine which compilation mode we are in. We look for options which
352 // affect the phase, starting with the earliest phases, and record which
353 // option we used to determine the final phase.
getFinalPhase(const DerivedArgList & DAL,Arg ** FinalPhaseArg) const354 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
355 Arg **FinalPhaseArg) const {
356 Arg *PhaseArg = nullptr;
357 phases::ID FinalPhase;
358
359 // -{E,EP,P,M,MM} only run the preprocessor.
360 if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
361 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
362 (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
363 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P)) ||
364 CCGenDiagnostics) {
365 FinalPhase = phases::Preprocess;
366
367 // --precompile only runs up to precompilation.
368 // Options that cause the output of C++20 compiled module interfaces or
369 // header units have the same effect.
370 } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile)) ||
371 (PhaseArg = DAL.getLastArg(options::OPT_extract_api)) ||
372 (PhaseArg = DAL.getLastArg(options::OPT_fmodule_header,
373 options::OPT_fmodule_header_EQ))) {
374 FinalPhase = phases::Precompile;
375 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
376 } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
377 (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
378 (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
379 (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
380 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
381 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
382 (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
383 (PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
384 (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
385 FinalPhase = phases::Compile;
386
387 // -S only runs up to the backend.
388 } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
389 FinalPhase = phases::Backend;
390
391 // -c compilation only runs up to the assembler.
392 } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
393 FinalPhase = phases::Assemble;
394
395 } else if ((PhaseArg = DAL.getLastArg(options::OPT_emit_interface_stubs))) {
396 FinalPhase = phases::IfsMerge;
397
398 // Otherwise do everything.
399 } else
400 FinalPhase = phases::Link;
401
402 if (FinalPhaseArg)
403 *FinalPhaseArg = PhaseArg;
404
405 return FinalPhase;
406 }
407
MakeInputArg(DerivedArgList & Args,const OptTable & Opts,StringRef Value,bool Claim=true)408 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
409 StringRef Value, bool Claim = true) {
410 Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
411 Args.getBaseArgs().MakeIndex(Value), Value.data());
412 Args.AddSynthesizedArg(A);
413 if (Claim)
414 A->claim();
415 return A;
416 }
417
TranslateInputArgs(const InputArgList & Args) const418 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
419 const llvm::opt::OptTable &Opts = getOpts();
420 DerivedArgList *DAL = new DerivedArgList(Args);
421
422 bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
423 bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
424 bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
425 bool IgnoreUnused = false;
426 for (Arg *A : Args) {
427 if (IgnoreUnused)
428 A->claim();
429
430 if (A->getOption().matches(options::OPT_start_no_unused_arguments)) {
431 IgnoreUnused = true;
432 continue;
433 }
434 if (A->getOption().matches(options::OPT_end_no_unused_arguments)) {
435 IgnoreUnused = false;
436 continue;
437 }
438
439 // Unfortunately, we have to parse some forwarding options (-Xassembler,
440 // -Xlinker, -Xpreprocessor) because we either integrate their functionality
441 // (assembler and preprocessor), or bypass a previous driver ('collect2').
442
443 // Rewrite linker options, to replace --no-demangle with a custom internal
444 // option.
445 if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
446 A->getOption().matches(options::OPT_Xlinker)) &&
447 A->containsValue("--no-demangle")) {
448 // Add the rewritten no-demangle argument.
449 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
450
451 // Add the remaining values as Xlinker arguments.
452 for (StringRef Val : A->getValues())
453 if (Val != "--no-demangle")
454 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
455
456 continue;
457 }
458
459 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
460 // some build systems. We don't try to be complete here because we don't
461 // care to encourage this usage model.
462 if (A->getOption().matches(options::OPT_Wp_COMMA) &&
463 (A->getValue(0) == StringRef("-MD") ||
464 A->getValue(0) == StringRef("-MMD"))) {
465 // Rewrite to -MD/-MMD along with -MF.
466 if (A->getValue(0) == StringRef("-MD"))
467 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
468 else
469 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
470 if (A->getNumValues() == 2)
471 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
472 continue;
473 }
474
475 // Rewrite reserved library names.
476 if (A->getOption().matches(options::OPT_l)) {
477 StringRef Value = A->getValue();
478
479 // Rewrite unless -nostdlib is present.
480 if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
481 Value == "stdc++") {
482 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
483 continue;
484 }
485
486 // Rewrite unconditionally.
487 if (Value == "cc_kext") {
488 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
489 continue;
490 }
491 }
492
493 // Pick up inputs via the -- option.
494 if (A->getOption().matches(options::OPT__DASH_DASH)) {
495 A->claim();
496 for (StringRef Val : A->getValues())
497 DAL->append(MakeInputArg(*DAL, Opts, Val, false));
498 continue;
499 }
500
501 DAL->append(A);
502 }
503
504 // Enforce -static if -miamcu is present.
505 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
506 DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_static));
507
508 // Add a default value of -mlinker-version=, if one was given and the user
509 // didn't specify one.
510 #if defined(HOST_LINK_VERSION)
511 if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
512 strlen(HOST_LINK_VERSION) > 0) {
513 DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
514 HOST_LINK_VERSION);
515 DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
516 }
517 #endif
518
519 return DAL;
520 }
521
522 /// Compute target triple from args.
523 ///
524 /// This routine provides the logic to compute a target triple from various
525 /// args passed to the driver and the default triple string.
computeTargetTriple(const Driver & D,StringRef TargetTriple,const ArgList & Args,StringRef DarwinArchName="")526 static llvm::Triple computeTargetTriple(const Driver &D,
527 StringRef TargetTriple,
528 const ArgList &Args,
529 StringRef DarwinArchName = "") {
530 // FIXME: Already done in Compilation *Driver::BuildCompilation
531 if (const Arg *A = Args.getLastArg(options::OPT_target))
532 TargetTriple = A->getValue();
533
534 llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
535
536 // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
537 // -gnu* only, and we can not change this, so we have to detect that case as
538 // being the Hurd OS.
539 if (TargetTriple.contains("-unknown-gnu") || TargetTriple.contains("-pc-gnu"))
540 Target.setOSName("hurd");
541
542 // Handle Apple-specific options available here.
543 if (Target.isOSBinFormatMachO()) {
544 // If an explicit Darwin arch name is given, that trumps all.
545 if (!DarwinArchName.empty()) {
546 tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
547 return Target;
548 }
549
550 // Handle the Darwin '-arch' flag.
551 if (Arg *A = Args.getLastArg(options::OPT_arch)) {
552 StringRef ArchName = A->getValue();
553 tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
554 }
555 }
556
557 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
558 // '-mbig-endian'/'-EB'.
559 if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
560 options::OPT_mbig_endian)) {
561 if (A->getOption().matches(options::OPT_mlittle_endian)) {
562 llvm::Triple LE = Target.getLittleEndianArchVariant();
563 if (LE.getArch() != llvm::Triple::UnknownArch)
564 Target = std::move(LE);
565 } else {
566 llvm::Triple BE = Target.getBigEndianArchVariant();
567 if (BE.getArch() != llvm::Triple::UnknownArch)
568 Target = std::move(BE);
569 }
570 }
571
572 // Skip further flag support on OSes which don't support '-m32' or '-m64'.
573 if (Target.getArch() == llvm::Triple::tce ||
574 Target.getOS() == llvm::Triple::Minix)
575 return Target;
576
577 // On AIX, the env OBJECT_MODE may affect the resulting arch variant.
578 if (Target.isOSAIX()) {
579 if (std::optional<std::string> ObjectModeValue =
580 llvm::sys::Process::GetEnv("OBJECT_MODE")) {
581 StringRef ObjectMode = *ObjectModeValue;
582 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
583
584 if (ObjectMode.equals("64")) {
585 AT = Target.get64BitArchVariant().getArch();
586 } else if (ObjectMode.equals("32")) {
587 AT = Target.get32BitArchVariant().getArch();
588 } else {
589 D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
590 }
591
592 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
593 Target.setArch(AT);
594 }
595 }
596
597 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
598 Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
599 options::OPT_m32, options::OPT_m16);
600 if (A) {
601 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
602
603 if (A->getOption().matches(options::OPT_m64)) {
604 AT = Target.get64BitArchVariant().getArch();
605 if (Target.getEnvironment() == llvm::Triple::GNUX32)
606 Target.setEnvironment(llvm::Triple::GNU);
607 else if (Target.getEnvironment() == llvm::Triple::MuslX32)
608 Target.setEnvironment(llvm::Triple::Musl);
609 } else if (A->getOption().matches(options::OPT_mx32) &&
610 Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
611 AT = llvm::Triple::x86_64;
612 if (Target.getEnvironment() == llvm::Triple::Musl)
613 Target.setEnvironment(llvm::Triple::MuslX32);
614 else
615 Target.setEnvironment(llvm::Triple::GNUX32);
616 } else if (A->getOption().matches(options::OPT_m32)) {
617 AT = Target.get32BitArchVariant().getArch();
618 if (Target.getEnvironment() == llvm::Triple::GNUX32)
619 Target.setEnvironment(llvm::Triple::GNU);
620 else if (Target.getEnvironment() == llvm::Triple::MuslX32)
621 Target.setEnvironment(llvm::Triple::Musl);
622 } else if (A->getOption().matches(options::OPT_m16) &&
623 Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
624 AT = llvm::Triple::x86;
625 Target.setEnvironment(llvm::Triple::CODE16);
626 }
627
628 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) {
629 Target.setArch(AT);
630 if (Target.isWindowsGNUEnvironment())
631 toolchains::MinGW::fixTripleArch(D, Target, Args);
632 }
633 }
634
635 // Handle -miamcu flag.
636 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
637 if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
638 D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
639 << Target.str();
640
641 if (A && !A->getOption().matches(options::OPT_m32))
642 D.Diag(diag::err_drv_argument_not_allowed_with)
643 << "-miamcu" << A->getBaseArg().getAsString(Args);
644
645 Target.setArch(llvm::Triple::x86);
646 Target.setArchName("i586");
647 Target.setEnvironment(llvm::Triple::UnknownEnvironment);
648 Target.setEnvironmentName("");
649 Target.setOS(llvm::Triple::ELFIAMCU);
650 Target.setVendor(llvm::Triple::UnknownVendor);
651 Target.setVendorName("intel");
652 }
653
654 // If target is MIPS adjust the target triple
655 // accordingly to provided ABI name.
656 if (Target.isMIPS()) {
657 if ((A = Args.getLastArg(options::OPT_mabi_EQ))) {
658 StringRef ABIName = A->getValue();
659 if (ABIName == "32") {
660 Target = Target.get32BitArchVariant();
661 if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
662 Target.getEnvironment() == llvm::Triple::GNUABIN32)
663 Target.setEnvironment(llvm::Triple::GNU);
664 } else if (ABIName == "n32") {
665 Target = Target.get64BitArchVariant();
666 if (Target.getEnvironment() == llvm::Triple::GNU ||
667 Target.getEnvironment() == llvm::Triple::GNUABI64)
668 Target.setEnvironment(llvm::Triple::GNUABIN32);
669 } else if (ABIName == "64") {
670 Target = Target.get64BitArchVariant();
671 if (Target.getEnvironment() == llvm::Triple::GNU ||
672 Target.getEnvironment() == llvm::Triple::GNUABIN32)
673 Target.setEnvironment(llvm::Triple::GNUABI64);
674 }
675 }
676 }
677
678 // If target is RISC-V adjust the target triple according to
679 // provided architecture name
680 if (Target.isRISCV()) {
681 if ((A = Args.getLastArg(options::OPT_march_EQ))) {
682 StringRef ArchName = A->getValue();
683 if (ArchName.startswith_insensitive("rv32"))
684 Target.setArch(llvm::Triple::riscv32);
685 else if (ArchName.startswith_insensitive("rv64"))
686 Target.setArch(llvm::Triple::riscv64);
687 }
688 }
689
690 return Target;
691 }
692
693 // Parse the LTO options and record the type of LTO compilation
694 // based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
695 // option occurs last.
parseLTOMode(Driver & D,const llvm::opt::ArgList & Args,OptSpecifier OptEq,OptSpecifier OptNeg)696 static driver::LTOKind parseLTOMode(Driver &D, const llvm::opt::ArgList &Args,
697 OptSpecifier OptEq, OptSpecifier OptNeg) {
698 if (!Args.hasFlag(OptEq, OptNeg, false))
699 return LTOK_None;
700
701 const Arg *A = Args.getLastArg(OptEq);
702 StringRef LTOName = A->getValue();
703
704 driver::LTOKind LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
705 .Case("full", LTOK_Full)
706 .Case("thin", LTOK_Thin)
707 .Default(LTOK_Unknown);
708
709 if (LTOMode == LTOK_Unknown) {
710 D.Diag(diag::err_drv_unsupported_option_argument)
711 << A->getSpelling() << A->getValue();
712 return LTOK_None;
713 }
714 return LTOMode;
715 }
716
717 // Parse the LTO options.
setLTOMode(const llvm::opt::ArgList & Args)718 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
719 LTOMode =
720 parseLTOMode(*this, Args, options::OPT_flto_EQ, options::OPT_fno_lto);
721
722 OffloadLTOMode = parseLTOMode(*this, Args, options::OPT_foffload_lto_EQ,
723 options::OPT_fno_offload_lto);
724
725 // Try to enable `-foffload-lto=full` if `-fopenmp-target-jit` is on.
726 if (Args.hasFlag(options::OPT_fopenmp_target_jit,
727 options::OPT_fno_openmp_target_jit, false)) {
728 if (Arg *A = Args.getLastArg(options::OPT_foffload_lto_EQ,
729 options::OPT_fno_offload_lto))
730 if (OffloadLTOMode != LTOK_Full)
731 Diag(diag::err_drv_incompatible_options)
732 << A->getSpelling() << "-fopenmp-target-jit";
733 OffloadLTOMode = LTOK_Full;
734 }
735 }
736
737 /// Compute the desired OpenMP runtime from the flags provided.
getOpenMPRuntime(const ArgList & Args) const738 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
739 StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
740
741 const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
742 if (A)
743 RuntimeName = A->getValue();
744
745 auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
746 .Case("libomp", OMPRT_OMP)
747 .Case("libgomp", OMPRT_GOMP)
748 .Case("libiomp5", OMPRT_IOMP5)
749 .Default(OMPRT_Unknown);
750
751 if (RT == OMPRT_Unknown) {
752 if (A)
753 Diag(diag::err_drv_unsupported_option_argument)
754 << A->getSpelling() << A->getValue();
755 else
756 // FIXME: We could use a nicer diagnostic here.
757 Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
758 }
759
760 return RT;
761 }
762
CreateOffloadingDeviceToolChains(Compilation & C,InputList & Inputs)763 void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
764 InputList &Inputs) {
765
766 //
767 // CUDA/HIP
768 //
769 // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
770 // or HIP type. However, mixed CUDA/HIP compilation is not supported.
771 bool IsCuda =
772 llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
773 return types::isCuda(I.first);
774 });
775 bool IsHIP =
776 llvm::any_of(Inputs,
777 [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
778 return types::isHIP(I.first);
779 }) ||
780 C.getInputArgs().hasArg(options::OPT_hip_link);
781 if (IsCuda && IsHIP) {
782 Diag(clang::diag::err_drv_mix_cuda_hip);
783 return;
784 }
785 if (IsCuda) {
786 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
787 const llvm::Triple &HostTriple = HostTC->getTriple();
788 auto OFK = Action::OFK_Cuda;
789 auto CudaTriple =
790 getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(), HostTriple);
791 if (!CudaTriple)
792 return;
793 // Use the CUDA and host triples as the key into the ToolChains map,
794 // because the device toolchain we create depends on both.
795 auto &CudaTC = ToolChains[CudaTriple->str() + "/" + HostTriple.str()];
796 if (!CudaTC) {
797 CudaTC = std::make_unique<toolchains::CudaToolChain>(
798 *this, *CudaTriple, *HostTC, C.getInputArgs());
799 }
800 C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
801 } else if (IsHIP) {
802 if (auto *OMPTargetArg =
803 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
804 Diag(clang::diag::err_drv_unsupported_opt_for_language_mode)
805 << OMPTargetArg->getSpelling() << "HIP";
806 return;
807 }
808 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
809 auto OFK = Action::OFK_HIP;
810 auto HIPTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
811 if (!HIPTriple)
812 return;
813 auto *HIPTC = &getOffloadingDeviceToolChain(C.getInputArgs(), *HIPTriple,
814 *HostTC, OFK);
815 assert(HIPTC && "Could not create offloading device tool chain.");
816 C.addOffloadDeviceToolChain(HIPTC, OFK);
817 }
818
819 //
820 // OpenMP
821 //
822 // We need to generate an OpenMP toolchain if the user specified targets with
823 // the -fopenmp-targets option or used --offload-arch with OpenMP enabled.
824 bool IsOpenMPOffloading =
825 C.getInputArgs().hasFlag(options::OPT_fopenmp, options::OPT_fopenmp_EQ,
826 options::OPT_fno_openmp, false) &&
827 (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ) ||
828 C.getInputArgs().hasArg(options::OPT_offload_arch_EQ));
829 if (IsOpenMPOffloading) {
830 // We expect that -fopenmp-targets is always used in conjunction with the
831 // option -fopenmp specifying a valid runtime with offloading support, i.e.
832 // libomp or libiomp.
833 OpenMPRuntimeKind RuntimeKind = getOpenMPRuntime(C.getInputArgs());
834 if (RuntimeKind != OMPRT_OMP && RuntimeKind != OMPRT_IOMP5) {
835 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
836 return;
837 }
838
839 llvm::StringMap<llvm::DenseSet<StringRef>> DerivedArchs;
840 llvm::StringMap<StringRef> FoundNormalizedTriples;
841 llvm::SmallVector<StringRef, 4> OpenMPTriples;
842
843 // If the user specified -fopenmp-targets= we create a toolchain for each
844 // valid triple. Otherwise, if only --offload-arch= was specified we instead
845 // attempt to derive the appropriate toolchains from the arguments.
846 if (Arg *OpenMPTargets =
847 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
848 if (OpenMPTargets && !OpenMPTargets->getNumValues()) {
849 Diag(clang::diag::warn_drv_empty_joined_argument)
850 << OpenMPTargets->getAsString(C.getInputArgs());
851 return;
852 }
853 llvm::copy(OpenMPTargets->getValues(), std::back_inserter(OpenMPTriples));
854 } else if (C.getInputArgs().hasArg(options::OPT_offload_arch_EQ) &&
855 !IsHIP && !IsCuda) {
856 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
857 auto AMDTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
858 auto NVPTXTriple = getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(),
859 HostTC->getTriple());
860
861 // Attempt to deduce the offloading triple from the set of architectures.
862 // We can only correctly deduce NVPTX / AMDGPU triples currently. We need
863 // to temporarily create these toolchains so that we can access tools for
864 // inferring architectures.
865 llvm::DenseSet<StringRef> Archs;
866 if (NVPTXTriple) {
867 auto TempTC = std::make_unique<toolchains::CudaToolChain>(
868 *this, *NVPTXTriple, *HostTC, C.getInputArgs());
869 for (StringRef Arch : getOffloadArchs(
870 C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true))
871 Archs.insert(Arch);
872 }
873 if (AMDTriple) {
874 auto TempTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
875 *this, *AMDTriple, *HostTC, C.getInputArgs());
876 for (StringRef Arch : getOffloadArchs(
877 C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true))
878 Archs.insert(Arch);
879 }
880 if (!AMDTriple && !NVPTXTriple) {
881 for (StringRef Arch :
882 getOffloadArchs(C, C.getArgs(), Action::OFK_OpenMP, nullptr, true))
883 Archs.insert(Arch);
884 }
885
886 for (StringRef Arch : Archs) {
887 if (NVPTXTriple && IsNVIDIAGpuArch(StringToCudaArch(
888 getProcessorFromTargetID(*NVPTXTriple, Arch)))) {
889 DerivedArchs[NVPTXTriple->getTriple()].insert(Arch);
890 } else if (AMDTriple &&
891 IsAMDGpuArch(StringToCudaArch(
892 getProcessorFromTargetID(*AMDTriple, Arch)))) {
893 DerivedArchs[AMDTriple->getTriple()].insert(Arch);
894 } else {
895 Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch) << Arch;
896 return;
897 }
898 }
899
900 // If the set is empty then we failed to find a native architecture.
901 if (Archs.empty()) {
902 Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch)
903 << "native";
904 return;
905 }
906
907 for (const auto &TripleAndArchs : DerivedArchs)
908 OpenMPTriples.push_back(TripleAndArchs.first());
909 }
910
911 for (StringRef Val : OpenMPTriples) {
912 llvm::Triple TT(ToolChain::getOpenMPTriple(Val));
913 std::string NormalizedName = TT.normalize();
914
915 // Make sure we don't have a duplicate triple.
916 auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
917 if (Duplicate != FoundNormalizedTriples.end()) {
918 Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
919 << Val << Duplicate->second;
920 continue;
921 }
922
923 // Store the current triple so that we can check for duplicates in the
924 // following iterations.
925 FoundNormalizedTriples[NormalizedName] = Val;
926
927 // If the specified target is invalid, emit a diagnostic.
928 if (TT.getArch() == llvm::Triple::UnknownArch)
929 Diag(clang::diag::err_drv_invalid_omp_target) << Val;
930 else {
931 const ToolChain *TC;
932 // Device toolchains have to be selected differently. They pair host
933 // and device in their implementation.
934 if (TT.isNVPTX() || TT.isAMDGCN()) {
935 const ToolChain *HostTC =
936 C.getSingleOffloadToolChain<Action::OFK_Host>();
937 assert(HostTC && "Host toolchain should be always defined.");
938 auto &DeviceTC =
939 ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
940 if (!DeviceTC) {
941 if (TT.isNVPTX())
942 DeviceTC = std::make_unique<toolchains::CudaToolChain>(
943 *this, TT, *HostTC, C.getInputArgs());
944 else if (TT.isAMDGCN())
945 DeviceTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
946 *this, TT, *HostTC, C.getInputArgs());
947 else
948 assert(DeviceTC && "Device toolchain not defined.");
949 }
950
951 TC = DeviceTC.get();
952 } else
953 TC = &getToolChain(C.getInputArgs(), TT);
954 C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
955 if (DerivedArchs.find(TT.getTriple()) != DerivedArchs.end())
956 KnownArchs[TC] = DerivedArchs[TT.getTriple()];
957 }
958 }
959 } else if (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ)) {
960 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
961 return;
962 }
963
964 //
965 // TODO: Add support for other offloading programming models here.
966 //
967 }
968
appendOneArg(InputArgList & Args,const Arg * Opt,const Arg * BaseArg)969 static void appendOneArg(InputArgList &Args, const Arg *Opt,
970 const Arg *BaseArg) {
971 // The args for config files or /clang: flags belong to different InputArgList
972 // objects than Args. This copies an Arg from one of those other InputArgLists
973 // to the ownership of Args.
974 unsigned Index = Args.MakeIndex(Opt->getSpelling());
975 Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index),
976 Index, BaseArg);
977 Copy->getValues() = Opt->getValues();
978 if (Opt->isClaimed())
979 Copy->claim();
980 Copy->setOwnsValues(Opt->getOwnsValues());
981 Opt->setOwnsValues(false);
982 Args.append(Copy);
983 }
984
readConfigFile(StringRef FileName,llvm::cl::ExpansionContext & ExpCtx)985 bool Driver::readConfigFile(StringRef FileName,
986 llvm::cl::ExpansionContext &ExpCtx) {
987 // Try opening the given file.
988 auto Status = getVFS().status(FileName);
989 if (!Status) {
990 Diag(diag::err_drv_cannot_open_config_file)
991 << FileName << Status.getError().message();
992 return true;
993 }
994 if (Status->getType() != llvm::sys::fs::file_type::regular_file) {
995 Diag(diag::err_drv_cannot_open_config_file)
996 << FileName << "not a regular file";
997 return true;
998 }
999
1000 // Try reading the given file.
1001 SmallVector<const char *, 32> NewCfgArgs;
1002 if (llvm::Error Err = ExpCtx.readConfigFile(FileName, NewCfgArgs)) {
1003 Diag(diag::err_drv_cannot_read_config_file)
1004 << FileName << toString(std::move(Err));
1005 return true;
1006 }
1007
1008 // Read options from config file.
1009 llvm::SmallString<128> CfgFileName(FileName);
1010 llvm::sys::path::native(CfgFileName);
1011 bool ContainErrors;
1012 std::unique_ptr<InputArgList> NewOptions = std::make_unique<InputArgList>(
1013 ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
1014 if (ContainErrors)
1015 return true;
1016
1017 // Claim all arguments that come from a configuration file so that the driver
1018 // does not warn on any that is unused.
1019 for (Arg *A : *NewOptions)
1020 A->claim();
1021
1022 if (!CfgOptions)
1023 CfgOptions = std::move(NewOptions);
1024 else {
1025 // If this is a subsequent config file, append options to the previous one.
1026 for (auto *Opt : *NewOptions) {
1027 const Arg *BaseArg = &Opt->getBaseArg();
1028 if (BaseArg == Opt)
1029 BaseArg = nullptr;
1030 appendOneArg(*CfgOptions, Opt, BaseArg);
1031 }
1032 }
1033 ConfigFiles.push_back(std::string(CfgFileName));
1034 return false;
1035 }
1036
loadConfigFiles()1037 bool Driver::loadConfigFiles() {
1038 llvm::cl::ExpansionContext ExpCtx(Saver.getAllocator(),
1039 llvm::cl::tokenizeConfigFile);
1040 ExpCtx.setVFS(&getVFS());
1041
1042 // Process options that change search path for config files.
1043 if (CLOptions) {
1044 if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
1045 SmallString<128> CfgDir;
1046 CfgDir.append(
1047 CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
1048 if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir))
1049 SystemConfigDir.clear();
1050 else
1051 SystemConfigDir = static_cast<std::string>(CfgDir);
1052 }
1053 if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
1054 SmallString<128> CfgDir;
1055 llvm::sys::fs::expand_tilde(
1056 CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ), CfgDir);
1057 if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir))
1058 UserConfigDir.clear();
1059 else
1060 UserConfigDir = static_cast<std::string>(CfgDir);
1061 }
1062 }
1063
1064 // Prepare list of directories where config file is searched for.
1065 StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir};
1066 ExpCtx.setSearchDirs(CfgFileSearchDirs);
1067
1068 // First try to load configuration from the default files, return on error.
1069 if (loadDefaultConfigFiles(ExpCtx))
1070 return true;
1071
1072 // Then load configuration files specified explicitly.
1073 SmallString<128> CfgFilePath;
1074 if (CLOptions) {
1075 for (auto CfgFileName : CLOptions->getAllArgValues(options::OPT_config)) {
1076 // If argument contains directory separator, treat it as a path to
1077 // configuration file.
1078 if (llvm::sys::path::has_parent_path(CfgFileName)) {
1079 CfgFilePath.assign(CfgFileName);
1080 if (llvm::sys::path::is_relative(CfgFilePath)) {
1081 if (getVFS().makeAbsolute(CfgFilePath)) {
1082 Diag(diag::err_drv_cannot_open_config_file)
1083 << CfgFilePath << "cannot get absolute path";
1084 return true;
1085 }
1086 }
1087 } else if (!ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) {
1088 // Report an error that the config file could not be found.
1089 Diag(diag::err_drv_config_file_not_found) << CfgFileName;
1090 for (const StringRef &SearchDir : CfgFileSearchDirs)
1091 if (!SearchDir.empty())
1092 Diag(diag::note_drv_config_file_searched_in) << SearchDir;
1093 return true;
1094 }
1095
1096 // Try to read the config file, return on error.
1097 if (readConfigFile(CfgFilePath, ExpCtx))
1098 return true;
1099 }
1100 }
1101
1102 // No error occurred.
1103 return false;
1104 }
1105
loadDefaultConfigFiles(llvm::cl::ExpansionContext & ExpCtx)1106 bool Driver::loadDefaultConfigFiles(llvm::cl::ExpansionContext &ExpCtx) {
1107 // Disable default config if CLANG_NO_DEFAULT_CONFIG is set to a non-empty
1108 // value.
1109 if (const char *NoConfigEnv = ::getenv("CLANG_NO_DEFAULT_CONFIG")) {
1110 if (*NoConfigEnv)
1111 return false;
1112 }
1113 if (CLOptions && CLOptions->hasArg(options::OPT_no_default_config))
1114 return false;
1115
1116 std::string RealMode = getExecutableForDriverMode(Mode);
1117 std::string Triple;
1118
1119 // If name prefix is present, no --target= override was passed via CLOptions
1120 // and the name prefix is not a valid triple, force it for backwards
1121 // compatibility.
1122 if (!ClangNameParts.TargetPrefix.empty() &&
1123 computeTargetTriple(*this, "/invalid/", *CLOptions).str() ==
1124 "/invalid/") {
1125 llvm::Triple PrefixTriple{ClangNameParts.TargetPrefix};
1126 if (PrefixTriple.getArch() == llvm::Triple::UnknownArch ||
1127 PrefixTriple.isOSUnknown())
1128 Triple = PrefixTriple.str();
1129 }
1130
1131 // Otherwise, use the real triple as used by the driver.
1132 if (Triple.empty()) {
1133 llvm::Triple RealTriple =
1134 computeTargetTriple(*this, TargetTriple, *CLOptions);
1135 Triple = RealTriple.str();
1136 assert(!Triple.empty());
1137 }
1138
1139 // Search for config files in the following order:
1140 // 1. <triple>-<mode>.cfg using real driver mode
1141 // (e.g. i386-pc-linux-gnu-clang++.cfg).
1142 // 2. <triple>-<mode>.cfg using executable suffix
1143 // (e.g. i386-pc-linux-gnu-clang-g++.cfg for *clang-g++).
1144 // 3. <triple>.cfg + <mode>.cfg using real driver mode
1145 // (e.g. i386-pc-linux-gnu.cfg + clang++.cfg).
1146 // 4. <triple>.cfg + <mode>.cfg using executable suffix
1147 // (e.g. i386-pc-linux-gnu.cfg + clang-g++.cfg for *clang-g++).
1148
1149 // Try loading <triple>-<mode>.cfg, and return if we find a match.
1150 SmallString<128> CfgFilePath;
1151 std::string CfgFileName = Triple + '-' + RealMode + ".cfg";
1152 if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1153 return readConfigFile(CfgFilePath, ExpCtx);
1154
1155 bool TryModeSuffix = !ClangNameParts.ModeSuffix.empty() &&
1156 ClangNameParts.ModeSuffix != RealMode;
1157 if (TryModeSuffix) {
1158 CfgFileName = Triple + '-' + ClangNameParts.ModeSuffix + ".cfg";
1159 if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1160 return readConfigFile(CfgFilePath, ExpCtx);
1161 }
1162
1163 // Try loading <mode>.cfg, and return if loading failed. If a matching file
1164 // was not found, still proceed on to try <triple>.cfg.
1165 CfgFileName = RealMode + ".cfg";
1166 if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) {
1167 if (readConfigFile(CfgFilePath, ExpCtx))
1168 return true;
1169 } else if (TryModeSuffix) {
1170 CfgFileName = ClangNameParts.ModeSuffix + ".cfg";
1171 if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath) &&
1172 readConfigFile(CfgFilePath, ExpCtx))
1173 return true;
1174 }
1175
1176 // Try loading <triple>.cfg and return if we find a match.
1177 CfgFileName = Triple + ".cfg";
1178 if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1179 return readConfigFile(CfgFilePath, ExpCtx);
1180
1181 // If we were unable to find a config file deduced from executable name,
1182 // that is not an error.
1183 return false;
1184 }
1185
BuildCompilation(ArrayRef<const char * > ArgList)1186 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
1187 llvm::PrettyStackTraceString CrashInfo("Compilation construction");
1188
1189 // FIXME: Handle environment options which affect driver behavior, somewhere
1190 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
1191
1192 // We look for the driver mode option early, because the mode can affect
1193 // how other options are parsed.
1194
1195 auto DriverMode = getDriverMode(ClangExecutable, ArgList.slice(1));
1196 if (!DriverMode.empty())
1197 setDriverMode(DriverMode);
1198
1199 // FIXME: What are we going to do with -V and -b?
1200
1201 // Arguments specified in command line.
1202 bool ContainsError;
1203 CLOptions = std::make_unique<InputArgList>(
1204 ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
1205
1206 // Try parsing configuration file.
1207 if (!ContainsError)
1208 ContainsError = loadConfigFiles();
1209 bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
1210
1211 // All arguments, from both config file and command line.
1212 InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
1213 : std::move(*CLOptions));
1214
1215 if (HasConfigFile)
1216 for (auto *Opt : *CLOptions) {
1217 if (Opt->getOption().matches(options::OPT_config))
1218 continue;
1219 const Arg *BaseArg = &Opt->getBaseArg();
1220 if (BaseArg == Opt)
1221 BaseArg = nullptr;
1222 appendOneArg(Args, Opt, BaseArg);
1223 }
1224
1225 // In CL mode, look for any pass-through arguments
1226 if (IsCLMode() && !ContainsError) {
1227 SmallVector<const char *, 16> CLModePassThroughArgList;
1228 for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1229 A->claim();
1230 CLModePassThroughArgList.push_back(A->getValue());
1231 }
1232
1233 if (!CLModePassThroughArgList.empty()) {
1234 // Parse any pass through args using default clang processing rather
1235 // than clang-cl processing.
1236 auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1237 ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
1238
1239 if (!ContainsError)
1240 for (auto *Opt : *CLModePassThroughOptions) {
1241 appendOneArg(Args, Opt, nullptr);
1242 }
1243 }
1244 }
1245
1246 // Check for working directory option before accessing any files
1247 if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1248 if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1249 Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1250
1251 // FIXME: This stuff needs to go into the Compilation, not the driver.
1252 bool CCCPrintPhases;
1253
1254 // -canonical-prefixes, -no-canonical-prefixes are used very early in main.
1255 Args.ClaimAllArgs(options::OPT_canonical_prefixes);
1256 Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1257
1258 // f(no-)integated-cc1 is also used very early in main.
1259 Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1260 Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1261
1262 // Ignore -pipe.
1263 Args.ClaimAllArgs(options::OPT_pipe);
1264
1265 // Extract -ccc args.
1266 //
1267 // FIXME: We need to figure out where this behavior should live. Most of it
1268 // should be outside in the client; the parts that aren't should have proper
1269 // options, either by introducing new ones or by overloading gcc ones like -V
1270 // or -b.
1271 CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1272 CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1273 if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1274 CCCGenericGCCName = A->getValue();
1275
1276 // Process -fproc-stat-report options.
1277 if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) {
1278 CCPrintProcessStats = true;
1279 CCPrintStatReportFilename = A->getValue();
1280 }
1281 if (Args.hasArg(options::OPT_fproc_stat_report))
1282 CCPrintProcessStats = true;
1283
1284 // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1285 // and getToolChain is const.
1286 if (IsCLMode()) {
1287 // clang-cl targets MSVC-style Win32.
1288 llvm::Triple T(TargetTriple);
1289 T.setOS(llvm::Triple::Win32);
1290 T.setVendor(llvm::Triple::PC);
1291 T.setEnvironment(llvm::Triple::MSVC);
1292 T.setObjectFormat(llvm::Triple::COFF);
1293 if (Args.hasArg(options::OPT__SLASH_arm64EC))
1294 T.setArch(llvm::Triple::aarch64, llvm::Triple::AArch64SubArch_arm64ec);
1295 TargetTriple = T.str();
1296 } else if (IsDXCMode()) {
1297 // Build TargetTriple from target_profile option for clang-dxc.
1298 if (const Arg *A = Args.getLastArg(options::OPT_target_profile)) {
1299 StringRef TargetProfile = A->getValue();
1300 if (auto Triple =
1301 toolchains::HLSLToolChain::parseTargetProfile(TargetProfile))
1302 TargetTriple = *Triple;
1303 else
1304 Diag(diag::err_drv_invalid_directx_shader_module) << TargetProfile;
1305
1306 A->claim();
1307 } else {
1308 Diag(diag::err_drv_dxc_missing_target_profile);
1309 }
1310 }
1311
1312 if (const Arg *A = Args.getLastArg(options::OPT_target))
1313 TargetTriple = A->getValue();
1314 if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1315 Dir = InstalledDir = A->getValue();
1316 for (const Arg *A : Args.filtered(options::OPT_B)) {
1317 A->claim();
1318 PrefixDirs.push_back(A->getValue(0));
1319 }
1320 if (std::optional<std::string> CompilerPathValue =
1321 llvm::sys::Process::GetEnv("COMPILER_PATH")) {
1322 StringRef CompilerPath = *CompilerPathValue;
1323 while (!CompilerPath.empty()) {
1324 std::pair<StringRef, StringRef> Split =
1325 CompilerPath.split(llvm::sys::EnvPathSeparator);
1326 PrefixDirs.push_back(std::string(Split.first));
1327 CompilerPath = Split.second;
1328 }
1329 }
1330 if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1331 SysRoot = A->getValue();
1332 if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1333 DyldPrefix = A->getValue();
1334
1335 if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1336 ResourceDir = A->getValue();
1337
1338 if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1339 SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1340 .Case("cwd", SaveTempsCwd)
1341 .Case("obj", SaveTempsObj)
1342 .Default(SaveTempsCwd);
1343 }
1344
1345 if (const Arg *A = Args.getLastArg(options::OPT_offload_host_only,
1346 options::OPT_offload_device_only,
1347 options::OPT_offload_host_device)) {
1348 if (A->getOption().matches(options::OPT_offload_host_only))
1349 Offload = OffloadHost;
1350 else if (A->getOption().matches(options::OPT_offload_device_only))
1351 Offload = OffloadDevice;
1352 else
1353 Offload = OffloadHostDevice;
1354 }
1355
1356 setLTOMode(Args);
1357
1358 // Process -fembed-bitcode= flags.
1359 if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1360 StringRef Name = A->getValue();
1361 unsigned Model = llvm::StringSwitch<unsigned>(Name)
1362 .Case("off", EmbedNone)
1363 .Case("all", EmbedBitcode)
1364 .Case("bitcode", EmbedBitcode)
1365 .Case("marker", EmbedMarker)
1366 .Default(~0U);
1367 if (Model == ~0U) {
1368 Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1369 << Name;
1370 } else
1371 BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1372 }
1373
1374 // Remove existing compilation database so that each job can append to it.
1375 if (Arg *A = Args.getLastArg(options::OPT_MJ))
1376 llvm::sys::fs::remove(A->getValue());
1377
1378 // Setting up the jobs for some precompile cases depends on whether we are
1379 // treating them as PCH, implicit modules or C++20 ones.
1380 // TODO: inferring the mode like this seems fragile (it meets the objective
1381 // of not requiring anything new for operation, however).
1382 const Arg *Std = Args.getLastArg(options::OPT_std_EQ);
1383 ModulesModeCXX20 =
1384 !Args.hasArg(options::OPT_fmodules) && Std &&
1385 (Std->containsValue("c++20") || Std->containsValue("c++2b") ||
1386 Std->containsValue("c++2a") || Std->containsValue("c++latest"));
1387
1388 // Process -fmodule-header{=} flags.
1389 if (Arg *A = Args.getLastArg(options::OPT_fmodule_header_EQ,
1390 options::OPT_fmodule_header)) {
1391 // These flags force C++20 handling of headers.
1392 ModulesModeCXX20 = true;
1393 if (A->getOption().matches(options::OPT_fmodule_header))
1394 CXX20HeaderType = HeaderMode_Default;
1395 else {
1396 StringRef ArgName = A->getValue();
1397 unsigned Kind = llvm::StringSwitch<unsigned>(ArgName)
1398 .Case("user", HeaderMode_User)
1399 .Case("system", HeaderMode_System)
1400 .Default(~0U);
1401 if (Kind == ~0U) {
1402 Diags.Report(diag::err_drv_invalid_value)
1403 << A->getAsString(Args) << ArgName;
1404 } else
1405 CXX20HeaderType = static_cast<ModuleHeaderMode>(Kind);
1406 }
1407 }
1408
1409 std::unique_ptr<llvm::opt::InputArgList> UArgs =
1410 std::make_unique<InputArgList>(std::move(Args));
1411
1412 // Perform the default argument translations.
1413 DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1414
1415 // Owned by the host.
1416 const ToolChain &TC = getToolChain(
1417 *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1418
1419 // Report warning when arm64EC option is overridden by specified target
1420 if ((TC.getTriple().getArch() != llvm::Triple::aarch64 ||
1421 TC.getTriple().getSubArch() != llvm::Triple::AArch64SubArch_arm64ec) &&
1422 UArgs->hasArg(options::OPT__SLASH_arm64EC)) {
1423 getDiags().Report(clang::diag::warn_target_override_arm64ec)
1424 << TC.getTriple().str();
1425 }
1426
1427 // The compilation takes ownership of Args.
1428 Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1429 ContainsError);
1430
1431 if (!HandleImmediateArgs(*C))
1432 return C;
1433
1434 // Construct the list of inputs.
1435 InputList Inputs;
1436 BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1437
1438 // Populate the tool chains for the offloading devices, if any.
1439 CreateOffloadingDeviceToolChains(*C, Inputs);
1440
1441 // Construct the list of abstract actions to perform for this compilation. On
1442 // MachO targets this uses the driver-driver and universal actions.
1443 if (TC.getTriple().isOSBinFormatMachO())
1444 BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1445 else
1446 BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1447
1448 if (CCCPrintPhases) {
1449 PrintActions(*C);
1450 return C;
1451 }
1452
1453 BuildJobs(*C);
1454
1455 return C;
1456 }
1457
printArgList(raw_ostream & OS,const llvm::opt::ArgList & Args)1458 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1459 llvm::opt::ArgStringList ASL;
1460 for (const auto *A : Args) {
1461 // Use user's original spelling of flags. For example, use
1462 // `/source-charset:utf-8` instead of `-finput-charset=utf-8` if the user
1463 // wrote the former.
1464 while (A->getAlias())
1465 A = A->getAlias();
1466 A->render(Args, ASL);
1467 }
1468
1469 for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1470 if (I != ASL.begin())
1471 OS << ' ';
1472 llvm::sys::printArg(OS, *I, true);
1473 }
1474 OS << '\n';
1475 }
1476
getCrashDiagnosticFile(StringRef ReproCrashFilename,SmallString<128> & CrashDiagDir)1477 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1478 SmallString<128> &CrashDiagDir) {
1479 using namespace llvm::sys;
1480 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1481 "Only knows about .crash files on Darwin");
1482
1483 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1484 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1485 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1486 path::home_directory(CrashDiagDir);
1487 if (CrashDiagDir.startswith("/var/root"))
1488 CrashDiagDir = "/";
1489 path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1490 int PID =
1491 #if LLVM_ON_UNIX
1492 getpid();
1493 #else
1494 0;
1495 #endif
1496 std::error_code EC;
1497 fs::file_status FileStatus;
1498 TimePoint<> LastAccessTime;
1499 SmallString<128> CrashFilePath;
1500 // Lookup the .crash files and get the one generated by a subprocess spawned
1501 // by this driver invocation.
1502 for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1503 File != FileEnd && !EC; File.increment(EC)) {
1504 StringRef FileName = path::filename(File->path());
1505 if (!FileName.startswith(Name))
1506 continue;
1507 if (fs::status(File->path(), FileStatus))
1508 continue;
1509 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1510 llvm::MemoryBuffer::getFile(File->path());
1511 if (!CrashFile)
1512 continue;
1513 // The first line should start with "Process:", otherwise this isn't a real
1514 // .crash file.
1515 StringRef Data = CrashFile.get()->getBuffer();
1516 if (!Data.startswith("Process:"))
1517 continue;
1518 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1519 size_t ParentProcPos = Data.find("Parent Process:");
1520 if (ParentProcPos == StringRef::npos)
1521 continue;
1522 size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1523 if (LineEnd == StringRef::npos)
1524 continue;
1525 StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1526 int OpenBracket = -1, CloseBracket = -1;
1527 for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1528 if (ParentProcess[i] == '[')
1529 OpenBracket = i;
1530 if (ParentProcess[i] == ']')
1531 CloseBracket = i;
1532 }
1533 // Extract the parent process PID from the .crash file and check whether
1534 // it matches this driver invocation pid.
1535 int CrashPID;
1536 if (OpenBracket < 0 || CloseBracket < 0 ||
1537 ParentProcess.slice(OpenBracket + 1, CloseBracket)
1538 .getAsInteger(10, CrashPID) || CrashPID != PID) {
1539 continue;
1540 }
1541
1542 // Found a .crash file matching the driver pid. To avoid getting an older
1543 // and misleading crash file, continue looking for the most recent.
1544 // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1545 // multiple crashes poiting to the same parent process. Since the driver
1546 // does not collect pid information for the dispatched invocation there's
1547 // currently no way to distinguish among them.
1548 const auto FileAccessTime = FileStatus.getLastModificationTime();
1549 if (FileAccessTime > LastAccessTime) {
1550 CrashFilePath.assign(File->path());
1551 LastAccessTime = FileAccessTime;
1552 }
1553 }
1554
1555 // If found, copy it over to the location of other reproducer files.
1556 if (!CrashFilePath.empty()) {
1557 EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1558 if (EC)
1559 return false;
1560 return true;
1561 }
1562
1563 return false;
1564 }
1565
1566 static const char BugReporMsg[] =
1567 "\n********************\n\n"
1568 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1569 "Preprocessed source(s) and associated run script(s) are located at:";
1570
1571 // When clang crashes, produce diagnostic information including the fully
1572 // preprocessed source file(s). Request that the developer attach the
1573 // diagnostic information to a bug report.
generateCompilationDiagnostics(Compilation & C,const Command & FailingCommand,StringRef AdditionalInformation,CompilationDiagnosticReport * Report)1574 void Driver::generateCompilationDiagnostics(
1575 Compilation &C, const Command &FailingCommand,
1576 StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1577 if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1578 return;
1579
1580 unsigned Level = 1;
1581 if (Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_EQ)) {
1582 Level = llvm::StringSwitch<unsigned>(A->getValue())
1583 .Case("off", 0)
1584 .Case("compiler", 1)
1585 .Case("all", 2)
1586 .Default(1);
1587 }
1588 if (!Level)
1589 return;
1590
1591 // Don't try to generate diagnostics for dsymutil jobs.
1592 if (FailingCommand.getCreator().isDsymutilJob())
1593 return;
1594
1595 bool IsLLD = false;
1596 ArgStringList SavedTemps;
1597 if (FailingCommand.getCreator().isLinkJob()) {
1598 C.getDefaultToolChain().GetLinkerPath(&IsLLD);
1599 if (!IsLLD || Level < 2)
1600 return;
1601
1602 // If lld crashed, we will re-run the same command with the input it used
1603 // to have. In that case we should not remove temp files in
1604 // initCompilationForDiagnostics yet. They will be added back and removed
1605 // later.
1606 SavedTemps = std::move(C.getTempFiles());
1607 assert(!C.getTempFiles().size());
1608 }
1609
1610 // Print the version of the compiler.
1611 PrintVersion(C, llvm::errs());
1612
1613 // Suppress driver output and emit preprocessor output to temp file.
1614 CCGenDiagnostics = true;
1615
1616 // Save the original job command(s).
1617 Command Cmd = FailingCommand;
1618
1619 // Keep track of whether we produce any errors while trying to produce
1620 // preprocessed sources.
1621 DiagnosticErrorTrap Trap(Diags);
1622
1623 // Suppress tool output.
1624 C.initCompilationForDiagnostics();
1625
1626 // If lld failed, rerun it again with --reproduce.
1627 if (IsLLD) {
1628 const char *TmpName = CreateTempFile(C, "linker-crash", "tar");
1629 Command NewLLDInvocation = Cmd;
1630 llvm::opt::ArgStringList ArgList = NewLLDInvocation.getArguments();
1631 StringRef ReproduceOption =
1632 C.getDefaultToolChain().getTriple().isWindowsMSVCEnvironment()
1633 ? "/reproduce:"
1634 : "--reproduce=";
1635 ArgList.push_back(Saver.save(Twine(ReproduceOption) + TmpName).data());
1636 NewLLDInvocation.replaceArguments(std::move(ArgList));
1637
1638 // Redirect stdout/stderr to /dev/null.
1639 NewLLDInvocation.Execute({std::nullopt, {""}, {""}}, nullptr, nullptr);
1640 Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg;
1641 Diag(clang::diag::note_drv_command_failed_diag_msg) << TmpName;
1642 Diag(clang::diag::note_drv_command_failed_diag_msg)
1643 << "\n\n********************";
1644 if (Report)
1645 Report->TemporaryFiles.push_back(TmpName);
1646 return;
1647 }
1648
1649 // Construct the list of inputs.
1650 InputList Inputs;
1651 BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1652
1653 for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1654 bool IgnoreInput = false;
1655
1656 // Ignore input from stdin or any inputs that cannot be preprocessed.
1657 // Check type first as not all linker inputs have a value.
1658 if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1659 IgnoreInput = true;
1660 } else if (!strcmp(it->second->getValue(), "-")) {
1661 Diag(clang::diag::note_drv_command_failed_diag_msg)
1662 << "Error generating preprocessed source(s) - "
1663 "ignoring input from stdin.";
1664 IgnoreInput = true;
1665 }
1666
1667 if (IgnoreInput) {
1668 it = Inputs.erase(it);
1669 ie = Inputs.end();
1670 } else {
1671 ++it;
1672 }
1673 }
1674
1675 if (Inputs.empty()) {
1676 Diag(clang::diag::note_drv_command_failed_diag_msg)
1677 << "Error generating preprocessed source(s) - "
1678 "no preprocessable inputs.";
1679 return;
1680 }
1681
1682 // Don't attempt to generate preprocessed files if multiple -arch options are
1683 // used, unless they're all duplicates.
1684 llvm::StringSet<> ArchNames;
1685 for (const Arg *A : C.getArgs()) {
1686 if (A->getOption().matches(options::OPT_arch)) {
1687 StringRef ArchName = A->getValue();
1688 ArchNames.insert(ArchName);
1689 }
1690 }
1691 if (ArchNames.size() > 1) {
1692 Diag(clang::diag::note_drv_command_failed_diag_msg)
1693 << "Error generating preprocessed source(s) - cannot generate "
1694 "preprocessed source with multiple -arch options.";
1695 return;
1696 }
1697
1698 // Construct the list of abstract actions to perform for this compilation. On
1699 // Darwin OSes this uses the driver-driver and builds universal actions.
1700 const ToolChain &TC = C.getDefaultToolChain();
1701 if (TC.getTriple().isOSBinFormatMachO())
1702 BuildUniversalActions(C, TC, Inputs);
1703 else
1704 BuildActions(C, C.getArgs(), Inputs, C.getActions());
1705
1706 BuildJobs(C);
1707
1708 // If there were errors building the compilation, quit now.
1709 if (Trap.hasErrorOccurred()) {
1710 Diag(clang::diag::note_drv_command_failed_diag_msg)
1711 << "Error generating preprocessed source(s).";
1712 return;
1713 }
1714
1715 // Generate preprocessed output.
1716 SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1717 C.ExecuteJobs(C.getJobs(), FailingCommands);
1718
1719 // If any of the preprocessing commands failed, clean up and exit.
1720 if (!FailingCommands.empty()) {
1721 Diag(clang::diag::note_drv_command_failed_diag_msg)
1722 << "Error generating preprocessed source(s).";
1723 return;
1724 }
1725
1726 const ArgStringList &TempFiles = C.getTempFiles();
1727 if (TempFiles.empty()) {
1728 Diag(clang::diag::note_drv_command_failed_diag_msg)
1729 << "Error generating preprocessed source(s).";
1730 return;
1731 }
1732
1733 Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg;
1734
1735 SmallString<128> VFS;
1736 SmallString<128> ReproCrashFilename;
1737 for (const char *TempFile : TempFiles) {
1738 Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1739 if (Report)
1740 Report->TemporaryFiles.push_back(TempFile);
1741 if (ReproCrashFilename.empty()) {
1742 ReproCrashFilename = TempFile;
1743 llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1744 }
1745 if (StringRef(TempFile).endswith(".cache")) {
1746 // In some cases (modules) we'll dump extra data to help with reproducing
1747 // the crash into a directory next to the output.
1748 VFS = llvm::sys::path::filename(TempFile);
1749 llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1750 }
1751 }
1752
1753 for (const char *TempFile : SavedTemps)
1754 C.addTempFile(TempFile);
1755
1756 // Assume associated files are based off of the first temporary file.
1757 CrashReportInfo CrashInfo(TempFiles[0], VFS);
1758
1759 llvm::SmallString<128> Script(CrashInfo.Filename);
1760 llvm::sys::path::replace_extension(Script, "sh");
1761 std::error_code EC;
1762 llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew,
1763 llvm::sys::fs::FA_Write,
1764 llvm::sys::fs::OF_Text);
1765 if (EC) {
1766 Diag(clang::diag::note_drv_command_failed_diag_msg)
1767 << "Error generating run script: " << Script << " " << EC.message();
1768 } else {
1769 ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1770 << "# Driver args: ";
1771 printArgList(ScriptOS, C.getInputArgs());
1772 ScriptOS << "# Original command: ";
1773 Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1774 Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1775 if (!AdditionalInformation.empty())
1776 ScriptOS << "\n# Additional information: " << AdditionalInformation
1777 << "\n";
1778 if (Report)
1779 Report->TemporaryFiles.push_back(std::string(Script.str()));
1780 Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1781 }
1782
1783 // On darwin, provide information about the .crash diagnostic report.
1784 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1785 SmallString<128> CrashDiagDir;
1786 if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1787 Diag(clang::diag::note_drv_command_failed_diag_msg)
1788 << ReproCrashFilename.str();
1789 } else { // Suggest a directory for the user to look for .crash files.
1790 llvm::sys::path::append(CrashDiagDir, Name);
1791 CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1792 Diag(clang::diag::note_drv_command_failed_diag_msg)
1793 << "Crash backtrace is located in";
1794 Diag(clang::diag::note_drv_command_failed_diag_msg)
1795 << CrashDiagDir.str();
1796 Diag(clang::diag::note_drv_command_failed_diag_msg)
1797 << "(choose the .crash file that corresponds to your crash)";
1798 }
1799 }
1800
1801 for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file_EQ))
1802 Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1803
1804 Diag(clang::diag::note_drv_command_failed_diag_msg)
1805 << "\n\n********************";
1806 }
1807
setUpResponseFiles(Compilation & C,Command & Cmd)1808 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1809 // Since commandLineFitsWithinSystemLimits() may underestimate system's
1810 // capacity if the tool does not support response files, there is a chance/
1811 // that things will just work without a response file, so we silently just
1812 // skip it.
1813 if (Cmd.getResponseFileSupport().ResponseKind ==
1814 ResponseFileSupport::RF_None ||
1815 llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1816 Cmd.getArguments()))
1817 return;
1818
1819 std::string TmpName = GetTemporaryPath("response", "txt");
1820 Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1821 }
1822
ExecuteCompilation(Compilation & C,SmallVectorImpl<std::pair<int,const Command * >> & FailingCommands)1823 int Driver::ExecuteCompilation(
1824 Compilation &C,
1825 SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1826 if (C.getArgs().hasArg(options::OPT_fdriver_only)) {
1827 if (C.getArgs().hasArg(options::OPT_v))
1828 C.getJobs().Print(llvm::errs(), "\n", true);
1829
1830 C.ExecuteJobs(C.getJobs(), FailingCommands, /*LogOnly=*/true);
1831
1832 // If there were errors building the compilation, quit now.
1833 if (!FailingCommands.empty() || Diags.hasErrorOccurred())
1834 return 1;
1835
1836 return 0;
1837 }
1838
1839 // Just print if -### was present.
1840 if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1841 C.getJobs().Print(llvm::errs(), "\n", true);
1842 return 0;
1843 }
1844
1845 // If there were errors building the compilation, quit now.
1846 if (Diags.hasErrorOccurred())
1847 return 1;
1848
1849 // Set up response file names for each command, if necessary.
1850 for (auto &Job : C.getJobs())
1851 setUpResponseFiles(C, Job);
1852
1853 C.ExecuteJobs(C.getJobs(), FailingCommands);
1854
1855 // If the command succeeded, we are done.
1856 if (FailingCommands.empty())
1857 return 0;
1858
1859 // Otherwise, remove result files and print extra information about abnormal
1860 // failures.
1861 int Res = 0;
1862 for (const auto &CmdPair : FailingCommands) {
1863 int CommandRes = CmdPair.first;
1864 const Command *FailingCommand = CmdPair.second;
1865
1866 // Remove result files if we're not saving temps.
1867 if (!isSaveTempsEnabled()) {
1868 const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1869 C.CleanupFileMap(C.getResultFiles(), JA, true);
1870
1871 // Failure result files are valid unless we crashed.
1872 if (CommandRes < 0)
1873 C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1874 }
1875
1876 // llvm/lib/Support/*/Signals.inc will exit with a special return code
1877 // for SIGPIPE. Do not print diagnostics for this case.
1878 if (CommandRes == EX_IOERR) {
1879 Res = CommandRes;
1880 continue;
1881 }
1882
1883 // Print extra information about abnormal failures, if possible.
1884 //
1885 // This is ad-hoc, but we don't want to be excessively noisy. If the result
1886 // status was 1, assume the command failed normally. In particular, if it
1887 // was the compiler then assume it gave a reasonable error code. Failures
1888 // in other tools are less common, and they generally have worse
1889 // diagnostics, so always print the diagnostic there.
1890 const Tool &FailingTool = FailingCommand->getCreator();
1891
1892 if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1893 // FIXME: See FIXME above regarding result code interpretation.
1894 if (CommandRes < 0)
1895 Diag(clang::diag::err_drv_command_signalled)
1896 << FailingTool.getShortName();
1897 else
1898 Diag(clang::diag::err_drv_command_failed)
1899 << FailingTool.getShortName() << CommandRes;
1900 }
1901 }
1902 return Res;
1903 }
1904
PrintHelp(bool ShowHidden) const1905 void Driver::PrintHelp(bool ShowHidden) const {
1906 unsigned IncludedFlagsBitmask;
1907 unsigned ExcludedFlagsBitmask;
1908 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1909 getIncludeExcludeOptionFlagMasks(IsCLMode());
1910
1911 ExcludedFlagsBitmask |= options::NoDriverOption;
1912 if (!ShowHidden)
1913 ExcludedFlagsBitmask |= HelpHidden;
1914
1915 if (IsFlangMode())
1916 IncludedFlagsBitmask |= options::FlangOption;
1917 else
1918 ExcludedFlagsBitmask |= options::FlangOnlyOption;
1919
1920 std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1921 getOpts().printHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1922 IncludedFlagsBitmask, ExcludedFlagsBitmask,
1923 /*ShowAllAliases=*/false);
1924 }
1925
PrintVersion(const Compilation & C,raw_ostream & OS) const1926 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1927 if (IsFlangMode()) {
1928 OS << getClangToolFullVersion("flang-new") << '\n';
1929 } else {
1930 // FIXME: The following handlers should use a callback mechanism, we don't
1931 // know what the client would like to do.
1932 OS << getClangFullVersion() << '\n';
1933 }
1934 const ToolChain &TC = C.getDefaultToolChain();
1935 OS << "Target: " << TC.getTripleString() << '\n';
1936
1937 // Print the threading model.
1938 if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1939 // Don't print if the ToolChain would have barfed on it already
1940 if (TC.isThreadModelSupported(A->getValue()))
1941 OS << "Thread model: " << A->getValue();
1942 } else
1943 OS << "Thread model: " << TC.getThreadModel();
1944 OS << '\n';
1945
1946 // Print out the install directory.
1947 OS << "InstalledDir: " << InstalledDir << '\n';
1948
1949 // If configuration files were used, print their paths.
1950 for (auto ConfigFile : ConfigFiles)
1951 OS << "Configuration file: " << ConfigFile << '\n';
1952 }
1953
1954 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1955 /// option.
PrintDiagnosticCategories(raw_ostream & OS)1956 static void PrintDiagnosticCategories(raw_ostream &OS) {
1957 // Skip the empty category.
1958 for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1959 ++i)
1960 OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1961 }
1962
HandleAutocompletions(StringRef PassedFlags) const1963 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1964 if (PassedFlags == "")
1965 return;
1966 // Print out all options that start with a given argument. This is used for
1967 // shell autocompletion.
1968 std::vector<std::string> SuggestedCompletions;
1969 std::vector<std::string> Flags;
1970
1971 unsigned int DisableFlags =
1972 options::NoDriverOption | options::Unsupported | options::Ignored;
1973
1974 // Make sure that Flang-only options don't pollute the Clang output
1975 // TODO: Make sure that Clang-only options don't pollute Flang output
1976 if (!IsFlangMode())
1977 DisableFlags |= options::FlangOnlyOption;
1978
1979 // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1980 // because the latter indicates that the user put space before pushing tab
1981 // which should end up in a file completion.
1982 const bool HasSpace = PassedFlags.endswith(",");
1983
1984 // Parse PassedFlags by "," as all the command-line flags are passed to this
1985 // function separated by ","
1986 StringRef TargetFlags = PassedFlags;
1987 while (TargetFlags != "") {
1988 StringRef CurFlag;
1989 std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1990 Flags.push_back(std::string(CurFlag));
1991 }
1992
1993 // We want to show cc1-only options only when clang is invoked with -cc1 or
1994 // -Xclang.
1995 if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
1996 DisableFlags &= ~options::NoDriverOption;
1997
1998 const llvm::opt::OptTable &Opts = getOpts();
1999 StringRef Cur;
2000 Cur = Flags.at(Flags.size() - 1);
2001 StringRef Prev;
2002 if (Flags.size() >= 2) {
2003 Prev = Flags.at(Flags.size() - 2);
2004 SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
2005 }
2006
2007 if (SuggestedCompletions.empty())
2008 SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
2009
2010 // If Flags were empty, it means the user typed `clang [tab]` where we should
2011 // list all possible flags. If there was no value completion and the user
2012 // pressed tab after a space, we should fall back to a file completion.
2013 // We're printing a newline to be consistent with what we print at the end of
2014 // this function.
2015 if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
2016 llvm::outs() << '\n';
2017 return;
2018 }
2019
2020 // When flag ends with '=' and there was no value completion, return empty
2021 // string and fall back to the file autocompletion.
2022 if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
2023 // If the flag is in the form of "--autocomplete=-foo",
2024 // we were requested to print out all option names that start with "-foo".
2025 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
2026 SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags);
2027
2028 // We have to query the -W flags manually as they're not in the OptTable.
2029 // TODO: Find a good way to add them to OptTable instead and them remove
2030 // this code.
2031 for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
2032 if (S.startswith(Cur))
2033 SuggestedCompletions.push_back(std::string(S));
2034 }
2035
2036 // Sort the autocomplete candidates so that shells print them out in a
2037 // deterministic order. We could sort in any way, but we chose
2038 // case-insensitive sorting for consistency with the -help option
2039 // which prints out options in the case-insensitive alphabetical order.
2040 llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
2041 if (int X = A.compare_insensitive(B))
2042 return X < 0;
2043 return A.compare(B) > 0;
2044 });
2045
2046 llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
2047 }
2048
HandleImmediateArgs(const Compilation & C)2049 bool Driver::HandleImmediateArgs(const Compilation &C) {
2050 // The order these options are handled in gcc is all over the place, but we
2051 // don't expect inconsistencies w.r.t. that to matter in practice.
2052
2053 if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
2054 llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
2055 return false;
2056 }
2057
2058 if (C.getArgs().hasArg(options::OPT_dumpversion)) {
2059 // Since -dumpversion is only implemented for pedantic GCC compatibility, we
2060 // return an answer which matches our definition of __VERSION__.
2061 llvm::outs() << CLANG_VERSION_STRING << "\n";
2062 return false;
2063 }
2064
2065 if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
2066 PrintDiagnosticCategories(llvm::outs());
2067 return false;
2068 }
2069
2070 if (C.getArgs().hasArg(options::OPT_help) ||
2071 C.getArgs().hasArg(options::OPT__help_hidden)) {
2072 PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
2073 return false;
2074 }
2075
2076 if (C.getArgs().hasArg(options::OPT__version)) {
2077 // Follow gcc behavior and use stdout for --version and stderr for -v.
2078 PrintVersion(C, llvm::outs());
2079 return false;
2080 }
2081
2082 if (C.getArgs().hasArg(options::OPT_v) ||
2083 C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
2084 C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
2085 PrintVersion(C, llvm::errs());
2086 SuppressMissingInputWarning = true;
2087 }
2088
2089 if (C.getArgs().hasArg(options::OPT_v)) {
2090 if (!SystemConfigDir.empty())
2091 llvm::errs() << "System configuration file directory: "
2092 << SystemConfigDir << "\n";
2093 if (!UserConfigDir.empty())
2094 llvm::errs() << "User configuration file directory: "
2095 << UserConfigDir << "\n";
2096 }
2097
2098 const ToolChain &TC = C.getDefaultToolChain();
2099
2100 if (C.getArgs().hasArg(options::OPT_v))
2101 TC.printVerboseInfo(llvm::errs());
2102
2103 if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
2104 llvm::outs() << ResourceDir << '\n';
2105 return false;
2106 }
2107
2108 if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
2109 llvm::outs() << "programs: =";
2110 bool separator = false;
2111 // Print -B and COMPILER_PATH.
2112 for (const std::string &Path : PrefixDirs) {
2113 if (separator)
2114 llvm::outs() << llvm::sys::EnvPathSeparator;
2115 llvm::outs() << Path;
2116 separator = true;
2117 }
2118 for (const std::string &Path : TC.getProgramPaths()) {
2119 if (separator)
2120 llvm::outs() << llvm::sys::EnvPathSeparator;
2121 llvm::outs() << Path;
2122 separator = true;
2123 }
2124 llvm::outs() << "\n";
2125 llvm::outs() << "libraries: =" << ResourceDir;
2126
2127 StringRef sysroot = C.getSysRoot();
2128
2129 for (const std::string &Path : TC.getFilePaths()) {
2130 // Always print a separator. ResourceDir was the first item shown.
2131 llvm::outs() << llvm::sys::EnvPathSeparator;
2132 // Interpretation of leading '=' is needed only for NetBSD.
2133 if (Path[0] == '=')
2134 llvm::outs() << sysroot << Path.substr(1);
2135 else
2136 llvm::outs() << Path;
2137 }
2138 llvm::outs() << "\n";
2139 return false;
2140 }
2141
2142 if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) {
2143 std::string RuntimePath;
2144 // Get the first existing path, if any.
2145 for (auto Path : TC.getRuntimePaths()) {
2146 if (getVFS().exists(Path)) {
2147 RuntimePath = Path;
2148 break;
2149 }
2150 }
2151 if (!RuntimePath.empty())
2152 llvm::outs() << RuntimePath << '\n';
2153 else
2154 llvm::outs() << TC.getCompilerRTPath() << '\n';
2155 return false;
2156 }
2157
2158 if (C.getArgs().hasArg(options::OPT_print_diagnostic_options)) {
2159 std::vector<std::string> Flags = DiagnosticIDs::getDiagnosticFlags();
2160 for (std::size_t I = 0; I != Flags.size(); I += 2)
2161 llvm::outs() << " " << Flags[I] << "\n " << Flags[I + 1] << "\n\n";
2162 return false;
2163 }
2164
2165 // FIXME: The following handlers should use a callback mechanism, we don't
2166 // know what the client would like to do.
2167 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
2168 llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
2169 return false;
2170 }
2171
2172 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
2173 StringRef ProgName = A->getValue();
2174
2175 // Null program name cannot have a path.
2176 if (! ProgName.empty())
2177 llvm::outs() << GetProgramPath(ProgName, TC);
2178
2179 llvm::outs() << "\n";
2180 return false;
2181 }
2182
2183 if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
2184 StringRef PassedFlags = A->getValue();
2185 HandleAutocompletions(PassedFlags);
2186 return false;
2187 }
2188
2189 if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
2190 ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
2191 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2192 RegisterEffectiveTriple TripleRAII(TC, Triple);
2193 switch (RLT) {
2194 case ToolChain::RLT_CompilerRT:
2195 llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
2196 break;
2197 case ToolChain::RLT_Libgcc:
2198 llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
2199 break;
2200 }
2201 return false;
2202 }
2203
2204 if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
2205 for (const Multilib &Multilib : TC.getMultilibs())
2206 llvm::outs() << Multilib << "\n";
2207 return false;
2208 }
2209
2210 if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
2211 const Multilib &Multilib = TC.getMultilib();
2212 if (Multilib.gccSuffix().empty())
2213 llvm::outs() << ".\n";
2214 else {
2215 StringRef Suffix(Multilib.gccSuffix());
2216 assert(Suffix.front() == '/');
2217 llvm::outs() << Suffix.substr(1) << "\n";
2218 }
2219 return false;
2220 }
2221
2222 if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
2223 llvm::outs() << TC.getTripleString() << "\n";
2224 return false;
2225 }
2226
2227 if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
2228 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2229 llvm::outs() << Triple.getTriple() << "\n";
2230 return false;
2231 }
2232
2233 if (C.getArgs().hasArg(options::OPT_print_targets)) {
2234 llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
2235 return false;
2236 }
2237
2238 return true;
2239 }
2240
2241 enum {
2242 TopLevelAction = 0,
2243 HeadSibAction = 1,
2244 OtherSibAction = 2,
2245 };
2246
2247 // Display an action graph human-readably. Action A is the "sink" node
2248 // and latest-occuring action. Traversal is in pre-order, visiting the
2249 // inputs to each action before printing the action itself.
PrintActions1(const Compilation & C,Action * A,std::map<Action *,unsigned> & Ids,Twine Indent={},int Kind=TopLevelAction)2250 static unsigned PrintActions1(const Compilation &C, Action *A,
2251 std::map<Action *, unsigned> &Ids,
2252 Twine Indent = {}, int Kind = TopLevelAction) {
2253 if (Ids.count(A)) // A was already visited.
2254 return Ids[A];
2255
2256 std::string str;
2257 llvm::raw_string_ostream os(str);
2258
__anonbd3e07ce0502(int K) 2259 auto getSibIndent = [](int K) -> Twine {
2260 return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : "";
2261 };
2262
2263 Twine SibIndent = Indent + getSibIndent(Kind);
2264 int SibKind = HeadSibAction;
2265 os << Action::getClassName(A->getKind()) << ", ";
2266 if (InputAction *IA = dyn_cast<InputAction>(A)) {
2267 os << "\"" << IA->getInputArg().getValue() << "\"";
2268 } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
2269 os << '"' << BIA->getArchName() << '"' << ", {"
2270 << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
2271 } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
2272 bool IsFirst = true;
2273 OA->doOnEachDependence(
__anonbd3e07ce0602(Action *A, const ToolChain *TC, const char *BoundArch) 2274 [&](Action *A, const ToolChain *TC, const char *BoundArch) {
2275 assert(TC && "Unknown host toolchain");
2276 // E.g. for two CUDA device dependences whose bound arch is sm_20 and
2277 // sm_35 this will generate:
2278 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
2279 // (nvptx64-nvidia-cuda:sm_35) {#ID}
2280 if (!IsFirst)
2281 os << ", ";
2282 os << '"';
2283 os << A->getOffloadingKindPrefix();
2284 os << " (";
2285 os << TC->getTriple().normalize();
2286 if (BoundArch)
2287 os << ":" << BoundArch;
2288 os << ")";
2289 os << '"';
2290 os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
2291 IsFirst = false;
2292 SibKind = OtherSibAction;
2293 });
2294 } else {
2295 const ActionList *AL = &A->getInputs();
2296
2297 if (AL->size()) {
2298 const char *Prefix = "{";
2299 for (Action *PreRequisite : *AL) {
2300 os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
2301 Prefix = ", ";
2302 SibKind = OtherSibAction;
2303 }
2304 os << "}";
2305 } else
2306 os << "{}";
2307 }
2308
2309 // Append offload info for all options other than the offloading action
2310 // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
2311 std::string offload_str;
2312 llvm::raw_string_ostream offload_os(offload_str);
2313 if (!isa<OffloadAction>(A)) {
2314 auto S = A->getOffloadingKindPrefix();
2315 if (!S.empty()) {
2316 offload_os << ", (" << S;
2317 if (A->getOffloadingArch())
2318 offload_os << ", " << A->getOffloadingArch();
2319 offload_os << ")";
2320 }
2321 }
2322
__anonbd3e07ce0702(int K) 2323 auto getSelfIndent = [](int K) -> Twine {
2324 return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
2325 };
2326
2327 unsigned Id = Ids.size();
2328 Ids[A] = Id;
2329 llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
2330 << types::getTypeName(A->getType()) << offload_os.str() << "\n";
2331
2332 return Id;
2333 }
2334
2335 // Print the action graphs in a compilation C.
2336 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
PrintActions(const Compilation & C) const2337 void Driver::PrintActions(const Compilation &C) const {
2338 std::map<Action *, unsigned> Ids;
2339 for (Action *A : C.getActions())
2340 PrintActions1(C, A, Ids);
2341 }
2342
2343 /// Check whether the given input tree contains any compilation or
2344 /// assembly actions.
ContainsCompileOrAssembleAction(const Action * A)2345 static bool ContainsCompileOrAssembleAction(const Action *A) {
2346 if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
2347 isa<AssembleJobAction>(A))
2348 return true;
2349
2350 return llvm::any_of(A->inputs(), ContainsCompileOrAssembleAction);
2351 }
2352
BuildUniversalActions(Compilation & C,const ToolChain & TC,const InputList & BAInputs) const2353 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
2354 const InputList &BAInputs) const {
2355 DerivedArgList &Args = C.getArgs();
2356 ActionList &Actions = C.getActions();
2357 llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
2358 // Collect the list of architectures. Duplicates are allowed, but should only
2359 // be handled once (in the order seen).
2360 llvm::StringSet<> ArchNames;
2361 SmallVector<const char *, 4> Archs;
2362 for (Arg *A : Args) {
2363 if (A->getOption().matches(options::OPT_arch)) {
2364 // Validate the option here; we don't save the type here because its
2365 // particular spelling may participate in other driver choices.
2366 llvm::Triple::ArchType Arch =
2367 tools::darwin::getArchTypeForMachOArchName(A->getValue());
2368 if (Arch == llvm::Triple::UnknownArch) {
2369 Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
2370 continue;
2371 }
2372
2373 A->claim();
2374 if (ArchNames.insert(A->getValue()).second)
2375 Archs.push_back(A->getValue());
2376 }
2377 }
2378
2379 // When there is no explicit arch for this platform, make sure we still bind
2380 // the architecture (to the default) so that -Xarch_ is handled correctly.
2381 if (!Archs.size())
2382 Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
2383
2384 ActionList SingleActions;
2385 BuildActions(C, Args, BAInputs, SingleActions);
2386
2387 // Add in arch bindings for every top level action, as well as lipo and
2388 // dsymutil steps if needed.
2389 for (Action* Act : SingleActions) {
2390 // Make sure we can lipo this kind of output. If not (and it is an actual
2391 // output) then we disallow, since we can't create an output file with the
2392 // right name without overwriting it. We could remove this oddity by just
2393 // changing the output names to include the arch, which would also fix
2394 // -save-temps. Compatibility wins for now.
2395
2396 if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
2397 Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
2398 << types::getTypeName(Act->getType());
2399
2400 ActionList Inputs;
2401 for (unsigned i = 0, e = Archs.size(); i != e; ++i)
2402 Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
2403
2404 // Lipo if necessary, we do it this way because we need to set the arch flag
2405 // so that -Xarch_ gets overwritten.
2406 if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
2407 Actions.append(Inputs.begin(), Inputs.end());
2408 else
2409 Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
2410
2411 // Handle debug info queries.
2412 Arg *A = Args.getLastArg(options::OPT_g_Group);
2413 bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
2414 !A->getOption().matches(options::OPT_gstabs);
2415 if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2416 ContainsCompileOrAssembleAction(Actions.back())) {
2417
2418 // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2419 // have a compile input. We need to run 'dsymutil' ourselves in such cases
2420 // because the debug info will refer to a temporary object file which
2421 // will be removed at the end of the compilation process.
2422 if (Act->getType() == types::TY_Image) {
2423 ActionList Inputs;
2424 Inputs.push_back(Actions.back());
2425 Actions.pop_back();
2426 Actions.push_back(
2427 C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2428 }
2429
2430 // Verify the debug info output.
2431 if (Args.hasArg(options::OPT_verify_debug_info)) {
2432 Action* LastAction = Actions.back();
2433 Actions.pop_back();
2434 Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2435 LastAction, types::TY_Nothing));
2436 }
2437 }
2438 }
2439 }
2440
DiagnoseInputExistence(const DerivedArgList & Args,StringRef Value,types::ID Ty,bool TypoCorrect) const2441 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2442 types::ID Ty, bool TypoCorrect) const {
2443 if (!getCheckInputsExist())
2444 return true;
2445
2446 // stdin always exists.
2447 if (Value == "-")
2448 return true;
2449
2450 // If it's a header to be found in the system or user search path, then defer
2451 // complaints about its absence until those searches can be done. When we
2452 // are definitely processing headers for C++20 header units, extend this to
2453 // allow the user to put "-fmodule-header -xc++-header vector" for example.
2454 if (Ty == types::TY_CXXSHeader || Ty == types::TY_CXXUHeader ||
2455 (ModulesModeCXX20 && Ty == types::TY_CXXHeader))
2456 return true;
2457
2458 if (getVFS().exists(Value))
2459 return true;
2460
2461 if (TypoCorrect) {
2462 // Check if the filename is a typo for an option flag. OptTable thinks
2463 // that all args that are not known options and that start with / are
2464 // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2465 // the option `/diagnostics:caret` than a reference to a file in the root
2466 // directory.
2467 unsigned IncludedFlagsBitmask;
2468 unsigned ExcludedFlagsBitmask;
2469 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
2470 getIncludeExcludeOptionFlagMasks(IsCLMode());
2471 std::string Nearest;
2472 if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
2473 ExcludedFlagsBitmask) <= 1) {
2474 Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2475 << Value << Nearest;
2476 return false;
2477 }
2478 }
2479
2480 // In CL mode, don't error on apparently non-existent linker inputs, because
2481 // they can be influenced by linker flags the clang driver might not
2482 // understand.
2483 // Examples:
2484 // - `clang-cl main.cc ole32.lib` in a non-MSVC shell will make the driver
2485 // module look for an MSVC installation in the registry. (We could ask
2486 // the MSVCToolChain object if it can find `ole32.lib`, but the logic to
2487 // look in the registry might move into lld-link in the future so that
2488 // lld-link invocations in non-MSVC shells just work too.)
2489 // - `clang-cl ... /link ...` can pass arbitrary flags to the linker,
2490 // including /libpath:, which is used to find .lib and .obj files.
2491 // So do not diagnose this on the driver level. Rely on the linker diagnosing
2492 // it. (If we don't end up invoking the linker, this means we'll emit a
2493 // "'linker' input unused [-Wunused-command-line-argument]" warning instead
2494 // of an error.)
2495 //
2496 // Only do this skip after the typo correction step above. `/Brepo` is treated
2497 // as TY_Object, but it's clearly a typo for `/Brepro`. It seems fine to emit
2498 // an error if we have a flag that's within an edit distance of 1 from a
2499 // flag. (Users can use `-Wl,` or `/linker` to launder the flag past the
2500 // driver in the unlikely case they run into this.)
2501 //
2502 // Don't do this for inputs that start with a '/', else we'd pass options
2503 // like /libpath: through to the linker silently.
2504 //
2505 // Emitting an error for linker inputs can also cause incorrect diagnostics
2506 // with the gcc driver. The command
2507 // clang -fuse-ld=lld -Wl,--chroot,some/dir /file.o
2508 // will make lld look for some/dir/file.o, while we will diagnose here that
2509 // `/file.o` does not exist. However, configure scripts check if
2510 // `clang /GR-` compiles without error to see if the compiler is cl.exe,
2511 // so we can't downgrade diagnostics for `/GR-` from an error to a warning
2512 // in cc mode. (We can in cl mode because cl.exe itself only warns on
2513 // unknown flags.)
2514 if (IsCLMode() && Ty == types::TY_Object && !Value.startswith("/"))
2515 return true;
2516
2517 Diag(clang::diag::err_drv_no_such_file) << Value;
2518 return false;
2519 }
2520
2521 // Get the C++20 Header Unit type corresponding to the input type.
CXXHeaderUnitType(ModuleHeaderMode HM)2522 static types::ID CXXHeaderUnitType(ModuleHeaderMode HM) {
2523 switch (HM) {
2524 case HeaderMode_User:
2525 return types::TY_CXXUHeader;
2526 case HeaderMode_System:
2527 return types::TY_CXXSHeader;
2528 case HeaderMode_Default:
2529 break;
2530 case HeaderMode_None:
2531 llvm_unreachable("should not be called in this case");
2532 }
2533 return types::TY_CXXHUHeader;
2534 }
2535
2536 // Construct a the list of inputs and their types.
BuildInputs(const ToolChain & TC,DerivedArgList & Args,InputList & Inputs) const2537 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2538 InputList &Inputs) const {
2539 const llvm::opt::OptTable &Opts = getOpts();
2540 // Track the current user specified (-x) input. We also explicitly track the
2541 // argument used to set the type; we only want to claim the type when we
2542 // actually use it, so we warn about unused -x arguments.
2543 types::ID InputType = types::TY_Nothing;
2544 Arg *InputTypeArg = nullptr;
2545
2546 // The last /TC or /TP option sets the input type to C or C++ globally.
2547 if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2548 options::OPT__SLASH_TP)) {
2549 InputTypeArg = TCTP;
2550 InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2551 ? types::TY_C
2552 : types::TY_CXX;
2553
2554 Arg *Previous = nullptr;
2555 bool ShowNote = false;
2556 for (Arg *A :
2557 Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2558 if (Previous) {
2559 Diag(clang::diag::warn_drv_overriding_flag_option)
2560 << Previous->getSpelling() << A->getSpelling();
2561 ShowNote = true;
2562 }
2563 Previous = A;
2564 }
2565 if (ShowNote)
2566 Diag(clang::diag::note_drv_t_option_is_global);
2567
2568 // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2569 assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2570 }
2571
2572 // Warn -x after last input file has no effect
2573 {
2574 Arg *LastXArg = Args.getLastArgNoClaim(options::OPT_x);
2575 Arg *LastInputArg = Args.getLastArgNoClaim(options::OPT_INPUT);
2576 if (LastXArg && LastInputArg && LastInputArg->getIndex() < LastXArg->getIndex())
2577 Diag(clang::diag::warn_drv_unused_x) << LastXArg->getValue();
2578 }
2579
2580 for (Arg *A : Args) {
2581 if (A->getOption().getKind() == Option::InputClass) {
2582 const char *Value = A->getValue();
2583 types::ID Ty = types::TY_INVALID;
2584
2585 // Infer the input type if necessary.
2586 if (InputType == types::TY_Nothing) {
2587 // If there was an explicit arg for this, claim it.
2588 if (InputTypeArg)
2589 InputTypeArg->claim();
2590
2591 // stdin must be handled specially.
2592 if (memcmp(Value, "-", 2) == 0) {
2593 if (IsFlangMode()) {
2594 Ty = types::TY_Fortran;
2595 } else {
2596 // If running with -E, treat as a C input (this changes the
2597 // builtin macros, for example). This may be overridden by -ObjC
2598 // below.
2599 //
2600 // Otherwise emit an error but still use a valid type to avoid
2601 // spurious errors (e.g., no inputs).
2602 assert(!CCGenDiagnostics && "stdin produces no crash reproducer");
2603 if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2604 Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2605 : clang::diag::err_drv_unknown_stdin_type);
2606 Ty = types::TY_C;
2607 }
2608 } else {
2609 // Otherwise lookup by extension.
2610 // Fallback is C if invoked as C preprocessor, C++ if invoked with
2611 // clang-cl /E, or Object otherwise.
2612 // We use a host hook here because Darwin at least has its own
2613 // idea of what .s is.
2614 if (const char *Ext = strrchr(Value, '.'))
2615 Ty = TC.LookupTypeForExtension(Ext + 1);
2616
2617 if (Ty == types::TY_INVALID) {
2618 if (IsCLMode() && (Args.hasArgNoClaim(options::OPT_E) || CCGenDiagnostics))
2619 Ty = types::TY_CXX;
2620 else if (CCCIsCPP() || CCGenDiagnostics)
2621 Ty = types::TY_C;
2622 else
2623 Ty = types::TY_Object;
2624 }
2625
2626 // If the driver is invoked as C++ compiler (like clang++ or c++) it
2627 // should autodetect some input files as C++ for g++ compatibility.
2628 if (CCCIsCXX()) {
2629 types::ID OldTy = Ty;
2630 Ty = types::lookupCXXTypeForCType(Ty);
2631
2632 // Do not complain about foo.h, when we are known to be processing
2633 // it as a C++20 header unit.
2634 if (Ty != OldTy && !(OldTy == types::TY_CHeader && hasHeaderMode()))
2635 Diag(clang::diag::warn_drv_treating_input_as_cxx)
2636 << getTypeName(OldTy) << getTypeName(Ty);
2637 }
2638
2639 // If running with -fthinlto-index=, extensions that normally identify
2640 // native object files actually identify LLVM bitcode files.
2641 if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2642 Ty == types::TY_Object)
2643 Ty = types::TY_LLVM_BC;
2644 }
2645
2646 // -ObjC and -ObjC++ override the default language, but only for "source
2647 // files". We just treat everything that isn't a linker input as a
2648 // source file.
2649 //
2650 // FIXME: Clean this up if we move the phase sequence into the type.
2651 if (Ty != types::TY_Object) {
2652 if (Args.hasArg(options::OPT_ObjC))
2653 Ty = types::TY_ObjC;
2654 else if (Args.hasArg(options::OPT_ObjCXX))
2655 Ty = types::TY_ObjCXX;
2656 }
2657
2658 // Disambiguate headers that are meant to be header units from those
2659 // intended to be PCH. Avoid missing '.h' cases that are counted as
2660 // C headers by default - we know we are in C++ mode and we do not
2661 // want to issue a complaint about compiling things in the wrong mode.
2662 if ((Ty == types::TY_CXXHeader || Ty == types::TY_CHeader) &&
2663 hasHeaderMode())
2664 Ty = CXXHeaderUnitType(CXX20HeaderType);
2665 } else {
2666 assert(InputTypeArg && "InputType set w/o InputTypeArg");
2667 if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2668 // If emulating cl.exe, make sure that /TC and /TP don't affect input
2669 // object files.
2670 const char *Ext = strrchr(Value, '.');
2671 if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2672 Ty = types::TY_Object;
2673 }
2674 if (Ty == types::TY_INVALID) {
2675 Ty = InputType;
2676 InputTypeArg->claim();
2677 }
2678 }
2679
2680 if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2681 Inputs.push_back(std::make_pair(Ty, A));
2682
2683 } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2684 StringRef Value = A->getValue();
2685 if (DiagnoseInputExistence(Args, Value, types::TY_C,
2686 /*TypoCorrect=*/false)) {
2687 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2688 Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2689 }
2690 A->claim();
2691 } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2692 StringRef Value = A->getValue();
2693 if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2694 /*TypoCorrect=*/false)) {
2695 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2696 Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2697 }
2698 A->claim();
2699 } else if (A->getOption().hasFlag(options::LinkerInput)) {
2700 // Just treat as object type, we could make a special type for this if
2701 // necessary.
2702 Inputs.push_back(std::make_pair(types::TY_Object, A));
2703
2704 } else if (A->getOption().matches(options::OPT_x)) {
2705 InputTypeArg = A;
2706 InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2707 A->claim();
2708
2709 // Follow gcc behavior and treat as linker input for invalid -x
2710 // options. Its not clear why we shouldn't just revert to unknown; but
2711 // this isn't very important, we might as well be bug compatible.
2712 if (!InputType) {
2713 Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2714 InputType = types::TY_Object;
2715 }
2716
2717 // If the user has put -fmodule-header{,=} then we treat C++ headers as
2718 // header unit inputs. So we 'promote' -xc++-header appropriately.
2719 if (InputType == types::TY_CXXHeader && hasHeaderMode())
2720 InputType = CXXHeaderUnitType(CXX20HeaderType);
2721 } else if (A->getOption().getID() == options::OPT_U) {
2722 assert(A->getNumValues() == 1 && "The /U option has one value.");
2723 StringRef Val = A->getValue(0);
2724 if (Val.find_first_of("/\\") != StringRef::npos) {
2725 // Warn about e.g. "/Users/me/myfile.c".
2726 Diag(diag::warn_slash_u_filename) << Val;
2727 Diag(diag::note_use_dashdash);
2728 }
2729 }
2730 }
2731 if (CCCIsCPP() && Inputs.empty()) {
2732 // If called as standalone preprocessor, stdin is processed
2733 // if no other input is present.
2734 Arg *A = MakeInputArg(Args, Opts, "-");
2735 Inputs.push_back(std::make_pair(types::TY_C, A));
2736 }
2737 }
2738
2739 namespace {
2740 /// Provides a convenient interface for different programming models to generate
2741 /// the required device actions.
2742 class OffloadingActionBuilder final {
2743 /// Flag used to trace errors in the builder.
2744 bool IsValid = false;
2745
2746 /// The compilation that is using this builder.
2747 Compilation &C;
2748
2749 /// Map between an input argument and the offload kinds used to process it.
2750 std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2751
2752 /// Map between a host action and its originating input argument.
2753 std::map<Action *, const Arg *> HostActionToInputArgMap;
2754
2755 /// Builder interface. It doesn't build anything or keep any state.
2756 class DeviceActionBuilder {
2757 public:
2758 typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2759
2760 enum ActionBuilderReturnCode {
2761 // The builder acted successfully on the current action.
2762 ABRT_Success,
2763 // The builder didn't have to act on the current action.
2764 ABRT_Inactive,
2765 // The builder was successful and requested the host action to not be
2766 // generated.
2767 ABRT_Ignore_Host,
2768 };
2769
2770 protected:
2771 /// Compilation associated with this builder.
2772 Compilation &C;
2773
2774 /// Tool chains associated with this builder. The same programming
2775 /// model may have associated one or more tool chains.
2776 SmallVector<const ToolChain *, 2> ToolChains;
2777
2778 /// The derived arguments associated with this builder.
2779 DerivedArgList &Args;
2780
2781 /// The inputs associated with this builder.
2782 const Driver::InputList &Inputs;
2783
2784 /// The associated offload kind.
2785 Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2786
2787 public:
DeviceActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs,Action::OffloadKind AssociatedOffloadKind)2788 DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2789 const Driver::InputList &Inputs,
2790 Action::OffloadKind AssociatedOffloadKind)
2791 : C(C), Args(Args), Inputs(Inputs),
2792 AssociatedOffloadKind(AssociatedOffloadKind) {}
~DeviceActionBuilder()2793 virtual ~DeviceActionBuilder() {}
2794
2795 /// Fill up the array \a DA with all the device dependences that should be
2796 /// added to the provided host action \a HostAction. By default it is
2797 /// inactive.
2798 virtual ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)2799 getDeviceDependences(OffloadAction::DeviceDependences &DA,
2800 phases::ID CurPhase, phases::ID FinalPhase,
2801 PhasesTy &Phases) {
2802 return ABRT_Inactive;
2803 }
2804
2805 /// Update the state to include the provided host action \a HostAction as a
2806 /// dependency of the current device action. By default it is inactive.
addDeviceDependences(Action * HostAction)2807 virtual ActionBuilderReturnCode addDeviceDependences(Action *HostAction) {
2808 return ABRT_Inactive;
2809 }
2810
2811 /// Append top level actions generated by the builder.
appendTopLevelActions(ActionList & AL)2812 virtual void appendTopLevelActions(ActionList &AL) {}
2813
2814 /// Append linker device actions generated by the builder.
appendLinkDeviceActions(ActionList & AL)2815 virtual void appendLinkDeviceActions(ActionList &AL) {}
2816
2817 /// Append linker host action generated by the builder.
appendLinkHostActions(ActionList & AL)2818 virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
2819
2820 /// Append linker actions generated by the builder.
appendLinkDependences(OffloadAction::DeviceDependences & DA)2821 virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2822
2823 /// Initialize the builder. Return true if any initialization errors are
2824 /// found.
initialize()2825 virtual bool initialize() { return false; }
2826
2827 /// Return true if the builder can use bundling/unbundling.
canUseBundlerUnbundler() const2828 virtual bool canUseBundlerUnbundler() const { return false; }
2829
2830 /// Return true if this builder is valid. We have a valid builder if we have
2831 /// associated device tool chains.
isValid()2832 bool isValid() { return !ToolChains.empty(); }
2833
2834 /// Return the associated offload kind.
getAssociatedOffloadKind()2835 Action::OffloadKind getAssociatedOffloadKind() {
2836 return AssociatedOffloadKind;
2837 }
2838 };
2839
2840 /// Base class for CUDA/HIP action builder. It injects device code in
2841 /// the host backend action.
2842 class CudaActionBuilderBase : public DeviceActionBuilder {
2843 protected:
2844 /// Flags to signal if the user requested host-only or device-only
2845 /// compilation.
2846 bool CompileHostOnly = false;
2847 bool CompileDeviceOnly = false;
2848 bool EmitLLVM = false;
2849 bool EmitAsm = false;
2850
2851 /// ID to identify each device compilation. For CUDA it is simply the
2852 /// GPU arch string. For HIP it is either the GPU arch string or GPU
2853 /// arch string plus feature strings delimited by a plus sign, e.g.
2854 /// gfx906+xnack.
2855 struct TargetID {
2856 /// Target ID string which is persistent throughout the compilation.
2857 const char *ID;
TargetID__anonbd3e07ce0811::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2858 TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); }
TargetID__anonbd3e07ce0811::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2859 TargetID(const char *ID) : ID(ID) {}
operator const char*__anonbd3e07ce0811::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2860 operator const char *() { return ID; }
operator StringRef__anonbd3e07ce0811::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2861 operator StringRef() { return StringRef(ID); }
2862 };
2863 /// List of GPU architectures to use in this compilation.
2864 SmallVector<TargetID, 4> GpuArchList;
2865
2866 /// The CUDA actions for the current input.
2867 ActionList CudaDeviceActions;
2868
2869 /// The CUDA fat binary if it was generated for the current input.
2870 Action *CudaFatBinary = nullptr;
2871
2872 /// Flag that is set to true if this builder acted on the current input.
2873 bool IsActive = false;
2874
2875 /// Flag for -fgpu-rdc.
2876 bool Relocatable = false;
2877
2878 /// Default GPU architecture if there's no one specified.
2879 CudaArch DefaultCudaArch = CudaArch::UNKNOWN;
2880
2881 /// Method to generate compilation unit ID specified by option
2882 /// '-fuse-cuid='.
2883 enum UseCUIDKind { CUID_Hash, CUID_Random, CUID_None, CUID_Invalid };
2884 UseCUIDKind UseCUID = CUID_Hash;
2885
2886 /// Compilation unit ID specified by option '-cuid='.
2887 StringRef FixedCUID;
2888
2889 public:
CudaActionBuilderBase(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs,Action::OffloadKind OFKind)2890 CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2891 const Driver::InputList &Inputs,
2892 Action::OffloadKind OFKind)
2893 : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2894
addDeviceDependences(Action * HostAction)2895 ActionBuilderReturnCode addDeviceDependences(Action *HostAction) override {
2896 // While generating code for CUDA, we only depend on the host input action
2897 // to trigger the creation of all the CUDA device actions.
2898
2899 // If we are dealing with an input action, replicate it for each GPU
2900 // architecture. If we are in host-only mode we return 'success' so that
2901 // the host uses the CUDA offload kind.
2902 if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2903 assert(!GpuArchList.empty() &&
2904 "We should have at least one GPU architecture.");
2905
2906 // If the host input is not CUDA or HIP, we don't need to bother about
2907 // this input.
2908 if (!(IA->getType() == types::TY_CUDA ||
2909 IA->getType() == types::TY_HIP ||
2910 IA->getType() == types::TY_PP_HIP)) {
2911 // The builder will ignore this input.
2912 IsActive = false;
2913 return ABRT_Inactive;
2914 }
2915
2916 // Set the flag to true, so that the builder acts on the current input.
2917 IsActive = true;
2918
2919 if (CompileHostOnly)
2920 return ABRT_Success;
2921
2922 // Replicate inputs for each GPU architecture.
2923 auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2924 : types::TY_CUDA_DEVICE;
2925 std::string CUID = FixedCUID.str();
2926 if (CUID.empty()) {
2927 if (UseCUID == CUID_Random)
2928 CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(),
2929 /*LowerCase=*/true);
2930 else if (UseCUID == CUID_Hash) {
2931 llvm::MD5 Hasher;
2932 llvm::MD5::MD5Result Hash;
2933 SmallString<256> RealPath;
2934 llvm::sys::fs::real_path(IA->getInputArg().getValue(), RealPath,
2935 /*expand_tilde=*/true);
2936 Hasher.update(RealPath);
2937 for (auto *A : Args) {
2938 if (A->getOption().matches(options::OPT_INPUT))
2939 continue;
2940 Hasher.update(A->getAsString(Args));
2941 }
2942 Hasher.final(Hash);
2943 CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true);
2944 }
2945 }
2946 IA->setId(CUID);
2947
2948 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2949 CudaDeviceActions.push_back(
2950 C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId()));
2951 }
2952
2953 return ABRT_Success;
2954 }
2955
2956 // If this is an unbundling action use it as is for each CUDA toolchain.
2957 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2958
2959 // If -fgpu-rdc is disabled, should not unbundle since there is no
2960 // device code to link.
2961 if (UA->getType() == types::TY_Object && !Relocatable)
2962 return ABRT_Inactive;
2963
2964 CudaDeviceActions.clear();
2965 auto *IA = cast<InputAction>(UA->getInputs().back());
2966 std::string FileName = IA->getInputArg().getAsString(Args);
2967 // Check if the type of the file is the same as the action. Do not
2968 // unbundle it if it is not. Do not unbundle .so files, for example,
2969 // which are not object files. Files with extension ".lib" is classified
2970 // as TY_Object but they are actually archives, therefore should not be
2971 // unbundled here as objects. They will be handled at other places.
2972 const StringRef LibFileExt = ".lib";
2973 if (IA->getType() == types::TY_Object &&
2974 (!llvm::sys::path::has_extension(FileName) ||
2975 types::lookupTypeForExtension(
2976 llvm::sys::path::extension(FileName).drop_front()) !=
2977 types::TY_Object ||
2978 llvm::sys::path::extension(FileName) == LibFileExt))
2979 return ABRT_Inactive;
2980
2981 for (auto Arch : GpuArchList) {
2982 CudaDeviceActions.push_back(UA);
2983 UA->registerDependentActionInfo(ToolChains[0], Arch,
2984 AssociatedOffloadKind);
2985 }
2986 IsActive = true;
2987 return ABRT_Success;
2988 }
2989
2990 return IsActive ? ABRT_Success : ABRT_Inactive;
2991 }
2992
appendTopLevelActions(ActionList & AL)2993 void appendTopLevelActions(ActionList &AL) override {
2994 // Utility to append actions to the top level list.
2995 auto AddTopLevel = [&](Action *A, TargetID TargetID) {
2996 OffloadAction::DeviceDependences Dep;
2997 Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind);
2998 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2999 };
3000
3001 // If we have a fat binary, add it to the list.
3002 if (CudaFatBinary) {
3003 AddTopLevel(CudaFatBinary, CudaArch::UNUSED);
3004 CudaDeviceActions.clear();
3005 CudaFatBinary = nullptr;
3006 return;
3007 }
3008
3009 if (CudaDeviceActions.empty())
3010 return;
3011
3012 // If we have CUDA actions at this point, that's because we have a have
3013 // partial compilation, so we should have an action for each GPU
3014 // architecture.
3015 assert(CudaDeviceActions.size() == GpuArchList.size() &&
3016 "Expecting one action per GPU architecture.");
3017 assert(ToolChains.size() == 1 &&
3018 "Expecting to have a single CUDA toolchain.");
3019 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
3020 AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
3021
3022 CudaDeviceActions.clear();
3023 }
3024
3025 /// Get canonicalized offload arch option. \returns empty StringRef if the
3026 /// option is invalid.
3027 virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0;
3028
3029 virtual std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3030 getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0;
3031
initialize()3032 bool initialize() override {
3033 assert(AssociatedOffloadKind == Action::OFK_Cuda ||
3034 AssociatedOffloadKind == Action::OFK_HIP);
3035
3036 // We don't need to support CUDA.
3037 if (AssociatedOffloadKind == Action::OFK_Cuda &&
3038 !C.hasOffloadToolChain<Action::OFK_Cuda>())
3039 return false;
3040
3041 // We don't need to support HIP.
3042 if (AssociatedOffloadKind == Action::OFK_HIP &&
3043 !C.hasOffloadToolChain<Action::OFK_HIP>())
3044 return false;
3045
3046 Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
3047 options::OPT_fno_gpu_rdc, /*Default=*/false);
3048
3049 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
3050 assert(HostTC && "No toolchain for host compilation.");
3051 if (HostTC->getTriple().isNVPTX() ||
3052 HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
3053 // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
3054 // an error and abort pipeline construction early so we don't trip
3055 // asserts that assume device-side compilation.
3056 C.getDriver().Diag(diag::err_drv_cuda_host_arch)
3057 << HostTC->getTriple().getArchName();
3058 return true;
3059 }
3060
3061 ToolChains.push_back(
3062 AssociatedOffloadKind == Action::OFK_Cuda
3063 ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
3064 : C.getSingleOffloadToolChain<Action::OFK_HIP>());
3065
3066 CompileHostOnly = C.getDriver().offloadHostOnly();
3067 CompileDeviceOnly = C.getDriver().offloadDeviceOnly();
3068 EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
3069 EmitAsm = Args.getLastArg(options::OPT_S);
3070 FixedCUID = Args.getLastArgValue(options::OPT_cuid_EQ);
3071 if (Arg *A = Args.getLastArg(options::OPT_fuse_cuid_EQ)) {
3072 StringRef UseCUIDStr = A->getValue();
3073 UseCUID = llvm::StringSwitch<UseCUIDKind>(UseCUIDStr)
3074 .Case("hash", CUID_Hash)
3075 .Case("random", CUID_Random)
3076 .Case("none", CUID_None)
3077 .Default(CUID_Invalid);
3078 if (UseCUID == CUID_Invalid) {
3079 C.getDriver().Diag(diag::err_drv_invalid_value)
3080 << A->getAsString(Args) << UseCUIDStr;
3081 C.setContainsError();
3082 return true;
3083 }
3084 }
3085
3086 // --offload and --offload-arch options are mutually exclusive.
3087 if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
3088 Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
3089 options::OPT_no_offload_arch_EQ)) {
3090 C.getDriver().Diag(diag::err_opt_not_valid_with_opt) << "--offload-arch"
3091 << "--offload";
3092 }
3093
3094 // Collect all offload arch parameters, removing duplicates.
3095 std::set<StringRef> GpuArchs;
3096 bool Error = false;
3097 for (Arg *A : Args) {
3098 if (!(A->getOption().matches(options::OPT_offload_arch_EQ) ||
3099 A->getOption().matches(options::OPT_no_offload_arch_EQ)))
3100 continue;
3101 A->claim();
3102
3103 for (StringRef ArchStr : llvm::split(A->getValue(), ",")) {
3104 if (A->getOption().matches(options::OPT_no_offload_arch_EQ) &&
3105 ArchStr == "all") {
3106 GpuArchs.clear();
3107 } else if (ArchStr == "native") {
3108 const ToolChain &TC = *ToolChains.front();
3109 auto GPUsOrErr = ToolChains.front()->getSystemGPUArchs(Args);
3110 if (!GPUsOrErr) {
3111 TC.getDriver().Diag(diag::err_drv_undetermined_gpu_arch)
3112 << llvm::Triple::getArchTypeName(TC.getArch())
3113 << llvm::toString(GPUsOrErr.takeError()) << "--offload-arch";
3114 continue;
3115 }
3116
3117 for (auto GPU : *GPUsOrErr) {
3118 GpuArchs.insert(Args.MakeArgString(GPU));
3119 }
3120 } else {
3121 ArchStr = getCanonicalOffloadArch(ArchStr);
3122 if (ArchStr.empty()) {
3123 Error = true;
3124 } else if (A->getOption().matches(options::OPT_offload_arch_EQ))
3125 GpuArchs.insert(ArchStr);
3126 else if (A->getOption().matches(options::OPT_no_offload_arch_EQ))
3127 GpuArchs.erase(ArchStr);
3128 else
3129 llvm_unreachable("Unexpected option.");
3130 }
3131 }
3132 }
3133
3134 auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs);
3135 if (ConflictingArchs) {
3136 C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
3137 << ConflictingArchs->first << ConflictingArchs->second;
3138 C.setContainsError();
3139 return true;
3140 }
3141
3142 // Collect list of GPUs remaining in the set.
3143 for (auto Arch : GpuArchs)
3144 GpuArchList.push_back(Arch.data());
3145
3146 // Default to sm_20 which is the lowest common denominator for
3147 // supported GPUs. sm_20 code should work correctly, if
3148 // suboptimally, on all newer GPUs.
3149 if (GpuArchList.empty()) {
3150 if (ToolChains.front()->getTriple().isSPIRV())
3151 GpuArchList.push_back(CudaArch::Generic);
3152 else
3153 GpuArchList.push_back(DefaultCudaArch);
3154 }
3155
3156 return Error;
3157 }
3158 };
3159
3160 /// \brief CUDA action builder. It injects device code in the host backend
3161 /// action.
3162 class CudaActionBuilder final : public CudaActionBuilderBase {
3163 public:
CudaActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)3164 CudaActionBuilder(Compilation &C, DerivedArgList &Args,
3165 const Driver::InputList &Inputs)
3166 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
3167 DefaultCudaArch = CudaArch::SM_35;
3168 }
3169
getCanonicalOffloadArch(StringRef ArchStr)3170 StringRef getCanonicalOffloadArch(StringRef ArchStr) override {
3171 CudaArch Arch = StringToCudaArch(ArchStr);
3172 if (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch)) {
3173 C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
3174 return StringRef();
3175 }
3176 return CudaArchToString(Arch);
3177 }
3178
3179 std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
getConflictOffloadArchCombination(const std::set<StringRef> & GpuArchs)3180 getConflictOffloadArchCombination(
3181 const std::set<StringRef> &GpuArchs) override {
3182 return std::nullopt;
3183 }
3184
3185 ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)3186 getDeviceDependences(OffloadAction::DeviceDependences &DA,
3187 phases::ID CurPhase, phases::ID FinalPhase,
3188 PhasesTy &Phases) override {
3189 if (!IsActive)
3190 return ABRT_Inactive;
3191
3192 // If we don't have more CUDA actions, we don't have any dependences to
3193 // create for the host.
3194 if (CudaDeviceActions.empty())
3195 return ABRT_Success;
3196
3197 assert(CudaDeviceActions.size() == GpuArchList.size() &&
3198 "Expecting one action per GPU architecture.");
3199 assert(!CompileHostOnly &&
3200 "Not expecting CUDA actions in host-only compilation.");
3201
3202 // If we are generating code for the device or we are in a backend phase,
3203 // we attempt to generate the fat binary. We compile each arch to ptx and
3204 // assemble to cubin, then feed the cubin *and* the ptx into a device
3205 // "link" action, which uses fatbinary to combine these cubins into one
3206 // fatbin. The fatbin is then an input to the host action if not in
3207 // device-only mode.
3208 if (CompileDeviceOnly || CurPhase == phases::Backend) {
3209 ActionList DeviceActions;
3210 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3211 // Produce the device action from the current phase up to the assemble
3212 // phase.
3213 for (auto Ph : Phases) {
3214 // Skip the phases that were already dealt with.
3215 if (Ph < CurPhase)
3216 continue;
3217 // We have to be consistent with the host final phase.
3218 if (Ph > FinalPhase)
3219 break;
3220
3221 CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
3222 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
3223
3224 if (Ph == phases::Assemble)
3225 break;
3226 }
3227
3228 // If we didn't reach the assemble phase, we can't generate the fat
3229 // binary. We don't need to generate the fat binary if we are not in
3230 // device-only mode.
3231 if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
3232 CompileDeviceOnly)
3233 continue;
3234
3235 Action *AssembleAction = CudaDeviceActions[I];
3236 assert(AssembleAction->getType() == types::TY_Object);
3237 assert(AssembleAction->getInputs().size() == 1);
3238
3239 Action *BackendAction = AssembleAction->getInputs()[0];
3240 assert(BackendAction->getType() == types::TY_PP_Asm);
3241
3242 for (auto &A : {AssembleAction, BackendAction}) {
3243 OffloadAction::DeviceDependences DDep;
3244 DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda);
3245 DeviceActions.push_back(
3246 C.MakeAction<OffloadAction>(DDep, A->getType()));
3247 }
3248 }
3249
3250 // We generate the fat binary if we have device input actions.
3251 if (!DeviceActions.empty()) {
3252 CudaFatBinary =
3253 C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
3254
3255 if (!CompileDeviceOnly) {
3256 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3257 Action::OFK_Cuda);
3258 // Clear the fat binary, it is already a dependence to an host
3259 // action.
3260 CudaFatBinary = nullptr;
3261 }
3262
3263 // Remove the CUDA actions as they are already connected to an host
3264 // action or fat binary.
3265 CudaDeviceActions.clear();
3266 }
3267
3268 // We avoid creating host action in device-only mode.
3269 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3270 } else if (CurPhase > phases::Backend) {
3271 // If we are past the backend phase and still have a device action, we
3272 // don't have to do anything as this action is already a device
3273 // top-level action.
3274 return ABRT_Success;
3275 }
3276
3277 assert(CurPhase < phases::Backend && "Generating single CUDA "
3278 "instructions should only occur "
3279 "before the backend phase!");
3280
3281 // By default, we produce an action for each device arch.
3282 for (Action *&A : CudaDeviceActions)
3283 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
3284
3285 return ABRT_Success;
3286 }
3287 };
3288 /// \brief HIP action builder. It injects device code in the host backend
3289 /// action.
3290 class HIPActionBuilder final : public CudaActionBuilderBase {
3291 /// The linker inputs obtained for each device arch.
3292 SmallVector<ActionList, 8> DeviceLinkerInputs;
3293 // The default bundling behavior depends on the type of output, therefore
3294 // BundleOutput needs to be tri-value: None, true, or false.
3295 // Bundle code objects except --no-gpu-output is specified for device
3296 // only compilation. Bundle other type of output files only if
3297 // --gpu-bundle-output is specified for device only compilation.
3298 std::optional<bool> BundleOutput;
3299
3300 public:
HIPActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)3301 HIPActionBuilder(Compilation &C, DerivedArgList &Args,
3302 const Driver::InputList &Inputs)
3303 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
3304 DefaultCudaArch = CudaArch::GFX906;
3305 if (Args.hasArg(options::OPT_gpu_bundle_output,
3306 options::OPT_no_gpu_bundle_output))
3307 BundleOutput = Args.hasFlag(options::OPT_gpu_bundle_output,
3308 options::OPT_no_gpu_bundle_output, true);
3309 }
3310
canUseBundlerUnbundler() const3311 bool canUseBundlerUnbundler() const override { return true; }
3312
getCanonicalOffloadArch(StringRef IdStr)3313 StringRef getCanonicalOffloadArch(StringRef IdStr) override {
3314 llvm::StringMap<bool> Features;
3315 // getHIPOffloadTargetTriple() is known to return valid value as it has
3316 // been called successfully in the CreateOffloadingDeviceToolChains().
3317 auto ArchStr = parseTargetID(
3318 *getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs()), IdStr,
3319 &Features);
3320 if (!ArchStr) {
3321 C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr;
3322 C.setContainsError();
3323 return StringRef();
3324 }
3325 auto CanId = getCanonicalTargetID(*ArchStr, Features);
3326 return Args.MakeArgStringRef(CanId);
3327 };
3328
3329 std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
getConflictOffloadArchCombination(const std::set<StringRef> & GpuArchs)3330 getConflictOffloadArchCombination(
3331 const std::set<StringRef> &GpuArchs) override {
3332 return getConflictTargetIDCombination(GpuArchs);
3333 }
3334
3335 ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)3336 getDeviceDependences(OffloadAction::DeviceDependences &DA,
3337 phases::ID CurPhase, phases::ID FinalPhase,
3338 PhasesTy &Phases) override {
3339 if (!IsActive)
3340 return ABRT_Inactive;
3341
3342 // amdgcn does not support linking of object files, therefore we skip
3343 // backend and assemble phases to output LLVM IR. Except for generating
3344 // non-relocatable device code, where we generate fat binary for device
3345 // code and pass to host in Backend phase.
3346 if (CudaDeviceActions.empty())
3347 return ABRT_Success;
3348
3349 assert(((CurPhase == phases::Link && Relocatable) ||
3350 CudaDeviceActions.size() == GpuArchList.size()) &&
3351 "Expecting one action per GPU architecture.");
3352 assert(!CompileHostOnly &&
3353 "Not expecting HIP actions in host-only compilation.");
3354
3355 if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
3356 !EmitAsm) {
3357 // If we are in backend phase, we attempt to generate the fat binary.
3358 // We compile each arch to IR and use a link action to generate code
3359 // object containing ISA. Then we use a special "link" action to create
3360 // a fat binary containing all the code objects for different GPU's.
3361 // The fat binary is then an input to the host action.
3362 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3363 if (C.getDriver().isUsingLTO(/*IsOffload=*/true)) {
3364 // When LTO is enabled, skip the backend and assemble phases and
3365 // use lld to link the bitcode.
3366 ActionList AL;
3367 AL.push_back(CudaDeviceActions[I]);
3368 // Create a link action to link device IR with device library
3369 // and generate ISA.
3370 CudaDeviceActions[I] =
3371 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3372 } else {
3373 // When LTO is not enabled, we follow the conventional
3374 // compiler phases, including backend and assemble phases.
3375 ActionList AL;
3376 Action *BackendAction = nullptr;
3377 if (ToolChains.front()->getTriple().isSPIRV()) {
3378 // Emit LLVM bitcode for SPIR-V targets. SPIR-V device tool chain
3379 // (HIPSPVToolChain) runs post-link LLVM IR passes.
3380 types::ID Output = Args.hasArg(options::OPT_S)
3381 ? types::TY_LLVM_IR
3382 : types::TY_LLVM_BC;
3383 BackendAction =
3384 C.MakeAction<BackendJobAction>(CudaDeviceActions[I], Output);
3385 } else
3386 BackendAction = C.getDriver().ConstructPhaseAction(
3387 C, Args, phases::Backend, CudaDeviceActions[I],
3388 AssociatedOffloadKind);
3389 auto AssembleAction = C.getDriver().ConstructPhaseAction(
3390 C, Args, phases::Assemble, BackendAction,
3391 AssociatedOffloadKind);
3392 AL.push_back(AssembleAction);
3393 // Create a link action to link device IR with device library
3394 // and generate ISA.
3395 CudaDeviceActions[I] =
3396 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3397 }
3398
3399 // OffloadingActionBuilder propagates device arch until an offload
3400 // action. Since the next action for creating fatbin does
3401 // not have device arch, whereas the above link action and its input
3402 // have device arch, an offload action is needed to stop the null
3403 // device arch of the next action being propagated to the above link
3404 // action.
3405 OffloadAction::DeviceDependences DDep;
3406 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3407 AssociatedOffloadKind);
3408 CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3409 DDep, CudaDeviceActions[I]->getType());
3410 }
3411
3412 if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3413 // Create HIP fat binary with a special "link" action.
3414 CudaFatBinary = C.MakeAction<LinkJobAction>(CudaDeviceActions,
3415 types::TY_HIP_FATBIN);
3416
3417 if (!CompileDeviceOnly) {
3418 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3419 AssociatedOffloadKind);
3420 // Clear the fat binary, it is already a dependence to an host
3421 // action.
3422 CudaFatBinary = nullptr;
3423 }
3424
3425 // Remove the CUDA actions as they are already connected to an host
3426 // action or fat binary.
3427 CudaDeviceActions.clear();
3428 }
3429
3430 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3431 } else if (CurPhase == phases::Link) {
3432 // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
3433 // This happens to each device action originated from each input file.
3434 // Later on, device actions in DeviceLinkerInputs are used to create
3435 // device link actions in appendLinkDependences and the created device
3436 // link actions are passed to the offload action as device dependence.
3437 DeviceLinkerInputs.resize(CudaDeviceActions.size());
3438 auto LI = DeviceLinkerInputs.begin();
3439 for (auto *A : CudaDeviceActions) {
3440 LI->push_back(A);
3441 ++LI;
3442 }
3443
3444 // We will pass the device action as a host dependence, so we don't
3445 // need to do anything else with them.
3446 CudaDeviceActions.clear();
3447 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3448 }
3449
3450 // By default, we produce an action for each device arch.
3451 for (Action *&A : CudaDeviceActions)
3452 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
3453 AssociatedOffloadKind);
3454
3455 if (CompileDeviceOnly && CurPhase == FinalPhase && BundleOutput &&
3456 *BundleOutput) {
3457 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3458 OffloadAction::DeviceDependences DDep;
3459 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3460 AssociatedOffloadKind);
3461 CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3462 DDep, CudaDeviceActions[I]->getType());
3463 }
3464 CudaFatBinary =
3465 C.MakeAction<OffloadBundlingJobAction>(CudaDeviceActions);
3466 CudaDeviceActions.clear();
3467 }
3468
3469 return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host
3470 : ABRT_Success;
3471 }
3472
appendLinkDeviceActions(ActionList & AL)3473 void appendLinkDeviceActions(ActionList &AL) override {
3474 if (DeviceLinkerInputs.size() == 0)
3475 return;
3476
3477 assert(DeviceLinkerInputs.size() == GpuArchList.size() &&
3478 "Linker inputs and GPU arch list sizes do not match.");
3479
3480 ActionList Actions;
3481 unsigned I = 0;
3482 // Append a new link action for each device.
3483 // Each entry in DeviceLinkerInputs corresponds to a GPU arch.
3484 for (auto &LI : DeviceLinkerInputs) {
3485
3486 types::ID Output = Args.hasArg(options::OPT_emit_llvm)
3487 ? types::TY_LLVM_BC
3488 : types::TY_Image;
3489
3490 auto *DeviceLinkAction = C.MakeAction<LinkJobAction>(LI, Output);
3491 // Linking all inputs for the current GPU arch.
3492 // LI contains all the inputs for the linker.
3493 OffloadAction::DeviceDependences DeviceLinkDeps;
3494 DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0],
3495 GpuArchList[I], AssociatedOffloadKind);
3496 Actions.push_back(C.MakeAction<OffloadAction>(
3497 DeviceLinkDeps, DeviceLinkAction->getType()));
3498 ++I;
3499 }
3500 DeviceLinkerInputs.clear();
3501
3502 // If emitting LLVM, do not generate final host/device compilation action
3503 if (Args.hasArg(options::OPT_emit_llvm)) {
3504 AL.append(Actions);
3505 return;
3506 }
3507
3508 // Create a host object from all the device images by embedding them
3509 // in a fat binary for mixed host-device compilation. For device-only
3510 // compilation, creates a fat binary.
3511 OffloadAction::DeviceDependences DDeps;
3512 if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3513 auto *TopDeviceLinkAction = C.MakeAction<LinkJobAction>(
3514 Actions,
3515 CompileDeviceOnly ? types::TY_HIP_FATBIN : types::TY_Object);
3516 DDeps.add(*TopDeviceLinkAction, *ToolChains[0], nullptr,
3517 AssociatedOffloadKind);
3518 // Offload the host object to the host linker.
3519 AL.push_back(
3520 C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType()));
3521 } else {
3522 AL.append(Actions);
3523 }
3524 }
3525
appendLinkHostActions(ActionList & AL)3526 Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
3527
appendLinkDependences(OffloadAction::DeviceDependences & DA)3528 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3529 };
3530
3531 ///
3532 /// TODO: Add the implementation for other specialized builders here.
3533 ///
3534
3535 /// Specialized builders being used by this offloading action builder.
3536 SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
3537
3538 /// Flag set to true if all valid builders allow file bundling/unbundling.
3539 bool CanUseBundler;
3540
3541 public:
OffloadingActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)3542 OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
3543 const Driver::InputList &Inputs)
3544 : C(C) {
3545 // Create a specialized builder for each device toolchain.
3546
3547 IsValid = true;
3548
3549 // Create a specialized builder for CUDA.
3550 SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
3551
3552 // Create a specialized builder for HIP.
3553 SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
3554
3555 //
3556 // TODO: Build other specialized builders here.
3557 //
3558
3559 // Initialize all the builders, keeping track of errors. If all valid
3560 // builders agree that we can use bundling, set the flag to true.
3561 unsigned ValidBuilders = 0u;
3562 unsigned ValidBuildersSupportingBundling = 0u;
3563 for (auto *SB : SpecializedBuilders) {
3564 IsValid = IsValid && !SB->initialize();
3565
3566 // Update the counters if the builder is valid.
3567 if (SB->isValid()) {
3568 ++ValidBuilders;
3569 if (SB->canUseBundlerUnbundler())
3570 ++ValidBuildersSupportingBundling;
3571 }
3572 }
3573 CanUseBundler =
3574 ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3575 }
3576
~OffloadingActionBuilder()3577 ~OffloadingActionBuilder() {
3578 for (auto *SB : SpecializedBuilders)
3579 delete SB;
3580 }
3581
3582 /// Record a host action and its originating input argument.
recordHostAction(Action * HostAction,const Arg * InputArg)3583 void recordHostAction(Action *HostAction, const Arg *InputArg) {
3584 assert(HostAction && "Invalid host action");
3585 assert(InputArg && "Invalid input argument");
3586 auto Loc = HostActionToInputArgMap.find(HostAction);
3587 if (Loc == HostActionToInputArgMap.end())
3588 HostActionToInputArgMap[HostAction] = InputArg;
3589 assert(HostActionToInputArgMap[HostAction] == InputArg &&
3590 "host action mapped to multiple input arguments");
3591 }
3592
3593 /// Generate an action that adds device dependences (if any) to a host action.
3594 /// If no device dependence actions exist, just return the host action \a
3595 /// HostAction. If an error is found or if no builder requires the host action
3596 /// to be generated, return nullptr.
3597 Action *
addDeviceDependencesToHostAction(Action * HostAction,const Arg * InputArg,phases::ID CurPhase,phases::ID FinalPhase,DeviceActionBuilder::PhasesTy & Phases)3598 addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3599 phases::ID CurPhase, phases::ID FinalPhase,
3600 DeviceActionBuilder::PhasesTy &Phases) {
3601 if (!IsValid)
3602 return nullptr;
3603
3604 if (SpecializedBuilders.empty())
3605 return HostAction;
3606
3607 assert(HostAction && "Invalid host action!");
3608 recordHostAction(HostAction, InputArg);
3609
3610 OffloadAction::DeviceDependences DDeps;
3611 // Check if all the programming models agree we should not emit the host
3612 // action. Also, keep track of the offloading kinds employed.
3613 auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3614 unsigned InactiveBuilders = 0u;
3615 unsigned IgnoringBuilders = 0u;
3616 for (auto *SB : SpecializedBuilders) {
3617 if (!SB->isValid()) {
3618 ++InactiveBuilders;
3619 continue;
3620 }
3621
3622 auto RetCode =
3623 SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3624
3625 // If the builder explicitly says the host action should be ignored,
3626 // we need to increment the variable that tracks the builders that request
3627 // the host object to be ignored.
3628 if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3629 ++IgnoringBuilders;
3630
3631 // Unless the builder was inactive for this action, we have to record the
3632 // offload kind because the host will have to use it.
3633 if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3634 OffloadKind |= SB->getAssociatedOffloadKind();
3635 }
3636
3637 // If all builders agree that the host object should be ignored, just return
3638 // nullptr.
3639 if (IgnoringBuilders &&
3640 SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3641 return nullptr;
3642
3643 if (DDeps.getActions().empty())
3644 return HostAction;
3645
3646 // We have dependences we need to bundle together. We use an offload action
3647 // for that.
3648 OffloadAction::HostDependence HDep(
3649 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3650 /*BoundArch=*/nullptr, DDeps);
3651 return C.MakeAction<OffloadAction>(HDep, DDeps);
3652 }
3653
3654 /// Generate an action that adds a host dependence to a device action. The
3655 /// results will be kept in this action builder. Return true if an error was
3656 /// found.
addHostDependenceToDeviceActions(Action * & HostAction,const Arg * InputArg)3657 bool addHostDependenceToDeviceActions(Action *&HostAction,
3658 const Arg *InputArg) {
3659 if (!IsValid)
3660 return true;
3661
3662 recordHostAction(HostAction, InputArg);
3663
3664 // If we are supporting bundling/unbundling and the current action is an
3665 // input action of non-source file, we replace the host action by the
3666 // unbundling action. The bundler tool has the logic to detect if an input
3667 // is a bundle or not and if the input is not a bundle it assumes it is a
3668 // host file. Therefore it is safe to create an unbundling action even if
3669 // the input is not a bundle.
3670 if (CanUseBundler && isa<InputAction>(HostAction) &&
3671 InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3672 (!types::isSrcFile(HostAction->getType()) ||
3673 HostAction->getType() == types::TY_PP_HIP)) {
3674 auto UnbundlingHostAction =
3675 C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3676 UnbundlingHostAction->registerDependentActionInfo(
3677 C.getSingleOffloadToolChain<Action::OFK_Host>(),
3678 /*BoundArch=*/StringRef(), Action::OFK_Host);
3679 HostAction = UnbundlingHostAction;
3680 recordHostAction(HostAction, InputArg);
3681 }
3682
3683 assert(HostAction && "Invalid host action!");
3684
3685 // Register the offload kinds that are used.
3686 auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3687 for (auto *SB : SpecializedBuilders) {
3688 if (!SB->isValid())
3689 continue;
3690
3691 auto RetCode = SB->addDeviceDependences(HostAction);
3692
3693 // Host dependences for device actions are not compatible with that same
3694 // action being ignored.
3695 assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3696 "Host dependence not expected to be ignored.!");
3697
3698 // Unless the builder was inactive for this action, we have to record the
3699 // offload kind because the host will have to use it.
3700 if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3701 OffloadKind |= SB->getAssociatedOffloadKind();
3702 }
3703
3704 // Do not use unbundler if the Host does not depend on device action.
3705 if (OffloadKind == Action::OFK_None && CanUseBundler)
3706 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3707 HostAction = UA->getInputs().back();
3708
3709 return false;
3710 }
3711
3712 /// Add the offloading top level actions to the provided action list. This
3713 /// function can replace the host action by a bundling action if the
3714 /// programming models allow it.
appendTopLevelActions(ActionList & AL,Action * HostAction,const Arg * InputArg)3715 bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3716 const Arg *InputArg) {
3717 if (HostAction)
3718 recordHostAction(HostAction, InputArg);
3719
3720 // Get the device actions to be appended.
3721 ActionList OffloadAL;
3722 for (auto *SB : SpecializedBuilders) {
3723 if (!SB->isValid())
3724 continue;
3725 SB->appendTopLevelActions(OffloadAL);
3726 }
3727
3728 // If we can use the bundler, replace the host action by the bundling one in
3729 // the resulting list. Otherwise, just append the device actions. For
3730 // device only compilation, HostAction is a null pointer, therefore only do
3731 // this when HostAction is not a null pointer.
3732 if (CanUseBundler && HostAction &&
3733 HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3734 // Add the host action to the list in order to create the bundling action.
3735 OffloadAL.push_back(HostAction);
3736
3737 // We expect that the host action was just appended to the action list
3738 // before this method was called.
3739 assert(HostAction == AL.back() && "Host action not in the list??");
3740 HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3741 recordHostAction(HostAction, InputArg);
3742 AL.back() = HostAction;
3743 } else
3744 AL.append(OffloadAL.begin(), OffloadAL.end());
3745
3746 // Propagate to the current host action (if any) the offload information
3747 // associated with the current input.
3748 if (HostAction)
3749 HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3750 /*BoundArch=*/nullptr);
3751 return false;
3752 }
3753
appendDeviceLinkActions(ActionList & AL)3754 void appendDeviceLinkActions(ActionList &AL) {
3755 for (DeviceActionBuilder *SB : SpecializedBuilders) {
3756 if (!SB->isValid())
3757 continue;
3758 SB->appendLinkDeviceActions(AL);
3759 }
3760 }
3761
makeHostLinkAction()3762 Action *makeHostLinkAction() {
3763 // Build a list of device linking actions.
3764 ActionList DeviceAL;
3765 appendDeviceLinkActions(DeviceAL);
3766 if (DeviceAL.empty())
3767 return nullptr;
3768
3769 // Let builders add host linking actions.
3770 Action* HA = nullptr;
3771 for (DeviceActionBuilder *SB : SpecializedBuilders) {
3772 if (!SB->isValid())
3773 continue;
3774 HA = SB->appendLinkHostActions(DeviceAL);
3775 // This created host action has no originating input argument, therefore
3776 // needs to set its offloading kind directly.
3777 if (HA)
3778 HA->propagateHostOffloadInfo(SB->getAssociatedOffloadKind(),
3779 /*BoundArch=*/nullptr);
3780 }
3781 return HA;
3782 }
3783
3784 /// Processes the host linker action. This currently consists of replacing it
3785 /// with an offload action if there are device link objects and propagate to
3786 /// the host action all the offload kinds used in the current compilation. The
3787 /// resulting action is returned.
processHostLinkAction(Action * HostAction)3788 Action *processHostLinkAction(Action *HostAction) {
3789 // Add all the dependences from the device linking actions.
3790 OffloadAction::DeviceDependences DDeps;
3791 for (auto *SB : SpecializedBuilders) {
3792 if (!SB->isValid())
3793 continue;
3794
3795 SB->appendLinkDependences(DDeps);
3796 }
3797
3798 // Calculate all the offload kinds used in the current compilation.
3799 unsigned ActiveOffloadKinds = 0u;
3800 for (auto &I : InputArgToOffloadKindMap)
3801 ActiveOffloadKinds |= I.second;
3802
3803 // If we don't have device dependencies, we don't have to create an offload
3804 // action.
3805 if (DDeps.getActions().empty()) {
3806 // Set all the active offloading kinds to the link action. Given that it
3807 // is a link action it is assumed to depend on all actions generated so
3808 // far.
3809 HostAction->setHostOffloadInfo(ActiveOffloadKinds,
3810 /*BoundArch=*/nullptr);
3811 // Propagate active offloading kinds for each input to the link action.
3812 // Each input may have different active offloading kind.
3813 for (auto *A : HostAction->inputs()) {
3814 auto ArgLoc = HostActionToInputArgMap.find(A);
3815 if (ArgLoc == HostActionToInputArgMap.end())
3816 continue;
3817 auto OFKLoc = InputArgToOffloadKindMap.find(ArgLoc->second);
3818 if (OFKLoc == InputArgToOffloadKindMap.end())
3819 continue;
3820 A->propagateHostOffloadInfo(OFKLoc->second, /*BoundArch=*/nullptr);
3821 }
3822 return HostAction;
3823 }
3824
3825 // Create the offload action with all dependences. When an offload action
3826 // is created the kinds are propagated to the host action, so we don't have
3827 // to do that explicitly here.
3828 OffloadAction::HostDependence HDep(
3829 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3830 /*BoundArch*/ nullptr, ActiveOffloadKinds);
3831 return C.MakeAction<OffloadAction>(HDep, DDeps);
3832 }
3833 };
3834 } // anonymous namespace.
3835
handleArguments(Compilation & C,DerivedArgList & Args,const InputList & Inputs,ActionList & Actions) const3836 void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3837 const InputList &Inputs,
3838 ActionList &Actions) const {
3839
3840 // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3841 Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3842 Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3843 if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3844 Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3845 Args.eraseArg(options::OPT__SLASH_Yc);
3846 Args.eraseArg(options::OPT__SLASH_Yu);
3847 YcArg = YuArg = nullptr;
3848 }
3849 if (YcArg && Inputs.size() > 1) {
3850 Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3851 Args.eraseArg(options::OPT__SLASH_Yc);
3852 YcArg = nullptr;
3853 }
3854
3855 Arg *FinalPhaseArg;
3856 phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3857
3858 if (FinalPhase == phases::Link) {
3859 // Emitting LLVM while linking disabled except in HIPAMD Toolchain
3860 if (Args.hasArg(options::OPT_emit_llvm) && !Args.hasArg(options::OPT_hip_link))
3861 Diag(clang::diag::err_drv_emit_llvm_link);
3862 if (IsCLMode() && LTOMode != LTOK_None &&
3863 !Args.getLastArgValue(options::OPT_fuse_ld_EQ)
3864 .equals_insensitive("lld"))
3865 Diag(clang::diag::err_drv_lto_without_lld);
3866 }
3867
3868 if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3869 // If only preprocessing or /Y- is used, all pch handling is disabled.
3870 // Rather than check for it everywhere, just remove clang-cl pch-related
3871 // flags here.
3872 Args.eraseArg(options::OPT__SLASH_Fp);
3873 Args.eraseArg(options::OPT__SLASH_Yc);
3874 Args.eraseArg(options::OPT__SLASH_Yu);
3875 YcArg = YuArg = nullptr;
3876 }
3877
3878 unsigned LastPLSize = 0;
3879 for (auto &I : Inputs) {
3880 types::ID InputType = I.first;
3881 const Arg *InputArg = I.second;
3882
3883 auto PL = types::getCompilationPhases(InputType);
3884 LastPLSize = PL.size();
3885
3886 // If the first step comes after the final phase we are doing as part of
3887 // this compilation, warn the user about it.
3888 phases::ID InitialPhase = PL[0];
3889 if (InitialPhase > FinalPhase) {
3890 if (InputArg->isClaimed())
3891 continue;
3892
3893 // Claim here to avoid the more general unused warning.
3894 InputArg->claim();
3895
3896 // Suppress all unused style warnings with -Qunused-arguments
3897 if (Args.hasArg(options::OPT_Qunused_arguments))
3898 continue;
3899
3900 // Special case when final phase determined by binary name, rather than
3901 // by a command-line argument with a corresponding Arg.
3902 if (CCCIsCPP())
3903 Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3904 << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3905 // Special case '-E' warning on a previously preprocessed file to make
3906 // more sense.
3907 else if (InitialPhase == phases::Compile &&
3908 (Args.getLastArg(options::OPT__SLASH_EP,
3909 options::OPT__SLASH_P) ||
3910 Args.getLastArg(options::OPT_E) ||
3911 Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
3912 getPreprocessedType(InputType) == types::TY_INVALID)
3913 Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3914 << InputArg->getAsString(Args) << !!FinalPhaseArg
3915 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3916 else
3917 Diag(clang::diag::warn_drv_input_file_unused)
3918 << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3919 << !!FinalPhaseArg
3920 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3921 continue;
3922 }
3923
3924 if (YcArg) {
3925 // Add a separate precompile phase for the compile phase.
3926 if (FinalPhase >= phases::Compile) {
3927 const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3928 // Build the pipeline for the pch file.
3929 Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
3930 for (phases::ID Phase : types::getCompilationPhases(HeaderType))
3931 ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3932 assert(ClangClPch);
3933 Actions.push_back(ClangClPch);
3934 // The driver currently exits after the first failed command. This
3935 // relies on that behavior, to make sure if the pch generation fails,
3936 // the main compilation won't run.
3937 // FIXME: If the main compilation fails, the PCH generation should
3938 // probably not be considered successful either.
3939 }
3940 }
3941 }
3942
3943 // If we are linking, claim any options which are obviously only used for
3944 // compilation.
3945 // FIXME: Understand why the last Phase List length is used here.
3946 if (FinalPhase == phases::Link && LastPLSize == 1) {
3947 Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3948 Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3949 }
3950 }
3951
BuildActions(Compilation & C,DerivedArgList & Args,const InputList & Inputs,ActionList & Actions) const3952 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3953 const InputList &Inputs, ActionList &Actions) const {
3954 llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3955
3956 if (!SuppressMissingInputWarning && Inputs.empty()) {
3957 Diag(clang::diag::err_drv_no_input_files);
3958 return;
3959 }
3960
3961 // Diagnose misuse of /Fo.
3962 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3963 StringRef V = A->getValue();
3964 if (Inputs.size() > 1 && !V.empty() &&
3965 !llvm::sys::path::is_separator(V.back())) {
3966 // Check whether /Fo tries to name an output file for multiple inputs.
3967 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3968 << A->getSpelling() << V;
3969 Args.eraseArg(options::OPT__SLASH_Fo);
3970 }
3971 }
3972
3973 // Diagnose misuse of /Fa.
3974 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3975 StringRef V = A->getValue();
3976 if (Inputs.size() > 1 && !V.empty() &&
3977 !llvm::sys::path::is_separator(V.back())) {
3978 // Check whether /Fa tries to name an asm file for multiple inputs.
3979 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3980 << A->getSpelling() << V;
3981 Args.eraseArg(options::OPT__SLASH_Fa);
3982 }
3983 }
3984
3985 // Diagnose misuse of /o.
3986 if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
3987 if (A->getValue()[0] == '\0') {
3988 // It has to have a value.
3989 Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
3990 Args.eraseArg(options::OPT__SLASH_o);
3991 }
3992 }
3993
3994 handleArguments(C, Args, Inputs, Actions);
3995
3996 bool UseNewOffloadingDriver =
3997 C.isOffloadingHostKind(Action::OFK_OpenMP) ||
3998 Args.hasFlag(options::OPT_offload_new_driver,
3999 options::OPT_no_offload_new_driver, false);
4000
4001 // Builder to be used to build offloading actions.
4002 std::unique_ptr<OffloadingActionBuilder> OffloadBuilder =
4003 !UseNewOffloadingDriver
4004 ? std::make_unique<OffloadingActionBuilder>(C, Args, Inputs)
4005 : nullptr;
4006
4007 // Construct the actions to perform.
4008 ExtractAPIJobAction *ExtractAPIAction = nullptr;
4009 ActionList LinkerInputs;
4010 ActionList MergerInputs;
4011
4012 for (auto &I : Inputs) {
4013 types::ID InputType = I.first;
4014 const Arg *InputArg = I.second;
4015
4016 auto PL = types::getCompilationPhases(*this, Args, InputType);
4017 if (PL.empty())
4018 continue;
4019
4020 auto FullPL = types::getCompilationPhases(InputType);
4021
4022 // Build the pipeline for this file.
4023 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4024
4025 // Use the current host action in any of the offloading actions, if
4026 // required.
4027 if (!UseNewOffloadingDriver)
4028 if (OffloadBuilder->addHostDependenceToDeviceActions(Current, InputArg))
4029 break;
4030
4031 for (phases::ID Phase : PL) {
4032
4033 // Add any offload action the host action depends on.
4034 if (!UseNewOffloadingDriver)
4035 Current = OffloadBuilder->addDeviceDependencesToHostAction(
4036 Current, InputArg, Phase, PL.back(), FullPL);
4037 if (!Current)
4038 break;
4039
4040 // Queue linker inputs.
4041 if (Phase == phases::Link) {
4042 assert(Phase == PL.back() && "linking must be final compilation step.");
4043 // We don't need to generate additional link commands if emitting AMD bitcode
4044 if (!(C.getInputArgs().hasArg(options::OPT_hip_link) &&
4045 (C.getInputArgs().hasArg(options::OPT_emit_llvm))))
4046 LinkerInputs.push_back(Current);
4047 Current = nullptr;
4048 break;
4049 }
4050
4051 // TODO: Consider removing this because the merged may not end up being
4052 // the final Phase in the pipeline. Perhaps the merged could just merge
4053 // and then pass an artifact of some sort to the Link Phase.
4054 // Queue merger inputs.
4055 if (Phase == phases::IfsMerge) {
4056 assert(Phase == PL.back() && "merging must be final compilation step.");
4057 MergerInputs.push_back(Current);
4058 Current = nullptr;
4059 break;
4060 }
4061
4062 if (Phase == phases::Precompile && ExtractAPIAction) {
4063 ExtractAPIAction->addHeaderInput(Current);
4064 Current = nullptr;
4065 break;
4066 }
4067
4068 // FIXME: Should we include any prior module file outputs as inputs of
4069 // later actions in the same command line?
4070
4071 // Otherwise construct the appropriate action.
4072 Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
4073
4074 // We didn't create a new action, so we will just move to the next phase.
4075 if (NewCurrent == Current)
4076 continue;
4077
4078 if (auto *EAA = dyn_cast<ExtractAPIJobAction>(NewCurrent))
4079 ExtractAPIAction = EAA;
4080
4081 Current = NewCurrent;
4082
4083 // Use the current host action in any of the offloading actions, if
4084 // required.
4085 if (!UseNewOffloadingDriver)
4086 if (OffloadBuilder->addHostDependenceToDeviceActions(Current, InputArg))
4087 break;
4088
4089 // Try to build the offloading actions and add the result as a dependency
4090 // to the host.
4091 if (UseNewOffloadingDriver)
4092 Current = BuildOffloadingActions(C, Args, I, Current);
4093
4094 if (Current->getType() == types::TY_Nothing)
4095 break;
4096 }
4097
4098 // If we ended with something, add to the output list.
4099 if (Current)
4100 Actions.push_back(Current);
4101
4102 // Add any top level actions generated for offloading.
4103 if (!UseNewOffloadingDriver)
4104 OffloadBuilder->appendTopLevelActions(Actions, Current, InputArg);
4105 else if (Current)
4106 Current->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4107 /*BoundArch=*/nullptr);
4108 }
4109
4110 // Add a link action if necessary.
4111
4112 if (LinkerInputs.empty()) {
4113 Arg *FinalPhaseArg;
4114 if (getFinalPhase(Args, &FinalPhaseArg) == phases::Link)
4115 if (!UseNewOffloadingDriver)
4116 OffloadBuilder->appendDeviceLinkActions(Actions);
4117 }
4118
4119 if (!LinkerInputs.empty()) {
4120 if (!UseNewOffloadingDriver)
4121 if (Action *Wrapper = OffloadBuilder->makeHostLinkAction())
4122 LinkerInputs.push_back(Wrapper);
4123 Action *LA;
4124 // Check if this Linker Job should emit a static library.
4125 if (ShouldEmitStaticLibrary(Args)) {
4126 LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image);
4127 } else if (UseNewOffloadingDriver ||
4128 Args.hasArg(options::OPT_offload_link)) {
4129 LA = C.MakeAction<LinkerWrapperJobAction>(LinkerInputs, types::TY_Image);
4130 LA->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4131 /*BoundArch=*/nullptr);
4132 } else {
4133 LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
4134 }
4135 if (!UseNewOffloadingDriver)
4136 LA = OffloadBuilder->processHostLinkAction(LA);
4137 Actions.push_back(LA);
4138 }
4139
4140 // Add an interface stubs merge action if necessary.
4141 if (!MergerInputs.empty())
4142 Actions.push_back(
4143 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4144
4145 if (Args.hasArg(options::OPT_emit_interface_stubs)) {
4146 auto PhaseList = types::getCompilationPhases(
4147 types::TY_IFS_CPP,
4148 Args.hasArg(options::OPT_c) ? phases::Compile : phases::IfsMerge);
4149
4150 ActionList MergerInputs;
4151
4152 for (auto &I : Inputs) {
4153 types::ID InputType = I.first;
4154 const Arg *InputArg = I.second;
4155
4156 // Currently clang and the llvm assembler do not support generating symbol
4157 // stubs from assembly, so we skip the input on asm files. For ifs files
4158 // we rely on the normal pipeline setup in the pipeline setup code above.
4159 if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
4160 InputType == types::TY_Asm)
4161 continue;
4162
4163 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4164
4165 for (auto Phase : PhaseList) {
4166 switch (Phase) {
4167 default:
4168 llvm_unreachable(
4169 "IFS Pipeline can only consist of Compile followed by IfsMerge.");
4170 case phases::Compile: {
4171 // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
4172 // files where the .o file is located. The compile action can not
4173 // handle this.
4174 if (InputType == types::TY_Object)
4175 break;
4176
4177 Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
4178 break;
4179 }
4180 case phases::IfsMerge: {
4181 assert(Phase == PhaseList.back() &&
4182 "merging must be final compilation step.");
4183 MergerInputs.push_back(Current);
4184 Current = nullptr;
4185 break;
4186 }
4187 }
4188 }
4189
4190 // If we ended with something, add to the output list.
4191 if (Current)
4192 Actions.push_back(Current);
4193 }
4194
4195 // Add an interface stubs merge action if necessary.
4196 if (!MergerInputs.empty())
4197 Actions.push_back(
4198 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4199 }
4200
4201 // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
4202 // Compile phase that prints out supported cpu models and quits.
4203 if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) {
4204 // Use the -mcpu=? flag as the dummy input to cc1.
4205 Actions.clear();
4206 Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
4207 Actions.push_back(
4208 C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
4209 for (auto &I : Inputs)
4210 I.second->claim();
4211 }
4212
4213 // Claim ignored clang-cl options.
4214 Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
4215 }
4216
4217 /// Returns the canonical name for the offloading architecture when using a HIP
4218 /// or CUDA architecture.
getCanonicalArchString(Compilation & C,const llvm::opt::DerivedArgList & Args,StringRef ArchStr,const llvm::Triple & Triple,bool SuppressError=false)4219 static StringRef getCanonicalArchString(Compilation &C,
4220 const llvm::opt::DerivedArgList &Args,
4221 StringRef ArchStr,
4222 const llvm::Triple &Triple,
4223 bool SuppressError = false) {
4224 // Lookup the CUDA / HIP architecture string. Only report an error if we were
4225 // expecting the triple to be only NVPTX / AMDGPU.
4226 CudaArch Arch = StringToCudaArch(getProcessorFromTargetID(Triple, ArchStr));
4227 if (!SuppressError && Triple.isNVPTX() &&
4228 (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch))) {
4229 C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4230 << "CUDA" << ArchStr;
4231 return StringRef();
4232 } else if (!SuppressError && Triple.isAMDGPU() &&
4233 (Arch == CudaArch::UNKNOWN || !IsAMDGpuArch(Arch))) {
4234 C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4235 << "HIP" << ArchStr;
4236 return StringRef();
4237 }
4238
4239 if (IsNVIDIAGpuArch(Arch))
4240 return Args.MakeArgStringRef(CudaArchToString(Arch));
4241
4242 if (IsAMDGpuArch(Arch)) {
4243 llvm::StringMap<bool> Features;
4244 auto HIPTriple = getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs());
4245 if (!HIPTriple)
4246 return StringRef();
4247 auto Arch = parseTargetID(*HIPTriple, ArchStr, &Features);
4248 if (!Arch) {
4249 C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << ArchStr;
4250 C.setContainsError();
4251 return StringRef();
4252 }
4253 return Args.MakeArgStringRef(getCanonicalTargetID(*Arch, Features));
4254 }
4255
4256 // If the input isn't CUDA or HIP just return the architecture.
4257 return ArchStr;
4258 }
4259
4260 /// Checks if the set offloading architectures does not conflict. Returns the
4261 /// incompatible pair if a conflict occurs.
4262 static std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
getConflictOffloadArchCombination(const llvm::DenseSet<StringRef> & Archs,Action::OffloadKind Kind)4263 getConflictOffloadArchCombination(const llvm::DenseSet<StringRef> &Archs,
4264 Action::OffloadKind Kind) {
4265 if (Kind != Action::OFK_HIP)
4266 return std::nullopt;
4267
4268 std::set<StringRef> ArchSet;
4269 llvm::copy(Archs, std::inserter(ArchSet, ArchSet.begin()));
4270 return getConflictTargetIDCombination(ArchSet);
4271 }
4272
4273 llvm::DenseSet<StringRef>
getOffloadArchs(Compilation & C,const llvm::opt::DerivedArgList & Args,Action::OffloadKind Kind,const ToolChain * TC,bool SuppressError) const4274 Driver::getOffloadArchs(Compilation &C, const llvm::opt::DerivedArgList &Args,
4275 Action::OffloadKind Kind, const ToolChain *TC,
4276 bool SuppressError) const {
4277 if (!TC)
4278 TC = &C.getDefaultToolChain();
4279
4280 // --offload and --offload-arch options are mutually exclusive.
4281 if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
4282 Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
4283 options::OPT_no_offload_arch_EQ)) {
4284 C.getDriver().Diag(diag::err_opt_not_valid_with_opt)
4285 << "--offload"
4286 << (Args.hasArgNoClaim(options::OPT_offload_arch_EQ)
4287 ? "--offload-arch"
4288 : "--no-offload-arch");
4289 }
4290
4291 if (KnownArchs.find(TC) != KnownArchs.end())
4292 return KnownArchs.lookup(TC);
4293
4294 llvm::DenseSet<StringRef> Archs;
4295 for (auto *Arg : Args) {
4296 // Extract any '--[no-]offload-arch' arguments intended for this toolchain.
4297 std::unique_ptr<llvm::opt::Arg> ExtractedArg = nullptr;
4298 if (Arg->getOption().matches(options::OPT_Xopenmp_target_EQ) &&
4299 ToolChain::getOpenMPTriple(Arg->getValue(0)) == TC->getTriple()) {
4300 Arg->claim();
4301 unsigned Index = Args.getBaseArgs().MakeIndex(Arg->getValue(1));
4302 ExtractedArg = getOpts().ParseOneArg(Args, Index);
4303 Arg = ExtractedArg.get();
4304 }
4305
4306 // Add or remove the seen architectures in order of appearance. If an
4307 // invalid architecture is given we simply exit.
4308 if (Arg->getOption().matches(options::OPT_offload_arch_EQ)) {
4309 for (StringRef Arch : llvm::split(Arg->getValue(), ",")) {
4310 if (Arch == "native" || Arch.empty()) {
4311 auto GPUsOrErr = TC->getSystemGPUArchs(Args);
4312 if (!GPUsOrErr) {
4313 if (SuppressError)
4314 llvm::consumeError(GPUsOrErr.takeError());
4315 else
4316 TC->getDriver().Diag(diag::err_drv_undetermined_gpu_arch)
4317 << llvm::Triple::getArchTypeName(TC->getArch())
4318 << llvm::toString(GPUsOrErr.takeError()) << "--offload-arch";
4319 continue;
4320 }
4321
4322 for (auto ArchStr : *GPUsOrErr) {
4323 Archs.insert(
4324 getCanonicalArchString(C, Args, Args.MakeArgString(ArchStr),
4325 TC->getTriple(), SuppressError));
4326 }
4327 } else {
4328 StringRef ArchStr = getCanonicalArchString(
4329 C, Args, Arch, TC->getTriple(), SuppressError);
4330 if (ArchStr.empty())
4331 return Archs;
4332 Archs.insert(ArchStr);
4333 }
4334 }
4335 } else if (Arg->getOption().matches(options::OPT_no_offload_arch_EQ)) {
4336 for (StringRef Arch : llvm::split(Arg->getValue(), ",")) {
4337 if (Arch == "all") {
4338 Archs.clear();
4339 } else {
4340 StringRef ArchStr = getCanonicalArchString(
4341 C, Args, Arch, TC->getTriple(), SuppressError);
4342 if (ArchStr.empty())
4343 return Archs;
4344 Archs.erase(ArchStr);
4345 }
4346 }
4347 }
4348 }
4349
4350 if (auto ConflictingArchs = getConflictOffloadArchCombination(Archs, Kind)) {
4351 C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
4352 << ConflictingArchs->first << ConflictingArchs->second;
4353 C.setContainsError();
4354 }
4355
4356 // Skip filling defaults if we're just querying what is availible.
4357 if (SuppressError)
4358 return Archs;
4359
4360 if (Archs.empty()) {
4361 if (Kind == Action::OFK_Cuda)
4362 Archs.insert(CudaArchToString(CudaArch::CudaDefault));
4363 else if (Kind == Action::OFK_HIP)
4364 Archs.insert(CudaArchToString(CudaArch::HIPDefault));
4365 else if (Kind == Action::OFK_OpenMP)
4366 Archs.insert(StringRef());
4367 } else {
4368 Args.ClaimAllArgs(options::OPT_offload_arch_EQ);
4369 Args.ClaimAllArgs(options::OPT_no_offload_arch_EQ);
4370 }
4371
4372 return Archs;
4373 }
4374
BuildOffloadingActions(Compilation & C,llvm::opt::DerivedArgList & Args,const InputTy & Input,Action * HostAction) const4375 Action *Driver::BuildOffloadingActions(Compilation &C,
4376 llvm::opt::DerivedArgList &Args,
4377 const InputTy &Input,
4378 Action *HostAction) const {
4379 // Don't build offloading actions if explicitly disabled or we do not have a
4380 // valid source input and compile action to embed it in. If preprocessing only
4381 // ignore embedding.
4382 if (offloadHostOnly() || !types::isSrcFile(Input.first) ||
4383 !(isa<CompileJobAction>(HostAction) ||
4384 getFinalPhase(Args) == phases::Preprocess))
4385 return HostAction;
4386
4387 ActionList OffloadActions;
4388 OffloadAction::DeviceDependences DDeps;
4389
4390 const Action::OffloadKind OffloadKinds[] = {
4391 Action::OFK_OpenMP, Action::OFK_Cuda, Action::OFK_HIP};
4392
4393 for (Action::OffloadKind Kind : OffloadKinds) {
4394 SmallVector<const ToolChain *, 2> ToolChains;
4395 ActionList DeviceActions;
4396
4397 auto TCRange = C.getOffloadToolChains(Kind);
4398 for (auto TI = TCRange.first, TE = TCRange.second; TI != TE; ++TI)
4399 ToolChains.push_back(TI->second);
4400
4401 if (ToolChains.empty())
4402 continue;
4403
4404 types::ID InputType = Input.first;
4405 const Arg *InputArg = Input.second;
4406
4407 // The toolchain can be active for unsupported file types.
4408 if ((Kind == Action::OFK_Cuda && !types::isCuda(InputType)) ||
4409 (Kind == Action::OFK_HIP && !types::isHIP(InputType)))
4410 continue;
4411
4412 // Get the product of all bound architectures and toolchains.
4413 SmallVector<std::pair<const ToolChain *, StringRef>> TCAndArchs;
4414 for (const ToolChain *TC : ToolChains)
4415 for (StringRef Arch : getOffloadArchs(C, Args, Kind, TC))
4416 TCAndArchs.push_back(std::make_pair(TC, Arch));
4417
4418 for (unsigned I = 0, E = TCAndArchs.size(); I != E; ++I)
4419 DeviceActions.push_back(C.MakeAction<InputAction>(*InputArg, InputType));
4420
4421 if (DeviceActions.empty())
4422 return HostAction;
4423
4424 auto PL = types::getCompilationPhases(*this, Args, InputType);
4425
4426 for (phases::ID Phase : PL) {
4427 if (Phase == phases::Link) {
4428 assert(Phase == PL.back() && "linking must be final compilation step.");
4429 break;
4430 }
4431
4432 auto TCAndArch = TCAndArchs.begin();
4433 for (Action *&A : DeviceActions) {
4434 if (A->getType() == types::TY_Nothing)
4435 continue;
4436
4437 // Propagate the ToolChain so we can use it in ConstructPhaseAction.
4438 A->propagateDeviceOffloadInfo(Kind, TCAndArch->second.data(),
4439 TCAndArch->first);
4440 A = ConstructPhaseAction(C, Args, Phase, A, Kind);
4441
4442 if (isa<CompileJobAction>(A) && isa<CompileJobAction>(HostAction) &&
4443 Kind == Action::OFK_OpenMP &&
4444 HostAction->getType() != types::TY_Nothing) {
4445 // OpenMP offloading has a dependency on the host compile action to
4446 // identify which declarations need to be emitted. This shouldn't be
4447 // collapsed with any other actions so we can use it in the device.
4448 HostAction->setCannotBeCollapsedWithNextDependentAction();
4449 OffloadAction::HostDependence HDep(
4450 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4451 TCAndArch->second.data(), Kind);
4452 OffloadAction::DeviceDependences DDep;
4453 DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4454 A = C.MakeAction<OffloadAction>(HDep, DDep);
4455 }
4456
4457 ++TCAndArch;
4458 }
4459 }
4460
4461 // Compiling HIP in non-RDC mode requires linking each action individually.
4462 for (Action *&A : DeviceActions) {
4463 if ((A->getType() != types::TY_Object &&
4464 A->getType() != types::TY_LTO_BC) ||
4465 Kind != Action::OFK_HIP ||
4466 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false))
4467 continue;
4468 ActionList LinkerInput = {A};
4469 A = C.MakeAction<LinkJobAction>(LinkerInput, types::TY_Image);
4470 }
4471
4472 auto TCAndArch = TCAndArchs.begin();
4473 for (Action *A : DeviceActions) {
4474 DDeps.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4475 OffloadAction::DeviceDependences DDep;
4476 DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4477 OffloadActions.push_back(C.MakeAction<OffloadAction>(DDep, A->getType()));
4478 ++TCAndArch;
4479 }
4480 }
4481
4482 if (offloadDeviceOnly())
4483 return C.MakeAction<OffloadAction>(DDeps, types::TY_Nothing);
4484
4485 if (OffloadActions.empty())
4486 return HostAction;
4487
4488 OffloadAction::DeviceDependences DDep;
4489 if (C.isOffloadingHostKind(Action::OFK_Cuda) &&
4490 !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false)) {
4491 // If we are not in RDC-mode we just emit the final CUDA fatbinary for
4492 // each translation unit without requiring any linking.
4493 Action *FatbinAction =
4494 C.MakeAction<LinkJobAction>(OffloadActions, types::TY_CUDA_FATBIN);
4495 DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_Cuda>(),
4496 nullptr, Action::OFK_Cuda);
4497 } else if (C.isOffloadingHostKind(Action::OFK_HIP) &&
4498 !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4499 false)) {
4500 // If we are not in RDC-mode we just emit the final HIP fatbinary for each
4501 // translation unit, linking each input individually.
4502 Action *FatbinAction =
4503 C.MakeAction<LinkJobAction>(OffloadActions, types::TY_HIP_FATBIN);
4504 DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_HIP>(),
4505 nullptr, Action::OFK_HIP);
4506 } else {
4507 // Package all the offloading actions into a single output that can be
4508 // embedded in the host and linked.
4509 Action *PackagerAction =
4510 C.MakeAction<OffloadPackagerJobAction>(OffloadActions, types::TY_Image);
4511 DDep.add(*PackagerAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4512 nullptr, C.getActiveOffloadKinds());
4513 }
4514
4515 // If we are unable to embed a single device output into the host, we need to
4516 // add each device output as a host dependency to ensure they are still built.
4517 bool SingleDeviceOutput = !llvm::any_of(OffloadActions, [](Action *A) {
4518 return A->getType() == types::TY_Nothing;
4519 }) && isa<CompileJobAction>(HostAction);
4520 OffloadAction::HostDependence HDep(
4521 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4522 /*BoundArch=*/nullptr, SingleDeviceOutput ? DDep : DDeps);
4523 return C.MakeAction<OffloadAction>(HDep, SingleDeviceOutput ? DDep : DDeps);
4524 }
4525
ConstructPhaseAction(Compilation & C,const ArgList & Args,phases::ID Phase,Action * Input,Action::OffloadKind TargetDeviceOffloadKind) const4526 Action *Driver::ConstructPhaseAction(
4527 Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
4528 Action::OffloadKind TargetDeviceOffloadKind) const {
4529 llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
4530
4531 // Some types skip the assembler phase (e.g., llvm-bc), but we can't
4532 // encode this in the steps because the intermediate type depends on
4533 // arguments. Just special case here.
4534 if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
4535 return Input;
4536
4537 // Build the appropriate action.
4538 switch (Phase) {
4539 case phases::Link:
4540 llvm_unreachable("link action invalid here.");
4541 case phases::IfsMerge:
4542 llvm_unreachable("ifsmerge action invalid here.");
4543 case phases::Preprocess: {
4544 types::ID OutputTy;
4545 // -M and -MM specify the dependency file name by altering the output type,
4546 // -if -MD and -MMD are not specified.
4547 if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
4548 !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
4549 OutputTy = types::TY_Dependencies;
4550 } else {
4551 OutputTy = Input->getType();
4552 // For these cases, the preprocessor is only translating forms, the Output
4553 // still needs preprocessing.
4554 if (!Args.hasFlag(options::OPT_frewrite_includes,
4555 options::OPT_fno_rewrite_includes, false) &&
4556 !Args.hasFlag(options::OPT_frewrite_imports,
4557 options::OPT_fno_rewrite_imports, false) &&
4558 !Args.hasFlag(options::OPT_fdirectives_only,
4559 options::OPT_fno_directives_only, false) &&
4560 !CCGenDiagnostics)
4561 OutputTy = types::getPreprocessedType(OutputTy);
4562 assert(OutputTy != types::TY_INVALID &&
4563 "Cannot preprocess this input type!");
4564 }
4565 return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
4566 }
4567 case phases::Precompile: {
4568 // API extraction should not generate an actual precompilation action.
4569 if (Args.hasArg(options::OPT_extract_api))
4570 return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4571
4572 types::ID OutputTy = getPrecompiledType(Input->getType());
4573 assert(OutputTy != types::TY_INVALID &&
4574 "Cannot precompile this input type!");
4575
4576 // If we're given a module name, precompile header file inputs as a
4577 // module, not as a precompiled header.
4578 const char *ModName = nullptr;
4579 if (OutputTy == types::TY_PCH) {
4580 if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
4581 ModName = A->getValue();
4582 if (ModName)
4583 OutputTy = types::TY_ModuleFile;
4584 }
4585
4586 if (Args.hasArg(options::OPT_fsyntax_only)) {
4587 // Syntax checks should not emit a PCH file
4588 OutputTy = types::TY_Nothing;
4589 }
4590
4591 return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
4592 }
4593 case phases::Compile: {
4594 if (Args.hasArg(options::OPT_fsyntax_only))
4595 return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
4596 if (Args.hasArg(options::OPT_rewrite_objc))
4597 return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
4598 if (Args.hasArg(options::OPT_rewrite_legacy_objc))
4599 return C.MakeAction<CompileJobAction>(Input,
4600 types::TY_RewrittenLegacyObjC);
4601 if (Args.hasArg(options::OPT__analyze))
4602 return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
4603 if (Args.hasArg(options::OPT__migrate))
4604 return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
4605 if (Args.hasArg(options::OPT_emit_ast))
4606 return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
4607 if (Args.hasArg(options::OPT_module_file_info))
4608 return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
4609 if (Args.hasArg(options::OPT_verify_pch))
4610 return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
4611 if (Args.hasArg(options::OPT_extract_api))
4612 return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4613 return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
4614 }
4615 case phases::Backend: {
4616 if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
4617 types::ID Output =
4618 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
4619 return C.MakeAction<BackendJobAction>(Input, Output);
4620 }
4621 if (isUsingLTO(/* IsOffload */ true) &&
4622 TargetDeviceOffloadKind != Action::OFK_None) {
4623 types::ID Output =
4624 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
4625 return C.MakeAction<BackendJobAction>(Input, Output);
4626 }
4627 if (Args.hasArg(options::OPT_emit_llvm) ||
4628 (((Input->getOffloadingToolChain() &&
4629 Input->getOffloadingToolChain()->getTriple().isAMDGPU()) ||
4630 TargetDeviceOffloadKind == Action::OFK_HIP) &&
4631 (Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4632 false) ||
4633 TargetDeviceOffloadKind == Action::OFK_OpenMP))) {
4634 types::ID Output =
4635 Args.hasArg(options::OPT_S) &&
4636 (TargetDeviceOffloadKind == Action::OFK_None ||
4637 offloadDeviceOnly() ||
4638 (TargetDeviceOffloadKind == Action::OFK_HIP &&
4639 !Args.hasFlag(options::OPT_offload_new_driver,
4640 options::OPT_no_offload_new_driver, false)))
4641 ? types::TY_LLVM_IR
4642 : types::TY_LLVM_BC;
4643 return C.MakeAction<BackendJobAction>(Input, Output);
4644 }
4645 return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
4646 }
4647 case phases::Assemble:
4648 return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
4649 }
4650
4651 llvm_unreachable("invalid phase in ConstructPhaseAction");
4652 }
4653
BuildJobs(Compilation & C) const4654 void Driver::BuildJobs(Compilation &C) const {
4655 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4656
4657 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4658
4659 // It is an error to provide a -o option if we are making multiple output
4660 // files. There are exceptions:
4661 //
4662 // IfsMergeJob: when generating interface stubs enabled we want to be able to
4663 // generate the stub file at the same time that we generate the real
4664 // library/a.out. So when a .o, .so, etc are the output, with clang interface
4665 // stubs there will also be a .ifs and .ifso at the same location.
4666 //
4667 // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
4668 // and -c is passed, we still want to be able to generate a .ifs file while
4669 // we are also generating .o files. So we allow more than one output file in
4670 // this case as well.
4671 //
4672 // OffloadClass of type TY_Nothing: device-only output will place many outputs
4673 // into a single offloading action. We should count all inputs to the action
4674 // as outputs. Also ignore device-only outputs if we're compiling with
4675 // -fsyntax-only.
4676 if (FinalOutput) {
4677 unsigned NumOutputs = 0;
4678 unsigned NumIfsOutputs = 0;
4679 for (const Action *A : C.getActions()) {
4680 if (A->getType() != types::TY_Nothing &&
4681 !(A->getKind() == Action::IfsMergeJobClass ||
4682 (A->getType() == clang::driver::types::TY_IFS_CPP &&
4683 A->getKind() == clang::driver::Action::CompileJobClass &&
4684 0 == NumIfsOutputs++) ||
4685 (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
4686 A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
4687 ++NumOutputs;
4688 else if (A->getKind() == Action::OffloadClass &&
4689 A->getType() == types::TY_Nothing &&
4690 !C.getArgs().hasArg(options::OPT_fsyntax_only))
4691 NumOutputs += A->size();
4692 }
4693
4694 if (NumOutputs > 1) {
4695 Diag(clang::diag::err_drv_output_argument_with_multiple_files);
4696 FinalOutput = nullptr;
4697 }
4698 }
4699
4700 const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple();
4701 if (RawTriple.isOSAIX()) {
4702 if (Arg *A = C.getArgs().getLastArg(options::OPT_G))
4703 Diag(diag::err_drv_unsupported_opt_for_target)
4704 << A->getSpelling() << RawTriple.str();
4705 if (LTOMode == LTOK_Thin)
4706 Diag(diag::err_drv_clang_unsupported) << "thinLTO on AIX";
4707 }
4708
4709 // Collect the list of architectures.
4710 llvm::StringSet<> ArchNames;
4711 if (RawTriple.isOSBinFormatMachO())
4712 for (const Arg *A : C.getArgs())
4713 if (A->getOption().matches(options::OPT_arch))
4714 ArchNames.insert(A->getValue());
4715
4716 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
4717 std::map<std::pair<const Action *, std::string>, InputInfoList> CachedResults;
4718 for (Action *A : C.getActions()) {
4719 // If we are linking an image for multiple archs then the linker wants
4720 // -arch_multiple and -final_output <final image name>. Unfortunately, this
4721 // doesn't fit in cleanly because we have to pass this information down.
4722 //
4723 // FIXME: This is a hack; find a cleaner way to integrate this into the
4724 // process.
4725 const char *LinkingOutput = nullptr;
4726 if (isa<LipoJobAction>(A)) {
4727 if (FinalOutput)
4728 LinkingOutput = FinalOutput->getValue();
4729 else
4730 LinkingOutput = getDefaultImageName();
4731 }
4732
4733 BuildJobsForAction(C, A, &C.getDefaultToolChain(),
4734 /*BoundArch*/ StringRef(),
4735 /*AtTopLevel*/ true,
4736 /*MultipleArchs*/ ArchNames.size() > 1,
4737 /*LinkingOutput*/ LinkingOutput, CachedResults,
4738 /*TargetDeviceOffloadKind*/ Action::OFK_None);
4739 }
4740
4741 // If we have more than one job, then disable integrated-cc1 for now. Do this
4742 // also when we need to report process execution statistics.
4743 if (C.getJobs().size() > 1 || CCPrintProcessStats)
4744 for (auto &J : C.getJobs())
4745 J.InProcess = false;
4746
4747 if (CCPrintProcessStats) {
4748 C.setPostCallback([=](const Command &Cmd, int Res) {
4749 std::optional<llvm::sys::ProcessStatistics> ProcStat =
4750 Cmd.getProcessStatistics();
4751 if (!ProcStat)
4752 return;
4753
4754 const char *LinkingOutput = nullptr;
4755 if (FinalOutput)
4756 LinkingOutput = FinalOutput->getValue();
4757 else if (!Cmd.getOutputFilenames().empty())
4758 LinkingOutput = Cmd.getOutputFilenames().front().c_str();
4759 else
4760 LinkingOutput = getDefaultImageName();
4761
4762 if (CCPrintStatReportFilename.empty()) {
4763 using namespace llvm;
4764 // Human readable output.
4765 outs() << sys::path::filename(Cmd.getExecutable()) << ": "
4766 << "output=" << LinkingOutput;
4767 outs() << ", total="
4768 << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms"
4769 << ", user="
4770 << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms"
4771 << ", mem=" << ProcStat->PeakMemory << " Kb\n";
4772 } else {
4773 // CSV format.
4774 std::string Buffer;
4775 llvm::raw_string_ostream Out(Buffer);
4776 llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()),
4777 /*Quote*/ true);
4778 Out << ',';
4779 llvm::sys::printArg(Out, LinkingOutput, true);
4780 Out << ',' << ProcStat->TotalTime.count() << ','
4781 << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory
4782 << '\n';
4783 Out.flush();
4784 std::error_code EC;
4785 llvm::raw_fd_ostream OS(CCPrintStatReportFilename, EC,
4786 llvm::sys::fs::OF_Append |
4787 llvm::sys::fs::OF_Text);
4788 if (EC)
4789 return;
4790 auto L = OS.lock();
4791 if (!L) {
4792 llvm::errs() << "ERROR: Cannot lock file "
4793 << CCPrintStatReportFilename << ": "
4794 << toString(L.takeError()) << "\n";
4795 return;
4796 }
4797 OS << Buffer;
4798 OS.flush();
4799 }
4800 });
4801 }
4802
4803 // If the user passed -Qunused-arguments or there were errors, don't warn
4804 // about any unused arguments.
4805 if (Diags.hasErrorOccurred() ||
4806 C.getArgs().hasArg(options::OPT_Qunused_arguments))
4807 return;
4808
4809 // Claim -fdriver-only here.
4810 (void)C.getArgs().hasArg(options::OPT_fdriver_only);
4811 // Claim -### here.
4812 (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
4813
4814 // Claim --driver-mode, --rsp-quoting, it was handled earlier.
4815 (void)C.getArgs().hasArg(options::OPT_driver_mode);
4816 (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
4817
4818 for (Arg *A : C.getArgs()) {
4819 // FIXME: It would be nice to be able to send the argument to the
4820 // DiagnosticsEngine, so that extra values, position, and so on could be
4821 // printed.
4822 if (!A->isClaimed()) {
4823 if (A->getOption().hasFlag(options::NoArgumentUnused))
4824 continue;
4825
4826 // Suppress the warning automatically if this is just a flag, and it is an
4827 // instance of an argument we already claimed.
4828 const Option &Opt = A->getOption();
4829 if (Opt.getKind() == Option::FlagClass) {
4830 bool DuplicateClaimed = false;
4831
4832 for (const Arg *AA : C.getArgs().filtered(&Opt)) {
4833 if (AA->isClaimed()) {
4834 DuplicateClaimed = true;
4835 break;
4836 }
4837 }
4838
4839 if (DuplicateClaimed)
4840 continue;
4841 }
4842
4843 // In clang-cl, don't mention unknown arguments here since they have
4844 // already been warned about.
4845 if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
4846 Diag(clang::diag::warn_drv_unused_argument)
4847 << A->getAsString(C.getArgs());
4848 }
4849 }
4850 }
4851
4852 namespace {
4853 /// Utility class to control the collapse of dependent actions and select the
4854 /// tools accordingly.
4855 class ToolSelector final {
4856 /// The tool chain this selector refers to.
4857 const ToolChain &TC;
4858
4859 /// The compilation this selector refers to.
4860 const Compilation &C;
4861
4862 /// The base action this selector refers to.
4863 const JobAction *BaseAction;
4864
4865 /// Set to true if the current toolchain refers to host actions.
4866 bool IsHostSelector;
4867
4868 /// Set to true if save-temps and embed-bitcode functionalities are active.
4869 bool SaveTemps;
4870 bool EmbedBitcode;
4871
4872 /// Get previous dependent action or null if that does not exist. If
4873 /// \a CanBeCollapsed is false, that action must be legal to collapse or
4874 /// null will be returned.
getPrevDependentAction(const ActionList & Inputs,ActionList & SavedOffloadAction,bool CanBeCollapsed=true)4875 const JobAction *getPrevDependentAction(const ActionList &Inputs,
4876 ActionList &SavedOffloadAction,
4877 bool CanBeCollapsed = true) {
4878 // An option can be collapsed only if it has a single input.
4879 if (Inputs.size() != 1)
4880 return nullptr;
4881
4882 Action *CurAction = *Inputs.begin();
4883 if (CanBeCollapsed &&
4884 !CurAction->isCollapsingWithNextDependentActionLegal())
4885 return nullptr;
4886
4887 // If the input action is an offload action. Look through it and save any
4888 // offload action that can be dropped in the event of a collapse.
4889 if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
4890 // If the dependent action is a device action, we will attempt to collapse
4891 // only with other device actions. Otherwise, we would do the same but
4892 // with host actions only.
4893 if (!IsHostSelector) {
4894 if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
4895 CurAction =
4896 OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
4897 if (CanBeCollapsed &&
4898 !CurAction->isCollapsingWithNextDependentActionLegal())
4899 return nullptr;
4900 SavedOffloadAction.push_back(OA);
4901 return dyn_cast<JobAction>(CurAction);
4902 }
4903 } else if (OA->hasHostDependence()) {
4904 CurAction = OA->getHostDependence();
4905 if (CanBeCollapsed &&
4906 !CurAction->isCollapsingWithNextDependentActionLegal())
4907 return nullptr;
4908 SavedOffloadAction.push_back(OA);
4909 return dyn_cast<JobAction>(CurAction);
4910 }
4911 return nullptr;
4912 }
4913
4914 return dyn_cast<JobAction>(CurAction);
4915 }
4916
4917 /// Return true if an assemble action can be collapsed.
canCollapseAssembleAction() const4918 bool canCollapseAssembleAction() const {
4919 return TC.useIntegratedAs() && !SaveTemps &&
4920 !C.getArgs().hasArg(options::OPT_via_file_asm) &&
4921 !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
4922 !C.getArgs().hasArg(options::OPT__SLASH_Fa);
4923 }
4924
4925 /// Return true if a preprocessor action can be collapsed.
canCollapsePreprocessorAction() const4926 bool canCollapsePreprocessorAction() const {
4927 return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
4928 !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
4929 !C.getArgs().hasArg(options::OPT_rewrite_objc);
4930 }
4931
4932 /// Struct that relates an action with the offload actions that would be
4933 /// collapsed with it.
4934 struct JobActionInfo final {
4935 /// The action this info refers to.
4936 const JobAction *JA = nullptr;
4937 /// The offload actions we need to take care off if this action is
4938 /// collapsed.
4939 ActionList SavedOffloadAction;
4940 };
4941
4942 /// Append collapsed offload actions from the give nnumber of elements in the
4943 /// action info array.
AppendCollapsedOffloadAction(ActionList & CollapsedOffloadAction,ArrayRef<JobActionInfo> & ActionInfo,unsigned ElementNum)4944 static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
4945 ArrayRef<JobActionInfo> &ActionInfo,
4946 unsigned ElementNum) {
4947 assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
4948 for (unsigned I = 0; I < ElementNum; ++I)
4949 CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
4950 ActionInfo[I].SavedOffloadAction.end());
4951 }
4952
4953 /// Functions that attempt to perform the combining. They detect if that is
4954 /// legal, and if so they update the inputs \a Inputs and the offload action
4955 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
4956 /// the combined action is returned. If the combining is not legal or if the
4957 /// tool does not exist, null is returned.
4958 /// Currently three kinds of collapsing are supported:
4959 /// - Assemble + Backend + Compile;
4960 /// - Assemble + Backend ;
4961 /// - Backend + Compile.
4962 const Tool *
combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,ActionList & Inputs,ActionList & CollapsedOffloadAction)4963 combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
4964 ActionList &Inputs,
4965 ActionList &CollapsedOffloadAction) {
4966 if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
4967 return nullptr;
4968 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4969 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4970 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
4971 if (!AJ || !BJ || !CJ)
4972 return nullptr;
4973
4974 // Get compiler tool.
4975 const Tool *T = TC.SelectTool(*CJ);
4976 if (!T)
4977 return nullptr;
4978
4979 // Can't collapse if we don't have codegen support unless we are
4980 // emitting LLVM IR.
4981 bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
4982 if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
4983 return nullptr;
4984
4985 // When using -fembed-bitcode, it is required to have the same tool (clang)
4986 // for both CompilerJA and BackendJA. Otherwise, combine two stages.
4987 if (EmbedBitcode) {
4988 const Tool *BT = TC.SelectTool(*BJ);
4989 if (BT == T)
4990 return nullptr;
4991 }
4992
4993 if (!T->hasIntegratedAssembler())
4994 return nullptr;
4995
4996 Inputs = CJ->getInputs();
4997 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4998 /*NumElements=*/3);
4999 return T;
5000 }
combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,ActionList & Inputs,ActionList & CollapsedOffloadAction)5001 const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
5002 ActionList &Inputs,
5003 ActionList &CollapsedOffloadAction) {
5004 if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
5005 return nullptr;
5006 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
5007 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
5008 if (!AJ || !BJ)
5009 return nullptr;
5010
5011 // Get backend tool.
5012 const Tool *T = TC.SelectTool(*BJ);
5013 if (!T)
5014 return nullptr;
5015
5016 if (!T->hasIntegratedAssembler())
5017 return nullptr;
5018
5019 Inputs = BJ->getInputs();
5020 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5021 /*NumElements=*/2);
5022 return T;
5023 }
combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,ActionList & Inputs,ActionList & CollapsedOffloadAction)5024 const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
5025 ActionList &Inputs,
5026 ActionList &CollapsedOffloadAction) {
5027 if (ActionInfo.size() < 2)
5028 return nullptr;
5029 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
5030 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
5031 if (!BJ || !CJ)
5032 return nullptr;
5033
5034 // Check if the initial input (to the compile job or its predessor if one
5035 // exists) is LLVM bitcode. In that case, no preprocessor step is required
5036 // and we can still collapse the compile and backend jobs when we have
5037 // -save-temps. I.e. there is no need for a separate compile job just to
5038 // emit unoptimized bitcode.
5039 bool InputIsBitcode = true;
5040 for (size_t i = 1; i < ActionInfo.size(); i++)
5041 if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
5042 ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
5043 InputIsBitcode = false;
5044 break;
5045 }
5046 if (!InputIsBitcode && !canCollapsePreprocessorAction())
5047 return nullptr;
5048
5049 // Get compiler tool.
5050 const Tool *T = TC.SelectTool(*CJ);
5051 if (!T)
5052 return nullptr;
5053
5054 // Can't collapse if we don't have codegen support unless we are
5055 // emitting LLVM IR.
5056 bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
5057 if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
5058 return nullptr;
5059
5060 if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
5061 return nullptr;
5062
5063 Inputs = CJ->getInputs();
5064 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5065 /*NumElements=*/2);
5066 return T;
5067 }
5068
5069 /// Updates the inputs if the obtained tool supports combining with
5070 /// preprocessor action, and the current input is indeed a preprocessor
5071 /// action. If combining results in the collapse of offloading actions, those
5072 /// are appended to \a CollapsedOffloadAction.
combineWithPreprocessor(const Tool * T,ActionList & Inputs,ActionList & CollapsedOffloadAction)5073 void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
5074 ActionList &CollapsedOffloadAction) {
5075 if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
5076 return;
5077
5078 // Attempt to get a preprocessor action dependence.
5079 ActionList PreprocessJobOffloadActions;
5080 ActionList NewInputs;
5081 for (Action *A : Inputs) {
5082 auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
5083 if (!PJ || !isa<PreprocessJobAction>(PJ)) {
5084 NewInputs.push_back(A);
5085 continue;
5086 }
5087
5088 // This is legal to combine. Append any offload action we found and add the
5089 // current input to preprocessor inputs.
5090 CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
5091 PreprocessJobOffloadActions.end());
5092 NewInputs.append(PJ->input_begin(), PJ->input_end());
5093 }
5094 Inputs = NewInputs;
5095 }
5096
5097 public:
ToolSelector(const JobAction * BaseAction,const ToolChain & TC,const Compilation & C,bool SaveTemps,bool EmbedBitcode)5098 ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
5099 const Compilation &C, bool SaveTemps, bool EmbedBitcode)
5100 : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
5101 EmbedBitcode(EmbedBitcode) {
5102 assert(BaseAction && "Invalid base action.");
5103 IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
5104 }
5105
5106 /// Check if a chain of actions can be combined and return the tool that can
5107 /// handle the combination of actions. The pointer to the current inputs \a
5108 /// Inputs and the list of offload actions \a CollapsedOffloadActions
5109 /// connected to collapsed actions are updated accordingly. The latter enables
5110 /// the caller of the selector to process them afterwards instead of just
5111 /// dropping them. If no suitable tool is found, null will be returned.
getTool(ActionList & Inputs,ActionList & CollapsedOffloadAction)5112 const Tool *getTool(ActionList &Inputs,
5113 ActionList &CollapsedOffloadAction) {
5114 //
5115 // Get the largest chain of actions that we could combine.
5116 //
5117
5118 SmallVector<JobActionInfo, 5> ActionChain(1);
5119 ActionChain.back().JA = BaseAction;
5120 while (ActionChain.back().JA) {
5121 const Action *CurAction = ActionChain.back().JA;
5122
5123 // Grow the chain by one element.
5124 ActionChain.resize(ActionChain.size() + 1);
5125 JobActionInfo &AI = ActionChain.back();
5126
5127 // Attempt to fill it with the
5128 AI.JA =
5129 getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
5130 }
5131
5132 // Pop the last action info as it could not be filled.
5133 ActionChain.pop_back();
5134
5135 //
5136 // Attempt to combine actions. If all combining attempts failed, just return
5137 // the tool of the provided action. At the end we attempt to combine the
5138 // action with any preprocessor action it may depend on.
5139 //
5140
5141 const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
5142 CollapsedOffloadAction);
5143 if (!T)
5144 T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
5145 if (!T)
5146 T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
5147 if (!T) {
5148 Inputs = BaseAction->getInputs();
5149 T = TC.SelectTool(*BaseAction);
5150 }
5151
5152 combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
5153 return T;
5154 }
5155 };
5156 }
5157
5158 /// Return a string that uniquely identifies the result of a job. The bound arch
5159 /// is not necessarily represented in the toolchain's triple -- for example,
5160 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
5161 /// Also, we need to add the offloading device kind, as the same tool chain can
5162 /// be used for host and device for some programming models, e.g. OpenMP.
GetTriplePlusArchString(const ToolChain * TC,StringRef BoundArch,Action::OffloadKind OffloadKind)5163 static std::string GetTriplePlusArchString(const ToolChain *TC,
5164 StringRef BoundArch,
5165 Action::OffloadKind OffloadKind) {
5166 std::string TriplePlusArch = TC->getTriple().normalize();
5167 if (!BoundArch.empty()) {
5168 TriplePlusArch += "-";
5169 TriplePlusArch += BoundArch;
5170 }
5171 TriplePlusArch += "-";
5172 TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
5173 return TriplePlusArch;
5174 }
5175
BuildJobsForAction(Compilation & C,const Action * A,const ToolChain * TC,StringRef BoundArch,bool AtTopLevel,bool MultipleArchs,const char * LinkingOutput,std::map<std::pair<const Action *,std::string>,InputInfoList> & CachedResults,Action::OffloadKind TargetDeviceOffloadKind) const5176 InputInfoList Driver::BuildJobsForAction(
5177 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5178 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5179 std::map<std::pair<const Action *, std::string>, InputInfoList>
5180 &CachedResults,
5181 Action::OffloadKind TargetDeviceOffloadKind) const {
5182 std::pair<const Action *, std::string> ActionTC = {
5183 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5184 auto CachedResult = CachedResults.find(ActionTC);
5185 if (CachedResult != CachedResults.end()) {
5186 return CachedResult->second;
5187 }
5188 InputInfoList Result = BuildJobsForActionNoCache(
5189 C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
5190 CachedResults, TargetDeviceOffloadKind);
5191 CachedResults[ActionTC] = Result;
5192 return Result;
5193 }
5194
BuildJobsForActionNoCache(Compilation & C,const Action * A,const ToolChain * TC,StringRef BoundArch,bool AtTopLevel,bool MultipleArchs,const char * LinkingOutput,std::map<std::pair<const Action *,std::string>,InputInfoList> & CachedResults,Action::OffloadKind TargetDeviceOffloadKind) const5195 InputInfoList Driver::BuildJobsForActionNoCache(
5196 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5197 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5198 std::map<std::pair<const Action *, std::string>, InputInfoList>
5199 &CachedResults,
5200 Action::OffloadKind TargetDeviceOffloadKind) const {
5201 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
5202
5203 InputInfoList OffloadDependencesInputInfo;
5204 bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
5205 if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
5206 // The 'Darwin' toolchain is initialized only when its arguments are
5207 // computed. Get the default arguments for OFK_None to ensure that
5208 // initialization is performed before processing the offload action.
5209 // FIXME: Remove when darwin's toolchain is initialized during construction.
5210 C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
5211
5212 // The offload action is expected to be used in four different situations.
5213 //
5214 // a) Set a toolchain/architecture/kind for a host action:
5215 // Host Action 1 -> OffloadAction -> Host Action 2
5216 //
5217 // b) Set a toolchain/architecture/kind for a device action;
5218 // Device Action 1 -> OffloadAction -> Device Action 2
5219 //
5220 // c) Specify a device dependence to a host action;
5221 // Device Action 1 _
5222 // \
5223 // Host Action 1 ---> OffloadAction -> Host Action 2
5224 //
5225 // d) Specify a host dependence to a device action.
5226 // Host Action 1 _
5227 // \
5228 // Device Action 1 ---> OffloadAction -> Device Action 2
5229 //
5230 // For a) and b), we just return the job generated for the dependences. For
5231 // c) and d) we override the current action with the host/device dependence
5232 // if the current toolchain is host/device and set the offload dependences
5233 // info with the jobs obtained from the device/host dependence(s).
5234
5235 // If there is a single device option or has no host action, just generate
5236 // the job for it.
5237 if (OA->hasSingleDeviceDependence() || !OA->hasHostDependence()) {
5238 InputInfoList DevA;
5239 OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
5240 const char *DepBoundArch) {
5241 DevA.append(BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
5242 /*MultipleArchs*/ !!DepBoundArch,
5243 LinkingOutput, CachedResults,
5244 DepA->getOffloadingDeviceKind()));
5245 });
5246 return DevA;
5247 }
5248
5249 // If 'Action 2' is host, we generate jobs for the device dependences and
5250 // override the current action with the host dependence. Otherwise, we
5251 // generate the host dependences and override the action with the device
5252 // dependence. The dependences can't therefore be a top-level action.
5253 OA->doOnEachDependence(
5254 /*IsHostDependence=*/BuildingForOffloadDevice,
5255 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5256 OffloadDependencesInputInfo.append(BuildJobsForAction(
5257 C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
5258 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
5259 DepA->getOffloadingDeviceKind()));
5260 });
5261
5262 A = BuildingForOffloadDevice
5263 ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
5264 : OA->getHostDependence();
5265
5266 // We may have already built this action as a part of the offloading
5267 // toolchain, return the cached input if so.
5268 std::pair<const Action *, std::string> ActionTC = {
5269 OA->getHostDependence(),
5270 GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5271 if (CachedResults.find(ActionTC) != CachedResults.end()) {
5272 InputInfoList Inputs = CachedResults[ActionTC];
5273 Inputs.append(OffloadDependencesInputInfo);
5274 return Inputs;
5275 }
5276 }
5277
5278 if (const InputAction *IA = dyn_cast<InputAction>(A)) {
5279 // FIXME: It would be nice to not claim this here; maybe the old scheme of
5280 // just using Args was better?
5281 const Arg &Input = IA->getInputArg();
5282 Input.claim();
5283 if (Input.getOption().matches(options::OPT_INPUT)) {
5284 const char *Name = Input.getValue();
5285 return {InputInfo(A, Name, /* _BaseInput = */ Name)};
5286 }
5287 return {InputInfo(A, &Input, /* _BaseInput = */ "")};
5288 }
5289
5290 if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
5291 const ToolChain *TC;
5292 StringRef ArchName = BAA->getArchName();
5293
5294 if (!ArchName.empty())
5295 TC = &getToolChain(C.getArgs(),
5296 computeTargetTriple(*this, TargetTriple,
5297 C.getArgs(), ArchName));
5298 else
5299 TC = &C.getDefaultToolChain();
5300
5301 return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
5302 MultipleArchs, LinkingOutput, CachedResults,
5303 TargetDeviceOffloadKind);
5304 }
5305
5306
5307 ActionList Inputs = A->getInputs();
5308
5309 const JobAction *JA = cast<JobAction>(A);
5310 ActionList CollapsedOffloadActions;
5311
5312 ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
5313 embedBitcodeInObject() && !isUsingLTO());
5314 const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
5315
5316 if (!T)
5317 return {InputInfo()};
5318
5319 // If we've collapsed action list that contained OffloadAction we
5320 // need to build jobs for host/device-side inputs it may have held.
5321 for (const auto *OA : CollapsedOffloadActions)
5322 cast<OffloadAction>(OA)->doOnEachDependence(
5323 /*IsHostDependence=*/BuildingForOffloadDevice,
5324 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5325 OffloadDependencesInputInfo.append(BuildJobsForAction(
5326 C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
5327 /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
5328 DepA->getOffloadingDeviceKind()));
5329 });
5330
5331 // Only use pipes when there is exactly one input.
5332 InputInfoList InputInfos;
5333 for (const Action *Input : Inputs) {
5334 // Treat dsymutil and verify sub-jobs as being at the top-level too, they
5335 // shouldn't get temporary output names.
5336 // FIXME: Clean this up.
5337 bool SubJobAtTopLevel =
5338 AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
5339 InputInfos.append(BuildJobsForAction(
5340 C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
5341 CachedResults, A->getOffloadingDeviceKind()));
5342 }
5343
5344 // Always use the first file input as the base input.
5345 const char *BaseInput = InputInfos[0].getBaseInput();
5346 for (auto &Info : InputInfos) {
5347 if (Info.isFilename()) {
5348 BaseInput = Info.getBaseInput();
5349 break;
5350 }
5351 }
5352
5353 // ... except dsymutil actions, which use their actual input as the base
5354 // input.
5355 if (JA->getType() == types::TY_dSYM)
5356 BaseInput = InputInfos[0].getFilename();
5357
5358 // Append outputs of offload device jobs to the input list
5359 if (!OffloadDependencesInputInfo.empty())
5360 InputInfos.append(OffloadDependencesInputInfo.begin(),
5361 OffloadDependencesInputInfo.end());
5362
5363 // Set the effective triple of the toolchain for the duration of this job.
5364 llvm::Triple EffectiveTriple;
5365 const ToolChain &ToolTC = T->getToolChain();
5366 const ArgList &Args =
5367 C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
5368 if (InputInfos.size() != 1) {
5369 EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
5370 } else {
5371 // Pass along the input type if it can be unambiguously determined.
5372 EffectiveTriple = llvm::Triple(
5373 ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
5374 }
5375 RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
5376
5377 // Determine the place to write output to, if any.
5378 InputInfo Result;
5379 InputInfoList UnbundlingResults;
5380 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
5381 // If we have an unbundling job, we need to create results for all the
5382 // outputs. We also update the results cache so that other actions using
5383 // this unbundling action can get the right results.
5384 for (auto &UI : UA->getDependentActionsInfo()) {
5385 assert(UI.DependentOffloadKind != Action::OFK_None &&
5386 "Unbundling with no offloading??");
5387
5388 // Unbundling actions are never at the top level. When we generate the
5389 // offloading prefix, we also do that for the host file because the
5390 // unbundling action does not change the type of the output which can
5391 // cause a overwrite.
5392 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5393 UI.DependentOffloadKind,
5394 UI.DependentToolChain->getTriple().normalize(),
5395 /*CreatePrefixForHost=*/true);
5396 auto CurI = InputInfo(
5397 UA,
5398 GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
5399 /*AtTopLevel=*/false,
5400 MultipleArchs ||
5401 UI.DependentOffloadKind == Action::OFK_HIP,
5402 OffloadingPrefix),
5403 BaseInput);
5404 // Save the unbundling result.
5405 UnbundlingResults.push_back(CurI);
5406
5407 // Get the unique string identifier for this dependence and cache the
5408 // result.
5409 StringRef Arch;
5410 if (TargetDeviceOffloadKind == Action::OFK_HIP) {
5411 if (UI.DependentOffloadKind == Action::OFK_Host)
5412 Arch = StringRef();
5413 else
5414 Arch = UI.DependentBoundArch;
5415 } else
5416 Arch = BoundArch;
5417
5418 CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
5419 UI.DependentOffloadKind)}] = {
5420 CurI};
5421 }
5422
5423 // Now that we have all the results generated, select the one that should be
5424 // returned for the current depending action.
5425 std::pair<const Action *, std::string> ActionTC = {
5426 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5427 assert(CachedResults.find(ActionTC) != CachedResults.end() &&
5428 "Result does not exist??");
5429 Result = CachedResults[ActionTC].front();
5430 } else if (JA->getType() == types::TY_Nothing)
5431 Result = {InputInfo(A, BaseInput)};
5432 else {
5433 // We only have to generate a prefix for the host if this is not a top-level
5434 // action.
5435 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5436 A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
5437 /*CreatePrefixForHost=*/isa<OffloadPackagerJobAction>(A) ||
5438 !(A->getOffloadingHostActiveKinds() == Action::OFK_None ||
5439 AtTopLevel));
5440 Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
5441 AtTopLevel, MultipleArchs,
5442 OffloadingPrefix),
5443 BaseInput);
5444 }
5445
5446 if (CCCPrintBindings && !CCGenDiagnostics) {
5447 llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
5448 << " - \"" << T->getName() << "\", inputs: [";
5449 for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
5450 llvm::errs() << InputInfos[i].getAsString();
5451 if (i + 1 != e)
5452 llvm::errs() << ", ";
5453 }
5454 if (UnbundlingResults.empty())
5455 llvm::errs() << "], output: " << Result.getAsString() << "\n";
5456 else {
5457 llvm::errs() << "], outputs: [";
5458 for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
5459 llvm::errs() << UnbundlingResults[i].getAsString();
5460 if (i + 1 != e)
5461 llvm::errs() << ", ";
5462 }
5463 llvm::errs() << "] \n";
5464 }
5465 } else {
5466 if (UnbundlingResults.empty())
5467 T->ConstructJob(
5468 C, *JA, Result, InputInfos,
5469 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5470 LinkingOutput);
5471 else
5472 T->ConstructJobMultipleOutputs(
5473 C, *JA, UnbundlingResults, InputInfos,
5474 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5475 LinkingOutput);
5476 }
5477 return {Result};
5478 }
5479
getDefaultImageName() const5480 const char *Driver::getDefaultImageName() const {
5481 llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
5482 return Target.isOSWindows() ? "a.exe" : "a.out";
5483 }
5484
5485 /// Create output filename based on ArgValue, which could either be a
5486 /// full filename, filename without extension, or a directory. If ArgValue
5487 /// does not provide a filename, then use BaseName, and use the extension
5488 /// suitable for FileType.
MakeCLOutputFilename(const ArgList & Args,StringRef ArgValue,StringRef BaseName,types::ID FileType)5489 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
5490 StringRef BaseName,
5491 types::ID FileType) {
5492 SmallString<128> Filename = ArgValue;
5493
5494 if (ArgValue.empty()) {
5495 // If the argument is empty, output to BaseName in the current dir.
5496 Filename = BaseName;
5497 } else if (llvm::sys::path::is_separator(Filename.back())) {
5498 // If the argument is a directory, output to BaseName in that dir.
5499 llvm::sys::path::append(Filename, BaseName);
5500 }
5501
5502 if (!llvm::sys::path::has_extension(ArgValue)) {
5503 // If the argument didn't provide an extension, then set it.
5504 const char *Extension = types::getTypeTempSuffix(FileType, true);
5505
5506 if (FileType == types::TY_Image &&
5507 Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
5508 // The output file is a dll.
5509 Extension = "dll";
5510 }
5511
5512 llvm::sys::path::replace_extension(Filename, Extension);
5513 }
5514
5515 return Args.MakeArgString(Filename.c_str());
5516 }
5517
HasPreprocessOutput(const Action & JA)5518 static bool HasPreprocessOutput(const Action &JA) {
5519 if (isa<PreprocessJobAction>(JA))
5520 return true;
5521 if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0]))
5522 return true;
5523 if (isa<OffloadBundlingJobAction>(JA) &&
5524 HasPreprocessOutput(*(JA.getInputs()[0])))
5525 return true;
5526 return false;
5527 }
5528
CreateTempFile(Compilation & C,StringRef Prefix,StringRef Suffix,bool MultipleArchs,StringRef BoundArch) const5529 const char *Driver::CreateTempFile(Compilation &C, StringRef Prefix,
5530 StringRef Suffix, bool MultipleArchs,
5531 StringRef BoundArch) const {
5532 SmallString<128> TmpName;
5533 Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
5534 std::optional<std::string> CrashDirectory =
5535 CCGenDiagnostics && A
5536 ? std::string(A->getValue())
5537 : llvm::sys::Process::GetEnv("CLANG_CRASH_DIAGNOSTICS_DIR");
5538 if (CrashDirectory) {
5539 if (!getVFS().exists(*CrashDirectory))
5540 llvm::sys::fs::create_directories(*CrashDirectory);
5541 SmallString<128> Path(*CrashDirectory);
5542 llvm::sys::path::append(Path, Prefix);
5543 const char *Middle = !Suffix.empty() ? "-%%%%%%." : "-%%%%%%";
5544 if (std::error_code EC =
5545 llvm::sys::fs::createUniqueFile(Path + Middle + Suffix, TmpName)) {
5546 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5547 return "";
5548 }
5549 } else {
5550 if (MultipleArchs && !BoundArch.empty()) {
5551 TmpName = GetTemporaryDirectory(Prefix);
5552 llvm::sys::path::append(TmpName,
5553 Twine(Prefix) + "-" + BoundArch + "." + Suffix);
5554 } else {
5555 TmpName = GetTemporaryPath(Prefix, Suffix);
5556 }
5557 }
5558 return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5559 }
5560
5561 // Calculate the output path of the module file when compiling a module unit
5562 // with the `-fmodule-output` option or `-fmodule-output=` option specified.
5563 // The behavior is:
5564 // - If `-fmodule-output=` is specfied, then the module file is
5565 // writing to the value.
5566 // - Otherwise if the output object file of the module unit is specified, the
5567 // output path
5568 // of the module file should be the same with the output object file except
5569 // the corresponding suffix. This requires both `-o` and `-c` are specified.
5570 // - Otherwise, the output path of the module file will be the same with the
5571 // input with the corresponding suffix.
GetModuleOutputPath(Compilation & C,const JobAction & JA,const char * BaseInput)5572 static const char *GetModuleOutputPath(Compilation &C, const JobAction &JA,
5573 const char *BaseInput) {
5574 assert(isa<PrecompileJobAction>(JA) && JA.getType() == types::TY_ModuleFile &&
5575 (C.getArgs().hasArg(options::OPT_fmodule_output) ||
5576 C.getArgs().hasArg(options::OPT_fmodule_output_EQ)));
5577
5578 if (Arg *ModuleOutputEQ =
5579 C.getArgs().getLastArg(options::OPT_fmodule_output_EQ))
5580 return C.addResultFile(ModuleOutputEQ->getValue(), &JA);
5581
5582 SmallString<64> OutputPath;
5583 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
5584 if (FinalOutput && C.getArgs().hasArg(options::OPT_c))
5585 OutputPath = FinalOutput->getValue();
5586 else
5587 OutputPath = BaseInput;
5588
5589 const char *Extension = types::getTypeTempSuffix(JA.getType());
5590 llvm::sys::path::replace_extension(OutputPath, Extension);
5591 return C.addResultFile(C.getArgs().MakeArgString(OutputPath.c_str()), &JA);
5592 }
5593
GetNamedOutputPath(Compilation & C,const JobAction & JA,const char * BaseInput,StringRef OrigBoundArch,bool AtTopLevel,bool MultipleArchs,StringRef OffloadingPrefix) const5594 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
5595 const char *BaseInput,
5596 StringRef OrigBoundArch, bool AtTopLevel,
5597 bool MultipleArchs,
5598 StringRef OffloadingPrefix) const {
5599 std::string BoundArch = OrigBoundArch.str();
5600 if (is_style_windows(llvm::sys::path::Style::native)) {
5601 // BoundArch may contains ':', which is invalid in file names on Windows,
5602 // therefore replace it with '%'.
5603 std::replace(BoundArch.begin(), BoundArch.end(), ':', '@');
5604 }
5605
5606 llvm::PrettyStackTraceString CrashInfo("Computing output path");
5607 // Output to a user requested destination?
5608 if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
5609 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
5610 return C.addResultFile(FinalOutput->getValue(), &JA);
5611 }
5612
5613 // For /P, preprocess to file named after BaseInput.
5614 if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
5615 assert(AtTopLevel && isa<PreprocessJobAction>(JA));
5616 StringRef BaseName = llvm::sys::path::filename(BaseInput);
5617 StringRef NameArg;
5618 if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
5619 NameArg = A->getValue();
5620 return C.addResultFile(
5621 MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
5622 &JA);
5623 }
5624
5625 // Default to writing to stdout?
5626 if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) {
5627 return "-";
5628 }
5629
5630 if (JA.getType() == types::TY_ModuleFile &&
5631 C.getArgs().getLastArg(options::OPT_module_file_info)) {
5632 return "-";
5633 }
5634
5635 if (IsDXCMode() && !C.getArgs().hasArg(options::OPT_o))
5636 return "-";
5637
5638 // Is this the assembly listing for /FA?
5639 if (JA.getType() == types::TY_PP_Asm &&
5640 (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
5641 C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
5642 // Use /Fa and the input filename to determine the asm file name.
5643 StringRef BaseName = llvm::sys::path::filename(BaseInput);
5644 StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
5645 return C.addResultFile(
5646 MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
5647 &JA);
5648 }
5649
5650 bool SpecifiedModuleOutput =
5651 C.getArgs().hasArg(options::OPT_fmodule_output) ||
5652 C.getArgs().hasArg(options::OPT_fmodule_output_EQ);
5653 if (MultipleArchs && SpecifiedModuleOutput)
5654 Diag(clang::diag::err_drv_module_output_with_multiple_arch);
5655
5656 // If we're emitting a module output with the specified option
5657 // `-fmodule-output`.
5658 if (!AtTopLevel && isa<PrecompileJobAction>(JA) &&
5659 JA.getType() == types::TY_ModuleFile && SpecifiedModuleOutput)
5660 return GetModuleOutputPath(C, JA, BaseInput);
5661
5662 // Output to a temporary file?
5663 if ((!AtTopLevel && !isSaveTempsEnabled() &&
5664 !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
5665 CCGenDiagnostics) {
5666 StringRef Name = llvm::sys::path::filename(BaseInput);
5667 std::pair<StringRef, StringRef> Split = Name.split('.');
5668 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
5669 return CreateTempFile(C, Split.first, Suffix, MultipleArchs, BoundArch);
5670 }
5671
5672 SmallString<128> BasePath(BaseInput);
5673 SmallString<128> ExternalPath("");
5674 StringRef BaseName;
5675
5676 // Dsymutil actions should use the full path.
5677 if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) {
5678 ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue();
5679 // We use posix style here because the tests (specifically
5680 // darwin-dsymutil.c) demonstrate that posix style paths are acceptable
5681 // even on Windows and if we don't then the similar test covering this
5682 // fails.
5683 llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix,
5684 llvm::sys::path::filename(BasePath));
5685 BaseName = ExternalPath;
5686 } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
5687 BaseName = BasePath;
5688 else
5689 BaseName = llvm::sys::path::filename(BasePath);
5690
5691 // Determine what the derived output name should be.
5692 const char *NamedOutput;
5693
5694 if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
5695 C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
5696 // The /Fo or /o flag decides the object filename.
5697 StringRef Val =
5698 C.getArgs()
5699 .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
5700 ->getValue();
5701 NamedOutput =
5702 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
5703 } else if (JA.getType() == types::TY_Image &&
5704 C.getArgs().hasArg(options::OPT__SLASH_Fe,
5705 options::OPT__SLASH_o)) {
5706 // The /Fe or /o flag names the linked file.
5707 StringRef Val =
5708 C.getArgs()
5709 .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
5710 ->getValue();
5711 NamedOutput =
5712 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
5713 } else if (JA.getType() == types::TY_Image) {
5714 if (IsCLMode()) {
5715 // clang-cl uses BaseName for the executable name.
5716 NamedOutput =
5717 MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
5718 } else {
5719 SmallString<128> Output(getDefaultImageName());
5720 // HIP image for device compilation with -fno-gpu-rdc is per compilation
5721 // unit.
5722 bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5723 !C.getArgs().hasFlag(options::OPT_fgpu_rdc,
5724 options::OPT_fno_gpu_rdc, false);
5725 bool UseOutExtension = IsHIPNoRDC || isa<OffloadPackagerJobAction>(JA);
5726 if (UseOutExtension) {
5727 Output = BaseName;
5728 llvm::sys::path::replace_extension(Output, "");
5729 }
5730 Output += OffloadingPrefix;
5731 if (MultipleArchs && !BoundArch.empty()) {
5732 Output += "-";
5733 Output.append(BoundArch);
5734 }
5735 if (UseOutExtension)
5736 Output += ".out";
5737 NamedOutput = C.getArgs().MakeArgString(Output.c_str());
5738 }
5739 } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
5740 NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
5741 } else if ((JA.getType() == types::TY_Plist || JA.getType() == types::TY_AST) &&
5742 C.getArgs().hasArg(options::OPT__SLASH_o)) {
5743 StringRef Val =
5744 C.getArgs()
5745 .getLastArg(options::OPT__SLASH_o)
5746 ->getValue();
5747 NamedOutput =
5748 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
5749 } else {
5750 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
5751 assert(Suffix && "All types used for output should have a suffix.");
5752
5753 std::string::size_type End = std::string::npos;
5754 if (!types::appendSuffixForType(JA.getType()))
5755 End = BaseName.rfind('.');
5756 SmallString<128> Suffixed(BaseName.substr(0, End));
5757 Suffixed += OffloadingPrefix;
5758 if (MultipleArchs && !BoundArch.empty()) {
5759 Suffixed += "-";
5760 Suffixed.append(BoundArch);
5761 }
5762 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
5763 // the unoptimized bitcode so that it does not get overwritten by the ".bc"
5764 // optimized bitcode output.
5765 auto IsAMDRDCInCompilePhase = [](const JobAction &JA,
5766 const llvm::opt::DerivedArgList &Args) {
5767 // The relocatable compilation in HIP and OpenMP implies -emit-llvm.
5768 // Similarly, use a ".tmp.bc" suffix for the unoptimized bitcode
5769 // (generated in the compile phase.)
5770 const ToolChain *TC = JA.getOffloadingToolChain();
5771 return isa<CompileJobAction>(JA) &&
5772 ((JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5773 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
5774 false)) ||
5775 (JA.getOffloadingDeviceKind() == Action::OFK_OpenMP && TC &&
5776 TC->getTriple().isAMDGPU()));
5777 };
5778 if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
5779 (C.getArgs().hasArg(options::OPT_emit_llvm) ||
5780 IsAMDRDCInCompilePhase(JA, C.getArgs())))
5781 Suffixed += ".tmp";
5782 Suffixed += '.';
5783 Suffixed += Suffix;
5784 NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
5785 }
5786
5787 // Prepend object file path if -save-temps=obj
5788 if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
5789 JA.getType() != types::TY_PCH) {
5790 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
5791 SmallString<128> TempPath(FinalOutput->getValue());
5792 llvm::sys::path::remove_filename(TempPath);
5793 StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
5794 llvm::sys::path::append(TempPath, OutputFileName);
5795 NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
5796 }
5797
5798 // If we're saving temps and the temp file conflicts with the input file,
5799 // then avoid overwriting input file.
5800 if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
5801 bool SameFile = false;
5802 SmallString<256> Result;
5803 llvm::sys::fs::current_path(Result);
5804 llvm::sys::path::append(Result, BaseName);
5805 llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
5806 // Must share the same path to conflict.
5807 if (SameFile) {
5808 StringRef Name = llvm::sys::path::filename(BaseInput);
5809 std::pair<StringRef, StringRef> Split = Name.split('.');
5810 std::string TmpName = GetTemporaryPath(
5811 Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
5812 return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5813 }
5814 }
5815
5816 // As an annoying special case, PCH generation doesn't strip the pathname.
5817 if (JA.getType() == types::TY_PCH && !IsCLMode()) {
5818 llvm::sys::path::remove_filename(BasePath);
5819 if (BasePath.empty())
5820 BasePath = NamedOutput;
5821 else
5822 llvm::sys::path::append(BasePath, NamedOutput);
5823 return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
5824 }
5825
5826 return C.addResultFile(NamedOutput, &JA);
5827 }
5828
5829
5830 namespace {
findFile(StringRef path1,const Twine & path2)5831 static Optional<std::string> findFile(StringRef path1, const Twine &path2) {
5832 SmallString<128> s;
5833 llvm::sys::path::append(s, path1, path2);
5834
5835 if (llvm::sys::fs::exists(s))
5836 return std::string(s);
5837 return std::nullopt;
5838 }
5839
5840 // Must be in sync with findMajMinShlib in lld/ELF/DriverUtils.cpp.
findMajMinShlib(StringRef dir,const Twine & libNameSo)5841 llvm::Optional<std::string> findMajMinShlib(StringRef dir, const Twine& libNameSo) {
5842 // Handle OpenBSD-style maj/min shlib scheme
5843 llvm::SmallString<128> Scratch;
5844 const StringRef LibName = (libNameSo + ".").toStringRef(Scratch);
5845 int MaxMaj = -1, MaxMin = -1;
5846 std::error_code EC;
5847 for (llvm::sys::fs::directory_iterator LI(dir, EC), LE;
5848 LI != LE; LI = LI.increment(EC)) {
5849 StringRef FilePath = LI->path();
5850 StringRef FileName = llvm::sys::path::filename(FilePath);
5851 if (!(FileName.startswith(LibName)))
5852 continue;
5853 std::pair<StringRef, StringRef> MajMin =
5854 FileName.substr(LibName.size()).split('.');
5855 int Maj, Min;
5856 if (MajMin.first.getAsInteger(10, Maj) || Maj < 0)
5857 continue;
5858 if (MajMin.second.getAsInteger(10, Min) || Min < 0)
5859 continue;
5860 if (Maj > MaxMaj)
5861 MaxMaj = Maj, MaxMin = Min;
5862 if (MaxMaj == Maj && Min > MaxMin)
5863 MaxMin = Min;
5864 }
5865 if (MaxMaj >= 0)
5866 return findFile(dir, LibName + Twine(MaxMaj) + "." + Twine(MaxMin));
5867 return std::nullopt;
5868 }
5869 } // namespace
5870
GetFilePath(StringRef Name,const ToolChain & TC) const5871 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
5872 const bool lookForLibDotSo = Name.startswith("lib") && Name.endswith(".so");
5873 // Search for Name in a list of paths.
5874 auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
5875 -> std::optional<std::string> {
5876 // Respect a limited subset of the '-Bprefix' functionality in GCC by
5877 // attempting to use this prefix when looking for file paths.
5878 for (const auto &Dir : P) {
5879 if (Dir.empty())
5880 continue;
5881 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
5882 if (!lookForLibDotSo) {
5883 llvm::sys::path::append(P, Name);
5884 if (llvm::sys::fs::exists(Twine(P)))
5885 return std::string(P);
5886 } else {
5887 if (auto s = findMajMinShlib(P, Name))
5888 return std::string(*s);
5889 }
5890 }
5891 return std::nullopt;
5892 };
5893
5894 if (auto P = SearchPaths(PrefixDirs))
5895 return *P;
5896
5897 SmallString<128> R(ResourceDir);
5898 llvm::sys::path::append(R, Name);
5899 if (llvm::sys::fs::exists(Twine(R)))
5900 return std::string(R.str());
5901
5902 SmallString<128> P(TC.getCompilerRTPath());
5903 llvm::sys::path::append(P, Name);
5904 if (llvm::sys::fs::exists(Twine(P)))
5905 return std::string(P.str());
5906
5907 SmallString<128> D(Dir);
5908 llvm::sys::path::append(D, "..", Name);
5909 if (llvm::sys::fs::exists(Twine(D)))
5910 return std::string(D.str());
5911
5912 if (auto P = SearchPaths(TC.getLibraryPaths()))
5913 return *P;
5914
5915 if (auto P = SearchPaths(TC.getFilePaths()))
5916 return *P;
5917
5918 return std::string(Name);
5919 }
5920
generatePrefixedToolNames(StringRef Tool,const ToolChain & TC,SmallVectorImpl<std::string> & Names) const5921 void Driver::generatePrefixedToolNames(
5922 StringRef Tool, const ToolChain &TC,
5923 SmallVectorImpl<std::string> &Names) const {
5924 // FIXME: Needs a better variable than TargetTriple
5925 Names.emplace_back((TargetTriple + "-" + Tool).str());
5926 Names.emplace_back(Tool);
5927 }
5928
ScanDirForExecutable(SmallString<128> & Dir,StringRef Name)5929 static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) {
5930 llvm::sys::path::append(Dir, Name);
5931 if (llvm::sys::fs::can_execute(Twine(Dir)))
5932 return true;
5933 llvm::sys::path::remove_filename(Dir);
5934 return false;
5935 }
5936
GetProgramPath(StringRef Name,const ToolChain & TC) const5937 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
5938 SmallVector<std::string, 2> TargetSpecificExecutables;
5939 generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
5940
5941 // Respect a limited subset of the '-Bprefix' functionality in GCC by
5942 // attempting to use this prefix when looking for program paths.
5943 for (const auto &PrefixDir : PrefixDirs) {
5944 if (llvm::sys::fs::is_directory(PrefixDir)) {
5945 SmallString<128> P(PrefixDir);
5946 if (ScanDirForExecutable(P, Name))
5947 return std::string(P.str());
5948 } else {
5949 SmallString<128> P((PrefixDir + Name).str());
5950 if (llvm::sys::fs::can_execute(Twine(P)))
5951 return std::string(P.str());
5952 }
5953 }
5954
5955 const ToolChain::path_list &List = TC.getProgramPaths();
5956 for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
5957 // For each possible name of the tool look for it in
5958 // program paths first, then the path.
5959 // Higher priority names will be first, meaning that
5960 // a higher priority name in the path will be found
5961 // instead of a lower priority name in the program path.
5962 // E.g. <triple>-gcc on the path will be found instead
5963 // of gcc in the program path
5964 for (const auto &Path : List) {
5965 SmallString<128> P(Path);
5966 if (ScanDirForExecutable(P, TargetSpecificExecutable))
5967 return std::string(P.str());
5968 }
5969
5970 // Fall back to the path
5971 if (llvm::ErrorOr<std::string> P =
5972 llvm::sys::findProgramByName(TargetSpecificExecutable))
5973 return *P;
5974 }
5975
5976 return std::string(Name);
5977 }
5978
GetTemporaryPath(StringRef Prefix,StringRef Suffix) const5979 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
5980 SmallString<128> Path;
5981 std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
5982 if (EC) {
5983 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5984 return "";
5985 }
5986
5987 return std::string(Path.str());
5988 }
5989
GetTemporaryDirectory(StringRef Prefix) const5990 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
5991 SmallString<128> Path;
5992 std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
5993 if (EC) {
5994 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5995 return "";
5996 }
5997
5998 return std::string(Path.str());
5999 }
6000
GetClPchPath(Compilation & C,StringRef BaseName) const6001 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
6002 SmallString<128> Output;
6003 if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
6004 // FIXME: If anybody needs it, implement this obscure rule:
6005 // "If you specify a directory without a file name, the default file name
6006 // is VCx0.pch., where x is the major version of Visual C++ in use."
6007 Output = FpArg->getValue();
6008
6009 // "If you do not specify an extension as part of the path name, an
6010 // extension of .pch is assumed. "
6011 if (!llvm::sys::path::has_extension(Output))
6012 Output += ".pch";
6013 } else {
6014 if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
6015 Output = YcArg->getValue();
6016 if (Output.empty())
6017 Output = BaseName;
6018 llvm::sys::path::replace_extension(Output, ".pch");
6019 }
6020 return std::string(Output.str());
6021 }
6022
getToolChain(const ArgList & Args,const llvm::Triple & Target) const6023 const ToolChain &Driver::getToolChain(const ArgList &Args,
6024 const llvm::Triple &Target) const {
6025
6026 auto &TC = ToolChains[Target.str()];
6027 if (!TC) {
6028 switch (Target.getOS()) {
6029 case llvm::Triple::AIX:
6030 TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
6031 break;
6032 case llvm::Triple::Haiku:
6033 TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
6034 break;
6035 case llvm::Triple::Ananas:
6036 TC = std::make_unique<toolchains::Ananas>(*this, Target, Args);
6037 break;
6038 case llvm::Triple::CloudABI:
6039 TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args);
6040 break;
6041 case llvm::Triple::Darwin:
6042 case llvm::Triple::MacOSX:
6043 case llvm::Triple::IOS:
6044 case llvm::Triple::TvOS:
6045 case llvm::Triple::WatchOS:
6046 case llvm::Triple::DriverKit:
6047 TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
6048 break;
6049 case llvm::Triple::DragonFly:
6050 TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
6051 break;
6052 case llvm::Triple::OpenBSD:
6053 TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
6054 break;
6055 case llvm::Triple::NetBSD:
6056 TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
6057 break;
6058 case llvm::Triple::FreeBSD:
6059 if (Target.isPPC())
6060 TC = std::make_unique<toolchains::PPCFreeBSDToolChain>(*this, Target,
6061 Args);
6062 else
6063 TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
6064 break;
6065 case llvm::Triple::Minix:
6066 TC = std::make_unique<toolchains::Minix>(*this, Target, Args);
6067 break;
6068 case llvm::Triple::Linux:
6069 case llvm::Triple::ELFIAMCU:
6070 if (Target.getArch() == llvm::Triple::hexagon)
6071 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
6072 Args);
6073 else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
6074 !Target.hasEnvironment())
6075 TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
6076 Args);
6077 else if (Target.isPPC())
6078 TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
6079 Args);
6080 else if (Target.getArch() == llvm::Triple::ve)
6081 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
6082
6083 else
6084 TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
6085 break;
6086 case llvm::Triple::NaCl:
6087 TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
6088 break;
6089 case llvm::Triple::Fuchsia:
6090 TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
6091 break;
6092 case llvm::Triple::Solaris:
6093 TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
6094 break;
6095 case llvm::Triple::CUDA:
6096 TC = std::make_unique<toolchains::NVPTXToolChain>(*this, Target, Args);
6097 break;
6098 case llvm::Triple::AMDHSA:
6099 TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args);
6100 break;
6101 case llvm::Triple::AMDPAL:
6102 case llvm::Triple::Mesa3D:
6103 TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
6104 break;
6105 case llvm::Triple::Win32:
6106 switch (Target.getEnvironment()) {
6107 default:
6108 if (Target.isOSBinFormatELF())
6109 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
6110 else if (Target.isOSBinFormatMachO())
6111 TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
6112 else
6113 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
6114 break;
6115 case llvm::Triple::GNU:
6116 TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
6117 break;
6118 case llvm::Triple::Itanium:
6119 TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
6120 Args);
6121 break;
6122 case llvm::Triple::MSVC:
6123 case llvm::Triple::UnknownEnvironment:
6124 if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
6125 .startswith_insensitive("bfd"))
6126 TC = std::make_unique<toolchains::CrossWindowsToolChain>(
6127 *this, Target, Args);
6128 else
6129 TC =
6130 std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
6131 break;
6132 }
6133 break;
6134 case llvm::Triple::PS4:
6135 TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
6136 break;
6137 case llvm::Triple::PS5:
6138 TC = std::make_unique<toolchains::PS5CPU>(*this, Target, Args);
6139 break;
6140 case llvm::Triple::Contiki:
6141 TC = std::make_unique<toolchains::Contiki>(*this, Target, Args);
6142 break;
6143 case llvm::Triple::Hurd:
6144 TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
6145 break;
6146 case llvm::Triple::ZOS:
6147 TC = std::make_unique<toolchains::ZOS>(*this, Target, Args);
6148 break;
6149 case llvm::Triple::ShaderModel:
6150 TC = std::make_unique<toolchains::HLSLToolChain>(*this, Target, Args);
6151 break;
6152 default:
6153 // Of these targets, Hexagon is the only one that might have
6154 // an OS of Linux, in which case it got handled above already.
6155 switch (Target.getArch()) {
6156 case llvm::Triple::tce:
6157 TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
6158 break;
6159 case llvm::Triple::tcele:
6160 TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
6161 break;
6162 case llvm::Triple::hexagon:
6163 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
6164 Args);
6165 break;
6166 case llvm::Triple::lanai:
6167 TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
6168 break;
6169 case llvm::Triple::xcore:
6170 TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
6171 break;
6172 case llvm::Triple::wasm32:
6173 case llvm::Triple::wasm64:
6174 TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
6175 break;
6176 case llvm::Triple::avr:
6177 TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
6178 break;
6179 case llvm::Triple::msp430:
6180 TC =
6181 std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
6182 break;
6183 case llvm::Triple::riscv32:
6184 case llvm::Triple::riscv64:
6185 if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args))
6186 TC =
6187 std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
6188 else
6189 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
6190 break;
6191 case llvm::Triple::ve:
6192 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
6193 break;
6194 case llvm::Triple::spirv32:
6195 case llvm::Triple::spirv64:
6196 TC = std::make_unique<toolchains::SPIRVToolChain>(*this, Target, Args);
6197 break;
6198 case llvm::Triple::csky:
6199 TC = std::make_unique<toolchains::CSKYToolChain>(*this, Target, Args);
6200 break;
6201 default:
6202 if (Target.getVendor() == llvm::Triple::Myriad)
6203 TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target,
6204 Args);
6205 else if (toolchains::BareMetal::handlesTarget(Target))
6206 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
6207 else if (Target.isOSBinFormatELF())
6208 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
6209 else if (Target.isOSBinFormatMachO())
6210 TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
6211 else
6212 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
6213 }
6214 }
6215 }
6216
6217 return *TC;
6218 }
6219
getOffloadingDeviceToolChain(const ArgList & Args,const llvm::Triple & Target,const ToolChain & HostTC,const Action::OffloadKind & TargetDeviceOffloadKind) const6220 const ToolChain &Driver::getOffloadingDeviceToolChain(
6221 const ArgList &Args, const llvm::Triple &Target, const ToolChain &HostTC,
6222 const Action::OffloadKind &TargetDeviceOffloadKind) const {
6223 // Use device / host triples as the key into the ToolChains map because the
6224 // device ToolChain we create depends on both.
6225 auto &TC = ToolChains[Target.str() + "/" + HostTC.getTriple().str()];
6226 if (!TC) {
6227 // Categorized by offload kind > arch rather than OS > arch like
6228 // the normal getToolChain call, as it seems a reasonable way to categorize
6229 // things.
6230 switch (TargetDeviceOffloadKind) {
6231 case Action::OFK_HIP: {
6232 if (Target.getArch() == llvm::Triple::amdgcn &&
6233 Target.getVendor() == llvm::Triple::AMD &&
6234 Target.getOS() == llvm::Triple::AMDHSA)
6235 TC = std::make_unique<toolchains::HIPAMDToolChain>(*this, Target,
6236 HostTC, Args);
6237 else if (Target.getArch() == llvm::Triple::spirv64 &&
6238 Target.getVendor() == llvm::Triple::UnknownVendor &&
6239 Target.getOS() == llvm::Triple::UnknownOS)
6240 TC = std::make_unique<toolchains::HIPSPVToolChain>(*this, Target,
6241 HostTC, Args);
6242 break;
6243 }
6244 default:
6245 break;
6246 }
6247 }
6248
6249 return *TC;
6250 }
6251
ShouldUseClangCompiler(const JobAction & JA) const6252 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
6253 // Say "no" if there is not exactly one input of a type clang understands.
6254 if (JA.size() != 1 ||
6255 !types::isAcceptedByClang((*JA.input_begin())->getType()))
6256 return false;
6257
6258 // And say "no" if this is not a kind of action clang understands.
6259 if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
6260 !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA) &&
6261 !isa<ExtractAPIJobAction>(JA))
6262 return false;
6263
6264 return true;
6265 }
6266
ShouldUseFlangCompiler(const JobAction & JA) const6267 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
6268 // Say "no" if there is not exactly one input of a type flang understands.
6269 if (JA.size() != 1 ||
6270 !types::isAcceptedByFlang((*JA.input_begin())->getType()))
6271 return false;
6272
6273 // And say "no" if this is not a kind of action flang understands.
6274 if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) &&
6275 !isa<BackendJobAction>(JA))
6276 return false;
6277
6278 return true;
6279 }
6280
ShouldEmitStaticLibrary(const ArgList & Args) const6281 bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const {
6282 // Only emit static library if the flag is set explicitly.
6283 if (Args.hasArg(options::OPT_emit_static_lib))
6284 return true;
6285 return false;
6286 }
6287
6288 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
6289 /// grouped values as integers. Numbers which are not provided are set to 0.
6290 ///
6291 /// \return True if the entire string was parsed (9.2), or all groups were
6292 /// parsed (10.3.5extrastuff).
GetReleaseVersion(StringRef Str,unsigned & Major,unsigned & Minor,unsigned & Micro,bool & HadExtra)6293 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
6294 unsigned &Micro, bool &HadExtra) {
6295 HadExtra = false;
6296
6297 Major = Minor = Micro = 0;
6298 if (Str.empty())
6299 return false;
6300
6301 if (Str.consumeInteger(10, Major))
6302 return false;
6303 if (Str.empty())
6304 return true;
6305 if (Str[0] != '.')
6306 return false;
6307
6308 Str = Str.drop_front(1);
6309
6310 if (Str.consumeInteger(10, Minor))
6311 return false;
6312 if (Str.empty())
6313 return true;
6314 if (Str[0] != '.')
6315 return false;
6316 Str = Str.drop_front(1);
6317
6318 if (Str.consumeInteger(10, Micro))
6319 return false;
6320 if (!Str.empty())
6321 HadExtra = true;
6322 return true;
6323 }
6324
6325 /// Parse digits from a string \p Str and fulfill \p Digits with
6326 /// the parsed numbers. This method assumes that the max number of
6327 /// digits to look for is equal to Digits.size().
6328 ///
6329 /// \return True if the entire string was parsed and there are
6330 /// no extra characters remaining at the end.
GetReleaseVersion(StringRef Str,MutableArrayRef<unsigned> Digits)6331 bool Driver::GetReleaseVersion(StringRef Str,
6332 MutableArrayRef<unsigned> Digits) {
6333 if (Str.empty())
6334 return false;
6335
6336 unsigned CurDigit = 0;
6337 while (CurDigit < Digits.size()) {
6338 unsigned Digit;
6339 if (Str.consumeInteger(10, Digit))
6340 return false;
6341 Digits[CurDigit] = Digit;
6342 if (Str.empty())
6343 return true;
6344 if (Str[0] != '.')
6345 return false;
6346 Str = Str.drop_front(1);
6347 CurDigit++;
6348 }
6349
6350 // More digits than requested, bail out...
6351 return false;
6352 }
6353
6354 std::pair<unsigned, unsigned>
getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const6355 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
6356 unsigned IncludedFlagsBitmask = 0;
6357 unsigned ExcludedFlagsBitmask = options::NoDriverOption;
6358
6359 if (IsClCompatMode) {
6360 // Include CL and Core options.
6361 IncludedFlagsBitmask |= options::CLOption;
6362 IncludedFlagsBitmask |= options::CLDXCOption;
6363 IncludedFlagsBitmask |= options::CoreOption;
6364 } else {
6365 ExcludedFlagsBitmask |= options::CLOption;
6366 }
6367 if (IsDXCMode()) {
6368 // Include DXC and Core options.
6369 IncludedFlagsBitmask |= options::DXCOption;
6370 IncludedFlagsBitmask |= options::CLDXCOption;
6371 IncludedFlagsBitmask |= options::CoreOption;
6372 } else {
6373 ExcludedFlagsBitmask |= options::DXCOption;
6374 }
6375 if (!IsClCompatMode && !IsDXCMode())
6376 ExcludedFlagsBitmask |= options::CLDXCOption;
6377
6378 return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
6379 }
6380
getExecutableForDriverMode(DriverMode Mode)6381 const char *Driver::getExecutableForDriverMode(DriverMode Mode) {
6382 switch (Mode) {
6383 case GCCMode:
6384 return "clang";
6385 case GXXMode:
6386 return "clang++";
6387 case CPPMode:
6388 return "clang-cpp";
6389 case CLMode:
6390 return "clang-cl";
6391 case FlangMode:
6392 return "flang";
6393 case DXCMode:
6394 return "clang-dxc";
6395 }
6396
6397 llvm_unreachable("Unhandled Mode");
6398 }
6399
isOptimizationLevelFast(const ArgList & Args)6400 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
6401 return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
6402 }
6403
willEmitRemarks(const ArgList & Args)6404 bool clang::driver::willEmitRemarks(const ArgList &Args) {
6405 // -fsave-optimization-record enables it.
6406 if (Args.hasFlag(options::OPT_fsave_optimization_record,
6407 options::OPT_fno_save_optimization_record, false))
6408 return true;
6409
6410 // -fsave-optimization-record=<format> enables it as well.
6411 if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
6412 options::OPT_fno_save_optimization_record, false))
6413 return true;
6414
6415 // -foptimization-record-file alone enables it too.
6416 if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
6417 options::OPT_fno_save_optimization_record, false))
6418 return true;
6419
6420 // -foptimization-record-passes alone enables it too.
6421 if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
6422 options::OPT_fno_save_optimization_record, false))
6423 return true;
6424 return false;
6425 }
6426
getDriverMode(StringRef ProgName,ArrayRef<const char * > Args)6427 llvm::StringRef clang::driver::getDriverMode(StringRef ProgName,
6428 ArrayRef<const char *> Args) {
6429 static const std::string OptName =
6430 getDriverOptTable().getOption(options::OPT_driver_mode).getPrefixedName();
6431 llvm::StringRef Opt;
6432 for (StringRef Arg : Args) {
6433 if (!Arg.startswith(OptName))
6434 continue;
6435 Opt = Arg;
6436 }
6437 if (Opt.empty())
6438 Opt = ToolChain::getTargetAndModeFromProgramName(ProgName).DriverMode;
6439 return Opt.consume_front(OptName) ? Opt : "";
6440 }
6441
IsClangCL(StringRef DriverMode)6442 bool driver::IsClangCL(StringRef DriverMode) { return DriverMode.equals("cl"); }
6443