xref: /linux/drivers/net/Kconfig (revision 94e2a19a)
1# SPDX-License-Identifier: GPL-2.0-only
2#
3# Network device configuration
4#
5
6menuconfig NETDEVICES
7	default y if UML
8	depends on NET
9	bool "Network device support"
10	help
11	  You can say N here if you don't intend to connect your Linux box to
12	  any other computer at all.
13
14	  You'll have to say Y if your computer contains a network card that
15	  you want to use under Linux. If you are going to run SLIP or PPP over
16	  telephone line or null modem cable you need say Y here. Connecting
17	  two machines with parallel ports using PLIP needs this, as well as
18	  AX.25/KISS for sending Internet traffic over amateur radio links.
19
20	  See also "The Linux Network Administrator's Guide" by Olaf Kirch and
21	  Terry Dawson. Available at <http://www.tldp.org/guides.html>.
22
23	  If unsure, say Y.
24
25# All the following symbols are dependent on NETDEVICES - do not repeat
26# that for each of the symbols.
27if NETDEVICES
28
29config MII
30	tristate
31
32config NET_CORE
33	default y
34	bool "Network core driver support"
35	help
36	  You can say N here if you do not intend to use any of the
37	  networking core drivers (i.e. VLAN, bridging, bonding, etc.)
38
39if NET_CORE
40
41config BONDING
42	tristate "Bonding driver support"
43	depends on INET
44	depends on IPV6 || IPV6=n
45	depends on TLS || TLS_DEVICE=n
46	help
47	  Say 'Y' or 'M' if you wish to be able to 'bond' multiple Ethernet
48	  Channels together. This is called 'Etherchannel' by Cisco,
49	  'Trunking' by Sun, 802.3ad by the IEEE, and 'Bonding' in Linux.
50
51	  The driver supports multiple bonding modes to allow for both high
52	  performance and high availability operation.
53
54	  Refer to <file:Documentation/networking/bonding.rst> for more
55	  information.
56
57	  To compile this driver as a module, choose M here: the module
58	  will be called bonding.
59
60config DUMMY
61	tristate "Dummy net driver support"
62	help
63	  This is essentially a bit-bucket device (i.e. traffic you send to
64	  this device is consigned into oblivion) with a configurable IP
65	  address. It is most commonly used in order to make your currently
66	  inactive SLIP address seem like a real address for local programs.
67	  If you use SLIP or PPP, you might want to say Y here. It won't
68	  enlarge your kernel. What a deal. Read about it in the Network
69	  Administrator's Guide, available from
70	  <http://www.tldp.org/docs.html#guide>.
71
72	  To compile this driver as a module, choose M here: the module
73	  will be called dummy.
74
75config WIREGUARD
76	tristate "WireGuard secure network tunnel"
77	depends on NET && INET
78	depends on IPV6 || !IPV6
79	depends on !KMSAN # KMSAN doesn't support the crypto configs below
80	select NET_UDP_TUNNEL
81	select DST_CACHE
82	select CRYPTO
83	select CRYPTO_LIB_CURVE25519
84	select CRYPTO_LIB_CHACHA20POLY1305
85	select CRYPTO_CHACHA20_X86_64 if X86 && 64BIT
86	select CRYPTO_POLY1305_X86_64 if X86 && 64BIT
87	select CRYPTO_BLAKE2S_X86 if X86 && 64BIT
88	select CRYPTO_CURVE25519_X86 if X86 && 64BIT
89	select CRYPTO_CHACHA20_NEON if ARM || (ARM64 && KERNEL_MODE_NEON)
90	select CRYPTO_POLY1305_NEON if ARM64 && KERNEL_MODE_NEON
91	select CRYPTO_POLY1305_ARM if ARM
92	select CRYPTO_BLAKE2S_ARM if ARM
93	select CRYPTO_CURVE25519_NEON if ARM && KERNEL_MODE_NEON
94	select CRYPTO_CHACHA_MIPS if CPU_MIPS32_R2
95	select CRYPTO_POLY1305_MIPS if MIPS
96	select CRYPTO_CHACHA_S390 if S390
97	help
98	  WireGuard is a secure, fast, and easy to use replacement for IPSec
99	  that uses modern cryptography and clever networking tricks. It's
100	  designed to be fairly general purpose and abstract enough to fit most
101	  use cases, while at the same time remaining extremely simple to
102	  configure. See www.wireguard.com for more info.
103
104	  It's safe to say Y or M here, as the driver is very lightweight and
105	  is only in use when an administrator chooses to add an interface.
106
107config WIREGUARD_DEBUG
108	bool "Debugging checks and verbose messages"
109	depends on WIREGUARD
110	help
111	  This will write log messages for handshake and other events
112	  that occur for a WireGuard interface. It will also perform some
113	  extra validation checks and unit tests at various points. This is
114	  only useful for debugging.
115
116	  Say N here unless you know what you're doing.
117
118config EQUALIZER
119	tristate "EQL (serial line load balancing) support"
120	help
121	  If you have two serial connections to some other computer (this
122	  usually requires two modems and two telephone lines) and you use
123	  SLIP (the protocol for sending Internet traffic over telephone
124	  lines) or PPP (a better SLIP) on them, you can make them behave like
125	  one double speed connection using this driver.  Naturally, this has
126	  to be supported at the other end as well, either with a similar EQL
127	  Linux driver or with a Livingston Portmaster 2e.
128
129	  Say Y if you want this and read
130	  <file:Documentation/networking/eql.rst>.  You may also want to read
131	  section 6.2 of the NET-3-HOWTO, available from
132	  <http://www.tldp.org/docs.html#howto>.
133
134	  To compile this driver as a module, choose M here: the module
135	  will be called eql.  If unsure, say N.
136
137config NET_FC
138	bool "Fibre Channel driver support"
139	depends on SCSI && PCI
140	help
141	  Fibre Channel is a high speed serial protocol mainly used to connect
142	  large storage devices to the computer; it is compatible with and
143	  intended to replace SCSI.
144
145	  If you intend to use Fibre Channel, you need to have a Fibre channel
146	  adaptor card in your computer; say Y here and to the driver for your
147	  adaptor below. You also should have said Y to "SCSI support" and
148	  "SCSI generic support".
149
150config IFB
151	tristate "Intermediate Functional Block support"
152	depends on NET_ACT_MIRRED || NFT_FWD_NETDEV
153	select NET_REDIRECT
154	help
155	  This is an intermediate driver that allows sharing of
156	  resources.
157	  To compile this driver as a module, choose M here: the module
158	  will be called ifb.  If you want to use more than one ifb
159	  device at a time, you need to compile this driver as a module.
160	  Instead of 'ifb', the devices will then be called 'ifb0',
161	  'ifb1' etc.
162	  Look at the iproute2 documentation directory for usage etc
163
164source "drivers/net/team/Kconfig"
165
166config MACVLAN
167	tristate "MAC-VLAN support"
168	help
169	  This allows one to create virtual interfaces that map packets to
170	  or from specific MAC addresses to a particular interface.
171
172	  Macvlan devices can be added using the "ip" command from the
173	  iproute2 package starting with the iproute2-2.6.23 release:
174
175	  "ip link add link <real dev> [ address MAC ] [ NAME ] type macvlan"
176
177	  To compile this driver as a module, choose M here: the module
178	  will be called macvlan.
179
180config MACVTAP
181	tristate "MAC-VLAN based tap driver"
182	depends on MACVLAN
183	depends on INET
184	select TAP
185	help
186	  This adds a specialized tap character device driver that is based
187	  on the MAC-VLAN network interface, called macvtap. A macvtap device
188	  can be added in the same way as a macvlan device, using 'type
189	  macvtap', and then be accessed through the tap user space interface.
190
191	  To compile this driver as a module, choose M here: the module
192	  will be called macvtap.
193
194config IPVLAN_L3S
195	depends on NETFILTER
196	depends on IPVLAN
197	def_bool y
198	select NET_L3_MASTER_DEV
199
200config IPVLAN
201	tristate "IP-VLAN support"
202	depends on INET
203	depends on IPV6 || !IPV6
204	help
205	  This allows one to create virtual devices off of a main interface
206	  and packets will be delivered based on the dest L3 (IPv6/IPv4 addr)
207	  on packets. All interfaces (including the main interface) share L2
208	  making it transparent to the connected L2 switch.
209
210	  Ipvlan devices can be added using the "ip" command from the
211	  iproute2 package starting with the iproute2-3.19 release:
212
213	  "ip link add link <main-dev> [ NAME ] type ipvlan"
214
215	  To compile this driver as a module, choose M here: the module
216	  will be called ipvlan.
217
218config IPVTAP
219	tristate "IP-VLAN based tap driver"
220	depends on IPVLAN
221	depends on INET
222	select TAP
223	help
224	  This adds a specialized tap character device driver that is based
225	  on the IP-VLAN network interface, called ipvtap. An ipvtap device
226	  can be added in the same way as a ipvlan device, using 'type
227	  ipvtap', and then be accessed through the tap user space interface.
228
229	  To compile this driver as a module, choose M here: the module
230	  will be called ipvtap.
231
232config VXLAN
233	tristate "Virtual eXtensible Local Area Network (VXLAN)"
234	depends on INET
235	select NET_UDP_TUNNEL
236	select GRO_CELLS
237	help
238	  This allows one to create vxlan virtual interfaces that provide
239	  Layer 2 Networks over Layer 3 Networks. VXLAN is often used
240	  to tunnel virtual network infrastructure in virtualized environments.
241	  For more information see:
242	    http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-02
243
244	  To compile this driver as a module, choose M here: the module
245	  will be called vxlan.
246
247config GENEVE
248	tristate "Generic Network Virtualization Encapsulation"
249	depends on INET
250	depends on IPV6 || !IPV6
251	select NET_UDP_TUNNEL
252	select GRO_CELLS
253	help
254	  This allows one to create geneve virtual interfaces that provide
255	  Layer 2 Networks over Layer 3 Networks. GENEVE is often used
256	  to tunnel virtual network infrastructure in virtualized environments.
257	  For more information see:
258	    http://tools.ietf.org/html/draft-gross-geneve-02
259
260	  To compile this driver as a module, choose M here: the module
261	  will be called geneve.
262
263config BAREUDP
264	tristate "Bare UDP Encapsulation"
265	depends on INET
266	depends on IPV6 || !IPV6
267	select NET_UDP_TUNNEL
268	select GRO_CELLS
269	help
270	  This adds a bare UDP tunnel module for tunnelling different
271	  kinds of traffic like MPLS, IP, etc. inside a UDP tunnel.
272
273	  To compile this driver as a module, choose M here: the module
274	  will be called bareudp.
275
276config GTP
277	tristate "GPRS Tunneling Protocol datapath (GTP-U)"
278	depends on INET
279	select NET_UDP_TUNNEL
280	help
281	  This allows one to create gtp virtual interfaces that provide
282	  the GPRS Tunneling Protocol datapath (GTP-U). This tunneling protocol
283	  is used to prevent subscribers from accessing mobile carrier core
284	  network infrastructure. This driver requires a userspace software that
285	  implements the signaling protocol (GTP-C) to update its PDP context
286	  base, such as OpenGGSN <http://git.osmocom.org/openggsn/). This
287	  tunneling protocol is implemented according to the GSM TS 09.60 and
288	  3GPP TS 29.060 standards.
289
290	  To compile this drivers as a module, choose M here: the module
291	  will be called gtp.
292
293config PFCP
294	tristate "Packet Forwarding Control Protocol (PFCP)"
295	depends on INET
296	select NET_UDP_TUNNEL
297	help
298	  This allows one to create PFCP virtual interfaces that allows to
299	  set up software and hardware offload of PFCP packets.
300	  Note that this module does not support PFCP protocol in the kernel space.
301	  There is no support for parsing any PFCP messages.
302
303	  To compile this drivers as a module, choose M here: the module
304	  will be called pfcp.
305
306config AMT
307	tristate "Automatic Multicast Tunneling (AMT)"
308	depends on INET && IP_MULTICAST
309	depends on IPV6 || !IPV6
310	select NET_UDP_TUNNEL
311	help
312	  This allows one to create AMT(Automatic Multicast Tunneling)
313	  virtual interfaces that provide multicast tunneling.
314	  There are two roles, Gateway, and Relay.
315	  Gateway Encapsulates IGMP/MLD traffic from listeners to the Relay.
316	  Gateway Decapsulates multicast traffic from the Relay to Listeners.
317	  Relay Encapsulates multicast traffic from Sources to Gateway.
318	  Relay Decapsulates IGMP/MLD traffic from Gateway.
319
320	  To compile this drivers as a module, choose M here: the module
321	  will be called amt.
322
323config MACSEC
324	tristate "IEEE 802.1AE MAC-level encryption (MACsec)"
325	select CRYPTO
326	select CRYPTO_AES
327	select CRYPTO_GCM
328	select GRO_CELLS
329	help
330	   MACsec is an encryption standard for Ethernet.
331
332config NETCONSOLE
333	tristate "Network console logging support"
334	help
335	  If you want to log kernel messages over the network, enable this.
336	  See <file:Documentation/networking/netconsole.rst> for details.
337
338config NETCONSOLE_DYNAMIC
339	bool "Dynamic reconfiguration of logging targets"
340	depends on NETCONSOLE && SYSFS && CONFIGFS_FS && \
341			!(NETCONSOLE=y && CONFIGFS_FS=m)
342	help
343	  This option enables the ability to dynamically reconfigure target
344	  parameters (interface, IP addresses, port numbers, MAC addresses)
345	  at runtime through a userspace interface exported using configfs.
346	  See <file:Documentation/networking/netconsole.rst> for details.
347
348config NETCONSOLE_EXTENDED_LOG
349	bool "Set kernel extended message by default"
350	depends on NETCONSOLE
351	default n
352	help
353	  Set extended log support for netconsole message. If this option is
354	  set, log messages are transmitted with extended metadata header in a
355	  format similar to /dev/kmsg.  See
356	  <file:Documentation/networking/netconsole.rst> for details.
357
358config NETCONSOLE_PREPEND_RELEASE
359	bool "Prepend kernel release version in the message by default"
360	depends on NETCONSOLE_EXTENDED_LOG
361	default n
362	help
363	  Set kernel release to be prepended to each netconsole message by
364	  default. If this option is set, the kernel release is prepended into
365	  the first field of every netconsole message, so, the netconsole
366	  server/peer can easily identify what kernel release is logging each
367	  message.  See <file:Documentation/networking/netconsole.rst> for
368	  details.
369
370config NETPOLL
371	def_bool NETCONSOLE
372
373config NET_POLL_CONTROLLER
374	def_bool NETPOLL
375
376config NTB_NETDEV
377	tristate "Virtual Ethernet over NTB Transport"
378	depends on NTB_TRANSPORT
379
380config RIONET
381	tristate "RapidIO Ethernet over messaging driver support"
382	depends on RAPIDIO
383
384config RIONET_TX_SIZE
385	int "Number of outbound queue entries"
386	depends on RIONET
387	default "128"
388
389config RIONET_RX_SIZE
390	int "Number of inbound queue entries"
391	depends on RIONET
392	default "128"
393
394config TUN
395	tristate "Universal TUN/TAP device driver support"
396	depends on INET
397	select CRC32
398	help
399	  TUN/TAP provides packet reception and transmission for user space
400	  programs.  It can be viewed as a simple Point-to-Point or Ethernet
401	  device, which instead of receiving packets from a physical media,
402	  receives them from user space program and instead of sending packets
403	  via physical media writes them to the user space program.
404
405	  When a program opens /dev/net/tun, driver creates and registers
406	  corresponding net device tunX or tapX.  After a program closed above
407	  devices, driver will automatically delete tunXX or tapXX device and
408	  all routes corresponding to it.
409
410	  Please read <file:Documentation/networking/tuntap.rst> for more
411	  information.
412
413	  To compile this driver as a module, choose M here: the module
414	  will be called tun.
415
416	  If you don't know what to use this for, you don't need it.
417
418config TAP
419	tristate
420	help
421	  This option is selected by any driver implementing tap user space
422	  interface for a virtual interface to re-use core tap functionality.
423
424config TUN_VNET_CROSS_LE
425	bool "Support for cross-endian vnet headers on little-endian kernels"
426	default n
427	help
428	  This option allows TUN/TAP and MACVTAP device drivers in a
429	  little-endian kernel to parse vnet headers that come from a
430	  big-endian legacy virtio device.
431
432	  Userspace programs can control the feature using the TUNSETVNETBE
433	  and TUNGETVNETBE ioctls.
434
435	  Unless you have a little-endian system hosting a big-endian virtual
436	  machine with a legacy virtio NIC, you should say N.
437
438config VETH
439	tristate "Virtual ethernet pair device"
440	select PAGE_POOL
441	help
442	  This device is a local ethernet tunnel. Devices are created in pairs.
443	  When one end receives the packet it appears on its pair and vice
444	  versa.
445
446config VIRTIO_NET
447	tristate "Virtio network driver"
448	depends on VIRTIO
449	select NET_FAILOVER
450	select DIMLIB
451	help
452	  This is the virtual network driver for virtio.  It can be used with
453	  QEMU based VMMs (like KVM or Xen).  Say Y or M.
454
455config NLMON
456	tristate "Virtual netlink monitoring device"
457	help
458	  This option enables a monitoring net device for netlink skbs. The
459	  purpose of this is to analyze netlink messages with packet sockets.
460	  Thus applications like tcpdump will be able to see local netlink
461	  messages if they tap into the netlink device, record pcaps for further
462	  diagnostics, etc. This is mostly intended for developers or support
463	  to debug netlink issues. If unsure, say N.
464
465config NETKIT
466	bool "BPF-programmable network device"
467	depends on BPF_SYSCALL
468	help
469	  The netkit device is a virtual networking device where BPF programs
470	  can be attached to the device(s) transmission routine in order to
471	  implement the driver's internal logic. The device can be configured
472	  to operate in L3 or L2 mode. If unsure, say N.
473
474config NET_VRF
475	tristate "Virtual Routing and Forwarding (Lite)"
476	depends on IP_MULTIPLE_TABLES
477	depends on NET_L3_MASTER_DEV
478	depends on IPV6 || IPV6=n
479	depends on IPV6_MULTIPLE_TABLES || IPV6=n
480	help
481	  This option enables the support for mapping interfaces into VRF's. The
482	  support enables VRF devices.
483
484config VSOCKMON
485	tristate "Virtual vsock monitoring device"
486	depends on VHOST_VSOCK
487	help
488	  This option enables a monitoring net device for vsock sockets. It is
489	  mostly intended for developers or support to debug vsock issues. If
490	  unsure, say N.
491
492config MHI_NET
493	tristate "MHI network driver"
494	depends on MHI_BUS
495	help
496	  This is the network driver for MHI bus.  It can be used with
497	  QCOM based WWAN modems for IP or QMAP/rmnet protocol (like SDX55).
498	  Say Y or M.
499
500endif # NET_CORE
501
502config SUNGEM_PHY
503	tristate
504
505source "drivers/net/arcnet/Kconfig"
506
507source "drivers/atm/Kconfig"
508
509source "drivers/net/caif/Kconfig"
510
511source "drivers/net/dsa/Kconfig"
512
513source "drivers/net/ethernet/Kconfig"
514
515source "drivers/net/fddi/Kconfig"
516
517source "drivers/net/hippi/Kconfig"
518
519source "drivers/net/ipa/Kconfig"
520
521config NET_SB1000
522	tristate "General Instruments Surfboard 1000"
523	depends on ISA && PNP
524	help
525	  This is a driver for the General Instrument (also known as
526	  NextLevel) SURFboard 1000 internal
527	  cable modem. This is an ISA card which is used by a number of cable
528	  TV companies to provide cable modem access. It's a one-way
529	  downstream-only cable modem, meaning that your upstream net link is
530	  provided by your regular phone modem.
531
532	  At present this driver only compiles as a module, so say M here if
533	  you have this card. The module will be called sb1000. Then read
534	  <file:Documentation/networking/device_drivers/cable/sb1000.rst> for
535	  information on how to use this module, as it needs special ppp
536	  scripts for establishing a connection. Further documentation
537	  and the necessary scripts can be found at:
538
539	  <http://www.jacksonville.net/~fventuri/>
540	  <http://home.adelphia.net/~siglercm/sb1000.html>
541	  <http://linuxpower.cx/~cable/>
542
543	  If you don't have this card, of course say N.
544
545source "drivers/net/phy/Kconfig"
546
547source "drivers/net/pse-pd/Kconfig"
548
549source "drivers/net/can/Kconfig"
550
551source "drivers/net/mctp/Kconfig"
552
553source "drivers/net/mdio/Kconfig"
554
555source "drivers/net/pcs/Kconfig"
556
557source "drivers/net/plip/Kconfig"
558
559source "drivers/net/ppp/Kconfig"
560
561source "drivers/net/slip/Kconfig"
562
563source "drivers/s390/net/Kconfig"
564
565source "drivers/net/usb/Kconfig"
566
567source "drivers/net/wireless/Kconfig"
568
569source "drivers/net/wan/Kconfig"
570
571source "drivers/net/ieee802154/Kconfig"
572
573source "drivers/net/wwan/Kconfig"
574
575config XEN_NETDEV_FRONTEND
576	tristate "Xen network device frontend driver"
577	depends on XEN
578	select XEN_XENBUS_FRONTEND
579	select PAGE_POOL
580	default y
581	help
582	  This driver provides support for Xen paravirtual network
583	  devices exported by a Xen network driver domain (often
584	  domain 0).
585
586	  The corresponding Linux backend driver is enabled by the
587	  CONFIG_XEN_NETDEV_BACKEND option.
588
589	  If you are compiling a kernel for use as Xen guest, you
590	  should say Y here. To compile this driver as a module, chose
591	  M here: the module will be called xen-netfront.
592
593config XEN_NETDEV_BACKEND
594	tristate "Xen backend network device"
595	depends on XEN_BACKEND
596	help
597	  This driver allows the kernel to act as a Xen network driver
598	  domain which exports paravirtual network devices to other
599	  Xen domains. These devices can be accessed by any operating
600	  system that implements a compatible front end.
601
602	  The corresponding Linux frontend driver is enabled by the
603	  CONFIG_XEN_NETDEV_FRONTEND configuration option.
604
605	  The backend driver presents a standard network device
606	  endpoint for each paravirtual network device to the driver
607	  domain network stack. These can then be bridged or routed
608	  etc in order to provide full network connectivity.
609
610	  If you are compiling a kernel to run in a Xen network driver
611	  domain (often this is domain 0) you should say Y here. To
612	  compile this driver as a module, chose M here: the module
613	  will be called xen-netback.
614
615config VMXNET3
616	tristate "VMware VMXNET3 ethernet driver"
617	depends on PCI && INET
618	depends on PAGE_SIZE_LESS_THAN_64KB
619	select PAGE_POOL
620	help
621	  This driver supports VMware's vmxnet3 virtual ethernet NIC.
622	  To compile this driver as a module, choose M here: the
623	  module will be called vmxnet3.
624
625config FUJITSU_ES
626	tristate "FUJITSU Extended Socket Network Device driver"
627	depends on ACPI
628	help
629	  This driver provides support for Extended Socket network device
630	  on Extended Partitioning of FUJITSU PRIMEQUEST 2000 E2 series.
631
632source "drivers/net/thunderbolt/Kconfig"
633source "drivers/net/hyperv/Kconfig"
634
635config NETDEVSIM
636	tristate "Simulated networking device"
637	depends on DEBUG_FS
638	depends on INET
639	depends on IPV6 || IPV6=n
640	depends on PSAMPLE || PSAMPLE=n
641	depends on PTP_1588_CLOCK_MOCK || PTP_1588_CLOCK_MOCK=n
642	select NET_DEVLINK
643	select PAGE_POOL
644	help
645	  This driver is a developer testing tool and software model that can
646	  be used to test various control path networking APIs, especially
647	  HW-offload related.
648
649	  To compile this driver as a module, choose M here: the module
650	  will be called netdevsim.
651
652config NET_FAILOVER
653	tristate "Failover driver"
654	select FAILOVER
655	help
656	  This provides an automated failover mechanism via APIs to create
657	  and destroy a failover master netdev and manages a primary and
658	  standby slave netdevs that get registered via the generic failover
659	  infrastructure. This can be used by paravirtual drivers to enable
660	  an alternate low latency datapath. It also enables live migration of
661	  a VM with direct attached VF by failing over to the paravirtual
662	  datapath when the VF is unplugged.
663
664config NETDEV_LEGACY_INIT
665	bool
666	depends on ISA
667	help
668	  Drivers that call netdev_boot_setup_check() should select this
669	  symbol, everything else no longer needs it.
670
671endif # NETDEVICES
672