xref: /linux/fs/f2fs/f2fs.h (revision 0d896828)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <linux/rw_hint.h>
28 #include <crypto/hash.h>
29 
30 #include <linux/fscrypt.h>
31 #include <linux/fsverity.h>
32 
33 struct pagevec;
34 
35 #ifdef CONFIG_F2FS_CHECK_FS
36 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
37 #else
38 #define f2fs_bug_on(sbi, condition)					\
39 	do {								\
40 		if (WARN_ON(condition))					\
41 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
42 	} while (0)
43 #endif
44 
45 enum {
46 	FAULT_KMALLOC,
47 	FAULT_KVMALLOC,
48 	FAULT_PAGE_ALLOC,
49 	FAULT_PAGE_GET,
50 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
51 	FAULT_ALLOC_NID,
52 	FAULT_ORPHAN,
53 	FAULT_BLOCK,
54 	FAULT_DIR_DEPTH,
55 	FAULT_EVICT_INODE,
56 	FAULT_TRUNCATE,
57 	FAULT_READ_IO,
58 	FAULT_CHECKPOINT,
59 	FAULT_DISCARD,
60 	FAULT_WRITE_IO,
61 	FAULT_SLAB_ALLOC,
62 	FAULT_DQUOT_INIT,
63 	FAULT_LOCK_OP,
64 	FAULT_BLKADDR_VALIDITY,
65 	FAULT_BLKADDR_CONSISTENCE,
66 	FAULT_NO_SEGMENT,
67 	FAULT_MAX,
68 };
69 
70 #ifdef CONFIG_F2FS_FAULT_INJECTION
71 #define F2FS_ALL_FAULT_TYPE		(GENMASK(FAULT_MAX - 1, 0))
72 
73 struct f2fs_fault_info {
74 	atomic_t inject_ops;
75 	int inject_rate;
76 	unsigned int inject_type;
77 };
78 
79 extern const char *f2fs_fault_name[FAULT_MAX];
80 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
81 
82 /* maximum retry count for injected failure */
83 #define DEFAULT_FAILURE_RETRY_COUNT		8
84 #else
85 #define DEFAULT_FAILURE_RETRY_COUNT		1
86 #endif
87 
88 /*
89  * For mount options
90  */
91 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000001
92 #define F2FS_MOUNT_DISCARD		0x00000002
93 #define F2FS_MOUNT_NOHEAP		0x00000004
94 #define F2FS_MOUNT_XATTR_USER		0x00000008
95 #define F2FS_MOUNT_POSIX_ACL		0x00000010
96 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000020
97 #define F2FS_MOUNT_INLINE_XATTR		0x00000040
98 #define F2FS_MOUNT_INLINE_DATA		0x00000080
99 #define F2FS_MOUNT_INLINE_DENTRY	0x00000100
100 #define F2FS_MOUNT_FLUSH_MERGE		0x00000200
101 #define F2FS_MOUNT_NOBARRIER		0x00000400
102 #define F2FS_MOUNT_FASTBOOT		0x00000800
103 #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00001000
104 #define F2FS_MOUNT_DATA_FLUSH		0x00002000
105 #define F2FS_MOUNT_FAULT_INJECTION	0x00004000
106 #define F2FS_MOUNT_USRQUOTA		0x00008000
107 #define F2FS_MOUNT_GRPQUOTA		0x00010000
108 #define F2FS_MOUNT_PRJQUOTA		0x00020000
109 #define F2FS_MOUNT_QUOTA		0x00040000
110 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00080000
111 #define F2FS_MOUNT_RESERVE_ROOT		0x00100000
112 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x00200000
113 #define F2FS_MOUNT_NORECOVERY		0x00400000
114 #define F2FS_MOUNT_ATGC			0x00800000
115 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x01000000
116 #define	F2FS_MOUNT_GC_MERGE		0x02000000
117 #define F2FS_MOUNT_COMPRESS_CACHE	0x04000000
118 #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x08000000
119 
120 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
121 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
122 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
123 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
124 
125 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
126 		typecheck(unsigned long long, b) &&			\
127 		((long long)((a) - (b)) > 0))
128 
129 typedef u32 block_t;	/*
130 			 * should not change u32, since it is the on-disk block
131 			 * address format, __le32.
132 			 */
133 typedef u32 nid_t;
134 
135 #define COMPRESS_EXT_NUM		16
136 
137 /*
138  * An implementation of an rwsem that is explicitly unfair to readers. This
139  * prevents priority inversion when a low-priority reader acquires the read lock
140  * while sleeping on the write lock but the write lock is needed by
141  * higher-priority clients.
142  */
143 
144 struct f2fs_rwsem {
145         struct rw_semaphore internal_rwsem;
146 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
147         wait_queue_head_t read_waiters;
148 #endif
149 };
150 
151 struct f2fs_mount_info {
152 	unsigned int opt;
153 	block_t root_reserved_blocks;	/* root reserved blocks */
154 	kuid_t s_resuid;		/* reserved blocks for uid */
155 	kgid_t s_resgid;		/* reserved blocks for gid */
156 	int active_logs;		/* # of active logs */
157 	int inline_xattr_size;		/* inline xattr size */
158 #ifdef CONFIG_F2FS_FAULT_INJECTION
159 	struct f2fs_fault_info fault_info;	/* For fault injection */
160 #endif
161 #ifdef CONFIG_QUOTA
162 	/* Names of quota files with journalled quota */
163 	char *s_qf_names[MAXQUOTAS];
164 	int s_jquota_fmt;			/* Format of quota to use */
165 #endif
166 	/* For which write hints are passed down to block layer */
167 	int alloc_mode;			/* segment allocation policy */
168 	int fsync_mode;			/* fsync policy */
169 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
170 	int bggc_mode;			/* bggc mode: off, on or sync */
171 	int memory_mode;		/* memory mode */
172 	int errors;			/* errors parameter */
173 	int discard_unit;		/*
174 					 * discard command's offset/size should
175 					 * be aligned to this unit: block,
176 					 * segment or section
177 					 */
178 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
179 	block_t unusable_cap_perc;	/* percentage for cap */
180 	block_t unusable_cap;		/* Amount of space allowed to be
181 					 * unusable when disabling checkpoint
182 					 */
183 
184 	/* For compression */
185 	unsigned char compress_algorithm;	/* algorithm type */
186 	unsigned char compress_log_size;	/* cluster log size */
187 	unsigned char compress_level;		/* compress level */
188 	bool compress_chksum;			/* compressed data chksum */
189 	unsigned char compress_ext_cnt;		/* extension count */
190 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
191 	int compress_mode;			/* compression mode */
192 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
193 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
194 };
195 
196 #define F2FS_FEATURE_ENCRYPT			0x00000001
197 #define F2FS_FEATURE_BLKZONED			0x00000002
198 #define F2FS_FEATURE_ATOMIC_WRITE		0x00000004
199 #define F2FS_FEATURE_EXTRA_ATTR			0x00000008
200 #define F2FS_FEATURE_PRJQUOTA			0x00000010
201 #define F2FS_FEATURE_INODE_CHKSUM		0x00000020
202 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x00000040
203 #define F2FS_FEATURE_QUOTA_INO			0x00000080
204 #define F2FS_FEATURE_INODE_CRTIME		0x00000100
205 #define F2FS_FEATURE_LOST_FOUND			0x00000200
206 #define F2FS_FEATURE_VERITY			0x00000400
207 #define F2FS_FEATURE_SB_CHKSUM			0x00000800
208 #define F2FS_FEATURE_CASEFOLD			0x00001000
209 #define F2FS_FEATURE_COMPRESSION		0x00002000
210 #define F2FS_FEATURE_RO				0x00004000
211 
212 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
213 	((raw_super->feature & cpu_to_le32(mask)) != 0)
214 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
215 
216 /*
217  * Default values for user and/or group using reserved blocks
218  */
219 #define	F2FS_DEF_RESUID		0
220 #define	F2FS_DEF_RESGID		0
221 
222 /*
223  * For checkpoint manager
224  */
225 enum {
226 	NAT_BITMAP,
227 	SIT_BITMAP
228 };
229 
230 #define	CP_UMOUNT	0x00000001
231 #define	CP_FASTBOOT	0x00000002
232 #define	CP_SYNC		0x00000004
233 #define	CP_RECOVERY	0x00000008
234 #define	CP_DISCARD	0x00000010
235 #define CP_TRIMMED	0x00000020
236 #define CP_PAUSE	0x00000040
237 #define CP_RESIZE 	0x00000080
238 
239 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
240 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
241 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
242 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
243 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
244 #define DEF_CP_INTERVAL			60	/* 60 secs */
245 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
246 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
247 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
248 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
249 
250 struct cp_control {
251 	int reason;
252 	__u64 trim_start;
253 	__u64 trim_end;
254 	__u64 trim_minlen;
255 };
256 
257 /*
258  * indicate meta/data type
259  */
260 enum {
261 	META_CP,
262 	META_NAT,
263 	META_SIT,
264 	META_SSA,
265 	META_MAX,
266 	META_POR,
267 	DATA_GENERIC,		/* check range only */
268 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
269 	DATA_GENERIC_ENHANCE_READ,	/*
270 					 * strong check on range and segment
271 					 * bitmap but no warning due to race
272 					 * condition of read on truncated area
273 					 * by extent_cache
274 					 */
275 	DATA_GENERIC_ENHANCE_UPDATE,	/*
276 					 * strong check on range and segment
277 					 * bitmap for update case
278 					 */
279 	META_GENERIC,
280 };
281 
282 /* for the list of ino */
283 enum {
284 	ORPHAN_INO,		/* for orphan ino list */
285 	APPEND_INO,		/* for append ino list */
286 	UPDATE_INO,		/* for update ino list */
287 	TRANS_DIR_INO,		/* for transactions dir ino list */
288 	FLUSH_INO,		/* for multiple device flushing */
289 	MAX_INO_ENTRY,		/* max. list */
290 };
291 
292 struct ino_entry {
293 	struct list_head list;		/* list head */
294 	nid_t ino;			/* inode number */
295 	unsigned int dirty_device;	/* dirty device bitmap */
296 };
297 
298 /* for the list of inodes to be GCed */
299 struct inode_entry {
300 	struct list_head list;	/* list head */
301 	struct inode *inode;	/* vfs inode pointer */
302 };
303 
304 struct fsync_node_entry {
305 	struct list_head list;	/* list head */
306 	struct page *page;	/* warm node page pointer */
307 	unsigned int seq_id;	/* sequence id */
308 };
309 
310 struct ckpt_req {
311 	struct completion wait;		/* completion for checkpoint done */
312 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
313 	int ret;			/* return code of checkpoint */
314 	ktime_t queue_time;		/* request queued time */
315 };
316 
317 struct ckpt_req_control {
318 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
319 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
320 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
321 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
322 	atomic_t total_ckpt;		/* # of total ckpts */
323 	atomic_t queued_ckpt;		/* # of queued ckpts */
324 	struct llist_head issue_list;	/* list for command issue */
325 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
326 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
327 	unsigned int peak_time;		/* peak wait time in msec until now */
328 };
329 
330 /* for the bitmap indicate blocks to be discarded */
331 struct discard_entry {
332 	struct list_head list;	/* list head */
333 	block_t start_blkaddr;	/* start blockaddr of current segment */
334 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
335 };
336 
337 /* minimum discard granularity, unit: block count */
338 #define MIN_DISCARD_GRANULARITY		1
339 /* default discard granularity of inner discard thread, unit: block count */
340 #define DEFAULT_DISCARD_GRANULARITY		16
341 /* default maximum discard granularity of ordered discard, unit: block count */
342 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
343 
344 /* max discard pend list number */
345 #define MAX_PLIST_NUM		512
346 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
347 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
348 
349 enum {
350 	D_PREP,			/* initial */
351 	D_PARTIAL,		/* partially submitted */
352 	D_SUBMIT,		/* all submitted */
353 	D_DONE,			/* finished */
354 };
355 
356 struct discard_info {
357 	block_t lstart;			/* logical start address */
358 	block_t len;			/* length */
359 	block_t start;			/* actual start address in dev */
360 };
361 
362 struct discard_cmd {
363 	struct rb_node rb_node;		/* rb node located in rb-tree */
364 	struct discard_info di;		/* discard info */
365 	struct list_head list;		/* command list */
366 	struct completion wait;		/* compleation */
367 	struct block_device *bdev;	/* bdev */
368 	unsigned short ref;		/* reference count */
369 	unsigned char state;		/* state */
370 	unsigned char queued;		/* queued discard */
371 	int error;			/* bio error */
372 	spinlock_t lock;		/* for state/bio_ref updating */
373 	unsigned short bio_ref;		/* bio reference count */
374 };
375 
376 enum {
377 	DPOLICY_BG,
378 	DPOLICY_FORCE,
379 	DPOLICY_FSTRIM,
380 	DPOLICY_UMOUNT,
381 	MAX_DPOLICY,
382 };
383 
384 enum {
385 	DPOLICY_IO_AWARE_DISABLE,	/* force to not be aware of IO */
386 	DPOLICY_IO_AWARE_ENABLE,	/* force to be aware of IO */
387 	DPOLICY_IO_AWARE_MAX,
388 };
389 
390 struct discard_policy {
391 	int type;			/* type of discard */
392 	unsigned int min_interval;	/* used for candidates exist */
393 	unsigned int mid_interval;	/* used for device busy */
394 	unsigned int max_interval;	/* used for candidates not exist */
395 	unsigned int max_requests;	/* # of discards issued per round */
396 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
397 	bool io_aware;			/* issue discard in idle time */
398 	bool sync;			/* submit discard with REQ_SYNC flag */
399 	bool ordered;			/* issue discard by lba order */
400 	bool timeout;			/* discard timeout for put_super */
401 	unsigned int granularity;	/* discard granularity */
402 };
403 
404 struct discard_cmd_control {
405 	struct task_struct *f2fs_issue_discard;	/* discard thread */
406 	struct list_head entry_list;		/* 4KB discard entry list */
407 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
408 	struct list_head wait_list;		/* store on-flushing entries */
409 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
410 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
411 	struct mutex cmd_lock;
412 	unsigned int nr_discards;		/* # of discards in the list */
413 	unsigned int max_discards;		/* max. discards to be issued */
414 	unsigned int max_discard_request;	/* max. discard request per round */
415 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
416 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
417 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
418 	unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
419 	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
420 	unsigned int discard_granularity;	/* discard granularity */
421 	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
422 	unsigned int discard_io_aware;		/* io_aware policy */
423 	unsigned int undiscard_blks;		/* # of undiscard blocks */
424 	unsigned int next_pos;			/* next discard position */
425 	atomic_t issued_discard;		/* # of issued discard */
426 	atomic_t queued_discard;		/* # of queued discard */
427 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
428 	struct rb_root_cached root;		/* root of discard rb-tree */
429 	bool rbtree_check;			/* config for consistence check */
430 	bool discard_wake;			/* to wake up discard thread */
431 };
432 
433 /* for the list of fsync inodes, used only during recovery */
434 struct fsync_inode_entry {
435 	struct list_head list;	/* list head */
436 	struct inode *inode;	/* vfs inode pointer */
437 	block_t blkaddr;	/* block address locating the last fsync */
438 	block_t last_dentry;	/* block address locating the last dentry */
439 };
440 
441 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
442 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
443 
444 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
445 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
446 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
447 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
448 
449 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
450 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
451 
update_nats_in_cursum(struct f2fs_journal * journal,int i)452 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
453 {
454 	int before = nats_in_cursum(journal);
455 
456 	journal->n_nats = cpu_to_le16(before + i);
457 	return before;
458 }
459 
update_sits_in_cursum(struct f2fs_journal * journal,int i)460 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
461 {
462 	int before = sits_in_cursum(journal);
463 
464 	journal->n_sits = cpu_to_le16(before + i);
465 	return before;
466 }
467 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)468 static inline bool __has_cursum_space(struct f2fs_journal *journal,
469 							int size, int type)
470 {
471 	if (type == NAT_JOURNAL)
472 		return size <= MAX_NAT_JENTRIES(journal);
473 	return size <= MAX_SIT_JENTRIES(journal);
474 }
475 
476 /* for inline stuff */
477 #define DEF_INLINE_RESERVED_SIZE	1
478 static inline int get_extra_isize(struct inode *inode);
479 static inline int get_inline_xattr_addrs(struct inode *inode);
480 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
481 				(CUR_ADDRS_PER_INODE(inode) -		\
482 				get_inline_xattr_addrs(inode) -	\
483 				DEF_INLINE_RESERVED_SIZE))
484 
485 /* for inline dir */
486 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
487 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
488 				BITS_PER_BYTE + 1))
489 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
490 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
491 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
492 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
493 				NR_INLINE_DENTRY(inode) + \
494 				INLINE_DENTRY_BITMAP_SIZE(inode)))
495 
496 /*
497  * For INODE and NODE manager
498  */
499 /* for directory operations */
500 
501 struct f2fs_filename {
502 	/*
503 	 * The filename the user specified.  This is NULL for some
504 	 * filesystem-internal operations, e.g. converting an inline directory
505 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
506 	 */
507 	const struct qstr *usr_fname;
508 
509 	/*
510 	 * The on-disk filename.  For encrypted directories, this is encrypted.
511 	 * This may be NULL for lookups in an encrypted dir without the key.
512 	 */
513 	struct fscrypt_str disk_name;
514 
515 	/* The dirhash of this filename */
516 	f2fs_hash_t hash;
517 
518 #ifdef CONFIG_FS_ENCRYPTION
519 	/*
520 	 * For lookups in encrypted directories: either the buffer backing
521 	 * disk_name, or a buffer that holds the decoded no-key name.
522 	 */
523 	struct fscrypt_str crypto_buf;
524 #endif
525 #if IS_ENABLED(CONFIG_UNICODE)
526 	/*
527 	 * For casefolded directories: the casefolded name, but it's left NULL
528 	 * if the original name is not valid Unicode, if the original name is
529 	 * "." or "..", if the directory is both casefolded and encrypted and
530 	 * its encryption key is unavailable, or if the filesystem is doing an
531 	 * internal operation where usr_fname is also NULL.  In all these cases
532 	 * we fall back to treating the name as an opaque byte sequence.
533 	 */
534 	struct fscrypt_str cf_name;
535 #endif
536 };
537 
538 struct f2fs_dentry_ptr {
539 	struct inode *inode;
540 	void *bitmap;
541 	struct f2fs_dir_entry *dentry;
542 	__u8 (*filename)[F2FS_SLOT_LEN];
543 	int max;
544 	int nr_bitmap;
545 };
546 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)547 static inline void make_dentry_ptr_block(struct inode *inode,
548 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
549 {
550 	d->inode = inode;
551 	d->max = NR_DENTRY_IN_BLOCK;
552 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
553 	d->bitmap = t->dentry_bitmap;
554 	d->dentry = t->dentry;
555 	d->filename = t->filename;
556 }
557 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)558 static inline void make_dentry_ptr_inline(struct inode *inode,
559 					struct f2fs_dentry_ptr *d, void *t)
560 {
561 	int entry_cnt = NR_INLINE_DENTRY(inode);
562 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
563 	int reserved_size = INLINE_RESERVED_SIZE(inode);
564 
565 	d->inode = inode;
566 	d->max = entry_cnt;
567 	d->nr_bitmap = bitmap_size;
568 	d->bitmap = t;
569 	d->dentry = t + bitmap_size + reserved_size;
570 	d->filename = t + bitmap_size + reserved_size +
571 					SIZE_OF_DIR_ENTRY * entry_cnt;
572 }
573 
574 /*
575  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
576  * as its node offset to distinguish from index node blocks.
577  * But some bits are used to mark the node block.
578  */
579 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
580 				>> OFFSET_BIT_SHIFT)
581 enum {
582 	ALLOC_NODE,			/* allocate a new node page if needed */
583 	LOOKUP_NODE,			/* look up a node without readahead */
584 	LOOKUP_NODE_RA,			/*
585 					 * look up a node with readahead called
586 					 * by get_data_block.
587 					 */
588 };
589 
590 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
591 
592 /* congestion wait timeout value, default: 20ms */
593 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
594 
595 /* maximum retry quota flush count */
596 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
597 
598 /* maximum retry of EIO'ed page */
599 #define MAX_RETRY_PAGE_EIO			100
600 
601 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
602 
603 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
604 
605 /* dirty segments threshold for triggering CP */
606 #define DEFAULT_DIRTY_THRESHOLD		4
607 
608 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
609 #define RECOVERY_MIN_RA_BLOCKS		1
610 
611 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
612 
613 /* for in-memory extent cache entry */
614 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
615 
616 /* number of extent info in extent cache we try to shrink */
617 #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
618 
619 /* number of age extent info in extent cache we try to shrink */
620 #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
621 #define LAST_AGE_WEIGHT			30
622 #define SAME_AGE_REGION			1024
623 
624 /*
625  * Define data block with age less than 1GB as hot data
626  * define data block with age less than 10GB but more than 1GB as warm data
627  */
628 #define DEF_HOT_DATA_AGE_THRESHOLD	262144
629 #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
630 
631 /* extent cache type */
632 enum extent_type {
633 	EX_READ,
634 	EX_BLOCK_AGE,
635 	NR_EXTENT_CACHES,
636 };
637 
638 struct extent_info {
639 	unsigned int fofs;		/* start offset in a file */
640 	unsigned int len;		/* length of the extent */
641 	union {
642 		/* read extent_cache */
643 		struct {
644 			/* start block address of the extent */
645 			block_t blk;
646 #ifdef CONFIG_F2FS_FS_COMPRESSION
647 			/* physical extent length of compressed blocks */
648 			unsigned int c_len;
649 #endif
650 		};
651 		/* block age extent_cache */
652 		struct {
653 			/* block age of the extent */
654 			unsigned long long age;
655 			/* last total blocks allocated */
656 			unsigned long long last_blocks;
657 		};
658 	};
659 };
660 
661 struct extent_node {
662 	struct rb_node rb_node;		/* rb node located in rb-tree */
663 	struct extent_info ei;		/* extent info */
664 	struct list_head list;		/* node in global extent list of sbi */
665 	struct extent_tree *et;		/* extent tree pointer */
666 };
667 
668 struct extent_tree {
669 	nid_t ino;			/* inode number */
670 	enum extent_type type;		/* keep the extent tree type */
671 	struct rb_root_cached root;	/* root of extent info rb-tree */
672 	struct extent_node *cached_en;	/* recently accessed extent node */
673 	struct list_head list;		/* to be used by sbi->zombie_list */
674 	rwlock_t lock;			/* protect extent info rb-tree */
675 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
676 	bool largest_updated;		/* largest extent updated */
677 	struct extent_info largest;	/* largest cached extent for EX_READ */
678 };
679 
680 struct extent_tree_info {
681 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
682 	struct mutex extent_tree_lock;	/* locking extent radix tree */
683 	struct list_head extent_list;		/* lru list for shrinker */
684 	spinlock_t extent_lock;			/* locking extent lru list */
685 	atomic_t total_ext_tree;		/* extent tree count */
686 	struct list_head zombie_list;		/* extent zombie tree list */
687 	atomic_t total_zombie_tree;		/* extent zombie tree count */
688 	atomic_t total_ext_node;		/* extent info count */
689 };
690 
691 /*
692  * State of block returned by f2fs_map_blocks.
693  */
694 #define F2FS_MAP_NEW		(1U << 0)
695 #define F2FS_MAP_MAPPED		(1U << 1)
696 #define F2FS_MAP_DELALLOC	(1U << 2)
697 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
698 				F2FS_MAP_DELALLOC)
699 
700 struct f2fs_map_blocks {
701 	struct block_device *m_bdev;	/* for multi-device dio */
702 	block_t m_pblk;
703 	block_t m_lblk;
704 	unsigned int m_len;
705 	unsigned int m_flags;
706 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
707 	pgoff_t *m_next_extent;		/* point to next possible extent */
708 	int m_seg_type;
709 	bool m_may_create;		/* indicate it is from write path */
710 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
711 };
712 
713 /* for flag in get_data_block */
714 enum {
715 	F2FS_GET_BLOCK_DEFAULT,
716 	F2FS_GET_BLOCK_FIEMAP,
717 	F2FS_GET_BLOCK_BMAP,
718 	F2FS_GET_BLOCK_DIO,
719 	F2FS_GET_BLOCK_PRE_DIO,
720 	F2FS_GET_BLOCK_PRE_AIO,
721 	F2FS_GET_BLOCK_PRECACHE,
722 };
723 
724 /*
725  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
726  */
727 #define FADVISE_COLD_BIT	0x01
728 #define FADVISE_LOST_PINO_BIT	0x02
729 #define FADVISE_ENCRYPT_BIT	0x04
730 #define FADVISE_ENC_NAME_BIT	0x08
731 #define FADVISE_KEEP_SIZE_BIT	0x10
732 #define FADVISE_HOT_BIT		0x20
733 #define FADVISE_VERITY_BIT	0x40
734 #define FADVISE_TRUNC_BIT	0x80
735 
736 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
737 
738 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
739 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
740 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
741 
742 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
743 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
744 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
745 
746 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
747 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
748 
749 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
750 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
751 
752 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
753 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
754 
755 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
756 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
757 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
758 
759 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
760 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
761 
762 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
763 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
764 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
765 
766 #define DEF_DIR_LEVEL		0
767 
768 /* used for f2fs_inode_info->flags */
769 enum {
770 	FI_NEW_INODE,		/* indicate newly allocated inode */
771 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
772 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
773 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
774 	FI_INC_LINK,		/* need to increment i_nlink */
775 	FI_ACL_MODE,		/* indicate acl mode */
776 	FI_NO_ALLOC,		/* should not allocate any blocks */
777 	FI_FREE_NID,		/* free allocated nide */
778 	FI_NO_EXTENT,		/* not to use the extent cache */
779 	FI_INLINE_XATTR,	/* used for inline xattr */
780 	FI_INLINE_DATA,		/* used for inline data*/
781 	FI_INLINE_DENTRY,	/* used for inline dentry */
782 	FI_APPEND_WRITE,	/* inode has appended data */
783 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
784 	FI_NEED_IPU,		/* used for ipu per file */
785 	FI_ATOMIC_FILE,		/* indicate atomic file */
786 	FI_DATA_EXIST,		/* indicate data exists */
787 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
788 	FI_SKIP_WRITES,		/* should skip data page writeback */
789 	FI_OPU_WRITE,		/* used for opu per file */
790 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
791 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
792 	FI_HOT_DATA,		/* indicate file is hot */
793 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
794 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
795 	FI_PIN_FILE,		/* indicate file should not be gced */
796 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
797 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
798 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
799 	FI_MMAP_FILE,		/* indicate file was mmapped */
800 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
801 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
802 	FI_ALIGNED_WRITE,	/* enable aligned write */
803 	FI_COW_FILE,		/* indicate COW file */
804 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
805 	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
806 	FI_MAX,			/* max flag, never be used */
807 };
808 
809 struct f2fs_inode_info {
810 	struct inode vfs_inode;		/* serve a vfs inode */
811 	unsigned long i_flags;		/* keep an inode flags for ioctl */
812 	unsigned char i_advise;		/* use to give file attribute hints */
813 	unsigned char i_dir_level;	/* use for dentry level for large dir */
814 	union {
815 		unsigned int i_current_depth;	/* only for directory depth */
816 		unsigned short i_gc_failures;	/* for gc failure statistic */
817 	};
818 	unsigned int i_pino;		/* parent inode number */
819 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
820 
821 	/* Use below internally in f2fs*/
822 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
823 	struct f2fs_rwsem i_sem;	/* protect fi info */
824 	atomic_t dirty_pages;		/* # of dirty pages */
825 	f2fs_hash_t chash;		/* hash value of given file name */
826 	unsigned int clevel;		/* maximum level of given file name */
827 	struct task_struct *task;	/* lookup and create consistency */
828 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
829 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
830 	nid_t i_xattr_nid;		/* node id that contains xattrs */
831 	loff_t	last_disk_size;		/* lastly written file size */
832 	spinlock_t i_size_lock;		/* protect last_disk_size */
833 
834 #ifdef CONFIG_QUOTA
835 	struct dquot __rcu *i_dquot[MAXQUOTAS];
836 
837 	/* quota space reservation, managed internally by quota code */
838 	qsize_t i_reserved_quota;
839 #endif
840 	struct list_head dirty_list;	/* dirty list for dirs and files */
841 	struct list_head gdirty_list;	/* linked in global dirty list */
842 	struct task_struct *atomic_write_task;	/* store atomic write task */
843 	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
844 					/* cached extent_tree entry */
845 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
846 
847 	/* avoid racing between foreground op and gc */
848 	struct f2fs_rwsem i_gc_rwsem[2];
849 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
850 
851 	int i_extra_isize;		/* size of extra space located in i_addr */
852 	kprojid_t i_projid;		/* id for project quota */
853 	int i_inline_xattr_size;	/* inline xattr size */
854 	struct timespec64 i_crtime;	/* inode creation time */
855 	struct timespec64 i_disk_time[3];/* inode disk times */
856 
857 	/* for file compress */
858 	atomic_t i_compr_blocks;		/* # of compressed blocks */
859 	unsigned char i_compress_algorithm;	/* algorithm type */
860 	unsigned char i_log_cluster_size;	/* log of cluster size */
861 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
862 	unsigned char i_compress_flag;		/* compress flag */
863 	unsigned int i_cluster_size;		/* cluster size */
864 
865 	unsigned int atomic_write_cnt;
866 	loff_t original_i_size;		/* original i_size before atomic write */
867 };
868 
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)869 static inline void get_read_extent_info(struct extent_info *ext,
870 					struct f2fs_extent *i_ext)
871 {
872 	ext->fofs = le32_to_cpu(i_ext->fofs);
873 	ext->blk = le32_to_cpu(i_ext->blk);
874 	ext->len = le32_to_cpu(i_ext->len);
875 }
876 
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)877 static inline void set_raw_read_extent(struct extent_info *ext,
878 					struct f2fs_extent *i_ext)
879 {
880 	i_ext->fofs = cpu_to_le32(ext->fofs);
881 	i_ext->blk = cpu_to_le32(ext->blk);
882 	i_ext->len = cpu_to_le32(ext->len);
883 }
884 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)885 static inline bool __is_discard_mergeable(struct discard_info *back,
886 			struct discard_info *front, unsigned int max_len)
887 {
888 	return (back->lstart + back->len == front->lstart) &&
889 		(back->len + front->len <= max_len);
890 }
891 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)892 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
893 			struct discard_info *back, unsigned int max_len)
894 {
895 	return __is_discard_mergeable(back, cur, max_len);
896 }
897 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)898 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
899 			struct discard_info *front, unsigned int max_len)
900 {
901 	return __is_discard_mergeable(cur, front, max_len);
902 }
903 
904 /*
905  * For free nid management
906  */
907 enum nid_state {
908 	FREE_NID,		/* newly added to free nid list */
909 	PREALLOC_NID,		/* it is preallocated */
910 	MAX_NID_STATE,
911 };
912 
913 enum nat_state {
914 	TOTAL_NAT,
915 	DIRTY_NAT,
916 	RECLAIMABLE_NAT,
917 	MAX_NAT_STATE,
918 };
919 
920 struct f2fs_nm_info {
921 	block_t nat_blkaddr;		/* base disk address of NAT */
922 	nid_t max_nid;			/* maximum possible node ids */
923 	nid_t available_nids;		/* # of available node ids */
924 	nid_t next_scan_nid;		/* the next nid to be scanned */
925 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
926 	unsigned int ram_thresh;	/* control the memory footprint */
927 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
928 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
929 
930 	/* NAT cache management */
931 	struct radix_tree_root nat_root;/* root of the nat entry cache */
932 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
933 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
934 	struct list_head nat_entries;	/* cached nat entry list (clean) */
935 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
936 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
937 	unsigned int nat_blocks;	/* # of nat blocks */
938 
939 	/* free node ids management */
940 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
941 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
942 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
943 	spinlock_t nid_list_lock;	/* protect nid lists ops */
944 	struct mutex build_lock;	/* lock for build free nids */
945 	unsigned char **free_nid_bitmap;
946 	unsigned char *nat_block_bitmap;
947 	unsigned short *free_nid_count;	/* free nid count of NAT block */
948 
949 	/* for checkpoint */
950 	char *nat_bitmap;		/* NAT bitmap pointer */
951 
952 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
953 	unsigned char *nat_bits;	/* NAT bits blocks */
954 	unsigned char *full_nat_bits;	/* full NAT pages */
955 	unsigned char *empty_nat_bits;	/* empty NAT pages */
956 #ifdef CONFIG_F2FS_CHECK_FS
957 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
958 #endif
959 	int bitmap_size;		/* bitmap size */
960 };
961 
962 /*
963  * this structure is used as one of function parameters.
964  * all the information are dedicated to a given direct node block determined
965  * by the data offset in a file.
966  */
967 struct dnode_of_data {
968 	struct inode *inode;		/* vfs inode pointer */
969 	struct page *inode_page;	/* its inode page, NULL is possible */
970 	struct page *node_page;		/* cached direct node page */
971 	nid_t nid;			/* node id of the direct node block */
972 	unsigned int ofs_in_node;	/* data offset in the node page */
973 	bool inode_page_locked;		/* inode page is locked or not */
974 	bool node_changed;		/* is node block changed */
975 	char cur_level;			/* level of hole node page */
976 	char max_level;			/* level of current page located */
977 	block_t	data_blkaddr;		/* block address of the node block */
978 };
979 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)980 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
981 		struct page *ipage, struct page *npage, nid_t nid)
982 {
983 	memset(dn, 0, sizeof(*dn));
984 	dn->inode = inode;
985 	dn->inode_page = ipage;
986 	dn->node_page = npage;
987 	dn->nid = nid;
988 }
989 
990 /*
991  * For SIT manager
992  *
993  * By default, there are 6 active log areas across the whole main area.
994  * When considering hot and cold data separation to reduce cleaning overhead,
995  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
996  * respectively.
997  * In the current design, you should not change the numbers intentionally.
998  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
999  * logs individually according to the underlying devices. (default: 6)
1000  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1001  * data and 8 for node logs.
1002  */
1003 #define	NR_CURSEG_DATA_TYPE	(3)
1004 #define NR_CURSEG_NODE_TYPE	(3)
1005 #define NR_CURSEG_INMEM_TYPE	(2)
1006 #define NR_CURSEG_RO_TYPE	(2)
1007 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1008 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1009 
1010 enum {
1011 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1012 	CURSEG_WARM_DATA,	/* data blocks */
1013 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1014 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1015 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1016 	CURSEG_COLD_NODE,	/* indirect node blocks */
1017 	NR_PERSISTENT_LOG,	/* number of persistent log */
1018 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1019 				/* pinned file that needs consecutive block address */
1020 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1021 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1022 };
1023 
1024 struct flush_cmd {
1025 	struct completion wait;
1026 	struct llist_node llnode;
1027 	nid_t ino;
1028 	int ret;
1029 };
1030 
1031 struct flush_cmd_control {
1032 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1033 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1034 	atomic_t issued_flush;			/* # of issued flushes */
1035 	atomic_t queued_flush;			/* # of queued flushes */
1036 	struct llist_head issue_list;		/* list for command issue */
1037 	struct llist_node *dispatch_list;	/* list for command dispatch */
1038 };
1039 
1040 struct f2fs_sm_info {
1041 	struct sit_info *sit_info;		/* whole segment information */
1042 	struct free_segmap_info *free_info;	/* free segment information */
1043 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1044 	struct curseg_info *curseg_array;	/* active segment information */
1045 
1046 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1047 
1048 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1049 	block_t main_blkaddr;		/* start block address of main area */
1050 	block_t ssa_blkaddr;		/* start block address of SSA area */
1051 
1052 	unsigned int segment_count;	/* total # of segments */
1053 	unsigned int main_segments;	/* # of segments in main area */
1054 	unsigned int reserved_segments;	/* # of reserved segments */
1055 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1056 	unsigned int ovp_segments;	/* # of overprovision segments */
1057 
1058 	/* a threshold to reclaim prefree segments */
1059 	unsigned int rec_prefree_segments;
1060 
1061 	struct list_head sit_entry_set;	/* sit entry set list */
1062 
1063 	unsigned int ipu_policy;	/* in-place-update policy */
1064 	unsigned int min_ipu_util;	/* in-place-update threshold */
1065 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1066 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1067 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1068 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1069 
1070 	/* for flush command control */
1071 	struct flush_cmd_control *fcc_info;
1072 
1073 	/* for discard command control */
1074 	struct discard_cmd_control *dcc_info;
1075 };
1076 
1077 /*
1078  * For superblock
1079  */
1080 /*
1081  * COUNT_TYPE for monitoring
1082  *
1083  * f2fs monitors the number of several block types such as on-writeback,
1084  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1085  */
1086 #define WB_DATA_TYPE(p, f)			\
1087 	(f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1088 enum count_type {
1089 	F2FS_DIRTY_DENTS,
1090 	F2FS_DIRTY_DATA,
1091 	F2FS_DIRTY_QDATA,
1092 	F2FS_DIRTY_NODES,
1093 	F2FS_DIRTY_META,
1094 	F2FS_DIRTY_IMETA,
1095 	F2FS_WB_CP_DATA,
1096 	F2FS_WB_DATA,
1097 	F2FS_RD_DATA,
1098 	F2FS_RD_NODE,
1099 	F2FS_RD_META,
1100 	F2FS_DIO_WRITE,
1101 	F2FS_DIO_READ,
1102 	NR_COUNT_TYPE,
1103 };
1104 
1105 /*
1106  * The below are the page types of bios used in submit_bio().
1107  * The available types are:
1108  * DATA			User data pages. It operates as async mode.
1109  * NODE			Node pages. It operates as async mode.
1110  * META			FS metadata pages such as SIT, NAT, CP.
1111  * NR_PAGE_TYPE		The number of page types.
1112  * META_FLUSH		Make sure the previous pages are written
1113  *			with waiting the bio's completion
1114  * ...			Only can be used with META.
1115  */
1116 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1117 #define PAGE_TYPE_ON_MAIN(type)	((type) == DATA || (type) == NODE)
1118 enum page_type {
1119 	DATA = 0,
1120 	NODE = 1,	/* should not change this */
1121 	META,
1122 	NR_PAGE_TYPE,
1123 	META_FLUSH,
1124 	IPU,		/* the below types are used by tracepoints only. */
1125 	OPU,
1126 };
1127 
1128 enum temp_type {
1129 	HOT = 0,	/* must be zero for meta bio */
1130 	WARM,
1131 	COLD,
1132 	NR_TEMP_TYPE,
1133 };
1134 
1135 enum need_lock_type {
1136 	LOCK_REQ = 0,
1137 	LOCK_DONE,
1138 	LOCK_RETRY,
1139 };
1140 
1141 enum cp_reason_type {
1142 	CP_NO_NEEDED,
1143 	CP_NON_REGULAR,
1144 	CP_COMPRESSED,
1145 	CP_HARDLINK,
1146 	CP_SB_NEED_CP,
1147 	CP_WRONG_PINO,
1148 	CP_NO_SPC_ROLL,
1149 	CP_NODE_NEED_CP,
1150 	CP_FASTBOOT_MODE,
1151 	CP_SPEC_LOG_NUM,
1152 	CP_RECOVER_DIR,
1153 };
1154 
1155 enum iostat_type {
1156 	/* WRITE IO */
1157 	APP_DIRECT_IO,			/* app direct write IOs */
1158 	APP_BUFFERED_IO,		/* app buffered write IOs */
1159 	APP_WRITE_IO,			/* app write IOs */
1160 	APP_MAPPED_IO,			/* app mapped IOs */
1161 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1162 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1163 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1164 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1165 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1166 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1167 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1168 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1169 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1170 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1171 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1172 
1173 	/* READ IO */
1174 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1175 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1176 	APP_READ_IO,			/* app read IOs */
1177 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1178 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1179 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1180 	FS_DATA_READ_IO,		/* data read IOs */
1181 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1182 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1183 	FS_NODE_READ_IO,		/* node read IOs */
1184 	FS_META_READ_IO,		/* meta read IOs */
1185 
1186 	/* other */
1187 	FS_DISCARD_IO,			/* discard */
1188 	FS_FLUSH_IO,			/* flush */
1189 	FS_ZONE_RESET_IO,		/* zone reset */
1190 	NR_IO_TYPE,
1191 };
1192 
1193 struct f2fs_io_info {
1194 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1195 	nid_t ino;		/* inode number */
1196 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1197 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1198 	enum req_op op;		/* contains REQ_OP_ */
1199 	blk_opf_t op_flags;	/* req_flag_bits */
1200 	block_t new_blkaddr;	/* new block address to be written */
1201 	block_t old_blkaddr;	/* old block address before Cow */
1202 	struct page *page;	/* page to be written */
1203 	struct page *encrypted_page;	/* encrypted page */
1204 	struct page *compressed_page;	/* compressed page */
1205 	struct list_head list;		/* serialize IOs */
1206 	unsigned int compr_blocks;	/* # of compressed block addresses */
1207 	unsigned int need_lock:8;	/* indicate we need to lock cp_rwsem */
1208 	unsigned int version:8;		/* version of the node */
1209 	unsigned int submitted:1;	/* indicate IO submission */
1210 	unsigned int in_list:1;		/* indicate fio is in io_list */
1211 	unsigned int is_por:1;		/* indicate IO is from recovery or not */
1212 	unsigned int encrypted:1;	/* indicate file is encrypted */
1213 	unsigned int post_read:1;	/* require post read */
1214 	enum iostat_type io_type;	/* io type */
1215 	struct writeback_control *io_wbc; /* writeback control */
1216 	struct bio **bio;		/* bio for ipu */
1217 	sector_t *last_block;		/* last block number in bio */
1218 };
1219 
1220 struct bio_entry {
1221 	struct bio *bio;
1222 	struct list_head list;
1223 };
1224 
1225 #define is_read_io(rw) ((rw) == READ)
1226 struct f2fs_bio_info {
1227 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1228 	struct bio *bio;		/* bios to merge */
1229 	sector_t last_block_in_bio;	/* last block number */
1230 	struct f2fs_io_info fio;	/* store buffered io info. */
1231 #ifdef CONFIG_BLK_DEV_ZONED
1232 	struct completion zone_wait;	/* condition value for the previous open zone to close */
1233 	struct bio *zone_pending_bio;	/* pending bio for the previous zone */
1234 	void *bi_private;		/* previous bi_private for pending bio */
1235 #endif
1236 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1237 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1238 	struct list_head io_list;	/* track fios */
1239 	struct list_head bio_list;	/* bio entry list head */
1240 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1241 };
1242 
1243 #define FDEV(i)				(sbi->devs[i])
1244 #define RDEV(i)				(raw_super->devs[i])
1245 struct f2fs_dev_info {
1246 	struct file *bdev_file;
1247 	struct block_device *bdev;
1248 	char path[MAX_PATH_LEN];
1249 	unsigned int total_segments;
1250 	block_t start_blk;
1251 	block_t end_blk;
1252 #ifdef CONFIG_BLK_DEV_ZONED
1253 	unsigned int nr_blkz;		/* Total number of zones */
1254 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1255 #endif
1256 };
1257 
1258 enum inode_type {
1259 	DIR_INODE,			/* for dirty dir inode */
1260 	FILE_INODE,			/* for dirty regular/symlink inode */
1261 	DIRTY_META,			/* for all dirtied inode metadata */
1262 	NR_INODE_TYPE,
1263 };
1264 
1265 /* for inner inode cache management */
1266 struct inode_management {
1267 	struct radix_tree_root ino_root;	/* ino entry array */
1268 	spinlock_t ino_lock;			/* for ino entry lock */
1269 	struct list_head ino_list;		/* inode list head */
1270 	unsigned long ino_num;			/* number of entries */
1271 };
1272 
1273 /* for GC_AT */
1274 struct atgc_management {
1275 	bool atgc_enabled;			/* ATGC is enabled or not */
1276 	struct rb_root_cached root;		/* root of victim rb-tree */
1277 	struct list_head victim_list;		/* linked with all victim entries */
1278 	unsigned int victim_count;		/* victim count in rb-tree */
1279 	unsigned int candidate_ratio;		/* candidate ratio */
1280 	unsigned int max_candidate_count;	/* max candidate count */
1281 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1282 	unsigned long long age_threshold;	/* age threshold */
1283 };
1284 
1285 struct f2fs_gc_control {
1286 	unsigned int victim_segno;	/* target victim segment number */
1287 	int init_gc_type;		/* FG_GC or BG_GC */
1288 	bool no_bg_gc;			/* check the space and stop bg_gc */
1289 	bool should_migrate_blocks;	/* should migrate blocks */
1290 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1291 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1292 };
1293 
1294 /*
1295  * For s_flag in struct f2fs_sb_info
1296  * Modification on enum should be synchronized with s_flag array
1297  */
1298 enum {
1299 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1300 	SBI_IS_CLOSE,				/* specify unmounting */
1301 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1302 	SBI_POR_DOING,				/* recovery is doing or not */
1303 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1304 	SBI_NEED_CP,				/* need to checkpoint */
1305 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1306 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1307 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1308 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1309 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1310 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1311 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1312 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1313 	SBI_IS_FREEZING,			/* freezefs is in process */
1314 	SBI_IS_WRITABLE,			/* remove ro mountoption transiently */
1315 	MAX_SBI_FLAG,
1316 };
1317 
1318 enum {
1319 	CP_TIME,
1320 	REQ_TIME,
1321 	DISCARD_TIME,
1322 	GC_TIME,
1323 	DISABLE_TIME,
1324 	UMOUNT_DISCARD_TIMEOUT,
1325 	MAX_TIME,
1326 };
1327 
1328 /* Note that you need to keep synchronization with this gc_mode_names array */
1329 enum {
1330 	GC_NORMAL,
1331 	GC_IDLE_CB,
1332 	GC_IDLE_GREEDY,
1333 	GC_IDLE_AT,
1334 	GC_URGENT_HIGH,
1335 	GC_URGENT_LOW,
1336 	GC_URGENT_MID,
1337 	MAX_GC_MODE,
1338 };
1339 
1340 enum {
1341 	BGGC_MODE_ON,		/* background gc is on */
1342 	BGGC_MODE_OFF,		/* background gc is off */
1343 	BGGC_MODE_SYNC,		/*
1344 				 * background gc is on, migrating blocks
1345 				 * like foreground gc
1346 				 */
1347 };
1348 
1349 enum {
1350 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1351 	FS_MODE_LFS,			/* use lfs allocation only */
1352 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1353 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1354 };
1355 
1356 enum {
1357 	ALLOC_MODE_DEFAULT,	/* stay default */
1358 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1359 };
1360 
1361 enum fsync_mode {
1362 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1363 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1364 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1365 };
1366 
1367 enum {
1368 	COMPR_MODE_FS,		/*
1369 				 * automatically compress compression
1370 				 * enabled files
1371 				 */
1372 	COMPR_MODE_USER,	/*
1373 				 * automatical compression is disabled.
1374 				 * user can control the file compression
1375 				 * using ioctls
1376 				 */
1377 };
1378 
1379 enum {
1380 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1381 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1382 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1383 };
1384 
1385 enum {
1386 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1387 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1388 };
1389 
1390 enum errors_option {
1391 	MOUNT_ERRORS_READONLY,	/* remount fs ro on errors */
1392 	MOUNT_ERRORS_CONTINUE,	/* continue on errors */
1393 	MOUNT_ERRORS_PANIC,	/* panic on errors */
1394 };
1395 
1396 enum {
1397 	BACKGROUND,
1398 	FOREGROUND,
1399 	MAX_CALL_TYPE,
1400 	TOTAL_CALL = FOREGROUND,
1401 };
1402 
1403 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1404 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1405 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1406 
1407 /*
1408  * Layout of f2fs page.private:
1409  *
1410  * Layout A: lowest bit should be 1
1411  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1412  * bit 0	PAGE_PRIVATE_NOT_POINTER
1413  * bit 1	PAGE_PRIVATE_ONGOING_MIGRATION
1414  * bit 2	PAGE_PRIVATE_INLINE_INODE
1415  * bit 3	PAGE_PRIVATE_REF_RESOURCE
1416  * bit 4-	f2fs private data
1417  *
1418  * Layout B: lowest bit should be 0
1419  * page.private is a wrapped pointer.
1420  */
1421 enum {
1422 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1423 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1424 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1425 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1426 	PAGE_PRIVATE_MAX
1427 };
1428 
1429 /* For compression */
1430 enum compress_algorithm_type {
1431 	COMPRESS_LZO,
1432 	COMPRESS_LZ4,
1433 	COMPRESS_ZSTD,
1434 	COMPRESS_LZORLE,
1435 	COMPRESS_MAX,
1436 };
1437 
1438 enum compress_flag {
1439 	COMPRESS_CHKSUM,
1440 	COMPRESS_MAX_FLAG,
1441 };
1442 
1443 #define	COMPRESS_WATERMARK			20
1444 #define	COMPRESS_PERCENT			20
1445 
1446 #define COMPRESS_DATA_RESERVED_SIZE		4
1447 struct compress_data {
1448 	__le32 clen;			/* compressed data size */
1449 	__le32 chksum;			/* compressed data chksum */
1450 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1451 	u8 cdata[];			/* compressed data */
1452 };
1453 
1454 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1455 
1456 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1457 
1458 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
1459 
1460 #define	COMPRESS_LEVEL_OFFSET	8
1461 
1462 /* compress context */
1463 struct compress_ctx {
1464 	struct inode *inode;		/* inode the context belong to */
1465 	pgoff_t cluster_idx;		/* cluster index number */
1466 	unsigned int cluster_size;	/* page count in cluster */
1467 	unsigned int log_cluster_size;	/* log of cluster size */
1468 	struct page **rpages;		/* pages store raw data in cluster */
1469 	unsigned int nr_rpages;		/* total page number in rpages */
1470 	struct page **cpages;		/* pages store compressed data in cluster */
1471 	unsigned int nr_cpages;		/* total page number in cpages */
1472 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1473 	void *rbuf;			/* virtual mapped address on rpages */
1474 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1475 	size_t rlen;			/* valid data length in rbuf */
1476 	size_t clen;			/* valid data length in cbuf */
1477 	void *private;			/* payload buffer for specified compression algorithm */
1478 	void *private2;			/* extra payload buffer */
1479 };
1480 
1481 /* compress context for write IO path */
1482 struct compress_io_ctx {
1483 	u32 magic;			/* magic number to indicate page is compressed */
1484 	struct inode *inode;		/* inode the context belong to */
1485 	struct page **rpages;		/* pages store raw data in cluster */
1486 	unsigned int nr_rpages;		/* total page number in rpages */
1487 	atomic_t pending_pages;		/* in-flight compressed page count */
1488 };
1489 
1490 /* Context for decompressing one cluster on the read IO path */
1491 struct decompress_io_ctx {
1492 	u32 magic;			/* magic number to indicate page is compressed */
1493 	struct inode *inode;		/* inode the context belong to */
1494 	pgoff_t cluster_idx;		/* cluster index number */
1495 	unsigned int cluster_size;	/* page count in cluster */
1496 	unsigned int log_cluster_size;	/* log of cluster size */
1497 	struct page **rpages;		/* pages store raw data in cluster */
1498 	unsigned int nr_rpages;		/* total page number in rpages */
1499 	struct page **cpages;		/* pages store compressed data in cluster */
1500 	unsigned int nr_cpages;		/* total page number in cpages */
1501 	struct page **tpages;		/* temp pages to pad holes in cluster */
1502 	void *rbuf;			/* virtual mapped address on rpages */
1503 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1504 	size_t rlen;			/* valid data length in rbuf */
1505 	size_t clen;			/* valid data length in cbuf */
1506 
1507 	/*
1508 	 * The number of compressed pages remaining to be read in this cluster.
1509 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1510 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1511 	 * is decompressed (or an error is reported).
1512 	 *
1513 	 * If an error occurs before all the pages have been submitted for I/O,
1514 	 * then this will never reach 0.  In this case the I/O submitter is
1515 	 * responsible for calling f2fs_decompress_end_io() instead.
1516 	 */
1517 	atomic_t remaining_pages;
1518 
1519 	/*
1520 	 * Number of references to this decompress_io_ctx.
1521 	 *
1522 	 * One reference is held for I/O completion.  This reference is dropped
1523 	 * after the pagecache pages are updated and unlocked -- either after
1524 	 * decompression (and verity if enabled), or after an error.
1525 	 *
1526 	 * In addition, each compressed page holds a reference while it is in a
1527 	 * bio.  These references are necessary prevent compressed pages from
1528 	 * being freed while they are still in a bio.
1529 	 */
1530 	refcount_t refcnt;
1531 
1532 	bool failed;			/* IO error occurred before decompression? */
1533 	bool need_verity;		/* need fs-verity verification after decompression? */
1534 	void *private;			/* payload buffer for specified decompression algorithm */
1535 	void *private2;			/* extra payload buffer */
1536 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1537 	struct work_struct free_work;	/* work for late free this structure itself */
1538 };
1539 
1540 #define NULL_CLUSTER			((unsigned int)(~0))
1541 #define MIN_COMPRESS_LOG_SIZE		2
1542 #define MAX_COMPRESS_LOG_SIZE		8
1543 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1544 
1545 struct f2fs_sb_info {
1546 	struct super_block *sb;			/* pointer to VFS super block */
1547 	struct proc_dir_entry *s_proc;		/* proc entry */
1548 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1549 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1550 	int valid_super_block;			/* valid super block no */
1551 	unsigned long s_flag;				/* flags for sbi */
1552 	struct mutex writepages;		/* mutex for writepages() */
1553 
1554 #ifdef CONFIG_BLK_DEV_ZONED
1555 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1556 	unsigned int max_open_zones;		/* max open zone resources of the zoned device */
1557 #endif
1558 
1559 	/* for node-related operations */
1560 	struct f2fs_nm_info *nm_info;		/* node manager */
1561 	struct inode *node_inode;		/* cache node blocks */
1562 
1563 	/* for segment-related operations */
1564 	struct f2fs_sm_info *sm_info;		/* segment manager */
1565 
1566 	/* for bio operations */
1567 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1568 	/* keep migration IO order for LFS mode */
1569 	struct f2fs_rwsem io_order_lock;
1570 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1571 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1572 
1573 	/* for checkpoint */
1574 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1575 	int cur_cp_pack;			/* remain current cp pack */
1576 	spinlock_t cp_lock;			/* for flag in ckpt */
1577 	struct inode *meta_inode;		/* cache meta blocks */
1578 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1579 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1580 	struct f2fs_rwsem node_write;		/* locking node writes */
1581 	struct f2fs_rwsem node_change;	/* locking node change */
1582 	wait_queue_head_t cp_wait;
1583 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1584 	long interval_time[MAX_TIME];		/* to store thresholds */
1585 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1586 
1587 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1588 
1589 	spinlock_t fsync_node_lock;		/* for node entry lock */
1590 	struct list_head fsync_node_list;	/* node list head */
1591 	unsigned int fsync_seg_id;		/* sequence id */
1592 	unsigned int fsync_node_num;		/* number of node entries */
1593 
1594 	/* for orphan inode, use 0'th array */
1595 	unsigned int max_orphans;		/* max orphan inodes */
1596 
1597 	/* for inode management */
1598 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1599 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1600 	struct mutex flush_lock;		/* for flush exclusion */
1601 
1602 	/* for extent tree cache */
1603 	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1604 	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1605 
1606 	/* The threshold used for hot and warm data seperation*/
1607 	unsigned int hot_data_age_threshold;
1608 	unsigned int warm_data_age_threshold;
1609 	unsigned int last_age_weight;
1610 
1611 	/* basic filesystem units */
1612 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1613 	unsigned int log_blocksize;		/* log2 block size */
1614 	unsigned int blocksize;			/* block size */
1615 	unsigned int root_ino_num;		/* root inode number*/
1616 	unsigned int node_ino_num;		/* node inode number*/
1617 	unsigned int meta_ino_num;		/* meta inode number*/
1618 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1619 	unsigned int blocks_per_seg;		/* blocks per segment */
1620 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1621 	unsigned int segs_per_sec;		/* segments per section */
1622 	unsigned int secs_per_zone;		/* sections per zone */
1623 	unsigned int total_sections;		/* total section count */
1624 	unsigned int total_node_count;		/* total node block count */
1625 	unsigned int total_valid_node_count;	/* valid node block count */
1626 	int dir_level;				/* directory level */
1627 	bool readdir_ra;			/* readahead inode in readdir */
1628 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1629 
1630 	block_t user_block_count;		/* # of user blocks */
1631 	block_t total_valid_block_count;	/* # of valid blocks */
1632 	block_t discard_blks;			/* discard command candidats */
1633 	block_t last_valid_block_count;		/* for recovery */
1634 	block_t reserved_blocks;		/* configurable reserved blocks */
1635 	block_t current_reserved_blocks;	/* current reserved blocks */
1636 
1637 	/* Additional tracking for no checkpoint mode */
1638 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1639 
1640 	unsigned int nquota_files;		/* # of quota sysfile */
1641 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1642 
1643 	/* # of pages, see count_type */
1644 	atomic_t nr_pages[NR_COUNT_TYPE];
1645 	/* # of allocated blocks */
1646 	struct percpu_counter alloc_valid_block_count;
1647 	/* # of node block writes as roll forward recovery */
1648 	struct percpu_counter rf_node_block_count;
1649 
1650 	/* writeback control */
1651 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1652 
1653 	/* valid inode count */
1654 	struct percpu_counter total_valid_inode_count;
1655 
1656 	struct f2fs_mount_info mount_opt;	/* mount options */
1657 
1658 	/* for cleaning operations */
1659 	struct f2fs_rwsem gc_lock;		/*
1660 						 * semaphore for GC, avoid
1661 						 * race between GC and GC or CP
1662 						 */
1663 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1664 	struct atgc_management am;		/* atgc management */
1665 	unsigned int cur_victim_sec;		/* current victim section num */
1666 	unsigned int gc_mode;			/* current GC state */
1667 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1668 	spinlock_t gc_remaining_trials_lock;
1669 	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1670 	unsigned int gc_remaining_trials;
1671 
1672 	/* for skip statistic */
1673 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1674 
1675 	/* threshold for gc trials on pinned files */
1676 	unsigned short gc_pin_file_threshold;
1677 	struct f2fs_rwsem pin_sem;
1678 
1679 	/* maximum # of trials to find a victim segment for SSR and GC */
1680 	unsigned int max_victim_search;
1681 	/* migration granularity of garbage collection, unit: segment */
1682 	unsigned int migration_granularity;
1683 
1684 	/*
1685 	 * for stat information.
1686 	 * one is for the LFS mode, and the other is for the SSR mode.
1687 	 */
1688 #ifdef CONFIG_F2FS_STAT_FS
1689 	struct f2fs_stat_info *stat_info;	/* FS status information */
1690 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1691 	unsigned int segment_count[2];		/* # of allocated segments */
1692 	unsigned int block_count[2];		/* # of allocated blocks */
1693 	atomic_t inplace_count;		/* # of inplace update */
1694 	/* # of lookup extent cache */
1695 	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1696 	/* # of hit rbtree extent node */
1697 	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1698 	/* # of hit cached extent node */
1699 	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1700 	/* # of hit largest extent node in read extent cache */
1701 	atomic64_t read_hit_largest;
1702 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1703 	atomic_t inline_inode;			/* # of inline_data inodes */
1704 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1705 	atomic_t compr_inode;			/* # of compressed inodes */
1706 	atomic64_t compr_blocks;		/* # of compressed blocks */
1707 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1708 	atomic_t atomic_files;			/* # of opened atomic file */
1709 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1710 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1711 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1712 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1713 	atomic_t cp_call_count[MAX_CALL_TYPE];	/* # of cp call */
1714 #endif
1715 	spinlock_t stat_lock;			/* lock for stat operations */
1716 
1717 	/* to attach REQ_META|REQ_FUA flags */
1718 	unsigned int data_io_flag;
1719 	unsigned int node_io_flag;
1720 
1721 	/* For sysfs support */
1722 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1723 	struct completion s_kobj_unregister;
1724 
1725 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1726 	struct completion s_stat_kobj_unregister;
1727 
1728 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1729 	struct completion s_feature_list_kobj_unregister;
1730 
1731 	/* For shrinker support */
1732 	struct list_head s_list;
1733 	struct mutex umount_mutex;
1734 	unsigned int shrinker_run_no;
1735 
1736 	/* For multi devices */
1737 	int s_ndevs;				/* number of devices */
1738 	struct f2fs_dev_info *devs;		/* for device list */
1739 	unsigned int dirty_device;		/* for checkpoint data flush */
1740 	spinlock_t dev_lock;			/* protect dirty_device */
1741 	bool aligned_blksize;			/* all devices has the same logical blksize */
1742 
1743 	/* For write statistics */
1744 	u64 sectors_written_start;
1745 	u64 kbytes_written;
1746 
1747 	/* Reference to checksum algorithm driver via cryptoapi */
1748 	struct crypto_shash *s_chksum_driver;
1749 
1750 	/* Precomputed FS UUID checksum for seeding other checksums */
1751 	__u32 s_chksum_seed;
1752 
1753 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1754 
1755 	/*
1756 	 * If we are in irq context, let's update error information into
1757 	 * on-disk superblock in the work.
1758 	 */
1759 	struct work_struct s_error_work;
1760 	unsigned char errors[MAX_F2FS_ERRORS];		/* error flags */
1761 	unsigned char stop_reason[MAX_STOP_REASON];	/* stop reason */
1762 	spinlock_t error_lock;			/* protect errors/stop_reason array */
1763 	bool error_dirty;			/* errors of sb is dirty */
1764 
1765 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1766 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1767 
1768 	/* For reclaimed segs statistics per each GC mode */
1769 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1770 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1771 
1772 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1773 
1774 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1775 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1776 
1777 	/* For atomic write statistics */
1778 	atomic64_t current_atomic_write;
1779 	s64 peak_atomic_write;
1780 	u64 committed_atomic_block;
1781 	u64 revoked_atomic_block;
1782 
1783 #ifdef CONFIG_F2FS_FS_COMPRESSION
1784 	struct kmem_cache *page_array_slab;	/* page array entry */
1785 	unsigned int page_array_slab_size;	/* default page array slab size */
1786 
1787 	/* For runtime compression statistics */
1788 	u64 compr_written_block;
1789 	u64 compr_saved_block;
1790 	u32 compr_new_inode;
1791 
1792 	/* For compressed block cache */
1793 	struct inode *compress_inode;		/* cache compressed blocks */
1794 	unsigned int compress_percent;		/* cache page percentage */
1795 	unsigned int compress_watermark;	/* cache page watermark */
1796 	atomic_t compress_page_hit;		/* cache hit count */
1797 #endif
1798 
1799 #ifdef CONFIG_F2FS_IOSTAT
1800 	/* For app/fs IO statistics */
1801 	spinlock_t iostat_lock;
1802 	unsigned long long iostat_count[NR_IO_TYPE];
1803 	unsigned long long iostat_bytes[NR_IO_TYPE];
1804 	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1805 	bool iostat_enable;
1806 	unsigned long iostat_next_period;
1807 	unsigned int iostat_period_ms;
1808 
1809 	/* For io latency related statistics info in one iostat period */
1810 	spinlock_t iostat_lat_lock;
1811 	struct iostat_lat_info *iostat_io_lat;
1812 #endif
1813 };
1814 
1815 /* Definitions to access f2fs_sb_info */
1816 #define SEGS_TO_BLKS(sbi, segs)					\
1817 		((segs) << (sbi)->log_blocks_per_seg)
1818 #define BLKS_TO_SEGS(sbi, blks)					\
1819 		((blks) >> (sbi)->log_blocks_per_seg)
1820 
1821 #define BLKS_PER_SEG(sbi)	((sbi)->blocks_per_seg)
1822 #define BLKS_PER_SEC(sbi)	(SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1823 #define SEGS_PER_SEC(sbi)	((sbi)->segs_per_sec)
1824 
1825 __printf(3, 4)
1826 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1827 
1828 #define f2fs_err(sbi, fmt, ...)						\
1829 	f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1830 #define f2fs_warn(sbi, fmt, ...)					\
1831 	f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1832 #define f2fs_notice(sbi, fmt, ...)					\
1833 	f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1834 #define f2fs_info(sbi, fmt, ...)					\
1835 	f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1836 #define f2fs_debug(sbi, fmt, ...)					\
1837 	f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1838 
1839 #define f2fs_err_ratelimited(sbi, fmt, ...)				\
1840 	f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1841 #define f2fs_warn_ratelimited(sbi, fmt, ...)				\
1842 	f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1843 #define f2fs_info_ratelimited(sbi, fmt, ...)				\
1844 	f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1845 
1846 #ifdef CONFIG_F2FS_FAULT_INJECTION
1847 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
1848 									__builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1849 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1850 				const char *func, const char *parent_func)
1851 {
1852 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1853 
1854 	if (!ffi->inject_rate)
1855 		return false;
1856 
1857 	if (!IS_FAULT_SET(ffi, type))
1858 		return false;
1859 
1860 	atomic_inc(&ffi->inject_ops);
1861 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1862 		atomic_set(&ffi->inject_ops, 0);
1863 		f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1864 				f2fs_fault_name[type], func, parent_func);
1865 		return true;
1866 	}
1867 	return false;
1868 }
1869 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)1870 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1871 {
1872 	return false;
1873 }
1874 #endif
1875 
1876 /*
1877  * Test if the mounted volume is a multi-device volume.
1878  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1879  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1880  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1881  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1882 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1883 {
1884 	return sbi->s_ndevs > 1;
1885 }
1886 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1887 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1888 {
1889 	unsigned long now = jiffies;
1890 
1891 	sbi->last_time[type] = now;
1892 
1893 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1894 	if (type == REQ_TIME) {
1895 		sbi->last_time[DISCARD_TIME] = now;
1896 		sbi->last_time[GC_TIME] = now;
1897 	}
1898 }
1899 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1900 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1901 {
1902 	unsigned long interval = sbi->interval_time[type] * HZ;
1903 
1904 	return time_after(jiffies, sbi->last_time[type] + interval);
1905 }
1906 
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1907 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1908 						int type)
1909 {
1910 	unsigned long interval = sbi->interval_time[type] * HZ;
1911 	unsigned int wait_ms = 0;
1912 	long delta;
1913 
1914 	delta = (sbi->last_time[type] + interval) - jiffies;
1915 	if (delta > 0)
1916 		wait_ms = jiffies_to_msecs(delta);
1917 
1918 	return wait_ms;
1919 }
1920 
1921 /*
1922  * Inline functions
1923  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1924 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1925 			      const void *address, unsigned int length)
1926 {
1927 	struct {
1928 		struct shash_desc shash;
1929 		char ctx[4];
1930 	} desc;
1931 	int err;
1932 
1933 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1934 
1935 	desc.shash.tfm = sbi->s_chksum_driver;
1936 	*(u32 *)desc.ctx = crc;
1937 
1938 	err = crypto_shash_update(&desc.shash, address, length);
1939 	BUG_ON(err);
1940 
1941 	return *(u32 *)desc.ctx;
1942 }
1943 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1944 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1945 			   unsigned int length)
1946 {
1947 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1948 }
1949 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1950 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1951 				  void *buf, size_t buf_size)
1952 {
1953 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1954 }
1955 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1956 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1957 			      const void *address, unsigned int length)
1958 {
1959 	return __f2fs_crc32(sbi, crc, address, length);
1960 }
1961 
F2FS_I(struct inode * inode)1962 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1963 {
1964 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1965 }
1966 
F2FS_SB(struct super_block * sb)1967 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1968 {
1969 	return sb->s_fs_info;
1970 }
1971 
F2FS_I_SB(struct inode * inode)1972 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1973 {
1974 	return F2FS_SB(inode->i_sb);
1975 }
1976 
F2FS_M_SB(struct address_space * mapping)1977 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1978 {
1979 	return F2FS_I_SB(mapping->host);
1980 }
1981 
F2FS_P_SB(struct page * page)1982 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1983 {
1984 	return F2FS_M_SB(page_file_mapping(page));
1985 }
1986 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1987 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1988 {
1989 	return (struct f2fs_super_block *)(sbi->raw_super);
1990 }
1991 
F2FS_CKPT(struct f2fs_sb_info * sbi)1992 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1993 {
1994 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1995 }
1996 
F2FS_NODE(struct page * page)1997 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1998 {
1999 	return (struct f2fs_node *)page_address(page);
2000 }
2001 
F2FS_INODE(struct page * page)2002 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2003 {
2004 	return &((struct f2fs_node *)page_address(page))->i;
2005 }
2006 
NM_I(struct f2fs_sb_info * sbi)2007 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2008 {
2009 	return (struct f2fs_nm_info *)(sbi->nm_info);
2010 }
2011 
SM_I(struct f2fs_sb_info * sbi)2012 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2013 {
2014 	return (struct f2fs_sm_info *)(sbi->sm_info);
2015 }
2016 
SIT_I(struct f2fs_sb_info * sbi)2017 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2018 {
2019 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2020 }
2021 
FREE_I(struct f2fs_sb_info * sbi)2022 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2023 {
2024 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2025 }
2026 
DIRTY_I(struct f2fs_sb_info * sbi)2027 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2028 {
2029 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2030 }
2031 
META_MAPPING(struct f2fs_sb_info * sbi)2032 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2033 {
2034 	return sbi->meta_inode->i_mapping;
2035 }
2036 
NODE_MAPPING(struct f2fs_sb_info * sbi)2037 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2038 {
2039 	return sbi->node_inode->i_mapping;
2040 }
2041 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2042 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2043 {
2044 	return test_bit(type, &sbi->s_flag);
2045 }
2046 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2047 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2048 {
2049 	set_bit(type, &sbi->s_flag);
2050 }
2051 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2052 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2053 {
2054 	clear_bit(type, &sbi->s_flag);
2055 }
2056 
cur_cp_version(struct f2fs_checkpoint * cp)2057 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2058 {
2059 	return le64_to_cpu(cp->checkpoint_ver);
2060 }
2061 
f2fs_qf_ino(struct super_block * sb,int type)2062 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2063 {
2064 	if (type < F2FS_MAX_QUOTAS)
2065 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2066 	return 0;
2067 }
2068 
cur_cp_crc(struct f2fs_checkpoint * cp)2069 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2070 {
2071 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2072 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2073 }
2074 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2075 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2076 {
2077 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2078 
2079 	return ckpt_flags & f;
2080 }
2081 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2082 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2083 {
2084 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2085 }
2086 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2087 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2088 {
2089 	unsigned int ckpt_flags;
2090 
2091 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2092 	ckpt_flags |= f;
2093 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2094 }
2095 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2096 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2097 {
2098 	unsigned long flags;
2099 
2100 	spin_lock_irqsave(&sbi->cp_lock, flags);
2101 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2102 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2103 }
2104 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2105 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2106 {
2107 	unsigned int ckpt_flags;
2108 
2109 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2110 	ckpt_flags &= (~f);
2111 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2112 }
2113 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2114 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2115 {
2116 	unsigned long flags;
2117 
2118 	spin_lock_irqsave(&sbi->cp_lock, flags);
2119 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2120 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2121 }
2122 
2123 #define init_f2fs_rwsem(sem)					\
2124 do {								\
2125 	static struct lock_class_key __key;			\
2126 								\
2127 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2128 } while (0)
2129 
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2130 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2131 		const char *sem_name, struct lock_class_key *key)
2132 {
2133 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2134 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2135 	init_waitqueue_head(&sem->read_waiters);
2136 #endif
2137 }
2138 
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2139 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2140 {
2141 	return rwsem_is_locked(&sem->internal_rwsem);
2142 }
2143 
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2144 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2145 {
2146 	return rwsem_is_contended(&sem->internal_rwsem);
2147 }
2148 
f2fs_down_read(struct f2fs_rwsem * sem)2149 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2150 {
2151 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2152 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2153 #else
2154 	down_read(&sem->internal_rwsem);
2155 #endif
2156 }
2157 
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2158 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2159 {
2160 	return down_read_trylock(&sem->internal_rwsem);
2161 }
2162 
f2fs_up_read(struct f2fs_rwsem * sem)2163 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2164 {
2165 	up_read(&sem->internal_rwsem);
2166 }
2167 
f2fs_down_write(struct f2fs_rwsem * sem)2168 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2169 {
2170 	down_write(&sem->internal_rwsem);
2171 }
2172 
2173 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2174 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2175 {
2176 	down_read_nested(&sem->internal_rwsem, subclass);
2177 }
2178 
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2179 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2180 {
2181 	down_write_nested(&sem->internal_rwsem, subclass);
2182 }
2183 #else
2184 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2185 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2186 #endif
2187 
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2188 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2189 {
2190 	return down_write_trylock(&sem->internal_rwsem);
2191 }
2192 
f2fs_up_write(struct f2fs_rwsem * sem)2193 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2194 {
2195 	up_write(&sem->internal_rwsem);
2196 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2197 	wake_up_all(&sem->read_waiters);
2198 #endif
2199 }
2200 
f2fs_lock_op(struct f2fs_sb_info * sbi)2201 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2202 {
2203 	f2fs_down_read(&sbi->cp_rwsem);
2204 }
2205 
f2fs_trylock_op(struct f2fs_sb_info * sbi)2206 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2207 {
2208 	if (time_to_inject(sbi, FAULT_LOCK_OP))
2209 		return 0;
2210 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2211 }
2212 
f2fs_unlock_op(struct f2fs_sb_info * sbi)2213 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2214 {
2215 	f2fs_up_read(&sbi->cp_rwsem);
2216 }
2217 
f2fs_lock_all(struct f2fs_sb_info * sbi)2218 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2219 {
2220 	f2fs_down_write(&sbi->cp_rwsem);
2221 }
2222 
f2fs_unlock_all(struct f2fs_sb_info * sbi)2223 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2224 {
2225 	f2fs_up_write(&sbi->cp_rwsem);
2226 }
2227 
__get_cp_reason(struct f2fs_sb_info * sbi)2228 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2229 {
2230 	int reason = CP_SYNC;
2231 
2232 	if (test_opt(sbi, FASTBOOT))
2233 		reason = CP_FASTBOOT;
2234 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2235 		reason = CP_UMOUNT;
2236 	return reason;
2237 }
2238 
__remain_node_summaries(int reason)2239 static inline bool __remain_node_summaries(int reason)
2240 {
2241 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2242 }
2243 
__exist_node_summaries(struct f2fs_sb_info * sbi)2244 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2245 {
2246 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2247 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2248 }
2249 
2250 /*
2251  * Check whether the inode has blocks or not
2252  */
F2FS_HAS_BLOCKS(struct inode * inode)2253 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2254 {
2255 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2256 
2257 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2258 }
2259 
f2fs_has_xattr_block(unsigned int ofs)2260 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2261 {
2262 	return ofs == XATTR_NODE_OFFSET;
2263 }
2264 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2265 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2266 					struct inode *inode, bool cap)
2267 {
2268 	if (!inode)
2269 		return true;
2270 	if (!test_opt(sbi, RESERVE_ROOT))
2271 		return false;
2272 	if (IS_NOQUOTA(inode))
2273 		return true;
2274 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2275 		return true;
2276 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2277 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2278 		return true;
2279 	if (cap && capable(CAP_SYS_RESOURCE))
2280 		return true;
2281 	return false;
2282 }
2283 
get_available_block_count(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2284 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2285 						struct inode *inode, bool cap)
2286 {
2287 	block_t avail_user_block_count;
2288 
2289 	avail_user_block_count = sbi->user_block_count -
2290 					sbi->current_reserved_blocks;
2291 
2292 	if (!__allow_reserved_blocks(sbi, inode, cap))
2293 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2294 
2295 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2296 		if (avail_user_block_count > sbi->unusable_block_count)
2297 			avail_user_block_count -= sbi->unusable_block_count;
2298 		else
2299 			avail_user_block_count = 0;
2300 	}
2301 
2302 	return avail_user_block_count;
2303 }
2304 
2305 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count,bool partial)2306 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2307 				 struct inode *inode, blkcnt_t *count, bool partial)
2308 {
2309 	long long diff = 0, release = 0;
2310 	block_t avail_user_block_count;
2311 	int ret;
2312 
2313 	ret = dquot_reserve_block(inode, *count);
2314 	if (ret)
2315 		return ret;
2316 
2317 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2318 		release = *count;
2319 		goto release_quota;
2320 	}
2321 
2322 	/*
2323 	 * let's increase this in prior to actual block count change in order
2324 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2325 	 */
2326 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2327 
2328 	spin_lock(&sbi->stat_lock);
2329 
2330 	avail_user_block_count = get_available_block_count(sbi, inode, true);
2331 	diff = (long long)sbi->total_valid_block_count + *count -
2332 						avail_user_block_count;
2333 	if (unlikely(diff > 0)) {
2334 		if (!partial) {
2335 			spin_unlock(&sbi->stat_lock);
2336 			release = *count;
2337 			goto enospc;
2338 		}
2339 		if (diff > *count)
2340 			diff = *count;
2341 		*count -= diff;
2342 		release = diff;
2343 		if (!*count) {
2344 			spin_unlock(&sbi->stat_lock);
2345 			goto enospc;
2346 		}
2347 	}
2348 	sbi->total_valid_block_count += (block_t)(*count);
2349 
2350 	spin_unlock(&sbi->stat_lock);
2351 
2352 	if (unlikely(release)) {
2353 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2354 		dquot_release_reservation_block(inode, release);
2355 	}
2356 	f2fs_i_blocks_write(inode, *count, true, true);
2357 	return 0;
2358 
2359 enospc:
2360 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2361 release_quota:
2362 	dquot_release_reservation_block(inode, release);
2363 	return -ENOSPC;
2364 }
2365 
2366 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2367 static inline bool page_private_##name(struct page *page) \
2368 { \
2369 	return PagePrivate(page) && \
2370 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2371 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2372 }
2373 
2374 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2375 static inline void set_page_private_##name(struct page *page) \
2376 { \
2377 	if (!PagePrivate(page)) \
2378 		attach_page_private(page, (void *)0); \
2379 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2380 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2381 }
2382 
2383 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2384 static inline void clear_page_private_##name(struct page *page) \
2385 { \
2386 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2387 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2388 		detach_page_private(page); \
2389 }
2390 
2391 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2392 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2393 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2394 
2395 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2396 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2397 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2398 
2399 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2400 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2401 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2402 
get_page_private_data(struct page * page)2403 static inline unsigned long get_page_private_data(struct page *page)
2404 {
2405 	unsigned long data = page_private(page);
2406 
2407 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2408 		return 0;
2409 	return data >> PAGE_PRIVATE_MAX;
2410 }
2411 
set_page_private_data(struct page * page,unsigned long data)2412 static inline void set_page_private_data(struct page *page, unsigned long data)
2413 {
2414 	if (!PagePrivate(page))
2415 		attach_page_private(page, (void *)0);
2416 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2417 	page_private(page) |= data << PAGE_PRIVATE_MAX;
2418 }
2419 
clear_page_private_data(struct page * page)2420 static inline void clear_page_private_data(struct page *page)
2421 {
2422 	page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2423 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2424 		detach_page_private(page);
2425 }
2426 
clear_page_private_all(struct page * page)2427 static inline void clear_page_private_all(struct page *page)
2428 {
2429 	clear_page_private_data(page);
2430 	clear_page_private_reference(page);
2431 	clear_page_private_gcing(page);
2432 	clear_page_private_inline(page);
2433 
2434 	f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2435 }
2436 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2437 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2438 						struct inode *inode,
2439 						block_t count)
2440 {
2441 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2442 
2443 	spin_lock(&sbi->stat_lock);
2444 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2445 	sbi->total_valid_block_count -= (block_t)count;
2446 	if (sbi->reserved_blocks &&
2447 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2448 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2449 					sbi->current_reserved_blocks + count);
2450 	spin_unlock(&sbi->stat_lock);
2451 	if (unlikely(inode->i_blocks < sectors)) {
2452 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2453 			  inode->i_ino,
2454 			  (unsigned long long)inode->i_blocks,
2455 			  (unsigned long long)sectors);
2456 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2457 		return;
2458 	}
2459 	f2fs_i_blocks_write(inode, count, false, true);
2460 }
2461 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2462 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2463 {
2464 	atomic_inc(&sbi->nr_pages[count_type]);
2465 
2466 	if (count_type == F2FS_DIRTY_DENTS ||
2467 			count_type == F2FS_DIRTY_NODES ||
2468 			count_type == F2FS_DIRTY_META ||
2469 			count_type == F2FS_DIRTY_QDATA ||
2470 			count_type == F2FS_DIRTY_IMETA)
2471 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2472 }
2473 
inode_inc_dirty_pages(struct inode * inode)2474 static inline void inode_inc_dirty_pages(struct inode *inode)
2475 {
2476 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2477 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2478 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2479 	if (IS_NOQUOTA(inode))
2480 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2481 }
2482 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2483 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2484 {
2485 	atomic_dec(&sbi->nr_pages[count_type]);
2486 }
2487 
inode_dec_dirty_pages(struct inode * inode)2488 static inline void inode_dec_dirty_pages(struct inode *inode)
2489 {
2490 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2491 			!S_ISLNK(inode->i_mode))
2492 		return;
2493 
2494 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2495 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2496 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2497 	if (IS_NOQUOTA(inode))
2498 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2499 }
2500 
inc_atomic_write_cnt(struct inode * inode)2501 static inline void inc_atomic_write_cnt(struct inode *inode)
2502 {
2503 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2504 	struct f2fs_inode_info *fi = F2FS_I(inode);
2505 	u64 current_write;
2506 
2507 	fi->atomic_write_cnt++;
2508 	atomic64_inc(&sbi->current_atomic_write);
2509 	current_write = atomic64_read(&sbi->current_atomic_write);
2510 	if (current_write > sbi->peak_atomic_write)
2511 		sbi->peak_atomic_write = current_write;
2512 }
2513 
release_atomic_write_cnt(struct inode * inode)2514 static inline void release_atomic_write_cnt(struct inode *inode)
2515 {
2516 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2517 	struct f2fs_inode_info *fi = F2FS_I(inode);
2518 
2519 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2520 	fi->atomic_write_cnt = 0;
2521 }
2522 
get_pages(struct f2fs_sb_info * sbi,int count_type)2523 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2524 {
2525 	return atomic_read(&sbi->nr_pages[count_type]);
2526 }
2527 
get_dirty_pages(struct inode * inode)2528 static inline int get_dirty_pages(struct inode *inode)
2529 {
2530 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2531 }
2532 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2533 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2534 {
2535 	return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2536 							BLKS_PER_SEC(sbi));
2537 }
2538 
valid_user_blocks(struct f2fs_sb_info * sbi)2539 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2540 {
2541 	return sbi->total_valid_block_count;
2542 }
2543 
discard_blocks(struct f2fs_sb_info * sbi)2544 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2545 {
2546 	return sbi->discard_blks;
2547 }
2548 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2549 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2550 {
2551 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2552 
2553 	/* return NAT or SIT bitmap */
2554 	if (flag == NAT_BITMAP)
2555 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2556 	else if (flag == SIT_BITMAP)
2557 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2558 
2559 	return 0;
2560 }
2561 
__cp_payload(struct f2fs_sb_info * sbi)2562 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2563 {
2564 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2565 }
2566 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2567 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2568 {
2569 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2570 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2571 	int offset;
2572 
2573 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2574 		offset = (flag == SIT_BITMAP) ?
2575 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2576 		/*
2577 		 * if large_nat_bitmap feature is enabled, leave checksum
2578 		 * protection for all nat/sit bitmaps.
2579 		 */
2580 		return tmp_ptr + offset + sizeof(__le32);
2581 	}
2582 
2583 	if (__cp_payload(sbi) > 0) {
2584 		if (flag == NAT_BITMAP)
2585 			return tmp_ptr;
2586 		else
2587 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2588 	} else {
2589 		offset = (flag == NAT_BITMAP) ?
2590 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2591 		return tmp_ptr + offset;
2592 	}
2593 }
2594 
__start_cp_addr(struct f2fs_sb_info * sbi)2595 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2596 {
2597 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2598 
2599 	if (sbi->cur_cp_pack == 2)
2600 		start_addr += BLKS_PER_SEG(sbi);
2601 	return start_addr;
2602 }
2603 
__start_cp_next_addr(struct f2fs_sb_info * sbi)2604 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2605 {
2606 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2607 
2608 	if (sbi->cur_cp_pack == 1)
2609 		start_addr += BLKS_PER_SEG(sbi);
2610 	return start_addr;
2611 }
2612 
__set_cp_next_pack(struct f2fs_sb_info * sbi)2613 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2614 {
2615 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2616 }
2617 
__start_sum_addr(struct f2fs_sb_info * sbi)2618 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2619 {
2620 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2621 }
2622 
2623 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2624 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2625 					struct inode *inode, bool is_inode)
2626 {
2627 	block_t	valid_block_count;
2628 	unsigned int valid_node_count;
2629 	unsigned int avail_user_block_count;
2630 	int err;
2631 
2632 	if (is_inode) {
2633 		if (inode) {
2634 			err = dquot_alloc_inode(inode);
2635 			if (err)
2636 				return err;
2637 		}
2638 	} else {
2639 		err = dquot_reserve_block(inode, 1);
2640 		if (err)
2641 			return err;
2642 	}
2643 
2644 	if (time_to_inject(sbi, FAULT_BLOCK))
2645 		goto enospc;
2646 
2647 	spin_lock(&sbi->stat_lock);
2648 
2649 	valid_block_count = sbi->total_valid_block_count + 1;
2650 	avail_user_block_count = get_available_block_count(sbi, inode, false);
2651 
2652 	if (unlikely(valid_block_count > avail_user_block_count)) {
2653 		spin_unlock(&sbi->stat_lock);
2654 		goto enospc;
2655 	}
2656 
2657 	valid_node_count = sbi->total_valid_node_count + 1;
2658 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2659 		spin_unlock(&sbi->stat_lock);
2660 		goto enospc;
2661 	}
2662 
2663 	sbi->total_valid_node_count++;
2664 	sbi->total_valid_block_count++;
2665 	spin_unlock(&sbi->stat_lock);
2666 
2667 	if (inode) {
2668 		if (is_inode)
2669 			f2fs_mark_inode_dirty_sync(inode, true);
2670 		else
2671 			f2fs_i_blocks_write(inode, 1, true, true);
2672 	}
2673 
2674 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2675 	return 0;
2676 
2677 enospc:
2678 	if (is_inode) {
2679 		if (inode)
2680 			dquot_free_inode(inode);
2681 	} else {
2682 		dquot_release_reservation_block(inode, 1);
2683 	}
2684 	return -ENOSPC;
2685 }
2686 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2687 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2688 					struct inode *inode, bool is_inode)
2689 {
2690 	spin_lock(&sbi->stat_lock);
2691 
2692 	if (unlikely(!sbi->total_valid_block_count ||
2693 			!sbi->total_valid_node_count)) {
2694 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2695 			  sbi->total_valid_block_count,
2696 			  sbi->total_valid_node_count);
2697 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2698 	} else {
2699 		sbi->total_valid_block_count--;
2700 		sbi->total_valid_node_count--;
2701 	}
2702 
2703 	if (sbi->reserved_blocks &&
2704 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2705 		sbi->current_reserved_blocks++;
2706 
2707 	spin_unlock(&sbi->stat_lock);
2708 
2709 	if (is_inode) {
2710 		dquot_free_inode(inode);
2711 	} else {
2712 		if (unlikely(inode->i_blocks == 0)) {
2713 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2714 				  inode->i_ino,
2715 				  (unsigned long long)inode->i_blocks);
2716 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2717 			return;
2718 		}
2719 		f2fs_i_blocks_write(inode, 1, false, true);
2720 	}
2721 }
2722 
valid_node_count(struct f2fs_sb_info * sbi)2723 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2724 {
2725 	return sbi->total_valid_node_count;
2726 }
2727 
inc_valid_inode_count(struct f2fs_sb_info * sbi)2728 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2729 {
2730 	percpu_counter_inc(&sbi->total_valid_inode_count);
2731 }
2732 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2733 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2734 {
2735 	percpu_counter_dec(&sbi->total_valid_inode_count);
2736 }
2737 
valid_inode_count(struct f2fs_sb_info * sbi)2738 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2739 {
2740 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2741 }
2742 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2743 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2744 						pgoff_t index, bool for_write)
2745 {
2746 	struct page *page;
2747 	unsigned int flags;
2748 
2749 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2750 		if (!for_write)
2751 			page = find_get_page_flags(mapping, index,
2752 							FGP_LOCK | FGP_ACCESSED);
2753 		else
2754 			page = find_lock_page(mapping, index);
2755 		if (page)
2756 			return page;
2757 
2758 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2759 			return NULL;
2760 	}
2761 
2762 	if (!for_write)
2763 		return grab_cache_page(mapping, index);
2764 
2765 	flags = memalloc_nofs_save();
2766 	page = grab_cache_page_write_begin(mapping, index);
2767 	memalloc_nofs_restore(flags);
2768 
2769 	return page;
2770 }
2771 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2772 static inline struct page *f2fs_pagecache_get_page(
2773 				struct address_space *mapping, pgoff_t index,
2774 				fgf_t fgp_flags, gfp_t gfp_mask)
2775 {
2776 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2777 		return NULL;
2778 
2779 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2780 }
2781 
f2fs_put_page(struct page * page,int unlock)2782 static inline void f2fs_put_page(struct page *page, int unlock)
2783 {
2784 	if (!page)
2785 		return;
2786 
2787 	if (unlock) {
2788 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2789 		unlock_page(page);
2790 	}
2791 	put_page(page);
2792 }
2793 
f2fs_put_dnode(struct dnode_of_data * dn)2794 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2795 {
2796 	if (dn->node_page)
2797 		f2fs_put_page(dn->node_page, 1);
2798 	if (dn->inode_page && dn->node_page != dn->inode_page)
2799 		f2fs_put_page(dn->inode_page, 0);
2800 	dn->node_page = NULL;
2801 	dn->inode_page = NULL;
2802 }
2803 
f2fs_kmem_cache_create(const char * name,size_t size)2804 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2805 					size_t size)
2806 {
2807 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2808 }
2809 
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2810 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2811 						gfp_t flags)
2812 {
2813 	void *entry;
2814 
2815 	entry = kmem_cache_alloc(cachep, flags);
2816 	if (!entry)
2817 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2818 	return entry;
2819 }
2820 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2821 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2822 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2823 {
2824 	if (nofail)
2825 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2826 
2827 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2828 		return NULL;
2829 
2830 	return kmem_cache_alloc(cachep, flags);
2831 }
2832 
is_inflight_io(struct f2fs_sb_info * sbi,int type)2833 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2834 {
2835 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2836 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2837 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2838 		get_pages(sbi, F2FS_DIO_READ) ||
2839 		get_pages(sbi, F2FS_DIO_WRITE))
2840 		return true;
2841 
2842 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2843 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2844 		return true;
2845 
2846 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2847 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2848 		return true;
2849 	return false;
2850 }
2851 
is_idle(struct f2fs_sb_info * sbi,int type)2852 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2853 {
2854 	if (sbi->gc_mode == GC_URGENT_HIGH)
2855 		return true;
2856 
2857 	if (is_inflight_io(sbi, type))
2858 		return false;
2859 
2860 	if (sbi->gc_mode == GC_URGENT_MID)
2861 		return true;
2862 
2863 	if (sbi->gc_mode == GC_URGENT_LOW &&
2864 			(type == DISCARD_TIME || type == GC_TIME))
2865 		return true;
2866 
2867 	return f2fs_time_over(sbi, type);
2868 }
2869 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2870 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2871 				unsigned long index, void *item)
2872 {
2873 	while (radix_tree_insert(root, index, item))
2874 		cond_resched();
2875 }
2876 
2877 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2878 
IS_INODE(struct page * page)2879 static inline bool IS_INODE(struct page *page)
2880 {
2881 	struct f2fs_node *p = F2FS_NODE(page);
2882 
2883 	return RAW_IS_INODE(p);
2884 }
2885 
offset_in_addr(struct f2fs_inode * i)2886 static inline int offset_in_addr(struct f2fs_inode *i)
2887 {
2888 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2889 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2890 }
2891 
blkaddr_in_node(struct f2fs_node * node)2892 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2893 {
2894 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2895 }
2896 
2897 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2898 static inline block_t data_blkaddr(struct inode *inode,
2899 			struct page *node_page, unsigned int offset)
2900 {
2901 	struct f2fs_node *raw_node;
2902 	__le32 *addr_array;
2903 	int base = 0;
2904 	bool is_inode = IS_INODE(node_page);
2905 
2906 	raw_node = F2FS_NODE(node_page);
2907 
2908 	if (is_inode) {
2909 		if (!inode)
2910 			/* from GC path only */
2911 			base = offset_in_addr(&raw_node->i);
2912 		else if (f2fs_has_extra_attr(inode))
2913 			base = get_extra_isize(inode);
2914 	}
2915 
2916 	addr_array = blkaddr_in_node(raw_node);
2917 	return le32_to_cpu(addr_array[base + offset]);
2918 }
2919 
f2fs_data_blkaddr(struct dnode_of_data * dn)2920 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2921 {
2922 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2923 }
2924 
f2fs_test_bit(unsigned int nr,char * addr)2925 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2926 {
2927 	int mask;
2928 
2929 	addr += (nr >> 3);
2930 	mask = BIT(7 - (nr & 0x07));
2931 	return mask & *addr;
2932 }
2933 
f2fs_set_bit(unsigned int nr,char * addr)2934 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2935 {
2936 	int mask;
2937 
2938 	addr += (nr >> 3);
2939 	mask = BIT(7 - (nr & 0x07));
2940 	*addr |= mask;
2941 }
2942 
f2fs_clear_bit(unsigned int nr,char * addr)2943 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2944 {
2945 	int mask;
2946 
2947 	addr += (nr >> 3);
2948 	mask = BIT(7 - (nr & 0x07));
2949 	*addr &= ~mask;
2950 }
2951 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2952 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2953 {
2954 	int mask;
2955 	int ret;
2956 
2957 	addr += (nr >> 3);
2958 	mask = BIT(7 - (nr & 0x07));
2959 	ret = mask & *addr;
2960 	*addr |= mask;
2961 	return ret;
2962 }
2963 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2964 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2965 {
2966 	int mask;
2967 	int ret;
2968 
2969 	addr += (nr >> 3);
2970 	mask = BIT(7 - (nr & 0x07));
2971 	ret = mask & *addr;
2972 	*addr &= ~mask;
2973 	return ret;
2974 }
2975 
f2fs_change_bit(unsigned int nr,char * addr)2976 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2977 {
2978 	int mask;
2979 
2980 	addr += (nr >> 3);
2981 	mask = BIT(7 - (nr & 0x07));
2982 	*addr ^= mask;
2983 }
2984 
2985 /*
2986  * On-disk inode flags (f2fs_inode::i_flags)
2987  */
2988 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2989 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2990 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2991 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2992 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2993 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2994 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2995 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2996 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2997 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2998 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2999 
3000 #define F2FS_QUOTA_DEFAULT_FL		(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3001 
3002 /* Flags that should be inherited by new inodes from their parent. */
3003 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3004 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3005 			   F2FS_CASEFOLD_FL)
3006 
3007 /* Flags that are appropriate for regular files (all but dir-specific ones). */
3008 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3009 				F2FS_CASEFOLD_FL))
3010 
3011 /* Flags that are appropriate for non-directories/regular files. */
3012 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3013 
f2fs_mask_flags(umode_t mode,__u32 flags)3014 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3015 {
3016 	if (S_ISDIR(mode))
3017 		return flags;
3018 	else if (S_ISREG(mode))
3019 		return flags & F2FS_REG_FLMASK;
3020 	else
3021 		return flags & F2FS_OTHER_FLMASK;
3022 }
3023 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)3024 static inline void __mark_inode_dirty_flag(struct inode *inode,
3025 						int flag, bool set)
3026 {
3027 	switch (flag) {
3028 	case FI_INLINE_XATTR:
3029 	case FI_INLINE_DATA:
3030 	case FI_INLINE_DENTRY:
3031 	case FI_NEW_INODE:
3032 		if (set)
3033 			return;
3034 		fallthrough;
3035 	case FI_DATA_EXIST:
3036 	case FI_INLINE_DOTS:
3037 	case FI_PIN_FILE:
3038 	case FI_COMPRESS_RELEASED:
3039 	case FI_ATOMIC_COMMITTED:
3040 		f2fs_mark_inode_dirty_sync(inode, true);
3041 	}
3042 }
3043 
set_inode_flag(struct inode * inode,int flag)3044 static inline void set_inode_flag(struct inode *inode, int flag)
3045 {
3046 	set_bit(flag, F2FS_I(inode)->flags);
3047 	__mark_inode_dirty_flag(inode, flag, true);
3048 }
3049 
is_inode_flag_set(struct inode * inode,int flag)3050 static inline int is_inode_flag_set(struct inode *inode, int flag)
3051 {
3052 	return test_bit(flag, F2FS_I(inode)->flags);
3053 }
3054 
clear_inode_flag(struct inode * inode,int flag)3055 static inline void clear_inode_flag(struct inode *inode, int flag)
3056 {
3057 	clear_bit(flag, F2FS_I(inode)->flags);
3058 	__mark_inode_dirty_flag(inode, flag, false);
3059 }
3060 
f2fs_verity_in_progress(struct inode * inode)3061 static inline bool f2fs_verity_in_progress(struct inode *inode)
3062 {
3063 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3064 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3065 }
3066 
set_acl_inode(struct inode * inode,umode_t mode)3067 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3068 {
3069 	F2FS_I(inode)->i_acl_mode = mode;
3070 	set_inode_flag(inode, FI_ACL_MODE);
3071 	f2fs_mark_inode_dirty_sync(inode, false);
3072 }
3073 
f2fs_i_links_write(struct inode * inode,bool inc)3074 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3075 {
3076 	if (inc)
3077 		inc_nlink(inode);
3078 	else
3079 		drop_nlink(inode);
3080 	f2fs_mark_inode_dirty_sync(inode, true);
3081 }
3082 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3083 static inline void f2fs_i_blocks_write(struct inode *inode,
3084 					block_t diff, bool add, bool claim)
3085 {
3086 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3087 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3088 
3089 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3090 	if (add) {
3091 		if (claim)
3092 			dquot_claim_block(inode, diff);
3093 		else
3094 			dquot_alloc_block_nofail(inode, diff);
3095 	} else {
3096 		dquot_free_block(inode, diff);
3097 	}
3098 
3099 	f2fs_mark_inode_dirty_sync(inode, true);
3100 	if (clean || recover)
3101 		set_inode_flag(inode, FI_AUTO_RECOVER);
3102 }
3103 
3104 static inline bool f2fs_is_atomic_file(struct inode *inode);
3105 
f2fs_i_size_write(struct inode * inode,loff_t i_size)3106 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3107 {
3108 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3109 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3110 
3111 	if (i_size_read(inode) == i_size)
3112 		return;
3113 
3114 	i_size_write(inode, i_size);
3115 
3116 	if (f2fs_is_atomic_file(inode))
3117 		return;
3118 
3119 	f2fs_mark_inode_dirty_sync(inode, true);
3120 	if (clean || recover)
3121 		set_inode_flag(inode, FI_AUTO_RECOVER);
3122 }
3123 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3124 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3125 {
3126 	F2FS_I(inode)->i_current_depth = depth;
3127 	f2fs_mark_inode_dirty_sync(inode, true);
3128 }
3129 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3130 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3131 					unsigned int count)
3132 {
3133 	F2FS_I(inode)->i_gc_failures = count;
3134 	f2fs_mark_inode_dirty_sync(inode, true);
3135 }
3136 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3137 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3138 {
3139 	F2FS_I(inode)->i_xattr_nid = xnid;
3140 	f2fs_mark_inode_dirty_sync(inode, true);
3141 }
3142 
f2fs_i_pino_write(struct inode * inode,nid_t pino)3143 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3144 {
3145 	F2FS_I(inode)->i_pino = pino;
3146 	f2fs_mark_inode_dirty_sync(inode, true);
3147 }
3148 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3149 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3150 {
3151 	struct f2fs_inode_info *fi = F2FS_I(inode);
3152 
3153 	if (ri->i_inline & F2FS_INLINE_XATTR)
3154 		set_bit(FI_INLINE_XATTR, fi->flags);
3155 	if (ri->i_inline & F2FS_INLINE_DATA)
3156 		set_bit(FI_INLINE_DATA, fi->flags);
3157 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3158 		set_bit(FI_INLINE_DENTRY, fi->flags);
3159 	if (ri->i_inline & F2FS_DATA_EXIST)
3160 		set_bit(FI_DATA_EXIST, fi->flags);
3161 	if (ri->i_inline & F2FS_INLINE_DOTS)
3162 		set_bit(FI_INLINE_DOTS, fi->flags);
3163 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3164 		set_bit(FI_EXTRA_ATTR, fi->flags);
3165 	if (ri->i_inline & F2FS_PIN_FILE)
3166 		set_bit(FI_PIN_FILE, fi->flags);
3167 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3168 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3169 }
3170 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3171 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3172 {
3173 	ri->i_inline = 0;
3174 
3175 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3176 		ri->i_inline |= F2FS_INLINE_XATTR;
3177 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3178 		ri->i_inline |= F2FS_INLINE_DATA;
3179 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3180 		ri->i_inline |= F2FS_INLINE_DENTRY;
3181 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3182 		ri->i_inline |= F2FS_DATA_EXIST;
3183 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3184 		ri->i_inline |= F2FS_INLINE_DOTS;
3185 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3186 		ri->i_inline |= F2FS_EXTRA_ATTR;
3187 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3188 		ri->i_inline |= F2FS_PIN_FILE;
3189 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3190 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3191 }
3192 
f2fs_has_extra_attr(struct inode * inode)3193 static inline int f2fs_has_extra_attr(struct inode *inode)
3194 {
3195 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3196 }
3197 
f2fs_has_inline_xattr(struct inode * inode)3198 static inline int f2fs_has_inline_xattr(struct inode *inode)
3199 {
3200 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3201 }
3202 
f2fs_compressed_file(struct inode * inode)3203 static inline int f2fs_compressed_file(struct inode *inode)
3204 {
3205 	return S_ISREG(inode->i_mode) &&
3206 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3207 }
3208 
f2fs_need_compress_data(struct inode * inode)3209 static inline bool f2fs_need_compress_data(struct inode *inode)
3210 {
3211 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3212 
3213 	if (!f2fs_compressed_file(inode))
3214 		return false;
3215 
3216 	if (compress_mode == COMPR_MODE_FS)
3217 		return true;
3218 	else if (compress_mode == COMPR_MODE_USER &&
3219 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3220 		return true;
3221 
3222 	return false;
3223 }
3224 
addrs_per_inode(struct inode * inode)3225 static inline unsigned int addrs_per_inode(struct inode *inode)
3226 {
3227 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3228 				get_inline_xattr_addrs(inode);
3229 
3230 	if (!f2fs_compressed_file(inode))
3231 		return addrs;
3232 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3233 }
3234 
addrs_per_block(struct inode * inode)3235 static inline unsigned int addrs_per_block(struct inode *inode)
3236 {
3237 	if (!f2fs_compressed_file(inode))
3238 		return DEF_ADDRS_PER_BLOCK;
3239 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3240 }
3241 
inline_xattr_addr(struct inode * inode,struct page * page)3242 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3243 {
3244 	struct f2fs_inode *ri = F2FS_INODE(page);
3245 
3246 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3247 					get_inline_xattr_addrs(inode)]);
3248 }
3249 
inline_xattr_size(struct inode * inode)3250 static inline int inline_xattr_size(struct inode *inode)
3251 {
3252 	if (f2fs_has_inline_xattr(inode))
3253 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3254 	return 0;
3255 }
3256 
3257 /*
3258  * Notice: check inline_data flag without inode page lock is unsafe.
3259  * It could change at any time by f2fs_convert_inline_page().
3260  */
f2fs_has_inline_data(struct inode * inode)3261 static inline int f2fs_has_inline_data(struct inode *inode)
3262 {
3263 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3264 }
3265 
f2fs_exist_data(struct inode * inode)3266 static inline int f2fs_exist_data(struct inode *inode)
3267 {
3268 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3269 }
3270 
f2fs_has_inline_dots(struct inode * inode)3271 static inline int f2fs_has_inline_dots(struct inode *inode)
3272 {
3273 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3274 }
3275 
f2fs_is_mmap_file(struct inode * inode)3276 static inline int f2fs_is_mmap_file(struct inode *inode)
3277 {
3278 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3279 }
3280 
f2fs_is_pinned_file(struct inode * inode)3281 static inline bool f2fs_is_pinned_file(struct inode *inode)
3282 {
3283 	return is_inode_flag_set(inode, FI_PIN_FILE);
3284 }
3285 
f2fs_is_atomic_file(struct inode * inode)3286 static inline bool f2fs_is_atomic_file(struct inode *inode)
3287 {
3288 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3289 }
3290 
f2fs_is_cow_file(struct inode * inode)3291 static inline bool f2fs_is_cow_file(struct inode *inode)
3292 {
3293 	return is_inode_flag_set(inode, FI_COW_FILE);
3294 }
3295 
3296 static inline __le32 *get_dnode_addr(struct inode *inode,
3297 					struct page *node_page);
inline_data_addr(struct inode * inode,struct page * page)3298 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3299 {
3300 	__le32 *addr = get_dnode_addr(inode, page);
3301 
3302 	return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3303 }
3304 
f2fs_has_inline_dentry(struct inode * inode)3305 static inline int f2fs_has_inline_dentry(struct inode *inode)
3306 {
3307 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3308 }
3309 
is_file(struct inode * inode,int type)3310 static inline int is_file(struct inode *inode, int type)
3311 {
3312 	return F2FS_I(inode)->i_advise & type;
3313 }
3314 
set_file(struct inode * inode,int type)3315 static inline void set_file(struct inode *inode, int type)
3316 {
3317 	if (is_file(inode, type))
3318 		return;
3319 	F2FS_I(inode)->i_advise |= type;
3320 	f2fs_mark_inode_dirty_sync(inode, true);
3321 }
3322 
clear_file(struct inode * inode,int type)3323 static inline void clear_file(struct inode *inode, int type)
3324 {
3325 	if (!is_file(inode, type))
3326 		return;
3327 	F2FS_I(inode)->i_advise &= ~type;
3328 	f2fs_mark_inode_dirty_sync(inode, true);
3329 }
3330 
f2fs_is_time_consistent(struct inode * inode)3331 static inline bool f2fs_is_time_consistent(struct inode *inode)
3332 {
3333 	struct timespec64 ts = inode_get_atime(inode);
3334 
3335 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3336 		return false;
3337 	ts = inode_get_ctime(inode);
3338 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3339 		return false;
3340 	ts = inode_get_mtime(inode);
3341 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3342 		return false;
3343 	return true;
3344 }
3345 
f2fs_skip_inode_update(struct inode * inode,int dsync)3346 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3347 {
3348 	bool ret;
3349 
3350 	if (dsync) {
3351 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3352 
3353 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3354 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3355 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3356 		return ret;
3357 	}
3358 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3359 			file_keep_isize(inode) ||
3360 			i_size_read(inode) & ~PAGE_MASK)
3361 		return false;
3362 
3363 	if (!f2fs_is_time_consistent(inode))
3364 		return false;
3365 
3366 	spin_lock(&F2FS_I(inode)->i_size_lock);
3367 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3368 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3369 
3370 	return ret;
3371 }
3372 
f2fs_readonly(struct super_block * sb)3373 static inline bool f2fs_readonly(struct super_block *sb)
3374 {
3375 	return sb_rdonly(sb);
3376 }
3377 
f2fs_cp_error(struct f2fs_sb_info * sbi)3378 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3379 {
3380 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3381 }
3382 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3383 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3384 					size_t size, gfp_t flags)
3385 {
3386 	if (time_to_inject(sbi, FAULT_KMALLOC))
3387 		return NULL;
3388 
3389 	return kmalloc(size, flags);
3390 }
3391 
f2fs_getname(struct f2fs_sb_info * sbi)3392 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3393 {
3394 	if (time_to_inject(sbi, FAULT_KMALLOC))
3395 		return NULL;
3396 
3397 	return __getname();
3398 }
3399 
f2fs_putname(char * buf)3400 static inline void f2fs_putname(char *buf)
3401 {
3402 	__putname(buf);
3403 }
3404 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3405 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3406 					size_t size, gfp_t flags)
3407 {
3408 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3409 }
3410 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3411 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3412 					size_t size, gfp_t flags)
3413 {
3414 	if (time_to_inject(sbi, FAULT_KVMALLOC))
3415 		return NULL;
3416 
3417 	return kvmalloc(size, flags);
3418 }
3419 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3420 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3421 					size_t size, gfp_t flags)
3422 {
3423 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3424 }
3425 
get_extra_isize(struct inode * inode)3426 static inline int get_extra_isize(struct inode *inode)
3427 {
3428 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3429 }
3430 
get_inline_xattr_addrs(struct inode * inode)3431 static inline int get_inline_xattr_addrs(struct inode *inode)
3432 {
3433 	return F2FS_I(inode)->i_inline_xattr_size;
3434 }
3435 
get_dnode_addr(struct inode * inode,struct page * node_page)3436 static inline __le32 *get_dnode_addr(struct inode *inode,
3437 					struct page *node_page)
3438 {
3439 	int base = 0;
3440 
3441 	if (IS_INODE(node_page) && f2fs_has_extra_attr(inode))
3442 		base = get_extra_isize(inode);
3443 
3444 	return blkaddr_in_node(F2FS_NODE(node_page)) + base;
3445 }
3446 
3447 #define f2fs_get_inode_mode(i) \
3448 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3449 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3450 
3451 #define F2FS_MIN_EXTRA_ATTR_SIZE		(sizeof(__le32))
3452 
3453 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3454 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3455 	offsetof(struct f2fs_inode, i_extra_isize))	\
3456 
3457 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3458 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3459 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3460 		sizeof((f2fs_inode)->field))			\
3461 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3462 
3463 #define __is_large_section(sbi)		(SEGS_PER_SEC(sbi) > 1)
3464 
3465 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3466 
3467 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3468 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3469 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3470 					block_t blkaddr, int type)
3471 {
3472 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3473 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3474 			 blkaddr, type);
3475 }
3476 
__is_valid_data_blkaddr(block_t blkaddr)3477 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3478 {
3479 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3480 			blkaddr == COMPRESS_ADDR)
3481 		return false;
3482 	return true;
3483 }
3484 
3485 /*
3486  * file.c
3487  */
3488 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3489 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3490 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3491 int f2fs_truncate(struct inode *inode);
3492 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3493 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3494 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3495 		 struct iattr *attr);
3496 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3497 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3498 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3499 							bool readonly);
3500 int f2fs_precache_extents(struct inode *inode);
3501 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3502 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3503 		      struct dentry *dentry, struct fileattr *fa);
3504 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3505 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3506 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3507 int f2fs_pin_file_control(struct inode *inode, bool inc);
3508 
3509 /*
3510  * inode.c
3511  */
3512 void f2fs_set_inode_flags(struct inode *inode);
3513 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3514 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3515 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3516 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3517 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3518 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3519 void f2fs_update_inode_page(struct inode *inode);
3520 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3521 void f2fs_evict_inode(struct inode *inode);
3522 void f2fs_handle_failed_inode(struct inode *inode);
3523 
3524 /*
3525  * namei.c
3526  */
3527 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3528 							bool hot, bool set);
3529 struct dentry *f2fs_get_parent(struct dentry *child);
3530 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3531 		     struct inode **new_inode);
3532 
3533 /*
3534  * dir.c
3535  */
3536 int f2fs_init_casefolded_name(const struct inode *dir,
3537 			      struct f2fs_filename *fname);
3538 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3539 			int lookup, struct f2fs_filename *fname);
3540 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3541 			struct f2fs_filename *fname);
3542 void f2fs_free_filename(struct f2fs_filename *fname);
3543 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3544 			const struct f2fs_filename *fname, int *max_slots);
3545 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3546 			unsigned int start_pos, struct fscrypt_str *fstr);
3547 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3548 			struct f2fs_dentry_ptr *d);
3549 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3550 			const struct f2fs_filename *fname, struct page *dpage);
3551 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3552 			unsigned int current_depth);
3553 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3554 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3555 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3556 					 const struct f2fs_filename *fname,
3557 					 struct page **res_page);
3558 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3559 			const struct qstr *child, struct page **res_page);
3560 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3561 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3562 			struct page **page);
3563 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3564 			struct page *page, struct inode *inode);
3565 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3566 			  const struct f2fs_filename *fname);
3567 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3568 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3569 			unsigned int bit_pos);
3570 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3571 			struct inode *inode, nid_t ino, umode_t mode);
3572 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3573 			struct inode *inode, nid_t ino, umode_t mode);
3574 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3575 			struct inode *inode, nid_t ino, umode_t mode);
3576 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3577 			struct inode *dir, struct inode *inode);
3578 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3579 					struct f2fs_filename *fname);
3580 bool f2fs_empty_dir(struct inode *dir);
3581 
f2fs_add_link(struct dentry * dentry,struct inode * inode)3582 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3583 {
3584 	if (fscrypt_is_nokey_name(dentry))
3585 		return -ENOKEY;
3586 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3587 				inode, inode->i_ino, inode->i_mode);
3588 }
3589 
3590 /*
3591  * super.c
3592  */
3593 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3594 void f2fs_inode_synced(struct inode *inode);
3595 int f2fs_dquot_initialize(struct inode *inode);
3596 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3597 int f2fs_quota_sync(struct super_block *sb, int type);
3598 loff_t max_file_blocks(struct inode *inode);
3599 void f2fs_quota_off_umount(struct super_block *sb);
3600 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3601 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason,
3602 							bool irq_context);
3603 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3604 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3605 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3606 int f2fs_sync_fs(struct super_block *sb, int sync);
3607 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3608 
3609 /*
3610  * hash.c
3611  */
3612 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3613 
3614 /*
3615  * node.c
3616  */
3617 struct node_info;
3618 
3619 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3620 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3621 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3622 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3623 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3624 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3625 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3626 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3627 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3628 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3629 				struct node_info *ni, bool checkpoint_context);
3630 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3631 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3632 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3633 int f2fs_truncate_xattr_node(struct inode *inode);
3634 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3635 					unsigned int seq_id);
3636 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3637 int f2fs_remove_inode_page(struct inode *inode);
3638 struct page *f2fs_new_inode_page(struct inode *inode);
3639 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3640 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3641 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3642 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3643 int f2fs_move_node_page(struct page *node_page, int gc_type);
3644 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3645 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3646 			struct writeback_control *wbc, bool atomic,
3647 			unsigned int *seq_id);
3648 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3649 			struct writeback_control *wbc,
3650 			bool do_balance, enum iostat_type io_type);
3651 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3652 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3653 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3654 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3655 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3656 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3657 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3658 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3659 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3660 			unsigned int segno, struct f2fs_summary_block *sum);
3661 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3662 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3663 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3664 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3665 int __init f2fs_create_node_manager_caches(void);
3666 void f2fs_destroy_node_manager_caches(void);
3667 
3668 /*
3669  * segment.c
3670  */
3671 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3672 int f2fs_commit_atomic_write(struct inode *inode);
3673 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3674 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3675 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3676 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3677 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3678 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3679 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3680 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3681 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3682 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3683 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3684 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3685 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3686 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3687 					struct cp_control *cpc);
3688 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3689 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3690 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3691 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3692 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3693 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3694 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3695 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3696 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3697 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3698 					unsigned int start, unsigned int end);
3699 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3700 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3701 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3702 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3703 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3704 					struct cp_control *cpc);
3705 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3706 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3707 					block_t blk_addr);
3708 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3709 						enum iostat_type io_type);
3710 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3711 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3712 			struct f2fs_io_info *fio);
3713 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3714 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3715 			block_t old_blkaddr, block_t new_blkaddr,
3716 			bool recover_curseg, bool recover_newaddr,
3717 			bool from_gc);
3718 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3719 			block_t old_addr, block_t new_addr,
3720 			unsigned char version, bool recover_curseg,
3721 			bool recover_newaddr);
3722 int f2fs_get_segment_temp(int seg_type);
3723 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3724 			block_t old_blkaddr, block_t *new_blkaddr,
3725 			struct f2fs_summary *sum, int type,
3726 			struct f2fs_io_info *fio);
3727 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3728 					block_t blkaddr, unsigned int blkcnt);
3729 void f2fs_wait_on_page_writeback(struct page *page,
3730 			enum page_type type, bool ordered, bool locked);
3731 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3732 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3733 								block_t len);
3734 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3735 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3736 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3737 			unsigned int val, int alloc);
3738 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3739 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3740 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3741 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3742 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3743 int __init f2fs_create_segment_manager_caches(void);
3744 void f2fs_destroy_segment_manager_caches(void);
3745 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint);
3746 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3747 			enum page_type type, enum temp_type temp);
3748 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3749 			unsigned int segno);
3750 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3751 			unsigned int segno);
3752 
3753 #define DEF_FRAGMENT_SIZE	4
3754 #define MIN_FRAGMENT_SIZE	1
3755 #define MAX_FRAGMENT_SIZE	512
3756 
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3757 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3758 {
3759 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3760 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3761 }
3762 
3763 /*
3764  * checkpoint.c
3765  */
3766 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3767 							unsigned char reason);
3768 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3769 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3770 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3771 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3772 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3773 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3774 					block_t blkaddr, int type);
3775 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3776 					block_t blkaddr, int type);
3777 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3778 			int type, bool sync);
3779 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3780 							unsigned int ra_blocks);
3781 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3782 			long nr_to_write, enum iostat_type io_type);
3783 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3784 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3785 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3786 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3787 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3788 					unsigned int devidx, int type);
3789 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3790 					unsigned int devidx, int type);
3791 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3792 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3793 void f2fs_add_orphan_inode(struct inode *inode);
3794 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3795 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3796 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3797 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3798 void f2fs_remove_dirty_inode(struct inode *inode);
3799 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3800 								bool from_cp);
3801 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3802 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3803 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3804 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3805 int __init f2fs_create_checkpoint_caches(void);
3806 void f2fs_destroy_checkpoint_caches(void);
3807 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3808 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3809 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3810 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3811 
3812 /*
3813  * data.c
3814  */
3815 int __init f2fs_init_bioset(void);
3816 void f2fs_destroy_bioset(void);
3817 bool f2fs_is_cp_guaranteed(struct page *page);
3818 int f2fs_init_bio_entry_cache(void);
3819 void f2fs_destroy_bio_entry_cache(void);
3820 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3821 			  enum page_type type);
3822 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3823 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3824 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3825 				struct inode *inode, struct page *page,
3826 				nid_t ino, enum page_type type);
3827 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3828 					struct bio **bio, struct page *page);
3829 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3830 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3831 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3832 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3833 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3834 		block_t blk_addr, sector_t *sector);
3835 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3836 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3837 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3838 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3839 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3840 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3841 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3842 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3843 			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3844 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3845 							pgoff_t *next_pgofs);
3846 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3847 			bool for_write);
3848 struct page *f2fs_get_new_data_page(struct inode *inode,
3849 			struct page *ipage, pgoff_t index, bool new_i_size);
3850 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3851 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3852 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3853 			u64 start, u64 len);
3854 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3855 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3856 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3857 int f2fs_write_single_data_page(struct page *page, int *submitted,
3858 				struct bio **bio, sector_t *last_block,
3859 				struct writeback_control *wbc,
3860 				enum iostat_type io_type,
3861 				int compr_blocks, bool allow_balance);
3862 void f2fs_write_failed(struct inode *inode, loff_t to);
3863 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3864 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3865 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3866 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3867 int f2fs_init_post_read_processing(void);
3868 void f2fs_destroy_post_read_processing(void);
3869 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3870 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3871 extern const struct iomap_ops f2fs_iomap_ops;
3872 
3873 /*
3874  * gc.c
3875  */
3876 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3877 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3878 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3879 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3880 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3881 int f2fs_gc_range(struct f2fs_sb_info *sbi,
3882 		unsigned int start_seg, unsigned int end_seg,
3883 		bool dry_run, unsigned int dry_run_sections);
3884 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3885 int __init f2fs_create_garbage_collection_cache(void);
3886 void f2fs_destroy_garbage_collection_cache(void);
3887 /* victim selection function for cleaning and SSR */
3888 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3889 			int gc_type, int type, char alloc_mode,
3890 			unsigned long long age);
3891 
3892 /*
3893  * recovery.c
3894  */
3895 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3896 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3897 int __init f2fs_create_recovery_cache(void);
3898 void f2fs_destroy_recovery_cache(void);
3899 
3900 /*
3901  * debug.c
3902  */
3903 #ifdef CONFIG_F2FS_STAT_FS
3904 struct f2fs_stat_info {
3905 	struct list_head stat_list;
3906 	struct f2fs_sb_info *sbi;
3907 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3908 	int main_area_segs, main_area_sections, main_area_zones;
3909 	unsigned long long hit_cached[NR_EXTENT_CACHES];
3910 	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3911 	unsigned long long total_ext[NR_EXTENT_CACHES];
3912 	unsigned long long hit_total[NR_EXTENT_CACHES];
3913 	int ext_tree[NR_EXTENT_CACHES];
3914 	int zombie_tree[NR_EXTENT_CACHES];
3915 	int ext_node[NR_EXTENT_CACHES];
3916 	/* to count memory footprint */
3917 	unsigned long long ext_mem[NR_EXTENT_CACHES];
3918 	/* for read extent cache */
3919 	unsigned long long hit_largest;
3920 	/* for block age extent cache */
3921 	unsigned long long allocated_data_blocks;
3922 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3923 	int ndirty_data, ndirty_qdata;
3924 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3925 	int nats, dirty_nats, sits, dirty_sits;
3926 	int free_nids, avail_nids, alloc_nids;
3927 	int total_count, utilization;
3928 	int nr_wb_cp_data, nr_wb_data;
3929 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3930 	int nr_dio_read, nr_dio_write;
3931 	unsigned int io_skip_bggc, other_skip_bggc;
3932 	int nr_flushing, nr_flushed, flush_list_empty;
3933 	int nr_discarding, nr_discarded;
3934 	int nr_discard_cmd;
3935 	unsigned int undiscard_blks;
3936 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3937 	unsigned int cur_ckpt_time, peak_ckpt_time;
3938 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3939 	int compr_inode, swapfile_inode;
3940 	unsigned long long compr_blocks;
3941 	int aw_cnt, max_aw_cnt;
3942 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3943 	unsigned int bimodal, avg_vblocks;
3944 	int util_free, util_valid, util_invalid;
3945 	int rsvd_segs, overp_segs;
3946 	int dirty_count, node_pages, meta_pages, compress_pages;
3947 	int compress_page_hit;
3948 	int prefree_count, free_segs, free_secs;
3949 	int cp_call_count[MAX_CALL_TYPE], cp_count;
3950 	int gc_call_count[MAX_CALL_TYPE];
3951 	int gc_segs[2][2];
3952 	int gc_secs[2][2];
3953 	int tot_blks, data_blks, node_blks;
3954 	int bg_data_blks, bg_node_blks;
3955 	int curseg[NR_CURSEG_TYPE];
3956 	int cursec[NR_CURSEG_TYPE];
3957 	int curzone[NR_CURSEG_TYPE];
3958 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3959 	unsigned int full_seg[NR_CURSEG_TYPE];
3960 	unsigned int valid_blks[NR_CURSEG_TYPE];
3961 
3962 	unsigned int meta_count[META_MAX];
3963 	unsigned int segment_count[2];
3964 	unsigned int block_count[2];
3965 	unsigned int inplace_count;
3966 	unsigned long long base_mem, cache_mem, page_mem;
3967 };
3968 
F2FS_STAT(struct f2fs_sb_info * sbi)3969 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3970 {
3971 	return (struct f2fs_stat_info *)sbi->stat_info;
3972 }
3973 
3974 #define stat_inc_cp_call_count(sbi, foreground)				\
3975 		atomic_inc(&sbi->cp_call_count[(foreground)])
3976 #define stat_inc_cp_count(si)		(F2FS_STAT(sbi)->cp_count++)
3977 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3978 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3979 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3980 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3981 #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
3982 #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3983 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3984 #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
3985 #define stat_inc_inline_xattr(inode)					\
3986 	do {								\
3987 		if (f2fs_has_inline_xattr(inode))			\
3988 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3989 	} while (0)
3990 #define stat_dec_inline_xattr(inode)					\
3991 	do {								\
3992 		if (f2fs_has_inline_xattr(inode))			\
3993 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3994 	} while (0)
3995 #define stat_inc_inline_inode(inode)					\
3996 	do {								\
3997 		if (f2fs_has_inline_data(inode))			\
3998 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3999 	} while (0)
4000 #define stat_dec_inline_inode(inode)					\
4001 	do {								\
4002 		if (f2fs_has_inline_data(inode))			\
4003 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
4004 	} while (0)
4005 #define stat_inc_inline_dir(inode)					\
4006 	do {								\
4007 		if (f2fs_has_inline_dentry(inode))			\
4008 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
4009 	} while (0)
4010 #define stat_dec_inline_dir(inode)					\
4011 	do {								\
4012 		if (f2fs_has_inline_dentry(inode))			\
4013 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
4014 	} while (0)
4015 #define stat_inc_compr_inode(inode)					\
4016 	do {								\
4017 		if (f2fs_compressed_file(inode))			\
4018 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
4019 	} while (0)
4020 #define stat_dec_compr_inode(inode)					\
4021 	do {								\
4022 		if (f2fs_compressed_file(inode))			\
4023 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
4024 	} while (0)
4025 #define stat_add_compr_blocks(inode, blocks)				\
4026 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4027 #define stat_sub_compr_blocks(inode, blocks)				\
4028 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4029 #define stat_inc_swapfile_inode(inode)					\
4030 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4031 #define stat_dec_swapfile_inode(inode)					\
4032 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4033 #define stat_inc_atomic_inode(inode)					\
4034 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4035 #define stat_dec_atomic_inode(inode)					\
4036 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4037 #define stat_inc_meta_count(sbi, blkaddr)				\
4038 	do {								\
4039 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
4040 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
4041 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
4042 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
4043 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
4044 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
4045 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
4046 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
4047 	} while (0)
4048 #define stat_inc_seg_type(sbi, curseg)					\
4049 		((sbi)->segment_count[(curseg)->alloc_type]++)
4050 #define stat_inc_block_count(sbi, curseg)				\
4051 		((sbi)->block_count[(curseg)->alloc_type]++)
4052 #define stat_inc_inplace_blocks(sbi)					\
4053 		(atomic_inc(&(sbi)->inplace_count))
4054 #define stat_update_max_atomic_write(inode)				\
4055 	do {								\
4056 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
4057 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
4058 		if (cur > max)						\
4059 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4060 	} while (0)
4061 #define stat_inc_gc_call_count(sbi, foreground)				\
4062 		(F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4063 #define stat_inc_gc_sec_count(sbi, type, gc_type)			\
4064 		(F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4065 #define stat_inc_gc_seg_count(sbi, type, gc_type)			\
4066 		(F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4067 
4068 #define stat_inc_tot_blk_count(si, blks)				\
4069 	((si)->tot_blks += (blks))
4070 
4071 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4072 	do {								\
4073 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4074 		stat_inc_tot_blk_count(si, blks);			\
4075 		si->data_blks += (blks);				\
4076 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4077 	} while (0)
4078 
4079 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4080 	do {								\
4081 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4082 		stat_inc_tot_blk_count(si, blks);			\
4083 		si->node_blks += (blks);				\
4084 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4085 	} while (0)
4086 
4087 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4088 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4089 void __init f2fs_create_root_stats(void);
4090 void f2fs_destroy_root_stats(void);
4091 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4092 #else
4093 #define stat_inc_cp_call_count(sbi, foreground)		do { } while (0)
4094 #define stat_inc_cp_count(sbi)				do { } while (0)
4095 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4096 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4097 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4098 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4099 #define stat_inc_total_hit(sbi, type)			do { } while (0)
4100 #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4101 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4102 #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4103 #define stat_inc_inline_xattr(inode)			do { } while (0)
4104 #define stat_dec_inline_xattr(inode)			do { } while (0)
4105 #define stat_inc_inline_inode(inode)			do { } while (0)
4106 #define stat_dec_inline_inode(inode)			do { } while (0)
4107 #define stat_inc_inline_dir(inode)			do { } while (0)
4108 #define stat_dec_inline_dir(inode)			do { } while (0)
4109 #define stat_inc_compr_inode(inode)			do { } while (0)
4110 #define stat_dec_compr_inode(inode)			do { } while (0)
4111 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4112 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4113 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4114 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4115 #define stat_inc_atomic_inode(inode)			do { } while (0)
4116 #define stat_dec_atomic_inode(inode)			do { } while (0)
4117 #define stat_update_max_atomic_write(inode)		do { } while (0)
4118 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4119 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4120 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4121 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4122 #define stat_inc_gc_call_count(sbi, foreground)		do { } while (0)
4123 #define stat_inc_gc_sec_count(sbi, type, gc_type)	do { } while (0)
4124 #define stat_inc_gc_seg_count(sbi, type, gc_type)	do { } while (0)
4125 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4126 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4127 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4128 
f2fs_build_stats(struct f2fs_sb_info * sbi)4129 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4130 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4131 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4132 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4133 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4134 #endif
4135 
4136 extern const struct file_operations f2fs_dir_operations;
4137 extern const struct file_operations f2fs_file_operations;
4138 extern const struct inode_operations f2fs_file_inode_operations;
4139 extern const struct address_space_operations f2fs_dblock_aops;
4140 extern const struct address_space_operations f2fs_node_aops;
4141 extern const struct address_space_operations f2fs_meta_aops;
4142 extern const struct inode_operations f2fs_dir_inode_operations;
4143 extern const struct inode_operations f2fs_symlink_inode_operations;
4144 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4145 extern const struct inode_operations f2fs_special_inode_operations;
4146 extern struct kmem_cache *f2fs_inode_entry_slab;
4147 
4148 /*
4149  * inline.c
4150  */
4151 bool f2fs_may_inline_data(struct inode *inode);
4152 bool f2fs_sanity_check_inline_data(struct inode *inode);
4153 bool f2fs_may_inline_dentry(struct inode *inode);
4154 void f2fs_do_read_inline_data(struct folio *folio, struct page *ipage);
4155 void f2fs_truncate_inline_inode(struct inode *inode,
4156 						struct page *ipage, u64 from);
4157 int f2fs_read_inline_data(struct inode *inode, struct folio *folio);
4158 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4159 int f2fs_convert_inline_inode(struct inode *inode);
4160 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4161 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4162 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4163 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4164 					const struct f2fs_filename *fname,
4165 					struct page **res_page);
4166 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4167 			struct page *ipage);
4168 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4169 			struct inode *inode, nid_t ino, umode_t mode);
4170 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4171 				struct page *page, struct inode *dir,
4172 				struct inode *inode);
4173 bool f2fs_empty_inline_dir(struct inode *dir);
4174 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4175 			struct fscrypt_str *fstr);
4176 int f2fs_inline_data_fiemap(struct inode *inode,
4177 			struct fiemap_extent_info *fieinfo,
4178 			__u64 start, __u64 len);
4179 
4180 /*
4181  * shrinker.c
4182  */
4183 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4184 			struct shrink_control *sc);
4185 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4186 			struct shrink_control *sc);
4187 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4188 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4189 
4190 /*
4191  * extent_cache.c
4192  */
4193 bool sanity_check_extent_cache(struct inode *inode);
4194 void f2fs_init_extent_tree(struct inode *inode);
4195 void f2fs_drop_extent_tree(struct inode *inode);
4196 void f2fs_destroy_extent_node(struct inode *inode);
4197 void f2fs_destroy_extent_tree(struct inode *inode);
4198 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4199 int __init f2fs_create_extent_cache(void);
4200 void f2fs_destroy_extent_cache(void);
4201 
4202 /* read extent cache ops */
4203 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4204 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4205 			struct extent_info *ei);
4206 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4207 			block_t *blkaddr);
4208 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4209 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4210 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4211 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4212 			int nr_shrink);
4213 
4214 /* block age extent cache ops */
4215 void f2fs_init_age_extent_tree(struct inode *inode);
4216 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4217 			struct extent_info *ei);
4218 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4219 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4220 			pgoff_t fofs, unsigned int len);
4221 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4222 			int nr_shrink);
4223 
4224 /*
4225  * sysfs.c
4226  */
4227 #define MIN_RA_MUL	2
4228 #define MAX_RA_MUL	256
4229 
4230 int __init f2fs_init_sysfs(void);
4231 void f2fs_exit_sysfs(void);
4232 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4233 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4234 
4235 /* verity.c */
4236 extern const struct fsverity_operations f2fs_verityops;
4237 
4238 /*
4239  * crypto support
4240  */
f2fs_encrypted_file(struct inode * inode)4241 static inline bool f2fs_encrypted_file(struct inode *inode)
4242 {
4243 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4244 }
4245 
f2fs_set_encrypted_inode(struct inode * inode)4246 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4247 {
4248 #ifdef CONFIG_FS_ENCRYPTION
4249 	file_set_encrypt(inode);
4250 	f2fs_set_inode_flags(inode);
4251 #endif
4252 }
4253 
4254 /*
4255  * Returns true if the reads of the inode's data need to undergo some
4256  * postprocessing step, like decryption or authenticity verification.
4257  */
f2fs_post_read_required(struct inode * inode)4258 static inline bool f2fs_post_read_required(struct inode *inode)
4259 {
4260 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4261 		f2fs_compressed_file(inode);
4262 }
4263 
4264 /*
4265  * compress.c
4266  */
4267 #ifdef CONFIG_F2FS_FS_COMPRESSION
4268 bool f2fs_is_compressed_page(struct page *page);
4269 struct page *f2fs_compress_control_page(struct page *page);
4270 int f2fs_prepare_compress_overwrite(struct inode *inode,
4271 			struct page **pagep, pgoff_t index, void **fsdata);
4272 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4273 					pgoff_t index, unsigned copied);
4274 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4275 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4276 bool f2fs_is_compress_backend_ready(struct inode *inode);
4277 bool f2fs_is_compress_level_valid(int alg, int lvl);
4278 int __init f2fs_init_compress_mempool(void);
4279 void f2fs_destroy_compress_mempool(void);
4280 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4281 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4282 				block_t blkaddr, bool in_task);
4283 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4284 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4285 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4286 				int index, int nr_pages, bool uptodate);
4287 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4288 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4289 int f2fs_write_multi_pages(struct compress_ctx *cc,
4290 						int *submitted,
4291 						struct writeback_control *wbc,
4292 						enum iostat_type io_type);
4293 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4294 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4295 				pgoff_t fofs, block_t blkaddr,
4296 				unsigned int llen, unsigned int c_len);
4297 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4298 				unsigned nr_pages, sector_t *last_block_in_bio,
4299 				bool is_readahead, bool for_write);
4300 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4301 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4302 				bool in_task);
4303 void f2fs_put_page_dic(struct page *page, bool in_task);
4304 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4305 						unsigned int ofs_in_node);
4306 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4307 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4308 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4309 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4310 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4311 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4312 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4313 int __init f2fs_init_compress_cache(void);
4314 void f2fs_destroy_compress_cache(void);
4315 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4316 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4317 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4318 						nid_t ino, block_t blkaddr);
4319 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4320 								block_t blkaddr);
4321 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4322 #define inc_compr_inode_stat(inode)					\
4323 	do {								\
4324 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4325 		sbi->compr_new_inode++;					\
4326 	} while (0)
4327 #define add_compr_block_stat(inode, blocks)				\
4328 	do {								\
4329 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4330 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4331 		sbi->compr_written_block += blocks;			\
4332 		sbi->compr_saved_block += diff;				\
4333 	} while (0)
4334 #else
f2fs_is_compressed_page(struct page * page)4335 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4336 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4337 {
4338 	if (!f2fs_compressed_file(inode))
4339 		return true;
4340 	/* not support compression */
4341 	return false;
4342 }
f2fs_is_compress_level_valid(int alg,int lvl)4343 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_page(struct page * page)4344 static inline struct page *f2fs_compress_control_page(struct page *page)
4345 {
4346 	WARN_ON_ONCE(1);
4347 	return ERR_PTR(-EINVAL);
4348 }
f2fs_init_compress_mempool(void)4349 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4350 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4351 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4352 				bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4353 static inline void f2fs_end_read_compressed_page(struct page *page,
4354 				bool failed, block_t blkaddr, bool in_task)
4355 {
4356 	WARN_ON_ONCE(1);
4357 }
f2fs_put_page_dic(struct page * page,bool in_task)4358 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4359 {
4360 	WARN_ON_ONCE(1);
4361 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)4362 static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4363 			struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4364 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4365 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4366 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4367 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4368 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4369 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4370 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4371 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4372 				block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4373 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4374 				struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4375 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4376 				struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4377 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4378 							nid_t ino) { }
4379 #define inc_compr_inode_stat(inode)		do { } while (0)
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4380 static inline void f2fs_update_read_extent_tree_range_compressed(
4381 				struct inode *inode,
4382 				pgoff_t fofs, block_t blkaddr,
4383 				unsigned int llen, unsigned int c_len) { }
4384 #endif
4385 
set_compress_context(struct inode * inode)4386 static inline int set_compress_context(struct inode *inode)
4387 {
4388 #ifdef CONFIG_F2FS_FS_COMPRESSION
4389 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4390 
4391 	F2FS_I(inode)->i_compress_algorithm =
4392 			F2FS_OPTION(sbi).compress_algorithm;
4393 	F2FS_I(inode)->i_log_cluster_size =
4394 			F2FS_OPTION(sbi).compress_log_size;
4395 	F2FS_I(inode)->i_compress_flag =
4396 			F2FS_OPTION(sbi).compress_chksum ?
4397 				BIT(COMPRESS_CHKSUM) : 0;
4398 	F2FS_I(inode)->i_cluster_size =
4399 			BIT(F2FS_I(inode)->i_log_cluster_size);
4400 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4401 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4402 			F2FS_OPTION(sbi).compress_level)
4403 		F2FS_I(inode)->i_compress_level =
4404 				F2FS_OPTION(sbi).compress_level;
4405 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4406 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4407 	stat_inc_compr_inode(inode);
4408 	inc_compr_inode_stat(inode);
4409 	f2fs_mark_inode_dirty_sync(inode, true);
4410 	return 0;
4411 #else
4412 	return -EOPNOTSUPP;
4413 #endif
4414 }
4415 
f2fs_disable_compressed_file(struct inode * inode)4416 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4417 {
4418 	struct f2fs_inode_info *fi = F2FS_I(inode);
4419 
4420 	f2fs_down_write(&F2FS_I(inode)->i_sem);
4421 
4422 	if (!f2fs_compressed_file(inode)) {
4423 		f2fs_up_write(&F2FS_I(inode)->i_sem);
4424 		return true;
4425 	}
4426 	if (f2fs_is_mmap_file(inode) ||
4427 		(S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4428 		f2fs_up_write(&F2FS_I(inode)->i_sem);
4429 		return false;
4430 	}
4431 
4432 	fi->i_flags &= ~F2FS_COMPR_FL;
4433 	stat_dec_compr_inode(inode);
4434 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4435 	f2fs_mark_inode_dirty_sync(inode, true);
4436 
4437 	f2fs_up_write(&F2FS_I(inode)->i_sem);
4438 	return true;
4439 }
4440 
4441 #define F2FS_FEATURE_FUNCS(name, flagname) \
4442 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4443 { \
4444 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4445 }
4446 
4447 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4448 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4449 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4450 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4451 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4452 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4453 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4454 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4455 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4456 F2FS_FEATURE_FUNCS(verity, VERITY);
4457 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4458 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4459 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4460 F2FS_FEATURE_FUNCS(readonly, RO);
4461 
4462 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4463 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4464 				    block_t blkaddr)
4465 {
4466 	unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4467 
4468 	return test_bit(zno, FDEV(devi).blkz_seq);
4469 }
4470 #endif
4471 
f2fs_bdev_index(struct f2fs_sb_info * sbi,struct block_device * bdev)4472 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4473 				  struct block_device *bdev)
4474 {
4475 	int i;
4476 
4477 	if (!f2fs_is_multi_device(sbi))
4478 		return 0;
4479 
4480 	for (i = 0; i < sbi->s_ndevs; i++)
4481 		if (FDEV(i).bdev == bdev)
4482 			return i;
4483 
4484 	WARN_ON(1);
4485 	return -1;
4486 }
4487 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4488 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4489 {
4490 	return f2fs_sb_has_blkzoned(sbi);
4491 }
4492 
f2fs_bdev_support_discard(struct block_device * bdev)4493 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4494 {
4495 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4496 }
4497 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4498 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4499 {
4500 	int i;
4501 
4502 	if (!f2fs_is_multi_device(sbi))
4503 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4504 
4505 	for (i = 0; i < sbi->s_ndevs; i++)
4506 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4507 			return true;
4508 	return false;
4509 }
4510 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4511 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4512 {
4513 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4514 					f2fs_hw_should_discard(sbi);
4515 }
4516 
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4517 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4518 {
4519 	int i;
4520 
4521 	if (!f2fs_is_multi_device(sbi))
4522 		return bdev_read_only(sbi->sb->s_bdev);
4523 
4524 	for (i = 0; i < sbi->s_ndevs; i++)
4525 		if (bdev_read_only(FDEV(i).bdev))
4526 			return true;
4527 	return false;
4528 }
4529 
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4530 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4531 {
4532 	return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4533 }
4534 
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4535 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4536 {
4537 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4538 }
4539 
f2fs_valid_pinned_area(struct f2fs_sb_info * sbi,block_t blkaddr)4540 static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4541 					  block_t blkaddr)
4542 {
4543 	if (f2fs_sb_has_blkzoned(sbi)) {
4544 		int devi = f2fs_target_device_index(sbi, blkaddr);
4545 
4546 		return !bdev_is_zoned(FDEV(devi).bdev);
4547 	}
4548 	return true;
4549 }
4550 
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4551 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4552 {
4553 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4554 }
4555 
f2fs_may_compress(struct inode * inode)4556 static inline bool f2fs_may_compress(struct inode *inode)
4557 {
4558 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4559 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4560 		f2fs_is_mmap_file(inode))
4561 		return false;
4562 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4563 }
4564 
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4565 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4566 						u64 blocks, bool add)
4567 {
4568 	struct f2fs_inode_info *fi = F2FS_I(inode);
4569 	int diff = fi->i_cluster_size - blocks;
4570 
4571 	/* don't update i_compr_blocks if saved blocks were released */
4572 	if (!add && !atomic_read(&fi->i_compr_blocks))
4573 		return;
4574 
4575 	if (add) {
4576 		atomic_add(diff, &fi->i_compr_blocks);
4577 		stat_add_compr_blocks(inode, diff);
4578 	} else {
4579 		atomic_sub(diff, &fi->i_compr_blocks);
4580 		stat_sub_compr_blocks(inode, diff);
4581 	}
4582 	f2fs_mark_inode_dirty_sync(inode, true);
4583 }
4584 
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4585 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4586 								int flag)
4587 {
4588 	if (!f2fs_is_multi_device(sbi))
4589 		return false;
4590 	if (flag != F2FS_GET_BLOCK_DIO)
4591 		return false;
4592 	return sbi->aligned_blksize;
4593 }
4594 
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4595 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4596 {
4597 	return fsverity_active(inode) &&
4598 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4599 }
4600 
4601 #ifdef CONFIG_F2FS_FAULT_INJECTION
4602 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4603 							unsigned long type);
4604 #else
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type)4605 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4606 					unsigned long rate, unsigned long type)
4607 {
4608 	return 0;
4609 }
4610 #endif
4611 
is_journalled_quota(struct f2fs_sb_info * sbi)4612 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4613 {
4614 #ifdef CONFIG_QUOTA
4615 	if (f2fs_sb_has_quota_ino(sbi))
4616 		return true;
4617 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4618 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4619 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4620 		return true;
4621 #endif
4622 	return false;
4623 }
4624 
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4625 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4626 {
4627 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4628 }
4629 
f2fs_io_schedule_timeout(long timeout)4630 static inline void f2fs_io_schedule_timeout(long timeout)
4631 {
4632 	set_current_state(TASK_UNINTERRUPTIBLE);
4633 	io_schedule_timeout(timeout);
4634 }
4635 
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,pgoff_t ofs,enum page_type type)4636 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4637 					enum page_type type)
4638 {
4639 	if (unlikely(f2fs_cp_error(sbi)))
4640 		return;
4641 
4642 	if (ofs == sbi->page_eio_ofs[type]) {
4643 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4644 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4645 	} else {
4646 		sbi->page_eio_ofs[type] = ofs;
4647 		sbi->page_eio_cnt[type] = 0;
4648 	}
4649 }
4650 
f2fs_is_readonly(struct f2fs_sb_info * sbi)4651 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4652 {
4653 	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4654 }
4655 
f2fs_truncate_meta_inode_pages(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int cnt)4656 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4657 					block_t blkaddr, unsigned int cnt)
4658 {
4659 	bool need_submit = false;
4660 	int i = 0;
4661 
4662 	do {
4663 		struct page *page;
4664 
4665 		page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4666 		if (page) {
4667 			if (folio_test_writeback(page_folio(page)))
4668 				need_submit = true;
4669 			f2fs_put_page(page, 0);
4670 		}
4671 	} while (++i < cnt && !need_submit);
4672 
4673 	if (need_submit)
4674 		f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4675 							NULL, 0, DATA);
4676 
4677 	truncate_inode_pages_range(META_MAPPING(sbi),
4678 			F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4679 			F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4680 }
4681 
f2fs_invalidate_internal_cache(struct f2fs_sb_info * sbi,block_t blkaddr)4682 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4683 								block_t blkaddr)
4684 {
4685 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1);
4686 	f2fs_invalidate_compress_page(sbi, blkaddr);
4687 }
4688 
4689 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4690 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4691 
4692 #endif /* _LINUX_F2FS_H */
4693