1 //===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file describes how to lower LLVM code to machine code.  This has two
11 /// main components:
12 ///
13 ///  1. Which ValueTypes are natively supported by the target.
14 ///  2. Which operations are supported for supported ValueTypes.
15 ///  3. Cost thresholds for alternative implementations of certain operations.
16 ///
17 /// In addition it has a few other components, like information about FP
18 /// immediates.
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #ifndef LLVM_CODEGEN_TARGETLOWERING_H
23 #define LLVM_CODEGEN_TARGETLOWERING_H
24 
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/DAGCombine.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/RuntimeLibcalls.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetCallingConv.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InlineAsm.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/Alignment.h"
49 #include "llvm/Support/AtomicOrdering.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/InstructionCost.h"
53 #include "llvm/Support/MachineValueType.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <climits>
57 #include <cstdint>
58 #include <iterator>
59 #include <map>
60 #include <string>
61 #include <utility>
62 #include <vector>
63 
64 namespace llvm {
65 
66 class BranchProbability;
67 class CCState;
68 class CCValAssign;
69 class Constant;
70 class FastISel;
71 class FunctionLoweringInfo;
72 class GlobalValue;
73 class GISelKnownBits;
74 class IntrinsicInst;
75 struct KnownBits;
76 class LegacyDivergenceAnalysis;
77 class LLVMContext;
78 class MachineBasicBlock;
79 class MachineFunction;
80 class MachineInstr;
81 class MachineJumpTableInfo;
82 class MachineLoop;
83 class MachineRegisterInfo;
84 class MCContext;
85 class MCExpr;
86 class Module;
87 class ProfileSummaryInfo;
88 class TargetLibraryInfo;
89 class TargetMachine;
90 class TargetRegisterClass;
91 class TargetRegisterInfo;
92 class TargetTransformInfo;
93 class Value;
94 
95 namespace Sched {
96 
97 enum Preference {
98   None,        // No preference
99   Source,      // Follow source order.
100   RegPressure, // Scheduling for lowest register pressure.
101   Hybrid,      // Scheduling for both latency and register pressure.
102   ILP,         // Scheduling for ILP in low register pressure mode.
103   VLIW,        // Scheduling for VLIW targets.
104   Fast,        // Fast suboptimal list scheduling
105   Linearize    // Linearize DAG, no scheduling
106 };
107 
108 } // end namespace Sched
109 
110 // MemOp models a memory operation, either memset or memcpy/memmove.
111 struct MemOp {
112 private:
113   // Shared
114   uint64_t Size;
115   bool DstAlignCanChange; // true if destination alignment can satisfy any
116                           // constraint.
117   Align DstAlign;         // Specified alignment of the memory operation.
118 
119   bool AllowOverlap;
120   // memset only
121   bool IsMemset;   // If setthis memory operation is a memset.
122   bool ZeroMemset; // If set clears out memory with zeros.
123   // memcpy only
124   bool MemcpyStrSrc; // Indicates whether the memcpy source is an in-register
125                      // constant so it does not need to be loaded.
126   Align SrcAlign;    // Inferred alignment of the source or default value if the
127                      // memory operation does not need to load the value.
128 public:
129   static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
130                     Align SrcAlign, bool IsVolatile,
131                     bool MemcpyStrSrc = false) {
132     MemOp Op;
133     Op.Size = Size;
134     Op.DstAlignCanChange = DstAlignCanChange;
135     Op.DstAlign = DstAlign;
136     Op.AllowOverlap = !IsVolatile;
137     Op.IsMemset = false;
138     Op.ZeroMemset = false;
139     Op.MemcpyStrSrc = MemcpyStrSrc;
140     Op.SrcAlign = SrcAlign;
141     return Op;
142   }
143 
SetMemOp144   static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
145                    bool IsZeroMemset, bool IsVolatile) {
146     MemOp Op;
147     Op.Size = Size;
148     Op.DstAlignCanChange = DstAlignCanChange;
149     Op.DstAlign = DstAlign;
150     Op.AllowOverlap = !IsVolatile;
151     Op.IsMemset = true;
152     Op.ZeroMemset = IsZeroMemset;
153     Op.MemcpyStrSrc = false;
154     return Op;
155   }
156 
sizeMemOp157   uint64_t size() const { return Size; }
getDstAlignMemOp158   Align getDstAlign() const {
159     assert(!DstAlignCanChange);
160     return DstAlign;
161   }
isFixedDstAlignMemOp162   bool isFixedDstAlign() const { return !DstAlignCanChange; }
allowOverlapMemOp163   bool allowOverlap() const { return AllowOverlap; }
isMemsetMemOp164   bool isMemset() const { return IsMemset; }
isMemcpyMemOp165   bool isMemcpy() const { return !IsMemset; }
isMemcpyWithFixedDstAlignMemOp166   bool isMemcpyWithFixedDstAlign() const {
167     return isMemcpy() && !DstAlignCanChange;
168   }
isZeroMemsetMemOp169   bool isZeroMemset() const { return isMemset() && ZeroMemset; }
isMemcpyStrSrcMemOp170   bool isMemcpyStrSrc() const {
171     assert(isMemcpy() && "Must be a memcpy");
172     return MemcpyStrSrc;
173   }
getSrcAlignMemOp174   Align getSrcAlign() const {
175     assert(isMemcpy() && "Must be a memcpy");
176     return SrcAlign;
177   }
isSrcAlignedMemOp178   bool isSrcAligned(Align AlignCheck) const {
179     return isMemset() || llvm::isAligned(AlignCheck, SrcAlign.value());
180   }
isDstAlignedMemOp181   bool isDstAligned(Align AlignCheck) const {
182     return DstAlignCanChange || llvm::isAligned(AlignCheck, DstAlign.value());
183   }
isAlignedMemOp184   bool isAligned(Align AlignCheck) const {
185     return isSrcAligned(AlignCheck) && isDstAligned(AlignCheck);
186   }
187 };
188 
189 /// This base class for TargetLowering contains the SelectionDAG-independent
190 /// parts that can be used from the rest of CodeGen.
191 class TargetLoweringBase {
192 public:
193   /// This enum indicates whether operations are valid for a target, and if not,
194   /// what action should be used to make them valid.
195   enum LegalizeAction : uint8_t {
196     Legal,      // The target natively supports this operation.
197     Promote,    // This operation should be executed in a larger type.
198     Expand,     // Try to expand this to other ops, otherwise use a libcall.
199     LibCall,    // Don't try to expand this to other ops, always use a libcall.
200     Custom      // Use the LowerOperation hook to implement custom lowering.
201   };
202 
203   /// This enum indicates whether a types are legal for a target, and if not,
204   /// what action should be used to make them valid.
205   enum LegalizeTypeAction : uint8_t {
206     TypeLegal,           // The target natively supports this type.
207     TypePromoteInteger,  // Replace this integer with a larger one.
208     TypeExpandInteger,   // Split this integer into two of half the size.
209     TypeSoftenFloat,     // Convert this float to a same size integer type.
210     TypeExpandFloat,     // Split this float into two of half the size.
211     TypeScalarizeVector, // Replace this one-element vector with its element.
212     TypeSplitVector,     // Split this vector into two of half the size.
213     TypeWidenVector,     // This vector should be widened into a larger vector.
214     TypePromoteFloat,    // Replace this float with a larger one.
215     TypeSoftPromoteHalf, // Soften half to i16 and use float to do arithmetic.
216     TypeScalarizeScalableVector, // This action is explicitly left unimplemented.
217                                  // While it is theoretically possible to
218                                  // legalize operations on scalable types with a
219                                  // loop that handles the vscale * #lanes of the
220                                  // vector, this is non-trivial at SelectionDAG
221                                  // level and these types are better to be
222                                  // widened or promoted.
223   };
224 
225   /// LegalizeKind holds the legalization kind that needs to happen to EVT
226   /// in order to type-legalize it.
227   using LegalizeKind = std::pair<LegalizeTypeAction, EVT>;
228 
229   /// Enum that describes how the target represents true/false values.
230   enum BooleanContent {
231     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
232     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
233     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
234   };
235 
236   /// Enum that describes what type of support for selects the target has.
237   enum SelectSupportKind {
238     ScalarValSelect,      // The target supports scalar selects (ex: cmov).
239     ScalarCondVectorVal,  // The target supports selects with a scalar condition
240                           // and vector values (ex: cmov).
241     VectorMaskSelect      // The target supports vector selects with a vector
242                           // mask (ex: x86 blends).
243   };
244 
245   /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
246   /// to, if at all. Exists because different targets have different levels of
247   /// support for these atomic instructions, and also have different options
248   /// w.r.t. what they should expand to.
249   enum class AtomicExpansionKind {
250     None,    // Don't expand the instruction.
251     LLSC,    // Expand the instruction into loadlinked/storeconditional; used
252              // by ARM/AArch64.
253     LLOnly,  // Expand the (load) instruction into just a load-linked, which has
254              // greater atomic guarantees than a normal load.
255     CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
256     MaskedIntrinsic, // Use a target-specific intrinsic for the LL/SC loop.
257   };
258 
259   /// Enum that specifies when a multiplication should be expanded.
260   enum class MulExpansionKind {
261     Always,            // Always expand the instruction.
262     OnlyLegalOrCustom, // Only expand when the resulting instructions are legal
263                        // or custom.
264   };
265 
266   /// Enum that specifies when a float negation is beneficial.
267   enum class NegatibleCost {
268     Cheaper = 0,    // Negated expression is cheaper.
269     Neutral = 1,    // Negated expression has the same cost.
270     Expensive = 2   // Negated expression is more expensive.
271   };
272 
273   class ArgListEntry {
274   public:
275     Value *Val = nullptr;
276     SDValue Node = SDValue();
277     Type *Ty = nullptr;
278     bool IsSExt : 1;
279     bool IsZExt : 1;
280     bool IsInReg : 1;
281     bool IsSRet : 1;
282     bool IsNest : 1;
283     bool IsByVal : 1;
284     bool IsByRef : 1;
285     bool IsInAlloca : 1;
286     bool IsPreallocated : 1;
287     bool IsReturned : 1;
288     bool IsSwiftSelf : 1;
289     bool IsSwiftAsync : 1;
290     bool IsSwiftError : 1;
291     bool IsCFGuardTarget : 1;
292     MaybeAlign Alignment = None;
293     // Type for byval, inalloca, or preallocated.
294     Type *IndirectType = nullptr;
295 
ArgListEntry()296     ArgListEntry()
297         : IsSExt(false), IsZExt(false), IsInReg(false), IsSRet(false),
298           IsNest(false), IsByVal(false), IsByRef(false), IsInAlloca(false),
299           IsPreallocated(false), IsReturned(false), IsSwiftSelf(false),
300           IsSwiftAsync(false), IsSwiftError(false), IsCFGuardTarget(false) {}
301 
302     void setAttributes(const CallBase *Call, unsigned ArgIdx);
303   };
304   using ArgListTy = std::vector<ArgListEntry>;
305 
markLibCallAttributes(MachineFunction * MF,unsigned CC,ArgListTy & Args)306   virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC,
307                                      ArgListTy &Args) const {};
308 
getExtendForContent(BooleanContent Content)309   static ISD::NodeType getExtendForContent(BooleanContent Content) {
310     switch (Content) {
311     case UndefinedBooleanContent:
312       // Extend by adding rubbish bits.
313       return ISD::ANY_EXTEND;
314     case ZeroOrOneBooleanContent:
315       // Extend by adding zero bits.
316       return ISD::ZERO_EXTEND;
317     case ZeroOrNegativeOneBooleanContent:
318       // Extend by copying the sign bit.
319       return ISD::SIGN_EXTEND;
320     }
321     llvm_unreachable("Invalid content kind");
322   }
323 
324   explicit TargetLoweringBase(const TargetMachine &TM);
325   TargetLoweringBase(const TargetLoweringBase &) = delete;
326   TargetLoweringBase &operator=(const TargetLoweringBase &) = delete;
327   virtual ~TargetLoweringBase() = default;
328 
329   /// Return true if the target support strict float operation
isStrictFPEnabled()330   bool isStrictFPEnabled() const {
331     return IsStrictFPEnabled;
332   }
333 
334 protected:
335   /// Initialize all of the actions to default values.
336   void initActions();
337 
338 public:
getTargetMachine()339   const TargetMachine &getTargetMachine() const { return TM; }
340 
useSoftFloat()341   virtual bool useSoftFloat() const { return false; }
342 
343   /// Return the pointer type for the given address space, defaults to
344   /// the pointer type from the data layout.
345   /// FIXME: The default needs to be removed once all the code is updated.
346   virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
347     return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
348   }
349 
350   /// Return the in-memory pointer type for the given address space, defaults to
351   /// the pointer type from the data layout.  FIXME: The default needs to be
352   /// removed once all the code is updated.
353   MVT getPointerMemTy(const DataLayout &DL, uint32_t AS = 0) const {
354     return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
355   }
356 
357   /// Return the type for frame index, which is determined by
358   /// the alloca address space specified through the data layout.
getFrameIndexTy(const DataLayout & DL)359   MVT getFrameIndexTy(const DataLayout &DL) const {
360     return getPointerTy(DL, DL.getAllocaAddrSpace());
361   }
362 
363   /// Return the type for code pointers, which is determined by the program
364   /// address space specified through the data layout.
getProgramPointerTy(const DataLayout & DL)365   MVT getProgramPointerTy(const DataLayout &DL) const {
366     return getPointerTy(DL, DL.getProgramAddressSpace());
367   }
368 
369   /// Return the type for operands of fence.
370   /// TODO: Let fence operands be of i32 type and remove this.
getFenceOperandTy(const DataLayout & DL)371   virtual MVT getFenceOperandTy(const DataLayout &DL) const {
372     return getPointerTy(DL);
373   }
374 
375   /// EVT is not used in-tree, but is used by out-of-tree target.
376   /// A documentation for this function would be nice...
377   virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
378 
379   EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
380                        bool LegalTypes = true) const;
381 
382   /// Return the preferred type to use for a shift opcode, given the shifted
383   /// amount type is \p ShiftValueTy.
384   LLVM_READONLY
getPreferredShiftAmountTy(LLT ShiftValueTy)385   virtual LLT getPreferredShiftAmountTy(LLT ShiftValueTy) const {
386     return ShiftValueTy;
387   }
388 
389   /// Returns the type to be used for the index operand of:
390   /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
391   /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
getVectorIdxTy(const DataLayout & DL)392   virtual MVT getVectorIdxTy(const DataLayout &DL) const {
393     return getPointerTy(DL);
394   }
395 
396   /// This callback is used to inspect load/store instructions and add
397   /// target-specific MachineMemOperand flags to them.  The default
398   /// implementation does nothing.
getTargetMMOFlags(const Instruction & I)399   virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const {
400     return MachineMemOperand::MONone;
401   }
402 
403   MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI,
404                                                   const DataLayout &DL) const;
405   MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI,
406                                                    const DataLayout &DL) const;
407   MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI,
408                                                     const DataLayout &DL) const;
409 
isSelectSupported(SelectSupportKind)410   virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
411     return true;
412   }
413 
414   /// Return true if it is profitable to convert a select of FP constants into
415   /// a constant pool load whose address depends on the select condition. The
416   /// parameter may be used to differentiate a select with FP compare from
417   /// integer compare.
reduceSelectOfFPConstantLoads(EVT CmpOpVT)418   virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const {
419     return true;
420   }
421 
422   /// Return true if multiple condition registers are available.
hasMultipleConditionRegisters()423   bool hasMultipleConditionRegisters() const {
424     return HasMultipleConditionRegisters;
425   }
426 
427   /// Return true if the target has BitExtract instructions.
hasExtractBitsInsn()428   bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
429 
430   /// Return the preferred vector type legalization action.
431   virtual TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT)432   getPreferredVectorAction(MVT VT) const {
433     // The default action for one element vectors is to scalarize
434     if (VT.getVectorElementCount().isScalar())
435       return TypeScalarizeVector;
436     // The default action for an odd-width vector is to widen.
437     if (!VT.isPow2VectorType())
438       return TypeWidenVector;
439     // The default action for other vectors is to promote
440     return TypePromoteInteger;
441   }
442 
443   // Return true if the half type should be passed around as i16, but promoted
444   // to float around arithmetic. The default behavior is to pass around as
445   // float and convert around loads/stores/bitcasts and other places where
446   // the size matters.
softPromoteHalfType()447   virtual bool softPromoteHalfType() const { return false; }
448 
449   // There are two general methods for expanding a BUILD_VECTOR node:
450   //  1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
451   //     them together.
452   //  2. Build the vector on the stack and then load it.
453   // If this function returns true, then method (1) will be used, subject to
454   // the constraint that all of the necessary shuffles are legal (as determined
455   // by isShuffleMaskLegal). If this function returns false, then method (2) is
456   // always used. The vector type, and the number of defined values, are
457   // provided.
458   virtual bool
shouldExpandBuildVectorWithShuffles(EVT,unsigned DefinedValues)459   shouldExpandBuildVectorWithShuffles(EVT /* VT */,
460                                       unsigned DefinedValues) const {
461     return DefinedValues < 3;
462   }
463 
464   /// Return true if integer divide is usually cheaper than a sequence of
465   /// several shifts, adds, and multiplies for this target.
466   /// The definition of "cheaper" may depend on whether we're optimizing
467   /// for speed or for size.
isIntDivCheap(EVT VT,AttributeList Attr)468   virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const { return false; }
469 
470   /// Return true if the target can handle a standalone remainder operation.
hasStandaloneRem(EVT VT)471   virtual bool hasStandaloneRem(EVT VT) const {
472     return true;
473   }
474 
475   /// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
isFsqrtCheap(SDValue X,SelectionDAG & DAG)476   virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const {
477     // Default behavior is to replace SQRT(X) with X*RSQRT(X).
478     return false;
479   }
480 
481   /// Reciprocal estimate status values used by the functions below.
482   enum ReciprocalEstimate : int {
483     Unspecified = -1,
484     Disabled = 0,
485     Enabled = 1
486   };
487 
488   /// Return a ReciprocalEstimate enum value for a square root of the given type
489   /// based on the function's attributes. If the operation is not overridden by
490   /// the function's attributes, "Unspecified" is returned and target defaults
491   /// are expected to be used for instruction selection.
492   int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const;
493 
494   /// Return a ReciprocalEstimate enum value for a division of the given type
495   /// based on the function's attributes. If the operation is not overridden by
496   /// the function's attributes, "Unspecified" is returned and target defaults
497   /// are expected to be used for instruction selection.
498   int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const;
499 
500   /// Return the refinement step count for a square root of the given type based
501   /// on the function's attributes. If the operation is not overridden by
502   /// the function's attributes, "Unspecified" is returned and target defaults
503   /// are expected to be used for instruction selection.
504   int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const;
505 
506   /// Return the refinement step count for a division of the given type based
507   /// on the function's attributes. If the operation is not overridden by
508   /// the function's attributes, "Unspecified" is returned and target defaults
509   /// are expected to be used for instruction selection.
510   int getDivRefinementSteps(EVT VT, MachineFunction &MF) const;
511 
512   /// Returns true if target has indicated at least one type should be bypassed.
isSlowDivBypassed()513   bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
514 
515   /// Returns map of slow types for division or remainder with corresponding
516   /// fast types
getBypassSlowDivWidths()517   const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
518     return BypassSlowDivWidths;
519   }
520 
521   /// Return true if Flow Control is an expensive operation that should be
522   /// avoided.
isJumpExpensive()523   bool isJumpExpensive() const { return JumpIsExpensive; }
524 
525   /// Return true if selects are only cheaper than branches if the branch is
526   /// unlikely to be predicted right.
isPredictableSelectExpensive()527   bool isPredictableSelectExpensive() const {
528     return PredictableSelectIsExpensive;
529   }
530 
fallBackToDAGISel(const Instruction & Inst)531   virtual bool fallBackToDAGISel(const Instruction &Inst) const {
532     return false;
533   }
534 
535   /// Return true if the following transform is beneficial:
536   /// fold (conv (load x)) -> (load (conv*)x)
537   /// On architectures that don't natively support some vector loads
538   /// efficiently, casting the load to a smaller vector of larger types and
539   /// loading is more efficient, however, this can be undone by optimizations in
540   /// dag combiner.
isLoadBitCastBeneficial(EVT LoadVT,EVT BitcastVT,const SelectionDAG & DAG,const MachineMemOperand & MMO)541   virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
542                                        const SelectionDAG &DAG,
543                                        const MachineMemOperand &MMO) const {
544     // Don't do if we could do an indexed load on the original type, but not on
545     // the new one.
546     if (!LoadVT.isSimple() || !BitcastVT.isSimple())
547       return true;
548 
549     MVT LoadMVT = LoadVT.getSimpleVT();
550 
551     // Don't bother doing this if it's just going to be promoted again later, as
552     // doing so might interfere with other combines.
553     if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
554         getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
555       return false;
556 
557     bool Fast = false;
558     return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
559                               MMO, &Fast) && Fast;
560   }
561 
562   /// Return true if the following transform is beneficial:
563   /// (store (y (conv x)), y*)) -> (store x, (x*))
isStoreBitCastBeneficial(EVT StoreVT,EVT BitcastVT,const SelectionDAG & DAG,const MachineMemOperand & MMO)564   virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT,
565                                         const SelectionDAG &DAG,
566                                         const MachineMemOperand &MMO) const {
567     // Default to the same logic as loads.
568     return isLoadBitCastBeneficial(StoreVT, BitcastVT, DAG, MMO);
569   }
570 
571   /// Return true if it is expected to be cheaper to do a store of a non-zero
572   /// vector constant with the given size and type for the address space than to
573   /// store the individual scalar element constants.
storeOfVectorConstantIsCheap(EVT MemVT,unsigned NumElem,unsigned AddrSpace)574   virtual bool storeOfVectorConstantIsCheap(EVT MemVT,
575                                             unsigned NumElem,
576                                             unsigned AddrSpace) const {
577     return false;
578   }
579 
580   /// Allow store merging for the specified type after legalization in addition
581   /// to before legalization. This may transform stores that do not exist
582   /// earlier (for example, stores created from intrinsics).
mergeStoresAfterLegalization(EVT MemVT)583   virtual bool mergeStoresAfterLegalization(EVT MemVT) const {
584     return true;
585   }
586 
587   /// Returns if it's reasonable to merge stores to MemVT size.
canMergeStoresTo(unsigned AS,EVT MemVT,const SelectionDAG & DAG)588   virtual bool canMergeStoresTo(unsigned AS, EVT MemVT,
589                                 const SelectionDAG &DAG) const {
590     return true;
591   }
592 
593   /// Return true if it is cheap to speculate a call to intrinsic cttz.
isCheapToSpeculateCttz()594   virtual bool isCheapToSpeculateCttz() const {
595     return false;
596   }
597 
598   /// Return true if it is cheap to speculate a call to intrinsic ctlz.
isCheapToSpeculateCtlz()599   virtual bool isCheapToSpeculateCtlz() const {
600     return false;
601   }
602 
603   /// Return true if ctlz instruction is fast.
isCtlzFast()604   virtual bool isCtlzFast() const {
605     return false;
606   }
607 
608   /// Return the maximum number of "x & (x - 1)" operations that can be done
609   /// instead of deferring to a custom CTPOP.
getCustomCtpopCost(EVT VT,ISD::CondCode Cond)610   virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const {
611     return 1;
612   }
613 
614   /// Return true if instruction generated for equality comparison is folded
615   /// with instruction generated for signed comparison.
isEqualityCmpFoldedWithSignedCmp()616   virtual bool isEqualityCmpFoldedWithSignedCmp() const { return true; }
617 
618   /// Return true if the heuristic to prefer icmp eq zero should be used in code
619   /// gen prepare.
preferZeroCompareBranch()620   virtual bool preferZeroCompareBranch() const { return false; }
621 
622   /// Return true if it is safe to transform an integer-domain bitwise operation
623   /// into the equivalent floating-point operation. This should be set to true
624   /// if the target has IEEE-754-compliant fabs/fneg operations for the input
625   /// type.
hasBitPreservingFPLogic(EVT VT)626   virtual bool hasBitPreservingFPLogic(EVT VT) const {
627     return false;
628   }
629 
630   /// Return true if it is cheaper to split the store of a merged int val
631   /// from a pair of smaller values into multiple stores.
isMultiStoresCheaperThanBitsMerge(EVT LTy,EVT HTy)632   virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const {
633     return false;
634   }
635 
636   /// Return if the target supports combining a
637   /// chain like:
638   /// \code
639   ///   %andResult = and %val1, #mask
640   ///   %icmpResult = icmp %andResult, 0
641   /// \endcode
642   /// into a single machine instruction of a form like:
643   /// \code
644   ///   cc = test %register, #mask
645   /// \endcode
isMaskAndCmp0FoldingBeneficial(const Instruction & AndI)646   virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
647     return false;
648   }
649 
650   /// Use bitwise logic to make pairs of compares more efficient. For example:
651   /// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
652   /// This should be true when it takes more than one instruction to lower
653   /// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on
654   /// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win.
convertSetCCLogicToBitwiseLogic(EVT VT)655   virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const {
656     return false;
657   }
658 
659   /// Return the preferred operand type if the target has a quick way to compare
660   /// integer values of the given size. Assume that any legal integer type can
661   /// be compared efficiently. Targets may override this to allow illegal wide
662   /// types to return a vector type if there is support to compare that type.
hasFastEqualityCompare(unsigned NumBits)663   virtual MVT hasFastEqualityCompare(unsigned NumBits) const {
664     MVT VT = MVT::getIntegerVT(NumBits);
665     return isTypeLegal(VT) ? VT : MVT::INVALID_SIMPLE_VALUE_TYPE;
666   }
667 
668   /// Return true if the target should transform:
669   /// (X & Y) == Y ---> (~X & Y) == 0
670   /// (X & Y) != Y ---> (~X & Y) != 0
671   ///
672   /// This may be profitable if the target has a bitwise and-not operation that
673   /// sets comparison flags. A target may want to limit the transformation based
674   /// on the type of Y or if Y is a constant.
675   ///
676   /// Note that the transform will not occur if Y is known to be a power-of-2
677   /// because a mask and compare of a single bit can be handled by inverting the
678   /// predicate, for example:
679   /// (X & 8) == 8 ---> (X & 8) != 0
hasAndNotCompare(SDValue Y)680   virtual bool hasAndNotCompare(SDValue Y) const {
681     return false;
682   }
683 
684   /// Return true if the target has a bitwise and-not operation:
685   /// X = ~A & B
686   /// This can be used to simplify select or other instructions.
hasAndNot(SDValue X)687   virtual bool hasAndNot(SDValue X) const {
688     // If the target has the more complex version of this operation, assume that
689     // it has this operation too.
690     return hasAndNotCompare(X);
691   }
692 
693   /// Return true if the target has a bit-test instruction:
694   ///   (X & (1 << Y)) ==/!= 0
695   /// This knowledge can be used to prevent breaking the pattern,
696   /// or creating it if it could be recognized.
hasBitTest(SDValue X,SDValue Y)697   virtual bool hasBitTest(SDValue X, SDValue Y) const { return false; }
698 
699   /// There are two ways to clear extreme bits (either low or high):
700   /// Mask:    x &  (-1 << y)  (the instcombine canonical form)
701   /// Shifts:  x >> y << y
702   /// Return true if the variant with 2 variable shifts is preferred.
703   /// Return false if there is no preference.
shouldFoldMaskToVariableShiftPair(SDValue X)704   virtual bool shouldFoldMaskToVariableShiftPair(SDValue X) const {
705     // By default, let's assume that no one prefers shifts.
706     return false;
707   }
708 
709   /// Return true if it is profitable to fold a pair of shifts into a mask.
710   /// This is usually true on most targets. But some targets, like Thumb1,
711   /// have immediate shift instructions, but no immediate "and" instruction;
712   /// this makes the fold unprofitable.
shouldFoldConstantShiftPairToMask(const SDNode * N,CombineLevel Level)713   virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N,
714                                                  CombineLevel Level) const {
715     return true;
716   }
717 
718   /// Should we tranform the IR-optimal check for whether given truncation
719   /// down into KeptBits would be truncating or not:
720   ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
721   /// Into it's more traditional form:
722   ///   ((%x << C) a>> C) dstcond %x
723   /// Return true if we should transform.
724   /// Return false if there is no preference.
shouldTransformSignedTruncationCheck(EVT XVT,unsigned KeptBits)725   virtual bool shouldTransformSignedTruncationCheck(EVT XVT,
726                                                     unsigned KeptBits) const {
727     // By default, let's assume that no one prefers shifts.
728     return false;
729   }
730 
731   /// Given the pattern
732   ///   (X & (C l>>/<< Y)) ==/!= 0
733   /// return true if it should be transformed into:
734   ///   ((X <</l>> Y) & C) ==/!= 0
735   /// WARNING: if 'X' is a constant, the fold may deadlock!
736   /// FIXME: we could avoid passing XC, but we can't use isConstOrConstSplat()
737   ///        here because it can end up being not linked in.
shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X,ConstantSDNode * XC,ConstantSDNode * CC,SDValue Y,unsigned OldShiftOpcode,unsigned NewShiftOpcode,SelectionDAG & DAG)738   virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
739       SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
740       unsigned OldShiftOpcode, unsigned NewShiftOpcode,
741       SelectionDAG &DAG) const {
742     if (hasBitTest(X, Y)) {
743       // One interesting pattern that we'd want to form is 'bit test':
744       //   ((1 << Y) & C) ==/!= 0
745       // But we also need to be careful not to try to reverse that fold.
746 
747       // Is this '1 << Y' ?
748       if (OldShiftOpcode == ISD::SHL && CC->isOne())
749         return false; // Keep the 'bit test' pattern.
750 
751       // Will it be '1 << Y' after the transform ?
752       if (XC && NewShiftOpcode == ISD::SHL && XC->isOne())
753         return true; // Do form the 'bit test' pattern.
754     }
755 
756     // If 'X' is a constant, and we transform, then we will immediately
757     // try to undo the fold, thus causing endless combine loop.
758     // So by default, let's assume everyone prefers the fold
759     // iff 'X' is not a constant.
760     return !XC;
761   }
762 
763   /// These two forms are equivalent:
764   ///   sub %y, (xor %x, -1)
765   ///   add (add %x, 1), %y
766   /// The variant with two add's is IR-canonical.
767   /// Some targets may prefer one to the other.
preferIncOfAddToSubOfNot(EVT VT)768   virtual bool preferIncOfAddToSubOfNot(EVT VT) const {
769     // By default, let's assume that everyone prefers the form with two add's.
770     return true;
771   }
772 
773   /// Return true if the target wants to use the optimization that
774   /// turns ext(promotableInst1(...(promotableInstN(load)))) into
775   /// promotedInst1(...(promotedInstN(ext(load)))).
enableExtLdPromotion()776   bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
777 
778   /// Return true if the target can combine store(extractelement VectorTy,
779   /// Idx).
780   /// \p Cost[out] gives the cost of that transformation when this is true.
canCombineStoreAndExtract(Type * VectorTy,Value * Idx,unsigned & Cost)781   virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
782                                          unsigned &Cost) const {
783     return false;
784   }
785 
786   /// Return true if inserting a scalar into a variable element of an undef
787   /// vector is more efficiently handled by splatting the scalar instead.
shouldSplatInsEltVarIndex(EVT)788   virtual bool shouldSplatInsEltVarIndex(EVT) const {
789     return false;
790   }
791 
792   /// Return true if target always benefits from combining into FMA for a
793   /// given value type. This must typically return false on targets where FMA
794   /// takes more cycles to execute than FADD.
enableAggressiveFMAFusion(EVT VT)795   virtual bool enableAggressiveFMAFusion(EVT VT) const {
796     return false;
797   }
798 
799   /// Return the ValueType of the result of SETCC operations.
800   virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
801                                  EVT VT) const;
802 
803   /// Return the ValueType for comparison libcalls. Comparions libcalls include
804   /// floating point comparion calls, and Ordered/Unordered check calls on
805   /// floating point numbers.
806   virtual
807   MVT::SimpleValueType getCmpLibcallReturnType() const;
808 
809   /// For targets without i1 registers, this gives the nature of the high-bits
810   /// of boolean values held in types wider than i1.
811   ///
812   /// "Boolean values" are special true/false values produced by nodes like
813   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
814   /// Not to be confused with general values promoted from i1.  Some cpus
815   /// distinguish between vectors of boolean and scalars; the isVec parameter
816   /// selects between the two kinds.  For example on X86 a scalar boolean should
817   /// be zero extended from i1, while the elements of a vector of booleans
818   /// should be sign extended from i1.
819   ///
820   /// Some cpus also treat floating point types the same way as they treat
821   /// vectors instead of the way they treat scalars.
getBooleanContents(bool isVec,bool isFloat)822   BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
823     if (isVec)
824       return BooleanVectorContents;
825     return isFloat ? BooleanFloatContents : BooleanContents;
826   }
827 
getBooleanContents(EVT Type)828   BooleanContent getBooleanContents(EVT Type) const {
829     return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
830   }
831 
832   /// Return target scheduling preference.
getSchedulingPreference()833   Sched::Preference getSchedulingPreference() const {
834     return SchedPreferenceInfo;
835   }
836 
837   /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
838   /// for different nodes. This function returns the preference (or none) for
839   /// the given node.
getSchedulingPreference(SDNode *)840   virtual Sched::Preference getSchedulingPreference(SDNode *) const {
841     return Sched::None;
842   }
843 
844   /// Return the register class that should be used for the specified value
845   /// type.
846   virtual const TargetRegisterClass *getRegClassFor(MVT VT, bool isDivergent = false) const {
847     (void)isDivergent;
848     const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
849     assert(RC && "This value type is not natively supported!");
850     return RC;
851   }
852 
853   /// Allows target to decide about the register class of the
854   /// specific value that is live outside the defining block.
855   /// Returns true if the value needs uniform register class.
requiresUniformRegister(MachineFunction & MF,const Value *)856   virtual bool requiresUniformRegister(MachineFunction &MF,
857                                        const Value *) const {
858     return false;
859   }
860 
861   /// Return the 'representative' register class for the specified value
862   /// type.
863   ///
864   /// The 'representative' register class is the largest legal super-reg
865   /// register class for the register class of the value type.  For example, on
866   /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
867   /// register class is GR64 on x86_64.
getRepRegClassFor(MVT VT)868   virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
869     const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
870     return RC;
871   }
872 
873   /// Return the cost of the 'representative' register class for the specified
874   /// value type.
getRepRegClassCostFor(MVT VT)875   virtual uint8_t getRepRegClassCostFor(MVT VT) const {
876     return RepRegClassCostForVT[VT.SimpleTy];
877   }
878 
879   /// Return true if SHIFT instructions should be expanded to SHIFT_PARTS
880   /// instructions, and false if a library call is preferred (e.g for code-size
881   /// reasons).
shouldExpandShift(SelectionDAG & DAG,SDNode * N)882   virtual bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const {
883     return true;
884   }
885 
886   /// Return true if the target has native support for the specified value type.
887   /// This means that it has a register that directly holds it without
888   /// promotions or expansions.
isTypeLegal(EVT VT)889   bool isTypeLegal(EVT VT) const {
890     assert(!VT.isSimple() ||
891            (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
892     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
893   }
894 
895   class ValueTypeActionImpl {
896     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
897     /// that indicates how instruction selection should deal with the type.
898     LegalizeTypeAction ValueTypeActions[MVT::LAST_VALUETYPE];
899 
900   public:
ValueTypeActionImpl()901     ValueTypeActionImpl() {
902       std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions),
903                 TypeLegal);
904     }
905 
getTypeAction(MVT VT)906     LegalizeTypeAction getTypeAction(MVT VT) const {
907       return ValueTypeActions[VT.SimpleTy];
908     }
909 
setTypeAction(MVT VT,LegalizeTypeAction Action)910     void setTypeAction(MVT VT, LegalizeTypeAction Action) {
911       ValueTypeActions[VT.SimpleTy] = Action;
912     }
913   };
914 
getValueTypeActions()915   const ValueTypeActionImpl &getValueTypeActions() const {
916     return ValueTypeActions;
917   }
918 
919   /// Return how we should legalize values of this type, either it is already
920   /// legal (return 'Legal') or we need to promote it to a larger type (return
921   /// 'Promote'), or we need to expand it into multiple registers of smaller
922   /// integer type (return 'Expand').  'Custom' is not an option.
getTypeAction(LLVMContext & Context,EVT VT)923   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
924     return getTypeConversion(Context, VT).first;
925   }
getTypeAction(MVT VT)926   LegalizeTypeAction getTypeAction(MVT VT) const {
927     return ValueTypeActions.getTypeAction(VT);
928   }
929 
930   /// For types supported by the target, this is an identity function.  For
931   /// types that must be promoted to larger types, this returns the larger type
932   /// to promote to.  For integer types that are larger than the largest integer
933   /// register, this contains one step in the expansion to get to the smaller
934   /// register. For illegal floating point types, this returns the integer type
935   /// to transform to.
getTypeToTransformTo(LLVMContext & Context,EVT VT)936   EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
937     return getTypeConversion(Context, VT).second;
938   }
939 
940   /// For types supported by the target, this is an identity function.  For
941   /// types that must be expanded (i.e. integer types that are larger than the
942   /// largest integer register or illegal floating point types), this returns
943   /// the largest legal type it will be expanded to.
getTypeToExpandTo(LLVMContext & Context,EVT VT)944   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
945     assert(!VT.isVector());
946     while (true) {
947       switch (getTypeAction(Context, VT)) {
948       case TypeLegal:
949         return VT;
950       case TypeExpandInteger:
951         VT = getTypeToTransformTo(Context, VT);
952         break;
953       default:
954         llvm_unreachable("Type is not legal nor is it to be expanded!");
955       }
956     }
957   }
958 
959   /// Vector types are broken down into some number of legal first class types.
960   /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
961   /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
962   /// turns into 4 EVT::i32 values with both PPC and X86.
963   ///
964   /// This method returns the number of registers needed, and the VT for each
965   /// register.  It also returns the VT and quantity of the intermediate values
966   /// before they are promoted/expanded.
967   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
968                                   EVT &IntermediateVT,
969                                   unsigned &NumIntermediates,
970                                   MVT &RegisterVT) const;
971 
972   /// Certain targets such as MIPS require that some types such as vectors are
973   /// always broken down into scalars in some contexts. This occurs even if the
974   /// vector type is legal.
getVectorTypeBreakdownForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT,EVT & IntermediateVT,unsigned & NumIntermediates,MVT & RegisterVT)975   virtual unsigned getVectorTypeBreakdownForCallingConv(
976       LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
977       unsigned &NumIntermediates, MVT &RegisterVT) const {
978     return getVectorTypeBreakdown(Context, VT, IntermediateVT, NumIntermediates,
979                                   RegisterVT);
980   }
981 
982   struct IntrinsicInfo {
983     unsigned     opc = 0;          // target opcode
984     EVT          memVT;            // memory VT
985 
986     // value representing memory location
987     PointerUnion<const Value *, const PseudoSourceValue *> ptrVal;
988 
989     int          offset = 0;       // offset off of ptrVal
990     uint64_t     size = 0;         // the size of the memory location
991                                    // (taken from memVT if zero)
992     MaybeAlign align = Align(1);   // alignment
993 
994     MachineMemOperand::Flags flags = MachineMemOperand::MONone;
995     IntrinsicInfo() = default;
996   };
997 
998   /// Given an intrinsic, checks if on the target the intrinsic will need to map
999   /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1000   /// true and store the intrinsic information into the IntrinsicInfo that was
1001   /// passed to the function.
getTgtMemIntrinsic(IntrinsicInfo &,const CallInst &,MachineFunction &,unsigned)1002   virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
1003                                   MachineFunction &,
1004                                   unsigned /*Intrinsic*/) const {
1005     return false;
1006   }
1007 
1008   /// Returns true if the target can instruction select the specified FP
1009   /// immediate natively. If false, the legalizer will materialize the FP
1010   /// immediate as a load from a constant pool.
1011   virtual bool isFPImmLegal(const APFloat & /*Imm*/, EVT /*VT*/,
1012                             bool ForCodeSize = false) const {
1013     return false;
1014   }
1015 
1016   /// Targets can use this to indicate that they only support *some*
1017   /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
1018   /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
1019   /// legal.
isShuffleMaskLegal(ArrayRef<int>,EVT)1020   virtual bool isShuffleMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const {
1021     return true;
1022   }
1023 
1024   /// Returns true if the operation can trap for the value type.
1025   ///
1026   /// VT must be a legal type. By default, we optimistically assume most
1027   /// operations don't trap except for integer divide and remainder.
1028   virtual bool canOpTrap(unsigned Op, EVT VT) const;
1029 
1030   /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
1031   /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
1032   /// constant pool entry.
isVectorClearMaskLegal(ArrayRef<int>,EVT)1033   virtual bool isVectorClearMaskLegal(ArrayRef<int> /*Mask*/,
1034                                       EVT /*VT*/) const {
1035     return false;
1036   }
1037 
1038   /// Return how this operation should be treated: either it is legal, needs to
1039   /// be promoted to a larger size, needs to be expanded to some other code
1040   /// sequence, or the target has a custom expander for it.
getOperationAction(unsigned Op,EVT VT)1041   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
1042     if (VT.isExtended()) return Expand;
1043     // If a target-specific SDNode requires legalization, require the target
1044     // to provide custom legalization for it.
1045     if (Op >= array_lengthof(OpActions[0])) return Custom;
1046     return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
1047   }
1048 
1049   /// Custom method defined by each target to indicate if an operation which
1050   /// may require a scale is supported natively by the target.
1051   /// If not, the operation is illegal.
isSupportedFixedPointOperation(unsigned Op,EVT VT,unsigned Scale)1052   virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT,
1053                                               unsigned Scale) const {
1054     return false;
1055   }
1056 
1057   /// Some fixed point operations may be natively supported by the target but
1058   /// only for specific scales. This method allows for checking
1059   /// if the width is supported by the target for a given operation that may
1060   /// depend on scale.
getFixedPointOperationAction(unsigned Op,EVT VT,unsigned Scale)1061   LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT,
1062                                               unsigned Scale) const {
1063     auto Action = getOperationAction(Op, VT);
1064     if (Action != Legal)
1065       return Action;
1066 
1067     // This operation is supported in this type but may only work on specific
1068     // scales.
1069     bool Supported;
1070     switch (Op) {
1071     default:
1072       llvm_unreachable("Unexpected fixed point operation.");
1073     case ISD::SMULFIX:
1074     case ISD::SMULFIXSAT:
1075     case ISD::UMULFIX:
1076     case ISD::UMULFIXSAT:
1077     case ISD::SDIVFIX:
1078     case ISD::SDIVFIXSAT:
1079     case ISD::UDIVFIX:
1080     case ISD::UDIVFIXSAT:
1081       Supported = isSupportedFixedPointOperation(Op, VT, Scale);
1082       break;
1083     }
1084 
1085     return Supported ? Action : Expand;
1086   }
1087 
1088   // If Op is a strict floating-point operation, return the result
1089   // of getOperationAction for the equivalent non-strict operation.
getStrictFPOperationAction(unsigned Op,EVT VT)1090   LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const {
1091     unsigned EqOpc;
1092     switch (Op) {
1093       default: llvm_unreachable("Unexpected FP pseudo-opcode");
1094 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
1095       case ISD::STRICT_##DAGN: EqOpc = ISD::DAGN; break;
1096 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
1097       case ISD::STRICT_##DAGN: EqOpc = ISD::SETCC; break;
1098 #include "llvm/IR/ConstrainedOps.def"
1099     }
1100 
1101     return getOperationAction(EqOpc, VT);
1102   }
1103 
1104   /// Return true if the specified operation is legal on this target or can be
1105   /// made legal with custom lowering. This is used to help guide high-level
1106   /// lowering decisions. LegalOnly is an optional convenience for code paths
1107   /// traversed pre and post legalisation.
1108   bool isOperationLegalOrCustom(unsigned Op, EVT VT,
1109                                 bool LegalOnly = false) const {
1110     if (LegalOnly)
1111       return isOperationLegal(Op, VT);
1112 
1113     return (VT == MVT::Other || isTypeLegal(VT)) &&
1114       (getOperationAction(Op, VT) == Legal ||
1115        getOperationAction(Op, VT) == Custom);
1116   }
1117 
1118   /// Return true if the specified operation is legal on this target or can be
1119   /// made legal using promotion. This is used to help guide high-level lowering
1120   /// decisions. LegalOnly is an optional convenience for code paths traversed
1121   /// pre and post legalisation.
1122   bool isOperationLegalOrPromote(unsigned Op, EVT VT,
1123                                  bool LegalOnly = false) const {
1124     if (LegalOnly)
1125       return isOperationLegal(Op, VT);
1126 
1127     return (VT == MVT::Other || isTypeLegal(VT)) &&
1128       (getOperationAction(Op, VT) == Legal ||
1129        getOperationAction(Op, VT) == Promote);
1130   }
1131 
1132   /// Return true if the specified operation is legal on this target or can be
1133   /// made legal with custom lowering or using promotion. This is used to help
1134   /// guide high-level lowering decisions. LegalOnly is an optional convenience
1135   /// for code paths traversed pre and post legalisation.
1136   bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT,
1137                                          bool LegalOnly = false) const {
1138     if (LegalOnly)
1139       return isOperationLegal(Op, VT);
1140 
1141     return (VT == MVT::Other || isTypeLegal(VT)) &&
1142       (getOperationAction(Op, VT) == Legal ||
1143        getOperationAction(Op, VT) == Custom ||
1144        getOperationAction(Op, VT) == Promote);
1145   }
1146 
1147   /// Return true if the operation uses custom lowering, regardless of whether
1148   /// the type is legal or not.
isOperationCustom(unsigned Op,EVT VT)1149   bool isOperationCustom(unsigned Op, EVT VT) const {
1150     return getOperationAction(Op, VT) == Custom;
1151   }
1152 
1153   /// Return true if lowering to a jump table is allowed.
areJTsAllowed(const Function * Fn)1154   virtual bool areJTsAllowed(const Function *Fn) const {
1155     if (Fn->getFnAttribute("no-jump-tables").getValueAsBool())
1156       return false;
1157 
1158     return isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1159            isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
1160   }
1161 
1162   /// Check whether the range [Low,High] fits in a machine word.
rangeFitsInWord(const APInt & Low,const APInt & High,const DataLayout & DL)1163   bool rangeFitsInWord(const APInt &Low, const APInt &High,
1164                        const DataLayout &DL) const {
1165     // FIXME: Using the pointer type doesn't seem ideal.
1166     uint64_t BW = DL.getIndexSizeInBits(0u);
1167     uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
1168     return Range <= BW;
1169   }
1170 
1171   /// Return true if lowering to a jump table is suitable for a set of case
1172   /// clusters which may contain \p NumCases cases, \p Range range of values.
1173   virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases,
1174                                       uint64_t Range, ProfileSummaryInfo *PSI,
1175                                       BlockFrequencyInfo *BFI) const;
1176 
1177   /// Return true if lowering to a bit test is suitable for a set of case
1178   /// clusters which contains \p NumDests unique destinations, \p Low and
1179   /// \p High as its lowest and highest case values, and expects \p NumCmps
1180   /// case value comparisons. Check if the number of destinations, comparison
1181   /// metric, and range are all suitable.
isSuitableForBitTests(unsigned NumDests,unsigned NumCmps,const APInt & Low,const APInt & High,const DataLayout & DL)1182   bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps,
1183                              const APInt &Low, const APInt &High,
1184                              const DataLayout &DL) const {
1185     // FIXME: I don't think NumCmps is the correct metric: a single case and a
1186     // range of cases both require only one branch to lower. Just looking at the
1187     // number of clusters and destinations should be enough to decide whether to
1188     // build bit tests.
1189 
1190     // To lower a range with bit tests, the range must fit the bitwidth of a
1191     // machine word.
1192     if (!rangeFitsInWord(Low, High, DL))
1193       return false;
1194 
1195     // Decide whether it's profitable to lower this range with bit tests. Each
1196     // destination requires a bit test and branch, and there is an overall range
1197     // check branch. For a small number of clusters, separate comparisons might
1198     // be cheaper, and for many destinations, splitting the range might be
1199     // better.
1200     return (NumDests == 1 && NumCmps >= 3) || (NumDests == 2 && NumCmps >= 5) ||
1201            (NumDests == 3 && NumCmps >= 6);
1202   }
1203 
1204   /// Return true if the specified operation is illegal on this target or
1205   /// unlikely to be made legal with custom lowering. This is used to help guide
1206   /// high-level lowering decisions.
isOperationExpand(unsigned Op,EVT VT)1207   bool isOperationExpand(unsigned Op, EVT VT) const {
1208     return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
1209   }
1210 
1211   /// Return true if the specified operation is legal on this target.
isOperationLegal(unsigned Op,EVT VT)1212   bool isOperationLegal(unsigned Op, EVT VT) const {
1213     return (VT == MVT::Other || isTypeLegal(VT)) &&
1214            getOperationAction(Op, VT) == Legal;
1215   }
1216 
1217   /// Return how this load with extension should be treated: either it is legal,
1218   /// needs to be promoted to a larger size, needs to be expanded to some other
1219   /// code sequence, or the target has a custom expander for it.
getLoadExtAction(unsigned ExtType,EVT ValVT,EVT MemVT)1220   LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
1221                                   EVT MemVT) const {
1222     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1223     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1224     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1225     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE &&
1226            MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!");
1227     unsigned Shift = 4 * ExtType;
1228     return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf);
1229   }
1230 
1231   /// Return true if the specified load with extension is legal on this target.
isLoadExtLegal(unsigned ExtType,EVT ValVT,EVT MemVT)1232   bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1233     return getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
1234   }
1235 
1236   /// Return true if the specified load with extension is legal or custom
1237   /// on this target.
isLoadExtLegalOrCustom(unsigned ExtType,EVT ValVT,EVT MemVT)1238   bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1239     return getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
1240            getLoadExtAction(ExtType, ValVT, MemVT) == Custom;
1241   }
1242 
1243   /// Return how this store with truncation should be treated: either it is
1244   /// legal, needs to be promoted to a larger size, needs to be expanded to some
1245   /// other code sequence, or the target has a custom expander for it.
getTruncStoreAction(EVT ValVT,EVT MemVT)1246   LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
1247     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1248     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1249     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1250     assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE &&
1251            "Table isn't big enough!");
1252     return TruncStoreActions[ValI][MemI];
1253   }
1254 
1255   /// Return true if the specified store with truncation is legal on this
1256   /// target.
isTruncStoreLegal(EVT ValVT,EVT MemVT)1257   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
1258     return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal;
1259   }
1260 
1261   /// Return true if the specified store with truncation has solution on this
1262   /// target.
isTruncStoreLegalOrCustom(EVT ValVT,EVT MemVT)1263   bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const {
1264     return isTypeLegal(ValVT) &&
1265       (getTruncStoreAction(ValVT, MemVT) == Legal ||
1266        getTruncStoreAction(ValVT, MemVT) == Custom);
1267   }
1268 
1269   /// Return how the indexed load should be treated: either it is legal, needs
1270   /// to be promoted to a larger size, needs to be expanded to some other code
1271   /// sequence, or the target has a custom expander for it.
getIndexedLoadAction(unsigned IdxMode,MVT VT)1272   LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
1273     return getIndexedModeAction(IdxMode, VT, IMAB_Load);
1274   }
1275 
1276   /// Return true if the specified indexed load is legal on this target.
isIndexedLoadLegal(unsigned IdxMode,EVT VT)1277   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
1278     return VT.isSimple() &&
1279       (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1280        getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
1281   }
1282 
1283   /// Return how the indexed store should be treated: either it is legal, needs
1284   /// to be promoted to a larger size, needs to be expanded to some other code
1285   /// sequence, or the target has a custom expander for it.
getIndexedStoreAction(unsigned IdxMode,MVT VT)1286   LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
1287     return getIndexedModeAction(IdxMode, VT, IMAB_Store);
1288   }
1289 
1290   /// Return true if the specified indexed load is legal on this target.
isIndexedStoreLegal(unsigned IdxMode,EVT VT)1291   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
1292     return VT.isSimple() &&
1293       (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1294        getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
1295   }
1296 
1297   /// Return how the indexed load should be treated: either it is legal, needs
1298   /// to be promoted to a larger size, needs to be expanded to some other code
1299   /// sequence, or the target has a custom expander for it.
getIndexedMaskedLoadAction(unsigned IdxMode,MVT VT)1300   LegalizeAction getIndexedMaskedLoadAction(unsigned IdxMode, MVT VT) const {
1301     return getIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad);
1302   }
1303 
1304   /// Return true if the specified indexed load is legal on this target.
isIndexedMaskedLoadLegal(unsigned IdxMode,EVT VT)1305   bool isIndexedMaskedLoadLegal(unsigned IdxMode, EVT VT) const {
1306     return VT.isSimple() &&
1307            (getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1308             getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
1309   }
1310 
1311   /// Return how the indexed store should be treated: either it is legal, needs
1312   /// to be promoted to a larger size, needs to be expanded to some other code
1313   /// sequence, or the target has a custom expander for it.
getIndexedMaskedStoreAction(unsigned IdxMode,MVT VT)1314   LegalizeAction getIndexedMaskedStoreAction(unsigned IdxMode, MVT VT) const {
1315     return getIndexedModeAction(IdxMode, VT, IMAB_MaskedStore);
1316   }
1317 
1318   /// Return true if the specified indexed load is legal on this target.
isIndexedMaskedStoreLegal(unsigned IdxMode,EVT VT)1319   bool isIndexedMaskedStoreLegal(unsigned IdxMode, EVT VT) const {
1320     return VT.isSimple() &&
1321            (getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1322             getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
1323   }
1324 
1325   /// Returns true if the index type for a masked gather/scatter requires
1326   /// extending
shouldExtendGSIndex(EVT VT,EVT & EltTy)1327   virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const { return false; }
1328 
1329   // Returns true if VT is a legal index type for masked gathers/scatters
1330   // on this target
shouldRemoveExtendFromGSIndex(EVT VT)1331   virtual bool shouldRemoveExtendFromGSIndex(EVT VT) const { return false; }
1332 
1333   /// Return how the condition code should be treated: either it is legal, needs
1334   /// to be expanded to some other code sequence, or the target has a custom
1335   /// expander for it.
1336   LegalizeAction
getCondCodeAction(ISD::CondCode CC,MVT VT)1337   getCondCodeAction(ISD::CondCode CC, MVT VT) const {
1338     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
1339            ((unsigned)VT.SimpleTy >> 3) < array_lengthof(CondCodeActions[0]) &&
1340            "Table isn't big enough!");
1341     // See setCondCodeAction for how this is encoded.
1342     uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
1343     uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
1344     LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
1345     assert(Action != Promote && "Can't promote condition code!");
1346     return Action;
1347   }
1348 
1349   /// Return true if the specified condition code is legal on this target.
isCondCodeLegal(ISD::CondCode CC,MVT VT)1350   bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
1351     return getCondCodeAction(CC, VT) == Legal;
1352   }
1353 
1354   /// Return true if the specified condition code is legal or custom on this
1355   /// target.
isCondCodeLegalOrCustom(ISD::CondCode CC,MVT VT)1356   bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const {
1357     return getCondCodeAction(CC, VT) == Legal ||
1358            getCondCodeAction(CC, VT) == Custom;
1359   }
1360 
1361   /// If the action for this operation is to promote, this method returns the
1362   /// ValueType to promote to.
getTypeToPromoteTo(unsigned Op,MVT VT)1363   MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
1364     assert(getOperationAction(Op, VT) == Promote &&
1365            "This operation isn't promoted!");
1366 
1367     // See if this has an explicit type specified.
1368     std::map<std::pair<unsigned, MVT::SimpleValueType>,
1369              MVT::SimpleValueType>::const_iterator PTTI =
1370       PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
1371     if (PTTI != PromoteToType.end()) return PTTI->second;
1372 
1373     assert((VT.isInteger() || VT.isFloatingPoint()) &&
1374            "Cannot autopromote this type, add it with AddPromotedToType.");
1375 
1376     MVT NVT = VT;
1377     do {
1378       NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
1379       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
1380              "Didn't find type to promote to!");
1381     } while (!isTypeLegal(NVT) ||
1382               getOperationAction(Op, NVT) == Promote);
1383     return NVT;
1384   }
1385 
1386   /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
1387   /// operations except for the pointer size.  If AllowUnknown is true, this
1388   /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
1389   /// otherwise it will assert.
1390   EVT getValueType(const DataLayout &DL, Type *Ty,
1391                    bool AllowUnknown = false) const {
1392     // Lower scalar pointers to native pointer types.
1393     if (auto *PTy = dyn_cast<PointerType>(Ty))
1394       return getPointerTy(DL, PTy->getAddressSpace());
1395 
1396     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1397       Type *EltTy = VTy->getElementType();
1398       // Lower vectors of pointers to native pointer types.
1399       if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
1400         EVT PointerTy(getPointerTy(DL, PTy->getAddressSpace()));
1401         EltTy = PointerTy.getTypeForEVT(Ty->getContext());
1402       }
1403       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
1404                               VTy->getElementCount());
1405     }
1406 
1407     return EVT::getEVT(Ty, AllowUnknown);
1408   }
1409 
1410   EVT getMemValueType(const DataLayout &DL, Type *Ty,
1411                       bool AllowUnknown = false) const {
1412     // Lower scalar pointers to native pointer types.
1413     if (PointerType *PTy = dyn_cast<PointerType>(Ty))
1414       return getPointerMemTy(DL, PTy->getAddressSpace());
1415     else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1416       Type *Elm = VTy->getElementType();
1417       if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
1418         EVT PointerTy(getPointerMemTy(DL, PT->getAddressSpace()));
1419         Elm = PointerTy.getTypeForEVT(Ty->getContext());
1420       }
1421       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
1422                               VTy->getElementCount());
1423     }
1424 
1425     return getValueType(DL, Ty, AllowUnknown);
1426   }
1427 
1428 
1429   /// Return the MVT corresponding to this LLVM type. See getValueType.
1430   MVT getSimpleValueType(const DataLayout &DL, Type *Ty,
1431                          bool AllowUnknown = false) const {
1432     return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
1433   }
1434 
1435   /// Return the desired alignment for ByVal or InAlloca aggregate function
1436   /// arguments in the caller parameter area.  This is the actual alignment, not
1437   /// its logarithm.
1438   virtual unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
1439 
1440   /// Return the type of registers that this ValueType will eventually require.
getRegisterType(MVT VT)1441   MVT getRegisterType(MVT VT) const {
1442     assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
1443     return RegisterTypeForVT[VT.SimpleTy];
1444   }
1445 
1446   /// Return the type of registers that this ValueType will eventually require.
getRegisterType(LLVMContext & Context,EVT VT)1447   MVT getRegisterType(LLVMContext &Context, EVT VT) const {
1448     if (VT.isSimple()) {
1449       assert((unsigned)VT.getSimpleVT().SimpleTy <
1450                 array_lengthof(RegisterTypeForVT));
1451       return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
1452     }
1453     if (VT.isVector()) {
1454       EVT VT1;
1455       MVT RegisterVT;
1456       unsigned NumIntermediates;
1457       (void)getVectorTypeBreakdown(Context, VT, VT1,
1458                                    NumIntermediates, RegisterVT);
1459       return RegisterVT;
1460     }
1461     if (VT.isInteger()) {
1462       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
1463     }
1464     llvm_unreachable("Unsupported extended type!");
1465   }
1466 
1467   /// Return the number of registers that this ValueType will eventually
1468   /// require.
1469   ///
1470   /// This is one for any types promoted to live in larger registers, but may be
1471   /// more than one for types (like i64) that are split into pieces.  For types
1472   /// like i140, which are first promoted then expanded, it is the number of
1473   /// registers needed to hold all the bits of the original type.  For an i140
1474   /// on a 32 bit machine this means 5 registers.
getNumRegisters(LLVMContext & Context,EVT VT)1475   unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
1476     if (VT.isSimple()) {
1477       assert((unsigned)VT.getSimpleVT().SimpleTy <
1478                 array_lengthof(NumRegistersForVT));
1479       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
1480     }
1481     if (VT.isVector()) {
1482       EVT VT1;
1483       MVT VT2;
1484       unsigned NumIntermediates;
1485       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
1486     }
1487     if (VT.isInteger()) {
1488       unsigned BitWidth = VT.getSizeInBits();
1489       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
1490       return (BitWidth + RegWidth - 1) / RegWidth;
1491     }
1492     llvm_unreachable("Unsupported extended type!");
1493   }
1494 
1495   /// Certain combinations of ABIs, Targets and features require that types
1496   /// are legal for some operations and not for other operations.
1497   /// For MIPS all vector types must be passed through the integer register set.
getRegisterTypeForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT)1498   virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context,
1499                                             CallingConv::ID CC, EVT VT) const {
1500     return getRegisterType(Context, VT);
1501   }
1502 
1503   /// Certain targets require unusual breakdowns of certain types. For MIPS,
1504   /// this occurs when a vector type is used, as vector are passed through the
1505   /// integer register set.
getNumRegistersForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT)1506   virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context,
1507                                                  CallingConv::ID CC,
1508                                                  EVT VT) const {
1509     return getNumRegisters(Context, VT);
1510   }
1511 
1512   /// Certain targets have context senstive alignment requirements, where one
1513   /// type has the alignment requirement of another type.
getABIAlignmentForCallingConv(Type * ArgTy,DataLayout DL)1514   virtual Align getABIAlignmentForCallingConv(Type *ArgTy,
1515                                               DataLayout DL) const {
1516     return DL.getABITypeAlign(ArgTy);
1517   }
1518 
1519   /// If true, then instruction selection should seek to shrink the FP constant
1520   /// of the specified type to a smaller type in order to save space and / or
1521   /// reduce runtime.
ShouldShrinkFPConstant(EVT)1522   virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
1523 
1524   /// Return true if it is profitable to reduce a load to a smaller type.
1525   /// Example: (i16 (trunc (i32 (load x))) -> i16 load x
shouldReduceLoadWidth(SDNode * Load,ISD::LoadExtType ExtTy,EVT NewVT)1526   virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
1527                                      EVT NewVT) const {
1528     // By default, assume that it is cheaper to extract a subvector from a wide
1529     // vector load rather than creating multiple narrow vector loads.
1530     if (NewVT.isVector() && !Load->hasOneUse())
1531       return false;
1532 
1533     return true;
1534   }
1535 
1536   /// When splitting a value of the specified type into parts, does the Lo
1537   /// or Hi part come first?  This usually follows the endianness, except
1538   /// for ppcf128, where the Hi part always comes first.
hasBigEndianPartOrdering(EVT VT,const DataLayout & DL)1539   bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
1540     return DL.isBigEndian() || VT == MVT::ppcf128;
1541   }
1542 
1543   /// If true, the target has custom DAG combine transformations that it can
1544   /// perform for the specified node.
hasTargetDAGCombine(ISD::NodeType NT)1545   bool hasTargetDAGCombine(ISD::NodeType NT) const {
1546     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1547     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
1548   }
1549 
getGatherAllAliasesMaxDepth()1550   unsigned getGatherAllAliasesMaxDepth() const {
1551     return GatherAllAliasesMaxDepth;
1552   }
1553 
1554   /// Returns the size of the platform's va_list object.
getVaListSizeInBits(const DataLayout & DL)1555   virtual unsigned getVaListSizeInBits(const DataLayout &DL) const {
1556     return getPointerTy(DL).getSizeInBits();
1557   }
1558 
1559   /// Get maximum # of store operations permitted for llvm.memset
1560   ///
1561   /// This function returns the maximum number of store operations permitted
1562   /// to replace a call to llvm.memset. The value is set by the target at the
1563   /// performance threshold for such a replacement. If OptSize is true,
1564   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemset(bool OptSize)1565   unsigned getMaxStoresPerMemset(bool OptSize) const {
1566     return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
1567   }
1568 
1569   /// Get maximum # of store operations permitted for llvm.memcpy
1570   ///
1571   /// This function returns the maximum number of store operations permitted
1572   /// to replace a call to llvm.memcpy. The value is set by the target at the
1573   /// performance threshold for such a replacement. If OptSize is true,
1574   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemcpy(bool OptSize)1575   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
1576     return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
1577   }
1578 
1579   /// \brief Get maximum # of store operations to be glued together
1580   ///
1581   /// This function returns the maximum number of store operations permitted
1582   /// to glue together during lowering of llvm.memcpy. The value is set by
1583   //  the target at the performance threshold for such a replacement.
getMaxGluedStoresPerMemcpy()1584   virtual unsigned getMaxGluedStoresPerMemcpy() const {
1585     return MaxGluedStoresPerMemcpy;
1586   }
1587 
1588   /// Get maximum # of load operations permitted for memcmp
1589   ///
1590   /// This function returns the maximum number of load operations permitted
1591   /// to replace a call to memcmp. The value is set by the target at the
1592   /// performance threshold for such a replacement. If OptSize is true,
1593   /// return the limit for functions that have OptSize attribute.
getMaxExpandSizeMemcmp(bool OptSize)1594   unsigned getMaxExpandSizeMemcmp(bool OptSize) const {
1595     return OptSize ? MaxLoadsPerMemcmpOptSize : MaxLoadsPerMemcmp;
1596   }
1597 
1598   /// Get maximum # of store operations permitted for llvm.memmove
1599   ///
1600   /// This function returns the maximum number of store operations permitted
1601   /// to replace a call to llvm.memmove. The value is set by the target at the
1602   /// performance threshold for such a replacement. If OptSize is true,
1603   /// return the limit for functions that have OptSize attribute.
getMaxStoresPerMemmove(bool OptSize)1604   unsigned getMaxStoresPerMemmove(bool OptSize) const {
1605     return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
1606   }
1607 
1608   /// Determine if the target supports unaligned memory accesses.
1609   ///
1610   /// This function returns true if the target allows unaligned memory accesses
1611   /// of the specified type in the given address space. If true, it also returns
1612   /// whether the unaligned memory access is "fast" in the last argument by
1613   /// reference. This is used, for example, in situations where an array
1614   /// copy/move/set is converted to a sequence of store operations. Its use
1615   /// helps to ensure that such replacements don't generate code that causes an
1616   /// alignment error (trap) on the target machine.
1617   virtual bool allowsMisalignedMemoryAccesses(
1618       EVT, unsigned AddrSpace = 0, Align Alignment = Align(1),
1619       MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1620       bool * /*Fast*/ = nullptr) const {
1621     return false;
1622   }
1623 
1624   /// LLT handling variant.
1625   virtual bool allowsMisalignedMemoryAccesses(
1626       LLT, unsigned AddrSpace = 0, Align Alignment = Align(1),
1627       MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1628       bool * /*Fast*/ = nullptr) const {
1629     return false;
1630   }
1631 
1632   /// This function returns true if the memory access is aligned or if the
1633   /// target allows this specific unaligned memory access. If the access is
1634   /// allowed, the optional final parameter returns if the access is also fast
1635   /// (as defined by the target).
1636   bool allowsMemoryAccessForAlignment(
1637       LLVMContext &Context, const DataLayout &DL, EVT VT,
1638       unsigned AddrSpace = 0, Align Alignment = Align(1),
1639       MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1640       bool *Fast = nullptr) const;
1641 
1642   /// Return true if the memory access of this type is aligned or if the target
1643   /// allows this specific unaligned access for the given MachineMemOperand.
1644   /// If the access is allowed, the optional final parameter returns if the
1645   /// access is also fast (as defined by the target).
1646   bool allowsMemoryAccessForAlignment(LLVMContext &Context,
1647                                       const DataLayout &DL, EVT VT,
1648                                       const MachineMemOperand &MMO,
1649                                       bool *Fast = nullptr) const;
1650 
1651   /// Return true if the target supports a memory access of this type for the
1652   /// given address space and alignment. If the access is allowed, the optional
1653   /// final parameter returns if the access is also fast (as defined by the
1654   /// target).
1655   virtual bool
1656   allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
1657                      unsigned AddrSpace = 0, Align Alignment = Align(1),
1658                      MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1659                      bool *Fast = nullptr) const;
1660 
1661   /// Return true if the target supports a memory access of this type for the
1662   /// given MachineMemOperand. If the access is allowed, the optional
1663   /// final parameter returns if the access is also fast (as defined by the
1664   /// target).
1665   bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
1666                           const MachineMemOperand &MMO,
1667                           bool *Fast = nullptr) const;
1668 
1669   /// LLT handling variant.
1670   bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, LLT Ty,
1671                           const MachineMemOperand &MMO,
1672                           bool *Fast = nullptr) const;
1673 
1674   /// Returns the target specific optimal type for load and store operations as
1675   /// a result of memset, memcpy, and memmove lowering.
1676   /// It returns EVT::Other if the type should be determined using generic
1677   /// target-independent logic.
1678   virtual EVT
getOptimalMemOpType(const MemOp & Op,const AttributeList &)1679   getOptimalMemOpType(const MemOp &Op,
1680                       const AttributeList & /*FuncAttributes*/) const {
1681     return MVT::Other;
1682   }
1683 
1684   /// LLT returning variant.
1685   virtual LLT
getOptimalMemOpLLT(const MemOp & Op,const AttributeList &)1686   getOptimalMemOpLLT(const MemOp &Op,
1687                      const AttributeList & /*FuncAttributes*/) const {
1688     return LLT();
1689   }
1690 
1691   /// Returns true if it's safe to use load / store of the specified type to
1692   /// expand memcpy / memset inline.
1693   ///
1694   /// This is mostly true for all types except for some special cases. For
1695   /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
1696   /// fstpl which also does type conversion. Note the specified type doesn't
1697   /// have to be legal as the hook is used before type legalization.
isSafeMemOpType(MVT)1698   virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
1699 
1700   /// Return lower limit for number of blocks in a jump table.
1701   virtual unsigned getMinimumJumpTableEntries() const;
1702 
1703   /// Return lower limit of the density in a jump table.
1704   unsigned getMinimumJumpTableDensity(bool OptForSize) const;
1705 
1706   /// Return upper limit for number of entries in a jump table.
1707   /// Zero if no limit.
1708   unsigned getMaximumJumpTableSize() const;
1709 
1710   virtual bool isJumpTableRelative() const;
1711 
1712   /// If a physical register, this specifies the register that
1713   /// llvm.savestack/llvm.restorestack should save and restore.
getStackPointerRegisterToSaveRestore()1714   Register getStackPointerRegisterToSaveRestore() const {
1715     return StackPointerRegisterToSaveRestore;
1716   }
1717 
1718   /// If a physical register, this returns the register that receives the
1719   /// exception address on entry to an EH pad.
1720   virtual Register
getExceptionPointerRegister(const Constant * PersonalityFn)1721   getExceptionPointerRegister(const Constant *PersonalityFn) const {
1722     return Register();
1723   }
1724 
1725   /// If a physical register, this returns the register that receives the
1726   /// exception typeid on entry to a landing pad.
1727   virtual Register
getExceptionSelectorRegister(const Constant * PersonalityFn)1728   getExceptionSelectorRegister(const Constant *PersonalityFn) const {
1729     return Register();
1730   }
1731 
needsFixedCatchObjects()1732   virtual bool needsFixedCatchObjects() const {
1733     report_fatal_error("Funclet EH is not implemented for this target");
1734   }
1735 
1736   /// Return the minimum stack alignment of an argument.
getMinStackArgumentAlignment()1737   Align getMinStackArgumentAlignment() const {
1738     return MinStackArgumentAlignment;
1739   }
1740 
1741   /// Return the minimum function alignment.
getMinFunctionAlignment()1742   Align getMinFunctionAlignment() const { return MinFunctionAlignment; }
1743 
1744   /// Return the preferred function alignment.
getPrefFunctionAlignment()1745   Align getPrefFunctionAlignment() const { return PrefFunctionAlignment; }
1746 
1747   /// Return the preferred loop alignment.
1748   virtual Align getPrefLoopAlignment(MachineLoop *ML = nullptr) const {
1749     return PrefLoopAlignment;
1750   }
1751 
1752   /// Should loops be aligned even when the function is marked OptSize (but not
1753   /// MinSize).
alignLoopsWithOptSize()1754   virtual bool alignLoopsWithOptSize() const {
1755     return false;
1756   }
1757 
1758   /// If the target has a standard location for the stack protector guard,
1759   /// returns the address of that location. Otherwise, returns nullptr.
1760   /// DEPRECATED: please override useLoadStackGuardNode and customize
1761   ///             LOAD_STACK_GUARD, or customize \@llvm.stackguard().
1762   virtual Value *getIRStackGuard(IRBuilder<> &IRB) const;
1763 
1764   /// Inserts necessary declarations for SSP (stack protection) purpose.
1765   /// Should be used only when getIRStackGuard returns nullptr.
1766   virtual void insertSSPDeclarations(Module &M) const;
1767 
1768   /// Return the variable that's previously inserted by insertSSPDeclarations,
1769   /// if any, otherwise return nullptr. Should be used only when
1770   /// getIRStackGuard returns nullptr.
1771   virtual Value *getSDagStackGuard(const Module &M) const;
1772 
1773   /// If this function returns true, stack protection checks should XOR the
1774   /// frame pointer (or whichever pointer is used to address locals) into the
1775   /// stack guard value before checking it. getIRStackGuard must return nullptr
1776   /// if this returns true.
useStackGuardXorFP()1777   virtual bool useStackGuardXorFP() const { return false; }
1778 
1779   /// If the target has a standard stack protection check function that
1780   /// performs validation and error handling, returns the function. Otherwise,
1781   /// returns nullptr. Must be previously inserted by insertSSPDeclarations.
1782   /// Should be used only when getIRStackGuard returns nullptr.
1783   virtual Function *getSSPStackGuardCheck(const Module &M) const;
1784 
1785 protected:
1786   Value *getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1787                                             bool UseTLS) const;
1788 
1789 public:
1790   /// Returns the target-specific address of the unsafe stack pointer.
1791   virtual Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const;
1792 
1793   /// Returns the name of the symbol used to emit stack probes or the empty
1794   /// string if not applicable.
hasStackProbeSymbol(MachineFunction & MF)1795   virtual bool hasStackProbeSymbol(MachineFunction &MF) const { return false; }
1796 
hasInlineStackProbe(MachineFunction & MF)1797   virtual bool hasInlineStackProbe(MachineFunction &MF) const { return false; }
1798 
getStackProbeSymbolName(MachineFunction & MF)1799   virtual StringRef getStackProbeSymbolName(MachineFunction &MF) const {
1800     return "";
1801   }
1802 
1803   /// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we
1804   /// are happy to sink it into basic blocks. A cast may be free, but not
1805   /// necessarily a no-op. e.g. a free truncate from a 64-bit to 32-bit pointer.
1806   virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const;
1807 
1808   /// Return true if the pointer arguments to CI should be aligned by aligning
1809   /// the object whose address is being passed. If so then MinSize is set to the
1810   /// minimum size the object must be to be aligned and PrefAlign is set to the
1811   /// preferred alignment.
shouldAlignPointerArgs(CallInst *,unsigned &,unsigned &)1812   virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
1813                                       unsigned & /*PrefAlign*/) const {
1814     return false;
1815   }
1816 
1817   //===--------------------------------------------------------------------===//
1818   /// \name Helpers for TargetTransformInfo implementations
1819   /// @{
1820 
1821   /// Get the ISD node that corresponds to the Instruction class opcode.
1822   int InstructionOpcodeToISD(unsigned Opcode) const;
1823 
1824   /// Estimate the cost of type-legalization and the legalized type.
1825   std::pair<InstructionCost, MVT> getTypeLegalizationCost(const DataLayout &DL,
1826                                                           Type *Ty) const;
1827 
1828   /// @}
1829 
1830   //===--------------------------------------------------------------------===//
1831   /// \name Helpers for atomic expansion.
1832   /// @{
1833 
1834   /// Returns the maximum atomic operation size (in bits) supported by
1835   /// the backend. Atomic operations greater than this size (as well
1836   /// as ones that are not naturally aligned), will be expanded by
1837   /// AtomicExpandPass into an __atomic_* library call.
getMaxAtomicSizeInBitsSupported()1838   unsigned getMaxAtomicSizeInBitsSupported() const {
1839     return MaxAtomicSizeInBitsSupported;
1840   }
1841 
1842   /// Returns the size of the smallest cmpxchg or ll/sc instruction
1843   /// the backend supports.  Any smaller operations are widened in
1844   /// AtomicExpandPass.
1845   ///
1846   /// Note that *unlike* operations above the maximum size, atomic ops
1847   /// are still natively supported below the minimum; they just
1848   /// require a more complex expansion.
getMinCmpXchgSizeInBits()1849   unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
1850 
1851   /// Whether the target supports unaligned atomic operations.
supportsUnalignedAtomics()1852   bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics; }
1853 
1854   /// Whether AtomicExpandPass should automatically insert fences and reduce
1855   /// ordering for this atomic. This should be true for most architectures with
1856   /// weak memory ordering. Defaults to false.
shouldInsertFencesForAtomic(const Instruction * I)1857   virtual bool shouldInsertFencesForAtomic(const Instruction *I) const {
1858     return false;
1859   }
1860 
1861   /// Perform a load-linked operation on Addr, returning a "Value *" with the
1862   /// corresponding pointee type. This may entail some non-trivial operations to
1863   /// truncate or reconstruct types that will be illegal in the backend. See
1864   /// ARMISelLowering for an example implementation.
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord)1865   virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
1866                                 AtomicOrdering Ord) const {
1867     llvm_unreachable("Load linked unimplemented on this target");
1868   }
1869 
1870   /// Perform a store-conditional operation to Addr. Return the status of the
1871   /// store. This should be 0 if the store succeeded, non-zero otherwise.
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord)1872   virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
1873                                       Value *Addr, AtomicOrdering Ord) const {
1874     llvm_unreachable("Store conditional unimplemented on this target");
1875   }
1876 
1877   /// Perform a masked atomicrmw using a target-specific intrinsic. This
1878   /// represents the core LL/SC loop which will be lowered at a late stage by
1879   /// the backend.
emitMaskedAtomicRMWIntrinsic(IRBuilder<> & Builder,AtomicRMWInst * AI,Value * AlignedAddr,Value * Incr,Value * Mask,Value * ShiftAmt,AtomicOrdering Ord)1880   virtual Value *emitMaskedAtomicRMWIntrinsic(IRBuilder<> &Builder,
1881                                               AtomicRMWInst *AI,
1882                                               Value *AlignedAddr, Value *Incr,
1883                                               Value *Mask, Value *ShiftAmt,
1884                                               AtomicOrdering Ord) const {
1885     llvm_unreachable("Masked atomicrmw expansion unimplemented on this target");
1886   }
1887 
1888   /// Perform a masked cmpxchg using a target-specific intrinsic. This
1889   /// represents the core LL/SC loop which will be lowered at a late stage by
1890   /// the backend.
emitMaskedAtomicCmpXchgIntrinsic(IRBuilder<> & Builder,AtomicCmpXchgInst * CI,Value * AlignedAddr,Value * CmpVal,Value * NewVal,Value * Mask,AtomicOrdering Ord)1891   virtual Value *emitMaskedAtomicCmpXchgIntrinsic(
1892       IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
1893       Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
1894     llvm_unreachable("Masked cmpxchg expansion unimplemented on this target");
1895   }
1896 
1897   /// Inserts in the IR a target-specific intrinsic specifying a fence.
1898   /// It is called by AtomicExpandPass before expanding an
1899   ///   AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
1900   ///   if shouldInsertFencesForAtomic returns true.
1901   ///
1902   /// Inst is the original atomic instruction, prior to other expansions that
1903   /// may be performed.
1904   ///
1905   /// This function should either return a nullptr, or a pointer to an IR-level
1906   ///   Instruction*. Even complex fence sequences can be represented by a
1907   ///   single Instruction* through an intrinsic to be lowered later.
1908   /// Backends should override this method to produce target-specific intrinsic
1909   ///   for their fences.
1910   /// FIXME: Please note that the default implementation here in terms of
1911   ///   IR-level fences exists for historical/compatibility reasons and is
1912   ///   *unsound* ! Fences cannot, in general, be used to restore sequential
1913   ///   consistency. For example, consider the following example:
1914   /// atomic<int> x = y = 0;
1915   /// int r1, r2, r3, r4;
1916   /// Thread 0:
1917   ///   x.store(1);
1918   /// Thread 1:
1919   ///   y.store(1);
1920   /// Thread 2:
1921   ///   r1 = x.load();
1922   ///   r2 = y.load();
1923   /// Thread 3:
1924   ///   r3 = y.load();
1925   ///   r4 = x.load();
1926   ///  r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
1927   ///  seq_cst. But if they are lowered to monotonic accesses, no amount of
1928   ///  IR-level fences can prevent it.
1929   /// @{
emitLeadingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord)1930   virtual Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
1931                                         AtomicOrdering Ord) const {
1932     if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
1933       return Builder.CreateFence(Ord);
1934     else
1935       return nullptr;
1936   }
1937 
emitTrailingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord)1938   virtual Instruction *emitTrailingFence(IRBuilder<> &Builder,
1939                                          Instruction *Inst,
1940                                          AtomicOrdering Ord) const {
1941     if (isAcquireOrStronger(Ord))
1942       return Builder.CreateFence(Ord);
1943     else
1944       return nullptr;
1945   }
1946   /// @}
1947 
1948   // Emits code that executes when the comparison result in the ll/sc
1949   // expansion of a cmpxchg instruction is such that the store-conditional will
1950   // not execute.  This makes it possible to balance out the load-linked with
1951   // a dedicated instruction, if desired.
1952   // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
1953   // be unnecessarily held, except if clrex, inserted by this hook, is executed.
emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> & Builder)1954   virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const {}
1955 
1956   /// Returns true if the given (atomic) store should be expanded by the
1957   /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
shouldExpandAtomicStoreInIR(StoreInst * SI)1958   virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
1959     return false;
1960   }
1961 
1962   /// Returns true if arguments should be sign-extended in lib calls.
shouldSignExtendTypeInLibCall(EVT Type,bool IsSigned)1963   virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
1964     return IsSigned;
1965   }
1966 
1967   /// Returns true if arguments should be extended in lib calls.
shouldExtendTypeInLibCall(EVT Type)1968   virtual bool shouldExtendTypeInLibCall(EVT Type) const {
1969     return true;
1970   }
1971 
1972   /// Returns how the given (atomic) load should be expanded by the
1973   /// IR-level AtomicExpand pass.
shouldExpandAtomicLoadInIR(LoadInst * LI)1974   virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const {
1975     return AtomicExpansionKind::None;
1976   }
1977 
1978   /// Returns how the given atomic cmpxchg should be expanded by the IR-level
1979   /// AtomicExpand pass.
1980   virtual AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI)1981   shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
1982     return AtomicExpansionKind::None;
1983   }
1984 
1985   /// Returns how the IR-level AtomicExpand pass should expand the given
1986   /// AtomicRMW, if at all. Default is to never expand.
shouldExpandAtomicRMWInIR(AtomicRMWInst * RMW)1987   virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
1988     return RMW->isFloatingPointOperation() ?
1989       AtomicExpansionKind::CmpXChg : AtomicExpansionKind::None;
1990   }
1991 
1992   /// On some platforms, an AtomicRMW that never actually modifies the value
1993   /// (such as fetch_add of 0) can be turned into a fence followed by an
1994   /// atomic load. This may sound useless, but it makes it possible for the
1995   /// processor to keep the cacheline shared, dramatically improving
1996   /// performance. And such idempotent RMWs are useful for implementing some
1997   /// kinds of locks, see for example (justification + benchmarks):
1998   /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
1999   /// This method tries doing that transformation, returning the atomic load if
2000   /// it succeeds, and nullptr otherwise.
2001   /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
2002   /// another round of expansion.
2003   virtual LoadInst *
lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst * RMWI)2004   lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
2005     return nullptr;
2006   }
2007 
2008   /// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
2009   /// SIGN_EXTEND, or ANY_EXTEND).
getExtendForAtomicOps()2010   virtual ISD::NodeType getExtendForAtomicOps() const {
2011     return ISD::ZERO_EXTEND;
2012   }
2013 
2014   /// Returns how the platform's atomic compare and swap expects its comparison
2015   /// value to be extended (ZERO_EXTEND, SIGN_EXTEND, or ANY_EXTEND). This is
2016   /// separate from getExtendForAtomicOps, which is concerned with the
2017   /// sign-extension of the instruction's output, whereas here we are concerned
2018   /// with the sign-extension of the input. For targets with compare-and-swap
2019   /// instructions (or sub-word comparisons in their LL/SC loop expansions),
2020   /// the input can be ANY_EXTEND, but the output will still have a specific
2021   /// extension.
getExtendForAtomicCmpSwapArg()2022   virtual ISD::NodeType getExtendForAtomicCmpSwapArg() const {
2023     return ISD::ANY_EXTEND;
2024   }
2025 
2026   /// @}
2027 
2028   /// Returns true if we should normalize
2029   /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
2030   /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
2031   /// that it saves us from materializing N0 and N1 in an integer register.
2032   /// Targets that are able to perform and/or on flags should return false here.
shouldNormalizeToSelectSequence(LLVMContext & Context,EVT VT)2033   virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
2034                                                EVT VT) const {
2035     // If a target has multiple condition registers, then it likely has logical
2036     // operations on those registers.
2037     if (hasMultipleConditionRegisters())
2038       return false;
2039     // Only do the transform if the value won't be split into multiple
2040     // registers.
2041     LegalizeTypeAction Action = getTypeAction(Context, VT);
2042     return Action != TypeExpandInteger && Action != TypeExpandFloat &&
2043       Action != TypeSplitVector;
2044   }
2045 
isProfitableToCombineMinNumMaxNum(EVT VT)2046   virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const { return true; }
2047 
2048   /// Return true if a select of constants (select Cond, C1, C2) should be
2049   /// transformed into simple math ops with the condition value. For example:
2050   /// select Cond, C1, C1-1 --> add (zext Cond), C1-1
convertSelectOfConstantsToMath(EVT VT)2051   virtual bool convertSelectOfConstantsToMath(EVT VT) const {
2052     return false;
2053   }
2054 
2055   /// Return true if it is profitable to transform an integer
2056   /// multiplication-by-constant into simpler operations like shifts and adds.
2057   /// This may be true if the target does not directly support the
2058   /// multiplication operation for the specified type or the sequence of simpler
2059   /// ops is faster than the multiply.
decomposeMulByConstant(LLVMContext & Context,EVT VT,SDValue C)2060   virtual bool decomposeMulByConstant(LLVMContext &Context,
2061                                       EVT VT, SDValue C) const {
2062     return false;
2063   }
2064 
2065   /// Return true if it is more correct/profitable to use strict FP_TO_INT
2066   /// conversion operations - canonicalizing the FP source value instead of
2067   /// converting all cases and then selecting based on value.
2068   /// This may be true if the target throws exceptions for out of bounds
2069   /// conversions or has fast FP CMOV.
shouldUseStrictFP_TO_INT(EVT FpVT,EVT IntVT,bool IsSigned)2070   virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
2071                                         bool IsSigned) const {
2072     return false;
2073   }
2074 
2075   //===--------------------------------------------------------------------===//
2076   // TargetLowering Configuration Methods - These methods should be invoked by
2077   // the derived class constructor to configure this object for the target.
2078   //
2079 protected:
2080   /// Specify how the target extends the result of integer and floating point
2081   /// boolean values from i1 to a wider type.  See getBooleanContents.
setBooleanContents(BooleanContent Ty)2082   void setBooleanContents(BooleanContent Ty) {
2083     BooleanContents = Ty;
2084     BooleanFloatContents = Ty;
2085   }
2086 
2087   /// Specify how the target extends the result of integer and floating point
2088   /// boolean values from i1 to a wider type.  See getBooleanContents.
setBooleanContents(BooleanContent IntTy,BooleanContent FloatTy)2089   void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
2090     BooleanContents = IntTy;
2091     BooleanFloatContents = FloatTy;
2092   }
2093 
2094   /// Specify how the target extends the result of a vector boolean value from a
2095   /// vector of i1 to a wider type.  See getBooleanContents.
setBooleanVectorContents(BooleanContent Ty)2096   void setBooleanVectorContents(BooleanContent Ty) {
2097     BooleanVectorContents = Ty;
2098   }
2099 
2100   /// Specify the target scheduling preference.
setSchedulingPreference(Sched::Preference Pref)2101   void setSchedulingPreference(Sched::Preference Pref) {
2102     SchedPreferenceInfo = Pref;
2103   }
2104 
2105   /// Indicate the minimum number of blocks to generate jump tables.
2106   void setMinimumJumpTableEntries(unsigned Val);
2107 
2108   /// Indicate the maximum number of entries in jump tables.
2109   /// Set to zero to generate unlimited jump tables.
2110   void setMaximumJumpTableSize(unsigned);
2111 
2112   /// If set to a physical register, this specifies the register that
2113   /// llvm.savestack/llvm.restorestack should save and restore.
setStackPointerRegisterToSaveRestore(Register R)2114   void setStackPointerRegisterToSaveRestore(Register R) {
2115     StackPointerRegisterToSaveRestore = R;
2116   }
2117 
2118   /// Tells the code generator that the target has multiple (allocatable)
2119   /// condition registers that can be used to store the results of comparisons
2120   /// for use by selects and conditional branches. With multiple condition
2121   /// registers, the code generator will not aggressively sink comparisons into
2122   /// the blocks of their users.
2123   void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
2124     HasMultipleConditionRegisters = hasManyRegs;
2125   }
2126 
2127   /// Tells the code generator that the target has BitExtract instructions.
2128   /// The code generator will aggressively sink "shift"s into the blocks of
2129   /// their users if the users will generate "and" instructions which can be
2130   /// combined with "shift" to BitExtract instructions.
2131   void setHasExtractBitsInsn(bool hasExtractInsn = true) {
2132     HasExtractBitsInsn = hasExtractInsn;
2133   }
2134 
2135   /// Tells the code generator not to expand logic operations on comparison
2136   /// predicates into separate sequences that increase the amount of flow
2137   /// control.
2138   void setJumpIsExpensive(bool isExpensive = true);
2139 
2140   /// Tells the code generator which bitwidths to bypass.
addBypassSlowDiv(unsigned int SlowBitWidth,unsigned int FastBitWidth)2141   void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
2142     BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
2143   }
2144 
2145   /// Add the specified register class as an available regclass for the
2146   /// specified value type. This indicates the selector can handle values of
2147   /// that class natively.
addRegisterClass(MVT VT,const TargetRegisterClass * RC)2148   void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
2149     assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
2150     RegClassForVT[VT.SimpleTy] = RC;
2151   }
2152 
2153   /// Return the largest legal super-reg register class of the register class
2154   /// for the specified type and its associated "cost".
2155   virtual std::pair<const TargetRegisterClass *, uint8_t>
2156   findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
2157 
2158   /// Once all of the register classes are added, this allows us to compute
2159   /// derived properties we expose.
2160   void computeRegisterProperties(const TargetRegisterInfo *TRI);
2161 
2162   /// Indicate that the specified operation does not work with the specified
2163   /// type and indicate what to do about it. Note that VT may refer to either
2164   /// the type of a result or that of an operand of Op.
setOperationAction(unsigned Op,MVT VT,LegalizeAction Action)2165   void setOperationAction(unsigned Op, MVT VT,
2166                           LegalizeAction Action) {
2167     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
2168     OpActions[(unsigned)VT.SimpleTy][Op] = Action;
2169   }
2170 
2171   /// Indicate that the specified load with extension does not work with the
2172   /// specified type and indicate what to do about it.
setLoadExtAction(unsigned ExtType,MVT ValVT,MVT MemVT,LegalizeAction Action)2173   void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
2174                         LegalizeAction Action) {
2175     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
2176            MemVT.isValid() && "Table isn't big enough!");
2177     assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2178     unsigned Shift = 4 * ExtType;
2179     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift);
2180     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift;
2181   }
2182 
2183   /// Indicate that the specified truncating store does not work with the
2184   /// specified type and indicate what to do about it.
setTruncStoreAction(MVT ValVT,MVT MemVT,LegalizeAction Action)2185   void setTruncStoreAction(MVT ValVT, MVT MemVT,
2186                            LegalizeAction Action) {
2187     assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
2188     TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
2189   }
2190 
2191   /// Indicate that the specified indexed load does or does not work with the
2192   /// specified type and indicate what to do abort it.
2193   ///
2194   /// NOTE: All indexed mode loads are initialized to Expand in
2195   /// TargetLowering.cpp
setIndexedLoadAction(unsigned IdxMode,MVT VT,LegalizeAction Action)2196   void setIndexedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action) {
2197     setIndexedModeAction(IdxMode, VT, IMAB_Load, Action);
2198   }
2199 
2200   /// Indicate that the specified indexed store does or does not work with the
2201   /// specified type and indicate what to do about it.
2202   ///
2203   /// NOTE: All indexed mode stores are initialized to Expand in
2204   /// TargetLowering.cpp
setIndexedStoreAction(unsigned IdxMode,MVT VT,LegalizeAction Action)2205   void setIndexedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action) {
2206     setIndexedModeAction(IdxMode, VT, IMAB_Store, Action);
2207   }
2208 
2209   /// Indicate that the specified indexed masked load does or does not work with
2210   /// the specified type and indicate what to do about it.
2211   ///
2212   /// NOTE: All indexed mode masked loads are initialized to Expand in
2213   /// TargetLowering.cpp
setIndexedMaskedLoadAction(unsigned IdxMode,MVT VT,LegalizeAction Action)2214   void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT,
2215                                   LegalizeAction Action) {
2216     setIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad, Action);
2217   }
2218 
2219   /// Indicate that the specified indexed masked store does or does not work
2220   /// with the specified type and indicate what to do about it.
2221   ///
2222   /// NOTE: All indexed mode masked stores are initialized to Expand in
2223   /// TargetLowering.cpp
setIndexedMaskedStoreAction(unsigned IdxMode,MVT VT,LegalizeAction Action)2224   void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT,
2225                                    LegalizeAction Action) {
2226     setIndexedModeAction(IdxMode, VT, IMAB_MaskedStore, Action);
2227   }
2228 
2229   /// Indicate that the specified condition code is or isn't supported on the
2230   /// target and indicate what to do about it.
setCondCodeAction(ISD::CondCode CC,MVT VT,LegalizeAction Action)2231   void setCondCodeAction(ISD::CondCode CC, MVT VT,
2232                          LegalizeAction Action) {
2233     assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) &&
2234            "Table isn't big enough!");
2235     assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2236     /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the 32-bit
2237     /// value and the upper 29 bits index into the second dimension of the array
2238     /// to select what 32-bit value to use.
2239     uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
2240     CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
2241     CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
2242   }
2243 
2244   /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
2245   /// to trying a larger integer/fp until it can find one that works. If that
2246   /// default is insufficient, this method can be used by the target to override
2247   /// the default.
AddPromotedToType(unsigned Opc,MVT OrigVT,MVT DestVT)2248   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2249     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
2250   }
2251 
2252   /// Convenience method to set an operation to Promote and specify the type
2253   /// in a single call.
setOperationPromotedToType(unsigned Opc,MVT OrigVT,MVT DestVT)2254   void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2255     setOperationAction(Opc, OrigVT, Promote);
2256     AddPromotedToType(Opc, OrigVT, DestVT);
2257   }
2258 
2259   /// Targets should invoke this method for each target independent node that
2260   /// they want to provide a custom DAG combiner for by implementing the
2261   /// PerformDAGCombine virtual method.
setTargetDAGCombine(ISD::NodeType NT)2262   void setTargetDAGCombine(ISD::NodeType NT) {
2263     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
2264     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
2265   }
2266 
2267   /// Set the target's minimum function alignment.
setMinFunctionAlignment(Align Alignment)2268   void setMinFunctionAlignment(Align Alignment) {
2269     MinFunctionAlignment = Alignment;
2270   }
2271 
2272   /// Set the target's preferred function alignment.  This should be set if
2273   /// there is a performance benefit to higher-than-minimum alignment
setPrefFunctionAlignment(Align Alignment)2274   void setPrefFunctionAlignment(Align Alignment) {
2275     PrefFunctionAlignment = Alignment;
2276   }
2277 
2278   /// Set the target's preferred loop alignment. Default alignment is one, it
2279   /// means the target does not care about loop alignment. The target may also
2280   /// override getPrefLoopAlignment to provide per-loop values.
setPrefLoopAlignment(Align Alignment)2281   void setPrefLoopAlignment(Align Alignment) { PrefLoopAlignment = Alignment; }
2282 
2283   /// Set the minimum stack alignment of an argument.
setMinStackArgumentAlignment(Align Alignment)2284   void setMinStackArgumentAlignment(Align Alignment) {
2285     MinStackArgumentAlignment = Alignment;
2286   }
2287 
2288   /// Set the maximum atomic operation size supported by the
2289   /// backend. Atomic operations greater than this size (as well as
2290   /// ones that are not naturally aligned), will be expanded by
2291   /// AtomicExpandPass into an __atomic_* library call.
setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)2292   void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) {
2293     MaxAtomicSizeInBitsSupported = SizeInBits;
2294   }
2295 
2296   /// Sets the minimum cmpxchg or ll/sc size supported by the backend.
setMinCmpXchgSizeInBits(unsigned SizeInBits)2297   void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
2298     MinCmpXchgSizeInBits = SizeInBits;
2299   }
2300 
2301   /// Sets whether unaligned atomic operations are supported.
setSupportsUnalignedAtomics(bool UnalignedSupported)2302   void setSupportsUnalignedAtomics(bool UnalignedSupported) {
2303     SupportsUnalignedAtomics = UnalignedSupported;
2304   }
2305 
2306 public:
2307   //===--------------------------------------------------------------------===//
2308   // Addressing mode description hooks (used by LSR etc).
2309   //
2310 
2311   /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
2312   /// instructions reading the address. This allows as much computation as
2313   /// possible to be done in the address mode for that operand. This hook lets
2314   /// targets also pass back when this should be done on intrinsics which
2315   /// load/store.
getAddrModeArguments(IntrinsicInst *,SmallVectorImpl<Value * > &,Type * &)2316   virtual bool getAddrModeArguments(IntrinsicInst * /*I*/,
2317                                     SmallVectorImpl<Value*> &/*Ops*/,
2318                                     Type *&/*AccessTy*/) const {
2319     return false;
2320   }
2321 
2322   /// This represents an addressing mode of:
2323   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
2324   /// If BaseGV is null,  there is no BaseGV.
2325   /// If BaseOffs is zero, there is no base offset.
2326   /// If HasBaseReg is false, there is no base register.
2327   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
2328   /// no scale.
2329   struct AddrMode {
2330     GlobalValue *BaseGV = nullptr;
2331     int64_t      BaseOffs = 0;
2332     bool         HasBaseReg = false;
2333     int64_t      Scale = 0;
2334     AddrMode() = default;
2335   };
2336 
2337   /// Return true if the addressing mode represented by AM is legal for this
2338   /// target, for a load/store of the specified type.
2339   ///
2340   /// The type may be VoidTy, in which case only return true if the addressing
2341   /// mode is legal for a load/store of any legal type.  TODO: Handle
2342   /// pre/postinc as well.
2343   ///
2344   /// If the address space cannot be determined, it will be -1.
2345   ///
2346   /// TODO: Remove default argument
2347   virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
2348                                      Type *Ty, unsigned AddrSpace,
2349                                      Instruction *I = nullptr) const;
2350 
2351   /// Return the cost of the scaling factor used in the addressing mode
2352   /// represented by AM for this target, for a load/store of the specified type.
2353   ///
2354   /// If the AM is supported, the return value must be >= 0.
2355   /// If the AM is not supported, it returns a negative value.
2356   /// TODO: Handle pre/postinc as well.
2357   /// TODO: Remove default argument
2358   virtual InstructionCost getScalingFactorCost(const DataLayout &DL,
2359                                                const AddrMode &AM, Type *Ty,
2360                                                unsigned AS = 0) const {
2361     // Default: assume that any scaling factor used in a legal AM is free.
2362     if (isLegalAddressingMode(DL, AM, Ty, AS))
2363       return 0;
2364     return -1;
2365   }
2366 
2367   /// Return true if the specified immediate is legal icmp immediate, that is
2368   /// the target has icmp instructions which can compare a register against the
2369   /// immediate without having to materialize the immediate into a register.
isLegalICmpImmediate(int64_t)2370   virtual bool isLegalICmpImmediate(int64_t) const {
2371     return true;
2372   }
2373 
2374   /// Return true if the specified immediate is legal add immediate, that is the
2375   /// target has add instructions which can add a register with the immediate
2376   /// without having to materialize the immediate into a register.
isLegalAddImmediate(int64_t)2377   virtual bool isLegalAddImmediate(int64_t) const {
2378     return true;
2379   }
2380 
2381   /// Return true if the specified immediate is legal for the value input of a
2382   /// store instruction.
isLegalStoreImmediate(int64_t Value)2383   virtual bool isLegalStoreImmediate(int64_t Value) const {
2384     // Default implementation assumes that at least 0 works since it is likely
2385     // that a zero register exists or a zero immediate is allowed.
2386     return Value == 0;
2387   }
2388 
2389   /// Return true if it's significantly cheaper to shift a vector by a uniform
2390   /// scalar than by an amount which will vary across each lane. On x86 before
2391   /// AVX2 for example, there is a "psllw" instruction for the former case, but
2392   /// no simple instruction for a general "a << b" operation on vectors.
2393   /// This should also apply to lowering for vector funnel shifts (rotates).
isVectorShiftByScalarCheap(Type * Ty)2394   virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
2395     return false;
2396   }
2397 
2398   /// Given a shuffle vector SVI representing a vector splat, return a new
2399   /// scalar type of size equal to SVI's scalar type if the new type is more
2400   /// profitable. Returns nullptr otherwise. For example under MVE float splats
2401   /// are converted to integer to prevent the need to move from SPR to GPR
2402   /// registers.
shouldConvertSplatType(ShuffleVectorInst * SVI)2403   virtual Type* shouldConvertSplatType(ShuffleVectorInst* SVI) const {
2404     return nullptr;
2405   }
2406 
2407   /// Given a set in interconnected phis of type 'From' that are loaded/stored
2408   /// or bitcast to type 'To', return true if the set should be converted to
2409   /// 'To'.
shouldConvertPhiType(Type * From,Type * To)2410   virtual bool shouldConvertPhiType(Type *From, Type *To) const {
2411     return (From->isIntegerTy() || From->isFloatingPointTy()) &&
2412            (To->isIntegerTy() || To->isFloatingPointTy());
2413   }
2414 
2415   /// Returns true if the opcode is a commutative binary operation.
isCommutativeBinOp(unsigned Opcode)2416   virtual bool isCommutativeBinOp(unsigned Opcode) const {
2417     // FIXME: This should get its info from the td file.
2418     switch (Opcode) {
2419     case ISD::ADD:
2420     case ISD::SMIN:
2421     case ISD::SMAX:
2422     case ISD::UMIN:
2423     case ISD::UMAX:
2424     case ISD::MUL:
2425     case ISD::MULHU:
2426     case ISD::MULHS:
2427     case ISD::SMUL_LOHI:
2428     case ISD::UMUL_LOHI:
2429     case ISD::FADD:
2430     case ISD::FMUL:
2431     case ISD::AND:
2432     case ISD::OR:
2433     case ISD::XOR:
2434     case ISD::SADDO:
2435     case ISD::UADDO:
2436     case ISD::ADDC:
2437     case ISD::ADDE:
2438     case ISD::SADDSAT:
2439     case ISD::UADDSAT:
2440     case ISD::FMINNUM:
2441     case ISD::FMAXNUM:
2442     case ISD::FMINNUM_IEEE:
2443     case ISD::FMAXNUM_IEEE:
2444     case ISD::FMINIMUM:
2445     case ISD::FMAXIMUM:
2446       return true;
2447     default: return false;
2448     }
2449   }
2450 
2451   /// Return true if the node is a math/logic binary operator.
isBinOp(unsigned Opcode)2452   virtual bool isBinOp(unsigned Opcode) const {
2453     // A commutative binop must be a binop.
2454     if (isCommutativeBinOp(Opcode))
2455       return true;
2456     // These are non-commutative binops.
2457     switch (Opcode) {
2458     case ISD::SUB:
2459     case ISD::SHL:
2460     case ISD::SRL:
2461     case ISD::SRA:
2462     case ISD::SDIV:
2463     case ISD::UDIV:
2464     case ISD::SREM:
2465     case ISD::UREM:
2466     case ISD::SSUBSAT:
2467     case ISD::USUBSAT:
2468     case ISD::FSUB:
2469     case ISD::FDIV:
2470     case ISD::FREM:
2471       return true;
2472     default:
2473       return false;
2474     }
2475   }
2476 
2477   /// Return true if it's free to truncate a value of type FromTy to type
2478   /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
2479   /// by referencing its sub-register AX.
2480   /// Targets must return false when FromTy <= ToTy.
isTruncateFree(Type * FromTy,Type * ToTy)2481   virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
2482     return false;
2483   }
2484 
2485   /// Return true if a truncation from FromTy to ToTy is permitted when deciding
2486   /// whether a call is in tail position. Typically this means that both results
2487   /// would be assigned to the same register or stack slot, but it could mean
2488   /// the target performs adequate checks of its own before proceeding with the
2489   /// tail call.  Targets must return false when FromTy <= ToTy.
allowTruncateForTailCall(Type * FromTy,Type * ToTy)2490   virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
2491     return false;
2492   }
2493 
isTruncateFree(EVT FromVT,EVT ToVT)2494   virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const {
2495     return false;
2496   }
2497 
isProfitableToHoist(Instruction * I)2498   virtual bool isProfitableToHoist(Instruction *I) const { return true; }
2499 
2500   /// Return true if the extension represented by \p I is free.
2501   /// Unlikely the is[Z|FP]ExtFree family which is based on types,
2502   /// this method can use the context provided by \p I to decide
2503   /// whether or not \p I is free.
2504   /// This method extends the behavior of the is[Z|FP]ExtFree family.
2505   /// In other words, if is[Z|FP]Free returns true, then this method
2506   /// returns true as well. The converse is not true.
2507   /// The target can perform the adequate checks by overriding isExtFreeImpl.
2508   /// \pre \p I must be a sign, zero, or fp extension.
isExtFree(const Instruction * I)2509   bool isExtFree(const Instruction *I) const {
2510     switch (I->getOpcode()) {
2511     case Instruction::FPExt:
2512       if (isFPExtFree(EVT::getEVT(I->getType()),
2513                       EVT::getEVT(I->getOperand(0)->getType())))
2514         return true;
2515       break;
2516     case Instruction::ZExt:
2517       if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
2518         return true;
2519       break;
2520     case Instruction::SExt:
2521       break;
2522     default:
2523       llvm_unreachable("Instruction is not an extension");
2524     }
2525     return isExtFreeImpl(I);
2526   }
2527 
2528   /// Return true if \p Load and \p Ext can form an ExtLoad.
2529   /// For example, in AArch64
2530   ///   %L = load i8, i8* %ptr
2531   ///   %E = zext i8 %L to i32
2532   /// can be lowered into one load instruction
2533   ///   ldrb w0, [x0]
isExtLoad(const LoadInst * Load,const Instruction * Ext,const DataLayout & DL)2534   bool isExtLoad(const LoadInst *Load, const Instruction *Ext,
2535                  const DataLayout &DL) const {
2536     EVT VT = getValueType(DL, Ext->getType());
2537     EVT LoadVT = getValueType(DL, Load->getType());
2538 
2539     // If the load has other users and the truncate is not free, the ext
2540     // probably isn't free.
2541     if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) &&
2542         !isTruncateFree(Ext->getType(), Load->getType()))
2543       return false;
2544 
2545     // Check whether the target supports casts folded into loads.
2546     unsigned LType;
2547     if (isa<ZExtInst>(Ext))
2548       LType = ISD::ZEXTLOAD;
2549     else {
2550       assert(isa<SExtInst>(Ext) && "Unexpected ext type!");
2551       LType = ISD::SEXTLOAD;
2552     }
2553 
2554     return isLoadExtLegal(LType, VT, LoadVT);
2555   }
2556 
2557   /// Return true if any actual instruction that defines a value of type FromTy
2558   /// implicitly zero-extends the value to ToTy in the result register.
2559   ///
2560   /// The function should return true when it is likely that the truncate can
2561   /// be freely folded with an instruction defining a value of FromTy. If
2562   /// the defining instruction is unknown (because you're looking at a
2563   /// function argument, PHI, etc.) then the target may require an
2564   /// explicit truncate, which is not necessarily free, but this function
2565   /// does not deal with those cases.
2566   /// Targets must return false when FromTy >= ToTy.
isZExtFree(Type * FromTy,Type * ToTy)2567   virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
2568     return false;
2569   }
2570 
isZExtFree(EVT FromTy,EVT ToTy)2571   virtual bool isZExtFree(EVT FromTy, EVT ToTy) const {
2572     return false;
2573   }
2574 
2575   /// Return true if sign-extension from FromTy to ToTy is cheaper than
2576   /// zero-extension.
isSExtCheaperThanZExt(EVT FromTy,EVT ToTy)2577   virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const {
2578     return false;
2579   }
2580 
2581   /// Return true if sinking I's operands to the same basic block as I is
2582   /// profitable, e.g. because the operands can be folded into a target
2583   /// instruction during instruction selection. After calling the function
2584   /// \p Ops contains the Uses to sink ordered by dominance (dominating users
2585   /// come first).
shouldSinkOperands(Instruction * I,SmallVectorImpl<Use * > & Ops)2586   virtual bool shouldSinkOperands(Instruction *I,
2587                                   SmallVectorImpl<Use *> &Ops) const {
2588     return false;
2589   }
2590 
2591   /// Return true if the target supplies and combines to a paired load
2592   /// two loaded values of type LoadedType next to each other in memory.
2593   /// RequiredAlignment gives the minimal alignment constraints that must be met
2594   /// to be able to select this paired load.
2595   ///
2596   /// This information is *not* used to generate actual paired loads, but it is
2597   /// used to generate a sequence of loads that is easier to combine into a
2598   /// paired load.
2599   /// For instance, something like this:
2600   /// a = load i64* addr
2601   /// b = trunc i64 a to i32
2602   /// c = lshr i64 a, 32
2603   /// d = trunc i64 c to i32
2604   /// will be optimized into:
2605   /// b = load i32* addr1
2606   /// d = load i32* addr2
2607   /// Where addr1 = addr2 +/- sizeof(i32).
2608   ///
2609   /// In other words, unless the target performs a post-isel load combining,
2610   /// this information should not be provided because it will generate more
2611   /// loads.
hasPairedLoad(EVT,Align &)2612   virtual bool hasPairedLoad(EVT /*LoadedType*/,
2613                              Align & /*RequiredAlignment*/) const {
2614     return false;
2615   }
2616 
2617   /// Return true if the target has a vector blend instruction.
hasVectorBlend()2618   virtual bool hasVectorBlend() const { return false; }
2619 
2620   /// Get the maximum supported factor for interleaved memory accesses.
2621   /// Default to be the minimum interleave factor: 2.
getMaxSupportedInterleaveFactor()2622   virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
2623 
2624   /// Lower an interleaved load to target specific intrinsics. Return
2625   /// true on success.
2626   ///
2627   /// \p LI is the vector load instruction.
2628   /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
2629   /// \p Indices is the corresponding indices for each shufflevector.
2630   /// \p Factor is the interleave factor.
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor)2631   virtual bool lowerInterleavedLoad(LoadInst *LI,
2632                                     ArrayRef<ShuffleVectorInst *> Shuffles,
2633                                     ArrayRef<unsigned> Indices,
2634                                     unsigned Factor) const {
2635     return false;
2636   }
2637 
2638   /// Lower an interleaved store to target specific intrinsics. Return
2639   /// true on success.
2640   ///
2641   /// \p SI is the vector store instruction.
2642   /// \p SVI is the shufflevector to RE-interleave the stored vector.
2643   /// \p Factor is the interleave factor.
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor)2644   virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
2645                                      unsigned Factor) const {
2646     return false;
2647   }
2648 
2649   /// Return true if zero-extending the specific node Val to type VT2 is free
2650   /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
2651   /// because it's folded such as X86 zero-extending loads).
isZExtFree(SDValue Val,EVT VT2)2652   virtual bool isZExtFree(SDValue Val, EVT VT2) const {
2653     return isZExtFree(Val.getValueType(), VT2);
2654   }
2655 
2656   /// Return true if an fpext operation is free (for instance, because
2657   /// single-precision floating-point numbers are implicitly extended to
2658   /// double-precision).
isFPExtFree(EVT DestVT,EVT SrcVT)2659   virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const {
2660     assert(SrcVT.isFloatingPoint() && DestVT.isFloatingPoint() &&
2661            "invalid fpext types");
2662     return false;
2663   }
2664 
2665   /// Return true if an fpext operation input to an \p Opcode operation is free
2666   /// (for instance, because half-precision floating-point numbers are
2667   /// implicitly extended to float-precision) for an FMA instruction.
isFPExtFoldable(const SelectionDAG & DAG,unsigned Opcode,EVT DestVT,EVT SrcVT)2668   virtual bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
2669                                EVT DestVT, EVT SrcVT) const {
2670     assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
2671            "invalid fpext types");
2672     return isFPExtFree(DestVT, SrcVT);
2673   }
2674 
2675   /// Return true if folding a vector load into ExtVal (a sign, zero, or any
2676   /// extend node) is profitable.
isVectorLoadExtDesirable(SDValue ExtVal)2677   virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
2678 
2679   /// Return true if an fneg operation is free to the point where it is never
2680   /// worthwhile to replace it with a bitwise operation.
isFNegFree(EVT VT)2681   virtual bool isFNegFree(EVT VT) const {
2682     assert(VT.isFloatingPoint());
2683     return false;
2684   }
2685 
2686   /// Return true if an fabs operation is free to the point where it is never
2687   /// worthwhile to replace it with a bitwise operation.
isFAbsFree(EVT VT)2688   virtual bool isFAbsFree(EVT VT) const {
2689     assert(VT.isFloatingPoint());
2690     return false;
2691   }
2692 
2693   /// Return true if an FMA operation is faster than a pair of fmul and fadd
2694   /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
2695   /// returns true, otherwise fmuladd is expanded to fmul + fadd.
2696   ///
2697   /// NOTE: This may be called before legalization on types for which FMAs are
2698   /// not legal, but should return true if those types will eventually legalize
2699   /// to types that support FMAs. After legalization, it will only be called on
2700   /// types that support FMAs (via Legal or Custom actions)
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT)2701   virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
2702                                           EVT) const {
2703     return false;
2704   }
2705 
2706   /// IR version
isFMAFasterThanFMulAndFAdd(const Function & F,Type *)2707   virtual bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *) const {
2708     return false;
2709   }
2710 
2711   /// Returns true if be combined with to form an ISD::FMAD. \p N may be an
2712   /// ISD::FADD, ISD::FSUB, or an ISD::FMUL which will be distributed into an
2713   /// fadd/fsub.
isFMADLegal(const SelectionDAG & DAG,const SDNode * N)2714   virtual bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const {
2715     assert((N->getOpcode() == ISD::FADD || N->getOpcode() == ISD::FSUB ||
2716             N->getOpcode() == ISD::FMUL) &&
2717            "unexpected node in FMAD forming combine");
2718     return isOperationLegal(ISD::FMAD, N->getValueType(0));
2719   }
2720 
2721   // Return true when the decision to generate FMA's (or FMS, FMLA etc) rather
2722   // than FMUL and ADD is delegated to the machine combiner.
generateFMAsInMachineCombiner(EVT VT,CodeGenOpt::Level OptLevel)2723   virtual bool generateFMAsInMachineCombiner(EVT VT,
2724                                              CodeGenOpt::Level OptLevel) const {
2725     return false;
2726   }
2727 
2728   /// Return true if it's profitable to narrow operations of type VT1 to
2729   /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
2730   /// i32 to i16.
isNarrowingProfitable(EVT,EVT)2731   virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
2732     return false;
2733   }
2734 
2735   /// Return true if it is beneficial to convert a load of a constant to
2736   /// just the constant itself.
2737   /// On some targets it might be more efficient to use a combination of
2738   /// arithmetic instructions to materialize the constant instead of loading it
2739   /// from a constant pool.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty)2740   virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
2741                                                  Type *Ty) const {
2742     return false;
2743   }
2744 
2745   /// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type
2746   /// from this source type with this index. This is needed because
2747   /// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of
2748   /// the first element, and only the target knows which lowering is cheap.
isExtractSubvectorCheap(EVT ResVT,EVT SrcVT,unsigned Index)2749   virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
2750                                        unsigned Index) const {
2751     return false;
2752   }
2753 
2754   /// Try to convert an extract element of a vector binary operation into an
2755   /// extract element followed by a scalar operation.
shouldScalarizeBinop(SDValue VecOp)2756   virtual bool shouldScalarizeBinop(SDValue VecOp) const {
2757     return false;
2758   }
2759 
2760   /// Return true if extraction of a scalar element from the given vector type
2761   /// at the given index is cheap. For example, if scalar operations occur on
2762   /// the same register file as vector operations, then an extract element may
2763   /// be a sub-register rename rather than an actual instruction.
isExtractVecEltCheap(EVT VT,unsigned Index)2764   virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const {
2765     return false;
2766   }
2767 
2768   /// Try to convert math with an overflow comparison into the corresponding DAG
2769   /// node operation. Targets may want to override this independently of whether
2770   /// the operation is legal/custom for the given type because it may obscure
2771   /// matching of other patterns.
shouldFormOverflowOp(unsigned Opcode,EVT VT,bool MathUsed)2772   virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
2773                                     bool MathUsed) const {
2774     // TODO: The default logic is inherited from code in CodeGenPrepare.
2775     // The opcode should not make a difference by default?
2776     if (Opcode != ISD::UADDO)
2777       return false;
2778 
2779     // Allow the transform as long as we have an integer type that is not
2780     // obviously illegal and unsupported and if the math result is used
2781     // besides the overflow check. On some targets (e.g. SPARC), it is
2782     // not profitable to form on overflow op if the math result has no
2783     // concrete users.
2784     if (VT.isVector())
2785       return false;
2786     return MathUsed && (VT.isSimple() || !isOperationExpand(Opcode, VT));
2787   }
2788 
2789   // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
2790   // even if the vector itself has multiple uses.
aggressivelyPreferBuildVectorSources(EVT VecVT)2791   virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
2792     return false;
2793   }
2794 
2795   // Return true if CodeGenPrepare should consider splitting large offset of a
2796   // GEP to make the GEP fit into the addressing mode and can be sunk into the
2797   // same blocks of its users.
shouldConsiderGEPOffsetSplit()2798   virtual bool shouldConsiderGEPOffsetSplit() const { return false; }
2799 
2800   /// Return true if creating a shift of the type by the given
2801   /// amount is not profitable.
shouldAvoidTransformToShift(EVT VT,unsigned Amount)2802   virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const {
2803     return false;
2804   }
2805 
2806   /// Does this target require the clearing of high-order bits in a register
2807   /// passed to the fp16 to fp conversion library function.
shouldKeepZExtForFP16Conv()2808   virtual bool shouldKeepZExtForFP16Conv() const { return false; }
2809 
2810   //===--------------------------------------------------------------------===//
2811   // Runtime Library hooks
2812   //
2813 
2814   /// Rename the default libcall routine name for the specified libcall.
setLibcallName(RTLIB::Libcall Call,const char * Name)2815   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
2816     LibcallRoutineNames[Call] = Name;
2817   }
2818 
2819   /// Get the libcall routine name for the specified libcall.
getLibcallName(RTLIB::Libcall Call)2820   const char *getLibcallName(RTLIB::Libcall Call) const {
2821     return LibcallRoutineNames[Call];
2822   }
2823 
2824   /// Override the default CondCode to be used to test the result of the
2825   /// comparison libcall against zero.
setCmpLibcallCC(RTLIB::Libcall Call,ISD::CondCode CC)2826   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
2827     CmpLibcallCCs[Call] = CC;
2828   }
2829 
2830   /// Get the CondCode that's to be used to test the result of the comparison
2831   /// libcall against zero.
getCmpLibcallCC(RTLIB::Libcall Call)2832   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
2833     return CmpLibcallCCs[Call];
2834   }
2835 
2836   /// Set the CallingConv that should be used for the specified libcall.
setLibcallCallingConv(RTLIB::Libcall Call,CallingConv::ID CC)2837   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
2838     LibcallCallingConvs[Call] = CC;
2839   }
2840 
2841   /// Get the CallingConv that should be used for the specified libcall.
getLibcallCallingConv(RTLIB::Libcall Call)2842   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
2843     return LibcallCallingConvs[Call];
2844   }
2845 
2846   /// Execute target specific actions to finalize target lowering.
2847   /// This is used to set extra flags in MachineFrameInformation and freezing
2848   /// the set of reserved registers.
2849   /// The default implementation just freezes the set of reserved registers.
2850   virtual void finalizeLowering(MachineFunction &MF) const;
2851 
2852   //===----------------------------------------------------------------------===//
2853   //  GlobalISel Hooks
2854   //===----------------------------------------------------------------------===//
2855   /// Check whether or not \p MI needs to be moved close to its uses.
2856   virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const;
2857 
2858 
2859 private:
2860   const TargetMachine &TM;
2861 
2862   /// Tells the code generator that the target has multiple (allocatable)
2863   /// condition registers that can be used to store the results of comparisons
2864   /// for use by selects and conditional branches. With multiple condition
2865   /// registers, the code generator will not aggressively sink comparisons into
2866   /// the blocks of their users.
2867   bool HasMultipleConditionRegisters;
2868 
2869   /// Tells the code generator that the target has BitExtract instructions.
2870   /// The code generator will aggressively sink "shift"s into the blocks of
2871   /// their users if the users will generate "and" instructions which can be
2872   /// combined with "shift" to BitExtract instructions.
2873   bool HasExtractBitsInsn;
2874 
2875   /// Tells the code generator to bypass slow divide or remainder
2876   /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
2877   /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
2878   /// div/rem when the operands are positive and less than 256.
2879   DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
2880 
2881   /// Tells the code generator that it shouldn't generate extra flow control
2882   /// instructions and should attempt to combine flow control instructions via
2883   /// predication.
2884   bool JumpIsExpensive;
2885 
2886   /// Information about the contents of the high-bits in boolean values held in
2887   /// a type wider than i1. See getBooleanContents.
2888   BooleanContent BooleanContents;
2889 
2890   /// Information about the contents of the high-bits in boolean values held in
2891   /// a type wider than i1. See getBooleanContents.
2892   BooleanContent BooleanFloatContents;
2893 
2894   /// Information about the contents of the high-bits in boolean vector values
2895   /// when the element type is wider than i1. See getBooleanContents.
2896   BooleanContent BooleanVectorContents;
2897 
2898   /// The target scheduling preference: shortest possible total cycles or lowest
2899   /// register usage.
2900   Sched::Preference SchedPreferenceInfo;
2901 
2902   /// The minimum alignment that any argument on the stack needs to have.
2903   Align MinStackArgumentAlignment;
2904 
2905   /// The minimum function alignment (used when optimizing for size, and to
2906   /// prevent explicitly provided alignment from leading to incorrect code).
2907   Align MinFunctionAlignment;
2908 
2909   /// The preferred function alignment (used when alignment unspecified and
2910   /// optimizing for speed).
2911   Align PrefFunctionAlignment;
2912 
2913   /// The preferred loop alignment (in log2 bot in bytes).
2914   Align PrefLoopAlignment;
2915 
2916   /// Size in bits of the maximum atomics size the backend supports.
2917   /// Accesses larger than this will be expanded by AtomicExpandPass.
2918   unsigned MaxAtomicSizeInBitsSupported;
2919 
2920   /// Size in bits of the minimum cmpxchg or ll/sc operation the
2921   /// backend supports.
2922   unsigned MinCmpXchgSizeInBits;
2923 
2924   /// This indicates if the target supports unaligned atomic operations.
2925   bool SupportsUnalignedAtomics;
2926 
2927   /// If set to a physical register, this specifies the register that
2928   /// llvm.savestack/llvm.restorestack should save and restore.
2929   Register StackPointerRegisterToSaveRestore;
2930 
2931   /// This indicates the default register class to use for each ValueType the
2932   /// target supports natively.
2933   const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
2934   uint16_t NumRegistersForVT[MVT::LAST_VALUETYPE];
2935   MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
2936 
2937   /// This indicates the "representative" register class to use for each
2938   /// ValueType the target supports natively. This information is used by the
2939   /// scheduler to track register pressure. By default, the representative
2940   /// register class is the largest legal super-reg register class of the
2941   /// register class of the specified type. e.g. On x86, i8, i16, and i32's
2942   /// representative class would be GR32.
2943   const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
2944 
2945   /// This indicates the "cost" of the "representative" register class for each
2946   /// ValueType. The cost is used by the scheduler to approximate register
2947   /// pressure.
2948   uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
2949 
2950   /// For any value types we are promoting or expanding, this contains the value
2951   /// type that we are changing to.  For Expanded types, this contains one step
2952   /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
2953   /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
2954   /// the same type (e.g. i32 -> i32).
2955   MVT TransformToType[MVT::LAST_VALUETYPE];
2956 
2957   /// For each operation and each value type, keep a LegalizeAction that
2958   /// indicates how instruction selection should deal with the operation.  Most
2959   /// operations are Legal (aka, supported natively by the target), but
2960   /// operations that are not should be described.  Note that operations on
2961   /// non-legal value types are not described here.
2962   LegalizeAction OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
2963 
2964   /// For each load extension type and each value type, keep a LegalizeAction
2965   /// that indicates how instruction selection should deal with a load of a
2966   /// specific value type and extension type. Uses 4-bits to store the action
2967   /// for each of the 4 load ext types.
2968   uint16_t LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
2969 
2970   /// For each value type pair keep a LegalizeAction that indicates whether a
2971   /// truncating store of a specific value type and truncating type is legal.
2972   LegalizeAction TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
2973 
2974   /// For each indexed mode and each value type, keep a quad of LegalizeAction
2975   /// that indicates how instruction selection should deal with the load /
2976   /// store / maskedload / maskedstore.
2977   ///
2978   /// The first dimension is the value_type for the reference. The second
2979   /// dimension represents the various modes for load store.
2980   uint16_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
2981 
2982   /// For each condition code (ISD::CondCode) keep a LegalizeAction that
2983   /// indicates how instruction selection should deal with the condition code.
2984   ///
2985   /// Because each CC action takes up 4 bits, we need to have the array size be
2986   /// large enough to fit all of the value types. This can be done by rounding
2987   /// up the MVT::LAST_VALUETYPE value to the next multiple of 8.
2988   uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 7) / 8];
2989 
2990   ValueTypeActionImpl ValueTypeActions;
2991 
2992 private:
2993   LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
2994 
2995   /// Targets can specify ISD nodes that they would like PerformDAGCombine
2996   /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
2997   /// array.
2998   unsigned char
2999   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
3000 
3001   /// For operations that must be promoted to a specific type, this holds the
3002   /// destination type.  This map should be sparse, so don't hold it as an
3003   /// array.
3004   ///
3005   /// Targets add entries to this map with AddPromotedToType(..), clients access
3006   /// this with getTypeToPromoteTo(..).
3007   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
3008     PromoteToType;
3009 
3010   /// Stores the name each libcall.
3011   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL + 1];
3012 
3013   /// The ISD::CondCode that should be used to test the result of each of the
3014   /// comparison libcall against zero.
3015   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
3016 
3017   /// Stores the CallingConv that should be used for each libcall.
3018   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
3019 
3020   /// Set default libcall names and calling conventions.
3021   void InitLibcalls(const Triple &TT);
3022 
3023   /// The bits of IndexedModeActions used to store the legalisation actions
3024   /// We store the data as   | ML | MS |  L |  S | each taking 4 bits.
3025   enum IndexedModeActionsBits {
3026     IMAB_Store = 0,
3027     IMAB_Load = 4,
3028     IMAB_MaskedStore = 8,
3029     IMAB_MaskedLoad = 12
3030   };
3031 
setIndexedModeAction(unsigned IdxMode,MVT VT,unsigned Shift,LegalizeAction Action)3032   void setIndexedModeAction(unsigned IdxMode, MVT VT, unsigned Shift,
3033                             LegalizeAction Action) {
3034     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
3035            (unsigned)Action < 0xf && "Table isn't big enough!");
3036     unsigned Ty = (unsigned)VT.SimpleTy;
3037     IndexedModeActions[Ty][IdxMode] &= ~(0xf << Shift);
3038     IndexedModeActions[Ty][IdxMode] |= ((uint16_t)Action) << Shift;
3039   }
3040 
getIndexedModeAction(unsigned IdxMode,MVT VT,unsigned Shift)3041   LegalizeAction getIndexedModeAction(unsigned IdxMode, MVT VT,
3042                                       unsigned Shift) const {
3043     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
3044            "Table isn't big enough!");
3045     unsigned Ty = (unsigned)VT.SimpleTy;
3046     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] >> Shift) & 0xf);
3047   }
3048 
3049 protected:
3050   /// Return true if the extension represented by \p I is free.
3051   /// \pre \p I is a sign, zero, or fp extension and
3052   ///      is[Z|FP]ExtFree of the related types is not true.
isExtFreeImpl(const Instruction * I)3053   virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
3054 
3055   /// Depth that GatherAllAliases should should continue looking for chain
3056   /// dependencies when trying to find a more preferable chain. As an
3057   /// approximation, this should be more than the number of consecutive stores
3058   /// expected to be merged.
3059   unsigned GatherAllAliasesMaxDepth;
3060 
3061   /// \brief Specify maximum number of store instructions per memset call.
3062   ///
3063   /// When lowering \@llvm.memset this field specifies the maximum number of
3064   /// store operations that may be substituted for the call to memset. Targets
3065   /// must set this value based on the cost threshold for that target. Targets
3066   /// should assume that the memset will be done using as many of the largest
3067   /// store operations first, followed by smaller ones, if necessary, per
3068   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
3069   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
3070   /// store.  This only applies to setting a constant array of a constant size.
3071   unsigned MaxStoresPerMemset;
3072   /// Likewise for functions with the OptSize attribute.
3073   unsigned MaxStoresPerMemsetOptSize;
3074 
3075   /// \brief Specify maximum number of store instructions per memcpy call.
3076   ///
3077   /// When lowering \@llvm.memcpy this field specifies the maximum number of
3078   /// store operations that may be substituted for a call to memcpy. Targets
3079   /// must set this value based on the cost threshold for that target. Targets
3080   /// should assume that the memcpy will be done using as many of the largest
3081   /// store operations first, followed by smaller ones, if necessary, per
3082   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
3083   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
3084   /// and one 1-byte store. This only applies to copying a constant array of
3085   /// constant size.
3086   unsigned MaxStoresPerMemcpy;
3087   /// Likewise for functions with the OptSize attribute.
3088   unsigned MaxStoresPerMemcpyOptSize;
3089   /// \brief Specify max number of store instructions to glue in inlined memcpy.
3090   ///
3091   /// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number
3092   /// of store instructions to keep together. This helps in pairing and
3093   //  vectorization later on.
3094   unsigned MaxGluedStoresPerMemcpy = 0;
3095 
3096   /// \brief Specify maximum number of load instructions per memcmp call.
3097   ///
3098   /// When lowering \@llvm.memcmp this field specifies the maximum number of
3099   /// pairs of load operations that may be substituted for a call to memcmp.
3100   /// Targets must set this value based on the cost threshold for that target.
3101   /// Targets should assume that the memcmp will be done using as many of the
3102   /// largest load operations first, followed by smaller ones, if necessary, per
3103   /// alignment restrictions. For example, loading 7 bytes on a 32-bit machine
3104   /// with 32-bit alignment would result in one 4-byte load, a one 2-byte load
3105   /// and one 1-byte load. This only applies to copying a constant array of
3106   /// constant size.
3107   unsigned MaxLoadsPerMemcmp;
3108   /// Likewise for functions with the OptSize attribute.
3109   unsigned MaxLoadsPerMemcmpOptSize;
3110 
3111   /// \brief Specify maximum number of store instructions per memmove call.
3112   ///
3113   /// When lowering \@llvm.memmove this field specifies the maximum number of
3114   /// store instructions that may be substituted for a call to memmove. Targets
3115   /// must set this value based on the cost threshold for that target. Targets
3116   /// should assume that the memmove will be done using as many of the largest
3117   /// store operations first, followed by smaller ones, if necessary, per
3118   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
3119   /// with 8-bit alignment would result in nine 1-byte stores.  This only
3120   /// applies to copying a constant array of constant size.
3121   unsigned MaxStoresPerMemmove;
3122   /// Likewise for functions with the OptSize attribute.
3123   unsigned MaxStoresPerMemmoveOptSize;
3124 
3125   /// Tells the code generator that select is more expensive than a branch if
3126   /// the branch is usually predicted right.
3127   bool PredictableSelectIsExpensive;
3128 
3129   /// \see enableExtLdPromotion.
3130   bool EnableExtLdPromotion;
3131 
3132   /// Return true if the value types that can be represented by the specified
3133   /// register class are all legal.
3134   bool isLegalRC(const TargetRegisterInfo &TRI,
3135                  const TargetRegisterClass &RC) const;
3136 
3137   /// Replace/modify any TargetFrameIndex operands with a targte-dependent
3138   /// sequence of memory operands that is recognized by PrologEpilogInserter.
3139   MachineBasicBlock *emitPatchPoint(MachineInstr &MI,
3140                                     MachineBasicBlock *MBB) const;
3141 
3142   bool IsStrictFPEnabled;
3143 };
3144 
3145 /// This class defines information used to lower LLVM code to legal SelectionDAG
3146 /// operators that the target instruction selector can accept natively.
3147 ///
3148 /// This class also defines callbacks that targets must implement to lower
3149 /// target-specific constructs to SelectionDAG operators.
3150 class TargetLowering : public TargetLoweringBase {
3151 public:
3152   struct DAGCombinerInfo;
3153   struct MakeLibCallOptions;
3154 
3155   TargetLowering(const TargetLowering &) = delete;
3156   TargetLowering &operator=(const TargetLowering &) = delete;
3157 
3158   explicit TargetLowering(const TargetMachine &TM);
3159 
3160   bool isPositionIndependent() const;
3161 
isSDNodeSourceOfDivergence(const SDNode * N,FunctionLoweringInfo * FLI,LegacyDivergenceAnalysis * DA)3162   virtual bool isSDNodeSourceOfDivergence(const SDNode *N,
3163                                           FunctionLoweringInfo *FLI,
3164                                           LegacyDivergenceAnalysis *DA) const {
3165     return false;
3166   }
3167 
isSDNodeAlwaysUniform(const SDNode * N)3168   virtual bool isSDNodeAlwaysUniform(const SDNode * N) const {
3169     return false;
3170   }
3171 
3172   /// Returns true by value, base pointer and offset pointer and addressing mode
3173   /// by reference if the node's address can be legally represented as
3174   /// pre-indexed load / store address.
getPreIndexedAddressParts(SDNode *,SDValue &,SDValue &,ISD::MemIndexedMode &,SelectionDAG &)3175   virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
3176                                          SDValue &/*Offset*/,
3177                                          ISD::MemIndexedMode &/*AM*/,
3178                                          SelectionDAG &/*DAG*/) const {
3179     return false;
3180   }
3181 
3182   /// Returns true by value, base pointer and offset pointer and addressing mode
3183   /// by reference if this node can be combined with a load / store to form a
3184   /// post-indexed load / store.
getPostIndexedAddressParts(SDNode *,SDNode *,SDValue &,SDValue &,ISD::MemIndexedMode &,SelectionDAG &)3185   virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
3186                                           SDValue &/*Base*/,
3187                                           SDValue &/*Offset*/,
3188                                           ISD::MemIndexedMode &/*AM*/,
3189                                           SelectionDAG &/*DAG*/) const {
3190     return false;
3191   }
3192 
3193   /// Returns true if the specified base+offset is a legal indexed addressing
3194   /// mode for this target. \p MI is the load or store instruction that is being
3195   /// considered for transformation.
isIndexingLegal(MachineInstr & MI,Register Base,Register Offset,bool IsPre,MachineRegisterInfo & MRI)3196   virtual bool isIndexingLegal(MachineInstr &MI, Register Base, Register Offset,
3197                                bool IsPre, MachineRegisterInfo &MRI) const {
3198     return false;
3199   }
3200 
3201   /// Return the entry encoding for a jump table in the current function.  The
3202   /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
3203   virtual unsigned getJumpTableEncoding() const;
3204 
3205   virtual const MCExpr *
LowerCustomJumpTableEntry(const MachineJumpTableInfo *,const MachineBasicBlock *,unsigned,MCContext &)3206   LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
3207                             const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
3208                             MCContext &/*Ctx*/) const {
3209     llvm_unreachable("Need to implement this hook if target has custom JTIs");
3210   }
3211 
3212   /// Returns relocation base for the given PIC jumptable.
3213   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
3214                                            SelectionDAG &DAG) const;
3215 
3216   /// This returns the relocation base for the given PIC jumptable, the same as
3217   /// getPICJumpTableRelocBase, but as an MCExpr.
3218   virtual const MCExpr *
3219   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3220                                unsigned JTI, MCContext &Ctx) const;
3221 
3222   /// Return true if folding a constant offset with the given GlobalAddress is
3223   /// legal.  It is frequently not legal in PIC relocation models.
3224   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
3225 
3226   bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
3227                             SDValue &Chain) const;
3228 
3229   void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
3230                            SDValue &NewRHS, ISD::CondCode &CCCode,
3231                            const SDLoc &DL, const SDValue OldLHS,
3232                            const SDValue OldRHS) const;
3233 
3234   void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
3235                            SDValue &NewRHS, ISD::CondCode &CCCode,
3236                            const SDLoc &DL, const SDValue OldLHS,
3237                            const SDValue OldRHS, SDValue &Chain,
3238                            bool IsSignaling = false) const;
3239 
3240   /// Returns a pair of (return value, chain).
3241   /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
3242   std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
3243                                           EVT RetVT, ArrayRef<SDValue> Ops,
3244                                           MakeLibCallOptions CallOptions,
3245                                           const SDLoc &dl,
3246                                           SDValue Chain = SDValue()) const;
3247 
3248   /// Check whether parameters to a call that are passed in callee saved
3249   /// registers are the same as from the calling function.  This needs to be
3250   /// checked for tail call eligibility.
3251   bool parametersInCSRMatch(const MachineRegisterInfo &MRI,
3252       const uint32_t *CallerPreservedMask,
3253       const SmallVectorImpl<CCValAssign> &ArgLocs,
3254       const SmallVectorImpl<SDValue> &OutVals) const;
3255 
3256   //===--------------------------------------------------------------------===//
3257   // TargetLowering Optimization Methods
3258   //
3259 
3260   /// A convenience struct that encapsulates a DAG, and two SDValues for
3261   /// returning information from TargetLowering to its clients that want to
3262   /// combine.
3263   struct TargetLoweringOpt {
3264     SelectionDAG &DAG;
3265     bool LegalTys;
3266     bool LegalOps;
3267     SDValue Old;
3268     SDValue New;
3269 
TargetLoweringOptTargetLoweringOpt3270     explicit TargetLoweringOpt(SelectionDAG &InDAG,
3271                                bool LT, bool LO) :
3272       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
3273 
LegalTypesTargetLoweringOpt3274     bool LegalTypes() const { return LegalTys; }
LegalOperationsTargetLoweringOpt3275     bool LegalOperations() const { return LegalOps; }
3276 
CombineToTargetLoweringOpt3277     bool CombineTo(SDValue O, SDValue N) {
3278       Old = O;
3279       New = N;
3280       return true;
3281     }
3282   };
3283 
3284   /// Determines the optimal series of memory ops to replace the memset / memcpy.
3285   /// Return true if the number of memory ops is below the threshold (Limit).
3286   /// It returns the types of the sequence of memory ops to perform
3287   /// memset / memcpy by reference.
3288   bool findOptimalMemOpLowering(std::vector<EVT> &MemOps, unsigned Limit,
3289                                 const MemOp &Op, unsigned DstAS, unsigned SrcAS,
3290                                 const AttributeList &FuncAttributes) const;
3291 
3292   /// Check to see if the specified operand of the specified instruction is a
3293   /// constant integer.  If so, check to see if there are any bits set in the
3294   /// constant that are not demanded.  If so, shrink the constant and return
3295   /// true.
3296   bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
3297                               const APInt &DemandedElts,
3298                               TargetLoweringOpt &TLO) const;
3299 
3300   /// Helper wrapper around ShrinkDemandedConstant, demanding all elements.
3301   bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
3302                               TargetLoweringOpt &TLO) const;
3303 
3304   // Target hook to do target-specific const optimization, which is called by
3305   // ShrinkDemandedConstant. This function should return true if the target
3306   // doesn't want ShrinkDemandedConstant to further optimize the constant.
targetShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,TargetLoweringOpt & TLO)3307   virtual bool targetShrinkDemandedConstant(SDValue Op,
3308                                             const APInt &DemandedBits,
3309                                             const APInt &DemandedElts,
3310                                             TargetLoweringOpt &TLO) const {
3311     return false;
3312   }
3313 
3314   /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.  This
3315   /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
3316   /// generalized for targets with other types of implicit widening casts.
3317   bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
3318                         TargetLoweringOpt &TLO) const;
3319 
3320   /// Look at Op.  At this point, we know that only the DemandedBits bits of the
3321   /// result of Op are ever used downstream.  If we can use this information to
3322   /// simplify Op, create a new simplified DAG node and return true, returning
3323   /// the original and new nodes in Old and New.  Otherwise, analyze the
3324   /// expression and return a mask of KnownOne and KnownZero bits for the
3325   /// expression (used to simplify the caller).  The KnownZero/One bits may only
3326   /// be accurate for those bits in the Demanded masks.
3327   /// \p AssumeSingleUse When this parameter is true, this function will
3328   ///    attempt to simplify \p Op even if there are multiple uses.
3329   ///    Callers are responsible for correctly updating the DAG based on the
3330   ///    results of this function, because simply replacing replacing TLO.Old
3331   ///    with TLO.New will be incorrect when this parameter is true and TLO.Old
3332   ///    has multiple uses.
3333   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
3334                             const APInt &DemandedElts, KnownBits &Known,
3335                             TargetLoweringOpt &TLO, unsigned Depth = 0,
3336                             bool AssumeSingleUse = false) const;
3337 
3338   /// Helper wrapper around SimplifyDemandedBits, demanding all elements.
3339   /// Adds Op back to the worklist upon success.
3340   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
3341                             KnownBits &Known, TargetLoweringOpt &TLO,
3342                             unsigned Depth = 0,
3343                             bool AssumeSingleUse = false) const;
3344 
3345   /// Helper wrapper around SimplifyDemandedBits.
3346   /// Adds Op back to the worklist upon success.
3347   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
3348                             DAGCombinerInfo &DCI) const;
3349 
3350   /// More limited version of SimplifyDemandedBits that can be used to "look
3351   /// through" ops that don't contribute to the DemandedBits/DemandedElts -
3352   /// bitwise ops etc.
3353   SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
3354                                           const APInt &DemandedElts,
3355                                           SelectionDAG &DAG,
3356                                           unsigned Depth) const;
3357 
3358   /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
3359   /// elements.
3360   SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
3361                                           SelectionDAG &DAG,
3362                                           unsigned Depth = 0) const;
3363 
3364   /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
3365   /// bits from only some vector elements.
3366   SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op,
3367                                                 const APInt &DemandedElts,
3368                                                 SelectionDAG &DAG,
3369                                                 unsigned Depth = 0) const;
3370 
3371   /// Look at Vector Op. At this point, we know that only the DemandedElts
3372   /// elements of the result of Op are ever used downstream.  If we can use
3373   /// this information to simplify Op, create a new simplified DAG node and
3374   /// return true, storing the original and new nodes in TLO.
3375   /// Otherwise, analyze the expression and return a mask of KnownUndef and
3376   /// KnownZero elements for the expression (used to simplify the caller).
3377   /// The KnownUndef/Zero elements may only be accurate for those bits
3378   /// in the DemandedMask.
3379   /// \p AssumeSingleUse When this parameter is true, this function will
3380   ///    attempt to simplify \p Op even if there are multiple uses.
3381   ///    Callers are responsible for correctly updating the DAG based on the
3382   ///    results of this function, because simply replacing replacing TLO.Old
3383   ///    with TLO.New will be incorrect when this parameter is true and TLO.Old
3384   ///    has multiple uses.
3385   bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask,
3386                                   APInt &KnownUndef, APInt &KnownZero,
3387                                   TargetLoweringOpt &TLO, unsigned Depth = 0,
3388                                   bool AssumeSingleUse = false) const;
3389 
3390   /// Helper wrapper around SimplifyDemandedVectorElts.
3391   /// Adds Op back to the worklist upon success.
3392   bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
3393                                   APInt &KnownUndef, APInt &KnownZero,
3394                                   DAGCombinerInfo &DCI) const;
3395 
3396   /// Determine which of the bits specified in Mask are known to be either zero
3397   /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
3398   /// argument allows us to only collect the known bits that are shared by the
3399   /// requested vector elements.
3400   virtual void computeKnownBitsForTargetNode(const SDValue Op,
3401                                              KnownBits &Known,
3402                                              const APInt &DemandedElts,
3403                                              const SelectionDAG &DAG,
3404                                              unsigned Depth = 0) const;
3405 
3406   /// Determine which of the bits specified in Mask are known to be either zero
3407   /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
3408   /// argument allows us to only collect the known bits that are shared by the
3409   /// requested vector elements. This is for GISel.
3410   virtual void computeKnownBitsForTargetInstr(GISelKnownBits &Analysis,
3411                                               Register R, KnownBits &Known,
3412                                               const APInt &DemandedElts,
3413                                               const MachineRegisterInfo &MRI,
3414                                               unsigned Depth = 0) const;
3415 
3416   /// Determine the known alignment for the pointer value \p R. This is can
3417   /// typically be inferred from the number of low known 0 bits. However, for a
3418   /// pointer with a non-integral address space, the alignment value may be
3419   /// independent from the known low bits.
3420   virtual Align computeKnownAlignForTargetInstr(GISelKnownBits &Analysis,
3421                                                 Register R,
3422                                                 const MachineRegisterInfo &MRI,
3423                                                 unsigned Depth = 0) const;
3424 
3425   /// Determine which of the bits of FrameIndex \p FIOp are known to be 0.
3426   /// Default implementation computes low bits based on alignment
3427   /// information. This should preserve known bits passed into it.
3428   virtual void computeKnownBitsForFrameIndex(int FIOp,
3429                                              KnownBits &Known,
3430                                              const MachineFunction &MF) const;
3431 
3432   /// This method can be implemented by targets that want to expose additional
3433   /// information about sign bits to the DAG Combiner. The DemandedElts
3434   /// argument allows us to only collect the minimum sign bits that are shared
3435   /// by the requested vector elements.
3436   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
3437                                                    const APInt &DemandedElts,
3438                                                    const SelectionDAG &DAG,
3439                                                    unsigned Depth = 0) const;
3440 
3441   /// This method can be implemented by targets that want to expose additional
3442   /// information about sign bits to GlobalISel combiners. The DemandedElts
3443   /// argument allows us to only collect the minimum sign bits that are shared
3444   /// by the requested vector elements.
3445   virtual unsigned computeNumSignBitsForTargetInstr(GISelKnownBits &Analysis,
3446                                                     Register R,
3447                                                     const APInt &DemandedElts,
3448                                                     const MachineRegisterInfo &MRI,
3449                                                     unsigned Depth = 0) const;
3450 
3451   /// Attempt to simplify any target nodes based on the demanded vector
3452   /// elements, returning true on success. Otherwise, analyze the expression and
3453   /// return a mask of KnownUndef and KnownZero elements for the expression
3454   /// (used to simplify the caller). The KnownUndef/Zero elements may only be
3455   /// accurate for those bits in the DemandedMask.
3456   virtual bool SimplifyDemandedVectorEltsForTargetNode(
3457       SDValue Op, const APInt &DemandedElts, APInt &KnownUndef,
3458       APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0) const;
3459 
3460   /// Attempt to simplify any target nodes based on the demanded bits/elts,
3461   /// returning true on success. Otherwise, analyze the
3462   /// expression and return a mask of KnownOne and KnownZero bits for the
3463   /// expression (used to simplify the caller).  The KnownZero/One bits may only
3464   /// be accurate for those bits in the Demanded masks.
3465   virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op,
3466                                                  const APInt &DemandedBits,
3467                                                  const APInt &DemandedElts,
3468                                                  KnownBits &Known,
3469                                                  TargetLoweringOpt &TLO,
3470                                                  unsigned Depth = 0) const;
3471 
3472   /// More limited version of SimplifyDemandedBits that can be used to "look
3473   /// through" ops that don't contribute to the DemandedBits/DemandedElts -
3474   /// bitwise ops etc.
3475   virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
3476       SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3477       SelectionDAG &DAG, unsigned Depth) const;
3478 
3479   /// Tries to build a legal vector shuffle using the provided parameters
3480   /// or equivalent variations. The Mask argument maybe be modified as the
3481   /// function tries different variations.
3482   /// Returns an empty SDValue if the operation fails.
3483   SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3484                                   SDValue N1, MutableArrayRef<int> Mask,
3485                                   SelectionDAG &DAG) const;
3486 
3487   /// This method returns the constant pool value that will be loaded by LD.
3488   /// NOTE: You must check for implicit extensions of the constant by LD.
3489   virtual const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const;
3490 
3491   /// If \p SNaN is false, \returns true if \p Op is known to never be any
3492   /// NaN. If \p sNaN is true, returns if \p Op is known to never be a signaling
3493   /// NaN.
3494   virtual bool isKnownNeverNaNForTargetNode(SDValue Op,
3495                                             const SelectionDAG &DAG,
3496                                             bool SNaN = false,
3497                                             unsigned Depth = 0) const;
3498   struct DAGCombinerInfo {
3499     void *DC;  // The DAG Combiner object.
3500     CombineLevel Level;
3501     bool CalledByLegalizer;
3502 
3503   public:
3504     SelectionDAG &DAG;
3505 
DAGCombinerInfoDAGCombinerInfo3506     DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
3507       : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
3508 
isBeforeLegalizeDAGCombinerInfo3509     bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
isBeforeLegalizeOpsDAGCombinerInfo3510     bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
isAfterLegalizeDAGDAGCombinerInfo3511     bool isAfterLegalizeDAG() const { return Level >= AfterLegalizeDAG; }
getDAGCombineLevelDAGCombinerInfo3512     CombineLevel getDAGCombineLevel() { return Level; }
isCalledByLegalizerDAGCombinerInfo3513     bool isCalledByLegalizer() const { return CalledByLegalizer; }
3514 
3515     void AddToWorklist(SDNode *N);
3516     SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
3517     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
3518     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
3519 
3520     bool recursivelyDeleteUnusedNodes(SDNode *N);
3521 
3522     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
3523   };
3524 
3525   /// Return if the N is a constant or constant vector equal to the true value
3526   /// from getBooleanContents().
3527   bool isConstTrueVal(const SDNode *N) const;
3528 
3529   /// Return if the N is a constant or constant vector equal to the false value
3530   /// from getBooleanContents().
3531   bool isConstFalseVal(const SDNode *N) const;
3532 
3533   /// Return if \p N is a True value when extended to \p VT.
3534   bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const;
3535 
3536   /// Try to simplify a setcc built with the specified operands and cc. If it is
3537   /// unable to simplify it, return a null SDValue.
3538   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
3539                         bool foldBooleans, DAGCombinerInfo &DCI,
3540                         const SDLoc &dl) const;
3541 
3542   // For targets which wrap address, unwrap for analysis.
unwrapAddress(SDValue N)3543   virtual SDValue unwrapAddress(SDValue N) const { return N; }
3544 
3545   /// Returns true (and the GlobalValue and the offset) if the node is a
3546   /// GlobalAddress + offset.
3547   virtual bool
3548   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
3549 
3550   /// This method will be invoked for all target nodes and for any
3551   /// target-independent nodes that the target has registered with invoke it
3552   /// for.
3553   ///
3554   /// The semantics are as follows:
3555   /// Return Value:
3556   ///   SDValue.Val == 0   - No change was made
3557   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
3558   ///   otherwise          - N should be replaced by the returned Operand.
3559   ///
3560   /// In addition, methods provided by DAGCombinerInfo may be used to perform
3561   /// more complex transformations.
3562   ///
3563   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
3564 
3565   /// Return true if it is profitable to move this shift by a constant amount
3566   /// though its operand, adjusting any immediate operands as necessary to
3567   /// preserve semantics. This transformation may not be desirable if it
3568   /// disrupts a particularly auspicious target-specific tree (e.g. bitfield
3569   /// extraction in AArch64). By default, it returns true.
3570   ///
3571   /// @param N the shift node
3572   /// @param Level the current DAGCombine legalization level.
isDesirableToCommuteWithShift(const SDNode * N,CombineLevel Level)3573   virtual bool isDesirableToCommuteWithShift(const SDNode *N,
3574                                              CombineLevel Level) const {
3575     return true;
3576   }
3577 
3578   /// Return true if the target has native support for the specified value type
3579   /// and it is 'desirable' to use the type for the given node type. e.g. On x86
3580   /// i16 is legal, but undesirable since i16 instruction encodings are longer
3581   /// and some i16 instructions are slow.
isTypeDesirableForOp(unsigned,EVT VT)3582   virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
3583     // By default, assume all legal types are desirable.
3584     return isTypeLegal(VT);
3585   }
3586 
3587   /// Return true if it is profitable for dag combiner to transform a floating
3588   /// point op of specified opcode to a equivalent op of an integer
3589   /// type. e.g. f32 load -> i32 load can be profitable on ARM.
isDesirableToTransformToIntegerOp(unsigned,EVT)3590   virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
3591                                                  EVT /*VT*/) const {
3592     return false;
3593   }
3594 
3595   /// This method query the target whether it is beneficial for dag combiner to
3596   /// promote the specified node. If true, it should return the desired
3597   /// promotion type by reference.
IsDesirableToPromoteOp(SDValue,EVT &)3598   virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
3599     return false;
3600   }
3601 
3602   /// Return true if the target supports swifterror attribute. It optimizes
3603   /// loads and stores to reading and writing a specific register.
supportSwiftError()3604   virtual bool supportSwiftError() const {
3605     return false;
3606   }
3607 
3608   /// Return true if the target supports that a subset of CSRs for the given
3609   /// machine function is handled explicitly via copies.
supportSplitCSR(MachineFunction * MF)3610   virtual bool supportSplitCSR(MachineFunction *MF) const {
3611     return false;
3612   }
3613 
3614   /// Perform necessary initialization to handle a subset of CSRs explicitly
3615   /// via copies. This function is called at the beginning of instruction
3616   /// selection.
initializeSplitCSR(MachineBasicBlock * Entry)3617   virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
3618     llvm_unreachable("Not Implemented");
3619   }
3620 
3621   /// Insert explicit copies in entry and exit blocks. We copy a subset of
3622   /// CSRs to virtual registers in the entry block, and copy them back to
3623   /// physical registers in the exit blocks. This function is called at the end
3624   /// of instruction selection.
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits)3625   virtual void insertCopiesSplitCSR(
3626       MachineBasicBlock *Entry,
3627       const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
3628     llvm_unreachable("Not Implemented");
3629   }
3630 
3631   /// Return the newly negated expression if the cost is not expensive and
3632   /// set the cost in \p Cost to indicate that if it is cheaper or neutral to
3633   /// do the negation.
3634   virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG,
3635                                        bool LegalOps, bool OptForSize,
3636                                        NegatibleCost &Cost,
3637                                        unsigned Depth = 0) const;
3638 
3639   /// This is the helper function to return the newly negated expression only
3640   /// when the cost is cheaper.
3641   SDValue getCheaperNegatedExpression(SDValue Op, SelectionDAG &DAG,
3642                                       bool LegalOps, bool OptForSize,
3643                                       unsigned Depth = 0) const {
3644     NegatibleCost Cost = NegatibleCost::Expensive;
3645     SDValue Neg =
3646         getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
3647     if (Neg && Cost == NegatibleCost::Cheaper)
3648       return Neg;
3649     // Remove the new created node to avoid the side effect to the DAG.
3650     if (Neg && Neg.getNode()->use_empty())
3651       DAG.RemoveDeadNode(Neg.getNode());
3652     return SDValue();
3653   }
3654 
3655   /// This is the helper function to return the newly negated expression if
3656   /// the cost is not expensive.
3657   SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps,
3658                                bool OptForSize, unsigned Depth = 0) const {
3659     NegatibleCost Cost = NegatibleCost::Expensive;
3660     return getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
3661   }
3662 
3663   //===--------------------------------------------------------------------===//
3664   // Lowering methods - These methods must be implemented by targets so that
3665   // the SelectionDAGBuilder code knows how to lower these.
3666   //
3667 
3668   /// Target-specific splitting of values into parts that fit a register
3669   /// storing a legal type
splitValueIntoRegisterParts(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,Optional<CallingConv::ID> CC)3670   virtual bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL,
3671                                            SDValue Val, SDValue *Parts,
3672                                            unsigned NumParts, MVT PartVT,
3673                                            Optional<CallingConv::ID> CC) const {
3674     return false;
3675   }
3676 
3677   /// Target-specific combining of register parts into its original value
3678   virtual SDValue
joinRegisterPartsIntoValue(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,Optional<CallingConv::ID> CC)3679   joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL,
3680                              const SDValue *Parts, unsigned NumParts,
3681                              MVT PartVT, EVT ValueVT,
3682                              Optional<CallingConv::ID> CC) const {
3683     return SDValue();
3684   }
3685 
3686   /// This hook must be implemented to lower the incoming (formal) arguments,
3687   /// described by the Ins array, into the specified DAG. The implementation
3688   /// should fill in the InVals array with legal-type argument values, and
3689   /// return the resulting token chain value.
LowerFormalArguments(SDValue,CallingConv::ID,bool,const SmallVectorImpl<ISD::InputArg> &,const SDLoc &,SelectionDAG &,SmallVectorImpl<SDValue> &)3690   virtual SDValue LowerFormalArguments(
3691       SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
3692       const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/,
3693       SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const {
3694     llvm_unreachable("Not Implemented");
3695   }
3696 
3697   /// This structure contains all information that is necessary for lowering
3698   /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
3699   /// needs to lower a call, and targets will see this struct in their LowerCall
3700   /// implementation.
3701   struct CallLoweringInfo {
3702     SDValue Chain;
3703     Type *RetTy = nullptr;
3704     bool RetSExt           : 1;
3705     bool RetZExt           : 1;
3706     bool IsVarArg          : 1;
3707     bool IsInReg           : 1;
3708     bool DoesNotReturn     : 1;
3709     bool IsReturnValueUsed : 1;
3710     bool IsConvergent      : 1;
3711     bool IsPatchPoint      : 1;
3712     bool IsPreallocated : 1;
3713     bool NoMerge           : 1;
3714 
3715     // IsTailCall should be modified by implementations of
3716     // TargetLowering::LowerCall that perform tail call conversions.
3717     bool IsTailCall = false;
3718 
3719     // Is Call lowering done post SelectionDAG type legalization.
3720     bool IsPostTypeLegalization = false;
3721 
3722     unsigned NumFixedArgs = -1;
3723     CallingConv::ID CallConv = CallingConv::C;
3724     SDValue Callee;
3725     ArgListTy Args;
3726     SelectionDAG &DAG;
3727     SDLoc DL;
3728     const CallBase *CB = nullptr;
3729     SmallVector<ISD::OutputArg, 32> Outs;
3730     SmallVector<SDValue, 32> OutVals;
3731     SmallVector<ISD::InputArg, 32> Ins;
3732     SmallVector<SDValue, 4> InVals;
3733 
CallLoweringInfoCallLoweringInfo3734     CallLoweringInfo(SelectionDAG &DAG)
3735         : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false),
3736           DoesNotReturn(false), IsReturnValueUsed(true), IsConvergent(false),
3737           IsPatchPoint(false), IsPreallocated(false), NoMerge(false),
3738           DAG(DAG) {}
3739 
setDebugLocCallLoweringInfo3740     CallLoweringInfo &setDebugLoc(const SDLoc &dl) {
3741       DL = dl;
3742       return *this;
3743     }
3744 
setChainCallLoweringInfo3745     CallLoweringInfo &setChain(SDValue InChain) {
3746       Chain = InChain;
3747       return *this;
3748     }
3749 
3750     // setCallee with target/module-specific attributes
setLibCalleeCallLoweringInfo3751     CallLoweringInfo &setLibCallee(CallingConv::ID CC, Type *ResultType,
3752                                    SDValue Target, ArgListTy &&ArgsList) {
3753       RetTy = ResultType;
3754       Callee = Target;
3755       CallConv = CC;
3756       NumFixedArgs = ArgsList.size();
3757       Args = std::move(ArgsList);
3758 
3759       DAG.getTargetLoweringInfo().markLibCallAttributes(
3760           &(DAG.getMachineFunction()), CC, Args);
3761       return *this;
3762     }
3763 
setCalleeCallLoweringInfo3764     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
3765                                 SDValue Target, ArgListTy &&ArgsList) {
3766       RetTy = ResultType;
3767       Callee = Target;
3768       CallConv = CC;
3769       NumFixedArgs = ArgsList.size();
3770       Args = std::move(ArgsList);
3771       return *this;
3772     }
3773 
setCalleeCallLoweringInfo3774     CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
3775                                 SDValue Target, ArgListTy &&ArgsList,
3776                                 const CallBase &Call) {
3777       RetTy = ResultType;
3778 
3779       IsInReg = Call.hasRetAttr(Attribute::InReg);
3780       DoesNotReturn =
3781           Call.doesNotReturn() ||
3782           (!isa<InvokeInst>(Call) && isa<UnreachableInst>(Call.getNextNode()));
3783       IsVarArg = FTy->isVarArg();
3784       IsReturnValueUsed = !Call.use_empty();
3785       RetSExt = Call.hasRetAttr(Attribute::SExt);
3786       RetZExt = Call.hasRetAttr(Attribute::ZExt);
3787       NoMerge = Call.hasFnAttr(Attribute::NoMerge);
3788 
3789       Callee = Target;
3790 
3791       CallConv = Call.getCallingConv();
3792       NumFixedArgs = FTy->getNumParams();
3793       Args = std::move(ArgsList);
3794 
3795       CB = &Call;
3796 
3797       return *this;
3798     }
3799 
3800     CallLoweringInfo &setInRegister(bool Value = true) {
3801       IsInReg = Value;
3802       return *this;
3803     }
3804 
3805     CallLoweringInfo &setNoReturn(bool Value = true) {
3806       DoesNotReturn = Value;
3807       return *this;
3808     }
3809 
3810     CallLoweringInfo &setVarArg(bool Value = true) {
3811       IsVarArg = Value;
3812       return *this;
3813     }
3814 
3815     CallLoweringInfo &setTailCall(bool Value = true) {
3816       IsTailCall = Value;
3817       return *this;
3818     }
3819 
3820     CallLoweringInfo &setDiscardResult(bool Value = true) {
3821       IsReturnValueUsed = !Value;
3822       return *this;
3823     }
3824 
3825     CallLoweringInfo &setConvergent(bool Value = true) {
3826       IsConvergent = Value;
3827       return *this;
3828     }
3829 
3830     CallLoweringInfo &setSExtResult(bool Value = true) {
3831       RetSExt = Value;
3832       return *this;
3833     }
3834 
3835     CallLoweringInfo &setZExtResult(bool Value = true) {
3836       RetZExt = Value;
3837       return *this;
3838     }
3839 
3840     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
3841       IsPatchPoint = Value;
3842       return *this;
3843     }
3844 
3845     CallLoweringInfo &setIsPreallocated(bool Value = true) {
3846       IsPreallocated = Value;
3847       return *this;
3848     }
3849 
3850     CallLoweringInfo &setIsPostTypeLegalization(bool Value=true) {
3851       IsPostTypeLegalization = Value;
3852       return *this;
3853     }
3854 
getArgsCallLoweringInfo3855     ArgListTy &getArgs() {
3856       return Args;
3857     }
3858   };
3859 
3860   /// This structure is used to pass arguments to makeLibCall function.
3861   struct MakeLibCallOptions {
3862     // By passing type list before soften to makeLibCall, the target hook
3863     // shouldExtendTypeInLibCall can get the original type before soften.
3864     ArrayRef<EVT> OpsVTBeforeSoften;
3865     EVT RetVTBeforeSoften;
3866     bool IsSExt : 1;
3867     bool DoesNotReturn : 1;
3868     bool IsReturnValueUsed : 1;
3869     bool IsPostTypeLegalization : 1;
3870     bool IsSoften : 1;
3871 
MakeLibCallOptionsMakeLibCallOptions3872     MakeLibCallOptions()
3873         : IsSExt(false), DoesNotReturn(false), IsReturnValueUsed(true),
3874           IsPostTypeLegalization(false), IsSoften(false) {}
3875 
3876     MakeLibCallOptions &setSExt(bool Value = true) {
3877       IsSExt = Value;
3878       return *this;
3879     }
3880 
3881     MakeLibCallOptions &setNoReturn(bool Value = true) {
3882       DoesNotReturn = Value;
3883       return *this;
3884     }
3885 
3886     MakeLibCallOptions &setDiscardResult(bool Value = true) {
3887       IsReturnValueUsed = !Value;
3888       return *this;
3889     }
3890 
3891     MakeLibCallOptions &setIsPostTypeLegalization(bool Value = true) {
3892       IsPostTypeLegalization = Value;
3893       return *this;
3894     }
3895 
3896     MakeLibCallOptions &setTypeListBeforeSoften(ArrayRef<EVT> OpsVT, EVT RetVT,
3897                                                 bool Value = true) {
3898       OpsVTBeforeSoften = OpsVT;
3899       RetVTBeforeSoften = RetVT;
3900       IsSoften = Value;
3901       return *this;
3902     }
3903   };
3904 
3905   /// This function lowers an abstract call to a function into an actual call.
3906   /// This returns a pair of operands.  The first element is the return value
3907   /// for the function (if RetTy is not VoidTy).  The second element is the
3908   /// outgoing token chain. It calls LowerCall to do the actual lowering.
3909   std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
3910 
3911   /// This hook must be implemented to lower calls into the specified
3912   /// DAG. The outgoing arguments to the call are described by the Outs array,
3913   /// and the values to be returned by the call are described by the Ins
3914   /// array. The implementation should fill in the InVals array with legal-type
3915   /// return values from the call, and return the resulting token chain value.
3916   virtual SDValue
LowerCall(CallLoweringInfo &,SmallVectorImpl<SDValue> &)3917     LowerCall(CallLoweringInfo &/*CLI*/,
3918               SmallVectorImpl<SDValue> &/*InVals*/) const {
3919     llvm_unreachable("Not Implemented");
3920   }
3921 
3922   /// Target-specific cleanup for formal ByVal parameters.
HandleByVal(CCState *,unsigned &,Align)3923   virtual void HandleByVal(CCState *, unsigned &, Align) const {}
3924 
3925   /// This hook should be implemented to check whether the return values
3926   /// described by the Outs array can fit into the return registers.  If false
3927   /// is returned, an sret-demotion is performed.
CanLowerReturn(CallingConv::ID,MachineFunction &,bool,const SmallVectorImpl<ISD::OutputArg> &,LLVMContext &)3928   virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
3929                               MachineFunction &/*MF*/, bool /*isVarArg*/,
3930                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
3931                LLVMContext &/*Context*/) const
3932   {
3933     // Return true by default to get preexisting behavior.
3934     return true;
3935   }
3936 
3937   /// This hook must be implemented to lower outgoing return values, described
3938   /// by the Outs array, into the specified DAG. The implementation should
3939   /// return the resulting token chain value.
LowerReturn(SDValue,CallingConv::ID,bool,const SmallVectorImpl<ISD::OutputArg> &,const SmallVectorImpl<SDValue> &,const SDLoc &,SelectionDAG &)3940   virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
3941                               bool /*isVarArg*/,
3942                               const SmallVectorImpl<ISD::OutputArg> & /*Outs*/,
3943                               const SmallVectorImpl<SDValue> & /*OutVals*/,
3944                               const SDLoc & /*dl*/,
3945                               SelectionDAG & /*DAG*/) const {
3946     llvm_unreachable("Not Implemented");
3947   }
3948 
3949   /// Return true if result of the specified node is used by a return node
3950   /// only. It also compute and return the input chain for the tail call.
3951   ///
3952   /// This is used to determine whether it is possible to codegen a libcall as
3953   /// tail call at legalization time.
isUsedByReturnOnly(SDNode *,SDValue &)3954   virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
3955     return false;
3956   }
3957 
3958   /// Return true if the target may be able emit the call instruction as a tail
3959   /// call. This is used by optimization passes to determine if it's profitable
3960   /// to duplicate return instructions to enable tailcall optimization.
mayBeEmittedAsTailCall(const CallInst *)3961   virtual bool mayBeEmittedAsTailCall(const CallInst *) const {
3962     return false;
3963   }
3964 
3965   /// Return the builtin name for the __builtin___clear_cache intrinsic
3966   /// Default is to invoke the clear cache library call
getClearCacheBuiltinName()3967   virtual const char * getClearCacheBuiltinName() const {
3968     return "__clear_cache";
3969   }
3970 
3971   /// Return the register ID of the name passed in. Used by named register
3972   /// global variables extension. There is no target-independent behaviour
3973   /// so the default action is to bail.
getRegisterByName(const char * RegName,LLT Ty,const MachineFunction & MF)3974   virtual Register getRegisterByName(const char* RegName, LLT Ty,
3975                                      const MachineFunction &MF) const {
3976     report_fatal_error("Named registers not implemented for this target");
3977   }
3978 
3979   /// Return the type that should be used to zero or sign extend a
3980   /// zeroext/signext integer return value.  FIXME: Some C calling conventions
3981   /// require the return type to be promoted, but this is not true all the time,
3982   /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
3983   /// conventions. The frontend should handle this and include all of the
3984   /// necessary information.
getTypeForExtReturn(LLVMContext & Context,EVT VT,ISD::NodeType)3985   virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
3986                                        ISD::NodeType /*ExtendKind*/) const {
3987     EVT MinVT = getRegisterType(Context, MVT::i32);
3988     return VT.bitsLT(MinVT) ? MinVT : VT;
3989   }
3990 
3991   /// For some targets, an LLVM struct type must be broken down into multiple
3992   /// simple types, but the calling convention specifies that the entire struct
3993   /// must be passed in a block of consecutive registers.
3994   virtual bool
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg)3995   functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
3996                                             bool isVarArg) const {
3997     return false;
3998   }
3999 
4000   /// For most targets, an LLVM type must be broken down into multiple
4001   /// smaller types. Usually the halves are ordered according to the endianness
4002   /// but for some platform that would break. So this method will default to
4003   /// matching the endianness but can be overridden.
4004   virtual bool
shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout & DL)4005   shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const {
4006     return DL.isLittleEndian();
4007   }
4008 
4009   /// Returns a 0 terminated array of registers that can be safely used as
4010   /// scratch registers.
getScratchRegisters(CallingConv::ID CC)4011   virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
4012     return nullptr;
4013   }
4014 
4015   /// This callback is used to prepare for a volatile or atomic load.
4016   /// It takes a chain node as input and returns the chain for the load itself.
4017   ///
4018   /// Having a callback like this is necessary for targets like SystemZ,
4019   /// which allows a CPU to reuse the result of a previous load indefinitely,
4020   /// even if a cache-coherent store is performed by another CPU.  The default
4021   /// implementation does nothing.
prepareVolatileOrAtomicLoad(SDValue Chain,const SDLoc & DL,SelectionDAG & DAG)4022   virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL,
4023                                               SelectionDAG &DAG) const {
4024     return Chain;
4025   }
4026 
4027   /// Should SelectionDAG lower an atomic store of the given kind as a normal
4028   /// StoreSDNode (as opposed to an AtomicSDNode)?  NOTE: The intention is to
4029   /// eventually migrate all targets to the using StoreSDNodes, but porting is
4030   /// being done target at a time.
lowerAtomicStoreAsStoreSDNode(const StoreInst & SI)4031   virtual bool lowerAtomicStoreAsStoreSDNode(const StoreInst &SI) const {
4032     assert(SI.isAtomic() && "violated precondition");
4033     return false;
4034   }
4035 
4036   /// Should SelectionDAG lower an atomic load of the given kind as a normal
4037   /// LoadSDNode (as opposed to an AtomicSDNode)?  NOTE: The intention is to
4038   /// eventually migrate all targets to the using LoadSDNodes, but porting is
4039   /// being done target at a time.
lowerAtomicLoadAsLoadSDNode(const LoadInst & LI)4040   virtual bool lowerAtomicLoadAsLoadSDNode(const LoadInst &LI) const {
4041     assert(LI.isAtomic() && "violated precondition");
4042     return false;
4043   }
4044 
4045 
4046   /// This callback is invoked by the type legalizer to legalize nodes with an
4047   /// illegal operand type but legal result types.  It replaces the
4048   /// LowerOperation callback in the type Legalizer.  The reason we can not do
4049   /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
4050   /// use this callback.
4051   ///
4052   /// TODO: Consider merging with ReplaceNodeResults.
4053   ///
4054   /// The target places new result values for the node in Results (their number
4055   /// and types must exactly match those of the original return values of
4056   /// the node), or leaves Results empty, which indicates that the node is not
4057   /// to be custom lowered after all.
4058   /// The default implementation calls LowerOperation.
4059   virtual void LowerOperationWrapper(SDNode *N,
4060                                      SmallVectorImpl<SDValue> &Results,
4061                                      SelectionDAG &DAG) const;
4062 
4063   /// This callback is invoked for operations that are unsupported by the
4064   /// target, which are registered to use 'custom' lowering, and whose defined
4065   /// values are all legal.  If the target has no operations that require custom
4066   /// lowering, it need not implement this.  The default implementation of this
4067   /// aborts.
4068   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
4069 
4070   /// This callback is invoked when a node result type is illegal for the
4071   /// target, and the operation was registered to use 'custom' lowering for that
4072   /// result type.  The target places new result values for the node in Results
4073   /// (their number and types must exactly match those of the original return
4074   /// values of the node), or leaves Results empty, which indicates that the
4075   /// node is not to be custom lowered after all.
4076   ///
4077   /// If the target has no operations that require custom lowering, it need not
4078   /// implement this.  The default implementation aborts.
ReplaceNodeResults(SDNode *,SmallVectorImpl<SDValue> &,SelectionDAG &)4079   virtual void ReplaceNodeResults(SDNode * /*N*/,
4080                                   SmallVectorImpl<SDValue> &/*Results*/,
4081                                   SelectionDAG &/*DAG*/) const {
4082     llvm_unreachable("ReplaceNodeResults not implemented for this target!");
4083   }
4084 
4085   /// This method returns the name of a target specific DAG node.
4086   virtual const char *getTargetNodeName(unsigned Opcode) const;
4087 
4088   /// This method returns a target specific FastISel object, or null if the
4089   /// target does not support "fast" ISel.
createFastISel(FunctionLoweringInfo &,const TargetLibraryInfo *)4090   virtual FastISel *createFastISel(FunctionLoweringInfo &,
4091                                    const TargetLibraryInfo *) const {
4092     return nullptr;
4093   }
4094 
4095   bool verifyReturnAddressArgumentIsConstant(SDValue Op,
4096                                              SelectionDAG &DAG) const;
4097 
4098   //===--------------------------------------------------------------------===//
4099   // Inline Asm Support hooks
4100   //
4101 
4102   /// This hook allows the target to expand an inline asm call to be explicit
4103   /// llvm code if it wants to.  This is useful for turning simple inline asms
4104   /// into LLVM intrinsics, which gives the compiler more information about the
4105   /// behavior of the code.
ExpandInlineAsm(CallInst *)4106   virtual bool ExpandInlineAsm(CallInst *) const {
4107     return false;
4108   }
4109 
4110   enum ConstraintType {
4111     C_Register,            // Constraint represents specific register(s).
4112     C_RegisterClass,       // Constraint represents any of register(s) in class.
4113     C_Memory,              // Memory constraint.
4114     C_Immediate,           // Requires an immediate.
4115     C_Other,               // Something else.
4116     C_Unknown              // Unsupported constraint.
4117   };
4118 
4119   enum ConstraintWeight {
4120     // Generic weights.
4121     CW_Invalid  = -1,     // No match.
4122     CW_Okay     = 0,      // Acceptable.
4123     CW_Good     = 1,      // Good weight.
4124     CW_Better   = 2,      // Better weight.
4125     CW_Best     = 3,      // Best weight.
4126 
4127     // Well-known weights.
4128     CW_SpecificReg  = CW_Okay,    // Specific register operands.
4129     CW_Register     = CW_Good,    // Register operands.
4130     CW_Memory       = CW_Better,  // Memory operands.
4131     CW_Constant     = CW_Best,    // Constant operand.
4132     CW_Default      = CW_Okay     // Default or don't know type.
4133   };
4134 
4135   /// This contains information for each constraint that we are lowering.
4136   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
4137     /// This contains the actual string for the code, like "m".  TargetLowering
4138     /// picks the 'best' code from ConstraintInfo::Codes that most closely
4139     /// matches the operand.
4140     std::string ConstraintCode;
4141 
4142     /// Information about the constraint code, e.g. Register, RegisterClass,
4143     /// Memory, Other, Unknown.
4144     TargetLowering::ConstraintType ConstraintType = TargetLowering::C_Unknown;
4145 
4146     /// If this is the result output operand or a clobber, this is null,
4147     /// otherwise it is the incoming operand to the CallInst.  This gets
4148     /// modified as the asm is processed.
4149     Value *CallOperandVal = nullptr;
4150 
4151     /// The ValueType for the operand value.
4152     MVT ConstraintVT = MVT::Other;
4153 
4154     /// Copy constructor for copying from a ConstraintInfo.
AsmOperandInfoAsmOperandInfo4155     AsmOperandInfo(InlineAsm::ConstraintInfo Info)
4156         : InlineAsm::ConstraintInfo(std::move(Info)) {}
4157 
4158     /// Return true of this is an input operand that is a matching constraint
4159     /// like "4".
4160     bool isMatchingInputConstraint() const;
4161 
4162     /// If this is an input matching constraint, this method returns the output
4163     /// operand it matches.
4164     unsigned getMatchedOperand() const;
4165   };
4166 
4167   using AsmOperandInfoVector = std::vector<AsmOperandInfo>;
4168 
4169   /// Split up the constraint string from the inline assembly value into the
4170   /// specific constraints and their prefixes, and also tie in the associated
4171   /// operand values.  If this returns an empty vector, and if the constraint
4172   /// string itself isn't empty, there was an error parsing.
4173   virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL,
4174                                                 const TargetRegisterInfo *TRI,
4175                                                 const CallBase &Call) const;
4176 
4177   /// Examine constraint type and operand type and determine a weight value.
4178   /// The operand object must already have been set up with the operand type.
4179   virtual ConstraintWeight getMultipleConstraintMatchWeight(
4180       AsmOperandInfo &info, int maIndex) const;
4181 
4182   /// Examine constraint string and operand type and determine a weight value.
4183   /// The operand object must already have been set up with the operand type.
4184   virtual ConstraintWeight getSingleConstraintMatchWeight(
4185       AsmOperandInfo &info, const char *constraint) const;
4186 
4187   /// Determines the constraint code and constraint type to use for the specific
4188   /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4189   /// If the actual operand being passed in is available, it can be passed in as
4190   /// Op, otherwise an empty SDValue can be passed.
4191   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4192                                       SDValue Op,
4193                                       SelectionDAG *DAG = nullptr) const;
4194 
4195   /// Given a constraint, return the type of constraint it is for this target.
4196   virtual ConstraintType getConstraintType(StringRef Constraint) const;
4197 
4198   /// Given a physical register constraint (e.g.  {edx}), return the register
4199   /// number and the register class for the register.
4200   ///
4201   /// Given a register class constraint, like 'r', if this corresponds directly
4202   /// to an LLVM register class, return a register of 0 and the register class
4203   /// pointer.
4204   ///
4205   /// This should only be used for C_Register constraints.  On error, this
4206   /// returns a register number of 0 and a null register class pointer.
4207   virtual std::pair<unsigned, const TargetRegisterClass *>
4208   getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4209                                StringRef Constraint, MVT VT) const;
4210 
getInlineAsmMemConstraint(StringRef ConstraintCode)4211   virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const {
4212     if (ConstraintCode == "m")
4213       return InlineAsm::Constraint_m;
4214     if (ConstraintCode == "o")
4215       return InlineAsm::Constraint_o;
4216     if (ConstraintCode == "X")
4217       return InlineAsm::Constraint_X;
4218     return InlineAsm::Constraint_Unknown;
4219   }
4220 
4221   /// Try to replace an X constraint, which matches anything, with another that
4222   /// has more specific requirements based on the type of the corresponding
4223   /// operand.  This returns null if there is no replacement to make.
4224   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
4225 
4226   /// Lower the specified operand into the Ops vector.  If it is invalid, don't
4227   /// add anything to Ops.
4228   virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
4229                                             std::vector<SDValue> &Ops,
4230                                             SelectionDAG &DAG) const;
4231 
4232   // Lower custom output constraints. If invalid, return SDValue().
4233   virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag,
4234                                               const SDLoc &DL,
4235                                               const AsmOperandInfo &OpInfo,
4236                                               SelectionDAG &DAG) const;
4237 
4238   //===--------------------------------------------------------------------===//
4239   // Div utility functions
4240   //
4241   SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
4242                     SmallVectorImpl<SDNode *> &Created) const;
4243   SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
4244                     SmallVectorImpl<SDNode *> &Created) const;
4245 
4246   /// Targets may override this function to provide custom SDIV lowering for
4247   /// power-of-2 denominators.  If the target returns an empty SDValue, LLVM
4248   /// assumes SDIV is expensive and replaces it with a series of other integer
4249   /// operations.
4250   virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4251                                 SelectionDAG &DAG,
4252                                 SmallVectorImpl<SDNode *> &Created) const;
4253 
4254   /// Indicate whether this target prefers to combine FDIVs with the same
4255   /// divisor. If the transform should never be done, return zero. If the
4256   /// transform should be done, return the minimum number of divisor uses
4257   /// that must exist.
combineRepeatedFPDivisors()4258   virtual unsigned combineRepeatedFPDivisors() const {
4259     return 0;
4260   }
4261 
4262   /// Hooks for building estimates in place of slower divisions and square
4263   /// roots.
4264 
4265   /// Return either a square root or its reciprocal estimate value for the input
4266   /// operand.
4267   /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
4268   /// 'Enabled' as set by a potential default override attribute.
4269   /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
4270   /// refinement iterations required to generate a sufficient (though not
4271   /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
4272   /// The boolean UseOneConstNR output is used to select a Newton-Raphson
4273   /// algorithm implementation that uses either one or two constants.
4274   /// The boolean Reciprocal is used to select whether the estimate is for the
4275   /// square root of the input operand or the reciprocal of its square root.
4276   /// A target may choose to implement its own refinement within this function.
4277   /// If that's true, then return '0' as the number of RefinementSteps to avoid
4278   /// any further refinement of the estimate.
4279   /// An empty SDValue return means no estimate sequence can be created.
getSqrtEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps,bool & UseOneConstNR,bool Reciprocal)4280   virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
4281                                   int Enabled, int &RefinementSteps,
4282                                   bool &UseOneConstNR, bool Reciprocal) const {
4283     return SDValue();
4284   }
4285 
4286   /// Return a reciprocal estimate value for the input operand.
4287   /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
4288   /// 'Enabled' as set by a potential default override attribute.
4289   /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
4290   /// refinement iterations required to generate a sufficient (though not
4291   /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
4292   /// A target may choose to implement its own refinement within this function.
4293   /// If that's true, then return '0' as the number of RefinementSteps to avoid
4294   /// any further refinement of the estimate.
4295   /// An empty SDValue return means no estimate sequence can be created.
getRecipEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps)4296   virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
4297                                    int Enabled, int &RefinementSteps) const {
4298     return SDValue();
4299   }
4300 
4301   /// Return a target-dependent comparison result if the input operand is
4302   /// suitable for use with a square root estimate calculation. For example, the
4303   /// comparison may check if the operand is NAN, INF, zero, normal, etc. The
4304   /// result should be used as the condition operand for a select or branch.
4305   virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
4306                                    const DenormalMode &Mode) const;
4307 
4308   /// Return a target-dependent result if the input operand is not suitable for
4309   /// use with a square root estimate calculation.
getSqrtResultForDenormInput(SDValue Operand,SelectionDAG & DAG)4310   virtual SDValue getSqrtResultForDenormInput(SDValue Operand,
4311                                               SelectionDAG &DAG) const {
4312     return DAG.getConstantFP(0.0, SDLoc(Operand), Operand.getValueType());
4313   }
4314 
4315   //===--------------------------------------------------------------------===//
4316   // Legalization utility functions
4317   //
4318 
4319   /// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes,
4320   /// respectively, each computing an n/2-bit part of the result.
4321   /// \param Result A vector that will be filled with the parts of the result
4322   ///        in little-endian order.
4323   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
4324   ///        if you want to control how low bits are extracted from the LHS.
4325   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
4326   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
4327   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
4328   /// \returns true if the node has been expanded, false if it has not
4329   bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS,
4330                       SDValue RHS, SmallVectorImpl<SDValue> &Result, EVT HiLoVT,
4331                       SelectionDAG &DAG, MulExpansionKind Kind,
4332                       SDValue LL = SDValue(), SDValue LH = SDValue(),
4333                       SDValue RL = SDValue(), SDValue RH = SDValue()) const;
4334 
4335   /// Expand a MUL into two nodes.  One that computes the high bits of
4336   /// the result and one that computes the low bits.
4337   /// \param HiLoVT The value type to use for the Lo and Hi nodes.
4338   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
4339   ///        if you want to control how low bits are extracted from the LHS.
4340   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
4341   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
4342   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
4343   /// \returns true if the node has been expanded. false if it has not
4344   bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
4345                  SelectionDAG &DAG, MulExpansionKind Kind,
4346                  SDValue LL = SDValue(), SDValue LH = SDValue(),
4347                  SDValue RL = SDValue(), SDValue RH = SDValue()) const;
4348 
4349   /// Expand funnel shift.
4350   /// \param N Node to expand
4351   /// \param Result output after conversion
4352   /// \returns True, if the expansion was successful, false otherwise
4353   bool expandFunnelShift(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4354 
4355   /// Expand rotations.
4356   /// \param N Node to expand
4357   /// \param AllowVectorOps expand vector rotate, this should only be performed
4358   ///        if the legalization is happening outside of LegalizeVectorOps
4359   /// \param Result output after conversion
4360   /// \returns True, if the expansion was successful, false otherwise
4361   bool expandROT(SDNode *N, bool AllowVectorOps, SDValue &Result,
4362                  SelectionDAG &DAG) const;
4363 
4364   /// Expand shift-by-parts.
4365   /// \param N Node to expand
4366   /// \param Lo lower-output-part after conversion
4367   /// \param Hi upper-output-part after conversion
4368   void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi,
4369                         SelectionDAG &DAG) const;
4370 
4371   /// Expand float(f32) to SINT(i64) conversion
4372   /// \param N Node to expand
4373   /// \param Result output after conversion
4374   /// \returns True, if the expansion was successful, false otherwise
4375   bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4376 
4377   /// Expand float to UINT conversion
4378   /// \param N Node to expand
4379   /// \param Result output after conversion
4380   /// \param Chain output chain after conversion
4381   /// \returns True, if the expansion was successful, false otherwise
4382   bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain,
4383                         SelectionDAG &DAG) const;
4384 
4385   /// Expand UINT(i64) to double(f64) conversion
4386   /// \param N Node to expand
4387   /// \param Result output after conversion
4388   /// \param Chain output chain after conversion
4389   /// \returns True, if the expansion was successful, false otherwise
4390   bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain,
4391                         SelectionDAG &DAG) const;
4392 
4393   /// Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
4394   SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const;
4395 
4396   /// Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
4397   /// \param N Node to expand
4398   /// \returns The expansion result
4399   SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const;
4400 
4401   /// Expand CTPOP nodes. Expands vector/scalar CTPOP nodes,
4402   /// vector nodes can only succeed if all operations are legal/custom.
4403   /// \param N Node to expand
4404   /// \param Result output after conversion
4405   /// \returns True, if the expansion was successful, false otherwise
4406   bool expandCTPOP(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4407 
4408   /// Expand CTLZ/CTLZ_ZERO_UNDEF nodes. Expands vector/scalar CTLZ nodes,
4409   /// vector nodes can only succeed if all operations are legal/custom.
4410   /// \param N Node to expand
4411   /// \param Result output after conversion
4412   /// \returns True, if the expansion was successful, false otherwise
4413   bool expandCTLZ(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4414 
4415   /// Expand CTTZ/CTTZ_ZERO_UNDEF nodes. Expands vector/scalar CTTZ nodes,
4416   /// vector nodes can only succeed if all operations are legal/custom.
4417   /// \param N Node to expand
4418   /// \param Result output after conversion
4419   /// \returns True, if the expansion was successful, false otherwise
4420   bool expandCTTZ(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4421 
4422   /// Expand ABS nodes. Expands vector/scalar ABS nodes,
4423   /// vector nodes can only succeed if all operations are legal/custom.
4424   /// (ABS x) -> (XOR (ADD x, (SRA x, type_size)), (SRA x, type_size))
4425   /// \param N Node to expand
4426   /// \param Result output after conversion
4427   /// \param IsNegative indicate negated abs
4428   /// \returns True, if the expansion was successful, false otherwise
4429   bool expandABS(SDNode *N, SDValue &Result, SelectionDAG &DAG,
4430                  bool IsNegative = false) const;
4431 
4432   /// Expand BSWAP nodes. Expands scalar/vector BSWAP nodes with i16/i32/i64
4433   /// scalar types. Returns SDValue() if expand fails.
4434   /// \param N Node to expand
4435   /// \returns The expansion result or SDValue() if it fails.
4436   SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const;
4437 
4438   /// Expand BITREVERSE nodes. Expands scalar/vector BITREVERSE nodes.
4439   /// Returns SDValue() if expand fails.
4440   /// \param N Node to expand
4441   /// \returns The expansion result or SDValue() if it fails.
4442   SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const;
4443 
4444   /// Turn load of vector type into a load of the individual elements.
4445   /// \param LD load to expand
4446   /// \returns BUILD_VECTOR and TokenFactor nodes.
4447   std::pair<SDValue, SDValue> scalarizeVectorLoad(LoadSDNode *LD,
4448                                                   SelectionDAG &DAG) const;
4449 
4450   // Turn a store of a vector type into stores of the individual elements.
4451   /// \param ST Store with a vector value type
4452   /// \returns TokenFactor of the individual store chains.
4453   SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const;
4454 
4455   /// Expands an unaligned load to 2 half-size loads for an integer, and
4456   /// possibly more for vectors.
4457   std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD,
4458                                                   SelectionDAG &DAG) const;
4459 
4460   /// Expands an unaligned store to 2 half-size stores for integer values, and
4461   /// possibly more for vectors.
4462   SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const;
4463 
4464   /// Increments memory address \p Addr according to the type of the value
4465   /// \p DataVT that should be stored. If the data is stored in compressed
4466   /// form, the memory address should be incremented according to the number of
4467   /// the stored elements. This number is equal to the number of '1's bits
4468   /// in the \p Mask.
4469   /// \p DataVT is a vector type. \p Mask is a vector value.
4470   /// \p DataVT and \p Mask have the same number of vector elements.
4471   SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL,
4472                                  EVT DataVT, SelectionDAG &DAG,
4473                                  bool IsCompressedMemory) const;
4474 
4475   /// Get a pointer to vector element \p Idx located in memory for a vector of
4476   /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
4477   /// bounds the returned pointer is unspecified, but will be within the vector
4478   /// bounds.
4479   SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
4480                                   SDValue Index) const;
4481 
4482   /// Method for building the DAG expansion of ISD::[US][MIN|MAX]. This
4483   /// method accepts integers as its arguments.
4484   SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const;
4485 
4486   /// Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT. This
4487   /// method accepts integers as its arguments.
4488   SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const;
4489 
4490   /// Method for building the DAG expansion of ISD::[US]SHLSAT. This
4491   /// method accepts integers as its arguments.
4492   SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const;
4493 
4494   /// Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT]. This
4495   /// method accepts integers as its arguments.
4496   SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const;
4497 
4498   /// Method for building the DAG expansion of ISD::[US]DIVFIX[SAT]. This
4499   /// method accepts integers as its arguments.
4500   /// Note: This method may fail if the division could not be performed
4501   /// within the type. Clients must retry with a wider type if this happens.
4502   SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
4503                               SDValue LHS, SDValue RHS,
4504                               unsigned Scale, SelectionDAG &DAG) const;
4505 
4506   /// Method for building the DAG expansion of ISD::U(ADD|SUB)O. Expansion
4507   /// always suceeds and populates the Result and Overflow arguments.
4508   void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
4509                       SelectionDAG &DAG) const;
4510 
4511   /// Method for building the DAG expansion of ISD::S(ADD|SUB)O. Expansion
4512   /// always suceeds and populates the Result and Overflow arguments.
4513   void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
4514                       SelectionDAG &DAG) const;
4515 
4516   /// Method for building the DAG expansion of ISD::[US]MULO. Returns whether
4517   /// expansion was successful and populates the Result and Overflow arguments.
4518   bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow,
4519                   SelectionDAG &DAG) const;
4520 
4521   /// Expand a VECREDUCE_* into an explicit calculation. If Count is specified,
4522   /// only the first Count elements of the vector are used.
4523   SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const;
4524 
4525   /// Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
4526   SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const;
4527 
4528   /// Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
4529   /// Returns true if the expansion was successful.
4530   bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const;
4531 
4532   /// Method for building the DAG expansion of ISD::VECTOR_SPLICE. This
4533   /// method accepts vectors as its arguments.
4534   SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const;
4535 
4536   /// Legalize a SETCC with given LHS and RHS and condition code CC on the
4537   /// current target.
4538   ///
4539   /// If the SETCC has been legalized using AND / OR, then the legalized node
4540   /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
4541   /// will be set to false.
4542   ///
4543   /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
4544   /// then the values of LHS and RHS will be swapped, CC will be set to the
4545   /// new condition, and NeedInvert will be set to false.
4546   ///
4547   /// If the SETCC has been legalized using the inverse condcode, then LHS and
4548   /// RHS will be unchanged, CC will set to the inverted condcode, and
4549   /// NeedInvert will be set to true. The caller must invert the result of the
4550   /// SETCC with SelectionDAG::getLogicalNOT() or take equivalent action to swap
4551   /// the effect of a true/false result.
4552   ///
4553   /// \returns true if the SetCC has been legalized, false if it hasn't.
4554   bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS,
4555                              SDValue &RHS, SDValue &CC, bool &NeedInvert,
4556                              const SDLoc &dl, SDValue &Chain,
4557                              bool IsSignaling = false) const;
4558 
4559   //===--------------------------------------------------------------------===//
4560   // Instruction Emitting Hooks
4561   //
4562 
4563   /// This method should be implemented by targets that mark instructions with
4564   /// the 'usesCustomInserter' flag.  These instructions are special in various
4565   /// ways, which require special support to insert.  The specified MachineInstr
4566   /// is created but not inserted into any basic blocks, and this method is
4567   /// called to expand it into a sequence of instructions, potentially also
4568   /// creating new basic blocks and control flow.
4569   /// As long as the returned basic block is different (i.e., we created a new
4570   /// one), the custom inserter is free to modify the rest of \p MBB.
4571   virtual MachineBasicBlock *
4572   EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
4573 
4574   /// This method should be implemented by targets that mark instructions with
4575   /// the 'hasPostISelHook' flag. These instructions must be adjusted after
4576   /// instruction selection by target hooks.  e.g. To fill in optional defs for
4577   /// ARM 's' setting instructions.
4578   virtual void AdjustInstrPostInstrSelection(MachineInstr &MI,
4579                                              SDNode *Node) const;
4580 
4581   /// If this function returns true, SelectionDAGBuilder emits a
4582   /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
useLoadStackGuardNode()4583   virtual bool useLoadStackGuardNode() const {
4584     return false;
4585   }
4586 
emitStackGuardXorFP(SelectionDAG & DAG,SDValue Val,const SDLoc & DL)4587   virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
4588                                       const SDLoc &DL) const {
4589     llvm_unreachable("not implemented for this target");
4590   }
4591 
4592   /// Lower TLS global address SDNode for target independent emulated TLS model.
4593   virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
4594                                           SelectionDAG &DAG) const;
4595 
4596   /// Expands target specific indirect branch for the case of JumpTable
4597   /// expanasion.
expandIndirectJTBranch(const SDLoc & dl,SDValue Value,SDValue Addr,SelectionDAG & DAG)4598   virtual SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value, SDValue Addr,
4599                                          SelectionDAG &DAG) const {
4600     return DAG.getNode(ISD::BRIND, dl, MVT::Other, Value, Addr);
4601   }
4602 
4603   // seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits)))
4604   // If we're comparing for equality to zero and isCtlzFast is true, expose the
4605   // fact that this can be implemented as a ctlz/srl pair, so that the dag
4606   // combiner can fold the new nodes.
4607   SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const;
4608 
4609   /// Give targets the chance to reduce the number of distinct addresing modes.
4610   ISD::MemIndexType getCanonicalIndexType(ISD::MemIndexType IndexType,
4611                                           EVT MemVT, SDValue Offsets) const;
4612 
4613 private:
4614   SDValue foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
4615                            const SDLoc &DL, DAGCombinerInfo &DCI) const;
4616   SDValue foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
4617                              const SDLoc &DL, DAGCombinerInfo &DCI) const;
4618 
4619   SDValue optimizeSetCCOfSignedTruncationCheck(EVT SCCVT, SDValue N0,
4620                                                SDValue N1, ISD::CondCode Cond,
4621                                                DAGCombinerInfo &DCI,
4622                                                const SDLoc &DL) const;
4623 
4624   // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4625   SDValue optimizeSetCCByHoistingAndByConstFromLogicalShift(
4626       EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
4627       DAGCombinerInfo &DCI, const SDLoc &DL) const;
4628 
4629   SDValue prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4630                             SDValue CompTargetNode, ISD::CondCode Cond,
4631                             DAGCombinerInfo &DCI, const SDLoc &DL,
4632                             SmallVectorImpl<SDNode *> &Created) const;
4633   SDValue buildUREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
4634                           ISD::CondCode Cond, DAGCombinerInfo &DCI,
4635                           const SDLoc &DL) const;
4636 
4637   SDValue prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
4638                             SDValue CompTargetNode, ISD::CondCode Cond,
4639                             DAGCombinerInfo &DCI, const SDLoc &DL,
4640                             SmallVectorImpl<SDNode *> &Created) const;
4641   SDValue buildSREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
4642                           ISD::CondCode Cond, DAGCombinerInfo &DCI,
4643                           const SDLoc &DL) const;
4644 };
4645 
4646 /// Given an LLVM IR type and return type attributes, compute the return value
4647 /// EVTs and flags, and optionally also the offsets, if the return value is
4648 /// being lowered to memory.
4649 void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr,
4650                    SmallVectorImpl<ISD::OutputArg> &Outs,
4651                    const TargetLowering &TLI, const DataLayout &DL);
4652 
4653 } // end namespace llvm
4654 
4655 #endif // LLVM_CODEGEN_TARGETLOWERING_H
4656