1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAGISel class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/CodeGen/FastISel.h"
37 #include "llvm/CodeGen/FunctionLoweringInfo.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineFunctionPass.h"
44 #include "llvm/CodeGen/MachineInstr.h"
45 #include "llvm/CodeGen/MachineInstrBuilder.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachinePassRegistry.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/SchedulerRegistry.h"
52 #include "llvm/CodeGen/SelectionDAG.h"
53 #include "llvm/CodeGen/SelectionDAGNodes.h"
54 #include "llvm/CodeGen/StackProtector.h"
55 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetLowering.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/ValueTypes.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Constants.h"
63 #include "llvm/IR/DataLayout.h"
64 #include "llvm/IR/DebugInfoMetadata.h"
65 #include "llvm/IR/DebugLoc.h"
66 #include "llvm/IR/DiagnosticInfo.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/InlineAsm.h"
70 #include "llvm/IR/InstIterator.h"
71 #include "llvm/IR/InstrTypes.h"
72 #include "llvm/IR/Instruction.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Intrinsics.h"
76 #include "llvm/IR/IntrinsicsWebAssembly.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Statepoint.h"
79 #include "llvm/IR/Type.h"
80 #include "llvm/IR/User.h"
81 #include "llvm/IR/Value.h"
82 #include "llvm/InitializePasses.h"
83 #include "llvm/MC/MCInstrDesc.h"
84 #include "llvm/MC/MCRegisterInfo.h"
85 #include "llvm/Pass.h"
86 #include "llvm/Support/BranchProbability.h"
87 #include "llvm/Support/Casting.h"
88 #include "llvm/Support/CodeGen.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Compiler.h"
91 #include "llvm/Support/Debug.h"
92 #include "llvm/Support/ErrorHandling.h"
93 #include "llvm/Support/KnownBits.h"
94 #include "llvm/Support/MachineValueType.h"
95 #include "llvm/Support/Timer.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include "llvm/Target/TargetIntrinsicInfo.h"
98 #include "llvm/Target/TargetMachine.h"
99 #include "llvm/Target/TargetOptions.h"
100 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
101 #include <algorithm>
102 #include <cassert>
103 #include <cstdint>
104 #include <iterator>
105 #include <limits>
106 #include <memory>
107 #include <string>
108 #include <utility>
109 #include <vector>
110 
111 using namespace llvm;
112 
113 #define DEBUG_TYPE "isel"
114 
115 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
116 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
117 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
118 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
119 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
120 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
121 STATISTIC(NumFastIselFailLowerArguments,
122           "Number of entry blocks where fast isel failed to lower arguments");
123 
124 static cl::opt<int> EnableFastISelAbort(
125     "fast-isel-abort", cl::Hidden,
126     cl::desc("Enable abort calls when \"fast\" instruction selection "
127              "fails to lower an instruction: 0 disable the abort, 1 will "
128              "abort but for args, calls and terminators, 2 will also "
129              "abort for argument lowering, and 3 will never fallback "
130              "to SelectionDAG."));
131 
132 static cl::opt<bool> EnableFastISelFallbackReport(
133     "fast-isel-report-on-fallback", cl::Hidden,
134     cl::desc("Emit a diagnostic when \"fast\" instruction selection "
135              "falls back to SelectionDAG."));
136 
137 static cl::opt<bool>
138 UseMBPI("use-mbpi",
139         cl::desc("use Machine Branch Probability Info"),
140         cl::init(true), cl::Hidden);
141 
142 #ifndef NDEBUG
143 static cl::opt<std::string>
144 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
145                         cl::desc("Only display the basic block whose name "
146                                  "matches this for all view-*-dags options"));
147 static cl::opt<bool>
148 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
149           cl::desc("Pop up a window to show dags before the first "
150                    "dag combine pass"));
151 static cl::opt<bool>
152 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
153           cl::desc("Pop up a window to show dags before legalize types"));
154 static cl::opt<bool>
155     ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
156                      cl::desc("Pop up a window to show dags before the post "
157                               "legalize types dag combine pass"));
158 static cl::opt<bool>
159     ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
160                      cl::desc("Pop up a window to show dags before legalize"));
161 static cl::opt<bool>
162 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
163           cl::desc("Pop up a window to show dags before the second "
164                    "dag combine pass"));
165 static cl::opt<bool>
166 ViewISelDAGs("view-isel-dags", cl::Hidden,
167           cl::desc("Pop up a window to show isel dags as they are selected"));
168 static cl::opt<bool>
169 ViewSchedDAGs("view-sched-dags", cl::Hidden,
170           cl::desc("Pop up a window to show sched dags as they are processed"));
171 static cl::opt<bool>
172 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
173       cl::desc("Pop up a window to show SUnit dags after they are processed"));
174 #else
175 static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false,
176                   ViewDAGCombineLT = false, ViewLegalizeDAGs = false,
177                   ViewDAGCombine2 = false, ViewISelDAGs = false,
178                   ViewSchedDAGs = false, ViewSUnitDAGs = false;
179 #endif
180 
181 //===---------------------------------------------------------------------===//
182 ///
183 /// RegisterScheduler class - Track the registration of instruction schedulers.
184 ///
185 //===---------------------------------------------------------------------===//
186 MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
187     RegisterScheduler::Registry;
188 
189 //===---------------------------------------------------------------------===//
190 ///
191 /// ISHeuristic command line option for instruction schedulers.
192 ///
193 //===---------------------------------------------------------------------===//
194 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
195                RegisterPassParser<RegisterScheduler>>
196 ISHeuristic("pre-RA-sched",
197             cl::init(&createDefaultScheduler), cl::Hidden,
198             cl::desc("Instruction schedulers available (before register"
199                      " allocation):"));
200 
201 static RegisterScheduler
202 defaultListDAGScheduler("default", "Best scheduler for the target",
203                         createDefaultScheduler);
204 
205 namespace llvm {
206 
207   //===--------------------------------------------------------------------===//
208   /// This class is used by SelectionDAGISel to temporarily override
209   /// the optimization level on a per-function basis.
210   class OptLevelChanger {
211     SelectionDAGISel &IS;
212     CodeGenOpt::Level SavedOptLevel;
213     bool SavedFastISel;
214 
215   public:
OptLevelChanger(SelectionDAGISel & ISel,CodeGenOpt::Level NewOptLevel)216     OptLevelChanger(SelectionDAGISel &ISel,
217                     CodeGenOpt::Level NewOptLevel) : IS(ISel) {
218       SavedOptLevel = IS.OptLevel;
219       SavedFastISel = IS.TM.Options.EnableFastISel;
220       if (NewOptLevel == SavedOptLevel)
221         return;
222       IS.OptLevel = NewOptLevel;
223       IS.TM.setOptLevel(NewOptLevel);
224       LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
225                         << IS.MF->getFunction().getName() << "\n");
226       LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
227                         << NewOptLevel << "\n");
228       if (NewOptLevel == CodeGenOpt::None) {
229         IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
230         LLVM_DEBUG(
231             dbgs() << "\tFastISel is "
232                    << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
233                    << "\n");
234       }
235     }
236 
~OptLevelChanger()237     ~OptLevelChanger() {
238       if (IS.OptLevel == SavedOptLevel)
239         return;
240       LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
241                         << IS.MF->getFunction().getName() << "\n");
242       LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
243                         << SavedOptLevel << "\n");
244       IS.OptLevel = SavedOptLevel;
245       IS.TM.setOptLevel(SavedOptLevel);
246       IS.TM.setFastISel(SavedFastISel);
247     }
248   };
249 
250   //===--------------------------------------------------------------------===//
251   /// createDefaultScheduler - This creates an instruction scheduler appropriate
252   /// for the target.
createDefaultScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)253   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
254                                              CodeGenOpt::Level OptLevel) {
255     const TargetLowering *TLI = IS->TLI;
256     const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
257 
258     // Try first to see if the Target has its own way of selecting a scheduler
259     if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
260       return SchedulerCtor(IS, OptLevel);
261     }
262 
263     if (OptLevel == CodeGenOpt::None ||
264         (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
265         TLI->getSchedulingPreference() == Sched::Source)
266       return createSourceListDAGScheduler(IS, OptLevel);
267     if (TLI->getSchedulingPreference() == Sched::RegPressure)
268       return createBURRListDAGScheduler(IS, OptLevel);
269     if (TLI->getSchedulingPreference() == Sched::Hybrid)
270       return createHybridListDAGScheduler(IS, OptLevel);
271     if (TLI->getSchedulingPreference() == Sched::VLIW)
272       return createVLIWDAGScheduler(IS, OptLevel);
273     if (TLI->getSchedulingPreference() == Sched::Fast)
274       return createFastDAGScheduler(IS, OptLevel);
275     if (TLI->getSchedulingPreference() == Sched::Linearize)
276       return createDAGLinearizer(IS, OptLevel);
277     assert(TLI->getSchedulingPreference() == Sched::ILP &&
278            "Unknown sched type!");
279     return createILPListDAGScheduler(IS, OptLevel);
280   }
281 
282 } // end namespace llvm
283 
284 // EmitInstrWithCustomInserter - This method should be implemented by targets
285 // that mark instructions with the 'usesCustomInserter' flag.  These
286 // instructions are special in various ways, which require special support to
287 // insert.  The specified MachineInstr is created but not inserted into any
288 // basic blocks, and this method is called to expand it into a sequence of
289 // instructions, potentially also creating new basic blocks and control flow.
290 // When new basic blocks are inserted and the edges from MBB to its successors
291 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
292 // DenseMap.
293 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * MBB) const294 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
295                                             MachineBasicBlock *MBB) const {
296 #ifndef NDEBUG
297   dbgs() << "If a target marks an instruction with "
298           "'usesCustomInserter', it must implement "
299           "TargetLowering::EmitInstrWithCustomInserter!";
300 #endif
301   llvm_unreachable(nullptr);
302 }
303 
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const304 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
305                                                    SDNode *Node) const {
306   assert(!MI.hasPostISelHook() &&
307          "If a target marks an instruction with 'hasPostISelHook', "
308          "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
309 }
310 
311 //===----------------------------------------------------------------------===//
312 // SelectionDAGISel code
313 //===----------------------------------------------------------------------===//
314 
SelectionDAGISel(TargetMachine & tm,CodeGenOpt::Level OL)315 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL)
316     : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()),
317       SwiftError(new SwiftErrorValueTracking()),
318       CurDAG(new SelectionDAG(tm, OL)),
319       SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError,
320                                                 OL)),
321       AA(), GFI(), OptLevel(OL), DAGSize(0) {
322   initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
323   initializeBranchProbabilityInfoWrapperPassPass(
324       *PassRegistry::getPassRegistry());
325   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
326   initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
327 }
328 
~SelectionDAGISel()329 SelectionDAGISel::~SelectionDAGISel() {
330   delete CurDAG;
331   delete SwiftError;
332 }
333 
getAnalysisUsage(AnalysisUsage & AU) const334 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
335   if (OptLevel != CodeGenOpt::None)
336     AU.addRequired<AAResultsWrapperPass>();
337   AU.addRequired<GCModuleInfo>();
338   AU.addRequired<StackProtector>();
339   AU.addPreserved<GCModuleInfo>();
340   AU.addRequired<TargetLibraryInfoWrapperPass>();
341   AU.addRequired<TargetTransformInfoWrapperPass>();
342   if (UseMBPI && OptLevel != CodeGenOpt::None)
343     AU.addRequired<BranchProbabilityInfoWrapperPass>();
344   AU.addRequired<ProfileSummaryInfoWrapperPass>();
345   if (OptLevel != CodeGenOpt::None)
346     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
347   MachineFunctionPass::getAnalysisUsage(AU);
348 }
349 
350 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
351 /// may trap on it.  In this case we have to split the edge so that the path
352 /// through the predecessor block that doesn't go to the phi block doesn't
353 /// execute the possibly trapping instruction. If available, we pass domtree
354 /// and loop info to be updated when we split critical edges. This is because
355 /// SelectionDAGISel preserves these analyses.
356 /// This is required for correctness, so it must be done at -O0.
357 ///
SplitCriticalSideEffectEdges(Function & Fn,DominatorTree * DT,LoopInfo * LI)358 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
359                                          LoopInfo *LI) {
360   // Loop for blocks with phi nodes.
361   for (BasicBlock &BB : Fn) {
362     PHINode *PN = dyn_cast<PHINode>(BB.begin());
363     if (!PN) continue;
364 
365   ReprocessBlock:
366     // For each block with a PHI node, check to see if any of the input values
367     // are potentially trapping constant expressions.  Constant expressions are
368     // the only potentially trapping value that can occur as the argument to a
369     // PHI.
370     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
371       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
372         ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
373         if (!CE || !CE->canTrap()) continue;
374 
375         // The only case we have to worry about is when the edge is critical.
376         // Since this block has a PHI Node, we assume it has multiple input
377         // edges: check to see if the pred has multiple successors.
378         BasicBlock *Pred = PN->getIncomingBlock(i);
379         if (Pred->getTerminator()->getNumSuccessors() == 1)
380           continue;
381 
382         // Okay, we have to split this edge.
383         SplitCriticalEdge(
384             Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
385             CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
386         goto ReprocessBlock;
387       }
388   }
389 }
390 
computeUsesMSVCFloatingPoint(const Triple & TT,const Function & F,MachineModuleInfo & MMI)391 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
392                                          MachineModuleInfo &MMI) {
393   // Only needed for MSVC
394   if (!TT.isWindowsMSVCEnvironment())
395     return;
396 
397   // If it's already set, nothing to do.
398   if (MMI.usesMSVCFloatingPoint())
399     return;
400 
401   for (const Instruction &I : instructions(F)) {
402     if (I.getType()->isFPOrFPVectorTy()) {
403       MMI.setUsesMSVCFloatingPoint(true);
404       return;
405     }
406     for (const auto &Op : I.operands()) {
407       if (Op->getType()->isFPOrFPVectorTy()) {
408         MMI.setUsesMSVCFloatingPoint(true);
409         return;
410       }
411     }
412   }
413 }
414 
runOnMachineFunction(MachineFunction & mf)415 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
416   // If we already selected that function, we do not need to run SDISel.
417   if (mf.getProperties().hasProperty(
418           MachineFunctionProperties::Property::Selected))
419     return false;
420   // Do some sanity-checking on the command-line options.
421   assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
422          "-fast-isel-abort > 0 requires -fast-isel");
423 
424   const Function &Fn = mf.getFunction();
425   MF = &mf;
426 
427   // Reset the target options before resetting the optimization
428   // level below.
429   // FIXME: This is a horrible hack and should be processed via
430   // codegen looking at the optimization level explicitly when
431   // it wants to look at it.
432   TM.resetTargetOptions(Fn);
433   // Reset OptLevel to None for optnone functions.
434   CodeGenOpt::Level NewOptLevel = OptLevel;
435   if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
436     NewOptLevel = CodeGenOpt::None;
437   OptLevelChanger OLC(*this, NewOptLevel);
438 
439   TII = MF->getSubtarget().getInstrInfo();
440   TLI = MF->getSubtarget().getTargetLowering();
441   RegInfo = &MF->getRegInfo();
442   LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn);
443   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
444   ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
445   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
446   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
447   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
448   LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
449   auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
450   BlockFrequencyInfo *BFI = nullptr;
451   if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOpt::None)
452     BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI();
453 
454   LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
455 
456   SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
457 
458   CurDAG->init(*MF, *ORE, this, LibInfo,
459                getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI);
460   FuncInfo->set(Fn, *MF, CurDAG);
461   SwiftError->setFunction(*MF);
462 
463   // Now get the optional analyzes if we want to.
464   // This is based on the possibly changed OptLevel (after optnone is taken
465   // into account).  That's unfortunate but OK because it just means we won't
466   // ask for passes that have been required anyway.
467 
468   if (UseMBPI && OptLevel != CodeGenOpt::None)
469     FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
470   else
471     FuncInfo->BPI = nullptr;
472 
473   if (OptLevel != CodeGenOpt::None)
474     AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
475   else
476     AA = nullptr;
477 
478   SDB->init(GFI, AA, LibInfo);
479 
480   MF->setHasInlineAsm(false);
481 
482   FuncInfo->SplitCSR = false;
483 
484   // We split CSR if the target supports it for the given function
485   // and the function has only return exits.
486   if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
487     FuncInfo->SplitCSR = true;
488 
489     // Collect all the return blocks.
490     for (const BasicBlock &BB : Fn) {
491       if (!succ_empty(&BB))
492         continue;
493 
494       const Instruction *Term = BB.getTerminator();
495       if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
496         continue;
497 
498       // Bail out if the exit block is not Return nor Unreachable.
499       FuncInfo->SplitCSR = false;
500       break;
501     }
502   }
503 
504   MachineBasicBlock *EntryMBB = &MF->front();
505   if (FuncInfo->SplitCSR)
506     // This performs initialization so lowering for SplitCSR will be correct.
507     TLI->initializeSplitCSR(EntryMBB);
508 
509   SelectAllBasicBlocks(Fn);
510   if (FastISelFailed && EnableFastISelFallbackReport) {
511     DiagnosticInfoISelFallback DiagFallback(Fn);
512     Fn.getContext().diagnose(DiagFallback);
513   }
514 
515   // Replace forward-declared registers with the registers containing
516   // the desired value.
517   // Note: it is important that this happens **before** the call to
518   // EmitLiveInCopies, since implementations can skip copies of unused
519   // registers. If we don't apply the reg fixups before, some registers may
520   // appear as unused and will be skipped, resulting in bad MI.
521   MachineRegisterInfo &MRI = MF->getRegInfo();
522   for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(),
523                                               E = FuncInfo->RegFixups.end();
524        I != E; ++I) {
525     Register From = I->first;
526     Register To = I->second;
527     // If To is also scheduled to be replaced, find what its ultimate
528     // replacement is.
529     while (true) {
530       DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To);
531       if (J == E)
532         break;
533       To = J->second;
534     }
535     // Make sure the new register has a sufficiently constrained register class.
536     if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
537       MRI.constrainRegClass(To, MRI.getRegClass(From));
538     // Replace it.
539 
540     // Replacing one register with another won't touch the kill flags.
541     // We need to conservatively clear the kill flags as a kill on the old
542     // register might dominate existing uses of the new register.
543     if (!MRI.use_empty(To))
544       MRI.clearKillFlags(From);
545     MRI.replaceRegWith(From, To);
546   }
547 
548   // If the first basic block in the function has live ins that need to be
549   // copied into vregs, emit the copies into the top of the block before
550   // emitting the code for the block.
551   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
552   RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
553 
554   // Insert copies in the entry block and the return blocks.
555   if (FuncInfo->SplitCSR) {
556     SmallVector<MachineBasicBlock*, 4> Returns;
557     // Collect all the return blocks.
558     for (MachineBasicBlock &MBB : mf) {
559       if (!MBB.succ_empty())
560         continue;
561 
562       MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
563       if (Term != MBB.end() && Term->isReturn()) {
564         Returns.push_back(&MBB);
565         continue;
566       }
567     }
568     TLI->insertCopiesSplitCSR(EntryMBB, Returns);
569   }
570 
571   DenseMap<unsigned, unsigned> LiveInMap;
572   if (!FuncInfo->ArgDbgValues.empty())
573     for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
574       if (LI.second)
575         LiveInMap.insert(LI);
576 
577   // Insert DBG_VALUE instructions for function arguments to the entry block.
578   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
579     MachineInstr *MI = FuncInfo->ArgDbgValues[e - i - 1];
580     assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
581            "Function parameters should not be described by DBG_VALUE_LIST.");
582     bool hasFI = MI->getOperand(0).isFI();
583     Register Reg =
584         hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
585     if (Register::isPhysicalRegister(Reg))
586       EntryMBB->insert(EntryMBB->begin(), MI);
587     else {
588       MachineInstr *Def = RegInfo->getVRegDef(Reg);
589       if (Def) {
590         MachineBasicBlock::iterator InsertPos = Def;
591         // FIXME: VR def may not be in entry block.
592         Def->getParent()->insert(std::next(InsertPos), MI);
593       } else
594         LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
595                           << Register::virtReg2Index(Reg) << "\n");
596     }
597 
598     // If Reg is live-in then update debug info to track its copy in a vreg.
599     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
600     if (LDI != LiveInMap.end()) {
601       assert(!hasFI && "There's no handling of frame pointer updating here yet "
602                        "- add if needed");
603       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
604       MachineBasicBlock::iterator InsertPos = Def;
605       const MDNode *Variable = MI->getDebugVariable();
606       const MDNode *Expr = MI->getDebugExpression();
607       DebugLoc DL = MI->getDebugLoc();
608       bool IsIndirect = MI->isIndirectDebugValue();
609       if (IsIndirect)
610         assert(MI->getOperand(1).getImm() == 0 &&
611                "DBG_VALUE with nonzero offset");
612       assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
613              "Expected inlined-at fields to agree");
614       assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
615              "Didn't expect to see a DBG_VALUE_LIST here");
616       // Def is never a terminator here, so it is ok to increment InsertPos.
617       BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
618               IsIndirect, LDI->second, Variable, Expr);
619 
620       // If this vreg is directly copied into an exported register then
621       // that COPY instructions also need DBG_VALUE, if it is the only
622       // user of LDI->second.
623       MachineInstr *CopyUseMI = nullptr;
624       for (MachineRegisterInfo::use_instr_iterator
625            UI = RegInfo->use_instr_begin(LDI->second),
626            E = RegInfo->use_instr_end(); UI != E; ) {
627         MachineInstr *UseMI = &*(UI++);
628         if (UseMI->isDebugValue()) continue;
629         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
630           CopyUseMI = UseMI; continue;
631         }
632         // Otherwise this is another use or second copy use.
633         CopyUseMI = nullptr; break;
634       }
635       if (CopyUseMI &&
636           TRI.getRegSizeInBits(LDI->second, MRI) ==
637               TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) {
638         // Use MI's debug location, which describes where Variable was
639         // declared, rather than whatever is attached to CopyUseMI.
640         MachineInstr *NewMI =
641             BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
642                     CopyUseMI->getOperand(0).getReg(), Variable, Expr);
643         MachineBasicBlock::iterator Pos = CopyUseMI;
644         EntryMBB->insertAfter(Pos, NewMI);
645       }
646     }
647   }
648 
649   // Determine if there are any calls in this machine function.
650   MachineFrameInfo &MFI = MF->getFrameInfo();
651   for (const auto &MBB : *MF) {
652     if (MFI.hasCalls() && MF->hasInlineAsm())
653       break;
654 
655     for (const auto &MI : MBB) {
656       const MCInstrDesc &MCID = TII->get(MI.getOpcode());
657       if ((MCID.isCall() && !MCID.isReturn()) ||
658           MI.isStackAligningInlineAsm()) {
659         MFI.setHasCalls(true);
660       }
661       if (MI.isInlineAsm()) {
662         MF->setHasInlineAsm(true);
663       }
664     }
665   }
666 
667   // Determine if there is a call to setjmp in the machine function.
668   MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
669 
670   // Determine if floating point is used for msvc
671   computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
672 
673   // Release function-specific state. SDB and CurDAG are already cleared
674   // at this point.
675   FuncInfo->clear();
676 
677   LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
678   LLVM_DEBUG(MF->print(dbgs()));
679 
680   return true;
681 }
682 
reportFastISelFailure(MachineFunction & MF,OptimizationRemarkEmitter & ORE,OptimizationRemarkMissed & R,bool ShouldAbort)683 static void reportFastISelFailure(MachineFunction &MF,
684                                   OptimizationRemarkEmitter &ORE,
685                                   OptimizationRemarkMissed &R,
686                                   bool ShouldAbort) {
687   // Print the function name explicitly if we don't have a debug location (which
688   // makes the diagnostic less useful) or if we're going to emit a raw error.
689   if (!R.getLocation().isValid() || ShouldAbort)
690     R << (" (in function: " + MF.getName() + ")").str();
691 
692   if (ShouldAbort)
693     report_fatal_error(R.getMsg());
694 
695   ORE.emit(R);
696 }
697 
SelectBasicBlock(BasicBlock::const_iterator Begin,BasicBlock::const_iterator End,bool & HadTailCall)698 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
699                                         BasicBlock::const_iterator End,
700                                         bool &HadTailCall) {
701   // Allow creating illegal types during DAG building for the basic block.
702   CurDAG->NewNodesMustHaveLegalTypes = false;
703 
704   // Lower the instructions. If a call is emitted as a tail call, cease emitting
705   // nodes for this block.
706   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
707     if (!ElidedArgCopyInstrs.count(&*I))
708       SDB->visit(*I);
709   }
710 
711   // Make sure the root of the DAG is up-to-date.
712   CurDAG->setRoot(SDB->getControlRoot());
713   HadTailCall = SDB->HasTailCall;
714   SDB->resolveOrClearDbgInfo();
715   SDB->clear();
716 
717   // Final step, emit the lowered DAG as machine code.
718   CodeGenAndEmitDAG();
719 }
720 
ComputeLiveOutVRegInfo()721 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
722   SmallPtrSet<SDNode *, 16> Added;
723   SmallVector<SDNode*, 128> Worklist;
724 
725   Worklist.push_back(CurDAG->getRoot().getNode());
726   Added.insert(CurDAG->getRoot().getNode());
727 
728   KnownBits Known;
729 
730   do {
731     SDNode *N = Worklist.pop_back_val();
732 
733     // Otherwise, add all chain operands to the worklist.
734     for (const SDValue &Op : N->op_values())
735       if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second)
736         Worklist.push_back(Op.getNode());
737 
738     // If this is a CopyToReg with a vreg dest, process it.
739     if (N->getOpcode() != ISD::CopyToReg)
740       continue;
741 
742     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
743     if (!Register::isVirtualRegister(DestReg))
744       continue;
745 
746     // Ignore non-integer values.
747     SDValue Src = N->getOperand(2);
748     EVT SrcVT = Src.getValueType();
749     if (!SrcVT.isInteger())
750       continue;
751 
752     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
753     Known = CurDAG->computeKnownBits(Src);
754     FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
755   } while (!Worklist.empty());
756 }
757 
CodeGenAndEmitDAG()758 void SelectionDAGISel::CodeGenAndEmitDAG() {
759   StringRef GroupName = "sdag";
760   StringRef GroupDescription = "Instruction Selection and Scheduling";
761   std::string BlockName;
762   bool MatchFilterBB = false; (void)MatchFilterBB;
763 #ifndef NDEBUG
764   TargetTransformInfo &TTI =
765       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
766 #endif
767 
768   // Pre-type legalization allow creation of any node types.
769   CurDAG->NewNodesMustHaveLegalTypes = false;
770 
771 #ifndef NDEBUG
772   MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
773                    FilterDAGBasicBlockName ==
774                        FuncInfo->MBB->getBasicBlock()->getName());
775 #endif
776 #ifdef NDEBUG
777   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT ||
778       ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs ||
779       ViewSUnitDAGs)
780 #endif
781   {
782     BlockName =
783         (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
784   }
785   LLVM_DEBUG(dbgs() << "Initial selection DAG: "
786                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
787                     << "'\n";
788              CurDAG->dump());
789 
790 #ifndef NDEBUG
791   if (TTI.hasBranchDivergence())
792     CurDAG->VerifyDAGDiverence();
793 #endif
794 
795   if (ViewDAGCombine1 && MatchFilterBB)
796     CurDAG->viewGraph("dag-combine1 input for " + BlockName);
797 
798   // Run the DAG combiner in pre-legalize mode.
799   {
800     NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
801                        GroupDescription, TimePassesIsEnabled);
802     CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
803   }
804 
805   LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
806                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
807                     << "'\n";
808              CurDAG->dump());
809 
810 #ifndef NDEBUG
811   if (TTI.hasBranchDivergence())
812     CurDAG->VerifyDAGDiverence();
813 #endif
814 
815   // Second step, hack on the DAG until it only uses operations and types that
816   // the target supports.
817   if (ViewLegalizeTypesDAGs && MatchFilterBB)
818     CurDAG->viewGraph("legalize-types input for " + BlockName);
819 
820   bool Changed;
821   {
822     NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
823                        GroupDescription, TimePassesIsEnabled);
824     Changed = CurDAG->LegalizeTypes();
825   }
826 
827   LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
828                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
829                     << "'\n";
830              CurDAG->dump());
831 
832 #ifndef NDEBUG
833   if (TTI.hasBranchDivergence())
834     CurDAG->VerifyDAGDiverence();
835 #endif
836 
837   // Only allow creation of legal node types.
838   CurDAG->NewNodesMustHaveLegalTypes = true;
839 
840   if (Changed) {
841     if (ViewDAGCombineLT && MatchFilterBB)
842       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
843 
844     // Run the DAG combiner in post-type-legalize mode.
845     {
846       NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
847                          GroupName, GroupDescription, TimePassesIsEnabled);
848       CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
849     }
850 
851     LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
852                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
853                       << "'\n";
854                CurDAG->dump());
855 
856 #ifndef NDEBUG
857     if (TTI.hasBranchDivergence())
858       CurDAG->VerifyDAGDiverence();
859 #endif
860   }
861 
862   {
863     NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
864                        GroupDescription, TimePassesIsEnabled);
865     Changed = CurDAG->LegalizeVectors();
866   }
867 
868   if (Changed) {
869     LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
870                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
871                       << "'\n";
872                CurDAG->dump());
873 
874 #ifndef NDEBUG
875     if (TTI.hasBranchDivergence())
876       CurDAG->VerifyDAGDiverence();
877 #endif
878 
879     {
880       NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
881                          GroupDescription, TimePassesIsEnabled);
882       CurDAG->LegalizeTypes();
883     }
884 
885     LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
886                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
887                       << "'\n";
888                CurDAG->dump());
889 
890 #ifndef NDEBUG
891     if (TTI.hasBranchDivergence())
892       CurDAG->VerifyDAGDiverence();
893 #endif
894 
895     if (ViewDAGCombineLT && MatchFilterBB)
896       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
897 
898     // Run the DAG combiner in post-type-legalize mode.
899     {
900       NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
901                          GroupName, GroupDescription, TimePassesIsEnabled);
902       CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
903     }
904 
905     LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
906                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
907                       << "'\n";
908                CurDAG->dump());
909 
910 #ifndef NDEBUG
911     if (TTI.hasBranchDivergence())
912       CurDAG->VerifyDAGDiverence();
913 #endif
914   }
915 
916   if (ViewLegalizeDAGs && MatchFilterBB)
917     CurDAG->viewGraph("legalize input for " + BlockName);
918 
919   {
920     NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
921                        GroupDescription, TimePassesIsEnabled);
922     CurDAG->Legalize();
923   }
924 
925   LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
926                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
927                     << "'\n";
928              CurDAG->dump());
929 
930 #ifndef NDEBUG
931   if (TTI.hasBranchDivergence())
932     CurDAG->VerifyDAGDiverence();
933 #endif
934 
935   if (ViewDAGCombine2 && MatchFilterBB)
936     CurDAG->viewGraph("dag-combine2 input for " + BlockName);
937 
938   // Run the DAG combiner in post-legalize mode.
939   {
940     NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
941                        GroupDescription, TimePassesIsEnabled);
942     CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
943   }
944 
945   LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
946                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
947                     << "'\n";
948              CurDAG->dump());
949 
950 #ifndef NDEBUG
951   if (TTI.hasBranchDivergence())
952     CurDAG->VerifyDAGDiverence();
953 #endif
954 
955   if (OptLevel != CodeGenOpt::None)
956     ComputeLiveOutVRegInfo();
957 
958   if (ViewISelDAGs && MatchFilterBB)
959     CurDAG->viewGraph("isel input for " + BlockName);
960 
961   // Third, instruction select all of the operations to machine code, adding the
962   // code to the MachineBasicBlock.
963   {
964     NamedRegionTimer T("isel", "Instruction Selection", GroupName,
965                        GroupDescription, TimePassesIsEnabled);
966     DoInstructionSelection();
967   }
968 
969   LLVM_DEBUG(dbgs() << "Selected selection DAG: "
970                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
971                     << "'\n";
972              CurDAG->dump());
973 
974   if (ViewSchedDAGs && MatchFilterBB)
975     CurDAG->viewGraph("scheduler input for " + BlockName);
976 
977   // Schedule machine code.
978   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
979   {
980     NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
981                        GroupDescription, TimePassesIsEnabled);
982     Scheduler->Run(CurDAG, FuncInfo->MBB);
983   }
984 
985   if (ViewSUnitDAGs && MatchFilterBB)
986     Scheduler->viewGraph();
987 
988   // Emit machine code to BB.  This can change 'BB' to the last block being
989   // inserted into.
990   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
991   {
992     NamedRegionTimer T("emit", "Instruction Creation", GroupName,
993                        GroupDescription, TimePassesIsEnabled);
994 
995     // FuncInfo->InsertPt is passed by reference and set to the end of the
996     // scheduled instructions.
997     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
998   }
999 
1000   // If the block was split, make sure we update any references that are used to
1001   // update PHI nodes later on.
1002   if (FirstMBB != LastMBB)
1003     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
1004 
1005   // Free the scheduler state.
1006   {
1007     NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
1008                        GroupDescription, TimePassesIsEnabled);
1009     delete Scheduler;
1010   }
1011 
1012   // Free the SelectionDAG state, now that we're finished with it.
1013   CurDAG->clear();
1014 }
1015 
1016 namespace {
1017 
1018 /// ISelUpdater - helper class to handle updates of the instruction selection
1019 /// graph.
1020 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
1021   SelectionDAG::allnodes_iterator &ISelPosition;
1022 
1023 public:
ISelUpdater(SelectionDAG & DAG,SelectionDAG::allnodes_iterator & isp)1024   ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
1025     : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
1026 
1027   /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1028   /// deleted is the current ISelPosition node, update ISelPosition.
1029   ///
NodeDeleted(SDNode * N,SDNode * E)1030   void NodeDeleted(SDNode *N, SDNode *E) override {
1031     if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1032       ++ISelPosition;
1033   }
1034 };
1035 
1036 } // end anonymous namespace
1037 
1038 // This function is used to enforce the topological node id property
1039 // property leveraged during Instruction selection. Before selection all
1040 // nodes are given a non-negative id such that all nodes have a larger id than
1041 // their operands. As this holds transitively we can prune checks that a node N
1042 // is a predecessor of M another by not recursively checking through M's
1043 // operands if N's ID is larger than M's ID. This is significantly improves
1044 // performance of for various legality checks (e.g. IsLegalToFold /
1045 // UpdateChains).
1046 
1047 // However, when we fuse multiple nodes into a single node
1048 // during selection we may induce a predecessor relationship between inputs and
1049 // outputs of distinct nodes being merged violating the topological property.
1050 // Should a fused node have a successor which has yet to be selected, our
1051 // legality checks would be incorrect. To avoid this we mark all unselected
1052 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
1053 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1054 // We use bit-negation to more clearly enforce that node id -1 can only be
1055 // achieved by selected nodes). As the conversion is reversable the original Id,
1056 // topological pruning can still be leveraged when looking for unselected nodes.
1057 // This method is call internally in all ISel replacement calls.
EnforceNodeIdInvariant(SDNode * Node)1058 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1059   SmallVector<SDNode *, 4> Nodes;
1060   Nodes.push_back(Node);
1061 
1062   while (!Nodes.empty()) {
1063     SDNode *N = Nodes.pop_back_val();
1064     for (auto *U : N->uses()) {
1065       auto UId = U->getNodeId();
1066       if (UId > 0) {
1067         InvalidateNodeId(U);
1068         Nodes.push_back(U);
1069       }
1070     }
1071   }
1072 }
1073 
1074 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
1075 // NodeId with the equivalent node id which is invalid for topological
1076 // pruning.
InvalidateNodeId(SDNode * N)1077 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1078   int InvalidId = -(N->getNodeId() + 1);
1079   N->setNodeId(InvalidId);
1080 }
1081 
1082 // getUninvalidatedNodeId - get original uninvalidated node id.
getUninvalidatedNodeId(SDNode * N)1083 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1084   int Id = N->getNodeId();
1085   if (Id < -1)
1086     return -(Id + 1);
1087   return Id;
1088 }
1089 
DoInstructionSelection()1090 void SelectionDAGISel::DoInstructionSelection() {
1091   LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1092                     << printMBBReference(*FuncInfo->MBB) << " '"
1093                     << FuncInfo->MBB->getName() << "'\n");
1094 
1095   PreprocessISelDAG();
1096 
1097   // Select target instructions for the DAG.
1098   {
1099     // Number all nodes with a topological order and set DAGSize.
1100     DAGSize = CurDAG->AssignTopologicalOrder();
1101 
1102     // Create a dummy node (which is not added to allnodes), that adds
1103     // a reference to the root node, preventing it from being deleted,
1104     // and tracking any changes of the root.
1105     HandleSDNode Dummy(CurDAG->getRoot());
1106     SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1107     ++ISelPosition;
1108 
1109     // Make sure that ISelPosition gets properly updated when nodes are deleted
1110     // in calls made from this function.
1111     ISelUpdater ISU(*CurDAG, ISelPosition);
1112 
1113     // The AllNodes list is now topological-sorted. Visit the
1114     // nodes by starting at the end of the list (the root of the
1115     // graph) and preceding back toward the beginning (the entry
1116     // node).
1117     while (ISelPosition != CurDAG->allnodes_begin()) {
1118       SDNode *Node = &*--ISelPosition;
1119       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1120       // but there are currently some corner cases that it misses. Also, this
1121       // makes it theoretically possible to disable the DAGCombiner.
1122       if (Node->use_empty())
1123         continue;
1124 
1125 #ifndef NDEBUG
1126       SmallVector<SDNode *, 4> Nodes;
1127       Nodes.push_back(Node);
1128 
1129       while (!Nodes.empty()) {
1130         auto N = Nodes.pop_back_val();
1131         if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1132           continue;
1133         for (const SDValue &Op : N->op_values()) {
1134           if (Op->getOpcode() == ISD::TokenFactor)
1135             Nodes.push_back(Op.getNode());
1136           else {
1137             // We rely on topological ordering of node ids for checking for
1138             // cycles when fusing nodes during selection. All unselected nodes
1139             // successors of an already selected node should have a negative id.
1140             // This assertion will catch such cases. If this assertion triggers
1141             // it is likely you using DAG-level Value/Node replacement functions
1142             // (versus equivalent ISEL replacement) in backend-specific
1143             // selections. See comment in EnforceNodeIdInvariant for more
1144             // details.
1145             assert(Op->getNodeId() != -1 &&
1146                    "Node has already selected predecessor node");
1147           }
1148         }
1149       }
1150 #endif
1151 
1152       // When we are using non-default rounding modes or FP exception behavior
1153       // FP operations are represented by StrictFP pseudo-operations.  For
1154       // targets that do not (yet) understand strict FP operations directly,
1155       // we convert them to normal FP opcodes instead at this point.  This
1156       // will allow them to be handled by existing target-specific instruction
1157       // selectors.
1158       if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) {
1159         // For some opcodes, we need to call TLI->getOperationAction using
1160         // the first operand type instead of the result type.  Note that this
1161         // must match what SelectionDAGLegalize::LegalizeOp is doing.
1162         EVT ActionVT;
1163         switch (Node->getOpcode()) {
1164         case ISD::STRICT_SINT_TO_FP:
1165         case ISD::STRICT_UINT_TO_FP:
1166         case ISD::STRICT_LRINT:
1167         case ISD::STRICT_LLRINT:
1168         case ISD::STRICT_LROUND:
1169         case ISD::STRICT_LLROUND:
1170         case ISD::STRICT_FSETCC:
1171         case ISD::STRICT_FSETCCS:
1172           ActionVT = Node->getOperand(1).getValueType();
1173           break;
1174         default:
1175           ActionVT = Node->getValueType(0);
1176           break;
1177         }
1178         if (TLI->getOperationAction(Node->getOpcode(), ActionVT)
1179             == TargetLowering::Expand)
1180           Node = CurDAG->mutateStrictFPToFP(Node);
1181       }
1182 
1183       LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1184                  Node->dump(CurDAG));
1185 
1186       Select(Node);
1187     }
1188 
1189     CurDAG->setRoot(Dummy.getValue());
1190   }
1191 
1192   LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1193 
1194   PostprocessISelDAG();
1195 }
1196 
hasExceptionPointerOrCodeUser(const CatchPadInst * CPI)1197 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1198   for (const User *U : CPI->users()) {
1199     if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1200       Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1201       if (IID == Intrinsic::eh_exceptionpointer ||
1202           IID == Intrinsic::eh_exceptioncode)
1203         return true;
1204     }
1205   }
1206   return false;
1207 }
1208 
1209 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1210 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1211 // and store the mapping in the function.
mapWasmLandingPadIndex(MachineBasicBlock * MBB,const CatchPadInst * CPI)1212 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1213                                    const CatchPadInst *CPI) {
1214   MachineFunction *MF = MBB->getParent();
1215   // In case of single catch (...), we don't emit LSDA, so we don't need
1216   // this information.
1217   bool IsSingleCatchAllClause =
1218       CPI->getNumArgOperands() == 1 &&
1219       cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1220   if (!IsSingleCatchAllClause) {
1221     // Create a mapping from landing pad label to landing pad index.
1222     bool IntrFound = false;
1223     for (const User *U : CPI->users()) {
1224       if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1225         Intrinsic::ID IID = Call->getIntrinsicID();
1226         if (IID == Intrinsic::wasm_landingpad_index) {
1227           Value *IndexArg = Call->getArgOperand(1);
1228           int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1229           MF->setWasmLandingPadIndex(MBB, Index);
1230           IntrFound = true;
1231           break;
1232         }
1233       }
1234     }
1235     assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1236     (void)IntrFound;
1237   }
1238 }
1239 
1240 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1241 /// do other setup for EH landing-pad blocks.
PrepareEHLandingPad()1242 bool SelectionDAGISel::PrepareEHLandingPad() {
1243   MachineBasicBlock *MBB = FuncInfo->MBB;
1244   const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1245   const BasicBlock *LLVMBB = MBB->getBasicBlock();
1246   const TargetRegisterClass *PtrRC =
1247       TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1248 
1249   auto Pers = classifyEHPersonality(PersonalityFn);
1250 
1251   // Catchpads have one live-in register, which typically holds the exception
1252   // pointer or code.
1253   if (isFuncletEHPersonality(Pers)) {
1254     if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1255       if (hasExceptionPointerOrCodeUser(CPI)) {
1256         // Get or create the virtual register to hold the pointer or code.  Mark
1257         // the live in physreg and copy into the vreg.
1258         MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1259         assert(EHPhysReg && "target lacks exception pointer register");
1260         MBB->addLiveIn(EHPhysReg);
1261         unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1262         BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1263                 TII->get(TargetOpcode::COPY), VReg)
1264             .addReg(EHPhysReg, RegState::Kill);
1265       }
1266     }
1267     return true;
1268   }
1269 
1270   // Add a label to mark the beginning of the landing pad.  Deletion of the
1271   // landing pad can thus be detected via the MachineModuleInfo.
1272   MCSymbol *Label = MF->addLandingPad(MBB);
1273 
1274   const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1275   BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1276     .addSym(Label);
1277 
1278   // If the unwinder does not preserve all registers, ensure that the
1279   // function marks the clobbered registers as used.
1280   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
1281   if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
1282     MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
1283 
1284   if (Pers == EHPersonality::Wasm_CXX) {
1285     if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1286       mapWasmLandingPadIndex(MBB, CPI);
1287   } else {
1288     // Assign the call site to the landing pad's begin label.
1289     MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1290     // Mark exception register as live in.
1291     if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1292       FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1293     // Mark exception selector register as live in.
1294     if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1295       FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1296   }
1297 
1298   return true;
1299 }
1300 
1301 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1302 /// side-effect free and is either dead or folded into a generated instruction.
1303 /// Return false if it needs to be emitted.
isFoldedOrDeadInstruction(const Instruction * I,const FunctionLoweringInfo & FuncInfo)1304 static bool isFoldedOrDeadInstruction(const Instruction *I,
1305                                       const FunctionLoweringInfo &FuncInfo) {
1306   return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1307          !I->isTerminator() &&     // Terminators aren't folded.
1308          !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1309          !I->isEHPad() &&             // EH pad instructions aren't folded.
1310          !FuncInfo.isExportedInst(I); // Exported instrs must be computed.
1311 }
1312 
1313 /// Collect llvm.dbg.declare information. This is done after argument lowering
1314 /// in case the declarations refer to arguments.
processDbgDeclares(FunctionLoweringInfo & FuncInfo)1315 static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) {
1316   MachineFunction *MF = FuncInfo.MF;
1317   const DataLayout &DL = MF->getDataLayout();
1318   for (const BasicBlock &BB : *FuncInfo.Fn) {
1319     for (const Instruction &I : BB) {
1320       const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1321       if (!DI)
1322         continue;
1323 
1324       assert(DI->getVariable() && "Missing variable");
1325       assert(DI->getDebugLoc() && "Missing location");
1326       const Value *Address = DI->getAddress();
1327       if (!Address) {
1328         LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI
1329                           << " (bad address)\n");
1330         continue;
1331       }
1332 
1333       // Look through casts and constant offset GEPs. These mostly come from
1334       // inalloca.
1335       APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1336       Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1337 
1338       // Check if the variable is a static alloca or a byval or inalloca
1339       // argument passed in memory. If it is not, then we will ignore this
1340       // intrinsic and handle this during isel like dbg.value.
1341       int FI = std::numeric_limits<int>::max();
1342       if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1343         auto SI = FuncInfo.StaticAllocaMap.find(AI);
1344         if (SI != FuncInfo.StaticAllocaMap.end())
1345           FI = SI->second;
1346       } else if (const auto *Arg = dyn_cast<Argument>(Address))
1347         FI = FuncInfo.getArgumentFrameIndex(Arg);
1348 
1349       if (FI == std::numeric_limits<int>::max())
1350         continue;
1351 
1352       DIExpression *Expr = DI->getExpression();
1353       if (Offset.getBoolValue())
1354         Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
1355                                      Offset.getZExtValue());
1356       LLVM_DEBUG(dbgs() << "processDbgDeclares: setVariableDbgInfo FI=" << FI
1357                         << ", " << *DI << "\n");
1358       MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1359     }
1360   }
1361 }
1362 
SelectAllBasicBlocks(const Function & Fn)1363 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1364   FastISelFailed = false;
1365   // Initialize the Fast-ISel state, if needed.
1366   FastISel *FastIS = nullptr;
1367   if (TM.Options.EnableFastISel) {
1368     LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1369     FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1370   }
1371 
1372   ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1373 
1374   // Lower arguments up front. An RPO iteration always visits the entry block
1375   // first.
1376   assert(*RPOT.begin() == &Fn.getEntryBlock());
1377   ++NumEntryBlocks;
1378 
1379   // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1380   FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1381   FuncInfo->InsertPt = FuncInfo->MBB->begin();
1382 
1383   CurDAG->setFunctionLoweringInfo(FuncInfo.get());
1384 
1385   if (!FastIS) {
1386     LowerArguments(Fn);
1387   } else {
1388     // See if fast isel can lower the arguments.
1389     FastIS->startNewBlock();
1390     if (!FastIS->lowerArguments()) {
1391       FastISelFailed = true;
1392       // Fast isel failed to lower these arguments
1393       ++NumFastIselFailLowerArguments;
1394 
1395       OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1396                                  Fn.getSubprogram(),
1397                                  &Fn.getEntryBlock());
1398       R << "FastISel didn't lower all arguments: "
1399         << ore::NV("Prototype", Fn.getType());
1400       reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1401 
1402       // Use SelectionDAG argument lowering
1403       LowerArguments(Fn);
1404       CurDAG->setRoot(SDB->getControlRoot());
1405       SDB->clear();
1406       CodeGenAndEmitDAG();
1407     }
1408 
1409     // If we inserted any instructions at the beginning, make a note of
1410     // where they are, so we can be sure to emit subsequent instructions
1411     // after them.
1412     if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1413       FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1414     else
1415       FastIS->setLastLocalValue(nullptr);
1416   }
1417 
1418   bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
1419 
1420   if (FastIS && Inserted)
1421     FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1422 
1423   processDbgDeclares(*FuncInfo);
1424 
1425   // Iterate over all basic blocks in the function.
1426   StackProtector &SP = getAnalysis<StackProtector>();
1427   for (const BasicBlock *LLVMBB : RPOT) {
1428     if (OptLevel != CodeGenOpt::None) {
1429       bool AllPredsVisited = true;
1430       for (const BasicBlock *Pred : predecessors(LLVMBB)) {
1431         if (!FuncInfo->VisitedBBs.count(Pred)) {
1432           AllPredsVisited = false;
1433           break;
1434         }
1435       }
1436 
1437       if (AllPredsVisited) {
1438         for (const PHINode &PN : LLVMBB->phis())
1439           FuncInfo->ComputePHILiveOutRegInfo(&PN);
1440       } else {
1441         for (const PHINode &PN : LLVMBB->phis())
1442           FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1443       }
1444 
1445       FuncInfo->VisitedBBs.insert(LLVMBB);
1446     }
1447 
1448     BasicBlock::const_iterator const Begin =
1449         LLVMBB->getFirstNonPHI()->getIterator();
1450     BasicBlock::const_iterator const End = LLVMBB->end();
1451     BasicBlock::const_iterator BI = End;
1452 
1453     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1454     if (!FuncInfo->MBB)
1455       continue; // Some blocks like catchpads have no code or MBB.
1456 
1457     // Insert new instructions after any phi or argument setup code.
1458     FuncInfo->InsertPt = FuncInfo->MBB->end();
1459 
1460     // Setup an EH landing-pad block.
1461     FuncInfo->ExceptionPointerVirtReg = 0;
1462     FuncInfo->ExceptionSelectorVirtReg = 0;
1463     if (LLVMBB->isEHPad())
1464       if (!PrepareEHLandingPad())
1465         continue;
1466 
1467     // Before doing SelectionDAG ISel, see if FastISel has been requested.
1468     if (FastIS) {
1469       if (LLVMBB != &Fn.getEntryBlock())
1470         FastIS->startNewBlock();
1471 
1472       unsigned NumFastIselRemaining = std::distance(Begin, End);
1473 
1474       // Pre-assign swifterror vregs.
1475       SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
1476 
1477       // Do FastISel on as many instructions as possible.
1478       for (; BI != Begin; --BI) {
1479         const Instruction *Inst = &*std::prev(BI);
1480 
1481         // If we no longer require this instruction, skip it.
1482         if (isFoldedOrDeadInstruction(Inst, *FuncInfo) ||
1483             ElidedArgCopyInstrs.count(Inst)) {
1484           --NumFastIselRemaining;
1485           continue;
1486         }
1487 
1488         // Bottom-up: reset the insert pos at the top, after any local-value
1489         // instructions.
1490         FastIS->recomputeInsertPt();
1491 
1492         // Try to select the instruction with FastISel.
1493         if (FastIS->selectInstruction(Inst)) {
1494           --NumFastIselRemaining;
1495           ++NumFastIselSuccess;
1496           // If fast isel succeeded, skip over all the folded instructions, and
1497           // then see if there is a load right before the selected instructions.
1498           // Try to fold the load if so.
1499           const Instruction *BeforeInst = Inst;
1500           while (BeforeInst != &*Begin) {
1501             BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1502             if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo))
1503               break;
1504           }
1505           if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1506               BeforeInst->hasOneUse() &&
1507               FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1508             // If we succeeded, don't re-select the load.
1509             BI = std::next(BasicBlock::const_iterator(BeforeInst));
1510             --NumFastIselRemaining;
1511             ++NumFastIselSuccess;
1512           }
1513           continue;
1514         }
1515 
1516         FastISelFailed = true;
1517 
1518         // Then handle certain instructions as single-LLVM-Instruction blocks.
1519         // We cannot separate out GCrelocates to their own blocks since we need
1520         // to keep track of gc-relocates for a particular gc-statepoint. This is
1521         // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1522         // visitGCRelocate.
1523         if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) &&
1524             !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) {
1525           OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1526                                      Inst->getDebugLoc(), LLVMBB);
1527 
1528           R << "FastISel missed call";
1529 
1530           if (R.isEnabled() || EnableFastISelAbort) {
1531             std::string InstStrStorage;
1532             raw_string_ostream InstStr(InstStrStorage);
1533             InstStr << *Inst;
1534 
1535             R << ": " << InstStr.str();
1536           }
1537 
1538           reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1539 
1540           if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1541               !Inst->use_empty()) {
1542             Register &R = FuncInfo->ValueMap[Inst];
1543             if (!R)
1544               R = FuncInfo->CreateRegs(Inst);
1545           }
1546 
1547           bool HadTailCall = false;
1548           MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1549           SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1550 
1551           // If the call was emitted as a tail call, we're done with the block.
1552           // We also need to delete any previously emitted instructions.
1553           if (HadTailCall) {
1554             FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1555             --BI;
1556             break;
1557           }
1558 
1559           // Recompute NumFastIselRemaining as Selection DAG instruction
1560           // selection may have handled the call, input args, etc.
1561           unsigned RemainingNow = std::distance(Begin, BI);
1562           NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1563           NumFastIselRemaining = RemainingNow;
1564           continue;
1565         }
1566 
1567         OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1568                                    Inst->getDebugLoc(), LLVMBB);
1569 
1570         bool ShouldAbort = EnableFastISelAbort;
1571         if (Inst->isTerminator()) {
1572           // Use a different message for terminator misses.
1573           R << "FastISel missed terminator";
1574           // Don't abort for terminator unless the level is really high
1575           ShouldAbort = (EnableFastISelAbort > 2);
1576         } else {
1577           R << "FastISel missed";
1578         }
1579 
1580         if (R.isEnabled() || EnableFastISelAbort) {
1581           std::string InstStrStorage;
1582           raw_string_ostream InstStr(InstStrStorage);
1583           InstStr << *Inst;
1584           R << ": " << InstStr.str();
1585         }
1586 
1587         reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1588 
1589         NumFastIselFailures += NumFastIselRemaining;
1590         break;
1591       }
1592 
1593       FastIS->recomputeInsertPt();
1594     }
1595 
1596     if (SP.shouldEmitSDCheck(*LLVMBB)) {
1597       bool FunctionBasedInstrumentation =
1598           TLI->getSSPStackGuardCheck(*Fn.getParent());
1599       SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1600                                    FunctionBasedInstrumentation);
1601     }
1602 
1603     if (Begin != BI)
1604       ++NumDAGBlocks;
1605     else
1606       ++NumFastIselBlocks;
1607 
1608     if (Begin != BI) {
1609       // Run SelectionDAG instruction selection on the remainder of the block
1610       // not handled by FastISel. If FastISel is not run, this is the entire
1611       // block.
1612       bool HadTailCall;
1613       SelectBasicBlock(Begin, BI, HadTailCall);
1614 
1615       // But if FastISel was run, we already selected some of the block.
1616       // If we emitted a tail-call, we need to delete any previously emitted
1617       // instruction that follows it.
1618       if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1619         FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1620     }
1621 
1622     if (FastIS)
1623       FastIS->finishBasicBlock();
1624     FinishBasicBlock();
1625     FuncInfo->PHINodesToUpdate.clear();
1626     ElidedArgCopyInstrs.clear();
1627   }
1628 
1629   SP.copyToMachineFrameInfo(MF->getFrameInfo());
1630 
1631   SwiftError->propagateVRegs();
1632 
1633   delete FastIS;
1634   SDB->clearDanglingDebugInfo();
1635   SDB->SPDescriptor.resetPerFunctionState();
1636 }
1637 
1638 /// Given that the input MI is before a partial terminator sequence TSeq, return
1639 /// true if M + TSeq also a partial terminator sequence.
1640 ///
1641 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1642 /// lowering copy vregs into physical registers, which are then passed into
1643 /// terminator instructors so we can satisfy ABI constraints. A partial
1644 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1645 /// may be the whole terminator sequence).
MIIsInTerminatorSequence(const MachineInstr & MI)1646 static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1647   // If we do not have a copy or an implicit def, we return true if and only if
1648   // MI is a debug value.
1649   if (!MI.isCopy() && !MI.isImplicitDef())
1650     // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1651     // physical registers if there is debug info associated with the terminator
1652     // of our mbb. We want to include said debug info in our terminator
1653     // sequence, so we return true in that case.
1654     return MI.isDebugValue();
1655 
1656   // We have left the terminator sequence if we are not doing one of the
1657   // following:
1658   //
1659   // 1. Copying a vreg into a physical register.
1660   // 2. Copying a vreg into a vreg.
1661   // 3. Defining a register via an implicit def.
1662 
1663   // OPI should always be a register definition...
1664   MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1665   if (!OPI->isReg() || !OPI->isDef())
1666     return false;
1667 
1668   // Defining any register via an implicit def is always ok.
1669   if (MI.isImplicitDef())
1670     return true;
1671 
1672   // Grab the copy source...
1673   MachineInstr::const_mop_iterator OPI2 = OPI;
1674   ++OPI2;
1675   assert(OPI2 != MI.operands_end()
1676          && "Should have a copy implying we should have 2 arguments.");
1677 
1678   // Make sure that the copy dest is not a vreg when the copy source is a
1679   // physical register.
1680   if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) &&
1681                          Register::isPhysicalRegister(OPI2->getReg())))
1682     return false;
1683 
1684   return true;
1685 }
1686 
1687 /// Find the split point at which to splice the end of BB into its success stack
1688 /// protector check machine basic block.
1689 ///
1690 /// On many platforms, due to ABI constraints, terminators, even before register
1691 /// allocation, use physical registers. This creates an issue for us since
1692 /// physical registers at this point can not travel across basic
1693 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1694 /// when they enter functions and moves them through a sequence of copies back
1695 /// into the physical registers right before the terminator creating a
1696 /// ``Terminator Sequence''. This function is searching for the beginning of the
1697 /// terminator sequence so that we can ensure that we splice off not just the
1698 /// terminator, but additionally the copies that move the vregs into the
1699 /// physical registers.
1700 static MachineBasicBlock::iterator
FindSplitPointForStackProtector(MachineBasicBlock * BB,const TargetInstrInfo & TII)1701 FindSplitPointForStackProtector(MachineBasicBlock *BB,
1702                                 const TargetInstrInfo &TII) {
1703   MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1704   if (SplitPoint == BB->begin())
1705     return SplitPoint;
1706 
1707   MachineBasicBlock::iterator Start = BB->begin();
1708   MachineBasicBlock::iterator Previous = SplitPoint;
1709   --Previous;
1710 
1711   if (TII.isTailCall(*SplitPoint) &&
1712       Previous->getOpcode() == TII.getCallFrameDestroyOpcode()) {
1713     // call itself, then we must insert before the sequence even starts. For
1714     // example:
1715     //     <split point>
1716     //     ADJCALLSTACKDOWN ...
1717     //     <Moves>
1718     //     ADJCALLSTACKUP ...
1719     //     TAILJMP somewhere
1720     // On the other hand, it could be an unrelated call in which case this tail call
1721     // has to register moves of its own and should be the split point. For example:
1722     //     ADJCALLSTACKDOWN
1723     //     CALL something_else
1724     //     ADJCALLSTACKUP
1725     //     <split point>
1726     //     TAILJMP somewhere
1727     do {
1728       --Previous;
1729       if (Previous->isCall())
1730         return SplitPoint;
1731     } while(Previous->getOpcode() != TII.getCallFrameSetupOpcode());
1732 
1733     return Previous;
1734   }
1735 
1736   while (MIIsInTerminatorSequence(*Previous)) {
1737     SplitPoint = Previous;
1738     if (Previous == Start)
1739       break;
1740     --Previous;
1741   }
1742 
1743   return SplitPoint;
1744 }
1745 
1746 void
FinishBasicBlock()1747 SelectionDAGISel::FinishBasicBlock() {
1748   LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1749                     << FuncInfo->PHINodesToUpdate.size() << "\n";
1750              for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1751                   ++i) dbgs()
1752              << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1753              << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1754 
1755   // Next, now that we know what the last MBB the LLVM BB expanded is, update
1756   // PHI nodes in successors.
1757   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1758     MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1759     assert(PHI->isPHI() &&
1760            "This is not a machine PHI node that we are updating!");
1761     if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1762       continue;
1763     PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1764   }
1765 
1766   // Handle stack protector.
1767   if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1768     // The target provides a guard check function. There is no need to
1769     // generate error handling code or to split current basic block.
1770     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1771 
1772     // Add load and check to the basicblock.
1773     FuncInfo->MBB = ParentMBB;
1774     FuncInfo->InsertPt =
1775         FindSplitPointForStackProtector(ParentMBB, *TII);
1776     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1777     CurDAG->setRoot(SDB->getRoot());
1778     SDB->clear();
1779     CodeGenAndEmitDAG();
1780 
1781     // Clear the Per-BB State.
1782     SDB->SPDescriptor.resetPerBBState();
1783   } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1784     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1785     MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1786 
1787     // Find the split point to split the parent mbb. At the same time copy all
1788     // physical registers used in the tail of parent mbb into virtual registers
1789     // before the split point and back into physical registers after the split
1790     // point. This prevents us needing to deal with Live-ins and many other
1791     // register allocation issues caused by us splitting the parent mbb. The
1792     // register allocator will clean up said virtual copies later on.
1793     MachineBasicBlock::iterator SplitPoint =
1794         FindSplitPointForStackProtector(ParentMBB, *TII);
1795 
1796     // Splice the terminator of ParentMBB into SuccessMBB.
1797     SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1798                        SplitPoint,
1799                        ParentMBB->end());
1800 
1801     // Add compare/jump on neq/jump to the parent BB.
1802     FuncInfo->MBB = ParentMBB;
1803     FuncInfo->InsertPt = ParentMBB->end();
1804     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1805     CurDAG->setRoot(SDB->getRoot());
1806     SDB->clear();
1807     CodeGenAndEmitDAG();
1808 
1809     // CodeGen Failure MBB if we have not codegened it yet.
1810     MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1811     if (FailureMBB->empty()) {
1812       FuncInfo->MBB = FailureMBB;
1813       FuncInfo->InsertPt = FailureMBB->end();
1814       SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1815       CurDAG->setRoot(SDB->getRoot());
1816       SDB->clear();
1817       CodeGenAndEmitDAG();
1818     }
1819 
1820     // Clear the Per-BB State.
1821     SDB->SPDescriptor.resetPerBBState();
1822   }
1823 
1824   // Lower each BitTestBlock.
1825   for (auto &BTB : SDB->SL->BitTestCases) {
1826     // Lower header first, if it wasn't already lowered
1827     if (!BTB.Emitted) {
1828       // Set the current basic block to the mbb we wish to insert the code into
1829       FuncInfo->MBB = BTB.Parent;
1830       FuncInfo->InsertPt = FuncInfo->MBB->end();
1831       // Emit the code
1832       SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1833       CurDAG->setRoot(SDB->getRoot());
1834       SDB->clear();
1835       CodeGenAndEmitDAG();
1836     }
1837 
1838     BranchProbability UnhandledProb = BTB.Prob;
1839     for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1840       UnhandledProb -= BTB.Cases[j].ExtraProb;
1841       // Set the current basic block to the mbb we wish to insert the code into
1842       FuncInfo->MBB = BTB.Cases[j].ThisBB;
1843       FuncInfo->InsertPt = FuncInfo->MBB->end();
1844       // Emit the code
1845 
1846       // If all cases cover a contiguous range, it is not necessary to jump to
1847       // the default block after the last bit test fails. This is because the
1848       // range check during bit test header creation has guaranteed that every
1849       // case here doesn't go outside the range. In this case, there is no need
1850       // to perform the last bit test, as it will always be true. Instead, make
1851       // the second-to-last bit-test fall through to the target of the last bit
1852       // test, and delete the last bit test.
1853 
1854       MachineBasicBlock *NextMBB;
1855       if (BTB.ContiguousRange && j + 2 == ej) {
1856         // Second-to-last bit-test with contiguous range: fall through to the
1857         // target of the final bit test.
1858         NextMBB = BTB.Cases[j + 1].TargetBB;
1859       } else if (j + 1 == ej) {
1860         // For the last bit test, fall through to Default.
1861         NextMBB = BTB.Default;
1862       } else {
1863         // Otherwise, fall through to the next bit test.
1864         NextMBB = BTB.Cases[j + 1].ThisBB;
1865       }
1866 
1867       SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1868                             FuncInfo->MBB);
1869 
1870       CurDAG->setRoot(SDB->getRoot());
1871       SDB->clear();
1872       CodeGenAndEmitDAG();
1873 
1874       if (BTB.ContiguousRange && j + 2 == ej) {
1875         // Since we're not going to use the final bit test, remove it.
1876         BTB.Cases.pop_back();
1877         break;
1878       }
1879     }
1880 
1881     // Update PHI Nodes
1882     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1883          pi != pe; ++pi) {
1884       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1885       MachineBasicBlock *PHIBB = PHI->getParent();
1886       assert(PHI->isPHI() &&
1887              "This is not a machine PHI node that we are updating!");
1888       // This is "default" BB. We have two jumps to it. From "header" BB and
1889       // from last "case" BB, unless the latter was skipped.
1890       if (PHIBB == BTB.Default) {
1891         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
1892         if (!BTB.ContiguousRange) {
1893           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1894               .addMBB(BTB.Cases.back().ThisBB);
1895          }
1896       }
1897       // One of "cases" BB.
1898       for (unsigned j = 0, ej = BTB.Cases.size();
1899            j != ej; ++j) {
1900         MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
1901         if (cBB->isSuccessor(PHIBB))
1902           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1903       }
1904     }
1905   }
1906   SDB->SL->BitTestCases.clear();
1907 
1908   // If the JumpTable record is filled in, then we need to emit a jump table.
1909   // Updating the PHI nodes is tricky in this case, since we need to determine
1910   // whether the PHI is a successor of the range check MBB or the jump table MBB
1911   for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
1912     // Lower header first, if it wasn't already lowered
1913     if (!SDB->SL->JTCases[i].first.Emitted) {
1914       // Set the current basic block to the mbb we wish to insert the code into
1915       FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
1916       FuncInfo->InsertPt = FuncInfo->MBB->end();
1917       // Emit the code
1918       SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
1919                                 SDB->SL->JTCases[i].first, FuncInfo->MBB);
1920       CurDAG->setRoot(SDB->getRoot());
1921       SDB->clear();
1922       CodeGenAndEmitDAG();
1923     }
1924 
1925     // Set the current basic block to the mbb we wish to insert the code into
1926     FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
1927     FuncInfo->InsertPt = FuncInfo->MBB->end();
1928     // Emit the code
1929     SDB->visitJumpTable(SDB->SL->JTCases[i].second);
1930     CurDAG->setRoot(SDB->getRoot());
1931     SDB->clear();
1932     CodeGenAndEmitDAG();
1933 
1934     // Update PHI Nodes
1935     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1936          pi != pe; ++pi) {
1937       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1938       MachineBasicBlock *PHIBB = PHI->getParent();
1939       assert(PHI->isPHI() &&
1940              "This is not a machine PHI node that we are updating!");
1941       // "default" BB. We can go there only from header BB.
1942       if (PHIBB == SDB->SL->JTCases[i].second.Default)
1943         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1944            .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
1945       // JT BB. Just iterate over successors here
1946       if (FuncInfo->MBB->isSuccessor(PHIBB))
1947         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1948     }
1949   }
1950   SDB->SL->JTCases.clear();
1951 
1952   // If we generated any switch lowering information, build and codegen any
1953   // additional DAGs necessary.
1954   for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
1955     // Set the current basic block to the mbb we wish to insert the code into
1956     FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
1957     FuncInfo->InsertPt = FuncInfo->MBB->end();
1958 
1959     // Determine the unique successors.
1960     SmallVector<MachineBasicBlock *, 2> Succs;
1961     Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
1962     if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
1963       Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
1964 
1965     // Emit the code. Note that this could result in FuncInfo->MBB being split.
1966     SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
1967     CurDAG->setRoot(SDB->getRoot());
1968     SDB->clear();
1969     CodeGenAndEmitDAG();
1970 
1971     // Remember the last block, now that any splitting is done, for use in
1972     // populating PHI nodes in successors.
1973     MachineBasicBlock *ThisBB = FuncInfo->MBB;
1974 
1975     // Handle any PHI nodes in successors of this chunk, as if we were coming
1976     // from the original BB before switch expansion.  Note that PHI nodes can
1977     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1978     // handle them the right number of times.
1979     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1980       FuncInfo->MBB = Succs[i];
1981       FuncInfo->InsertPt = FuncInfo->MBB->end();
1982       // FuncInfo->MBB may have been removed from the CFG if a branch was
1983       // constant folded.
1984       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1985         for (MachineBasicBlock::iterator
1986              MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1987              MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1988           MachineInstrBuilder PHI(*MF, MBBI);
1989           // This value for this PHI node is recorded in PHINodesToUpdate.
1990           for (unsigned pn = 0; ; ++pn) {
1991             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1992                    "Didn't find PHI entry!");
1993             if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1994               PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1995               break;
1996             }
1997           }
1998         }
1999       }
2000     }
2001   }
2002   SDB->SL->SwitchCases.clear();
2003 }
2004 
2005 /// Create the scheduler. If a specific scheduler was specified
2006 /// via the SchedulerRegistry, use it, otherwise select the
2007 /// one preferred by the target.
2008 ///
CreateScheduler()2009 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
2010   return ISHeuristic(this, OptLevel);
2011 }
2012 
2013 //===----------------------------------------------------------------------===//
2014 // Helper functions used by the generated instruction selector.
2015 //===----------------------------------------------------------------------===//
2016 // Calls to these methods are generated by tblgen.
2017 
2018 /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
2019 /// the dag combiner simplified the 255, we still want to match.  RHS is the
2020 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
2021 /// specified in the .td file (e.g. 255).
CheckAndMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const2022 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
2023                                     int64_t DesiredMaskS) const {
2024   const APInt &ActualMask = RHS->getAPIntValue();
2025   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2026 
2027   // If the actual mask exactly matches, success!
2028   if (ActualMask == DesiredMask)
2029     return true;
2030 
2031   // If the actual AND mask is allowing unallowed bits, this doesn't match.
2032   if (!ActualMask.isSubsetOf(DesiredMask))
2033     return false;
2034 
2035   // Otherwise, the DAG Combiner may have proven that the value coming in is
2036   // either already zero or is not demanded.  Check for known zero input bits.
2037   APInt NeededMask = DesiredMask & ~ActualMask;
2038   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
2039     return true;
2040 
2041   // TODO: check to see if missing bits are just not demanded.
2042 
2043   // Otherwise, this pattern doesn't match.
2044   return false;
2045 }
2046 
2047 /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
2048 /// the dag combiner simplified the 255, we still want to match.  RHS is the
2049 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2050 /// specified in the .td file (e.g. 255).
CheckOrMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const2051 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
2052                                    int64_t DesiredMaskS) const {
2053   const APInt &ActualMask = RHS->getAPIntValue();
2054   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2055 
2056   // If the actual mask exactly matches, success!
2057   if (ActualMask == DesiredMask)
2058     return true;
2059 
2060   // If the actual AND mask is allowing unallowed bits, this doesn't match.
2061   if (!ActualMask.isSubsetOf(DesiredMask))
2062     return false;
2063 
2064   // Otherwise, the DAG Combiner may have proven that the value coming in is
2065   // either already zero or is not demanded.  Check for known zero input bits.
2066   APInt NeededMask = DesiredMask & ~ActualMask;
2067   KnownBits Known = CurDAG->computeKnownBits(LHS);
2068 
2069   // If all the missing bits in the or are already known to be set, match!
2070   if (NeededMask.isSubsetOf(Known.One))
2071     return true;
2072 
2073   // TODO: check to see if missing bits are just not demanded.
2074 
2075   // Otherwise, this pattern doesn't match.
2076   return false;
2077 }
2078 
2079 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2080 /// by tblgen.  Others should not call it.
SelectInlineAsmMemoryOperands(std::vector<SDValue> & Ops,const SDLoc & DL)2081 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2082                                                      const SDLoc &DL) {
2083   std::vector<SDValue> InOps;
2084   std::swap(InOps, Ops);
2085 
2086   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2087   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
2088   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
2089   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
2090 
2091   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2092   if (InOps[e-1].getValueType() == MVT::Glue)
2093     --e;  // Don't process a glue operand if it is here.
2094 
2095   while (i != e) {
2096     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2097     if (!InlineAsm::isMemKind(Flags)) {
2098       // Just skip over this operand, copying the operands verbatim.
2099       Ops.insert(Ops.end(), InOps.begin()+i,
2100                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2101       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2102     } else {
2103       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2104              "Memory operand with multiple values?");
2105 
2106       unsigned TiedToOperand;
2107       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2108         // We need the constraint ID from the operand this is tied to.
2109         unsigned CurOp = InlineAsm::Op_FirstOperand;
2110         Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2111         for (; TiedToOperand; --TiedToOperand) {
2112           CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2113           Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2114         }
2115       }
2116 
2117       // Otherwise, this is a memory operand.  Ask the target to select it.
2118       std::vector<SDValue> SelOps;
2119       unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2120       if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2121         report_fatal_error("Could not match memory address.  Inline asm"
2122                            " failure!");
2123 
2124       // Add this to the output node.
2125       unsigned NewFlags =
2126         InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2127       NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2128       Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2129       llvm::append_range(Ops, SelOps);
2130       i += 2;
2131     }
2132   }
2133 
2134   // Add the glue input back if present.
2135   if (e != InOps.size())
2136     Ops.push_back(InOps.back());
2137 }
2138 
2139 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2140 /// SDNode.
2141 ///
findGlueUse(SDNode * N)2142 static SDNode *findGlueUse(SDNode *N) {
2143   unsigned FlagResNo = N->getNumValues()-1;
2144   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2145     SDUse &Use = I.getUse();
2146     if (Use.getResNo() == FlagResNo)
2147       return Use.getUser();
2148   }
2149   return nullptr;
2150 }
2151 
2152 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2153 /// beyond "ImmedUse".  We may ignore chains as they are checked separately.
findNonImmUse(SDNode * Root,SDNode * Def,SDNode * ImmedUse,bool IgnoreChains)2154 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2155                           bool IgnoreChains) {
2156   SmallPtrSet<const SDNode *, 16> Visited;
2157   SmallVector<const SDNode *, 16> WorkList;
2158   // Only check if we have non-immediate uses of Def.
2159   if (ImmedUse->isOnlyUserOf(Def))
2160     return false;
2161 
2162   // We don't care about paths to Def that go through ImmedUse so mark it
2163   // visited and mark non-def operands as used.
2164   Visited.insert(ImmedUse);
2165   for (const SDValue &Op : ImmedUse->op_values()) {
2166     SDNode *N = Op.getNode();
2167     // Ignore chain deps (they are validated by
2168     // HandleMergeInputChains) and immediate uses
2169     if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2170       continue;
2171     if (!Visited.insert(N).second)
2172       continue;
2173     WorkList.push_back(N);
2174   }
2175 
2176   // Initialize worklist to operands of Root.
2177   if (Root != ImmedUse) {
2178     for (const SDValue &Op : Root->op_values()) {
2179       SDNode *N = Op.getNode();
2180       // Ignore chains (they are validated by HandleMergeInputChains)
2181       if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2182         continue;
2183       if (!Visited.insert(N).second)
2184         continue;
2185       WorkList.push_back(N);
2186     }
2187   }
2188 
2189   return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2190 }
2191 
2192 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2193 /// operand node N of U during instruction selection that starts at Root.
IsProfitableToFold(SDValue N,SDNode * U,SDNode * Root) const2194 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2195                                           SDNode *Root) const {
2196   if (OptLevel == CodeGenOpt::None) return false;
2197   return N.hasOneUse();
2198 }
2199 
2200 /// IsLegalToFold - Returns true if the specific operand node N of
2201 /// U can be folded during instruction selection that starts at Root.
IsLegalToFold(SDValue N,SDNode * U,SDNode * Root,CodeGenOpt::Level OptLevel,bool IgnoreChains)2202 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2203                                      CodeGenOpt::Level OptLevel,
2204                                      bool IgnoreChains) {
2205   if (OptLevel == CodeGenOpt::None) return false;
2206 
2207   // If Root use can somehow reach N through a path that that doesn't contain
2208   // U then folding N would create a cycle. e.g. In the following
2209   // diagram, Root can reach N through X. If N is folded into Root, then
2210   // X is both a predecessor and a successor of U.
2211   //
2212   //          [N*]           //
2213   //         ^   ^           //
2214   //        /     \          //
2215   //      [U*]    [X]?       //
2216   //        ^     ^          //
2217   //         \   /           //
2218   //          \ /            //
2219   //         [Root*]         //
2220   //
2221   // * indicates nodes to be folded together.
2222   //
2223   // If Root produces glue, then it gets (even more) interesting. Since it
2224   // will be "glued" together with its glue use in the scheduler, we need to
2225   // check if it might reach N.
2226   //
2227   //          [N*]           //
2228   //         ^   ^           //
2229   //        /     \          //
2230   //      [U*]    [X]?       //
2231   //        ^       ^        //
2232   //         \       \       //
2233   //          \      |       //
2234   //         [Root*] |       //
2235   //          ^      |       //
2236   //          f      |       //
2237   //          |      /       //
2238   //         [Y]    /        //
2239   //           ^   /         //
2240   //           f  /          //
2241   //           | /           //
2242   //          [GU]           //
2243   //
2244   // If GU (glue use) indirectly reaches N (the load), and Root folds N
2245   // (call it Fold), then X is a predecessor of GU and a successor of
2246   // Fold. But since Fold and GU are glued together, this will create
2247   // a cycle in the scheduling graph.
2248 
2249   // If the node has glue, walk down the graph to the "lowest" node in the
2250   // glueged set.
2251   EVT VT = Root->getValueType(Root->getNumValues()-1);
2252   while (VT == MVT::Glue) {
2253     SDNode *GU = findGlueUse(Root);
2254     if (!GU)
2255       break;
2256     Root = GU;
2257     VT = Root->getValueType(Root->getNumValues()-1);
2258 
2259     // If our query node has a glue result with a use, we've walked up it.  If
2260     // the user (which has already been selected) has a chain or indirectly uses
2261     // the chain, HandleMergeInputChains will not consider it.  Because of
2262     // this, we cannot ignore chains in this predicate.
2263     IgnoreChains = false;
2264   }
2265 
2266   return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2267 }
2268 
Select_INLINEASM(SDNode * N)2269 void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
2270   SDLoc DL(N);
2271 
2272   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2273   SelectInlineAsmMemoryOperands(Ops, DL);
2274 
2275   const EVT VTs[] = {MVT::Other, MVT::Glue};
2276   SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops);
2277   New->setNodeId(-1);
2278   ReplaceUses(N, New.getNode());
2279   CurDAG->RemoveDeadNode(N);
2280 }
2281 
Select_READ_REGISTER(SDNode * Op)2282 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2283   SDLoc dl(Op);
2284   MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2285   const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2286 
2287   EVT VT = Op->getValueType(0);
2288   LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2289   Register Reg =
2290       TLI->getRegisterByName(RegStr->getString().data(), Ty,
2291                              CurDAG->getMachineFunction());
2292   SDValue New = CurDAG->getCopyFromReg(
2293                         Op->getOperand(0), dl, Reg, Op->getValueType(0));
2294   New->setNodeId(-1);
2295   ReplaceUses(Op, New.getNode());
2296   CurDAG->RemoveDeadNode(Op);
2297 }
2298 
Select_WRITE_REGISTER(SDNode * Op)2299 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2300   SDLoc dl(Op);
2301   MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2302   const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2303 
2304   EVT VT = Op->getOperand(2).getValueType();
2305   LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2306 
2307   Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty,
2308                                         CurDAG->getMachineFunction());
2309   SDValue New = CurDAG->getCopyToReg(
2310                         Op->getOperand(0), dl, Reg, Op->getOperand(2));
2311   New->setNodeId(-1);
2312   ReplaceUses(Op, New.getNode());
2313   CurDAG->RemoveDeadNode(Op);
2314 }
2315 
Select_UNDEF(SDNode * N)2316 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2317   CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2318 }
2319 
Select_FREEZE(SDNode * N)2320 void SelectionDAGISel::Select_FREEZE(SDNode *N) {
2321   // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now.
2322   // If FREEZE instruction is added later, the code below must be changed as
2323   // well.
2324   CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0),
2325                        N->getOperand(0));
2326 }
2327 
2328 /// GetVBR - decode a vbr encoding whose top bit is set.
2329 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
GetVBR(uint64_t Val,const unsigned char * MatcherTable,unsigned & Idx)2330 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2331   assert(Val >= 128 && "Not a VBR");
2332   Val &= 127;  // Remove first vbr bit.
2333 
2334   unsigned Shift = 7;
2335   uint64_t NextBits;
2336   do {
2337     NextBits = MatcherTable[Idx++];
2338     Val |= (NextBits&127) << Shift;
2339     Shift += 7;
2340   } while (NextBits & 128);
2341 
2342   return Val;
2343 }
2344 
2345 /// When a match is complete, this method updates uses of interior chain results
2346 /// to use the new results.
UpdateChains(SDNode * NodeToMatch,SDValue InputChain,SmallVectorImpl<SDNode * > & ChainNodesMatched,bool isMorphNodeTo)2347 void SelectionDAGISel::UpdateChains(
2348     SDNode *NodeToMatch, SDValue InputChain,
2349     SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2350   SmallVector<SDNode*, 4> NowDeadNodes;
2351 
2352   // Now that all the normal results are replaced, we replace the chain and
2353   // glue results if present.
2354   if (!ChainNodesMatched.empty()) {
2355     assert(InputChain.getNode() &&
2356            "Matched input chains but didn't produce a chain");
2357     // Loop over all of the nodes we matched that produced a chain result.
2358     // Replace all the chain results with the final chain we ended up with.
2359     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2360       SDNode *ChainNode = ChainNodesMatched[i];
2361       // If ChainNode is null, it's because we replaced it on a previous
2362       // iteration and we cleared it out of the map. Just skip it.
2363       if (!ChainNode)
2364         continue;
2365 
2366       assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2367              "Deleted node left in chain");
2368 
2369       // Don't replace the results of the root node if we're doing a
2370       // MorphNodeTo.
2371       if (ChainNode == NodeToMatch && isMorphNodeTo)
2372         continue;
2373 
2374       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2375       if (ChainVal.getValueType() == MVT::Glue)
2376         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2377       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2378       SelectionDAG::DAGNodeDeletedListener NDL(
2379           *CurDAG, [&](SDNode *N, SDNode *E) {
2380             std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2381                          static_cast<SDNode *>(nullptr));
2382           });
2383       if (ChainNode->getOpcode() != ISD::TokenFactor)
2384         ReplaceUses(ChainVal, InputChain);
2385 
2386       // If the node became dead and we haven't already seen it, delete it.
2387       if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2388           !llvm::is_contained(NowDeadNodes, ChainNode))
2389         NowDeadNodes.push_back(ChainNode);
2390     }
2391   }
2392 
2393   if (!NowDeadNodes.empty())
2394     CurDAG->RemoveDeadNodes(NowDeadNodes);
2395 
2396   LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2397 }
2398 
2399 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2400 /// operation for when the pattern matched at least one node with a chains.  The
2401 /// input vector contains a list of all of the chained nodes that we match.  We
2402 /// must determine if this is a valid thing to cover (i.e. matching it won't
2403 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2404 /// be used as the input node chain for the generated nodes.
2405 static SDValue
HandleMergeInputChains(SmallVectorImpl<SDNode * > & ChainNodesMatched,SelectionDAG * CurDAG)2406 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2407                        SelectionDAG *CurDAG) {
2408 
2409   SmallPtrSet<const SDNode *, 16> Visited;
2410   SmallVector<const SDNode *, 8> Worklist;
2411   SmallVector<SDValue, 3> InputChains;
2412   unsigned int Max = 8192;
2413 
2414   // Quick exit on trivial merge.
2415   if (ChainNodesMatched.size() == 1)
2416     return ChainNodesMatched[0]->getOperand(0);
2417 
2418   // Add chains that aren't already added (internal). Peek through
2419   // token factors.
2420   std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2421     if (V.getValueType() != MVT::Other)
2422       return;
2423     if (V->getOpcode() == ISD::EntryToken)
2424       return;
2425     if (!Visited.insert(V.getNode()).second)
2426       return;
2427     if (V->getOpcode() == ISD::TokenFactor) {
2428       for (const SDValue &Op : V->op_values())
2429         AddChains(Op);
2430     } else
2431       InputChains.push_back(V);
2432   };
2433 
2434   for (auto *N : ChainNodesMatched) {
2435     Worklist.push_back(N);
2436     Visited.insert(N);
2437   }
2438 
2439   while (!Worklist.empty())
2440     AddChains(Worklist.pop_back_val()->getOperand(0));
2441 
2442   // Skip the search if there are no chain dependencies.
2443   if (InputChains.size() == 0)
2444     return CurDAG->getEntryNode();
2445 
2446   // If one of these chains is a successor of input, we must have a
2447   // node that is both the predecessor and successor of the
2448   // to-be-merged nodes. Fail.
2449   Visited.clear();
2450   for (SDValue V : InputChains)
2451     Worklist.push_back(V.getNode());
2452 
2453   for (auto *N : ChainNodesMatched)
2454     if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2455       return SDValue();
2456 
2457   // Return merged chain.
2458   if (InputChains.size() == 1)
2459     return InputChains[0];
2460   return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2461                          MVT::Other, InputChains);
2462 }
2463 
2464 /// MorphNode - Handle morphing a node in place for the selector.
2465 SDNode *SelectionDAGISel::
MorphNode(SDNode * Node,unsigned TargetOpc,SDVTList VTList,ArrayRef<SDValue> Ops,unsigned EmitNodeInfo)2466 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2467           ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2468   // It is possible we're using MorphNodeTo to replace a node with no
2469   // normal results with one that has a normal result (or we could be
2470   // adding a chain) and the input could have glue and chains as well.
2471   // In this case we need to shift the operands down.
2472   // FIXME: This is a horrible hack and broken in obscure cases, no worse
2473   // than the old isel though.
2474   int OldGlueResultNo = -1, OldChainResultNo = -1;
2475 
2476   unsigned NTMNumResults = Node->getNumValues();
2477   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2478     OldGlueResultNo = NTMNumResults-1;
2479     if (NTMNumResults != 1 &&
2480         Node->getValueType(NTMNumResults-2) == MVT::Other)
2481       OldChainResultNo = NTMNumResults-2;
2482   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2483     OldChainResultNo = NTMNumResults-1;
2484 
2485   // Call the underlying SelectionDAG routine to do the transmogrification. Note
2486   // that this deletes operands of the old node that become dead.
2487   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2488 
2489   // MorphNodeTo can operate in two ways: if an existing node with the
2490   // specified operands exists, it can just return it.  Otherwise, it
2491   // updates the node in place to have the requested operands.
2492   if (Res == Node) {
2493     // If we updated the node in place, reset the node ID.  To the isel,
2494     // this should be just like a newly allocated machine node.
2495     Res->setNodeId(-1);
2496   }
2497 
2498   unsigned ResNumResults = Res->getNumValues();
2499   // Move the glue if needed.
2500   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2501       (unsigned)OldGlueResultNo != ResNumResults-1)
2502     ReplaceUses(SDValue(Node, OldGlueResultNo),
2503                 SDValue(Res, ResNumResults - 1));
2504 
2505   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2506     --ResNumResults;
2507 
2508   // Move the chain reference if needed.
2509   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2510       (unsigned)OldChainResultNo != ResNumResults-1)
2511     ReplaceUses(SDValue(Node, OldChainResultNo),
2512                 SDValue(Res, ResNumResults - 1));
2513 
2514   // Otherwise, no replacement happened because the node already exists. Replace
2515   // Uses of the old node with the new one.
2516   if (Res != Node) {
2517     ReplaceNode(Node, Res);
2518   } else {
2519     EnforceNodeIdInvariant(Res);
2520   }
2521 
2522   return Res;
2523 }
2524 
2525 /// CheckSame - Implements OP_CheckSame.
2526 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckSame(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)2527 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2528           const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) {
2529   // Accept if it is exactly the same as a previously recorded node.
2530   unsigned RecNo = MatcherTable[MatcherIndex++];
2531   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2532   return N == RecordedNodes[RecNo].first;
2533 }
2534 
2535 /// CheckChildSame - Implements OP_CheckChildXSame.
CheckChildSame(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes,unsigned ChildNo)2536 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame(
2537     const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2538     const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes,
2539     unsigned ChildNo) {
2540   if (ChildNo >= N.getNumOperands())
2541     return false;  // Match fails if out of range child #.
2542   return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2543                      RecordedNodes);
2544 }
2545 
2546 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2547 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckPatternPredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,const SelectionDAGISel & SDISel)2548 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2549                       const SelectionDAGISel &SDISel) {
2550   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2551 }
2552 
2553 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2554 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckNodePredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,const SelectionDAGISel & SDISel,SDNode * N)2555 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2556                    const SelectionDAGISel &SDISel, SDNode *N) {
2557   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2558 }
2559 
2560 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckOpcode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDNode * N)2561 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2562             SDNode *N) {
2563   uint16_t Opc = MatcherTable[MatcherIndex++];
2564   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2565   return N->getOpcode() == Opc;
2566 }
2567 
2568 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL)2569 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2570           const TargetLowering *TLI, const DataLayout &DL) {
2571   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2572   if (N.getValueType() == VT) return true;
2573 
2574   // Handle the case when VT is iPTR.
2575   return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2576 }
2577 
2578 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckChildType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL,unsigned ChildNo)2579 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2580                SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2581                unsigned ChildNo) {
2582   if (ChildNo >= N.getNumOperands())
2583     return false;  // Match fails if out of range child #.
2584   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2585                      DL);
2586 }
2587 
2588 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckCondCode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2589 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2590               SDValue N) {
2591   return cast<CondCodeSDNode>(N)->get() ==
2592       (ISD::CondCode)MatcherTable[MatcherIndex++];
2593 }
2594 
2595 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckChild2CondCode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2596 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2597                     SDValue N) {
2598   if (2 >= N.getNumOperands())
2599     return false;
2600   return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2601 }
2602 
2603 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckValueType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL)2604 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2605                SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2606   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2607   if (cast<VTSDNode>(N)->getVT() == VT)
2608     return true;
2609 
2610   // Handle the case when VT is iPTR.
2611   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2612 }
2613 
2614 // Bit 0 stores the sign of the immediate. The upper bits contain the magnitude
2615 // shifted left by 1.
decodeSignRotatedValue(uint64_t V)2616 static uint64_t decodeSignRotatedValue(uint64_t V) {
2617   if ((V & 1) == 0)
2618     return V >> 1;
2619   if (V != 1)
2620     return -(V >> 1);
2621   // There is no such thing as -0 with integers.  "-0" really means MININT.
2622   return 1ULL << 63;
2623 }
2624 
2625 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckInteger(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2626 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2627              SDValue N) {
2628   int64_t Val = MatcherTable[MatcherIndex++];
2629   if (Val & 128)
2630     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2631 
2632   Val = decodeSignRotatedValue(Val);
2633 
2634   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2635   return C && C->getSExtValue() == Val;
2636 }
2637 
2638 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckChildInteger(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,unsigned ChildNo)2639 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2640                   SDValue N, unsigned ChildNo) {
2641   if (ChildNo >= N.getNumOperands())
2642     return false;  // Match fails if out of range child #.
2643   return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2644 }
2645 
2646 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckAndImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SelectionDAGISel & SDISel)2647 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2648             SDValue N, const SelectionDAGISel &SDISel) {
2649   int64_t Val = MatcherTable[MatcherIndex++];
2650   if (Val & 128)
2651     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2652 
2653   if (N->getOpcode() != ISD::AND) return false;
2654 
2655   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2656   return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2657 }
2658 
2659 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckOrImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SelectionDAGISel & SDISel)2660 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2661            const SelectionDAGISel &SDISel) {
2662   int64_t Val = MatcherTable[MatcherIndex++];
2663   if (Val & 128)
2664     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2665 
2666   if (N->getOpcode() != ISD::OR) return false;
2667 
2668   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2669   return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2670 }
2671 
2672 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2673 /// scope, evaluate the current node.  If the current predicate is known to
2674 /// fail, set Result=true and return anything.  If the current predicate is
2675 /// known to pass, set Result=false and return the MatcherIndex to continue
2676 /// with.  If the current predicate is unknown, set Result=false and return the
2677 /// MatcherIndex to continue with.
IsPredicateKnownToFail(const unsigned char * Table,unsigned Index,SDValue N,bool & Result,const SelectionDAGISel & SDISel,SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)2678 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2679                                        unsigned Index, SDValue N,
2680                                        bool &Result,
2681                                        const SelectionDAGISel &SDISel,
2682                   SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2683   switch (Table[Index++]) {
2684   default:
2685     Result = false;
2686     return Index-1;  // Could not evaluate this predicate.
2687   case SelectionDAGISel::OPC_CheckSame:
2688     Result = !::CheckSame(Table, Index, N, RecordedNodes);
2689     return Index;
2690   case SelectionDAGISel::OPC_CheckChild0Same:
2691   case SelectionDAGISel::OPC_CheckChild1Same:
2692   case SelectionDAGISel::OPC_CheckChild2Same:
2693   case SelectionDAGISel::OPC_CheckChild3Same:
2694     Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2695                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2696     return Index;
2697   case SelectionDAGISel::OPC_CheckPatternPredicate:
2698     Result = !::CheckPatternPredicate(Table, Index, SDISel);
2699     return Index;
2700   case SelectionDAGISel::OPC_CheckPredicate:
2701     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2702     return Index;
2703   case SelectionDAGISel::OPC_CheckOpcode:
2704     Result = !::CheckOpcode(Table, Index, N.getNode());
2705     return Index;
2706   case SelectionDAGISel::OPC_CheckType:
2707     Result = !::CheckType(Table, Index, N, SDISel.TLI,
2708                           SDISel.CurDAG->getDataLayout());
2709     return Index;
2710   case SelectionDAGISel::OPC_CheckTypeRes: {
2711     unsigned Res = Table[Index++];
2712     Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2713                           SDISel.CurDAG->getDataLayout());
2714     return Index;
2715   }
2716   case SelectionDAGISel::OPC_CheckChild0Type:
2717   case SelectionDAGISel::OPC_CheckChild1Type:
2718   case SelectionDAGISel::OPC_CheckChild2Type:
2719   case SelectionDAGISel::OPC_CheckChild3Type:
2720   case SelectionDAGISel::OPC_CheckChild4Type:
2721   case SelectionDAGISel::OPC_CheckChild5Type:
2722   case SelectionDAGISel::OPC_CheckChild6Type:
2723   case SelectionDAGISel::OPC_CheckChild7Type:
2724     Result = !::CheckChildType(
2725                  Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2726                  Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2727     return Index;
2728   case SelectionDAGISel::OPC_CheckCondCode:
2729     Result = !::CheckCondCode(Table, Index, N);
2730     return Index;
2731   case SelectionDAGISel::OPC_CheckChild2CondCode:
2732     Result = !::CheckChild2CondCode(Table, Index, N);
2733     return Index;
2734   case SelectionDAGISel::OPC_CheckValueType:
2735     Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2736                                SDISel.CurDAG->getDataLayout());
2737     return Index;
2738   case SelectionDAGISel::OPC_CheckInteger:
2739     Result = !::CheckInteger(Table, Index, N);
2740     return Index;
2741   case SelectionDAGISel::OPC_CheckChild0Integer:
2742   case SelectionDAGISel::OPC_CheckChild1Integer:
2743   case SelectionDAGISel::OPC_CheckChild2Integer:
2744   case SelectionDAGISel::OPC_CheckChild3Integer:
2745   case SelectionDAGISel::OPC_CheckChild4Integer:
2746     Result = !::CheckChildInteger(Table, Index, N,
2747                      Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2748     return Index;
2749   case SelectionDAGISel::OPC_CheckAndImm:
2750     Result = !::CheckAndImm(Table, Index, N, SDISel);
2751     return Index;
2752   case SelectionDAGISel::OPC_CheckOrImm:
2753     Result = !::CheckOrImm(Table, Index, N, SDISel);
2754     return Index;
2755   }
2756 }
2757 
2758 namespace {
2759 
2760 struct MatchScope {
2761   /// FailIndex - If this match fails, this is the index to continue with.
2762   unsigned FailIndex;
2763 
2764   /// NodeStack - The node stack when the scope was formed.
2765   SmallVector<SDValue, 4> NodeStack;
2766 
2767   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2768   unsigned NumRecordedNodes;
2769 
2770   /// NumMatchedMemRefs - The number of matched memref entries.
2771   unsigned NumMatchedMemRefs;
2772 
2773   /// InputChain/InputGlue - The current chain/glue
2774   SDValue InputChain, InputGlue;
2775 
2776   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2777   bool HasChainNodesMatched;
2778 };
2779 
2780 /// \A DAG update listener to keep the matching state
2781 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2782 /// change the DAG while matching.  X86 addressing mode matcher is an example
2783 /// for this.
2784 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2785 {
2786   SDNode **NodeToMatch;
2787   SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2788   SmallVectorImpl<MatchScope> &MatchScopes;
2789 
2790 public:
MatchStateUpdater(SelectionDAG & DAG,SDNode ** NodeToMatch,SmallVectorImpl<std::pair<SDValue,SDNode * >> & RN,SmallVectorImpl<MatchScope> & MS)2791   MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2792                     SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2793                     SmallVectorImpl<MatchScope> &MS)
2794       : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2795         RecordedNodes(RN), MatchScopes(MS) {}
2796 
NodeDeleted(SDNode * N,SDNode * E)2797   void NodeDeleted(SDNode *N, SDNode *E) override {
2798     // Some early-returns here to avoid the search if we deleted the node or
2799     // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2800     // do, so it's unnecessary to update matching state at that point).
2801     // Neither of these can occur currently because we only install this
2802     // update listener during matching a complex patterns.
2803     if (!E || E->isMachineOpcode())
2804       return;
2805     // Check if NodeToMatch was updated.
2806     if (N == *NodeToMatch)
2807       *NodeToMatch = E;
2808     // Performing linear search here does not matter because we almost never
2809     // run this code.  You'd have to have a CSE during complex pattern
2810     // matching.
2811     for (auto &I : RecordedNodes)
2812       if (I.first.getNode() == N)
2813         I.first.setNode(E);
2814 
2815     for (auto &I : MatchScopes)
2816       for (auto &J : I.NodeStack)
2817         if (J.getNode() == N)
2818           J.setNode(E);
2819   }
2820 };
2821 
2822 } // end anonymous namespace
2823 
SelectCodeCommon(SDNode * NodeToMatch,const unsigned char * MatcherTable,unsigned TableSize)2824 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2825                                         const unsigned char *MatcherTable,
2826                                         unsigned TableSize) {
2827   // FIXME: Should these even be selected?  Handle these cases in the caller?
2828   switch (NodeToMatch->getOpcode()) {
2829   default:
2830     break;
2831   case ISD::EntryToken:       // These nodes remain the same.
2832   case ISD::BasicBlock:
2833   case ISD::Register:
2834   case ISD::RegisterMask:
2835   case ISD::HANDLENODE:
2836   case ISD::MDNODE_SDNODE:
2837   case ISD::TargetConstant:
2838   case ISD::TargetConstantFP:
2839   case ISD::TargetConstantPool:
2840   case ISD::TargetFrameIndex:
2841   case ISD::TargetExternalSymbol:
2842   case ISD::MCSymbol:
2843   case ISD::TargetBlockAddress:
2844   case ISD::TargetJumpTable:
2845   case ISD::TargetGlobalTLSAddress:
2846   case ISD::TargetGlobalAddress:
2847   case ISD::TokenFactor:
2848   case ISD::CopyFromReg:
2849   case ISD::CopyToReg:
2850   case ISD::EH_LABEL:
2851   case ISD::ANNOTATION_LABEL:
2852   case ISD::LIFETIME_START:
2853   case ISD::LIFETIME_END:
2854   case ISD::PSEUDO_PROBE:
2855     NodeToMatch->setNodeId(-1); // Mark selected.
2856     return;
2857   case ISD::AssertSext:
2858   case ISD::AssertZext:
2859   case ISD::AssertAlign:
2860     ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2861     CurDAG->RemoveDeadNode(NodeToMatch);
2862     return;
2863   case ISD::INLINEASM:
2864   case ISD::INLINEASM_BR:
2865     Select_INLINEASM(NodeToMatch);
2866     return;
2867   case ISD::READ_REGISTER:
2868     Select_READ_REGISTER(NodeToMatch);
2869     return;
2870   case ISD::WRITE_REGISTER:
2871     Select_WRITE_REGISTER(NodeToMatch);
2872     return;
2873   case ISD::UNDEF:
2874     Select_UNDEF(NodeToMatch);
2875     return;
2876   case ISD::FREEZE:
2877     Select_FREEZE(NodeToMatch);
2878     return;
2879   }
2880 
2881   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2882 
2883   // Set up the node stack with NodeToMatch as the only node on the stack.
2884   SmallVector<SDValue, 8> NodeStack;
2885   SDValue N = SDValue(NodeToMatch, 0);
2886   NodeStack.push_back(N);
2887 
2888   // MatchScopes - Scopes used when matching, if a match failure happens, this
2889   // indicates where to continue checking.
2890   SmallVector<MatchScope, 8> MatchScopes;
2891 
2892   // RecordedNodes - This is the set of nodes that have been recorded by the
2893   // state machine.  The second value is the parent of the node, or null if the
2894   // root is recorded.
2895   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2896 
2897   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2898   // pattern.
2899   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2900 
2901   // These are the current input chain and glue for use when generating nodes.
2902   // Various Emit operations change these.  For example, emitting a copytoreg
2903   // uses and updates these.
2904   SDValue InputChain, InputGlue;
2905 
2906   // ChainNodesMatched - If a pattern matches nodes that have input/output
2907   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2908   // which ones they are.  The result is captured into this list so that we can
2909   // update the chain results when the pattern is complete.
2910   SmallVector<SDNode*, 3> ChainNodesMatched;
2911 
2912   LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2913 
2914   // Determine where to start the interpreter.  Normally we start at opcode #0,
2915   // but if the state machine starts with an OPC_SwitchOpcode, then we
2916   // accelerate the first lookup (which is guaranteed to be hot) with the
2917   // OpcodeOffset table.
2918   unsigned MatcherIndex = 0;
2919 
2920   if (!OpcodeOffset.empty()) {
2921     // Already computed the OpcodeOffset table, just index into it.
2922     if (N.getOpcode() < OpcodeOffset.size())
2923       MatcherIndex = OpcodeOffset[N.getOpcode()];
2924     LLVM_DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2925 
2926   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2927     // Otherwise, the table isn't computed, but the state machine does start
2928     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2929     // is the first time we're selecting an instruction.
2930     unsigned Idx = 1;
2931     while (true) {
2932       // Get the size of this case.
2933       unsigned CaseSize = MatcherTable[Idx++];
2934       if (CaseSize & 128)
2935         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2936       if (CaseSize == 0) break;
2937 
2938       // Get the opcode, add the index to the table.
2939       uint16_t Opc = MatcherTable[Idx++];
2940       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2941       if (Opc >= OpcodeOffset.size())
2942         OpcodeOffset.resize((Opc+1)*2);
2943       OpcodeOffset[Opc] = Idx;
2944       Idx += CaseSize;
2945     }
2946 
2947     // Okay, do the lookup for the first opcode.
2948     if (N.getOpcode() < OpcodeOffset.size())
2949       MatcherIndex = OpcodeOffset[N.getOpcode()];
2950   }
2951 
2952   while (true) {
2953     assert(MatcherIndex < TableSize && "Invalid index");
2954 #ifndef NDEBUG
2955     unsigned CurrentOpcodeIndex = MatcherIndex;
2956 #endif
2957     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2958     switch (Opcode) {
2959     case OPC_Scope: {
2960       // Okay, the semantics of this operation are that we should push a scope
2961       // then evaluate the first child.  However, pushing a scope only to have
2962       // the first check fail (which then pops it) is inefficient.  If we can
2963       // determine immediately that the first check (or first several) will
2964       // immediately fail, don't even bother pushing a scope for them.
2965       unsigned FailIndex;
2966 
2967       while (true) {
2968         unsigned NumToSkip = MatcherTable[MatcherIndex++];
2969         if (NumToSkip & 128)
2970           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2971         // Found the end of the scope with no match.
2972         if (NumToSkip == 0) {
2973           FailIndex = 0;
2974           break;
2975         }
2976 
2977         FailIndex = MatcherIndex+NumToSkip;
2978 
2979         unsigned MatcherIndexOfPredicate = MatcherIndex;
2980         (void)MatcherIndexOfPredicate; // silence warning.
2981 
2982         // If we can't evaluate this predicate without pushing a scope (e.g. if
2983         // it is a 'MoveParent') or if the predicate succeeds on this node, we
2984         // push the scope and evaluate the full predicate chain.
2985         bool Result;
2986         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2987                                               Result, *this, RecordedNodes);
2988         if (!Result)
2989           break;
2990 
2991         LLVM_DEBUG(
2992             dbgs() << "  Skipped scope entry (due to false predicate) at "
2993                    << "index " << MatcherIndexOfPredicate << ", continuing at "
2994                    << FailIndex << "\n");
2995         ++NumDAGIselRetries;
2996 
2997         // Otherwise, we know that this case of the Scope is guaranteed to fail,
2998         // move to the next case.
2999         MatcherIndex = FailIndex;
3000       }
3001 
3002       // If the whole scope failed to match, bail.
3003       if (FailIndex == 0) break;
3004 
3005       // Push a MatchScope which indicates where to go if the first child fails
3006       // to match.
3007       MatchScope NewEntry;
3008       NewEntry.FailIndex = FailIndex;
3009       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
3010       NewEntry.NumRecordedNodes = RecordedNodes.size();
3011       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
3012       NewEntry.InputChain = InputChain;
3013       NewEntry.InputGlue = InputGlue;
3014       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
3015       MatchScopes.push_back(NewEntry);
3016       continue;
3017     }
3018     case OPC_RecordNode: {
3019       // Remember this node, it may end up being an operand in the pattern.
3020       SDNode *Parent = nullptr;
3021       if (NodeStack.size() > 1)
3022         Parent = NodeStack[NodeStack.size()-2].getNode();
3023       RecordedNodes.push_back(std::make_pair(N, Parent));
3024       continue;
3025     }
3026 
3027     case OPC_RecordChild0: case OPC_RecordChild1:
3028     case OPC_RecordChild2: case OPC_RecordChild3:
3029     case OPC_RecordChild4: case OPC_RecordChild5:
3030     case OPC_RecordChild6: case OPC_RecordChild7: {
3031       unsigned ChildNo = Opcode-OPC_RecordChild0;
3032       if (ChildNo >= N.getNumOperands())
3033         break;  // Match fails if out of range child #.
3034 
3035       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
3036                                              N.getNode()));
3037       continue;
3038     }
3039     case OPC_RecordMemRef:
3040       if (auto *MN = dyn_cast<MemSDNode>(N))
3041         MatchedMemRefs.push_back(MN->getMemOperand());
3042       else {
3043         LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
3044                    dbgs() << '\n');
3045       }
3046 
3047       continue;
3048 
3049     case OPC_CaptureGlueInput:
3050       // If the current node has an input glue, capture it in InputGlue.
3051       if (N->getNumOperands() != 0 &&
3052           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
3053         InputGlue = N->getOperand(N->getNumOperands()-1);
3054       continue;
3055 
3056     case OPC_MoveChild: {
3057       unsigned ChildNo = MatcherTable[MatcherIndex++];
3058       if (ChildNo >= N.getNumOperands())
3059         break;  // Match fails if out of range child #.
3060       N = N.getOperand(ChildNo);
3061       NodeStack.push_back(N);
3062       continue;
3063     }
3064 
3065     case OPC_MoveChild0: case OPC_MoveChild1:
3066     case OPC_MoveChild2: case OPC_MoveChild3:
3067     case OPC_MoveChild4: case OPC_MoveChild5:
3068     case OPC_MoveChild6: case OPC_MoveChild7: {
3069       unsigned ChildNo = Opcode-OPC_MoveChild0;
3070       if (ChildNo >= N.getNumOperands())
3071         break;  // Match fails if out of range child #.
3072       N = N.getOperand(ChildNo);
3073       NodeStack.push_back(N);
3074       continue;
3075     }
3076 
3077     case OPC_MoveParent:
3078       // Pop the current node off the NodeStack.
3079       NodeStack.pop_back();
3080       assert(!NodeStack.empty() && "Node stack imbalance!");
3081       N = NodeStack.back();
3082       continue;
3083 
3084     case OPC_CheckSame:
3085       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3086       continue;
3087 
3088     case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3089     case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3090       if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3091                             Opcode-OPC_CheckChild0Same))
3092         break;
3093       continue;
3094 
3095     case OPC_CheckPatternPredicate:
3096       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3097       continue;
3098     case OPC_CheckPredicate:
3099       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3100                                 N.getNode()))
3101         break;
3102       continue;
3103     case OPC_CheckPredicateWithOperands: {
3104       unsigned OpNum = MatcherTable[MatcherIndex++];
3105       SmallVector<SDValue, 8> Operands;
3106 
3107       for (unsigned i = 0; i < OpNum; ++i)
3108         Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3109 
3110       unsigned PredNo = MatcherTable[MatcherIndex++];
3111       if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3112         break;
3113       continue;
3114     }
3115     case OPC_CheckComplexPat: {
3116       unsigned CPNum = MatcherTable[MatcherIndex++];
3117       unsigned RecNo = MatcherTable[MatcherIndex++];
3118       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3119 
3120       // If target can modify DAG during matching, keep the matching state
3121       // consistent.
3122       std::unique_ptr<MatchStateUpdater> MSU;
3123       if (ComplexPatternFuncMutatesDAG())
3124         MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3125                                         MatchScopes));
3126 
3127       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3128                                RecordedNodes[RecNo].first, CPNum,
3129                                RecordedNodes))
3130         break;
3131       continue;
3132     }
3133     case OPC_CheckOpcode:
3134       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3135       continue;
3136 
3137     case OPC_CheckType:
3138       if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3139                        CurDAG->getDataLayout()))
3140         break;
3141       continue;
3142 
3143     case OPC_CheckTypeRes: {
3144       unsigned Res = MatcherTable[MatcherIndex++];
3145       if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3146                        CurDAG->getDataLayout()))
3147         break;
3148       continue;
3149     }
3150 
3151     case OPC_SwitchOpcode: {
3152       unsigned CurNodeOpcode = N.getOpcode();
3153       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3154       unsigned CaseSize;
3155       while (true) {
3156         // Get the size of this case.
3157         CaseSize = MatcherTable[MatcherIndex++];
3158         if (CaseSize & 128)
3159           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3160         if (CaseSize == 0) break;
3161 
3162         uint16_t Opc = MatcherTable[MatcherIndex++];
3163         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3164 
3165         // If the opcode matches, then we will execute this case.
3166         if (CurNodeOpcode == Opc)
3167           break;
3168 
3169         // Otherwise, skip over this case.
3170         MatcherIndex += CaseSize;
3171       }
3172 
3173       // If no cases matched, bail out.
3174       if (CaseSize == 0) break;
3175 
3176       // Otherwise, execute the case we found.
3177       LLVM_DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart << " to "
3178                         << MatcherIndex << "\n");
3179       continue;
3180     }
3181 
3182     case OPC_SwitchType: {
3183       MVT CurNodeVT = N.getSimpleValueType();
3184       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3185       unsigned CaseSize;
3186       while (true) {
3187         // Get the size of this case.
3188         CaseSize = MatcherTable[MatcherIndex++];
3189         if (CaseSize & 128)
3190           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3191         if (CaseSize == 0) break;
3192 
3193         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3194         if (CaseVT == MVT::iPTR)
3195           CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3196 
3197         // If the VT matches, then we will execute this case.
3198         if (CurNodeVT == CaseVT)
3199           break;
3200 
3201         // Otherwise, skip over this case.
3202         MatcherIndex += CaseSize;
3203       }
3204 
3205       // If no cases matched, bail out.
3206       if (CaseSize == 0) break;
3207 
3208       // Otherwise, execute the case we found.
3209       LLVM_DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3210                         << "] from " << SwitchStart << " to " << MatcherIndex
3211                         << '\n');
3212       continue;
3213     }
3214     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3215     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3216     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3217     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3218       if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3219                             CurDAG->getDataLayout(),
3220                             Opcode - OPC_CheckChild0Type))
3221         break;
3222       continue;
3223     case OPC_CheckCondCode:
3224       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3225       continue;
3226     case OPC_CheckChild2CondCode:
3227       if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3228       continue;
3229     case OPC_CheckValueType:
3230       if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3231                             CurDAG->getDataLayout()))
3232         break;
3233       continue;
3234     case OPC_CheckInteger:
3235       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3236       continue;
3237     case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3238     case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3239     case OPC_CheckChild4Integer:
3240       if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3241                                Opcode-OPC_CheckChild0Integer)) break;
3242       continue;
3243     case OPC_CheckAndImm:
3244       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3245       continue;
3246     case OPC_CheckOrImm:
3247       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3248       continue;
3249     case OPC_CheckImmAllOnesV:
3250       if (!ISD::isConstantSplatVectorAllOnes(N.getNode()))
3251         break;
3252       continue;
3253     case OPC_CheckImmAllZerosV:
3254       if (!ISD::isConstantSplatVectorAllZeros(N.getNode()))
3255         break;
3256       continue;
3257 
3258     case OPC_CheckFoldableChainNode: {
3259       assert(NodeStack.size() != 1 && "No parent node");
3260       // Verify that all intermediate nodes between the root and this one have
3261       // a single use (ignoring chains, which are handled in UpdateChains).
3262       bool HasMultipleUses = false;
3263       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) {
3264         unsigned NNonChainUses = 0;
3265         SDNode *NS = NodeStack[i].getNode();
3266         for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI)
3267           if (UI.getUse().getValueType() != MVT::Other)
3268             if (++NNonChainUses > 1) {
3269               HasMultipleUses = true;
3270               break;
3271             }
3272         if (HasMultipleUses) break;
3273       }
3274       if (HasMultipleUses) break;
3275 
3276       // Check to see that the target thinks this is profitable to fold and that
3277       // we can fold it without inducing cycles in the graph.
3278       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3279                               NodeToMatch) ||
3280           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3281                          NodeToMatch, OptLevel,
3282                          true/*We validate our own chains*/))
3283         break;
3284 
3285       continue;
3286     }
3287     case OPC_EmitInteger:
3288     case OPC_EmitStringInteger: {
3289       MVT::SimpleValueType VT =
3290         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3291       int64_t Val = MatcherTable[MatcherIndex++];
3292       if (Val & 128)
3293         Val = GetVBR(Val, MatcherTable, MatcherIndex);
3294       if (Opcode == OPC_EmitInteger)
3295         Val = decodeSignRotatedValue(Val);
3296       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3297                               CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3298                                                         VT), nullptr));
3299       continue;
3300     }
3301     case OPC_EmitRegister: {
3302       MVT::SimpleValueType VT =
3303         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3304       unsigned RegNo = MatcherTable[MatcherIndex++];
3305       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3306                               CurDAG->getRegister(RegNo, VT), nullptr));
3307       continue;
3308     }
3309     case OPC_EmitRegister2: {
3310       // For targets w/ more than 256 register names, the register enum
3311       // values are stored in two bytes in the matcher table (just like
3312       // opcodes).
3313       MVT::SimpleValueType VT =
3314         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3315       unsigned RegNo = MatcherTable[MatcherIndex++];
3316       RegNo |= MatcherTable[MatcherIndex++] << 8;
3317       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3318                               CurDAG->getRegister(RegNo, VT), nullptr));
3319       continue;
3320     }
3321 
3322     case OPC_EmitConvertToTarget:  {
3323       // Convert from IMM/FPIMM to target version.
3324       unsigned RecNo = MatcherTable[MatcherIndex++];
3325       assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3326       SDValue Imm = RecordedNodes[RecNo].first;
3327 
3328       if (Imm->getOpcode() == ISD::Constant) {
3329         const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3330         Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3331                                         Imm.getValueType());
3332       } else if (Imm->getOpcode() == ISD::ConstantFP) {
3333         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3334         Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3335                                           Imm.getValueType());
3336       }
3337 
3338       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3339       continue;
3340     }
3341 
3342     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
3343     case OPC_EmitMergeInputChains1_1:    // OPC_EmitMergeInputChains, 1, 1
3344     case OPC_EmitMergeInputChains1_2: {  // OPC_EmitMergeInputChains, 1, 2
3345       // These are space-optimized forms of OPC_EmitMergeInputChains.
3346       assert(!InputChain.getNode() &&
3347              "EmitMergeInputChains should be the first chain producing node");
3348       assert(ChainNodesMatched.empty() &&
3349              "Should only have one EmitMergeInputChains per match");
3350 
3351       // Read all of the chained nodes.
3352       unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3353       assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3354       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3355 
3356       // FIXME: What if other value results of the node have uses not matched
3357       // by this pattern?
3358       if (ChainNodesMatched.back() != NodeToMatch &&
3359           !RecordedNodes[RecNo].first.hasOneUse()) {
3360         ChainNodesMatched.clear();
3361         break;
3362       }
3363 
3364       // Merge the input chains if they are not intra-pattern references.
3365       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3366 
3367       if (!InputChain.getNode())
3368         break;  // Failed to merge.
3369       continue;
3370     }
3371 
3372     case OPC_EmitMergeInputChains: {
3373       assert(!InputChain.getNode() &&
3374              "EmitMergeInputChains should be the first chain producing node");
3375       // This node gets a list of nodes we matched in the input that have
3376       // chains.  We want to token factor all of the input chains to these nodes
3377       // together.  However, if any of the input chains is actually one of the
3378       // nodes matched in this pattern, then we have an intra-match reference.
3379       // Ignore these because the newly token factored chain should not refer to
3380       // the old nodes.
3381       unsigned NumChains = MatcherTable[MatcherIndex++];
3382       assert(NumChains != 0 && "Can't TF zero chains");
3383 
3384       assert(ChainNodesMatched.empty() &&
3385              "Should only have one EmitMergeInputChains per match");
3386 
3387       // Read all of the chained nodes.
3388       for (unsigned i = 0; i != NumChains; ++i) {
3389         unsigned RecNo = MatcherTable[MatcherIndex++];
3390         assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3391         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3392 
3393         // FIXME: What if other value results of the node have uses not matched
3394         // by this pattern?
3395         if (ChainNodesMatched.back() != NodeToMatch &&
3396             !RecordedNodes[RecNo].first.hasOneUse()) {
3397           ChainNodesMatched.clear();
3398           break;
3399         }
3400       }
3401 
3402       // If the inner loop broke out, the match fails.
3403       if (ChainNodesMatched.empty())
3404         break;
3405 
3406       // Merge the input chains if they are not intra-pattern references.
3407       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3408 
3409       if (!InputChain.getNode())
3410         break;  // Failed to merge.
3411 
3412       continue;
3413     }
3414 
3415     case OPC_EmitCopyToReg:
3416     case OPC_EmitCopyToReg2: {
3417       unsigned RecNo = MatcherTable[MatcherIndex++];
3418       assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3419       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3420       if (Opcode == OPC_EmitCopyToReg2)
3421         DestPhysReg |= MatcherTable[MatcherIndex++] << 8;
3422 
3423       if (!InputChain.getNode())
3424         InputChain = CurDAG->getEntryNode();
3425 
3426       InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3427                                         DestPhysReg, RecordedNodes[RecNo].first,
3428                                         InputGlue);
3429 
3430       InputGlue = InputChain.getValue(1);
3431       continue;
3432     }
3433 
3434     case OPC_EmitNodeXForm: {
3435       unsigned XFormNo = MatcherTable[MatcherIndex++];
3436       unsigned RecNo = MatcherTable[MatcherIndex++];
3437       assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3438       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3439       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3440       continue;
3441     }
3442     case OPC_Coverage: {
3443       // This is emitted right before MorphNode/EmitNode.
3444       // So it should be safe to assume that this node has been selected
3445       unsigned index = MatcherTable[MatcherIndex++];
3446       index |= (MatcherTable[MatcherIndex++] << 8);
3447       dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3448       dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3449       continue;
3450     }
3451 
3452     case OPC_EmitNode:     case OPC_MorphNodeTo:
3453     case OPC_EmitNode0:    case OPC_EmitNode1:    case OPC_EmitNode2:
3454     case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3455       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3456       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3457       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3458       // Get the result VT list.
3459       unsigned NumVTs;
3460       // If this is one of the compressed forms, get the number of VTs based
3461       // on the Opcode. Otherwise read the next byte from the table.
3462       if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3463         NumVTs = Opcode - OPC_MorphNodeTo0;
3464       else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3465         NumVTs = Opcode - OPC_EmitNode0;
3466       else
3467         NumVTs = MatcherTable[MatcherIndex++];
3468       SmallVector<EVT, 4> VTs;
3469       for (unsigned i = 0; i != NumVTs; ++i) {
3470         MVT::SimpleValueType VT =
3471           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3472         if (VT == MVT::iPTR)
3473           VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3474         VTs.push_back(VT);
3475       }
3476 
3477       if (EmitNodeInfo & OPFL_Chain)
3478         VTs.push_back(MVT::Other);
3479       if (EmitNodeInfo & OPFL_GlueOutput)
3480         VTs.push_back(MVT::Glue);
3481 
3482       // This is hot code, so optimize the two most common cases of 1 and 2
3483       // results.
3484       SDVTList VTList;
3485       if (VTs.size() == 1)
3486         VTList = CurDAG->getVTList(VTs[0]);
3487       else if (VTs.size() == 2)
3488         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3489       else
3490         VTList = CurDAG->getVTList(VTs);
3491 
3492       // Get the operand list.
3493       unsigned NumOps = MatcherTable[MatcherIndex++];
3494       SmallVector<SDValue, 8> Ops;
3495       for (unsigned i = 0; i != NumOps; ++i) {
3496         unsigned RecNo = MatcherTable[MatcherIndex++];
3497         if (RecNo & 128)
3498           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3499 
3500         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3501         Ops.push_back(RecordedNodes[RecNo].first);
3502       }
3503 
3504       // If there are variadic operands to add, handle them now.
3505       if (EmitNodeInfo & OPFL_VariadicInfo) {
3506         // Determine the start index to copy from.
3507         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3508         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3509         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3510                "Invalid variadic node");
3511         // Copy all of the variadic operands, not including a potential glue
3512         // input.
3513         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3514              i != e; ++i) {
3515           SDValue V = NodeToMatch->getOperand(i);
3516           if (V.getValueType() == MVT::Glue) break;
3517           Ops.push_back(V);
3518         }
3519       }
3520 
3521       // If this has chain/glue inputs, add them.
3522       if (EmitNodeInfo & OPFL_Chain)
3523         Ops.push_back(InputChain);
3524       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3525         Ops.push_back(InputGlue);
3526 
3527       // Check whether any matched node could raise an FP exception.  Since all
3528       // such nodes must have a chain, it suffices to check ChainNodesMatched.
3529       // We need to perform this check before potentially modifying one of the
3530       // nodes via MorphNode.
3531       bool MayRaiseFPException = false;
3532       for (auto *N : ChainNodesMatched)
3533         if (mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept()) {
3534           MayRaiseFPException = true;
3535           break;
3536         }
3537 
3538       // Create the node.
3539       MachineSDNode *Res = nullptr;
3540       bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3541                      (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3542       if (!IsMorphNodeTo) {
3543         // If this is a normal EmitNode command, just create the new node and
3544         // add the results to the RecordedNodes list.
3545         Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3546                                      VTList, Ops);
3547 
3548         // Add all the non-glue/non-chain results to the RecordedNodes list.
3549         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3550           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3551           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3552                                                              nullptr));
3553         }
3554       } else {
3555         assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3556                "NodeToMatch was removed partway through selection");
3557         SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3558                                                               SDNode *E) {
3559           CurDAG->salvageDebugInfo(*N);
3560           auto &Chain = ChainNodesMatched;
3561           assert((!E || !is_contained(Chain, N)) &&
3562                  "Chain node replaced during MorphNode");
3563           llvm::erase_value(Chain, N);
3564         });
3565         Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3566                                             Ops, EmitNodeInfo));
3567       }
3568 
3569       // Set the NoFPExcept flag when no original matched node could
3570       // raise an FP exception, but the new node potentially might.
3571       if (!MayRaiseFPException && mayRaiseFPException(Res)) {
3572         SDNodeFlags Flags = Res->getFlags();
3573         Flags.setNoFPExcept(true);
3574         Res->setFlags(Flags);
3575       }
3576 
3577       // If the node had chain/glue results, update our notion of the current
3578       // chain and glue.
3579       if (EmitNodeInfo & OPFL_GlueOutput) {
3580         InputGlue = SDValue(Res, VTs.size()-1);
3581         if (EmitNodeInfo & OPFL_Chain)
3582           InputChain = SDValue(Res, VTs.size()-2);
3583       } else if (EmitNodeInfo & OPFL_Chain)
3584         InputChain = SDValue(Res, VTs.size()-1);
3585 
3586       // If the OPFL_MemRefs glue is set on this node, slap all of the
3587       // accumulated memrefs onto it.
3588       //
3589       // FIXME: This is vastly incorrect for patterns with multiple outputs
3590       // instructions that access memory and for ComplexPatterns that match
3591       // loads.
3592       if (EmitNodeInfo & OPFL_MemRefs) {
3593         // Only attach load or store memory operands if the generated
3594         // instruction may load or store.
3595         const MCInstrDesc &MCID = TII->get(TargetOpc);
3596         bool mayLoad = MCID.mayLoad();
3597         bool mayStore = MCID.mayStore();
3598 
3599         // We expect to have relatively few of these so just filter them into a
3600         // temporary buffer so that we can easily add them to the instruction.
3601         SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
3602         for (MachineMemOperand *MMO : MatchedMemRefs) {
3603           if (MMO->isLoad()) {
3604             if (mayLoad)
3605               FilteredMemRefs.push_back(MMO);
3606           } else if (MMO->isStore()) {
3607             if (mayStore)
3608               FilteredMemRefs.push_back(MMO);
3609           } else {
3610             FilteredMemRefs.push_back(MMO);
3611           }
3612         }
3613 
3614         CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
3615       }
3616 
3617       LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3618                      << "  Dropping mem operands\n";
3619                  dbgs() << "  " << (IsMorphNodeTo ? "Morphed" : "Created")
3620                         << " node: ";
3621                  Res->dump(CurDAG););
3622 
3623       // If this was a MorphNodeTo then we're completely done!
3624       if (IsMorphNodeTo) {
3625         // Update chain uses.
3626         UpdateChains(Res, InputChain, ChainNodesMatched, true);
3627         return;
3628       }
3629       continue;
3630     }
3631 
3632     case OPC_CompleteMatch: {
3633       // The match has been completed, and any new nodes (if any) have been
3634       // created.  Patch up references to the matched dag to use the newly
3635       // created nodes.
3636       unsigned NumResults = MatcherTable[MatcherIndex++];
3637 
3638       for (unsigned i = 0; i != NumResults; ++i) {
3639         unsigned ResSlot = MatcherTable[MatcherIndex++];
3640         if (ResSlot & 128)
3641           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3642 
3643         assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3644         SDValue Res = RecordedNodes[ResSlot].first;
3645 
3646         assert(i < NodeToMatch->getNumValues() &&
3647                NodeToMatch->getValueType(i) != MVT::Other &&
3648                NodeToMatch->getValueType(i) != MVT::Glue &&
3649                "Invalid number of results to complete!");
3650         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3651                 NodeToMatch->getValueType(i) == MVT::iPTR ||
3652                 Res.getValueType() == MVT::iPTR ||
3653                 NodeToMatch->getValueType(i).getSizeInBits() ==
3654                     Res.getValueSizeInBits()) &&
3655                "invalid replacement");
3656         ReplaceUses(SDValue(NodeToMatch, i), Res);
3657       }
3658 
3659       // Update chain uses.
3660       UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3661 
3662       // If the root node defines glue, we need to update it to the glue result.
3663       // TODO: This never happens in our tests and I think it can be removed /
3664       // replaced with an assert, but if we do it this the way the change is
3665       // NFC.
3666       if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3667               MVT::Glue &&
3668           InputGlue.getNode())
3669         ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3670                     InputGlue);
3671 
3672       assert(NodeToMatch->use_empty() &&
3673              "Didn't replace all uses of the node?");
3674       CurDAG->RemoveDeadNode(NodeToMatch);
3675 
3676       return;
3677     }
3678     }
3679 
3680     // If the code reached this point, then the match failed.  See if there is
3681     // another child to try in the current 'Scope', otherwise pop it until we
3682     // find a case to check.
3683     LLVM_DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex
3684                       << "\n");
3685     ++NumDAGIselRetries;
3686     while (true) {
3687       if (MatchScopes.empty()) {
3688         CannotYetSelect(NodeToMatch);
3689         return;
3690       }
3691 
3692       // Restore the interpreter state back to the point where the scope was
3693       // formed.
3694       MatchScope &LastScope = MatchScopes.back();
3695       RecordedNodes.resize(LastScope.NumRecordedNodes);
3696       NodeStack.clear();
3697       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3698       N = NodeStack.back();
3699 
3700       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3701         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3702       MatcherIndex = LastScope.FailIndex;
3703 
3704       LLVM_DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3705 
3706       InputChain = LastScope.InputChain;
3707       InputGlue = LastScope.InputGlue;
3708       if (!LastScope.HasChainNodesMatched)
3709         ChainNodesMatched.clear();
3710 
3711       // Check to see what the offset is at the new MatcherIndex.  If it is zero
3712       // we have reached the end of this scope, otherwise we have another child
3713       // in the current scope to try.
3714       unsigned NumToSkip = MatcherTable[MatcherIndex++];
3715       if (NumToSkip & 128)
3716         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3717 
3718       // If we have another child in this scope to match, update FailIndex and
3719       // try it.
3720       if (NumToSkip != 0) {
3721         LastScope.FailIndex = MatcherIndex+NumToSkip;
3722         break;
3723       }
3724 
3725       // End of this scope, pop it and try the next child in the containing
3726       // scope.
3727       MatchScopes.pop_back();
3728     }
3729   }
3730 }
3731 
3732 /// Return whether the node may raise an FP exception.
mayRaiseFPException(SDNode * N) const3733 bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const {
3734   // For machine opcodes, consult the MCID flag.
3735   if (N->isMachineOpcode()) {
3736     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
3737     return MCID.mayRaiseFPException();
3738   }
3739 
3740   // For ISD opcodes, only StrictFP opcodes may raise an FP
3741   // exception.
3742   if (N->isTargetOpcode())
3743     return N->isTargetStrictFPOpcode();
3744   return N->isStrictFPOpcode();
3745 }
3746 
isOrEquivalentToAdd(const SDNode * N) const3747 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3748   assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3749   auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3750   if (!C)
3751     return false;
3752 
3753   // Detect when "or" is used to add an offset to a stack object.
3754   if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3755     MachineFrameInfo &MFI = MF->getFrameInfo();
3756     Align A = MFI.getObjectAlign(FN->getIndex());
3757     int32_t Off = C->getSExtValue();
3758     // If the alleged offset fits in the zero bits guaranteed by
3759     // the alignment, then this or is really an add.
3760     return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off));
3761   }
3762   return false;
3763 }
3764 
CannotYetSelect(SDNode * N)3765 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3766   std::string msg;
3767   raw_string_ostream Msg(msg);
3768   Msg << "Cannot select: ";
3769 
3770   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3771       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3772       N->getOpcode() != ISD::INTRINSIC_VOID) {
3773     N->printrFull(Msg, CurDAG);
3774     Msg << "\nIn function: " << MF->getName();
3775   } else {
3776     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3777     unsigned iid =
3778       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3779     if (iid < Intrinsic::num_intrinsics)
3780       Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
3781     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3782       Msg << "target intrinsic %" << TII->getName(iid);
3783     else
3784       Msg << "unknown intrinsic #" << iid;
3785   }
3786   report_fatal_error(Msg.str());
3787 }
3788 
3789 char SelectionDAGISel::ID = 0;
3790