1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TreeTransform.h"
14 #include "UsedDeclVisitor.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/ExprOpenMP.h"
27 #include "clang/AST/OperationKinds.h"
28 #include "clang/AST/ParentMapContext.h"
29 #include "clang/AST/RecursiveASTVisitor.h"
30 #include "clang/AST/Type.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/DiagnosticSema.h"
34 #include "clang/Basic/PartialDiagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Basic/TypeTraits.h"
39 #include "clang/Lex/LiteralSupport.h"
40 #include "clang/Lex/Preprocessor.h"
41 #include "clang/Sema/AnalysisBasedWarnings.h"
42 #include "clang/Sema/DeclSpec.h"
43 #include "clang/Sema/DelayedDiagnostic.h"
44 #include "clang/Sema/Designator.h"
45 #include "clang/Sema/EnterExpressionEvaluationContext.h"
46 #include "clang/Sema/Initialization.h"
47 #include "clang/Sema/Lookup.h"
48 #include "clang/Sema/Overload.h"
49 #include "clang/Sema/ParsedTemplate.h"
50 #include "clang/Sema/Scope.h"
51 #include "clang/Sema/ScopeInfo.h"
52 #include "clang/Sema/SemaFixItUtils.h"
53 #include "clang/Sema/SemaInternal.h"
54 #include "clang/Sema/Template.h"
55 #include "llvm/ADT/STLExtras.h"
56 #include "llvm/ADT/StringExtras.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/SaveAndRestore.h"
60 #include "llvm/Support/TypeSize.h"
61 #include <optional>
62 
63 using namespace clang;
64 using namespace sema;
65 
66 /// Determine whether the use of this declaration is valid, without
67 /// emitting diagnostics.
CanUseDecl(NamedDecl * D,bool TreatUnavailableAsInvalid)68 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
69   // See if this is an auto-typed variable whose initializer we are parsing.
70   if (ParsingInitForAutoVars.count(D))
71     return false;
72 
73   // See if this is a deleted function.
74   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
75     if (FD->isDeleted())
76       return false;
77 
78     // If the function has a deduced return type, and we can't deduce it,
79     // then we can't use it either.
80     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
81         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
82       return false;
83 
84     // See if this is an aligned allocation/deallocation function that is
85     // unavailable.
86     if (TreatUnavailableAsInvalid &&
87         isUnavailableAlignedAllocationFunction(*FD))
88       return false;
89   }
90 
91   // See if this function is unavailable.
92   if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
93       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
94     return false;
95 
96   if (isa<UnresolvedUsingIfExistsDecl>(D))
97     return false;
98 
99   return true;
100 }
101 
DiagnoseUnusedOfDecl(Sema & S,NamedDecl * D,SourceLocation Loc)102 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
103   // Warn if this is used but marked unused.
104   if (const auto *A = D->getAttr<UnusedAttr>()) {
105     // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
106     // should diagnose them.
107     if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
108         A->getSemanticSpelling() != UnusedAttr::C23_maybe_unused) {
109       const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
110       if (DC && !DC->hasAttr<UnusedAttr>())
111         S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
112     }
113   }
114 }
115 
116 /// Emit a note explaining that this function is deleted.
NoteDeletedFunction(FunctionDecl * Decl)117 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
118   assert(Decl && Decl->isDeleted());
119 
120   if (Decl->isDefaulted()) {
121     // If the method was explicitly defaulted, point at that declaration.
122     if (!Decl->isImplicit())
123       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
124 
125     // Try to diagnose why this special member function was implicitly
126     // deleted. This might fail, if that reason no longer applies.
127     DiagnoseDeletedDefaultedFunction(Decl);
128     return;
129   }
130 
131   auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
132   if (Ctor && Ctor->isInheritingConstructor())
133     return NoteDeletedInheritingConstructor(Ctor);
134 
135   Diag(Decl->getLocation(), diag::note_availability_specified_here)
136     << Decl << 1;
137 }
138 
139 /// Determine whether a FunctionDecl was ever declared with an
140 /// explicit storage class.
hasAnyExplicitStorageClass(const FunctionDecl * D)141 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
142   for (auto *I : D->redecls()) {
143     if (I->getStorageClass() != SC_None)
144       return true;
145   }
146   return false;
147 }
148 
149 /// Check whether we're in an extern inline function and referring to a
150 /// variable or function with internal linkage (C11 6.7.4p3).
151 ///
152 /// This is only a warning because we used to silently accept this code, but
153 /// in many cases it will not behave correctly. This is not enabled in C++ mode
154 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
155 /// and so while there may still be user mistakes, most of the time we can't
156 /// prove that there are errors.
diagnoseUseOfInternalDeclInInlineFunction(Sema & S,const NamedDecl * D,SourceLocation Loc)157 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
158                                                       const NamedDecl *D,
159                                                       SourceLocation Loc) {
160   // This is disabled under C++; there are too many ways for this to fire in
161   // contexts where the warning is a false positive, or where it is technically
162   // correct but benign.
163   if (S.getLangOpts().CPlusPlus)
164     return;
165 
166   // Check if this is an inlined function or method.
167   FunctionDecl *Current = S.getCurFunctionDecl();
168   if (!Current)
169     return;
170   if (!Current->isInlined())
171     return;
172   if (!Current->isExternallyVisible())
173     return;
174 
175   // Check if the decl has internal linkage.
176   if (D->getFormalLinkage() != Linkage::Internal)
177     return;
178 
179   // Downgrade from ExtWarn to Extension if
180   //  (1) the supposedly external inline function is in the main file,
181   //      and probably won't be included anywhere else.
182   //  (2) the thing we're referencing is a pure function.
183   //  (3) the thing we're referencing is another inline function.
184   // This last can give us false negatives, but it's better than warning on
185   // wrappers for simple C library functions.
186   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
187   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
188   if (!DowngradeWarning && UsedFn)
189     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
190 
191   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
192                                : diag::ext_internal_in_extern_inline)
193     << /*IsVar=*/!UsedFn << D;
194 
195   S.MaybeSuggestAddingStaticToDecl(Current);
196 
197   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
198       << D;
199 }
200 
MaybeSuggestAddingStaticToDecl(const FunctionDecl * Cur)201 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
202   const FunctionDecl *First = Cur->getFirstDecl();
203 
204   // Suggest "static" on the function, if possible.
205   if (!hasAnyExplicitStorageClass(First)) {
206     SourceLocation DeclBegin = First->getSourceRange().getBegin();
207     Diag(DeclBegin, diag::note_convert_inline_to_static)
208       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
209   }
210 }
211 
212 /// Determine whether the use of this declaration is valid, and
213 /// emit any corresponding diagnostics.
214 ///
215 /// This routine diagnoses various problems with referencing
216 /// declarations that can occur when using a declaration. For example,
217 /// it might warn if a deprecated or unavailable declaration is being
218 /// used, or produce an error (and return true) if a C++0x deleted
219 /// function is being used.
220 ///
221 /// \returns true if there was an error (this declaration cannot be
222 /// referenced), false otherwise.
223 ///
DiagnoseUseOfDecl(NamedDecl * D,ArrayRef<SourceLocation> Locs,const ObjCInterfaceDecl * UnknownObjCClass,bool ObjCPropertyAccess,bool AvoidPartialAvailabilityChecks,ObjCInterfaceDecl * ClassReceiver,bool SkipTrailingRequiresClause)224 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
225                              const ObjCInterfaceDecl *UnknownObjCClass,
226                              bool ObjCPropertyAccess,
227                              bool AvoidPartialAvailabilityChecks,
228                              ObjCInterfaceDecl *ClassReceiver,
229                              bool SkipTrailingRequiresClause) {
230   SourceLocation Loc = Locs.front();
231   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
232     // If there were any diagnostics suppressed by template argument deduction,
233     // emit them now.
234     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
235     if (Pos != SuppressedDiagnostics.end()) {
236       for (const PartialDiagnosticAt &Suppressed : Pos->second)
237         Diag(Suppressed.first, Suppressed.second);
238 
239       // Clear out the list of suppressed diagnostics, so that we don't emit
240       // them again for this specialization. However, we don't obsolete this
241       // entry from the table, because we want to avoid ever emitting these
242       // diagnostics again.
243       Pos->second.clear();
244     }
245 
246     // C++ [basic.start.main]p3:
247     //   The function 'main' shall not be used within a program.
248     if (cast<FunctionDecl>(D)->isMain())
249       Diag(Loc, diag::ext_main_used);
250 
251     diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
252   }
253 
254   // See if this is an auto-typed variable whose initializer we are parsing.
255   if (ParsingInitForAutoVars.count(D)) {
256     if (isa<BindingDecl>(D)) {
257       Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
258         << D->getDeclName();
259     } else {
260       Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
261         << D->getDeclName() << cast<VarDecl>(D)->getType();
262     }
263     return true;
264   }
265 
266   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
267     // See if this is a deleted function.
268     if (FD->isDeleted()) {
269       auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
270       if (Ctor && Ctor->isInheritingConstructor())
271         Diag(Loc, diag::err_deleted_inherited_ctor_use)
272             << Ctor->getParent()
273             << Ctor->getInheritedConstructor().getConstructor()->getParent();
274       else
275         Diag(Loc, diag::err_deleted_function_use);
276       NoteDeletedFunction(FD);
277       return true;
278     }
279 
280     // [expr.prim.id]p4
281     //   A program that refers explicitly or implicitly to a function with a
282     //   trailing requires-clause whose constraint-expression is not satisfied,
283     //   other than to declare it, is ill-formed. [...]
284     //
285     // See if this is a function with constraints that need to be satisfied.
286     // Check this before deducing the return type, as it might instantiate the
287     // definition.
288     if (!SkipTrailingRequiresClause && FD->getTrailingRequiresClause()) {
289       ConstraintSatisfaction Satisfaction;
290       if (CheckFunctionConstraints(FD, Satisfaction, Loc,
291                                    /*ForOverloadResolution*/ true))
292         // A diagnostic will have already been generated (non-constant
293         // constraint expression, for example)
294         return true;
295       if (!Satisfaction.IsSatisfied) {
296         Diag(Loc,
297              diag::err_reference_to_function_with_unsatisfied_constraints)
298             << D;
299         DiagnoseUnsatisfiedConstraint(Satisfaction);
300         return true;
301       }
302     }
303 
304     // If the function has a deduced return type, and we can't deduce it,
305     // then we can't use it either.
306     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
307         DeduceReturnType(FD, Loc))
308       return true;
309 
310     if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
311       return true;
312 
313   }
314 
315   if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
316     // Lambdas are only default-constructible or assignable in C++2a onwards.
317     if (MD->getParent()->isLambda() &&
318         ((isa<CXXConstructorDecl>(MD) &&
319           cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
320          MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
321       Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
322         << !isa<CXXConstructorDecl>(MD);
323     }
324   }
325 
326   auto getReferencedObjCProp = [](const NamedDecl *D) ->
327                                       const ObjCPropertyDecl * {
328     if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
329       return MD->findPropertyDecl();
330     return nullptr;
331   };
332   if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
333     if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
334       return true;
335   } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
336       return true;
337   }
338 
339   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
340   // Only the variables omp_in and omp_out are allowed in the combiner.
341   // Only the variables omp_priv and omp_orig are allowed in the
342   // initializer-clause.
343   auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
344   if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
345       isa<VarDecl>(D)) {
346     Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
347         << getCurFunction()->HasOMPDeclareReductionCombiner;
348     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
349     return true;
350   }
351 
352   // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
353   //  List-items in map clauses on this construct may only refer to the declared
354   //  variable var and entities that could be referenced by a procedure defined
355   //  at the same location.
356   // [OpenMP 5.2] Also allow iterator declared variables.
357   if (LangOpts.OpenMP && isa<VarDecl>(D) &&
358       !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
359     Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
360         << getOpenMPDeclareMapperVarName();
361     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
362     return true;
363   }
364 
365   if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) {
366     Diag(Loc, diag::err_use_of_empty_using_if_exists);
367     Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
368     return true;
369   }
370 
371   DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
372                              AvoidPartialAvailabilityChecks, ClassReceiver);
373 
374   DiagnoseUnusedOfDecl(*this, D, Loc);
375 
376   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
377 
378   if (D->hasAttr<AvailableOnlyInDefaultEvalMethodAttr>()) {
379     if (getLangOpts().getFPEvalMethod() !=
380             LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine &&
381         PP.getLastFPEvalPragmaLocation().isValid() &&
382         PP.getCurrentFPEvalMethod() != getLangOpts().getFPEvalMethod())
383       Diag(D->getLocation(),
384            diag::err_type_available_only_in_default_eval_method)
385           << D->getName();
386   }
387 
388   if (auto *VD = dyn_cast<ValueDecl>(D))
389     checkTypeSupport(VD->getType(), Loc, VD);
390 
391   if (LangOpts.SYCLIsDevice ||
392       (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice)) {
393     if (!Context.getTargetInfo().isTLSSupported())
394       if (const auto *VD = dyn_cast<VarDecl>(D))
395         if (VD->getTLSKind() != VarDecl::TLS_None)
396           targetDiag(*Locs.begin(), diag::err_thread_unsupported);
397   }
398 
399   if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
400       !isUnevaluatedContext()) {
401     // C++ [expr.prim.req.nested] p3
402     //   A local parameter shall only appear as an unevaluated operand
403     //   (Clause 8) within the constraint-expression.
404     Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
405         << D;
406     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
407     return true;
408   }
409 
410   return false;
411 }
412 
413 /// DiagnoseSentinelCalls - This routine checks whether a call or
414 /// message-send is to a declaration with the sentinel attribute, and
415 /// if so, it checks that the requirements of the sentinel are
416 /// satisfied.
DiagnoseSentinelCalls(const NamedDecl * D,SourceLocation Loc,ArrayRef<Expr * > Args)417 void Sema::DiagnoseSentinelCalls(const NamedDecl *D, SourceLocation Loc,
418                                  ArrayRef<Expr *> Args) {
419   const SentinelAttr *Attr = D->getAttr<SentinelAttr>();
420   if (!Attr)
421     return;
422 
423   // The number of formal parameters of the declaration.
424   unsigned NumFormalParams;
425 
426   // The kind of declaration.  This is also an index into a %select in
427   // the diagnostic.
428   enum { CK_Function, CK_Method, CK_Block } CalleeKind;
429 
430   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
431     NumFormalParams = MD->param_size();
432     CalleeKind = CK_Method;
433   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
434     NumFormalParams = FD->param_size();
435     CalleeKind = CK_Function;
436   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
437     QualType Ty = VD->getType();
438     const FunctionType *Fn = nullptr;
439     if (const auto *PtrTy = Ty->getAs<PointerType>()) {
440       Fn = PtrTy->getPointeeType()->getAs<FunctionType>();
441       if (!Fn)
442         return;
443       CalleeKind = CK_Function;
444     } else if (const auto *PtrTy = Ty->getAs<BlockPointerType>()) {
445       Fn = PtrTy->getPointeeType()->castAs<FunctionType>();
446       CalleeKind = CK_Block;
447     } else {
448       return;
449     }
450 
451     if (const auto *proto = dyn_cast<FunctionProtoType>(Fn))
452       NumFormalParams = proto->getNumParams();
453     else
454       NumFormalParams = 0;
455   } else {
456     return;
457   }
458 
459   // "NullPos" is the number of formal parameters at the end which
460   // effectively count as part of the variadic arguments.  This is
461   // useful if you would prefer to not have *any* formal parameters,
462   // but the language forces you to have at least one.
463   unsigned NullPos = Attr->getNullPos();
464   assert((NullPos == 0 || NullPos == 1) && "invalid null position on sentinel");
465   NumFormalParams = (NullPos > NumFormalParams ? 0 : NumFormalParams - NullPos);
466 
467   // The number of arguments which should follow the sentinel.
468   unsigned NumArgsAfterSentinel = Attr->getSentinel();
469 
470   // If there aren't enough arguments for all the formal parameters,
471   // the sentinel, and the args after the sentinel, complain.
472   if (Args.size() < NumFormalParams + NumArgsAfterSentinel + 1) {
473     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
474     Diag(D->getLocation(), diag::note_sentinel_here) << int(CalleeKind);
475     return;
476   }
477 
478   // Otherwise, find the sentinel expression.
479   const Expr *SentinelExpr = Args[Args.size() - NumArgsAfterSentinel - 1];
480   if (!SentinelExpr)
481     return;
482   if (SentinelExpr->isValueDependent())
483     return;
484   if (Context.isSentinelNullExpr(SentinelExpr))
485     return;
486 
487   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
488   // or 'NULL' if those are actually defined in the context.  Only use
489   // 'nil' for ObjC methods, where it's much more likely that the
490   // variadic arguments form a list of object pointers.
491   SourceLocation MissingNilLoc = getLocForEndOfToken(SentinelExpr->getEndLoc());
492   std::string NullValue;
493   if (CalleeKind == CK_Method && PP.isMacroDefined("nil"))
494     NullValue = "nil";
495   else if (getLangOpts().CPlusPlus11)
496     NullValue = "nullptr";
497   else if (PP.isMacroDefined("NULL"))
498     NullValue = "NULL";
499   else
500     NullValue = "(void*) 0";
501 
502   if (MissingNilLoc.isInvalid())
503     Diag(Loc, diag::warn_missing_sentinel) << int(CalleeKind);
504   else
505     Diag(MissingNilLoc, diag::warn_missing_sentinel)
506         << int(CalleeKind)
507         << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
508   Diag(D->getLocation(), diag::note_sentinel_here)
509       << int(CalleeKind) << Attr->getRange();
510 }
511 
getExprRange(Expr * E) const512 SourceRange Sema::getExprRange(Expr *E) const {
513   return E ? E->getSourceRange() : SourceRange();
514 }
515 
516 //===----------------------------------------------------------------------===//
517 //  Standard Promotions and Conversions
518 //===----------------------------------------------------------------------===//
519 
520 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
DefaultFunctionArrayConversion(Expr * E,bool Diagnose)521 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
522   // Handle any placeholder expressions which made it here.
523   if (E->hasPlaceholderType()) {
524     ExprResult result = CheckPlaceholderExpr(E);
525     if (result.isInvalid()) return ExprError();
526     E = result.get();
527   }
528 
529   QualType Ty = E->getType();
530   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
531 
532   if (Ty->isFunctionType()) {
533     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
534       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
535         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
536           return ExprError();
537 
538     E = ImpCastExprToType(E, Context.getPointerType(Ty),
539                           CK_FunctionToPointerDecay).get();
540   } else if (Ty->isArrayType()) {
541     // In C90 mode, arrays only promote to pointers if the array expression is
542     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
543     // type 'array of type' is converted to an expression that has type 'pointer
544     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
545     // that has type 'array of type' ...".  The relevant change is "an lvalue"
546     // (C90) to "an expression" (C99).
547     //
548     // C++ 4.2p1:
549     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
550     // T" can be converted to an rvalue of type "pointer to T".
551     //
552     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
553       ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
554                                          CK_ArrayToPointerDecay);
555       if (Res.isInvalid())
556         return ExprError();
557       E = Res.get();
558     }
559   }
560   return E;
561 }
562 
CheckForNullPointerDereference(Sema & S,Expr * E)563 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
564   // Check to see if we are dereferencing a null pointer.  If so,
565   // and if not volatile-qualified, this is undefined behavior that the
566   // optimizer will delete, so warn about it.  People sometimes try to use this
567   // to get a deterministic trap and are surprised by clang's behavior.  This
568   // only handles the pattern "*null", which is a very syntactic check.
569   const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
570   if (UO && UO->getOpcode() == UO_Deref &&
571       UO->getSubExpr()->getType()->isPointerType()) {
572     const LangAS AS =
573         UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
574     if ((!isTargetAddressSpace(AS) ||
575          (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
576         UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
577             S.Context, Expr::NPC_ValueDependentIsNotNull) &&
578         !UO->getType().isVolatileQualified()) {
579       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
580                             S.PDiag(diag::warn_indirection_through_null)
581                                 << UO->getSubExpr()->getSourceRange());
582       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
583                             S.PDiag(diag::note_indirection_through_null));
584     }
585   }
586 }
587 
DiagnoseDirectIsaAccess(Sema & S,const ObjCIvarRefExpr * OIRE,SourceLocation AssignLoc,const Expr * RHS)588 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
589                                     SourceLocation AssignLoc,
590                                     const Expr* RHS) {
591   const ObjCIvarDecl *IV = OIRE->getDecl();
592   if (!IV)
593     return;
594 
595   DeclarationName MemberName = IV->getDeclName();
596   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
597   if (!Member || !Member->isStr("isa"))
598     return;
599 
600   const Expr *Base = OIRE->getBase();
601   QualType BaseType = Base->getType();
602   if (OIRE->isArrow())
603     BaseType = BaseType->getPointeeType();
604   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
605     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
606       ObjCInterfaceDecl *ClassDeclared = nullptr;
607       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
608       if (!ClassDeclared->getSuperClass()
609           && (*ClassDeclared->ivar_begin()) == IV) {
610         if (RHS) {
611           NamedDecl *ObjectSetClass =
612             S.LookupSingleName(S.TUScope,
613                                &S.Context.Idents.get("object_setClass"),
614                                SourceLocation(), S.LookupOrdinaryName);
615           if (ObjectSetClass) {
616             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
617             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
618                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
619                                               "object_setClass(")
620                 << FixItHint::CreateReplacement(
621                        SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
622                 << FixItHint::CreateInsertion(RHSLocEnd, ")");
623           }
624           else
625             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
626         } else {
627           NamedDecl *ObjectGetClass =
628             S.LookupSingleName(S.TUScope,
629                                &S.Context.Idents.get("object_getClass"),
630                                SourceLocation(), S.LookupOrdinaryName);
631           if (ObjectGetClass)
632             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
633                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
634                                               "object_getClass(")
635                 << FixItHint::CreateReplacement(
636                        SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
637           else
638             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
639         }
640         S.Diag(IV->getLocation(), diag::note_ivar_decl);
641       }
642     }
643 }
644 
DefaultLvalueConversion(Expr * E)645 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
646   // Handle any placeholder expressions which made it here.
647   if (E->hasPlaceholderType()) {
648     ExprResult result = CheckPlaceholderExpr(E);
649     if (result.isInvalid()) return ExprError();
650     E = result.get();
651   }
652 
653   // C++ [conv.lval]p1:
654   //   A glvalue of a non-function, non-array type T can be
655   //   converted to a prvalue.
656   if (!E->isGLValue()) return E;
657 
658   QualType T = E->getType();
659   assert(!T.isNull() && "r-value conversion on typeless expression?");
660 
661   // lvalue-to-rvalue conversion cannot be applied to function or array types.
662   if (T->isFunctionType() || T->isArrayType())
663     return E;
664 
665   // We don't want to throw lvalue-to-rvalue casts on top of
666   // expressions of certain types in C++.
667   if (getLangOpts().CPlusPlus &&
668       (E->getType() == Context.OverloadTy ||
669        T->isDependentType() ||
670        T->isRecordType()))
671     return E;
672 
673   // The C standard is actually really unclear on this point, and
674   // DR106 tells us what the result should be but not why.  It's
675   // generally best to say that void types just doesn't undergo
676   // lvalue-to-rvalue at all.  Note that expressions of unqualified
677   // 'void' type are never l-values, but qualified void can be.
678   if (T->isVoidType())
679     return E;
680 
681   // OpenCL usually rejects direct accesses to values of 'half' type.
682   if (getLangOpts().OpenCL &&
683       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
684       T->isHalfType()) {
685     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
686       << 0 << T;
687     return ExprError();
688   }
689 
690   CheckForNullPointerDereference(*this, E);
691   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
692     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
693                                      &Context.Idents.get("object_getClass"),
694                                      SourceLocation(), LookupOrdinaryName);
695     if (ObjectGetClass)
696       Diag(E->getExprLoc(), diag::warn_objc_isa_use)
697           << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
698           << FixItHint::CreateReplacement(
699                  SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
700     else
701       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
702   }
703   else if (const ObjCIvarRefExpr *OIRE =
704             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
705     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
706 
707   // C++ [conv.lval]p1:
708   //   [...] If T is a non-class type, the type of the prvalue is the
709   //   cv-unqualified version of T. Otherwise, the type of the
710   //   rvalue is T.
711   //
712   // C99 6.3.2.1p2:
713   //   If the lvalue has qualified type, the value has the unqualified
714   //   version of the type of the lvalue; otherwise, the value has the
715   //   type of the lvalue.
716   if (T.hasQualifiers())
717     T = T.getUnqualifiedType();
718 
719   // Under the MS ABI, lock down the inheritance model now.
720   if (T->isMemberPointerType() &&
721       Context.getTargetInfo().getCXXABI().isMicrosoft())
722     (void)isCompleteType(E->getExprLoc(), T);
723 
724   ExprResult Res = CheckLValueToRValueConversionOperand(E);
725   if (Res.isInvalid())
726     return Res;
727   E = Res.get();
728 
729   // Loading a __weak object implicitly retains the value, so we need a cleanup to
730   // balance that.
731   if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
732     Cleanup.setExprNeedsCleanups(true);
733 
734   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
735     Cleanup.setExprNeedsCleanups(true);
736 
737   // C++ [conv.lval]p3:
738   //   If T is cv std::nullptr_t, the result is a null pointer constant.
739   CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
740   Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue,
741                                  CurFPFeatureOverrides());
742 
743   // C11 6.3.2.1p2:
744   //   ... if the lvalue has atomic type, the value has the non-atomic version
745   //   of the type of the lvalue ...
746   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
747     T = Atomic->getValueType().getUnqualifiedType();
748     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
749                                    nullptr, VK_PRValue, FPOptionsOverride());
750   }
751 
752   return Res;
753 }
754 
DefaultFunctionArrayLvalueConversion(Expr * E,bool Diagnose)755 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
756   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
757   if (Res.isInvalid())
758     return ExprError();
759   Res = DefaultLvalueConversion(Res.get());
760   if (Res.isInvalid())
761     return ExprError();
762   return Res;
763 }
764 
765 /// CallExprUnaryConversions - a special case of an unary conversion
766 /// performed on a function designator of a call expression.
CallExprUnaryConversions(Expr * E)767 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
768   QualType Ty = E->getType();
769   ExprResult Res = E;
770   // Only do implicit cast for a function type, but not for a pointer
771   // to function type.
772   if (Ty->isFunctionType()) {
773     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
774                             CK_FunctionToPointerDecay);
775     if (Res.isInvalid())
776       return ExprError();
777   }
778   Res = DefaultLvalueConversion(Res.get());
779   if (Res.isInvalid())
780     return ExprError();
781   return Res.get();
782 }
783 
784 /// UsualUnaryConversions - Performs various conversions that are common to most
785 /// operators (C99 6.3). The conversions of array and function types are
786 /// sometimes suppressed. For example, the array->pointer conversion doesn't
787 /// apply if the array is an argument to the sizeof or address (&) operators.
788 /// In these instances, this routine should *not* be called.
UsualUnaryConversions(Expr * E)789 ExprResult Sema::UsualUnaryConversions(Expr *E) {
790   // First, convert to an r-value.
791   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
792   if (Res.isInvalid())
793     return ExprError();
794   E = Res.get();
795 
796   QualType Ty = E->getType();
797   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
798 
799   LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod();
800   if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() &&
801       (getLangOpts().getFPEvalMethod() !=
802            LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine ||
803        PP.getLastFPEvalPragmaLocation().isValid())) {
804     switch (EvalMethod) {
805     default:
806       llvm_unreachable("Unrecognized float evaluation method");
807       break;
808     case LangOptions::FEM_UnsetOnCommandLine:
809       llvm_unreachable("Float evaluation method should be set by now");
810       break;
811     case LangOptions::FEM_Double:
812       if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0)
813         // Widen the expression to double.
814         return Ty->isComplexType()
815                    ? ImpCastExprToType(E,
816                                        Context.getComplexType(Context.DoubleTy),
817                                        CK_FloatingComplexCast)
818                    : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast);
819       break;
820     case LangOptions::FEM_Extended:
821       if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0)
822         // Widen the expression to long double.
823         return Ty->isComplexType()
824                    ? ImpCastExprToType(
825                          E, Context.getComplexType(Context.LongDoubleTy),
826                          CK_FloatingComplexCast)
827                    : ImpCastExprToType(E, Context.LongDoubleTy,
828                                        CK_FloatingCast);
829       break;
830     }
831   }
832 
833   // Half FP have to be promoted to float unless it is natively supported
834   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
835     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
836 
837   // Try to perform integral promotions if the object has a theoretically
838   // promotable type.
839   if (Ty->isIntegralOrUnscopedEnumerationType()) {
840     // C99 6.3.1.1p2:
841     //
842     //   The following may be used in an expression wherever an int or
843     //   unsigned int may be used:
844     //     - an object or expression with an integer type whose integer
845     //       conversion rank is less than or equal to the rank of int
846     //       and unsigned int.
847     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
848     //
849     //   If an int can represent all values of the original type, the
850     //   value is converted to an int; otherwise, it is converted to an
851     //   unsigned int. These are called the integer promotions. All
852     //   other types are unchanged by the integer promotions.
853 
854     QualType PTy = Context.isPromotableBitField(E);
855     if (!PTy.isNull()) {
856       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
857       return E;
858     }
859     if (Context.isPromotableIntegerType(Ty)) {
860       QualType PT = Context.getPromotedIntegerType(Ty);
861       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
862       return E;
863     }
864   }
865   return E;
866 }
867 
868 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
869 /// do not have a prototype. Arguments that have type float or __fp16
870 /// are promoted to double. All other argument types are converted by
871 /// UsualUnaryConversions().
DefaultArgumentPromotion(Expr * E)872 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
873   QualType Ty = E->getType();
874   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
875 
876   ExprResult Res = UsualUnaryConversions(E);
877   if (Res.isInvalid())
878     return ExprError();
879   E = Res.get();
880 
881   // If this is a 'float'  or '__fp16' (CVR qualified or typedef)
882   // promote to double.
883   // Note that default argument promotion applies only to float (and
884   // half/fp16); it does not apply to _Float16.
885   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
886   if (BTy && (BTy->getKind() == BuiltinType::Half ||
887               BTy->getKind() == BuiltinType::Float)) {
888     if (getLangOpts().OpenCL &&
889         !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
890       if (BTy->getKind() == BuiltinType::Half) {
891         E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
892       }
893     } else {
894       E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
895     }
896   }
897   if (BTy &&
898       getLangOpts().getExtendIntArgs() ==
899           LangOptions::ExtendArgsKind::ExtendTo64 &&
900       Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
901       Context.getTypeSizeInChars(BTy) <
902           Context.getTypeSizeInChars(Context.LongLongTy)) {
903     E = (Ty->isUnsignedIntegerType())
904             ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
905                   .get()
906             : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
907     assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
908            "Unexpected typesize for LongLongTy");
909   }
910 
911   // C++ performs lvalue-to-rvalue conversion as a default argument
912   // promotion, even on class types, but note:
913   //   C++11 [conv.lval]p2:
914   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
915   //     operand or a subexpression thereof the value contained in the
916   //     referenced object is not accessed. Otherwise, if the glvalue
917   //     has a class type, the conversion copy-initializes a temporary
918   //     of type T from the glvalue and the result of the conversion
919   //     is a prvalue for the temporary.
920   // FIXME: add some way to gate this entire thing for correctness in
921   // potentially potentially evaluated contexts.
922   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
923     ExprResult Temp = PerformCopyInitialization(
924                        InitializedEntity::InitializeTemporary(E->getType()),
925                                                 E->getExprLoc(), E);
926     if (Temp.isInvalid())
927       return ExprError();
928     E = Temp.get();
929   }
930 
931   return E;
932 }
933 
934 /// Determine the degree of POD-ness for an expression.
935 /// Incomplete types are considered POD, since this check can be performed
936 /// when we're in an unevaluated context.
isValidVarArgType(const QualType & Ty)937 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
938   if (Ty->isIncompleteType()) {
939     // C++11 [expr.call]p7:
940     //   After these conversions, if the argument does not have arithmetic,
941     //   enumeration, pointer, pointer to member, or class type, the program
942     //   is ill-formed.
943     //
944     // Since we've already performed array-to-pointer and function-to-pointer
945     // decay, the only such type in C++ is cv void. This also handles
946     // initializer lists as variadic arguments.
947     if (Ty->isVoidType())
948       return VAK_Invalid;
949 
950     if (Ty->isObjCObjectType())
951       return VAK_Invalid;
952     return VAK_Valid;
953   }
954 
955   if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
956     return VAK_Invalid;
957 
958   if (Context.getTargetInfo().getTriple().isWasm() &&
959       Ty.isWebAssemblyReferenceType()) {
960     return VAK_Invalid;
961   }
962 
963   if (Ty.isCXX98PODType(Context))
964     return VAK_Valid;
965 
966   // C++11 [expr.call]p7:
967   //   Passing a potentially-evaluated argument of class type (Clause 9)
968   //   having a non-trivial copy constructor, a non-trivial move constructor,
969   //   or a non-trivial destructor, with no corresponding parameter,
970   //   is conditionally-supported with implementation-defined semantics.
971   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
972     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
973       if (!Record->hasNonTrivialCopyConstructor() &&
974           !Record->hasNonTrivialMoveConstructor() &&
975           !Record->hasNonTrivialDestructor())
976         return VAK_ValidInCXX11;
977 
978   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
979     return VAK_Valid;
980 
981   if (Ty->isObjCObjectType())
982     return VAK_Invalid;
983 
984   if (getLangOpts().MSVCCompat)
985     return VAK_MSVCUndefined;
986 
987   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
988   // permitted to reject them. We should consider doing so.
989   return VAK_Undefined;
990 }
991 
checkVariadicArgument(const Expr * E,VariadicCallType CT)992 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
993   // Don't allow one to pass an Objective-C interface to a vararg.
994   const QualType &Ty = E->getType();
995   VarArgKind VAK = isValidVarArgType(Ty);
996 
997   // Complain about passing non-POD types through varargs.
998   switch (VAK) {
999   case VAK_ValidInCXX11:
1000     DiagRuntimeBehavior(
1001         E->getBeginLoc(), nullptr,
1002         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
1003     [[fallthrough]];
1004   case VAK_Valid:
1005     if (Ty->isRecordType()) {
1006       // This is unlikely to be what the user intended. If the class has a
1007       // 'c_str' member function, the user probably meant to call that.
1008       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1009                           PDiag(diag::warn_pass_class_arg_to_vararg)
1010                               << Ty << CT << hasCStrMethod(E) << ".c_str()");
1011     }
1012     break;
1013 
1014   case VAK_Undefined:
1015   case VAK_MSVCUndefined:
1016     DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1017                         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
1018                             << getLangOpts().CPlusPlus11 << Ty << CT);
1019     break;
1020 
1021   case VAK_Invalid:
1022     if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
1023       Diag(E->getBeginLoc(),
1024            diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
1025           << Ty << CT;
1026     else if (Ty->isObjCObjectType())
1027       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1028                           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
1029                               << Ty << CT);
1030     else
1031       Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
1032           << isa<InitListExpr>(E) << Ty << CT;
1033     break;
1034   }
1035 }
1036 
1037 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
1038 /// will create a trap if the resulting type is not a POD type.
DefaultVariadicArgumentPromotion(Expr * E,VariadicCallType CT,FunctionDecl * FDecl)1039 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
1040                                                   FunctionDecl *FDecl) {
1041   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
1042     // Strip the unbridged-cast placeholder expression off, if applicable.
1043     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
1044         (CT == VariadicMethod ||
1045          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
1046       E = stripARCUnbridgedCast(E);
1047 
1048     // Otherwise, do normal placeholder checking.
1049     } else {
1050       ExprResult ExprRes = CheckPlaceholderExpr(E);
1051       if (ExprRes.isInvalid())
1052         return ExprError();
1053       E = ExprRes.get();
1054     }
1055   }
1056 
1057   ExprResult ExprRes = DefaultArgumentPromotion(E);
1058   if (ExprRes.isInvalid())
1059     return ExprError();
1060 
1061   // Copy blocks to the heap.
1062   if (ExprRes.get()->getType()->isBlockPointerType())
1063     maybeExtendBlockObject(ExprRes);
1064 
1065   E = ExprRes.get();
1066 
1067   // Diagnostics regarding non-POD argument types are
1068   // emitted along with format string checking in Sema::CheckFunctionCall().
1069   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
1070     // Turn this into a trap.
1071     CXXScopeSpec SS;
1072     SourceLocation TemplateKWLoc;
1073     UnqualifiedId Name;
1074     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1075                        E->getBeginLoc());
1076     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1077                                           /*HasTrailingLParen=*/true,
1078                                           /*IsAddressOfOperand=*/false);
1079     if (TrapFn.isInvalid())
1080       return ExprError();
1081 
1082     ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
1083                                     std::nullopt, E->getEndLoc());
1084     if (Call.isInvalid())
1085       return ExprError();
1086 
1087     ExprResult Comma =
1088         ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1089     if (Comma.isInvalid())
1090       return ExprError();
1091     return Comma.get();
1092   }
1093 
1094   if (!getLangOpts().CPlusPlus &&
1095       RequireCompleteType(E->getExprLoc(), E->getType(),
1096                           diag::err_call_incomplete_argument))
1097     return ExprError();
1098 
1099   return E;
1100 }
1101 
1102 /// Converts an integer to complex float type.  Helper function of
1103 /// UsualArithmeticConversions()
1104 ///
1105 /// \return false if the integer expression is an integer type and is
1106 /// successfully converted to the complex type.
handleIntegerToComplexFloatConversion(Sema & S,ExprResult & IntExpr,ExprResult & ComplexExpr,QualType IntTy,QualType ComplexTy,bool SkipCast)1107 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1108                                                   ExprResult &ComplexExpr,
1109                                                   QualType IntTy,
1110                                                   QualType ComplexTy,
1111                                                   bool SkipCast) {
1112   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1113   if (SkipCast) return false;
1114   if (IntTy->isIntegerType()) {
1115     QualType fpTy = ComplexTy->castAs<ComplexType>()->getElementType();
1116     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1117     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1118                                   CK_FloatingRealToComplex);
1119   } else {
1120     assert(IntTy->isComplexIntegerType());
1121     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1122                                   CK_IntegralComplexToFloatingComplex);
1123   }
1124   return false;
1125 }
1126 
1127 // This handles complex/complex, complex/float, or float/complex.
1128 // When both operands are complex, the shorter operand is converted to the
1129 // type of the longer, and that is the type of the result. This corresponds
1130 // to what is done when combining two real floating-point operands.
1131 // The fun begins when size promotion occur across type domains.
1132 // From H&S 6.3.4: When one operand is complex and the other is a real
1133 // floating-point type, the less precise type is converted, within it's
1134 // real or complex domain, to the precision of the other type. For example,
1135 // when combining a "long double" with a "double _Complex", the
1136 // "double _Complex" is promoted to "long double _Complex".
handleComplexFloatConversion(Sema & S,ExprResult & Shorter,QualType ShorterType,QualType LongerType,bool PromotePrecision)1137 static QualType handleComplexFloatConversion(Sema &S, ExprResult &Shorter,
1138                                              QualType ShorterType,
1139                                              QualType LongerType,
1140                                              bool PromotePrecision) {
1141   bool LongerIsComplex = isa<ComplexType>(LongerType.getCanonicalType());
1142   QualType Result =
1143       LongerIsComplex ? LongerType : S.Context.getComplexType(LongerType);
1144 
1145   if (PromotePrecision) {
1146     if (isa<ComplexType>(ShorterType.getCanonicalType())) {
1147       Shorter =
1148           S.ImpCastExprToType(Shorter.get(), Result, CK_FloatingComplexCast);
1149     } else {
1150       if (LongerIsComplex)
1151         LongerType = LongerType->castAs<ComplexType>()->getElementType();
1152       Shorter = S.ImpCastExprToType(Shorter.get(), LongerType, CK_FloatingCast);
1153     }
1154   }
1155   return Result;
1156 }
1157 
1158 /// Handle arithmetic conversion with complex types.  Helper function of
1159 /// UsualArithmeticConversions()
handleComplexConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1160 static QualType handleComplexConversion(Sema &S, ExprResult &LHS,
1161                                         ExprResult &RHS, QualType LHSType,
1162                                         QualType RHSType, bool IsCompAssign) {
1163   // if we have an integer operand, the result is the complex type.
1164   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1165                                              /*SkipCast=*/false))
1166     return LHSType;
1167   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1168                                              /*SkipCast=*/IsCompAssign))
1169     return RHSType;
1170 
1171   // Compute the rank of the two types, regardless of whether they are complex.
1172   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1173   if (Order < 0)
1174     // Promote the precision of the LHS if not an assignment.
1175     return handleComplexFloatConversion(S, LHS, LHSType, RHSType,
1176                                         /*PromotePrecision=*/!IsCompAssign);
1177   // Promote the precision of the RHS unless it is already the same as the LHS.
1178   return handleComplexFloatConversion(S, RHS, RHSType, LHSType,
1179                                       /*PromotePrecision=*/Order > 0);
1180 }
1181 
1182 /// Handle arithmetic conversion from integer to float.  Helper function
1183 /// of UsualArithmeticConversions()
handleIntToFloatConversion(Sema & S,ExprResult & FloatExpr,ExprResult & IntExpr,QualType FloatTy,QualType IntTy,bool ConvertFloat,bool ConvertInt)1184 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1185                                            ExprResult &IntExpr,
1186                                            QualType FloatTy, QualType IntTy,
1187                                            bool ConvertFloat, bool ConvertInt) {
1188   if (IntTy->isIntegerType()) {
1189     if (ConvertInt)
1190       // Convert intExpr to the lhs floating point type.
1191       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1192                                     CK_IntegralToFloating);
1193     return FloatTy;
1194   }
1195 
1196   // Convert both sides to the appropriate complex float.
1197   assert(IntTy->isComplexIntegerType());
1198   QualType result = S.Context.getComplexType(FloatTy);
1199 
1200   // _Complex int -> _Complex float
1201   if (ConvertInt)
1202     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1203                                   CK_IntegralComplexToFloatingComplex);
1204 
1205   // float -> _Complex float
1206   if (ConvertFloat)
1207     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1208                                     CK_FloatingRealToComplex);
1209 
1210   return result;
1211 }
1212 
1213 /// Handle arithmethic conversion with floating point types.  Helper
1214 /// function of UsualArithmeticConversions()
handleFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1215 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1216                                       ExprResult &RHS, QualType LHSType,
1217                                       QualType RHSType, bool IsCompAssign) {
1218   bool LHSFloat = LHSType->isRealFloatingType();
1219   bool RHSFloat = RHSType->isRealFloatingType();
1220 
1221   // N1169 4.1.4: If one of the operands has a floating type and the other
1222   //              operand has a fixed-point type, the fixed-point operand
1223   //              is converted to the floating type [...]
1224   if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1225     if (LHSFloat)
1226       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1227     else if (!IsCompAssign)
1228       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1229     return LHSFloat ? LHSType : RHSType;
1230   }
1231 
1232   // If we have two real floating types, convert the smaller operand
1233   // to the bigger result.
1234   if (LHSFloat && RHSFloat) {
1235     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1236     if (order > 0) {
1237       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1238       return LHSType;
1239     }
1240 
1241     assert(order < 0 && "illegal float comparison");
1242     if (!IsCompAssign)
1243       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1244     return RHSType;
1245   }
1246 
1247   if (LHSFloat) {
1248     // Half FP has to be promoted to float unless it is natively supported
1249     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1250       LHSType = S.Context.FloatTy;
1251 
1252     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1253                                       /*ConvertFloat=*/!IsCompAssign,
1254                                       /*ConvertInt=*/ true);
1255   }
1256   assert(RHSFloat);
1257   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1258                                     /*ConvertFloat=*/ true,
1259                                     /*ConvertInt=*/!IsCompAssign);
1260 }
1261 
1262 /// Diagnose attempts to convert between __float128, __ibm128 and
1263 /// long double if there is no support for such conversion.
1264 /// Helper function of UsualArithmeticConversions().
unsupportedTypeConversion(const Sema & S,QualType LHSType,QualType RHSType)1265 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1266                                       QualType RHSType) {
1267   // No issue if either is not a floating point type.
1268   if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1269     return false;
1270 
1271   // No issue if both have the same 128-bit float semantics.
1272   auto *LHSComplex = LHSType->getAs<ComplexType>();
1273   auto *RHSComplex = RHSType->getAs<ComplexType>();
1274 
1275   QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1276   QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1277 
1278   const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem);
1279   const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem);
1280 
1281   if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1282        &RHSSem != &llvm::APFloat::IEEEquad()) &&
1283       (&LHSSem != &llvm::APFloat::IEEEquad() ||
1284        &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1285     return false;
1286 
1287   return true;
1288 }
1289 
1290 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1291 
1292 namespace {
1293 /// These helper callbacks are placed in an anonymous namespace to
1294 /// permit their use as function template parameters.
doIntegralCast(Sema & S,Expr * op,QualType toType)1295 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1296   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1297 }
1298 
doComplexIntegralCast(Sema & S,Expr * op,QualType toType)1299 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1300   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1301                              CK_IntegralComplexCast);
1302 }
1303 }
1304 
1305 /// Handle integer arithmetic conversions.  Helper function of
1306 /// UsualArithmeticConversions()
1307 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
handleIntegerConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1308 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1309                                         ExprResult &RHS, QualType LHSType,
1310                                         QualType RHSType, bool IsCompAssign) {
1311   // The rules for this case are in C99 6.3.1.8
1312   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1313   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1314   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1315   if (LHSSigned == RHSSigned) {
1316     // Same signedness; use the higher-ranked type
1317     if (order >= 0) {
1318       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1319       return LHSType;
1320     } else if (!IsCompAssign)
1321       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1322     return RHSType;
1323   } else if (order != (LHSSigned ? 1 : -1)) {
1324     // The unsigned type has greater than or equal rank to the
1325     // signed type, so use the unsigned type
1326     if (RHSSigned) {
1327       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1328       return LHSType;
1329     } else if (!IsCompAssign)
1330       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1331     return RHSType;
1332   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1333     // The two types are different widths; if we are here, that
1334     // means the signed type is larger than the unsigned type, so
1335     // use the signed type.
1336     if (LHSSigned) {
1337       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1338       return LHSType;
1339     } else if (!IsCompAssign)
1340       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1341     return RHSType;
1342   } else {
1343     // The signed type is higher-ranked than the unsigned type,
1344     // but isn't actually any bigger (like unsigned int and long
1345     // on most 32-bit systems).  Use the unsigned type corresponding
1346     // to the signed type.
1347     QualType result =
1348       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1349     RHS = (*doRHSCast)(S, RHS.get(), result);
1350     if (!IsCompAssign)
1351       LHS = (*doLHSCast)(S, LHS.get(), result);
1352     return result;
1353   }
1354 }
1355 
1356 /// Handle conversions with GCC complex int extension.  Helper function
1357 /// of UsualArithmeticConversions()
handleComplexIntConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1358 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1359                                            ExprResult &RHS, QualType LHSType,
1360                                            QualType RHSType,
1361                                            bool IsCompAssign) {
1362   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1363   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1364 
1365   if (LHSComplexInt && RHSComplexInt) {
1366     QualType LHSEltType = LHSComplexInt->getElementType();
1367     QualType RHSEltType = RHSComplexInt->getElementType();
1368     QualType ScalarType =
1369       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1370         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1371 
1372     return S.Context.getComplexType(ScalarType);
1373   }
1374 
1375   if (LHSComplexInt) {
1376     QualType LHSEltType = LHSComplexInt->getElementType();
1377     QualType ScalarType =
1378       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1379         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1380     QualType ComplexType = S.Context.getComplexType(ScalarType);
1381     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1382                               CK_IntegralRealToComplex);
1383 
1384     return ComplexType;
1385   }
1386 
1387   assert(RHSComplexInt);
1388 
1389   QualType RHSEltType = RHSComplexInt->getElementType();
1390   QualType ScalarType =
1391     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1392       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1393   QualType ComplexType = S.Context.getComplexType(ScalarType);
1394 
1395   if (!IsCompAssign)
1396     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1397                               CK_IntegralRealToComplex);
1398   return ComplexType;
1399 }
1400 
1401 /// Return the rank of a given fixed point or integer type. The value itself
1402 /// doesn't matter, but the values must be increasing with proper increasing
1403 /// rank as described in N1169 4.1.1.
GetFixedPointRank(QualType Ty)1404 static unsigned GetFixedPointRank(QualType Ty) {
1405   const auto *BTy = Ty->getAs<BuiltinType>();
1406   assert(BTy && "Expected a builtin type.");
1407 
1408   switch (BTy->getKind()) {
1409   case BuiltinType::ShortFract:
1410   case BuiltinType::UShortFract:
1411   case BuiltinType::SatShortFract:
1412   case BuiltinType::SatUShortFract:
1413     return 1;
1414   case BuiltinType::Fract:
1415   case BuiltinType::UFract:
1416   case BuiltinType::SatFract:
1417   case BuiltinType::SatUFract:
1418     return 2;
1419   case BuiltinType::LongFract:
1420   case BuiltinType::ULongFract:
1421   case BuiltinType::SatLongFract:
1422   case BuiltinType::SatULongFract:
1423     return 3;
1424   case BuiltinType::ShortAccum:
1425   case BuiltinType::UShortAccum:
1426   case BuiltinType::SatShortAccum:
1427   case BuiltinType::SatUShortAccum:
1428     return 4;
1429   case BuiltinType::Accum:
1430   case BuiltinType::UAccum:
1431   case BuiltinType::SatAccum:
1432   case BuiltinType::SatUAccum:
1433     return 5;
1434   case BuiltinType::LongAccum:
1435   case BuiltinType::ULongAccum:
1436   case BuiltinType::SatLongAccum:
1437   case BuiltinType::SatULongAccum:
1438     return 6;
1439   default:
1440     if (BTy->isInteger())
1441       return 0;
1442     llvm_unreachable("Unexpected fixed point or integer type");
1443   }
1444 }
1445 
1446 /// handleFixedPointConversion - Fixed point operations between fixed
1447 /// point types and integers or other fixed point types do not fall under
1448 /// usual arithmetic conversion since these conversions could result in loss
1449 /// of precsision (N1169 4.1.4). These operations should be calculated with
1450 /// the full precision of their result type (N1169 4.1.6.2.1).
handleFixedPointConversion(Sema & S,QualType LHSTy,QualType RHSTy)1451 static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1452                                            QualType RHSTy) {
1453   assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1454          "Expected at least one of the operands to be a fixed point type");
1455   assert((LHSTy->isFixedPointOrIntegerType() ||
1456           RHSTy->isFixedPointOrIntegerType()) &&
1457          "Special fixed point arithmetic operation conversions are only "
1458          "applied to ints or other fixed point types");
1459 
1460   // If one operand has signed fixed-point type and the other operand has
1461   // unsigned fixed-point type, then the unsigned fixed-point operand is
1462   // converted to its corresponding signed fixed-point type and the resulting
1463   // type is the type of the converted operand.
1464   if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1465     LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1466   else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1467     RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1468 
1469   // The result type is the type with the highest rank, whereby a fixed-point
1470   // conversion rank is always greater than an integer conversion rank; if the
1471   // type of either of the operands is a saturating fixedpoint type, the result
1472   // type shall be the saturating fixed-point type corresponding to the type
1473   // with the highest rank; the resulting value is converted (taking into
1474   // account rounding and overflow) to the precision of the resulting type.
1475   // Same ranks between signed and unsigned types are resolved earlier, so both
1476   // types are either signed or both unsigned at this point.
1477   unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1478   unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1479 
1480   QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1481 
1482   if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1483     ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1484 
1485   return ResultTy;
1486 }
1487 
1488 /// Check that the usual arithmetic conversions can be performed on this pair of
1489 /// expressions that might be of enumeration type.
checkEnumArithmeticConversions(Sema & S,Expr * LHS,Expr * RHS,SourceLocation Loc,Sema::ArithConvKind ACK)1490 static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1491                                            SourceLocation Loc,
1492                                            Sema::ArithConvKind ACK) {
1493   // C++2a [expr.arith.conv]p1:
1494   //   If one operand is of enumeration type and the other operand is of a
1495   //   different enumeration type or a floating-point type, this behavior is
1496   //   deprecated ([depr.arith.conv.enum]).
1497   //
1498   // Warn on this in all language modes. Produce a deprecation warning in C++20.
1499   // Eventually we will presumably reject these cases (in C++23 onwards?).
1500   QualType L = LHS->getType(), R = RHS->getType();
1501   bool LEnum = L->isUnscopedEnumerationType(),
1502        REnum = R->isUnscopedEnumerationType();
1503   bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1504   if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1505       (REnum && L->isFloatingType())) {
1506     S.Diag(Loc, S.getLangOpts().CPlusPlus26
1507                     ? diag::err_arith_conv_enum_float_cxx26
1508                 : S.getLangOpts().CPlusPlus20
1509                     ? diag::warn_arith_conv_enum_float_cxx20
1510                     : diag::warn_arith_conv_enum_float)
1511         << LHS->getSourceRange() << RHS->getSourceRange() << (int)ACK << LEnum
1512         << L << R;
1513   } else if (!IsCompAssign && LEnum && REnum &&
1514              !S.Context.hasSameUnqualifiedType(L, R)) {
1515     unsigned DiagID;
1516     // In C++ 26, usual arithmetic conversions between 2 different enum types
1517     // are ill-formed.
1518     if (S.getLangOpts().CPlusPlus26)
1519       DiagID = diag::err_conv_mixed_enum_types_cxx26;
1520     else if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1521              !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1522       // If either enumeration type is unnamed, it's less likely that the
1523       // user cares about this, but this situation is still deprecated in
1524       // C++2a. Use a different warning group.
1525       DiagID = S.getLangOpts().CPlusPlus20
1526                     ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1527                     : diag::warn_arith_conv_mixed_anon_enum_types;
1528     } else if (ACK == Sema::ACK_Conditional) {
1529       // Conditional expressions are separated out because they have
1530       // historically had a different warning flag.
1531       DiagID = S.getLangOpts().CPlusPlus20
1532                    ? diag::warn_conditional_mixed_enum_types_cxx20
1533                    : diag::warn_conditional_mixed_enum_types;
1534     } else if (ACK == Sema::ACK_Comparison) {
1535       // Comparison expressions are separated out because they have
1536       // historically had a different warning flag.
1537       DiagID = S.getLangOpts().CPlusPlus20
1538                    ? diag::warn_comparison_mixed_enum_types_cxx20
1539                    : diag::warn_comparison_mixed_enum_types;
1540     } else {
1541       DiagID = S.getLangOpts().CPlusPlus20
1542                    ? diag::warn_arith_conv_mixed_enum_types_cxx20
1543                    : diag::warn_arith_conv_mixed_enum_types;
1544     }
1545     S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1546                         << (int)ACK << L << R;
1547   }
1548 }
1549 
1550 /// UsualArithmeticConversions - Performs various conversions that are common to
1551 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1552 /// routine returns the first non-arithmetic type found. The client is
1553 /// responsible for emitting appropriate error diagnostics.
UsualArithmeticConversions(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,ArithConvKind ACK)1554 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1555                                           SourceLocation Loc,
1556                                           ArithConvKind ACK) {
1557   checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1558 
1559   if (ACK != ACK_CompAssign) {
1560     LHS = UsualUnaryConversions(LHS.get());
1561     if (LHS.isInvalid())
1562       return QualType();
1563   }
1564 
1565   RHS = UsualUnaryConversions(RHS.get());
1566   if (RHS.isInvalid())
1567     return QualType();
1568 
1569   // For conversion purposes, we ignore any qualifiers.
1570   // For example, "const float" and "float" are equivalent.
1571   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
1572   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
1573 
1574   // For conversion purposes, we ignore any atomic qualifier on the LHS.
1575   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1576     LHSType = AtomicLHS->getValueType();
1577 
1578   // If both types are identical, no conversion is needed.
1579   if (Context.hasSameType(LHSType, RHSType))
1580     return Context.getCommonSugaredType(LHSType, RHSType);
1581 
1582   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1583   // The caller can deal with this (e.g. pointer + int).
1584   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1585     return QualType();
1586 
1587   // Apply unary and bitfield promotions to the LHS's type.
1588   QualType LHSUnpromotedType = LHSType;
1589   if (Context.isPromotableIntegerType(LHSType))
1590     LHSType = Context.getPromotedIntegerType(LHSType);
1591   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1592   if (!LHSBitfieldPromoteTy.isNull())
1593     LHSType = LHSBitfieldPromoteTy;
1594   if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1595     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1596 
1597   // If both types are identical, no conversion is needed.
1598   if (Context.hasSameType(LHSType, RHSType))
1599     return Context.getCommonSugaredType(LHSType, RHSType);
1600 
1601   // At this point, we have two different arithmetic types.
1602 
1603   // Diagnose attempts to convert between __ibm128, __float128 and long double
1604   // where such conversions currently can't be handled.
1605   if (unsupportedTypeConversion(*this, LHSType, RHSType))
1606     return QualType();
1607 
1608   // Handle complex types first (C99 6.3.1.8p1).
1609   if (LHSType->isComplexType() || RHSType->isComplexType())
1610     return handleComplexConversion(*this, LHS, RHS, LHSType, RHSType,
1611                                    ACK == ACK_CompAssign);
1612 
1613   // Now handle "real" floating types (i.e. float, double, long double).
1614   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1615     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1616                                  ACK == ACK_CompAssign);
1617 
1618   // Handle GCC complex int extension.
1619   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1620     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1621                                       ACK == ACK_CompAssign);
1622 
1623   if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1624     return handleFixedPointConversion(*this, LHSType, RHSType);
1625 
1626   // Finally, we have two differing integer types.
1627   return handleIntegerConversion<doIntegralCast, doIntegralCast>
1628            (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1629 }
1630 
1631 //===----------------------------------------------------------------------===//
1632 //  Semantic Analysis for various Expression Types
1633 //===----------------------------------------------------------------------===//
1634 
1635 
ActOnGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool PredicateIsExpr,void * ControllingExprOrType,ArrayRef<ParsedType> ArgTypes,ArrayRef<Expr * > ArgExprs)1636 ExprResult Sema::ActOnGenericSelectionExpr(
1637     SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1638     bool PredicateIsExpr, void *ControllingExprOrType,
1639     ArrayRef<ParsedType> ArgTypes, ArrayRef<Expr *> ArgExprs) {
1640   unsigned NumAssocs = ArgTypes.size();
1641   assert(NumAssocs == ArgExprs.size());
1642 
1643   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1644   for (unsigned i = 0; i < NumAssocs; ++i) {
1645     if (ArgTypes[i])
1646       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1647     else
1648       Types[i] = nullptr;
1649   }
1650 
1651   // If we have a controlling type, we need to convert it from a parsed type
1652   // into a semantic type and then pass that along.
1653   if (!PredicateIsExpr) {
1654     TypeSourceInfo *ControllingType;
1655     (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(ControllingExprOrType),
1656                             &ControllingType);
1657     assert(ControllingType && "couldn't get the type out of the parser");
1658     ControllingExprOrType = ControllingType;
1659   }
1660 
1661   ExprResult ER = CreateGenericSelectionExpr(
1662       KeyLoc, DefaultLoc, RParenLoc, PredicateIsExpr, ControllingExprOrType,
1663       llvm::ArrayRef(Types, NumAssocs), ArgExprs);
1664   delete [] Types;
1665   return ER;
1666 }
1667 
CreateGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool PredicateIsExpr,void * ControllingExprOrType,ArrayRef<TypeSourceInfo * > Types,ArrayRef<Expr * > Exprs)1668 ExprResult Sema::CreateGenericSelectionExpr(
1669     SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1670     bool PredicateIsExpr, void *ControllingExprOrType,
1671     ArrayRef<TypeSourceInfo *> Types, ArrayRef<Expr *> Exprs) {
1672   unsigned NumAssocs = Types.size();
1673   assert(NumAssocs == Exprs.size());
1674   assert(ControllingExprOrType &&
1675          "Must have either a controlling expression or a controlling type");
1676 
1677   Expr *ControllingExpr = nullptr;
1678   TypeSourceInfo *ControllingType = nullptr;
1679   if (PredicateIsExpr) {
1680     // Decay and strip qualifiers for the controlling expression type, and
1681     // handle placeholder type replacement. See committee discussion from WG14
1682     // DR423.
1683     EnterExpressionEvaluationContext Unevaluated(
1684         *this, Sema::ExpressionEvaluationContext::Unevaluated);
1685     ExprResult R = DefaultFunctionArrayLvalueConversion(
1686         reinterpret_cast<Expr *>(ControllingExprOrType));
1687     if (R.isInvalid())
1688       return ExprError();
1689     ControllingExpr = R.get();
1690   } else {
1691     // The extension form uses the type directly rather than converting it.
1692     ControllingType = reinterpret_cast<TypeSourceInfo *>(ControllingExprOrType);
1693     if (!ControllingType)
1694       return ExprError();
1695   }
1696 
1697   bool TypeErrorFound = false,
1698        IsResultDependent = ControllingExpr
1699                                ? ControllingExpr->isTypeDependent()
1700                                : ControllingType->getType()->isDependentType(),
1701        ContainsUnexpandedParameterPack =
1702            ControllingExpr
1703                ? ControllingExpr->containsUnexpandedParameterPack()
1704                : ControllingType->getType()->containsUnexpandedParameterPack();
1705 
1706   // The controlling expression is an unevaluated operand, so side effects are
1707   // likely unintended.
1708   if (!inTemplateInstantiation() && !IsResultDependent && ControllingExpr &&
1709       ControllingExpr->HasSideEffects(Context, false))
1710     Diag(ControllingExpr->getExprLoc(),
1711          diag::warn_side_effects_unevaluated_context);
1712 
1713   for (unsigned i = 0; i < NumAssocs; ++i) {
1714     if (Exprs[i]->containsUnexpandedParameterPack())
1715       ContainsUnexpandedParameterPack = true;
1716 
1717     if (Types[i]) {
1718       if (Types[i]->getType()->containsUnexpandedParameterPack())
1719         ContainsUnexpandedParameterPack = true;
1720 
1721       if (Types[i]->getType()->isDependentType()) {
1722         IsResultDependent = true;
1723       } else {
1724         // We relax the restriction on use of incomplete types and non-object
1725         // types with the type-based extension of _Generic. Allowing incomplete
1726         // objects means those can be used as "tags" for a type-safe way to map
1727         // to a value. Similarly, matching on function types rather than
1728         // function pointer types can be useful. However, the restriction on VM
1729         // types makes sense to retain as there are open questions about how
1730         // the selection can be made at compile time.
1731         //
1732         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1733         // complete object type other than a variably modified type."
1734         unsigned D = 0;
1735         if (ControllingExpr && Types[i]->getType()->isIncompleteType())
1736           D = diag::err_assoc_type_incomplete;
1737         else if (ControllingExpr && !Types[i]->getType()->isObjectType())
1738           D = diag::err_assoc_type_nonobject;
1739         else if (Types[i]->getType()->isVariablyModifiedType())
1740           D = diag::err_assoc_type_variably_modified;
1741         else if (ControllingExpr) {
1742           // Because the controlling expression undergoes lvalue conversion,
1743           // array conversion, and function conversion, an association which is
1744           // of array type, function type, or is qualified can never be
1745           // reached. We will warn about this so users are less surprised by
1746           // the unreachable association. However, we don't have to handle
1747           // function types; that's not an object type, so it's handled above.
1748           //
1749           // The logic is somewhat different for C++ because C++ has different
1750           // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1751           // If T is a non-class type, the type of the prvalue is the cv-
1752           // unqualified version of T. Otherwise, the type of the prvalue is T.
1753           // The result of these rules is that all qualified types in an
1754           // association in C are unreachable, and in C++, only qualified non-
1755           // class types are unreachable.
1756           //
1757           // NB: this does not apply when the first operand is a type rather
1758           // than an expression, because the type form does not undergo
1759           // conversion.
1760           unsigned Reason = 0;
1761           QualType QT = Types[i]->getType();
1762           if (QT->isArrayType())
1763             Reason = 1;
1764           else if (QT.hasQualifiers() &&
1765                    (!LangOpts.CPlusPlus || !QT->isRecordType()))
1766             Reason = 2;
1767 
1768           if (Reason)
1769             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1770                  diag::warn_unreachable_association)
1771                 << QT << (Reason - 1);
1772         }
1773 
1774         if (D != 0) {
1775           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1776             << Types[i]->getTypeLoc().getSourceRange()
1777             << Types[i]->getType();
1778           TypeErrorFound = true;
1779         }
1780 
1781         // C11 6.5.1.1p2 "No two generic associations in the same generic
1782         // selection shall specify compatible types."
1783         for (unsigned j = i+1; j < NumAssocs; ++j)
1784           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1785               Context.typesAreCompatible(Types[i]->getType(),
1786                                          Types[j]->getType())) {
1787             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1788                  diag::err_assoc_compatible_types)
1789               << Types[j]->getTypeLoc().getSourceRange()
1790               << Types[j]->getType()
1791               << Types[i]->getType();
1792             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1793                  diag::note_compat_assoc)
1794               << Types[i]->getTypeLoc().getSourceRange()
1795               << Types[i]->getType();
1796             TypeErrorFound = true;
1797           }
1798       }
1799     }
1800   }
1801   if (TypeErrorFound)
1802     return ExprError();
1803 
1804   // If we determined that the generic selection is result-dependent, don't
1805   // try to compute the result expression.
1806   if (IsResultDependent) {
1807     if (ControllingExpr)
1808       return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr,
1809                                           Types, Exprs, DefaultLoc, RParenLoc,
1810                                           ContainsUnexpandedParameterPack);
1811     return GenericSelectionExpr::Create(Context, KeyLoc, ControllingType, Types,
1812                                         Exprs, DefaultLoc, RParenLoc,
1813                                         ContainsUnexpandedParameterPack);
1814   }
1815 
1816   SmallVector<unsigned, 1> CompatIndices;
1817   unsigned DefaultIndex = -1U;
1818   // Look at the canonical type of the controlling expression in case it was a
1819   // deduced type like __auto_type. However, when issuing diagnostics, use the
1820   // type the user wrote in source rather than the canonical one.
1821   for (unsigned i = 0; i < NumAssocs; ++i) {
1822     if (!Types[i])
1823       DefaultIndex = i;
1824     else if (ControllingExpr &&
1825              Context.typesAreCompatible(
1826                  ControllingExpr->getType().getCanonicalType(),
1827                  Types[i]->getType()))
1828       CompatIndices.push_back(i);
1829     else if (ControllingType &&
1830              Context.typesAreCompatible(
1831                  ControllingType->getType().getCanonicalType(),
1832                  Types[i]->getType()))
1833       CompatIndices.push_back(i);
1834   }
1835 
1836   auto GetControllingRangeAndType = [](Expr *ControllingExpr,
1837                                        TypeSourceInfo *ControllingType) {
1838     // We strip parens here because the controlling expression is typically
1839     // parenthesized in macro definitions.
1840     if (ControllingExpr)
1841       ControllingExpr = ControllingExpr->IgnoreParens();
1842 
1843     SourceRange SR = ControllingExpr
1844                          ? ControllingExpr->getSourceRange()
1845                          : ControllingType->getTypeLoc().getSourceRange();
1846     QualType QT = ControllingExpr ? ControllingExpr->getType()
1847                                   : ControllingType->getType();
1848 
1849     return std::make_pair(SR, QT);
1850   };
1851 
1852   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1853   // type compatible with at most one of the types named in its generic
1854   // association list."
1855   if (CompatIndices.size() > 1) {
1856     auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1857     SourceRange SR = P.first;
1858     Diag(SR.getBegin(), diag::err_generic_sel_multi_match)
1859         << SR << P.second << (unsigned)CompatIndices.size();
1860     for (unsigned I : CompatIndices) {
1861       Diag(Types[I]->getTypeLoc().getBeginLoc(),
1862            diag::note_compat_assoc)
1863         << Types[I]->getTypeLoc().getSourceRange()
1864         << Types[I]->getType();
1865     }
1866     return ExprError();
1867   }
1868 
1869   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1870   // its controlling expression shall have type compatible with exactly one of
1871   // the types named in its generic association list."
1872   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1873     auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1874     SourceRange SR = P.first;
1875     Diag(SR.getBegin(), diag::err_generic_sel_no_match) << SR << P.second;
1876     return ExprError();
1877   }
1878 
1879   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1880   // type name that is compatible with the type of the controlling expression,
1881   // then the result expression of the generic selection is the expression
1882   // in that generic association. Otherwise, the result expression of the
1883   // generic selection is the expression in the default generic association."
1884   unsigned ResultIndex =
1885     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1886 
1887   if (ControllingExpr) {
1888     return GenericSelectionExpr::Create(
1889         Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1890         ContainsUnexpandedParameterPack, ResultIndex);
1891   }
1892   return GenericSelectionExpr::Create(
1893       Context, KeyLoc, ControllingType, Types, Exprs, DefaultLoc, RParenLoc,
1894       ContainsUnexpandedParameterPack, ResultIndex);
1895 }
1896 
getPredefinedExprKind(tok::TokenKind Kind)1897 static PredefinedIdentKind getPredefinedExprKind(tok::TokenKind Kind) {
1898   switch (Kind) {
1899   default:
1900     llvm_unreachable("unexpected TokenKind");
1901   case tok::kw___func__:
1902     return PredefinedIdentKind::Func; // [C99 6.4.2.2]
1903   case tok::kw___FUNCTION__:
1904     return PredefinedIdentKind::Function;
1905   case tok::kw___FUNCDNAME__:
1906     return PredefinedIdentKind::FuncDName; // [MS]
1907   case tok::kw___FUNCSIG__:
1908     return PredefinedIdentKind::FuncSig; // [MS]
1909   case tok::kw_L__FUNCTION__:
1910     return PredefinedIdentKind::LFunction; // [MS]
1911   case tok::kw_L__FUNCSIG__:
1912     return PredefinedIdentKind::LFuncSig; // [MS]
1913   case tok::kw___PRETTY_FUNCTION__:
1914     return PredefinedIdentKind::PrettyFunction; // [GNU]
1915   }
1916 }
1917 
1918 /// getPredefinedExprDecl - Returns Decl of a given DeclContext that can be used
1919 /// to determine the value of a PredefinedExpr. This can be either a
1920 /// block, lambda, captured statement, function, otherwise a nullptr.
getPredefinedExprDecl(DeclContext * DC)1921 static Decl *getPredefinedExprDecl(DeclContext *DC) {
1922   while (DC && !isa<BlockDecl, CapturedDecl, FunctionDecl, ObjCMethodDecl>(DC))
1923     DC = DC->getParent();
1924   return cast_or_null<Decl>(DC);
1925 }
1926 
1927 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1928 /// location of the token and the offset of the ud-suffix within it.
getUDSuffixLoc(Sema & S,SourceLocation TokLoc,unsigned Offset)1929 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1930                                      unsigned Offset) {
1931   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1932                                         S.getLangOpts());
1933 }
1934 
1935 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1936 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
BuildCookedLiteralOperatorCall(Sema & S,Scope * Scope,IdentifierInfo * UDSuffix,SourceLocation UDSuffixLoc,ArrayRef<Expr * > Args,SourceLocation LitEndLoc)1937 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1938                                                  IdentifierInfo *UDSuffix,
1939                                                  SourceLocation UDSuffixLoc,
1940                                                  ArrayRef<Expr*> Args,
1941                                                  SourceLocation LitEndLoc) {
1942   assert(Args.size() <= 2 && "too many arguments for literal operator");
1943 
1944   QualType ArgTy[2];
1945   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1946     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1947     if (ArgTy[ArgIdx]->isArrayType())
1948       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1949   }
1950 
1951   DeclarationName OpName =
1952     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1953   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1954   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1955 
1956   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1957   if (S.LookupLiteralOperator(Scope, R, llvm::ArrayRef(ArgTy, Args.size()),
1958                               /*AllowRaw*/ false, /*AllowTemplate*/ false,
1959                               /*AllowStringTemplatePack*/ false,
1960                               /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1961     return ExprError();
1962 
1963   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1964 }
1965 
ActOnUnevaluatedStringLiteral(ArrayRef<Token> StringToks)1966 ExprResult Sema::ActOnUnevaluatedStringLiteral(ArrayRef<Token> StringToks) {
1967   // StringToks needs backing storage as it doesn't hold array elements itself
1968   std::vector<Token> ExpandedToks;
1969   if (getLangOpts().MicrosoftExt)
1970     StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(StringToks);
1971 
1972   StringLiteralParser Literal(StringToks, PP,
1973                               StringLiteralEvalMethod::Unevaluated);
1974   if (Literal.hadError)
1975     return ExprError();
1976 
1977   SmallVector<SourceLocation, 4> StringTokLocs;
1978   for (const Token &Tok : StringToks)
1979     StringTokLocs.push_back(Tok.getLocation());
1980 
1981   StringLiteral *Lit = StringLiteral::Create(
1982       Context, Literal.GetString(), StringLiteralKind::Unevaluated, false, {},
1983       &StringTokLocs[0], StringTokLocs.size());
1984 
1985   if (!Literal.getUDSuffix().empty()) {
1986     SourceLocation UDSuffixLoc =
1987         getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1988                        Literal.getUDSuffixOffset());
1989     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1990   }
1991 
1992   return Lit;
1993 }
1994 
1995 std::vector<Token>
ExpandFunctionLocalPredefinedMacros(ArrayRef<Token> Toks)1996 Sema::ExpandFunctionLocalPredefinedMacros(ArrayRef<Token> Toks) {
1997   // MSVC treats some predefined identifiers (e.g. __FUNCTION__) as function
1998   // local macros that expand to string literals that may be concatenated.
1999   // These macros are expanded here (in Sema), because StringLiteralParser
2000   // (in Lex) doesn't know the enclosing function (because it hasn't been
2001   // parsed yet).
2002   assert(getLangOpts().MicrosoftExt);
2003 
2004   // Note: Although function local macros are defined only inside functions,
2005   // we ensure a valid `CurrentDecl` even outside of a function. This allows
2006   // expansion of macros into empty string literals without additional checks.
2007   Decl *CurrentDecl = getPredefinedExprDecl(CurContext);
2008   if (!CurrentDecl)
2009     CurrentDecl = Context.getTranslationUnitDecl();
2010 
2011   std::vector<Token> ExpandedToks;
2012   ExpandedToks.reserve(Toks.size());
2013   for (const Token &Tok : Toks) {
2014     if (!isFunctionLocalStringLiteralMacro(Tok.getKind(), getLangOpts())) {
2015       assert(tok::isStringLiteral(Tok.getKind()));
2016       ExpandedToks.emplace_back(Tok);
2017       continue;
2018     }
2019     if (isa<TranslationUnitDecl>(CurrentDecl))
2020       Diag(Tok.getLocation(), diag::ext_predef_outside_function);
2021     // Stringify predefined expression
2022     Diag(Tok.getLocation(), diag::ext_string_literal_from_predefined)
2023         << Tok.getKind();
2024     SmallString<64> Str;
2025     llvm::raw_svector_ostream OS(Str);
2026     Token &Exp = ExpandedToks.emplace_back();
2027     Exp.startToken();
2028     if (Tok.getKind() == tok::kw_L__FUNCTION__ ||
2029         Tok.getKind() == tok::kw_L__FUNCSIG__) {
2030       OS << 'L';
2031       Exp.setKind(tok::wide_string_literal);
2032     } else {
2033       Exp.setKind(tok::string_literal);
2034     }
2035     OS << '"'
2036        << Lexer::Stringify(PredefinedExpr::ComputeName(
2037               getPredefinedExprKind(Tok.getKind()), CurrentDecl))
2038        << '"';
2039     PP.CreateString(OS.str(), Exp, Tok.getLocation(), Tok.getEndLoc());
2040   }
2041   return ExpandedToks;
2042 }
2043 
2044 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
2045 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
2046 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
2047 /// multiple tokens.  However, the common case is that StringToks points to one
2048 /// string.
2049 ///
2050 ExprResult
ActOnStringLiteral(ArrayRef<Token> StringToks,Scope * UDLScope)2051 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
2052   assert(!StringToks.empty() && "Must have at least one string!");
2053 
2054   // StringToks needs backing storage as it doesn't hold array elements itself
2055   std::vector<Token> ExpandedToks;
2056   if (getLangOpts().MicrosoftExt)
2057     StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(StringToks);
2058 
2059   StringLiteralParser Literal(StringToks, PP);
2060   if (Literal.hadError)
2061     return ExprError();
2062 
2063   SmallVector<SourceLocation, 4> StringTokLocs;
2064   for (const Token &Tok : StringToks)
2065     StringTokLocs.push_back(Tok.getLocation());
2066 
2067   QualType CharTy = Context.CharTy;
2068   StringLiteralKind Kind = StringLiteralKind::Ordinary;
2069   if (Literal.isWide()) {
2070     CharTy = Context.getWideCharType();
2071     Kind = StringLiteralKind::Wide;
2072   } else if (Literal.isUTF8()) {
2073     if (getLangOpts().Char8)
2074       CharTy = Context.Char8Ty;
2075     Kind = StringLiteralKind::UTF8;
2076   } else if (Literal.isUTF16()) {
2077     CharTy = Context.Char16Ty;
2078     Kind = StringLiteralKind::UTF16;
2079   } else if (Literal.isUTF32()) {
2080     CharTy = Context.Char32Ty;
2081     Kind = StringLiteralKind::UTF32;
2082   } else if (Literal.isPascal()) {
2083     CharTy = Context.UnsignedCharTy;
2084   }
2085 
2086   // Warn on initializing an array of char from a u8 string literal; this
2087   // becomes ill-formed in C++2a.
2088   if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
2089       !getLangOpts().Char8 && Kind == StringLiteralKind::UTF8) {
2090     Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
2091 
2092     // Create removals for all 'u8' prefixes in the string literal(s). This
2093     // ensures C++2a compatibility (but may change the program behavior when
2094     // built by non-Clang compilers for which the execution character set is
2095     // not always UTF-8).
2096     auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
2097     SourceLocation RemovalDiagLoc;
2098     for (const Token &Tok : StringToks) {
2099       if (Tok.getKind() == tok::utf8_string_literal) {
2100         if (RemovalDiagLoc.isInvalid())
2101           RemovalDiagLoc = Tok.getLocation();
2102         RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
2103             Tok.getLocation(),
2104             Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
2105                                            getSourceManager(), getLangOpts())));
2106       }
2107     }
2108     Diag(RemovalDiagLoc, RemovalDiag);
2109   }
2110 
2111   QualType StrTy =
2112       Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
2113 
2114   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
2115   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
2116                                              Kind, Literal.Pascal, StrTy,
2117                                              &StringTokLocs[0],
2118                                              StringTokLocs.size());
2119   if (Literal.getUDSuffix().empty())
2120     return Lit;
2121 
2122   // We're building a user-defined literal.
2123   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2124   SourceLocation UDSuffixLoc =
2125     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
2126                    Literal.getUDSuffixOffset());
2127 
2128   // Make sure we're allowed user-defined literals here.
2129   if (!UDLScope)
2130     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
2131 
2132   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
2133   //   operator "" X (str, len)
2134   QualType SizeType = Context.getSizeType();
2135 
2136   DeclarationName OpName =
2137     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2138   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2139   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2140 
2141   QualType ArgTy[] = {
2142     Context.getArrayDecayedType(StrTy), SizeType
2143   };
2144 
2145   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2146   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
2147                                 /*AllowRaw*/ false, /*AllowTemplate*/ true,
2148                                 /*AllowStringTemplatePack*/ true,
2149                                 /*DiagnoseMissing*/ true, Lit)) {
2150 
2151   case LOLR_Cooked: {
2152     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
2153     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
2154                                                     StringTokLocs[0]);
2155     Expr *Args[] = { Lit, LenArg };
2156 
2157     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
2158   }
2159 
2160   case LOLR_Template: {
2161     TemplateArgumentListInfo ExplicitArgs;
2162     TemplateArgument Arg(Lit);
2163     TemplateArgumentLocInfo ArgInfo(Lit);
2164     ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2165     return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
2166                                     StringTokLocs.back(), &ExplicitArgs);
2167   }
2168 
2169   case LOLR_StringTemplatePack: {
2170     TemplateArgumentListInfo ExplicitArgs;
2171 
2172     unsigned CharBits = Context.getIntWidth(CharTy);
2173     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
2174     llvm::APSInt Value(CharBits, CharIsUnsigned);
2175 
2176     TemplateArgument TypeArg(CharTy);
2177     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
2178     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
2179 
2180     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
2181       Value = Lit->getCodeUnit(I);
2182       TemplateArgument Arg(Context, Value, CharTy);
2183       TemplateArgumentLocInfo ArgInfo;
2184       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2185     }
2186     return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
2187                                     StringTokLocs.back(), &ExplicitArgs);
2188   }
2189   case LOLR_Raw:
2190   case LOLR_ErrorNoDiagnostic:
2191     llvm_unreachable("unexpected literal operator lookup result");
2192   case LOLR_Error:
2193     return ExprError();
2194   }
2195   llvm_unreachable("unexpected literal operator lookup result");
2196 }
2197 
2198 DeclRefExpr *
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,SourceLocation Loc,const CXXScopeSpec * SS)2199 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2200                        SourceLocation Loc,
2201                        const CXXScopeSpec *SS) {
2202   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
2203   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
2204 }
2205 
2206 DeclRefExpr *
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,const DeclarationNameInfo & NameInfo,const CXXScopeSpec * SS,NamedDecl * FoundD,SourceLocation TemplateKWLoc,const TemplateArgumentListInfo * TemplateArgs)2207 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2208                        const DeclarationNameInfo &NameInfo,
2209                        const CXXScopeSpec *SS, NamedDecl *FoundD,
2210                        SourceLocation TemplateKWLoc,
2211                        const TemplateArgumentListInfo *TemplateArgs) {
2212   NestedNameSpecifierLoc NNS =
2213       SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
2214   return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
2215                           TemplateArgs);
2216 }
2217 
2218 // CUDA/HIP: Check whether a captured reference variable is referencing a
2219 // host variable in a device or host device lambda.
isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema & S,VarDecl * VD)2220 static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
2221                                                             VarDecl *VD) {
2222   if (!S.getLangOpts().CUDA || !VD->hasInit())
2223     return false;
2224   assert(VD->getType()->isReferenceType());
2225 
2226   // Check whether the reference variable is referencing a host variable.
2227   auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
2228   if (!DRE)
2229     return false;
2230   auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
2231   if (!Referee || !Referee->hasGlobalStorage() ||
2232       Referee->hasAttr<CUDADeviceAttr>())
2233     return false;
2234 
2235   // Check whether the current function is a device or host device lambda.
2236   // Check whether the reference variable is a capture by getDeclContext()
2237   // since refersToEnclosingVariableOrCapture() is not ready at this point.
2238   auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
2239   if (MD && MD->getParent()->isLambda() &&
2240       MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
2241       VD->getDeclContext() != MD)
2242     return true;
2243 
2244   return false;
2245 }
2246 
getNonOdrUseReasonInCurrentContext(ValueDecl * D)2247 NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
2248   // A declaration named in an unevaluated operand never constitutes an odr-use.
2249   if (isUnevaluatedContext())
2250     return NOUR_Unevaluated;
2251 
2252   // C++2a [basic.def.odr]p4:
2253   //   A variable x whose name appears as a potentially-evaluated expression e
2254   //   is odr-used by e unless [...] x is a reference that is usable in
2255   //   constant expressions.
2256   // CUDA/HIP:
2257   //   If a reference variable referencing a host variable is captured in a
2258   //   device or host device lambda, the value of the referee must be copied
2259   //   to the capture and the reference variable must be treated as odr-use
2260   //   since the value of the referee is not known at compile time and must
2261   //   be loaded from the captured.
2262   if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2263     if (VD->getType()->isReferenceType() &&
2264         !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
2265         !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
2266         VD->isUsableInConstantExpressions(Context))
2267       return NOUR_Constant;
2268   }
2269 
2270   // All remaining non-variable cases constitute an odr-use. For variables, we
2271   // need to wait and see how the expression is used.
2272   return NOUR_None;
2273 }
2274 
2275 /// BuildDeclRefExpr - Build an expression that references a
2276 /// declaration that does not require a closure capture.
2277 DeclRefExpr *
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,const DeclarationNameInfo & NameInfo,NestedNameSpecifierLoc NNS,NamedDecl * FoundD,SourceLocation TemplateKWLoc,const TemplateArgumentListInfo * TemplateArgs)2278 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2279                        const DeclarationNameInfo &NameInfo,
2280                        NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2281                        SourceLocation TemplateKWLoc,
2282                        const TemplateArgumentListInfo *TemplateArgs) {
2283   bool RefersToCapturedVariable = isa<VarDecl, BindingDecl>(D) &&
2284                                   NeedToCaptureVariable(D, NameInfo.getLoc());
2285 
2286   DeclRefExpr *E = DeclRefExpr::Create(
2287       Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2288       VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2289   MarkDeclRefReferenced(E);
2290 
2291   // C++ [except.spec]p17:
2292   //   An exception-specification is considered to be needed when:
2293   //   - in an expression, the function is the unique lookup result or
2294   //     the selected member of a set of overloaded functions.
2295   //
2296   // We delay doing this until after we've built the function reference and
2297   // marked it as used so that:
2298   //  a) if the function is defaulted, we get errors from defining it before /
2299   //     instead of errors from computing its exception specification, and
2300   //  b) if the function is a defaulted comparison, we can use the body we
2301   //     build when defining it as input to the exception specification
2302   //     computation rather than computing a new body.
2303   if (const auto *FPT = Ty->getAs<FunctionProtoType>()) {
2304     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2305       if (const auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2306         E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2307     }
2308   }
2309 
2310   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2311       Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2312       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2313     getCurFunction()->recordUseOfWeak(E);
2314 
2315   const auto *FD = dyn_cast<FieldDecl>(D);
2316   if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D))
2317     FD = IFD->getAnonField();
2318   if (FD) {
2319     UnusedPrivateFields.remove(FD);
2320     // Just in case we're building an illegal pointer-to-member.
2321     if (FD->isBitField())
2322       E->setObjectKind(OK_BitField);
2323   }
2324 
2325   // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2326   // designates a bit-field.
2327   if (const auto *BD = dyn_cast<BindingDecl>(D))
2328     if (const auto *BE = BD->getBinding())
2329       E->setObjectKind(BE->getObjectKind());
2330 
2331   return E;
2332 }
2333 
2334 /// Decomposes the given name into a DeclarationNameInfo, its location, and
2335 /// possibly a list of template arguments.
2336 ///
2337 /// If this produces template arguments, it is permitted to call
2338 /// DecomposeTemplateName.
2339 ///
2340 /// This actually loses a lot of source location information for
2341 /// non-standard name kinds; we should consider preserving that in
2342 /// some way.
2343 void
DecomposeUnqualifiedId(const UnqualifiedId & Id,TemplateArgumentListInfo & Buffer,DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * & TemplateArgs)2344 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2345                              TemplateArgumentListInfo &Buffer,
2346                              DeclarationNameInfo &NameInfo,
2347                              const TemplateArgumentListInfo *&TemplateArgs) {
2348   if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2349     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2350     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2351 
2352     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2353                                        Id.TemplateId->NumArgs);
2354     translateTemplateArguments(TemplateArgsPtr, Buffer);
2355 
2356     TemplateName TName = Id.TemplateId->Template.get();
2357     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2358     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2359     TemplateArgs = &Buffer;
2360   } else {
2361     NameInfo = GetNameFromUnqualifiedId(Id);
2362     TemplateArgs = nullptr;
2363   }
2364 }
2365 
emitEmptyLookupTypoDiagnostic(const TypoCorrection & TC,Sema & SemaRef,const CXXScopeSpec & SS,DeclarationName Typo,SourceLocation TypoLoc,ArrayRef<Expr * > Args,unsigned DiagnosticID,unsigned DiagnosticSuggestID)2366 static void emitEmptyLookupTypoDiagnostic(
2367     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2368     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2369     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2370   DeclContext *Ctx =
2371       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2372   if (!TC) {
2373     // Emit a special diagnostic for failed member lookups.
2374     // FIXME: computing the declaration context might fail here (?)
2375     if (Ctx)
2376       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2377                                                  << SS.getRange();
2378     else
2379       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2380     return;
2381   }
2382 
2383   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2384   bool DroppedSpecifier =
2385       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2386   unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2387                         ? diag::note_implicit_param_decl
2388                         : diag::note_previous_decl;
2389   if (!Ctx)
2390     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2391                          SemaRef.PDiag(NoteID));
2392   else
2393     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2394                                  << Typo << Ctx << DroppedSpecifier
2395                                  << SS.getRange(),
2396                          SemaRef.PDiag(NoteID));
2397 }
2398 
2399 /// Diagnose a lookup that found results in an enclosing class during error
2400 /// recovery. This usually indicates that the results were found in a dependent
2401 /// base class that could not be searched as part of a template definition.
2402 /// Always issues a diagnostic (though this may be only a warning in MS
2403 /// compatibility mode).
2404 ///
2405 /// Return \c true if the error is unrecoverable, or \c false if the caller
2406 /// should attempt to recover using these lookup results.
DiagnoseDependentMemberLookup(const LookupResult & R)2407 bool Sema::DiagnoseDependentMemberLookup(const LookupResult &R) {
2408   // During a default argument instantiation the CurContext points
2409   // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2410   // function parameter list, hence add an explicit check.
2411   bool isDefaultArgument =
2412       !CodeSynthesisContexts.empty() &&
2413       CodeSynthesisContexts.back().Kind ==
2414           CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2415   const auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2416   bool isInstance = CurMethod && CurMethod->isInstance() &&
2417                     R.getNamingClass() == CurMethod->getParent() &&
2418                     !isDefaultArgument;
2419 
2420   // There are two ways we can find a class-scope declaration during template
2421   // instantiation that we did not find in the template definition: if it is a
2422   // member of a dependent base class, or if it is declared after the point of
2423   // use in the same class. Distinguish these by comparing the class in which
2424   // the member was found to the naming class of the lookup.
2425   unsigned DiagID = diag::err_found_in_dependent_base;
2426   unsigned NoteID = diag::note_member_declared_at;
2427   if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2428     DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2429                                       : diag::err_found_later_in_class;
2430   } else if (getLangOpts().MSVCCompat) {
2431     DiagID = diag::ext_found_in_dependent_base;
2432     NoteID = diag::note_dependent_member_use;
2433   }
2434 
2435   if (isInstance) {
2436     // Give a code modification hint to insert 'this->'.
2437     Diag(R.getNameLoc(), DiagID)
2438         << R.getLookupName()
2439         << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2440     CheckCXXThisCapture(R.getNameLoc());
2441   } else {
2442     // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2443     // they're not shadowed).
2444     Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2445   }
2446 
2447   for (const NamedDecl *D : R)
2448     Diag(D->getLocation(), NoteID);
2449 
2450   // Return true if we are inside a default argument instantiation
2451   // and the found name refers to an instance member function, otherwise
2452   // the caller will try to create an implicit member call and this is wrong
2453   // for default arguments.
2454   //
2455   // FIXME: Is this special case necessary? We could allow the caller to
2456   // diagnose this.
2457   if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2458     Diag(R.getNameLoc(), diag::err_member_call_without_object) << 0;
2459     return true;
2460   }
2461 
2462   // Tell the callee to try to recover.
2463   return false;
2464 }
2465 
2466 /// Diagnose an empty lookup.
2467 ///
2468 /// \return false if new lookup candidates were found
DiagnoseEmptyLookup(Scope * S,CXXScopeSpec & SS,LookupResult & R,CorrectionCandidateCallback & CCC,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,DeclContext * LookupCtx,TypoExpr ** Out)2469 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2470                                CorrectionCandidateCallback &CCC,
2471                                TemplateArgumentListInfo *ExplicitTemplateArgs,
2472                                ArrayRef<Expr *> Args, DeclContext *LookupCtx,
2473                                TypoExpr **Out) {
2474   DeclarationName Name = R.getLookupName();
2475 
2476   unsigned diagnostic = diag::err_undeclared_var_use;
2477   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2478   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2479       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2480       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2481     diagnostic = diag::err_undeclared_use;
2482     diagnostic_suggest = diag::err_undeclared_use_suggest;
2483   }
2484 
2485   // If the original lookup was an unqualified lookup, fake an
2486   // unqualified lookup.  This is useful when (for example) the
2487   // original lookup would not have found something because it was a
2488   // dependent name.
2489   DeclContext *DC =
2490       LookupCtx ? LookupCtx : (SS.isEmpty() ? CurContext : nullptr);
2491   while (DC) {
2492     if (isa<CXXRecordDecl>(DC)) {
2493       LookupQualifiedName(R, DC);
2494 
2495       if (!R.empty()) {
2496         // Don't give errors about ambiguities in this lookup.
2497         R.suppressDiagnostics();
2498 
2499         // If there's a best viable function among the results, only mention
2500         // that one in the notes.
2501         OverloadCandidateSet Candidates(R.getNameLoc(),
2502                                         OverloadCandidateSet::CSK_Normal);
2503         AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2504         OverloadCandidateSet::iterator Best;
2505         if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2506             OR_Success) {
2507           R.clear();
2508           R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2509           R.resolveKind();
2510         }
2511 
2512         return DiagnoseDependentMemberLookup(R);
2513       }
2514 
2515       R.clear();
2516     }
2517 
2518     DC = DC->getLookupParent();
2519   }
2520 
2521   // We didn't find anything, so try to correct for a typo.
2522   TypoCorrection Corrected;
2523   if (S && Out) {
2524     SourceLocation TypoLoc = R.getNameLoc();
2525     assert(!ExplicitTemplateArgs &&
2526            "Diagnosing an empty lookup with explicit template args!");
2527     *Out = CorrectTypoDelayed(
2528         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2529         [=](const TypoCorrection &TC) {
2530           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2531                                         diagnostic, diagnostic_suggest);
2532         },
2533         nullptr, CTK_ErrorRecovery, LookupCtx);
2534     if (*Out)
2535       return true;
2536   } else if (S && (Corrected =
2537                        CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
2538                                    &SS, CCC, CTK_ErrorRecovery, LookupCtx))) {
2539     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2540     bool DroppedSpecifier =
2541         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2542     R.setLookupName(Corrected.getCorrection());
2543 
2544     bool AcceptableWithRecovery = false;
2545     bool AcceptableWithoutRecovery = false;
2546     NamedDecl *ND = Corrected.getFoundDecl();
2547     if (ND) {
2548       if (Corrected.isOverloaded()) {
2549         OverloadCandidateSet OCS(R.getNameLoc(),
2550                                  OverloadCandidateSet::CSK_Normal);
2551         OverloadCandidateSet::iterator Best;
2552         for (NamedDecl *CD : Corrected) {
2553           if (FunctionTemplateDecl *FTD =
2554                    dyn_cast<FunctionTemplateDecl>(CD))
2555             AddTemplateOverloadCandidate(
2556                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2557                 Args, OCS);
2558           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2559             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2560               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2561                                    Args, OCS);
2562         }
2563         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2564         case OR_Success:
2565           ND = Best->FoundDecl;
2566           Corrected.setCorrectionDecl(ND);
2567           break;
2568         default:
2569           // FIXME: Arbitrarily pick the first declaration for the note.
2570           Corrected.setCorrectionDecl(ND);
2571           break;
2572         }
2573       }
2574       R.addDecl(ND);
2575       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2576         CXXRecordDecl *Record = nullptr;
2577         if (Corrected.getCorrectionSpecifier()) {
2578           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2579           Record = Ty->getAsCXXRecordDecl();
2580         }
2581         if (!Record)
2582           Record = cast<CXXRecordDecl>(
2583               ND->getDeclContext()->getRedeclContext());
2584         R.setNamingClass(Record);
2585       }
2586 
2587       auto *UnderlyingND = ND->getUnderlyingDecl();
2588       AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2589                                isa<FunctionTemplateDecl>(UnderlyingND);
2590       // FIXME: If we ended up with a typo for a type name or
2591       // Objective-C class name, we're in trouble because the parser
2592       // is in the wrong place to recover. Suggest the typo
2593       // correction, but don't make it a fix-it since we're not going
2594       // to recover well anyway.
2595       AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2596                                   getAsTypeTemplateDecl(UnderlyingND) ||
2597                                   isa<ObjCInterfaceDecl>(UnderlyingND);
2598     } else {
2599       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2600       // because we aren't able to recover.
2601       AcceptableWithoutRecovery = true;
2602     }
2603 
2604     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2605       unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2606                             ? diag::note_implicit_param_decl
2607                             : diag::note_previous_decl;
2608       if (SS.isEmpty())
2609         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2610                      PDiag(NoteID), AcceptableWithRecovery);
2611       else
2612         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2613                                   << Name << computeDeclContext(SS, false)
2614                                   << DroppedSpecifier << SS.getRange(),
2615                      PDiag(NoteID), AcceptableWithRecovery);
2616 
2617       // Tell the callee whether to try to recover.
2618       return !AcceptableWithRecovery;
2619     }
2620   }
2621   R.clear();
2622 
2623   // Emit a special diagnostic for failed member lookups.
2624   // FIXME: computing the declaration context might fail here (?)
2625   if (!SS.isEmpty()) {
2626     Diag(R.getNameLoc(), diag::err_no_member)
2627       << Name << computeDeclContext(SS, false)
2628       << SS.getRange();
2629     return true;
2630   }
2631 
2632   // Give up, we can't recover.
2633   Diag(R.getNameLoc(), diagnostic) << Name;
2634   return true;
2635 }
2636 
2637 /// In Microsoft mode, if we are inside a template class whose parent class has
2638 /// dependent base classes, and we can't resolve an unqualified identifier, then
2639 /// assume the identifier is a member of a dependent base class.  We can only
2640 /// recover successfully in static methods, instance methods, and other contexts
2641 /// where 'this' is available.  This doesn't precisely match MSVC's
2642 /// instantiation model, but it's close enough.
2643 static Expr *
recoverFromMSUnqualifiedLookup(Sema & S,ASTContext & Context,DeclarationNameInfo & NameInfo,SourceLocation TemplateKWLoc,const TemplateArgumentListInfo * TemplateArgs)2644 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2645                                DeclarationNameInfo &NameInfo,
2646                                SourceLocation TemplateKWLoc,
2647                                const TemplateArgumentListInfo *TemplateArgs) {
2648   // Only try to recover from lookup into dependent bases in static methods or
2649   // contexts where 'this' is available.
2650   QualType ThisType = S.getCurrentThisType();
2651   const CXXRecordDecl *RD = nullptr;
2652   if (!ThisType.isNull())
2653     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2654   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2655     RD = MD->getParent();
2656   if (!RD || !RD->hasAnyDependentBases())
2657     return nullptr;
2658 
2659   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2660   // is available, suggest inserting 'this->' as a fixit.
2661   SourceLocation Loc = NameInfo.getLoc();
2662   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2663   DB << NameInfo.getName() << RD;
2664 
2665   if (!ThisType.isNull()) {
2666     DB << FixItHint::CreateInsertion(Loc, "this->");
2667     return CXXDependentScopeMemberExpr::Create(
2668         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2669         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2670         /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2671   }
2672 
2673   // Synthesize a fake NNS that points to the derived class.  This will
2674   // perform name lookup during template instantiation.
2675   CXXScopeSpec SS;
2676   auto *NNS =
2677       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2678   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2679   return DependentScopeDeclRefExpr::Create(
2680       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2681       TemplateArgs);
2682 }
2683 
2684 ExprResult
ActOnIdExpression(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,bool HasTrailingLParen,bool IsAddressOfOperand,CorrectionCandidateCallback * CCC,bool IsInlineAsmIdentifier,Token * KeywordReplacement)2685 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2686                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2687                         bool HasTrailingLParen, bool IsAddressOfOperand,
2688                         CorrectionCandidateCallback *CCC,
2689                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2690   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2691          "cannot be direct & operand and have a trailing lparen");
2692   if (SS.isInvalid())
2693     return ExprError();
2694 
2695   TemplateArgumentListInfo TemplateArgsBuffer;
2696 
2697   // Decompose the UnqualifiedId into the following data.
2698   DeclarationNameInfo NameInfo;
2699   const TemplateArgumentListInfo *TemplateArgs;
2700   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2701 
2702   DeclarationName Name = NameInfo.getName();
2703   IdentifierInfo *II = Name.getAsIdentifierInfo();
2704   SourceLocation NameLoc = NameInfo.getLoc();
2705 
2706   if (II && II->isEditorPlaceholder()) {
2707     // FIXME: When typed placeholders are supported we can create a typed
2708     // placeholder expression node.
2709     return ExprError();
2710   }
2711 
2712   // C++ [temp.dep.expr]p3:
2713   //   An id-expression is type-dependent if it contains:
2714   //     -- an identifier that was declared with a dependent type,
2715   //        (note: handled after lookup)
2716   //     -- a template-id that is dependent,
2717   //        (note: handled in BuildTemplateIdExpr)
2718   //     -- a conversion-function-id that specifies a dependent type,
2719   //     -- a nested-name-specifier that contains a class-name that
2720   //        names a dependent type.
2721   // Determine whether this is a member of an unknown specialization;
2722   // we need to handle these differently.
2723   bool DependentID = false;
2724   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2725       Name.getCXXNameType()->isDependentType()) {
2726     DependentID = true;
2727   } else if (SS.isSet()) {
2728     if (DeclContext *DC = computeDeclContext(SS, false)) {
2729       if (RequireCompleteDeclContext(SS, DC))
2730         return ExprError();
2731     } else {
2732       DependentID = true;
2733     }
2734   }
2735 
2736   if (DependentID)
2737     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2738                                       IsAddressOfOperand, TemplateArgs);
2739 
2740   // Perform the required lookup.
2741   LookupResult R(*this, NameInfo,
2742                  (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2743                      ? LookupObjCImplicitSelfParam
2744                      : LookupOrdinaryName);
2745   if (TemplateKWLoc.isValid() || TemplateArgs) {
2746     // Lookup the template name again to correctly establish the context in
2747     // which it was found. This is really unfortunate as we already did the
2748     // lookup to determine that it was a template name in the first place. If
2749     // this becomes a performance hit, we can work harder to preserve those
2750     // results until we get here but it's likely not worth it.
2751     bool MemberOfUnknownSpecialization;
2752     AssumedTemplateKind AssumedTemplate;
2753     if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2754                            MemberOfUnknownSpecialization, TemplateKWLoc,
2755                            &AssumedTemplate))
2756       return ExprError();
2757 
2758     if (MemberOfUnknownSpecialization ||
2759         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2760       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2761                                         IsAddressOfOperand, TemplateArgs);
2762   } else {
2763     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2764     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2765 
2766     // If the result might be in a dependent base class, this is a dependent
2767     // id-expression.
2768     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2769       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2770                                         IsAddressOfOperand, TemplateArgs);
2771 
2772     // If this reference is in an Objective-C method, then we need to do
2773     // some special Objective-C lookup, too.
2774     if (IvarLookupFollowUp) {
2775       ExprResult E(LookupInObjCMethod(R, S, II, true));
2776       if (E.isInvalid())
2777         return ExprError();
2778 
2779       if (Expr *Ex = E.getAs<Expr>())
2780         return Ex;
2781     }
2782   }
2783 
2784   if (R.isAmbiguous())
2785     return ExprError();
2786 
2787   // This could be an implicitly declared function reference if the language
2788   // mode allows it as a feature.
2789   if (R.empty() && HasTrailingLParen && II &&
2790       getLangOpts().implicitFunctionsAllowed()) {
2791     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2792     if (D) R.addDecl(D);
2793   }
2794 
2795   // Determine whether this name might be a candidate for
2796   // argument-dependent lookup.
2797   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2798 
2799   if (R.empty() && !ADL) {
2800     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2801       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2802                                                    TemplateKWLoc, TemplateArgs))
2803         return E;
2804     }
2805 
2806     // Don't diagnose an empty lookup for inline assembly.
2807     if (IsInlineAsmIdentifier)
2808       return ExprError();
2809 
2810     // If this name wasn't predeclared and if this is not a function
2811     // call, diagnose the problem.
2812     TypoExpr *TE = nullptr;
2813     DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2814                                                        : nullptr);
2815     DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2816     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2817            "Typo correction callback misconfigured");
2818     if (CCC) {
2819       // Make sure the callback knows what the typo being diagnosed is.
2820       CCC->setTypoName(II);
2821       if (SS.isValid())
2822         CCC->setTypoNNS(SS.getScopeRep());
2823     }
2824     // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2825     // a template name, but we happen to have always already looked up the name
2826     // before we get here if it must be a template name.
2827     if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2828                             std::nullopt, nullptr, &TE)) {
2829       if (TE && KeywordReplacement) {
2830         auto &State = getTypoExprState(TE);
2831         auto BestTC = State.Consumer->getNextCorrection();
2832         if (BestTC.isKeyword()) {
2833           auto *II = BestTC.getCorrectionAsIdentifierInfo();
2834           if (State.DiagHandler)
2835             State.DiagHandler(BestTC);
2836           KeywordReplacement->startToken();
2837           KeywordReplacement->setKind(II->getTokenID());
2838           KeywordReplacement->setIdentifierInfo(II);
2839           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2840           // Clean up the state associated with the TypoExpr, since it has
2841           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2842           clearDelayedTypo(TE);
2843           // Signal that a correction to a keyword was performed by returning a
2844           // valid-but-null ExprResult.
2845           return (Expr*)nullptr;
2846         }
2847         State.Consumer->resetCorrectionStream();
2848       }
2849       return TE ? TE : ExprError();
2850     }
2851 
2852     assert(!R.empty() &&
2853            "DiagnoseEmptyLookup returned false but added no results");
2854 
2855     // If we found an Objective-C instance variable, let
2856     // LookupInObjCMethod build the appropriate expression to
2857     // reference the ivar.
2858     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2859       R.clear();
2860       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2861       // In a hopelessly buggy code, Objective-C instance variable
2862       // lookup fails and no expression will be built to reference it.
2863       if (!E.isInvalid() && !E.get())
2864         return ExprError();
2865       return E;
2866     }
2867   }
2868 
2869   // This is guaranteed from this point on.
2870   assert(!R.empty() || ADL);
2871 
2872   // Check whether this might be a C++ implicit instance member access.
2873   // C++ [class.mfct.non-static]p3:
2874   //   When an id-expression that is not part of a class member access
2875   //   syntax and not used to form a pointer to member is used in the
2876   //   body of a non-static member function of class X, if name lookup
2877   //   resolves the name in the id-expression to a non-static non-type
2878   //   member of some class C, the id-expression is transformed into a
2879   //   class member access expression using (*this) as the
2880   //   postfix-expression to the left of the . operator.
2881   //
2882   // But we don't actually need to do this for '&' operands if R
2883   // resolved to a function or overloaded function set, because the
2884   // expression is ill-formed if it actually works out to be a
2885   // non-static member function:
2886   //
2887   // C++ [expr.ref]p4:
2888   //   Otherwise, if E1.E2 refers to a non-static member function. . .
2889   //   [t]he expression can be used only as the left-hand operand of a
2890   //   member function call.
2891   //
2892   // There are other safeguards against such uses, but it's important
2893   // to get this right here so that we don't end up making a
2894   // spuriously dependent expression if we're inside a dependent
2895   // instance method.
2896   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2897     bool MightBeImplicitMember;
2898     if (!IsAddressOfOperand)
2899       MightBeImplicitMember = true;
2900     else if (!SS.isEmpty())
2901       MightBeImplicitMember = false;
2902     else if (R.isOverloadedResult())
2903       MightBeImplicitMember = false;
2904     else if (R.isUnresolvableResult())
2905       MightBeImplicitMember = true;
2906     else
2907       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2908                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2909                               isa<MSPropertyDecl>(R.getFoundDecl());
2910 
2911     if (MightBeImplicitMember)
2912       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2913                                              R, TemplateArgs, S);
2914   }
2915 
2916   if (TemplateArgs || TemplateKWLoc.isValid()) {
2917 
2918     // In C++1y, if this is a variable template id, then check it
2919     // in BuildTemplateIdExpr().
2920     // The single lookup result must be a variable template declaration.
2921     if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2922         Id.TemplateId->Kind == TNK_Var_template) {
2923       assert(R.getAsSingle<VarTemplateDecl>() &&
2924              "There should only be one declaration found.");
2925     }
2926 
2927     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2928   }
2929 
2930   return BuildDeclarationNameExpr(SS, R, ADL);
2931 }
2932 
2933 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2934 /// declaration name, generally during template instantiation.
2935 /// There's a large number of things which don't need to be done along
2936 /// this path.
BuildQualifiedDeclarationNameExpr(CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,bool IsAddressOfOperand,const Scope * S,TypeSourceInfo ** RecoveryTSI)2937 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2938     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2939     bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2940   if (NameInfo.getName().isDependentName())
2941     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2942                                      NameInfo, /*TemplateArgs=*/nullptr);
2943 
2944   DeclContext *DC = computeDeclContext(SS, false);
2945   if (!DC)
2946     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2947                                      NameInfo, /*TemplateArgs=*/nullptr);
2948 
2949   if (RequireCompleteDeclContext(SS, DC))
2950     return ExprError();
2951 
2952   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2953   LookupQualifiedName(R, DC);
2954 
2955   if (R.isAmbiguous())
2956     return ExprError();
2957 
2958   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2959     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2960                                      NameInfo, /*TemplateArgs=*/nullptr);
2961 
2962   if (R.empty()) {
2963     // Don't diagnose problems with invalid record decl, the secondary no_member
2964     // diagnostic during template instantiation is likely bogus, e.g. if a class
2965     // is invalid because it's derived from an invalid base class, then missing
2966     // members were likely supposed to be inherited.
2967     if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2968       if (CD->isInvalidDecl())
2969         return ExprError();
2970     Diag(NameInfo.getLoc(), diag::err_no_member)
2971       << NameInfo.getName() << DC << SS.getRange();
2972     return ExprError();
2973   }
2974 
2975   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2976     // Diagnose a missing typename if this resolved unambiguously to a type in
2977     // a dependent context.  If we can recover with a type, downgrade this to
2978     // a warning in Microsoft compatibility mode.
2979     unsigned DiagID = diag::err_typename_missing;
2980     if (RecoveryTSI && getLangOpts().MSVCCompat)
2981       DiagID = diag::ext_typename_missing;
2982     SourceLocation Loc = SS.getBeginLoc();
2983     auto D = Diag(Loc, DiagID);
2984     D << SS.getScopeRep() << NameInfo.getName().getAsString()
2985       << SourceRange(Loc, NameInfo.getEndLoc());
2986 
2987     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2988     // context.
2989     if (!RecoveryTSI)
2990       return ExprError();
2991 
2992     // Only issue the fixit if we're prepared to recover.
2993     D << FixItHint::CreateInsertion(Loc, "typename ");
2994 
2995     // Recover by pretending this was an elaborated type.
2996     QualType Ty = Context.getTypeDeclType(TD);
2997     TypeLocBuilder TLB;
2998     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2999 
3000     QualType ET = getElaboratedType(ElaboratedTypeKeyword::None, SS, Ty);
3001     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
3002     QTL.setElaboratedKeywordLoc(SourceLocation());
3003     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
3004 
3005     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
3006 
3007     return ExprEmpty();
3008   }
3009 
3010   // Defend against this resolving to an implicit member access. We usually
3011   // won't get here if this might be a legitimate a class member (we end up in
3012   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
3013   // a pointer-to-member or in an unevaluated context in C++11.
3014   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
3015     return BuildPossibleImplicitMemberExpr(SS,
3016                                            /*TemplateKWLoc=*/SourceLocation(),
3017                                            R, /*TemplateArgs=*/nullptr, S);
3018 
3019   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
3020 }
3021 
3022 /// The parser has read a name in, and Sema has detected that we're currently
3023 /// inside an ObjC method. Perform some additional checks and determine if we
3024 /// should form a reference to an ivar.
3025 ///
3026 /// Ideally, most of this would be done by lookup, but there's
3027 /// actually quite a lot of extra work involved.
LookupIvarInObjCMethod(LookupResult & Lookup,Scope * S,IdentifierInfo * II)3028 DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
3029                                         IdentifierInfo *II) {
3030   SourceLocation Loc = Lookup.getNameLoc();
3031   ObjCMethodDecl *CurMethod = getCurMethodDecl();
3032 
3033   // Check for error condition which is already reported.
3034   if (!CurMethod)
3035     return DeclResult(true);
3036 
3037   // There are two cases to handle here.  1) scoped lookup could have failed,
3038   // in which case we should look for an ivar.  2) scoped lookup could have
3039   // found a decl, but that decl is outside the current instance method (i.e.
3040   // a global variable).  In these two cases, we do a lookup for an ivar with
3041   // this name, if the lookup sucedes, we replace it our current decl.
3042 
3043   // If we're in a class method, we don't normally want to look for
3044   // ivars.  But if we don't find anything else, and there's an
3045   // ivar, that's an error.
3046   bool IsClassMethod = CurMethod->isClassMethod();
3047 
3048   bool LookForIvars;
3049   if (Lookup.empty())
3050     LookForIvars = true;
3051   else if (IsClassMethod)
3052     LookForIvars = false;
3053   else
3054     LookForIvars = (Lookup.isSingleResult() &&
3055                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
3056   ObjCInterfaceDecl *IFace = nullptr;
3057   if (LookForIvars) {
3058     IFace = CurMethod->getClassInterface();
3059     ObjCInterfaceDecl *ClassDeclared;
3060     ObjCIvarDecl *IV = nullptr;
3061     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
3062       // Diagnose using an ivar in a class method.
3063       if (IsClassMethod) {
3064         Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
3065         return DeclResult(true);
3066       }
3067 
3068       // Diagnose the use of an ivar outside of the declaring class.
3069       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
3070           !declaresSameEntity(ClassDeclared, IFace) &&
3071           !getLangOpts().DebuggerSupport)
3072         Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
3073 
3074       // Success.
3075       return IV;
3076     }
3077   } else if (CurMethod->isInstanceMethod()) {
3078     // We should warn if a local variable hides an ivar.
3079     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
3080       ObjCInterfaceDecl *ClassDeclared;
3081       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
3082         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
3083             declaresSameEntity(IFace, ClassDeclared))
3084           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
3085       }
3086     }
3087   } else if (Lookup.isSingleResult() &&
3088              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
3089     // If accessing a stand-alone ivar in a class method, this is an error.
3090     if (const ObjCIvarDecl *IV =
3091             dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
3092       Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
3093       return DeclResult(true);
3094     }
3095   }
3096 
3097   // Didn't encounter an error, didn't find an ivar.
3098   return DeclResult(false);
3099 }
3100 
BuildIvarRefExpr(Scope * S,SourceLocation Loc,ObjCIvarDecl * IV)3101 ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
3102                                   ObjCIvarDecl *IV) {
3103   ObjCMethodDecl *CurMethod = getCurMethodDecl();
3104   assert(CurMethod && CurMethod->isInstanceMethod() &&
3105          "should not reference ivar from this context");
3106 
3107   ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
3108   assert(IFace && "should not reference ivar from this context");
3109 
3110   // If we're referencing an invalid decl, just return this as a silent
3111   // error node.  The error diagnostic was already emitted on the decl.
3112   if (IV->isInvalidDecl())
3113     return ExprError();
3114 
3115   // Check if referencing a field with __attribute__((deprecated)).
3116   if (DiagnoseUseOfDecl(IV, Loc))
3117     return ExprError();
3118 
3119   // FIXME: This should use a new expr for a direct reference, don't
3120   // turn this into Self->ivar, just return a BareIVarExpr or something.
3121   IdentifierInfo &II = Context.Idents.get("self");
3122   UnqualifiedId SelfName;
3123   SelfName.setImplicitSelfParam(&II);
3124   CXXScopeSpec SelfScopeSpec;
3125   SourceLocation TemplateKWLoc;
3126   ExprResult SelfExpr =
3127       ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
3128                         /*HasTrailingLParen=*/false,
3129                         /*IsAddressOfOperand=*/false);
3130   if (SelfExpr.isInvalid())
3131     return ExprError();
3132 
3133   SelfExpr = DefaultLvalueConversion(SelfExpr.get());
3134   if (SelfExpr.isInvalid())
3135     return ExprError();
3136 
3137   MarkAnyDeclReferenced(Loc, IV, true);
3138 
3139   ObjCMethodFamily MF = CurMethod->getMethodFamily();
3140   if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
3141       !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
3142     Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
3143 
3144   ObjCIvarRefExpr *Result = new (Context)
3145       ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
3146                       IV->getLocation(), SelfExpr.get(), true, true);
3147 
3148   if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3149     if (!isUnevaluatedContext() &&
3150         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
3151       getCurFunction()->recordUseOfWeak(Result);
3152   }
3153   if (getLangOpts().ObjCAutoRefCount && !isUnevaluatedContext())
3154     if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
3155       ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
3156 
3157   return Result;
3158 }
3159 
3160 /// The parser has read a name in, and Sema has detected that we're currently
3161 /// inside an ObjC method. Perform some additional checks and determine if we
3162 /// should form a reference to an ivar. If so, build an expression referencing
3163 /// that ivar.
3164 ExprResult
LookupInObjCMethod(LookupResult & Lookup,Scope * S,IdentifierInfo * II,bool AllowBuiltinCreation)3165 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
3166                          IdentifierInfo *II, bool AllowBuiltinCreation) {
3167   // FIXME: Integrate this lookup step into LookupParsedName.
3168   DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
3169   if (Ivar.isInvalid())
3170     return ExprError();
3171   if (Ivar.isUsable())
3172     return BuildIvarRefExpr(S, Lookup.getNameLoc(),
3173                             cast<ObjCIvarDecl>(Ivar.get()));
3174 
3175   if (Lookup.empty() && II && AllowBuiltinCreation)
3176     LookupBuiltin(Lookup);
3177 
3178   // Sentinel value saying that we didn't do anything special.
3179   return ExprResult(false);
3180 }
3181 
3182 /// Cast a base object to a member's actual type.
3183 ///
3184 /// There are two relevant checks:
3185 ///
3186 /// C++ [class.access.base]p7:
3187 ///
3188 ///   If a class member access operator [...] is used to access a non-static
3189 ///   data member or non-static member function, the reference is ill-formed if
3190 ///   the left operand [...] cannot be implicitly converted to a pointer to the
3191 ///   naming class of the right operand.
3192 ///
3193 /// C++ [expr.ref]p7:
3194 ///
3195 ///   If E2 is a non-static data member or a non-static member function, the
3196 ///   program is ill-formed if the class of which E2 is directly a member is an
3197 ///   ambiguous base (11.8) of the naming class (11.9.3) of E2.
3198 ///
3199 /// Note that the latter check does not consider access; the access of the
3200 /// "real" base class is checked as appropriate when checking the access of the
3201 /// member name.
3202 ExprResult
PerformObjectMemberConversion(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,NamedDecl * Member)3203 Sema::PerformObjectMemberConversion(Expr *From,
3204                                     NestedNameSpecifier *Qualifier,
3205                                     NamedDecl *FoundDecl,
3206                                     NamedDecl *Member) {
3207   const auto *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
3208   if (!RD)
3209     return From;
3210 
3211   QualType DestRecordType;
3212   QualType DestType;
3213   QualType FromRecordType;
3214   QualType FromType = From->getType();
3215   bool PointerConversions = false;
3216   if (isa<FieldDecl>(Member)) {
3217     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
3218     auto FromPtrType = FromType->getAs<PointerType>();
3219     DestRecordType = Context.getAddrSpaceQualType(
3220         DestRecordType, FromPtrType
3221                             ? FromType->getPointeeType().getAddressSpace()
3222                             : FromType.getAddressSpace());
3223 
3224     if (FromPtrType) {
3225       DestType = Context.getPointerType(DestRecordType);
3226       FromRecordType = FromPtrType->getPointeeType();
3227       PointerConversions = true;
3228     } else {
3229       DestType = DestRecordType;
3230       FromRecordType = FromType;
3231     }
3232   } else if (const auto *Method = dyn_cast<CXXMethodDecl>(Member)) {
3233     if (!Method->isImplicitObjectMemberFunction())
3234       return From;
3235 
3236     DestType = Method->getThisType().getNonReferenceType();
3237     DestRecordType = Method->getFunctionObjectParameterType();
3238 
3239     if (FromType->getAs<PointerType>()) {
3240       FromRecordType = FromType->getPointeeType();
3241       PointerConversions = true;
3242     } else {
3243       FromRecordType = FromType;
3244       DestType = DestRecordType;
3245     }
3246 
3247     LangAS FromAS = FromRecordType.getAddressSpace();
3248     LangAS DestAS = DestRecordType.getAddressSpace();
3249     if (FromAS != DestAS) {
3250       QualType FromRecordTypeWithoutAS =
3251           Context.removeAddrSpaceQualType(FromRecordType);
3252       QualType FromTypeWithDestAS =
3253           Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
3254       if (PointerConversions)
3255         FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
3256       From = ImpCastExprToType(From, FromTypeWithDestAS,
3257                                CK_AddressSpaceConversion, From->getValueKind())
3258                  .get();
3259     }
3260   } else {
3261     // No conversion necessary.
3262     return From;
3263   }
3264 
3265   if (DestType->isDependentType() || FromType->isDependentType())
3266     return From;
3267 
3268   // If the unqualified types are the same, no conversion is necessary.
3269   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3270     return From;
3271 
3272   SourceRange FromRange = From->getSourceRange();
3273   SourceLocation FromLoc = FromRange.getBegin();
3274 
3275   ExprValueKind VK = From->getValueKind();
3276 
3277   // C++ [class.member.lookup]p8:
3278   //   [...] Ambiguities can often be resolved by qualifying a name with its
3279   //   class name.
3280   //
3281   // If the member was a qualified name and the qualified referred to a
3282   // specific base subobject type, we'll cast to that intermediate type
3283   // first and then to the object in which the member is declared. That allows
3284   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3285   //
3286   //   class Base { public: int x; };
3287   //   class Derived1 : public Base { };
3288   //   class Derived2 : public Base { };
3289   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
3290   //
3291   //   void VeryDerived::f() {
3292   //     x = 17; // error: ambiguous base subobjects
3293   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
3294   //   }
3295   if (Qualifier && Qualifier->getAsType()) {
3296     QualType QType = QualType(Qualifier->getAsType(), 0);
3297     assert(QType->isRecordType() && "lookup done with non-record type");
3298 
3299     QualType QRecordType = QualType(QType->castAs<RecordType>(), 0);
3300 
3301     // In C++98, the qualifier type doesn't actually have to be a base
3302     // type of the object type, in which case we just ignore it.
3303     // Otherwise build the appropriate casts.
3304     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3305       CXXCastPath BasePath;
3306       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3307                                        FromLoc, FromRange, &BasePath))
3308         return ExprError();
3309 
3310       if (PointerConversions)
3311         QType = Context.getPointerType(QType);
3312       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3313                                VK, &BasePath).get();
3314 
3315       FromType = QType;
3316       FromRecordType = QRecordType;
3317 
3318       // If the qualifier type was the same as the destination type,
3319       // we're done.
3320       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3321         return From;
3322     }
3323   }
3324 
3325   CXXCastPath BasePath;
3326   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3327                                    FromLoc, FromRange, &BasePath,
3328                                    /*IgnoreAccess=*/true))
3329     return ExprError();
3330 
3331   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3332                            VK, &BasePath);
3333 }
3334 
UseArgumentDependentLookup(const CXXScopeSpec & SS,const LookupResult & R,bool HasTrailingLParen)3335 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3336                                       const LookupResult &R,
3337                                       bool HasTrailingLParen) {
3338   // Only when used directly as the postfix-expression of a call.
3339   if (!HasTrailingLParen)
3340     return false;
3341 
3342   // Never if a scope specifier was provided.
3343   if (SS.isSet())
3344     return false;
3345 
3346   // Only in C++ or ObjC++.
3347   if (!getLangOpts().CPlusPlus)
3348     return false;
3349 
3350   // Turn off ADL when we find certain kinds of declarations during
3351   // normal lookup:
3352   for (const NamedDecl *D : R) {
3353     // C++0x [basic.lookup.argdep]p3:
3354     //     -- a declaration of a class member
3355     // Since using decls preserve this property, we check this on the
3356     // original decl.
3357     if (D->isCXXClassMember())
3358       return false;
3359 
3360     // C++0x [basic.lookup.argdep]p3:
3361     //     -- a block-scope function declaration that is not a
3362     //        using-declaration
3363     // NOTE: we also trigger this for function templates (in fact, we
3364     // don't check the decl type at all, since all other decl types
3365     // turn off ADL anyway).
3366     if (isa<UsingShadowDecl>(D))
3367       D = cast<UsingShadowDecl>(D)->getTargetDecl();
3368     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3369       return false;
3370 
3371     // C++0x [basic.lookup.argdep]p3:
3372     //     -- a declaration that is neither a function or a function
3373     //        template
3374     // And also for builtin functions.
3375     if (const auto *FDecl = dyn_cast<FunctionDecl>(D)) {
3376       // But also builtin functions.
3377       if (FDecl->getBuiltinID() && FDecl->isImplicit())
3378         return false;
3379     } else if (!isa<FunctionTemplateDecl>(D))
3380       return false;
3381   }
3382 
3383   return true;
3384 }
3385 
3386 
3387 /// Diagnoses obvious problems with the use of the given declaration
3388 /// as an expression.  This is only actually called for lookups that
3389 /// were not overloaded, and it doesn't promise that the declaration
3390 /// will in fact be used.
CheckDeclInExpr(Sema & S,SourceLocation Loc,NamedDecl * D,bool AcceptInvalid)3391 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D,
3392                             bool AcceptInvalid) {
3393   if (D->isInvalidDecl() && !AcceptInvalid)
3394     return true;
3395 
3396   if (isa<TypedefNameDecl>(D)) {
3397     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3398     return true;
3399   }
3400 
3401   if (isa<ObjCInterfaceDecl>(D)) {
3402     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3403     return true;
3404   }
3405 
3406   if (isa<NamespaceDecl>(D)) {
3407     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3408     return true;
3409   }
3410 
3411   return false;
3412 }
3413 
3414 // Certain multiversion types should be treated as overloaded even when there is
3415 // only one result.
ShouldLookupResultBeMultiVersionOverload(const LookupResult & R)3416 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3417   assert(R.isSingleResult() && "Expected only a single result");
3418   const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3419   return FD &&
3420          (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3421 }
3422 
BuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool NeedsADL,bool AcceptInvalidDecl)3423 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3424                                           LookupResult &R, bool NeedsADL,
3425                                           bool AcceptInvalidDecl) {
3426   // If this is a single, fully-resolved result and we don't need ADL,
3427   // just build an ordinary singleton decl ref.
3428   if (!NeedsADL && R.isSingleResult() &&
3429       !R.getAsSingle<FunctionTemplateDecl>() &&
3430       !ShouldLookupResultBeMultiVersionOverload(R))
3431     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3432                                     R.getRepresentativeDecl(), nullptr,
3433                                     AcceptInvalidDecl);
3434 
3435   // We only need to check the declaration if there's exactly one
3436   // result, because in the overloaded case the results can only be
3437   // functions and function templates.
3438   if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3439       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl(),
3440                       AcceptInvalidDecl))
3441     return ExprError();
3442 
3443   // Otherwise, just build an unresolved lookup expression.  Suppress
3444   // any lookup-related diagnostics; we'll hash these out later, when
3445   // we've picked a target.
3446   R.suppressDiagnostics();
3447 
3448   UnresolvedLookupExpr *ULE
3449     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3450                                    SS.getWithLocInContext(Context),
3451                                    R.getLookupNameInfo(),
3452                                    NeedsADL, R.isOverloadedResult(),
3453                                    R.begin(), R.end());
3454 
3455   return ULE;
3456 }
3457 
3458 static void diagnoseUncapturableValueReferenceOrBinding(Sema &S,
3459                                                         SourceLocation loc,
3460                                                         ValueDecl *var);
3461 
3462 /// Complete semantic analysis for a reference to the given declaration.
BuildDeclarationNameExpr(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,NamedDecl * D,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,bool AcceptInvalidDecl)3463 ExprResult Sema::BuildDeclarationNameExpr(
3464     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3465     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3466     bool AcceptInvalidDecl) {
3467   assert(D && "Cannot refer to a NULL declaration");
3468   assert(!isa<FunctionTemplateDecl>(D) &&
3469          "Cannot refer unambiguously to a function template");
3470 
3471   SourceLocation Loc = NameInfo.getLoc();
3472   if (CheckDeclInExpr(*this, Loc, D, AcceptInvalidDecl)) {
3473     // Recovery from invalid cases (e.g. D is an invalid Decl).
3474     // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3475     // diagnostics, as invalid decls use int as a fallback type.
3476     return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {});
3477   }
3478 
3479   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3480     // Specifically diagnose references to class templates that are missing
3481     // a template argument list.
3482     diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3483     return ExprError();
3484   }
3485 
3486   // Make sure that we're referring to a value.
3487   if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) {
3488     Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
3489     Diag(D->getLocation(), diag::note_declared_at);
3490     return ExprError();
3491   }
3492 
3493   // Check whether this declaration can be used. Note that we suppress
3494   // this check when we're going to perform argument-dependent lookup
3495   // on this function name, because this might not be the function
3496   // that overload resolution actually selects.
3497   if (DiagnoseUseOfDecl(D, Loc))
3498     return ExprError();
3499 
3500   auto *VD = cast<ValueDecl>(D);
3501 
3502   // Only create DeclRefExpr's for valid Decl's.
3503   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3504     return ExprError();
3505 
3506   // Handle members of anonymous structs and unions.  If we got here,
3507   // and the reference is to a class member indirect field, then this
3508   // must be the subject of a pointer-to-member expression.
3509   if (auto *IndirectField = dyn_cast<IndirectFieldDecl>(VD);
3510       IndirectField && !IndirectField->isCXXClassMember())
3511     return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3512                                                     IndirectField);
3513 
3514   QualType type = VD->getType();
3515   if (type.isNull())
3516     return ExprError();
3517   ExprValueKind valueKind = VK_PRValue;
3518 
3519   // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3520   // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3521   // is expanded by some outer '...' in the context of the use.
3522   type = type.getNonPackExpansionType();
3523 
3524   switch (D->getKind()) {
3525     // Ignore all the non-ValueDecl kinds.
3526 #define ABSTRACT_DECL(kind)
3527 #define VALUE(type, base)
3528 #define DECL(type, base) case Decl::type:
3529 #include "clang/AST/DeclNodes.inc"
3530     llvm_unreachable("invalid value decl kind");
3531 
3532   // These shouldn't make it here.
3533   case Decl::ObjCAtDefsField:
3534     llvm_unreachable("forming non-member reference to ivar?");
3535 
3536   // Enum constants are always r-values and never references.
3537   // Unresolved using declarations are dependent.
3538   case Decl::EnumConstant:
3539   case Decl::UnresolvedUsingValue:
3540   case Decl::OMPDeclareReduction:
3541   case Decl::OMPDeclareMapper:
3542     valueKind = VK_PRValue;
3543     break;
3544 
3545   // Fields and indirect fields that got here must be for
3546   // pointer-to-member expressions; we just call them l-values for
3547   // internal consistency, because this subexpression doesn't really
3548   // exist in the high-level semantics.
3549   case Decl::Field:
3550   case Decl::IndirectField:
3551   case Decl::ObjCIvar:
3552     assert(getLangOpts().CPlusPlus && "building reference to field in C?");
3553 
3554     // These can't have reference type in well-formed programs, but
3555     // for internal consistency we do this anyway.
3556     type = type.getNonReferenceType();
3557     valueKind = VK_LValue;
3558     break;
3559 
3560   // Non-type template parameters are either l-values or r-values
3561   // depending on the type.
3562   case Decl::NonTypeTemplateParm: {
3563     if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3564       type = reftype->getPointeeType();
3565       valueKind = VK_LValue; // even if the parameter is an r-value reference
3566       break;
3567     }
3568 
3569     // [expr.prim.id.unqual]p2:
3570     //   If the entity is a template parameter object for a template
3571     //   parameter of type T, the type of the expression is const T.
3572     //   [...] The expression is an lvalue if the entity is a [...] template
3573     //   parameter object.
3574     if (type->isRecordType()) {
3575       type = type.getUnqualifiedType().withConst();
3576       valueKind = VK_LValue;
3577       break;
3578     }
3579 
3580     // For non-references, we need to strip qualifiers just in case
3581     // the template parameter was declared as 'const int' or whatever.
3582     valueKind = VK_PRValue;
3583     type = type.getUnqualifiedType();
3584     break;
3585   }
3586 
3587   case Decl::Var:
3588   case Decl::VarTemplateSpecialization:
3589   case Decl::VarTemplatePartialSpecialization:
3590   case Decl::Decomposition:
3591   case Decl::OMPCapturedExpr:
3592     // In C, "extern void blah;" is valid and is an r-value.
3593     if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3594         type->isVoidType()) {
3595       valueKind = VK_PRValue;
3596       break;
3597     }
3598     [[fallthrough]];
3599 
3600   case Decl::ImplicitParam:
3601   case Decl::ParmVar: {
3602     // These are always l-values.
3603     valueKind = VK_LValue;
3604     type = type.getNonReferenceType();
3605 
3606     // FIXME: Does the addition of const really only apply in
3607     // potentially-evaluated contexts? Since the variable isn't actually
3608     // captured in an unevaluated context, it seems that the answer is no.
3609     if (!isUnevaluatedContext()) {
3610       QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3611       if (!CapturedType.isNull())
3612         type = CapturedType;
3613     }
3614 
3615     break;
3616   }
3617 
3618   case Decl::Binding:
3619     // These are always lvalues.
3620     valueKind = VK_LValue;
3621     type = type.getNonReferenceType();
3622     break;
3623 
3624   case Decl::Function: {
3625     if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3626       if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) {
3627         type = Context.BuiltinFnTy;
3628         valueKind = VK_PRValue;
3629         break;
3630       }
3631     }
3632 
3633     const FunctionType *fty = type->castAs<FunctionType>();
3634 
3635     // If we're referring to a function with an __unknown_anytype
3636     // result type, make the entire expression __unknown_anytype.
3637     if (fty->getReturnType() == Context.UnknownAnyTy) {
3638       type = Context.UnknownAnyTy;
3639       valueKind = VK_PRValue;
3640       break;
3641     }
3642 
3643     // Functions are l-values in C++.
3644     if (getLangOpts().CPlusPlus) {
3645       valueKind = VK_LValue;
3646       break;
3647     }
3648 
3649     // C99 DR 316 says that, if a function type comes from a
3650     // function definition (without a prototype), that type is only
3651     // used for checking compatibility. Therefore, when referencing
3652     // the function, we pretend that we don't have the full function
3653     // type.
3654     if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
3655       type = Context.getFunctionNoProtoType(fty->getReturnType(),
3656                                             fty->getExtInfo());
3657 
3658     // Functions are r-values in C.
3659     valueKind = VK_PRValue;
3660     break;
3661   }
3662 
3663   case Decl::CXXDeductionGuide:
3664     llvm_unreachable("building reference to deduction guide");
3665 
3666   case Decl::MSProperty:
3667   case Decl::MSGuid:
3668   case Decl::TemplateParamObject:
3669     // FIXME: Should MSGuidDecl and template parameter objects be subject to
3670     // capture in OpenMP, or duplicated between host and device?
3671     valueKind = VK_LValue;
3672     break;
3673 
3674   case Decl::UnnamedGlobalConstant:
3675     valueKind = VK_LValue;
3676     break;
3677 
3678   case Decl::CXXMethod:
3679     // If we're referring to a method with an __unknown_anytype
3680     // result type, make the entire expression __unknown_anytype.
3681     // This should only be possible with a type written directly.
3682     if (const FunctionProtoType *proto =
3683             dyn_cast<FunctionProtoType>(VD->getType()))
3684       if (proto->getReturnType() == Context.UnknownAnyTy) {
3685         type = Context.UnknownAnyTy;
3686         valueKind = VK_PRValue;
3687         break;
3688       }
3689 
3690     // C++ methods are l-values if static, r-values if non-static.
3691     if (cast<CXXMethodDecl>(VD)->isStatic()) {
3692       valueKind = VK_LValue;
3693       break;
3694     }
3695     [[fallthrough]];
3696 
3697   case Decl::CXXConversion:
3698   case Decl::CXXDestructor:
3699   case Decl::CXXConstructor:
3700     valueKind = VK_PRValue;
3701     break;
3702   }
3703 
3704   auto *E =
3705       BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3706                        /*FIXME: TemplateKWLoc*/ SourceLocation(), TemplateArgs);
3707   // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We
3708   // wrap a DeclRefExpr referring to an invalid decl with a dependent-type
3709   // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus
3710   // diagnostics).
3711   if (VD->isInvalidDecl() && E)
3712     return CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), {E});
3713   return E;
3714 }
3715 
ConvertUTF8ToWideString(unsigned CharByteWidth,StringRef Source,SmallString<32> & Target)3716 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3717                                     SmallString<32> &Target) {
3718   Target.resize(CharByteWidth * (Source.size() + 1));
3719   char *ResultPtr = &Target[0];
3720   const llvm::UTF8 *ErrorPtr;
3721   bool success =
3722       llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3723   (void)success;
3724   assert(success);
3725   Target.resize(ResultPtr - &Target[0]);
3726 }
3727 
BuildPredefinedExpr(SourceLocation Loc,PredefinedIdentKind IK)3728 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3729                                      PredefinedIdentKind IK) {
3730   Decl *currentDecl = getPredefinedExprDecl(CurContext);
3731   if (!currentDecl) {
3732     Diag(Loc, diag::ext_predef_outside_function);
3733     currentDecl = Context.getTranslationUnitDecl();
3734   }
3735 
3736   QualType ResTy;
3737   StringLiteral *SL = nullptr;
3738   if (cast<DeclContext>(currentDecl)->isDependentContext())
3739     ResTy = Context.DependentTy;
3740   else {
3741     // Pre-defined identifiers are of type char[x], where x is the length of
3742     // the string.
3743     auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3744     unsigned Length = Str.length();
3745 
3746     llvm::APInt LengthI(32, Length + 1);
3747     if (IK == PredefinedIdentKind::LFunction ||
3748         IK == PredefinedIdentKind::LFuncSig) {
3749       ResTy =
3750           Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3751       SmallString<32> RawChars;
3752       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3753                               Str, RawChars);
3754       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3755                                            ArraySizeModifier::Normal,
3756                                            /*IndexTypeQuals*/ 0);
3757       SL = StringLiteral::Create(Context, RawChars, StringLiteralKind::Wide,
3758                                  /*Pascal*/ false, ResTy, Loc);
3759     } else {
3760       ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3761       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3762                                            ArraySizeModifier::Normal,
3763                                            /*IndexTypeQuals*/ 0);
3764       SL = StringLiteral::Create(Context, Str, StringLiteralKind::Ordinary,
3765                                  /*Pascal*/ false, ResTy, Loc);
3766     }
3767   }
3768 
3769   return PredefinedExpr::Create(Context, Loc, ResTy, IK, LangOpts.MicrosoftExt,
3770                                 SL);
3771 }
3772 
BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,SourceLocation LParen,SourceLocation RParen,TypeSourceInfo * TSI)3773 ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3774                                                SourceLocation LParen,
3775                                                SourceLocation RParen,
3776                                                TypeSourceInfo *TSI) {
3777   return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI);
3778 }
3779 
ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,SourceLocation LParen,SourceLocation RParen,ParsedType ParsedTy)3780 ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3781                                                SourceLocation LParen,
3782                                                SourceLocation RParen,
3783                                                ParsedType ParsedTy) {
3784   TypeSourceInfo *TSI = nullptr;
3785   QualType Ty = GetTypeFromParser(ParsedTy, &TSI);
3786 
3787   if (Ty.isNull())
3788     return ExprError();
3789   if (!TSI)
3790     TSI = Context.getTrivialTypeSourceInfo(Ty, LParen);
3791 
3792   return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI);
3793 }
3794 
ActOnPredefinedExpr(SourceLocation Loc,tok::TokenKind Kind)3795 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3796   return BuildPredefinedExpr(Loc, getPredefinedExprKind(Kind));
3797 }
3798 
ActOnCharacterConstant(const Token & Tok,Scope * UDLScope)3799 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3800   SmallString<16> CharBuffer;
3801   bool Invalid = false;
3802   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3803   if (Invalid)
3804     return ExprError();
3805 
3806   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3807                             PP, Tok.getKind());
3808   if (Literal.hadError())
3809     return ExprError();
3810 
3811   QualType Ty;
3812   if (Literal.isWide())
3813     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3814   else if (Literal.isUTF8() && getLangOpts().C23)
3815     Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C23
3816   else if (Literal.isUTF8() && getLangOpts().Char8)
3817     Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3818   else if (Literal.isUTF16())
3819     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3820   else if (Literal.isUTF32())
3821     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3822   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3823     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3824   else
3825     Ty = Context.CharTy; // 'x' -> char in C++;
3826                          // u8'x' -> char in C11-C17 and in C++ without char8_t.
3827 
3828   CharacterLiteralKind Kind = CharacterLiteralKind::Ascii;
3829   if (Literal.isWide())
3830     Kind = CharacterLiteralKind::Wide;
3831   else if (Literal.isUTF16())
3832     Kind = CharacterLiteralKind::UTF16;
3833   else if (Literal.isUTF32())
3834     Kind = CharacterLiteralKind::UTF32;
3835   else if (Literal.isUTF8())
3836     Kind = CharacterLiteralKind::UTF8;
3837 
3838   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3839                                              Tok.getLocation());
3840 
3841   if (Literal.getUDSuffix().empty())
3842     return Lit;
3843 
3844   // We're building a user-defined literal.
3845   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3846   SourceLocation UDSuffixLoc =
3847     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3848 
3849   // Make sure we're allowed user-defined literals here.
3850   if (!UDLScope)
3851     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3852 
3853   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3854   //   operator "" X (ch)
3855   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3856                                         Lit, Tok.getLocation());
3857 }
3858 
ActOnIntegerConstant(SourceLocation Loc,uint64_t Val)3859 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3860   unsigned IntSize = Context.getTargetInfo().getIntWidth();
3861   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3862                                 Context.IntTy, Loc);
3863 }
3864 
BuildFloatingLiteral(Sema & S,NumericLiteralParser & Literal,QualType Ty,SourceLocation Loc)3865 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3866                                   QualType Ty, SourceLocation Loc) {
3867   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3868 
3869   using llvm::APFloat;
3870   APFloat Val(Format);
3871 
3872   APFloat::opStatus result = Literal.GetFloatValue(Val);
3873 
3874   // Overflow is always an error, but underflow is only an error if
3875   // we underflowed to zero (APFloat reports denormals as underflow).
3876   if ((result & APFloat::opOverflow) ||
3877       ((result & APFloat::opUnderflow) && Val.isZero())) {
3878     unsigned diagnostic;
3879     SmallString<20> buffer;
3880     if (result & APFloat::opOverflow) {
3881       diagnostic = diag::warn_float_overflow;
3882       APFloat::getLargest(Format).toString(buffer);
3883     } else {
3884       diagnostic = diag::warn_float_underflow;
3885       APFloat::getSmallest(Format).toString(buffer);
3886     }
3887 
3888     S.Diag(Loc, diagnostic)
3889       << Ty
3890       << StringRef(buffer.data(), buffer.size());
3891   }
3892 
3893   bool isExact = (result == APFloat::opOK);
3894   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3895 }
3896 
CheckLoopHintExpr(Expr * E,SourceLocation Loc)3897 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3898   assert(E && "Invalid expression");
3899 
3900   if (E->isValueDependent())
3901     return false;
3902 
3903   QualType QT = E->getType();
3904   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3905     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3906     return true;
3907   }
3908 
3909   llvm::APSInt ValueAPS;
3910   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3911 
3912   if (R.isInvalid())
3913     return true;
3914 
3915   bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3916   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3917     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3918         << toString(ValueAPS, 10) << ValueIsPositive;
3919     return true;
3920   }
3921 
3922   return false;
3923 }
3924 
ActOnNumericConstant(const Token & Tok,Scope * UDLScope)3925 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3926   // Fast path for a single digit (which is quite common).  A single digit
3927   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3928   if (Tok.getLength() == 1) {
3929     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3930     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3931   }
3932 
3933   SmallString<128> SpellingBuffer;
3934   // NumericLiteralParser wants to overread by one character.  Add padding to
3935   // the buffer in case the token is copied to the buffer.  If getSpelling()
3936   // returns a StringRef to the memory buffer, it should have a null char at
3937   // the EOF, so it is also safe.
3938   SpellingBuffer.resize(Tok.getLength() + 1);
3939 
3940   // Get the spelling of the token, which eliminates trigraphs, etc.
3941   bool Invalid = false;
3942   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3943   if (Invalid)
3944     return ExprError();
3945 
3946   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3947                                PP.getSourceManager(), PP.getLangOpts(),
3948                                PP.getTargetInfo(), PP.getDiagnostics());
3949   if (Literal.hadError)
3950     return ExprError();
3951 
3952   if (Literal.hasUDSuffix()) {
3953     // We're building a user-defined literal.
3954     const IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3955     SourceLocation UDSuffixLoc =
3956       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3957 
3958     // Make sure we're allowed user-defined literals here.
3959     if (!UDLScope)
3960       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3961 
3962     QualType CookedTy;
3963     if (Literal.isFloatingLiteral()) {
3964       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3965       // long double, the literal is treated as a call of the form
3966       //   operator "" X (f L)
3967       CookedTy = Context.LongDoubleTy;
3968     } else {
3969       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3970       // unsigned long long, the literal is treated as a call of the form
3971       //   operator "" X (n ULL)
3972       CookedTy = Context.UnsignedLongLongTy;
3973     }
3974 
3975     DeclarationName OpName =
3976       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3977     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3978     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3979 
3980     SourceLocation TokLoc = Tok.getLocation();
3981 
3982     // Perform literal operator lookup to determine if we're building a raw
3983     // literal or a cooked one.
3984     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3985     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3986                                   /*AllowRaw*/ true, /*AllowTemplate*/ true,
3987                                   /*AllowStringTemplatePack*/ false,
3988                                   /*DiagnoseMissing*/ !Literal.isImaginary)) {
3989     case LOLR_ErrorNoDiagnostic:
3990       // Lookup failure for imaginary constants isn't fatal, there's still the
3991       // GNU extension producing _Complex types.
3992       break;
3993     case LOLR_Error:
3994       return ExprError();
3995     case LOLR_Cooked: {
3996       Expr *Lit;
3997       if (Literal.isFloatingLiteral()) {
3998         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3999       } else {
4000         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
4001         if (Literal.GetIntegerValue(ResultVal))
4002           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4003               << /* Unsigned */ 1;
4004         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
4005                                      Tok.getLocation());
4006       }
4007       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
4008     }
4009 
4010     case LOLR_Raw: {
4011       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
4012       // literal is treated as a call of the form
4013       //   operator "" X ("n")
4014       unsigned Length = Literal.getUDSuffixOffset();
4015       QualType StrTy = Context.getConstantArrayType(
4016           Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
4017           llvm::APInt(32, Length + 1), nullptr, ArraySizeModifier::Normal, 0);
4018       Expr *Lit =
4019           StringLiteral::Create(Context, StringRef(TokSpelling.data(), Length),
4020                                 StringLiteralKind::Ordinary,
4021                                 /*Pascal*/ false, StrTy, &TokLoc, 1);
4022       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
4023     }
4024 
4025     case LOLR_Template: {
4026       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
4027       // template), L is treated as a call fo the form
4028       //   operator "" X <'c1', 'c2', ... 'ck'>()
4029       // where n is the source character sequence c1 c2 ... ck.
4030       TemplateArgumentListInfo ExplicitArgs;
4031       unsigned CharBits = Context.getIntWidth(Context.CharTy);
4032       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
4033       llvm::APSInt Value(CharBits, CharIsUnsigned);
4034       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
4035         Value = TokSpelling[I];
4036         TemplateArgument Arg(Context, Value, Context.CharTy);
4037         TemplateArgumentLocInfo ArgInfo;
4038         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
4039       }
4040       return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt, TokLoc,
4041                                       &ExplicitArgs);
4042     }
4043     case LOLR_StringTemplatePack:
4044       llvm_unreachable("unexpected literal operator lookup result");
4045     }
4046   }
4047 
4048   Expr *Res;
4049 
4050   if (Literal.isFixedPointLiteral()) {
4051     QualType Ty;
4052 
4053     if (Literal.isAccum) {
4054       if (Literal.isHalf) {
4055         Ty = Context.ShortAccumTy;
4056       } else if (Literal.isLong) {
4057         Ty = Context.LongAccumTy;
4058       } else {
4059         Ty = Context.AccumTy;
4060       }
4061     } else if (Literal.isFract) {
4062       if (Literal.isHalf) {
4063         Ty = Context.ShortFractTy;
4064       } else if (Literal.isLong) {
4065         Ty = Context.LongFractTy;
4066       } else {
4067         Ty = Context.FractTy;
4068       }
4069     }
4070 
4071     if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
4072 
4073     bool isSigned = !Literal.isUnsigned;
4074     unsigned scale = Context.getFixedPointScale(Ty);
4075     unsigned bit_width = Context.getTypeInfo(Ty).Width;
4076 
4077     llvm::APInt Val(bit_width, 0, isSigned);
4078     bool Overflowed = Literal.GetFixedPointValue(Val, scale);
4079     bool ValIsZero = Val.isZero() && !Overflowed;
4080 
4081     auto MaxVal = Context.getFixedPointMax(Ty).getValue();
4082     if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
4083       // Clause 6.4.4 - The value of a constant shall be in the range of
4084       // representable values for its type, with exception for constants of a
4085       // fract type with a value of exactly 1; such a constant shall denote
4086       // the maximal value for the type.
4087       --Val;
4088     else if (Val.ugt(MaxVal) || Overflowed)
4089       Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
4090 
4091     Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
4092                                               Tok.getLocation(), scale);
4093   } else if (Literal.isFloatingLiteral()) {
4094     QualType Ty;
4095     if (Literal.isHalf){
4096       if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
4097         Ty = Context.HalfTy;
4098       else {
4099         Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
4100         return ExprError();
4101       }
4102     } else if (Literal.isFloat)
4103       Ty = Context.FloatTy;
4104     else if (Literal.isLong)
4105       Ty = Context.LongDoubleTy;
4106     else if (Literal.isFloat16)
4107       Ty = Context.Float16Ty;
4108     else if (Literal.isFloat128)
4109       Ty = Context.Float128Ty;
4110     else
4111       Ty = Context.DoubleTy;
4112 
4113     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
4114 
4115     if (Ty == Context.DoubleTy) {
4116       if (getLangOpts().SinglePrecisionConstants) {
4117         if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
4118           Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
4119         }
4120       } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
4121                                              "cl_khr_fp64", getLangOpts())) {
4122         // Impose single-precision float type when cl_khr_fp64 is not enabled.
4123         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
4124             << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
4125         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
4126       }
4127     }
4128   } else if (!Literal.isIntegerLiteral()) {
4129     return ExprError();
4130   } else {
4131     QualType Ty;
4132 
4133     // 'z/uz' literals are a C++23 feature.
4134     if (Literal.isSizeT)
4135       Diag(Tok.getLocation(), getLangOpts().CPlusPlus
4136                                   ? getLangOpts().CPlusPlus23
4137                                         ? diag::warn_cxx20_compat_size_t_suffix
4138                                         : diag::ext_cxx23_size_t_suffix
4139                                   : diag::err_cxx23_size_t_suffix);
4140 
4141     // 'wb/uwb' literals are a C23 feature. We support _BitInt as a type in C++,
4142     // but we do not currently support the suffix in C++ mode because it's not
4143     // entirely clear whether WG21 will prefer this suffix to return a library
4144     // type such as std::bit_int instead of returning a _BitInt.
4145     if (Literal.isBitInt && !getLangOpts().CPlusPlus)
4146       PP.Diag(Tok.getLocation(), getLangOpts().C23
4147                                      ? diag::warn_c23_compat_bitint_suffix
4148                                      : diag::ext_c23_bitint_suffix);
4149 
4150     // Get the value in the widest-possible width. What is "widest" depends on
4151     // whether the literal is a bit-precise integer or not. For a bit-precise
4152     // integer type, try to scan the source to determine how many bits are
4153     // needed to represent the value. This may seem a bit expensive, but trying
4154     // to get the integer value from an overly-wide APInt is *extremely*
4155     // expensive, so the naive approach of assuming
4156     // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
4157     unsigned BitsNeeded =
4158         Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded(
4159                                Literal.getLiteralDigits(), Literal.getRadix())
4160                          : Context.getTargetInfo().getIntMaxTWidth();
4161     llvm::APInt ResultVal(BitsNeeded, 0);
4162 
4163     if (Literal.GetIntegerValue(ResultVal)) {
4164       // If this value didn't fit into uintmax_t, error and force to ull.
4165       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4166           << /* Unsigned */ 1;
4167       Ty = Context.UnsignedLongLongTy;
4168       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
4169              "long long is not intmax_t?");
4170     } else {
4171       // If this value fits into a ULL, try to figure out what else it fits into
4172       // according to the rules of C99 6.4.4.1p5.
4173 
4174       // Octal, Hexadecimal, and integers with a U suffix are allowed to
4175       // be an unsigned int.
4176       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
4177 
4178       // Check from smallest to largest, picking the smallest type we can.
4179       unsigned Width = 0;
4180 
4181       // Microsoft specific integer suffixes are explicitly sized.
4182       if (Literal.MicrosoftInteger) {
4183         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
4184           Width = 8;
4185           Ty = Context.CharTy;
4186         } else {
4187           Width = Literal.MicrosoftInteger;
4188           Ty = Context.getIntTypeForBitwidth(Width,
4189                                              /*Signed=*/!Literal.isUnsigned);
4190         }
4191       }
4192 
4193       // Bit-precise integer literals are automagically-sized based on the
4194       // width required by the literal.
4195       if (Literal.isBitInt) {
4196         // The signed version has one more bit for the sign value. There are no
4197         // zero-width bit-precise integers, even if the literal value is 0.
4198         Width = std::max(ResultVal.getActiveBits(), 1u) +
4199                 (Literal.isUnsigned ? 0u : 1u);
4200 
4201         // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
4202         // and reset the type to the largest supported width.
4203         unsigned int MaxBitIntWidth =
4204             Context.getTargetInfo().getMaxBitIntWidth();
4205         if (Width > MaxBitIntWidth) {
4206           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4207               << Literal.isUnsigned;
4208           Width = MaxBitIntWidth;
4209         }
4210 
4211         // Reset the result value to the smaller APInt and select the correct
4212         // type to be used. Note, we zext even for signed values because the
4213         // literal itself is always an unsigned value (a preceeding - is a
4214         // unary operator, not part of the literal).
4215         ResultVal = ResultVal.zextOrTrunc(Width);
4216         Ty = Context.getBitIntType(Literal.isUnsigned, Width);
4217       }
4218 
4219       // Check C++23 size_t literals.
4220       if (Literal.isSizeT) {
4221         assert(!Literal.MicrosoftInteger &&
4222                "size_t literals can't be Microsoft literals");
4223         unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
4224             Context.getTargetInfo().getSizeType());
4225 
4226         // Does it fit in size_t?
4227         if (ResultVal.isIntN(SizeTSize)) {
4228           // Does it fit in ssize_t?
4229           if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
4230             Ty = Context.getSignedSizeType();
4231           else if (AllowUnsigned)
4232             Ty = Context.getSizeType();
4233           Width = SizeTSize;
4234         }
4235       }
4236 
4237       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
4238           !Literal.isSizeT) {
4239         // Are int/unsigned possibilities?
4240         unsigned IntSize = Context.getTargetInfo().getIntWidth();
4241 
4242         // Does it fit in a unsigned int?
4243         if (ResultVal.isIntN(IntSize)) {
4244           // Does it fit in a signed int?
4245           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
4246             Ty = Context.IntTy;
4247           else if (AllowUnsigned)
4248             Ty = Context.UnsignedIntTy;
4249           Width = IntSize;
4250         }
4251       }
4252 
4253       // Are long/unsigned long possibilities?
4254       if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
4255         unsigned LongSize = Context.getTargetInfo().getLongWidth();
4256 
4257         // Does it fit in a unsigned long?
4258         if (ResultVal.isIntN(LongSize)) {
4259           // Does it fit in a signed long?
4260           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
4261             Ty = Context.LongTy;
4262           else if (AllowUnsigned)
4263             Ty = Context.UnsignedLongTy;
4264           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4265           // is compatible.
4266           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
4267             const unsigned LongLongSize =
4268                 Context.getTargetInfo().getLongLongWidth();
4269             Diag(Tok.getLocation(),
4270                  getLangOpts().CPlusPlus
4271                      ? Literal.isLong
4272                            ? diag::warn_old_implicitly_unsigned_long_cxx
4273                            : /*C++98 UB*/ diag::
4274                                  ext_old_implicitly_unsigned_long_cxx
4275                      : diag::warn_old_implicitly_unsigned_long)
4276                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
4277                                             : /*will be ill-formed*/ 1);
4278             Ty = Context.UnsignedLongTy;
4279           }
4280           Width = LongSize;
4281         }
4282       }
4283 
4284       // Check long long if needed.
4285       if (Ty.isNull() && !Literal.isSizeT) {
4286         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
4287 
4288         // Does it fit in a unsigned long long?
4289         if (ResultVal.isIntN(LongLongSize)) {
4290           // Does it fit in a signed long long?
4291           // To be compatible with MSVC, hex integer literals ending with the
4292           // LL or i64 suffix are always signed in Microsoft mode.
4293           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
4294               (getLangOpts().MSVCCompat && Literal.isLongLong)))
4295             Ty = Context.LongLongTy;
4296           else if (AllowUnsigned)
4297             Ty = Context.UnsignedLongLongTy;
4298           Width = LongLongSize;
4299 
4300           // 'long long' is a C99 or C++11 feature, whether the literal
4301           // explicitly specified 'long long' or we needed the extra width.
4302           if (getLangOpts().CPlusPlus)
4303             Diag(Tok.getLocation(), getLangOpts().CPlusPlus11
4304                                         ? diag::warn_cxx98_compat_longlong
4305                                         : diag::ext_cxx11_longlong);
4306           else if (!getLangOpts().C99)
4307             Diag(Tok.getLocation(), diag::ext_c99_longlong);
4308         }
4309       }
4310 
4311       // If we still couldn't decide a type, we either have 'size_t' literal
4312       // that is out of range, or a decimal literal that does not fit in a
4313       // signed long long and has no U suffix.
4314       if (Ty.isNull()) {
4315         if (Literal.isSizeT)
4316           Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
4317               << Literal.isUnsigned;
4318         else
4319           Diag(Tok.getLocation(),
4320                diag::ext_integer_literal_too_large_for_signed);
4321         Ty = Context.UnsignedLongLongTy;
4322         Width = Context.getTargetInfo().getLongLongWidth();
4323       }
4324 
4325       if (ResultVal.getBitWidth() != Width)
4326         ResultVal = ResultVal.trunc(Width);
4327     }
4328     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
4329   }
4330 
4331   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4332   if (Literal.isImaginary) {
4333     Res = new (Context) ImaginaryLiteral(Res,
4334                                         Context.getComplexType(Res->getType()));
4335 
4336     Diag(Tok.getLocation(), diag::ext_imaginary_constant);
4337   }
4338   return Res;
4339 }
4340 
ActOnParenExpr(SourceLocation L,SourceLocation R,Expr * E)4341 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4342   assert(E && "ActOnParenExpr() missing expr");
4343   QualType ExprTy = E->getType();
4344   if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4345       !E->isLValue() && ExprTy->hasFloatingRepresentation())
4346     return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
4347   return new (Context) ParenExpr(L, R, E);
4348 }
4349 
CheckVecStepTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange)4350 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4351                                          SourceLocation Loc,
4352                                          SourceRange ArgRange) {
4353   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4354   // scalar or vector data type argument..."
4355   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4356   // type (C99 6.2.5p18) or void.
4357   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4358     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4359       << T << ArgRange;
4360     return true;
4361   }
4362 
4363   assert((T->isVoidType() || !T->isIncompleteType()) &&
4364          "Scalar types should always be complete");
4365   return false;
4366 }
4367 
CheckVectorElementsTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange)4368 static bool CheckVectorElementsTraitOperandType(Sema &S, QualType T,
4369                                                 SourceLocation Loc,
4370                                                 SourceRange ArgRange) {
4371   // builtin_vectorelements supports both fixed-sized and scalable vectors.
4372   if (!T->isVectorType() && !T->isSizelessVectorType())
4373     return S.Diag(Loc, diag::err_builtin_non_vector_type)
4374            << ""
4375            << "__builtin_vectorelements" << T << ArgRange;
4376 
4377   return false;
4378 }
4379 
CheckExtensionTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)4380 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4381                                            SourceLocation Loc,
4382                                            SourceRange ArgRange,
4383                                            UnaryExprOrTypeTrait TraitKind) {
4384   // Invalid types must be hard errors for SFINAE in C++.
4385   if (S.LangOpts.CPlusPlus)
4386     return true;
4387 
4388   // C99 6.5.3.4p1:
4389   if (T->isFunctionType() &&
4390       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4391        TraitKind == UETT_PreferredAlignOf)) {
4392     // sizeof(function)/alignof(function) is allowed as an extension.
4393     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4394         << getTraitSpelling(TraitKind) << ArgRange;
4395     return false;
4396   }
4397 
4398   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4399   // this is an error (OpenCL v1.1 s6.3.k)
4400   if (T->isVoidType()) {
4401     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4402                                         : diag::ext_sizeof_alignof_void_type;
4403     S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4404     return false;
4405   }
4406 
4407   return true;
4408 }
4409 
CheckObjCTraitOperandConstraints(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)4410 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4411                                              SourceLocation Loc,
4412                                              SourceRange ArgRange,
4413                                              UnaryExprOrTypeTrait TraitKind) {
4414   // Reject sizeof(interface) and sizeof(interface<proto>) if the
4415   // runtime doesn't allow it.
4416   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4417     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4418       << T << (TraitKind == UETT_SizeOf)
4419       << ArgRange;
4420     return true;
4421   }
4422 
4423   return false;
4424 }
4425 
4426 /// Check whether E is a pointer from a decayed array type (the decayed
4427 /// pointer type is equal to T) and emit a warning if it is.
warnOnSizeofOnArrayDecay(Sema & S,SourceLocation Loc,QualType T,const Expr * E)4428 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4429                                      const Expr *E) {
4430   // Don't warn if the operation changed the type.
4431   if (T != E->getType())
4432     return;
4433 
4434   // Now look for array decays.
4435   const auto *ICE = dyn_cast<ImplicitCastExpr>(E);
4436   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4437     return;
4438 
4439   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4440                                              << ICE->getType()
4441                                              << ICE->getSubExpr()->getType();
4442 }
4443 
4444 /// Check the constraints on expression operands to unary type expression
4445 /// and type traits.
4446 ///
4447 /// Completes any types necessary and validates the constraints on the operand
4448 /// expression. The logic mostly mirrors the type-based overload, but may modify
4449 /// the expression as it completes the type for that expression through template
4450 /// instantiation, etc.
CheckUnaryExprOrTypeTraitOperand(Expr * E,UnaryExprOrTypeTrait ExprKind)4451 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4452                                             UnaryExprOrTypeTrait ExprKind) {
4453   QualType ExprTy = E->getType();
4454   assert(!ExprTy->isReferenceType());
4455 
4456   bool IsUnevaluatedOperand =
4457       (ExprKind == UETT_SizeOf || ExprKind == UETT_DataSizeOf ||
4458        ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4459        ExprKind == UETT_VecStep);
4460   if (IsUnevaluatedOperand) {
4461     ExprResult Result = CheckUnevaluatedOperand(E);
4462     if (Result.isInvalid())
4463       return true;
4464     E = Result.get();
4465   }
4466 
4467   // The operand for sizeof and alignof is in an unevaluated expression context,
4468   // so side effects could result in unintended consequences.
4469   // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4470   // used to build SFINAE gadgets.
4471   // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4472   if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4473       !E->isInstantiationDependent() &&
4474       !E->getType()->isVariableArrayType() &&
4475       E->HasSideEffects(Context, false))
4476     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4477 
4478   if (ExprKind == UETT_VecStep)
4479     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4480                                         E->getSourceRange());
4481 
4482   if (ExprKind == UETT_VectorElements)
4483     return CheckVectorElementsTraitOperandType(*this, ExprTy, E->getExprLoc(),
4484                                                E->getSourceRange());
4485 
4486   // Explicitly list some types as extensions.
4487   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4488                                       E->getSourceRange(), ExprKind))
4489     return false;
4490 
4491   // WebAssembly tables are always illegal operands to unary expressions and
4492   // type traits.
4493   if (Context.getTargetInfo().getTriple().isWasm() &&
4494       E->getType()->isWebAssemblyTableType()) {
4495     Diag(E->getExprLoc(), diag::err_wasm_table_invalid_uett_operand)
4496         << getTraitSpelling(ExprKind);
4497     return true;
4498   }
4499 
4500   // 'alignof' applied to an expression only requires the base element type of
4501   // the expression to be complete. 'sizeof' requires the expression's type to
4502   // be complete (and will attempt to complete it if it's an array of unknown
4503   // bound).
4504   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4505     if (RequireCompleteSizedType(
4506             E->getExprLoc(), Context.getBaseElementType(E->getType()),
4507             diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4508             getTraitSpelling(ExprKind), E->getSourceRange()))
4509       return true;
4510   } else {
4511     if (RequireCompleteSizedExprType(
4512             E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4513             getTraitSpelling(ExprKind), E->getSourceRange()))
4514       return true;
4515   }
4516 
4517   // Completing the expression's type may have changed it.
4518   ExprTy = E->getType();
4519   assert(!ExprTy->isReferenceType());
4520 
4521   if (ExprTy->isFunctionType()) {
4522     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4523         << getTraitSpelling(ExprKind) << E->getSourceRange();
4524     return true;
4525   }
4526 
4527   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4528                                        E->getSourceRange(), ExprKind))
4529     return true;
4530 
4531   if (ExprKind == UETT_SizeOf) {
4532     if (const auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4533       if (const auto *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4534         QualType OType = PVD->getOriginalType();
4535         QualType Type = PVD->getType();
4536         if (Type->isPointerType() && OType->isArrayType()) {
4537           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4538             << Type << OType;
4539           Diag(PVD->getLocation(), diag::note_declared_at);
4540         }
4541       }
4542     }
4543 
4544     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4545     // decays into a pointer and returns an unintended result. This is most
4546     // likely a typo for "sizeof(array) op x".
4547     if (const auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4548       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4549                                BO->getLHS());
4550       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4551                                BO->getRHS());
4552     }
4553   }
4554 
4555   return false;
4556 }
4557 
CheckAlignOfExpr(Sema & S,Expr * E,UnaryExprOrTypeTrait ExprKind)4558 static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4559   // Cannot know anything else if the expression is dependent.
4560   if (E->isTypeDependent())
4561     return false;
4562 
4563   if (E->getObjectKind() == OK_BitField) {
4564     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4565        << 1 << E->getSourceRange();
4566     return true;
4567   }
4568 
4569   ValueDecl *D = nullptr;
4570   Expr *Inner = E->IgnoreParens();
4571   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4572     D = DRE->getDecl();
4573   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4574     D = ME->getMemberDecl();
4575   }
4576 
4577   // If it's a field, require the containing struct to have a
4578   // complete definition so that we can compute the layout.
4579   //
4580   // This can happen in C++11 onwards, either by naming the member
4581   // in a way that is not transformed into a member access expression
4582   // (in an unevaluated operand, for instance), or by naming the member
4583   // in a trailing-return-type.
4584   //
4585   // For the record, since __alignof__ on expressions is a GCC
4586   // extension, GCC seems to permit this but always gives the
4587   // nonsensical answer 0.
4588   //
4589   // We don't really need the layout here --- we could instead just
4590   // directly check for all the appropriate alignment-lowing
4591   // attributes --- but that would require duplicating a lot of
4592   // logic that just isn't worth duplicating for such a marginal
4593   // use-case.
4594   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4595     // Fast path this check, since we at least know the record has a
4596     // definition if we can find a member of it.
4597     if (!FD->getParent()->isCompleteDefinition()) {
4598       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4599         << E->getSourceRange();
4600       return true;
4601     }
4602 
4603     // Otherwise, if it's a field, and the field doesn't have
4604     // reference type, then it must have a complete type (or be a
4605     // flexible array member, which we explicitly want to
4606     // white-list anyway), which makes the following checks trivial.
4607     if (!FD->getType()->isReferenceType())
4608       return false;
4609   }
4610 
4611   return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4612 }
4613 
CheckVecStepExpr(Expr * E)4614 bool Sema::CheckVecStepExpr(Expr *E) {
4615   E = E->IgnoreParens();
4616 
4617   // Cannot know anything else if the expression is dependent.
4618   if (E->isTypeDependent())
4619     return false;
4620 
4621   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4622 }
4623 
captureVariablyModifiedType(ASTContext & Context,QualType T,CapturingScopeInfo * CSI)4624 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4625                                         CapturingScopeInfo *CSI) {
4626   assert(T->isVariablyModifiedType());
4627   assert(CSI != nullptr);
4628 
4629   // We're going to walk down into the type and look for VLA expressions.
4630   do {
4631     const Type *Ty = T.getTypePtr();
4632     switch (Ty->getTypeClass()) {
4633 #define TYPE(Class, Base)
4634 #define ABSTRACT_TYPE(Class, Base)
4635 #define NON_CANONICAL_TYPE(Class, Base)
4636 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4637 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4638 #include "clang/AST/TypeNodes.inc"
4639       T = QualType();
4640       break;
4641     // These types are never variably-modified.
4642     case Type::Builtin:
4643     case Type::Complex:
4644     case Type::Vector:
4645     case Type::ExtVector:
4646     case Type::ConstantMatrix:
4647     case Type::Record:
4648     case Type::Enum:
4649     case Type::TemplateSpecialization:
4650     case Type::ObjCObject:
4651     case Type::ObjCInterface:
4652     case Type::ObjCObjectPointer:
4653     case Type::ObjCTypeParam:
4654     case Type::Pipe:
4655     case Type::BitInt:
4656       llvm_unreachable("type class is never variably-modified!");
4657     case Type::Elaborated:
4658       T = cast<ElaboratedType>(Ty)->getNamedType();
4659       break;
4660     case Type::Adjusted:
4661       T = cast<AdjustedType>(Ty)->getOriginalType();
4662       break;
4663     case Type::Decayed:
4664       T = cast<DecayedType>(Ty)->getPointeeType();
4665       break;
4666     case Type::Pointer:
4667       T = cast<PointerType>(Ty)->getPointeeType();
4668       break;
4669     case Type::BlockPointer:
4670       T = cast<BlockPointerType>(Ty)->getPointeeType();
4671       break;
4672     case Type::LValueReference:
4673     case Type::RValueReference:
4674       T = cast<ReferenceType>(Ty)->getPointeeType();
4675       break;
4676     case Type::MemberPointer:
4677       T = cast<MemberPointerType>(Ty)->getPointeeType();
4678       break;
4679     case Type::ConstantArray:
4680     case Type::IncompleteArray:
4681       // Losing element qualification here is fine.
4682       T = cast<ArrayType>(Ty)->getElementType();
4683       break;
4684     case Type::VariableArray: {
4685       // Losing element qualification here is fine.
4686       const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4687 
4688       // Unknown size indication requires no size computation.
4689       // Otherwise, evaluate and record it.
4690       auto Size = VAT->getSizeExpr();
4691       if (Size && !CSI->isVLATypeCaptured(VAT) &&
4692           (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4693         CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4694 
4695       T = VAT->getElementType();
4696       break;
4697     }
4698     case Type::FunctionProto:
4699     case Type::FunctionNoProto:
4700       T = cast<FunctionType>(Ty)->getReturnType();
4701       break;
4702     case Type::Paren:
4703     case Type::TypeOf:
4704     case Type::UnaryTransform:
4705     case Type::Attributed:
4706     case Type::BTFTagAttributed:
4707     case Type::SubstTemplateTypeParm:
4708     case Type::MacroQualified:
4709       // Keep walking after single level desugaring.
4710       T = T.getSingleStepDesugaredType(Context);
4711       break;
4712     case Type::Typedef:
4713       T = cast<TypedefType>(Ty)->desugar();
4714       break;
4715     case Type::Decltype:
4716       T = cast<DecltypeType>(Ty)->desugar();
4717       break;
4718     case Type::Using:
4719       T = cast<UsingType>(Ty)->desugar();
4720       break;
4721     case Type::Auto:
4722     case Type::DeducedTemplateSpecialization:
4723       T = cast<DeducedType>(Ty)->getDeducedType();
4724       break;
4725     case Type::TypeOfExpr:
4726       T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4727       break;
4728     case Type::Atomic:
4729       T = cast<AtomicType>(Ty)->getValueType();
4730       break;
4731     }
4732   } while (!T.isNull() && T->isVariablyModifiedType());
4733 }
4734 
4735 /// Check the constraints on operands to unary expression and type
4736 /// traits.
4737 ///
4738 /// This will complete any types necessary, and validate the various constraints
4739 /// on those operands.
4740 ///
4741 /// The UsualUnaryConversions() function is *not* called by this routine.
4742 /// C99 6.3.2.1p[2-4] all state:
4743 ///   Except when it is the operand of the sizeof operator ...
4744 ///
4745 /// C++ [expr.sizeof]p4
4746 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4747 ///   standard conversions are not applied to the operand of sizeof.
4748 ///
4749 /// This policy is followed for all of the unary trait expressions.
CheckUnaryExprOrTypeTraitOperand(QualType ExprType,SourceLocation OpLoc,SourceRange ExprRange,UnaryExprOrTypeTrait ExprKind,StringRef KWName)4750 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4751                                             SourceLocation OpLoc,
4752                                             SourceRange ExprRange,
4753                                             UnaryExprOrTypeTrait ExprKind,
4754                                             StringRef KWName) {
4755   if (ExprType->isDependentType())
4756     return false;
4757 
4758   // C++ [expr.sizeof]p2:
4759   //     When applied to a reference or a reference type, the result
4760   //     is the size of the referenced type.
4761   // C++11 [expr.alignof]p3:
4762   //     When alignof is applied to a reference type, the result
4763   //     shall be the alignment of the referenced type.
4764   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4765     ExprType = Ref->getPointeeType();
4766 
4767   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4768   //   When alignof or _Alignof is applied to an array type, the result
4769   //   is the alignment of the element type.
4770   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4771       ExprKind == UETT_OpenMPRequiredSimdAlign)
4772     ExprType = Context.getBaseElementType(ExprType);
4773 
4774   if (ExprKind == UETT_VecStep)
4775     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4776 
4777   if (ExprKind == UETT_VectorElements)
4778     return CheckVectorElementsTraitOperandType(*this, ExprType, OpLoc,
4779                                                ExprRange);
4780 
4781   // Explicitly list some types as extensions.
4782   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4783                                       ExprKind))
4784     return false;
4785 
4786   if (RequireCompleteSizedType(
4787           OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4788           KWName, ExprRange))
4789     return true;
4790 
4791   if (ExprType->isFunctionType()) {
4792     Diag(OpLoc, diag::err_sizeof_alignof_function_type) << KWName << ExprRange;
4793     return true;
4794   }
4795 
4796   // WebAssembly tables are always illegal operands to unary expressions and
4797   // type traits.
4798   if (Context.getTargetInfo().getTriple().isWasm() &&
4799       ExprType->isWebAssemblyTableType()) {
4800     Diag(OpLoc, diag::err_wasm_table_invalid_uett_operand)
4801         << getTraitSpelling(ExprKind);
4802     return true;
4803   }
4804 
4805   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4806                                        ExprKind))
4807     return true;
4808 
4809   if (ExprType->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4810     if (auto *TT = ExprType->getAs<TypedefType>()) {
4811       for (auto I = FunctionScopes.rbegin(),
4812                 E = std::prev(FunctionScopes.rend());
4813            I != E; ++I) {
4814         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4815         if (CSI == nullptr)
4816           break;
4817         DeclContext *DC = nullptr;
4818         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4819           DC = LSI->CallOperator;
4820         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4821           DC = CRSI->TheCapturedDecl;
4822         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4823           DC = BSI->TheDecl;
4824         if (DC) {
4825           if (DC->containsDecl(TT->getDecl()))
4826             break;
4827           captureVariablyModifiedType(Context, ExprType, CSI);
4828         }
4829       }
4830     }
4831   }
4832 
4833   return false;
4834 }
4835 
4836 /// Build a sizeof or alignof expression given a type operand.
CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)4837 ExprResult Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4838                                                 SourceLocation OpLoc,
4839                                                 UnaryExprOrTypeTrait ExprKind,
4840                                                 SourceRange R) {
4841   if (!TInfo)
4842     return ExprError();
4843 
4844   QualType T = TInfo->getType();
4845 
4846   if (!T->isDependentType() &&
4847       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind,
4848                                        getTraitSpelling(ExprKind)))
4849     return ExprError();
4850 
4851   // Adds overload of TransformToPotentiallyEvaluated for TypeSourceInfo to
4852   // properly deal with VLAs in nested calls of sizeof and typeof.
4853   if (isUnevaluatedContext() && ExprKind == UETT_SizeOf &&
4854       TInfo->getType()->isVariablyModifiedType())
4855     TInfo = TransformToPotentiallyEvaluated(TInfo);
4856 
4857   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4858   return new (Context) UnaryExprOrTypeTraitExpr(
4859       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4860 }
4861 
4862 /// Build a sizeof or alignof expression given an expression
4863 /// operand.
4864 ExprResult
CreateUnaryExprOrTypeTraitExpr(Expr * E,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind)4865 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4866                                      UnaryExprOrTypeTrait ExprKind) {
4867   ExprResult PE = CheckPlaceholderExpr(E);
4868   if (PE.isInvalid())
4869     return ExprError();
4870 
4871   E = PE.get();
4872 
4873   // Verify that the operand is valid.
4874   bool isInvalid = false;
4875   if (E->isTypeDependent()) {
4876     // Delay type-checking for type-dependent expressions.
4877   } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4878     isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4879   } else if (ExprKind == UETT_VecStep) {
4880     isInvalid = CheckVecStepExpr(E);
4881   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4882       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4883       isInvalid = true;
4884   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
4885     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4886     isInvalid = true;
4887   } else if (ExprKind == UETT_VectorElements) {
4888     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_VectorElements);
4889   } else {
4890     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4891   }
4892 
4893   if (isInvalid)
4894     return ExprError();
4895 
4896   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4897     PE = TransformToPotentiallyEvaluated(E);
4898     if (PE.isInvalid()) return ExprError();
4899     E = PE.get();
4900   }
4901 
4902   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4903   return new (Context) UnaryExprOrTypeTraitExpr(
4904       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4905 }
4906 
4907 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4908 /// expr and the same for @c alignof and @c __alignof
4909 /// Note that the ArgRange is invalid if isType is false.
4910 ExprResult
ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,bool IsType,void * TyOrEx,SourceRange ArgRange)4911 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4912                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
4913                                     void *TyOrEx, SourceRange ArgRange) {
4914   // If error parsing type, ignore.
4915   if (!TyOrEx) return ExprError();
4916 
4917   if (IsType) {
4918     TypeSourceInfo *TInfo;
4919     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4920     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4921   }
4922 
4923   Expr *ArgEx = (Expr *)TyOrEx;
4924   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4925   return Result;
4926 }
4927 
CheckAlignasTypeArgument(StringRef KWName,TypeSourceInfo * TInfo,SourceLocation OpLoc,SourceRange R)4928 bool Sema::CheckAlignasTypeArgument(StringRef KWName, TypeSourceInfo *TInfo,
4929                                     SourceLocation OpLoc, SourceRange R) {
4930   if (!TInfo)
4931     return true;
4932   return CheckUnaryExprOrTypeTraitOperand(TInfo->getType(), OpLoc, R,
4933                                           UETT_AlignOf, KWName);
4934 }
4935 
4936 /// ActOnAlignasTypeArgument - Handle @c alignas(type-id) and @c
4937 /// _Alignas(type-name) .
4938 /// [dcl.align] An alignment-specifier of the form
4939 /// alignas(type-id) has the same effect as alignas(alignof(type-id)).
4940 ///
4941 /// [N1570 6.7.5] _Alignas(type-name) is equivalent to
4942 /// _Alignas(_Alignof(type-name)).
ActOnAlignasTypeArgument(StringRef KWName,ParsedType Ty,SourceLocation OpLoc,SourceRange R)4943 bool Sema::ActOnAlignasTypeArgument(StringRef KWName, ParsedType Ty,
4944                                     SourceLocation OpLoc, SourceRange R) {
4945   TypeSourceInfo *TInfo;
4946   (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(Ty.getAsOpaquePtr()),
4947                           &TInfo);
4948   return CheckAlignasTypeArgument(KWName, TInfo, OpLoc, R);
4949 }
4950 
CheckRealImagOperand(Sema & S,ExprResult & V,SourceLocation Loc,bool IsReal)4951 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4952                                      bool IsReal) {
4953   if (V.get()->isTypeDependent())
4954     return S.Context.DependentTy;
4955 
4956   // _Real and _Imag are only l-values for normal l-values.
4957   if (V.get()->getObjectKind() != OK_Ordinary) {
4958     V = S.DefaultLvalueConversion(V.get());
4959     if (V.isInvalid())
4960       return QualType();
4961   }
4962 
4963   // These operators return the element type of a complex type.
4964   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4965     return CT->getElementType();
4966 
4967   // Otherwise they pass through real integer and floating point types here.
4968   if (V.get()->getType()->isArithmeticType())
4969     return V.get()->getType();
4970 
4971   // Test for placeholders.
4972   ExprResult PR = S.CheckPlaceholderExpr(V.get());
4973   if (PR.isInvalid()) return QualType();
4974   if (PR.get() != V.get()) {
4975     V = PR;
4976     return CheckRealImagOperand(S, V, Loc, IsReal);
4977   }
4978 
4979   // Reject anything else.
4980   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4981     << (IsReal ? "__real" : "__imag");
4982   return QualType();
4983 }
4984 
4985 
4986 
4987 ExprResult
ActOnPostfixUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Kind,Expr * Input)4988 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4989                           tok::TokenKind Kind, Expr *Input) {
4990   UnaryOperatorKind Opc;
4991   switch (Kind) {
4992   default: llvm_unreachable("Unknown unary op!");
4993   case tok::plusplus:   Opc = UO_PostInc; break;
4994   case tok::minusminus: Opc = UO_PostDec; break;
4995   }
4996 
4997   // Since this might is a postfix expression, get rid of ParenListExprs.
4998   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4999   if (Result.isInvalid()) return ExprError();
5000   Input = Result.get();
5001 
5002   return BuildUnaryOp(S, OpLoc, Opc, Input);
5003 }
5004 
5005 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
5006 ///
5007 /// \return true on error
checkArithmeticOnObjCPointer(Sema & S,SourceLocation opLoc,Expr * op)5008 static bool checkArithmeticOnObjCPointer(Sema &S,
5009                                          SourceLocation opLoc,
5010                                          Expr *op) {
5011   assert(op->getType()->isObjCObjectPointerType());
5012   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
5013       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
5014     return false;
5015 
5016   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
5017     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
5018     << op->getSourceRange();
5019   return true;
5020 }
5021 
isMSPropertySubscriptExpr(Sema & S,Expr * Base)5022 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
5023   auto *BaseNoParens = Base->IgnoreParens();
5024   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
5025     return MSProp->getPropertyDecl()->getType()->isArrayType();
5026   return isa<MSPropertySubscriptExpr>(BaseNoParens);
5027 }
5028 
5029 // Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
5030 // Typically this is DependentTy, but can sometimes be more precise.
5031 //
5032 // There are cases when we could determine a non-dependent type:
5033 //  - LHS and RHS may have non-dependent types despite being type-dependent
5034 //    (e.g. unbounded array static members of the current instantiation)
5035 //  - one may be a dependent-sized array with known element type
5036 //  - one may be a dependent-typed valid index (enum in current instantiation)
5037 //
5038 // We *always* return a dependent type, in such cases it is DependentTy.
5039 // This avoids creating type-dependent expressions with non-dependent types.
5040 // FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
getDependentArraySubscriptType(Expr * LHS,Expr * RHS,const ASTContext & Ctx)5041 static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
5042                                                const ASTContext &Ctx) {
5043   assert(LHS->isTypeDependent() || RHS->isTypeDependent());
5044   QualType LTy = LHS->getType(), RTy = RHS->getType();
5045   QualType Result = Ctx.DependentTy;
5046   if (RTy->isIntegralOrUnscopedEnumerationType()) {
5047     if (const PointerType *PT = LTy->getAs<PointerType>())
5048       Result = PT->getPointeeType();
5049     else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
5050       Result = AT->getElementType();
5051   } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
5052     if (const PointerType *PT = RTy->getAs<PointerType>())
5053       Result = PT->getPointeeType();
5054     else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
5055       Result = AT->getElementType();
5056   }
5057   // Ensure we return a dependent type.
5058   return Result->isDependentType() ? Result : Ctx.DependentTy;
5059 }
5060 
ActOnArraySubscriptExpr(Scope * S,Expr * base,SourceLocation lbLoc,MultiExprArg ArgExprs,SourceLocation rbLoc)5061 ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base,
5062                                          SourceLocation lbLoc,
5063                                          MultiExprArg ArgExprs,
5064                                          SourceLocation rbLoc) {
5065 
5066   if (base && !base->getType().isNull() &&
5067       base->hasPlaceholderType(BuiltinType::OMPArraySection))
5068     return ActOnOMPArraySectionExpr(base, lbLoc, ArgExprs.front(), SourceLocation(),
5069                                     SourceLocation(), /*Length*/ nullptr,
5070                                     /*Stride=*/nullptr, rbLoc);
5071 
5072   // Since this might be a postfix expression, get rid of ParenListExprs.
5073   if (isa<ParenListExpr>(base)) {
5074     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
5075     if (result.isInvalid())
5076       return ExprError();
5077     base = result.get();
5078   }
5079 
5080   // Check if base and idx form a MatrixSubscriptExpr.
5081   //
5082   // Helper to check for comma expressions, which are not allowed as indices for
5083   // matrix subscript expressions.
5084   auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
5085     if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
5086       Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
5087           << SourceRange(base->getBeginLoc(), rbLoc);
5088       return true;
5089     }
5090     return false;
5091   };
5092   // The matrix subscript operator ([][])is considered a single operator.
5093   // Separating the index expressions by parenthesis is not allowed.
5094   if (base && !base->getType().isNull() &&
5095       base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) &&
5096       !isa<MatrixSubscriptExpr>(base)) {
5097     Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
5098         << SourceRange(base->getBeginLoc(), rbLoc);
5099     return ExprError();
5100   }
5101   // If the base is a MatrixSubscriptExpr, try to create a new
5102   // MatrixSubscriptExpr.
5103   auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
5104   if (matSubscriptE) {
5105     assert(ArgExprs.size() == 1);
5106     if (CheckAndReportCommaError(ArgExprs.front()))
5107       return ExprError();
5108 
5109     assert(matSubscriptE->isIncomplete() &&
5110            "base has to be an incomplete matrix subscript");
5111     return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(),
5112                                             matSubscriptE->getRowIdx(),
5113                                             ArgExprs.front(), rbLoc);
5114   }
5115   if (base->getType()->isWebAssemblyTableType()) {
5116     Diag(base->getExprLoc(), diag::err_wasm_table_art)
5117         << SourceRange(base->getBeginLoc(), rbLoc) << 3;
5118     return ExprError();
5119   }
5120 
5121   // Handle any non-overload placeholder types in the base and index
5122   // expressions.  We can't handle overloads here because the other
5123   // operand might be an overloadable type, in which case the overload
5124   // resolution for the operator overload should get the first crack
5125   // at the overload.
5126   bool IsMSPropertySubscript = false;
5127   if (base->getType()->isNonOverloadPlaceholderType()) {
5128     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
5129     if (!IsMSPropertySubscript) {
5130       ExprResult result = CheckPlaceholderExpr(base);
5131       if (result.isInvalid())
5132         return ExprError();
5133       base = result.get();
5134     }
5135   }
5136 
5137   // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
5138   if (base->getType()->isMatrixType()) {
5139     assert(ArgExprs.size() == 1);
5140     if (CheckAndReportCommaError(ArgExprs.front()))
5141       return ExprError();
5142 
5143     return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr,
5144                                             rbLoc);
5145   }
5146 
5147   if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) {
5148     Expr *idx = ArgExprs[0];
5149     if ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
5150         (isa<CXXOperatorCallExpr>(idx) &&
5151          cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma)) {
5152       Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
5153           << SourceRange(base->getBeginLoc(), rbLoc);
5154     }
5155   }
5156 
5157   if (ArgExprs.size() == 1 &&
5158       ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) {
5159     ExprResult result = CheckPlaceholderExpr(ArgExprs[0]);
5160     if (result.isInvalid())
5161       return ExprError();
5162     ArgExprs[0] = result.get();
5163   } else {
5164     if (CheckArgsForPlaceholders(ArgExprs))
5165       return ExprError();
5166   }
5167 
5168   // Build an unanalyzed expression if either operand is type-dependent.
5169   if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 &&
5170       (base->isTypeDependent() ||
5171        Expr::hasAnyTypeDependentArguments(ArgExprs)) &&
5172       !isa<PackExpansionExpr>(ArgExprs[0])) {
5173     return new (Context) ArraySubscriptExpr(
5174         base, ArgExprs.front(),
5175         getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()),
5176         VK_LValue, OK_Ordinary, rbLoc);
5177   }
5178 
5179   // MSDN, property (C++)
5180   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
5181   // This attribute can also be used in the declaration of an empty array in a
5182   // class or structure definition. For example:
5183   // __declspec(property(get=GetX, put=PutX)) int x[];
5184   // The above statement indicates that x[] can be used with one or more array
5185   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
5186   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
5187   if (IsMSPropertySubscript) {
5188     assert(ArgExprs.size() == 1);
5189     // Build MS property subscript expression if base is MS property reference
5190     // or MS property subscript.
5191     return new (Context)
5192         MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy,
5193                                 VK_LValue, OK_Ordinary, rbLoc);
5194   }
5195 
5196   // Use C++ overloaded-operator rules if either operand has record
5197   // type.  The spec says to do this if either type is *overloadable*,
5198   // but enum types can't declare subscript operators or conversion
5199   // operators, so there's nothing interesting for overload resolution
5200   // to do if there aren't any record types involved.
5201   //
5202   // ObjC pointers have their own subscripting logic that is not tied
5203   // to overload resolution and so should not take this path.
5204   if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() &&
5205       ((base->getType()->isRecordType() ||
5206         (ArgExprs.size() != 1 || isa<PackExpansionExpr>(ArgExprs[0]) ||
5207          ArgExprs[0]->getType()->isRecordType())))) {
5208     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs);
5209   }
5210 
5211   ExprResult Res =
5212       CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc);
5213 
5214   if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
5215     CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
5216 
5217   return Res;
5218 }
5219 
tryConvertExprToType(Expr * E,QualType Ty)5220 ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
5221   InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
5222   InitializationKind Kind =
5223       InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
5224   InitializationSequence InitSeq(*this, Entity, Kind, E);
5225   return InitSeq.Perform(*this, Entity, Kind, E);
5226 }
5227 
CreateBuiltinMatrixSubscriptExpr(Expr * Base,Expr * RowIdx,Expr * ColumnIdx,SourceLocation RBLoc)5228 ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
5229                                                   Expr *ColumnIdx,
5230                                                   SourceLocation RBLoc) {
5231   ExprResult BaseR = CheckPlaceholderExpr(Base);
5232   if (BaseR.isInvalid())
5233     return BaseR;
5234   Base = BaseR.get();
5235 
5236   ExprResult RowR = CheckPlaceholderExpr(RowIdx);
5237   if (RowR.isInvalid())
5238     return RowR;
5239   RowIdx = RowR.get();
5240 
5241   if (!ColumnIdx)
5242     return new (Context) MatrixSubscriptExpr(
5243         Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
5244 
5245   // Build an unanalyzed expression if any of the operands is type-dependent.
5246   if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
5247       ColumnIdx->isTypeDependent())
5248     return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5249                                              Context.DependentTy, RBLoc);
5250 
5251   ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
5252   if (ColumnR.isInvalid())
5253     return ColumnR;
5254   ColumnIdx = ColumnR.get();
5255 
5256   // Check that IndexExpr is an integer expression. If it is a constant
5257   // expression, check that it is less than Dim (= the number of elements in the
5258   // corresponding dimension).
5259   auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
5260                           bool IsColumnIdx) -> Expr * {
5261     if (!IndexExpr->getType()->isIntegerType() &&
5262         !IndexExpr->isTypeDependent()) {
5263       Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
5264           << IsColumnIdx;
5265       return nullptr;
5266     }
5267 
5268     if (std::optional<llvm::APSInt> Idx =
5269             IndexExpr->getIntegerConstantExpr(Context)) {
5270       if ((*Idx < 0 || *Idx >= Dim)) {
5271         Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
5272             << IsColumnIdx << Dim;
5273         return nullptr;
5274       }
5275     }
5276 
5277     ExprResult ConvExpr =
5278         tryConvertExprToType(IndexExpr, Context.getSizeType());
5279     assert(!ConvExpr.isInvalid() &&
5280            "should be able to convert any integer type to size type");
5281     return ConvExpr.get();
5282   };
5283 
5284   auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
5285   RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
5286   ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
5287   if (!RowIdx || !ColumnIdx)
5288     return ExprError();
5289 
5290   return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5291                                            MTy->getElementType(), RBLoc);
5292 }
5293 
CheckAddressOfNoDeref(const Expr * E)5294 void Sema::CheckAddressOfNoDeref(const Expr *E) {
5295   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5296   const Expr *StrippedExpr = E->IgnoreParenImpCasts();
5297 
5298   // For expressions like `&(*s).b`, the base is recorded and what should be
5299   // checked.
5300   const MemberExpr *Member = nullptr;
5301   while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
5302     StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
5303 
5304   LastRecord.PossibleDerefs.erase(StrippedExpr);
5305 }
5306 
CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr * E)5307 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
5308   if (isUnevaluatedContext())
5309     return;
5310 
5311   QualType ResultTy = E->getType();
5312   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5313 
5314   // Bail if the element is an array since it is not memory access.
5315   if (isa<ArrayType>(ResultTy))
5316     return;
5317 
5318   if (ResultTy->hasAttr(attr::NoDeref)) {
5319     LastRecord.PossibleDerefs.insert(E);
5320     return;
5321   }
5322 
5323   // Check if the base type is a pointer to a member access of a struct
5324   // marked with noderef.
5325   const Expr *Base = E->getBase();
5326   QualType BaseTy = Base->getType();
5327   if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
5328     // Not a pointer access
5329     return;
5330 
5331   const MemberExpr *Member = nullptr;
5332   while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
5333          Member->isArrow())
5334     Base = Member->getBase();
5335 
5336   if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
5337     if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
5338       LastRecord.PossibleDerefs.insert(E);
5339   }
5340 }
5341 
ActOnOMPArraySectionExpr(Expr * Base,SourceLocation LBLoc,Expr * LowerBound,SourceLocation ColonLocFirst,SourceLocation ColonLocSecond,Expr * Length,Expr * Stride,SourceLocation RBLoc)5342 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
5343                                           Expr *LowerBound,
5344                                           SourceLocation ColonLocFirst,
5345                                           SourceLocation ColonLocSecond,
5346                                           Expr *Length, Expr *Stride,
5347                                           SourceLocation RBLoc) {
5348   if (Base->hasPlaceholderType() &&
5349       !Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5350     ExprResult Result = CheckPlaceholderExpr(Base);
5351     if (Result.isInvalid())
5352       return ExprError();
5353     Base = Result.get();
5354   }
5355   if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
5356     ExprResult Result = CheckPlaceholderExpr(LowerBound);
5357     if (Result.isInvalid())
5358       return ExprError();
5359     Result = DefaultLvalueConversion(Result.get());
5360     if (Result.isInvalid())
5361       return ExprError();
5362     LowerBound = Result.get();
5363   }
5364   if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
5365     ExprResult Result = CheckPlaceholderExpr(Length);
5366     if (Result.isInvalid())
5367       return ExprError();
5368     Result = DefaultLvalueConversion(Result.get());
5369     if (Result.isInvalid())
5370       return ExprError();
5371     Length = Result.get();
5372   }
5373   if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
5374     ExprResult Result = CheckPlaceholderExpr(Stride);
5375     if (Result.isInvalid())
5376       return ExprError();
5377     Result = DefaultLvalueConversion(Result.get());
5378     if (Result.isInvalid())
5379       return ExprError();
5380     Stride = Result.get();
5381   }
5382 
5383   // Build an unanalyzed expression if either operand is type-dependent.
5384   if (Base->isTypeDependent() ||
5385       (LowerBound &&
5386        (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
5387       (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
5388       (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
5389     return new (Context) OMPArraySectionExpr(
5390         Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
5391         OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5392   }
5393 
5394   // Perform default conversions.
5395   QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
5396   QualType ResultTy;
5397   if (OriginalTy->isAnyPointerType()) {
5398     ResultTy = OriginalTy->getPointeeType();
5399   } else if (OriginalTy->isArrayType()) {
5400     ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
5401   } else {
5402     return ExprError(
5403         Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
5404         << Base->getSourceRange());
5405   }
5406   // C99 6.5.2.1p1
5407   if (LowerBound) {
5408     auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
5409                                                       LowerBound);
5410     if (Res.isInvalid())
5411       return ExprError(Diag(LowerBound->getExprLoc(),
5412                             diag::err_omp_typecheck_section_not_integer)
5413                        << 0 << LowerBound->getSourceRange());
5414     LowerBound = Res.get();
5415 
5416     if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5417         LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5418       Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
5419           << 0 << LowerBound->getSourceRange();
5420   }
5421   if (Length) {
5422     auto Res =
5423         PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
5424     if (Res.isInvalid())
5425       return ExprError(Diag(Length->getExprLoc(),
5426                             diag::err_omp_typecheck_section_not_integer)
5427                        << 1 << Length->getSourceRange());
5428     Length = Res.get();
5429 
5430     if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5431         Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5432       Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
5433           << 1 << Length->getSourceRange();
5434   }
5435   if (Stride) {
5436     ExprResult Res =
5437         PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
5438     if (Res.isInvalid())
5439       return ExprError(Diag(Stride->getExprLoc(),
5440                             diag::err_omp_typecheck_section_not_integer)
5441                        << 1 << Stride->getSourceRange());
5442     Stride = Res.get();
5443 
5444     if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5445         Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5446       Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
5447           << 1 << Stride->getSourceRange();
5448   }
5449 
5450   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5451   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5452   // type. Note that functions are not objects, and that (in C99 parlance)
5453   // incomplete types are not object types.
5454   if (ResultTy->isFunctionType()) {
5455     Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
5456         << ResultTy << Base->getSourceRange();
5457     return ExprError();
5458   }
5459 
5460   if (RequireCompleteType(Base->getExprLoc(), ResultTy,
5461                           diag::err_omp_section_incomplete_type, Base))
5462     return ExprError();
5463 
5464   if (LowerBound && !OriginalTy->isAnyPointerType()) {
5465     Expr::EvalResult Result;
5466     if (LowerBound->EvaluateAsInt(Result, Context)) {
5467       // OpenMP 5.0, [2.1.5 Array Sections]
5468       // The array section must be a subset of the original array.
5469       llvm::APSInt LowerBoundValue = Result.Val.getInt();
5470       if (LowerBoundValue.isNegative()) {
5471         Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
5472             << LowerBound->getSourceRange();
5473         return ExprError();
5474       }
5475     }
5476   }
5477 
5478   if (Length) {
5479     Expr::EvalResult Result;
5480     if (Length->EvaluateAsInt(Result, Context)) {
5481       // OpenMP 5.0, [2.1.5 Array Sections]
5482       // The length must evaluate to non-negative integers.
5483       llvm::APSInt LengthValue = Result.Val.getInt();
5484       if (LengthValue.isNegative()) {
5485         Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
5486             << toString(LengthValue, /*Radix=*/10, /*Signed=*/true)
5487             << Length->getSourceRange();
5488         return ExprError();
5489       }
5490     }
5491   } else if (ColonLocFirst.isValid() &&
5492              (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
5493                                       !OriginalTy->isVariableArrayType()))) {
5494     // OpenMP 5.0, [2.1.5 Array Sections]
5495     // When the size of the array dimension is not known, the length must be
5496     // specified explicitly.
5497     Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
5498         << (!OriginalTy.isNull() && OriginalTy->isArrayType());
5499     return ExprError();
5500   }
5501 
5502   if (Stride) {
5503     Expr::EvalResult Result;
5504     if (Stride->EvaluateAsInt(Result, Context)) {
5505       // OpenMP 5.0, [2.1.5 Array Sections]
5506       // The stride must evaluate to a positive integer.
5507       llvm::APSInt StrideValue = Result.Val.getInt();
5508       if (!StrideValue.isStrictlyPositive()) {
5509         Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
5510             << toString(StrideValue, /*Radix=*/10, /*Signed=*/true)
5511             << Stride->getSourceRange();
5512         return ExprError();
5513       }
5514     }
5515   }
5516 
5517   if (!Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5518     ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
5519     if (Result.isInvalid())
5520       return ExprError();
5521     Base = Result.get();
5522   }
5523   return new (Context) OMPArraySectionExpr(
5524       Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
5525       OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5526 }
5527 
ActOnOMPArrayShapingExpr(Expr * Base,SourceLocation LParenLoc,SourceLocation RParenLoc,ArrayRef<Expr * > Dims,ArrayRef<SourceRange> Brackets)5528 ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5529                                           SourceLocation RParenLoc,
5530                                           ArrayRef<Expr *> Dims,
5531                                           ArrayRef<SourceRange> Brackets) {
5532   if (Base->hasPlaceholderType()) {
5533     ExprResult Result = CheckPlaceholderExpr(Base);
5534     if (Result.isInvalid())
5535       return ExprError();
5536     Result = DefaultLvalueConversion(Result.get());
5537     if (Result.isInvalid())
5538       return ExprError();
5539     Base = Result.get();
5540   }
5541   QualType BaseTy = Base->getType();
5542   // Delay analysis of the types/expressions if instantiation/specialization is
5543   // required.
5544   if (!BaseTy->isPointerType() && Base->isTypeDependent())
5545     return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
5546                                        LParenLoc, RParenLoc, Dims, Brackets);
5547   if (!BaseTy->isPointerType() ||
5548       (!Base->isTypeDependent() &&
5549        BaseTy->getPointeeType()->isIncompleteType()))
5550     return ExprError(Diag(Base->getExprLoc(),
5551                           diag::err_omp_non_pointer_type_array_shaping_base)
5552                      << Base->getSourceRange());
5553 
5554   SmallVector<Expr *, 4> NewDims;
5555   bool ErrorFound = false;
5556   for (Expr *Dim : Dims) {
5557     if (Dim->hasPlaceholderType()) {
5558       ExprResult Result = CheckPlaceholderExpr(Dim);
5559       if (Result.isInvalid()) {
5560         ErrorFound = true;
5561         continue;
5562       }
5563       Result = DefaultLvalueConversion(Result.get());
5564       if (Result.isInvalid()) {
5565         ErrorFound = true;
5566         continue;
5567       }
5568       Dim = Result.get();
5569     }
5570     if (!Dim->isTypeDependent()) {
5571       ExprResult Result =
5572           PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
5573       if (Result.isInvalid()) {
5574         ErrorFound = true;
5575         Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
5576             << Dim->getSourceRange();
5577         continue;
5578       }
5579       Dim = Result.get();
5580       Expr::EvalResult EvResult;
5581       if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
5582         // OpenMP 5.0, [2.1.4 Array Shaping]
5583         // Each si is an integral type expression that must evaluate to a
5584         // positive integer.
5585         llvm::APSInt Value = EvResult.Val.getInt();
5586         if (!Value.isStrictlyPositive()) {
5587           Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
5588               << toString(Value, /*Radix=*/10, /*Signed=*/true)
5589               << Dim->getSourceRange();
5590           ErrorFound = true;
5591           continue;
5592         }
5593       }
5594     }
5595     NewDims.push_back(Dim);
5596   }
5597   if (ErrorFound)
5598     return ExprError();
5599   return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
5600                                      LParenLoc, RParenLoc, NewDims, Brackets);
5601 }
5602 
ActOnOMPIteratorExpr(Scope * S,SourceLocation IteratorKwLoc,SourceLocation LLoc,SourceLocation RLoc,ArrayRef<OMPIteratorData> Data)5603 ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5604                                       SourceLocation LLoc, SourceLocation RLoc,
5605                                       ArrayRef<OMPIteratorData> Data) {
5606   SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
5607   bool IsCorrect = true;
5608   for (const OMPIteratorData &D : Data) {
5609     TypeSourceInfo *TInfo = nullptr;
5610     SourceLocation StartLoc;
5611     QualType DeclTy;
5612     if (!D.Type.getAsOpaquePtr()) {
5613       // OpenMP 5.0, 2.1.6 Iterators
5614       // In an iterator-specifier, if the iterator-type is not specified then
5615       // the type of that iterator is of int type.
5616       DeclTy = Context.IntTy;
5617       StartLoc = D.DeclIdentLoc;
5618     } else {
5619       DeclTy = GetTypeFromParser(D.Type, &TInfo);
5620       StartLoc = TInfo->getTypeLoc().getBeginLoc();
5621     }
5622 
5623     bool IsDeclTyDependent = DeclTy->isDependentType() ||
5624                              DeclTy->containsUnexpandedParameterPack() ||
5625                              DeclTy->isInstantiationDependentType();
5626     if (!IsDeclTyDependent) {
5627       if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
5628         // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5629         // The iterator-type must be an integral or pointer type.
5630         Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5631             << DeclTy;
5632         IsCorrect = false;
5633         continue;
5634       }
5635       if (DeclTy.isConstant(Context)) {
5636         // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5637         // The iterator-type must not be const qualified.
5638         Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5639             << DeclTy;
5640         IsCorrect = false;
5641         continue;
5642       }
5643     }
5644 
5645     // Iterator declaration.
5646     assert(D.DeclIdent && "Identifier expected.");
5647     // Always try to create iterator declarator to avoid extra error messages
5648     // about unknown declarations use.
5649     auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
5650                                D.DeclIdent, DeclTy, TInfo, SC_None);
5651     VD->setImplicit();
5652     if (S) {
5653       // Check for conflicting previous declaration.
5654       DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
5655       LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5656                             ForVisibleRedeclaration);
5657       Previous.suppressDiagnostics();
5658       LookupName(Previous, S);
5659 
5660       FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
5661                            /*AllowInlineNamespace=*/false);
5662       if (!Previous.empty()) {
5663         NamedDecl *Old = Previous.getRepresentativeDecl();
5664         Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
5665         Diag(Old->getLocation(), diag::note_previous_definition);
5666       } else {
5667         PushOnScopeChains(VD, S);
5668       }
5669     } else {
5670       CurContext->addDecl(VD);
5671     }
5672 
5673     /// Act on the iterator variable declaration.
5674     ActOnOpenMPIteratorVarDecl(VD);
5675 
5676     Expr *Begin = D.Range.Begin;
5677     if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
5678       ExprResult BeginRes =
5679           PerformImplicitConversion(Begin, DeclTy, AA_Converting);
5680       Begin = BeginRes.get();
5681     }
5682     Expr *End = D.Range.End;
5683     if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
5684       ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
5685       End = EndRes.get();
5686     }
5687     Expr *Step = D.Range.Step;
5688     if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
5689       if (!Step->getType()->isIntegralType(Context)) {
5690         Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
5691             << Step << Step->getSourceRange();
5692         IsCorrect = false;
5693         continue;
5694       }
5695       std::optional<llvm::APSInt> Result =
5696           Step->getIntegerConstantExpr(Context);
5697       // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5698       // If the step expression of a range-specification equals zero, the
5699       // behavior is unspecified.
5700       if (Result && Result->isZero()) {
5701         Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
5702             << Step << Step->getSourceRange();
5703         IsCorrect = false;
5704         continue;
5705       }
5706     }
5707     if (!Begin || !End || !IsCorrect) {
5708       IsCorrect = false;
5709       continue;
5710     }
5711     OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
5712     IDElem.IteratorDecl = VD;
5713     IDElem.AssignmentLoc = D.AssignLoc;
5714     IDElem.Range.Begin = Begin;
5715     IDElem.Range.End = End;
5716     IDElem.Range.Step = Step;
5717     IDElem.ColonLoc = D.ColonLoc;
5718     IDElem.SecondColonLoc = D.SecColonLoc;
5719   }
5720   if (!IsCorrect) {
5721     // Invalidate all created iterator declarations if error is found.
5722     for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5723       if (Decl *ID = D.IteratorDecl)
5724         ID->setInvalidDecl();
5725     }
5726     return ExprError();
5727   }
5728   SmallVector<OMPIteratorHelperData, 4> Helpers;
5729   if (!CurContext->isDependentContext()) {
5730     // Build number of ityeration for each iteration range.
5731     // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5732     // ((Begini-Stepi-1-Endi) / -Stepi);
5733     for (OMPIteratorExpr::IteratorDefinition &D : ID) {
5734       // (Endi - Begini)
5735       ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
5736                                           D.Range.Begin);
5737       if(!Res.isUsable()) {
5738         IsCorrect = false;
5739         continue;
5740       }
5741       ExprResult St, St1;
5742       if (D.Range.Step) {
5743         St = D.Range.Step;
5744         // (Endi - Begini) + Stepi
5745         Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
5746         if (!Res.isUsable()) {
5747           IsCorrect = false;
5748           continue;
5749         }
5750         // (Endi - Begini) + Stepi - 1
5751         Res =
5752             CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
5753                                ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5754         if (!Res.isUsable()) {
5755           IsCorrect = false;
5756           continue;
5757         }
5758         // ((Endi - Begini) + Stepi - 1) / Stepi
5759         Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
5760         if (!Res.isUsable()) {
5761           IsCorrect = false;
5762           continue;
5763         }
5764         St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
5765         // (Begini - Endi)
5766         ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
5767                                              D.Range.Begin, D.Range.End);
5768         if (!Res1.isUsable()) {
5769           IsCorrect = false;
5770           continue;
5771         }
5772         // (Begini - Endi) - Stepi
5773         Res1 =
5774             CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
5775         if (!Res1.isUsable()) {
5776           IsCorrect = false;
5777           continue;
5778         }
5779         // (Begini - Endi) - Stepi - 1
5780         Res1 =
5781             CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
5782                                ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5783         if (!Res1.isUsable()) {
5784           IsCorrect = false;
5785           continue;
5786         }
5787         // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5788         Res1 =
5789             CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
5790         if (!Res1.isUsable()) {
5791           IsCorrect = false;
5792           continue;
5793         }
5794         // Stepi > 0.
5795         ExprResult CmpRes =
5796             CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
5797                                ActOnIntegerConstant(D.AssignmentLoc, 0).get());
5798         if (!CmpRes.isUsable()) {
5799           IsCorrect = false;
5800           continue;
5801         }
5802         Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
5803                                  Res.get(), Res1.get());
5804         if (!Res.isUsable()) {
5805           IsCorrect = false;
5806           continue;
5807         }
5808       }
5809       Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
5810       if (!Res.isUsable()) {
5811         IsCorrect = false;
5812         continue;
5813       }
5814 
5815       // Build counter update.
5816       // Build counter.
5817       auto *CounterVD =
5818           VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
5819                           D.IteratorDecl->getBeginLoc(), nullptr,
5820                           Res.get()->getType(), nullptr, SC_None);
5821       CounterVD->setImplicit();
5822       ExprResult RefRes =
5823           BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
5824                            D.IteratorDecl->getBeginLoc());
5825       // Build counter update.
5826       // I = Begini + counter * Stepi;
5827       ExprResult UpdateRes;
5828       if (D.Range.Step) {
5829         UpdateRes = CreateBuiltinBinOp(
5830             D.AssignmentLoc, BO_Mul,
5831             DefaultLvalueConversion(RefRes.get()).get(), St.get());
5832       } else {
5833         UpdateRes = DefaultLvalueConversion(RefRes.get());
5834       }
5835       if (!UpdateRes.isUsable()) {
5836         IsCorrect = false;
5837         continue;
5838       }
5839       UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
5840                                      UpdateRes.get());
5841       if (!UpdateRes.isUsable()) {
5842         IsCorrect = false;
5843         continue;
5844       }
5845       ExprResult VDRes =
5846           BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
5847                            cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
5848                            D.IteratorDecl->getBeginLoc());
5849       UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
5850                                      UpdateRes.get());
5851       if (!UpdateRes.isUsable()) {
5852         IsCorrect = false;
5853         continue;
5854       }
5855       UpdateRes =
5856           ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
5857       if (!UpdateRes.isUsable()) {
5858         IsCorrect = false;
5859         continue;
5860       }
5861       ExprResult CounterUpdateRes =
5862           CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
5863       if (!CounterUpdateRes.isUsable()) {
5864         IsCorrect = false;
5865         continue;
5866       }
5867       CounterUpdateRes =
5868           ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
5869       if (!CounterUpdateRes.isUsable()) {
5870         IsCorrect = false;
5871         continue;
5872       }
5873       OMPIteratorHelperData &HD = Helpers.emplace_back();
5874       HD.CounterVD = CounterVD;
5875       HD.Upper = Res.get();
5876       HD.Update = UpdateRes.get();
5877       HD.CounterUpdate = CounterUpdateRes.get();
5878     }
5879   } else {
5880     Helpers.assign(ID.size(), {});
5881   }
5882   if (!IsCorrect) {
5883     // Invalidate all created iterator declarations if error is found.
5884     for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5885       if (Decl *ID = D.IteratorDecl)
5886         ID->setInvalidDecl();
5887     }
5888     return ExprError();
5889   }
5890   return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
5891                                  LLoc, RLoc, ID, Helpers);
5892 }
5893 
5894 ExprResult
CreateBuiltinArraySubscriptExpr(Expr * Base,SourceLocation LLoc,Expr * Idx,SourceLocation RLoc)5895 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5896                                       Expr *Idx, SourceLocation RLoc) {
5897   Expr *LHSExp = Base;
5898   Expr *RHSExp = Idx;
5899 
5900   ExprValueKind VK = VK_LValue;
5901   ExprObjectKind OK = OK_Ordinary;
5902 
5903   // Per C++ core issue 1213, the result is an xvalue if either operand is
5904   // a non-lvalue array, and an lvalue otherwise.
5905   if (getLangOpts().CPlusPlus11) {
5906     for (auto *Op : {LHSExp, RHSExp}) {
5907       Op = Op->IgnoreImplicit();
5908       if (Op->getType()->isArrayType() && !Op->isLValue())
5909         VK = VK_XValue;
5910     }
5911   }
5912 
5913   // Perform default conversions.
5914   if (!LHSExp->getType()->getAs<VectorType>()) {
5915     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5916     if (Result.isInvalid())
5917       return ExprError();
5918     LHSExp = Result.get();
5919   }
5920   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5921   if (Result.isInvalid())
5922     return ExprError();
5923   RHSExp = Result.get();
5924 
5925   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5926 
5927   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5928   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5929   // in the subscript position. As a result, we need to derive the array base
5930   // and index from the expression types.
5931   Expr *BaseExpr, *IndexExpr;
5932   QualType ResultType;
5933   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5934     BaseExpr = LHSExp;
5935     IndexExpr = RHSExp;
5936     ResultType =
5937         getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext());
5938   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5939     BaseExpr = LHSExp;
5940     IndexExpr = RHSExp;
5941     ResultType = PTy->getPointeeType();
5942   } else if (const ObjCObjectPointerType *PTy =
5943                LHSTy->getAs<ObjCObjectPointerType>()) {
5944     BaseExpr = LHSExp;
5945     IndexExpr = RHSExp;
5946 
5947     // Use custom logic if this should be the pseudo-object subscript
5948     // expression.
5949     if (!LangOpts.isSubscriptPointerArithmetic())
5950       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
5951                                           nullptr);
5952 
5953     ResultType = PTy->getPointeeType();
5954   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5955      // Handle the uncommon case of "123[Ptr]".
5956     BaseExpr = RHSExp;
5957     IndexExpr = LHSExp;
5958     ResultType = PTy->getPointeeType();
5959   } else if (const ObjCObjectPointerType *PTy =
5960                RHSTy->getAs<ObjCObjectPointerType>()) {
5961      // Handle the uncommon case of "123[Ptr]".
5962     BaseExpr = RHSExp;
5963     IndexExpr = LHSExp;
5964     ResultType = PTy->getPointeeType();
5965     if (!LangOpts.isSubscriptPointerArithmetic()) {
5966       Diag(LLoc, diag::err_subscript_nonfragile_interface)
5967         << ResultType << BaseExpr->getSourceRange();
5968       return ExprError();
5969     }
5970   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
5971     BaseExpr = LHSExp;    // vectors: V[123]
5972     IndexExpr = RHSExp;
5973     // We apply C++ DR1213 to vector subscripting too.
5974     if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5975       ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5976       if (Materialized.isInvalid())
5977         return ExprError();
5978       LHSExp = Materialized.get();
5979     }
5980     VK = LHSExp->getValueKind();
5981     if (VK != VK_PRValue)
5982       OK = OK_VectorComponent;
5983 
5984     ResultType = VTy->getElementType();
5985     QualType BaseType = BaseExpr->getType();
5986     Qualifiers BaseQuals = BaseType.getQualifiers();
5987     Qualifiers MemberQuals = ResultType.getQualifiers();
5988     Qualifiers Combined = BaseQuals + MemberQuals;
5989     if (Combined != MemberQuals)
5990       ResultType = Context.getQualifiedType(ResultType, Combined);
5991   } else if (LHSTy->isBuiltinType() &&
5992              LHSTy->getAs<BuiltinType>()->isSveVLSBuiltinType()) {
5993     const BuiltinType *BTy = LHSTy->getAs<BuiltinType>();
5994     if (BTy->isSVEBool())
5995       return ExprError(Diag(LLoc, diag::err_subscript_svbool_t)
5996                        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5997 
5998     BaseExpr = LHSExp;
5999     IndexExpr = RHSExp;
6000     if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
6001       ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
6002       if (Materialized.isInvalid())
6003         return ExprError();
6004       LHSExp = Materialized.get();
6005     }
6006     VK = LHSExp->getValueKind();
6007     if (VK != VK_PRValue)
6008       OK = OK_VectorComponent;
6009 
6010     ResultType = BTy->getSveEltType(Context);
6011 
6012     QualType BaseType = BaseExpr->getType();
6013     Qualifiers BaseQuals = BaseType.getQualifiers();
6014     Qualifiers MemberQuals = ResultType.getQualifiers();
6015     Qualifiers Combined = BaseQuals + MemberQuals;
6016     if (Combined != MemberQuals)
6017       ResultType = Context.getQualifiedType(ResultType, Combined);
6018   } else if (LHSTy->isArrayType()) {
6019     // If we see an array that wasn't promoted by
6020     // DefaultFunctionArrayLvalueConversion, it must be an array that
6021     // wasn't promoted because of the C90 rule that doesn't
6022     // allow promoting non-lvalue arrays.  Warn, then
6023     // force the promotion here.
6024     Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
6025         << LHSExp->getSourceRange();
6026     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
6027                                CK_ArrayToPointerDecay).get();
6028     LHSTy = LHSExp->getType();
6029 
6030     BaseExpr = LHSExp;
6031     IndexExpr = RHSExp;
6032     ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
6033   } else if (RHSTy->isArrayType()) {
6034     // Same as previous, except for 123[f().a] case
6035     Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
6036         << RHSExp->getSourceRange();
6037     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
6038                                CK_ArrayToPointerDecay).get();
6039     RHSTy = RHSExp->getType();
6040 
6041     BaseExpr = RHSExp;
6042     IndexExpr = LHSExp;
6043     ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
6044   } else {
6045     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
6046        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
6047   }
6048   // C99 6.5.2.1p1
6049   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
6050     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
6051                      << IndexExpr->getSourceRange());
6052 
6053   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
6054        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) &&
6055       !IndexExpr->isTypeDependent()) {
6056     std::optional<llvm::APSInt> IntegerContantExpr =
6057         IndexExpr->getIntegerConstantExpr(getASTContext());
6058     if (!IntegerContantExpr.has_value() ||
6059         IntegerContantExpr.value().isNegative())
6060       Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
6061   }
6062 
6063   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
6064   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
6065   // type. Note that Functions are not objects, and that (in C99 parlance)
6066   // incomplete types are not object types.
6067   if (ResultType->isFunctionType()) {
6068     Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
6069         << ResultType << BaseExpr->getSourceRange();
6070     return ExprError();
6071   }
6072 
6073   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
6074     // GNU extension: subscripting on pointer to void
6075     Diag(LLoc, diag::ext_gnu_subscript_void_type)
6076       << BaseExpr->getSourceRange();
6077 
6078     // C forbids expressions of unqualified void type from being l-values.
6079     // See IsCForbiddenLValueType.
6080     if (!ResultType.hasQualifiers())
6081       VK = VK_PRValue;
6082   } else if (!ResultType->isDependentType() &&
6083              !ResultType.isWebAssemblyReferenceType() &&
6084              RequireCompleteSizedType(
6085                  LLoc, ResultType,
6086                  diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
6087     return ExprError();
6088 
6089   assert(VK == VK_PRValue || LangOpts.CPlusPlus ||
6090          !ResultType.isCForbiddenLValueType());
6091 
6092   if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
6093       FunctionScopes.size() > 1) {
6094     if (auto *TT =
6095             LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
6096       for (auto I = FunctionScopes.rbegin(),
6097                 E = std::prev(FunctionScopes.rend());
6098            I != E; ++I) {
6099         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
6100         if (CSI == nullptr)
6101           break;
6102         DeclContext *DC = nullptr;
6103         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
6104           DC = LSI->CallOperator;
6105         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
6106           DC = CRSI->TheCapturedDecl;
6107         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
6108           DC = BSI->TheDecl;
6109         if (DC) {
6110           if (DC->containsDecl(TT->getDecl()))
6111             break;
6112           captureVariablyModifiedType(
6113               Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
6114         }
6115       }
6116     }
6117   }
6118 
6119   return new (Context)
6120       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
6121 }
6122 
CheckCXXDefaultArgExpr(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param,Expr * RewrittenInit,bool SkipImmediateInvocations)6123 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
6124                                   ParmVarDecl *Param, Expr *RewrittenInit,
6125                                   bool SkipImmediateInvocations) {
6126   if (Param->hasUnparsedDefaultArg()) {
6127     assert(!RewrittenInit && "Should not have a rewritten init expression yet");
6128     // If we've already cleared out the location for the default argument,
6129     // that means we're parsing it right now.
6130     if (!UnparsedDefaultArgLocs.count(Param)) {
6131       Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
6132       Diag(CallLoc, diag::note_recursive_default_argument_used_here);
6133       Param->setInvalidDecl();
6134       return true;
6135     }
6136 
6137     Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
6138         << FD << cast<CXXRecordDecl>(FD->getDeclContext());
6139     Diag(UnparsedDefaultArgLocs[Param],
6140          diag::note_default_argument_declared_here);
6141     return true;
6142   }
6143 
6144   if (Param->hasUninstantiatedDefaultArg()) {
6145     assert(!RewrittenInit && "Should not have a rewitten init expression yet");
6146     if (InstantiateDefaultArgument(CallLoc, FD, Param))
6147       return true;
6148   }
6149 
6150   Expr *Init = RewrittenInit ? RewrittenInit : Param->getInit();
6151   assert(Init && "default argument but no initializer?");
6152 
6153   // If the default expression creates temporaries, we need to
6154   // push them to the current stack of expression temporaries so they'll
6155   // be properly destroyed.
6156   // FIXME: We should really be rebuilding the default argument with new
6157   // bound temporaries; see the comment in PR5810.
6158   // We don't need to do that with block decls, though, because
6159   // blocks in default argument expression can never capture anything.
6160   if (auto *InitWithCleanup = dyn_cast<ExprWithCleanups>(Init)) {
6161     // Set the "needs cleanups" bit regardless of whether there are
6162     // any explicit objects.
6163     Cleanup.setExprNeedsCleanups(InitWithCleanup->cleanupsHaveSideEffects());
6164     // Append all the objects to the cleanup list.  Right now, this
6165     // should always be a no-op, because blocks in default argument
6166     // expressions should never be able to capture anything.
6167     assert(!InitWithCleanup->getNumObjects() &&
6168            "default argument expression has capturing blocks?");
6169   }
6170   // C++ [expr.const]p15.1:
6171   //   An expression or conversion is in an immediate function context if it is
6172   //   potentially evaluated and [...] its innermost enclosing non-block scope
6173   //   is a function parameter scope of an immediate function.
6174   EnterExpressionEvaluationContext EvalContext(
6175       *this,
6176       FD->isImmediateFunction()
6177           ? ExpressionEvaluationContext::ImmediateFunctionContext
6178           : ExpressionEvaluationContext::PotentiallyEvaluated,
6179       Param);
6180   ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
6181       SkipImmediateInvocations;
6182   runWithSufficientStackSpace(CallLoc, [&] {
6183     MarkDeclarationsReferencedInExpr(Init, /*SkipLocalVariables=*/true);
6184   });
6185   return false;
6186 }
6187 
6188 struct ImmediateCallVisitor : public RecursiveASTVisitor<ImmediateCallVisitor> {
6189   const ASTContext &Context;
ImmediateCallVisitorImmediateCallVisitor6190   ImmediateCallVisitor(const ASTContext &Ctx) : Context(Ctx) {}
6191 
6192   bool HasImmediateCalls = false;
shouldVisitImplicitCodeImmediateCallVisitor6193   bool shouldVisitImplicitCode() const { return true; }
6194 
VisitCallExprImmediateCallVisitor6195   bool VisitCallExpr(CallExpr *E) {
6196     if (const FunctionDecl *FD = E->getDirectCallee())
6197       HasImmediateCalls |= FD->isImmediateFunction();
6198     return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
6199   }
6200 
6201   // SourceLocExpr are not immediate invocations
6202   // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr
6203   // need to be rebuilt so that they refer to the correct SourceLocation and
6204   // DeclContext.
VisitSourceLocExprImmediateCallVisitor6205   bool VisitSourceLocExpr(SourceLocExpr *E) {
6206     HasImmediateCalls = true;
6207     return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
6208   }
6209 
6210   // A nested lambda might have parameters with immediate invocations
6211   // in their default arguments.
6212   // The compound statement is not visited (as it does not constitute a
6213   // subexpression).
6214   // FIXME: We should consider visiting and transforming captures
6215   // with init expressions.
VisitLambdaExprImmediateCallVisitor6216   bool VisitLambdaExpr(LambdaExpr *E) {
6217     return VisitCXXMethodDecl(E->getCallOperator());
6218   }
6219 
6220   // Blocks don't support default parameters, and, as for lambdas,
6221   // we don't consider their body a subexpression.
VisitBlockDeclImmediateCallVisitor6222   bool VisitBlockDecl(BlockDecl *B) { return false; }
6223 
VisitCompoundStmtImmediateCallVisitor6224   bool VisitCompoundStmt(CompoundStmt *B) { return false; }
6225 
VisitCXXDefaultArgExprImmediateCallVisitor6226   bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
6227     return TraverseStmt(E->getExpr());
6228   }
6229 
VisitCXXDefaultInitExprImmediateCallVisitor6230   bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
6231     return TraverseStmt(E->getExpr());
6232   }
6233 };
6234 
6235 struct EnsureImmediateInvocationInDefaultArgs
6236     : TreeTransform<EnsureImmediateInvocationInDefaultArgs> {
EnsureImmediateInvocationInDefaultArgsEnsureImmediateInvocationInDefaultArgs6237   EnsureImmediateInvocationInDefaultArgs(Sema &SemaRef)
6238       : TreeTransform(SemaRef) {}
6239 
6240   // Lambda can only have immediate invocations in the default
6241   // args of their parameters, which is transformed upon calling the closure.
6242   // The body is not a subexpression, so we have nothing to do.
6243   // FIXME: Immediate calls in capture initializers should be transformed.
TransformLambdaExprEnsureImmediateInvocationInDefaultArgs6244   ExprResult TransformLambdaExpr(LambdaExpr *E) { return E; }
TransformBlockExprEnsureImmediateInvocationInDefaultArgs6245   ExprResult TransformBlockExpr(BlockExpr *E) { return E; }
6246 
6247   // Make sure we don't rebuild the this pointer as it would
6248   // cause it to incorrectly point it to the outermost class
6249   // in the case of nested struct initialization.
TransformCXXThisExprEnsureImmediateInvocationInDefaultArgs6250   ExprResult TransformCXXThisExpr(CXXThisExpr *E) { return E; }
6251 };
6252 
BuildCXXDefaultArgExpr(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param,Expr * Init)6253 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
6254                                         FunctionDecl *FD, ParmVarDecl *Param,
6255                                         Expr *Init) {
6256   assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
6257 
6258   bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
6259 
6260   std::optional<ExpressionEvaluationContextRecord::InitializationContext>
6261       InitializationContext =
6262           OutermostDeclarationWithDelayedImmediateInvocations();
6263   if (!InitializationContext.has_value())
6264     InitializationContext.emplace(CallLoc, Param, CurContext);
6265 
6266   if (!Init && !Param->hasUnparsedDefaultArg()) {
6267     // Mark that we are replacing a default argument first.
6268     // If we are instantiating a template we won't have to
6269     // retransform immediate calls.
6270     // C++ [expr.const]p15.1:
6271     //   An expression or conversion is in an immediate function context if it
6272     //   is potentially evaluated and [...] its innermost enclosing non-block
6273     //   scope is a function parameter scope of an immediate function.
6274     EnterExpressionEvaluationContext EvalContext(
6275         *this,
6276         FD->isImmediateFunction()
6277             ? ExpressionEvaluationContext::ImmediateFunctionContext
6278             : ExpressionEvaluationContext::PotentiallyEvaluated,
6279         Param);
6280 
6281     if (Param->hasUninstantiatedDefaultArg()) {
6282       if (InstantiateDefaultArgument(CallLoc, FD, Param))
6283         return ExprError();
6284     }
6285     // CWG2631
6286     // An immediate invocation that is not evaluated where it appears is
6287     // evaluated and checked for whether it is a constant expression at the
6288     // point where the enclosing initializer is used in a function call.
6289     ImmediateCallVisitor V(getASTContext());
6290     if (!NestedDefaultChecking)
6291       V.TraverseDecl(Param);
6292     if (V.HasImmediateCalls) {
6293       ExprEvalContexts.back().DelayedDefaultInitializationContext = {
6294           CallLoc, Param, CurContext};
6295       EnsureImmediateInvocationInDefaultArgs Immediate(*this);
6296       ExprResult Res;
6297       runWithSufficientStackSpace(CallLoc, [&] {
6298         Res = Immediate.TransformInitializer(Param->getInit(),
6299                                              /*NotCopy=*/false);
6300       });
6301       if (Res.isInvalid())
6302         return ExprError();
6303       Res = ConvertParamDefaultArgument(Param, Res.get(),
6304                                         Res.get()->getBeginLoc());
6305       if (Res.isInvalid())
6306         return ExprError();
6307       Init = Res.get();
6308     }
6309   }
6310 
6311   if (CheckCXXDefaultArgExpr(
6312           CallLoc, FD, Param, Init,
6313           /*SkipImmediateInvocations=*/NestedDefaultChecking))
6314     return ExprError();
6315 
6316   return CXXDefaultArgExpr::Create(Context, InitializationContext->Loc, Param,
6317                                    Init, InitializationContext->Context);
6318 }
6319 
BuildCXXDefaultInitExpr(SourceLocation Loc,FieldDecl * Field)6320 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
6321   assert(Field->hasInClassInitializer());
6322 
6323   // If we might have already tried and failed to instantiate, don't try again.
6324   if (Field->isInvalidDecl())
6325     return ExprError();
6326 
6327   CXXThisScopeRAII This(*this, Field->getParent(), Qualifiers());
6328 
6329   auto *ParentRD = cast<CXXRecordDecl>(Field->getParent());
6330 
6331   std::optional<ExpressionEvaluationContextRecord::InitializationContext>
6332       InitializationContext =
6333           OutermostDeclarationWithDelayedImmediateInvocations();
6334   if (!InitializationContext.has_value())
6335     InitializationContext.emplace(Loc, Field, CurContext);
6336 
6337   Expr *Init = nullptr;
6338 
6339   bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
6340 
6341   EnterExpressionEvaluationContext EvalContext(
6342       *this, ExpressionEvaluationContext::PotentiallyEvaluated, Field);
6343 
6344   if (!Field->getInClassInitializer()) {
6345     // Maybe we haven't instantiated the in-class initializer. Go check the
6346     // pattern FieldDecl to see if it has one.
6347     if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
6348       CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
6349       DeclContext::lookup_result Lookup =
6350           ClassPattern->lookup(Field->getDeclName());
6351 
6352       FieldDecl *Pattern = nullptr;
6353       for (auto *L : Lookup) {
6354         if ((Pattern = dyn_cast<FieldDecl>(L)))
6355           break;
6356       }
6357       assert(Pattern && "We must have set the Pattern!");
6358       if (!Pattern->hasInClassInitializer() ||
6359           InstantiateInClassInitializer(Loc, Field, Pattern,
6360                                         getTemplateInstantiationArgs(Field))) {
6361         Field->setInvalidDecl();
6362         return ExprError();
6363       }
6364     }
6365   }
6366 
6367   // CWG2631
6368   // An immediate invocation that is not evaluated where it appears is
6369   // evaluated and checked for whether it is a constant expression at the
6370   // point where the enclosing initializer is used in a [...] a constructor
6371   // definition, or an aggregate initialization.
6372   ImmediateCallVisitor V(getASTContext());
6373   if (!NestedDefaultChecking)
6374     V.TraverseDecl(Field);
6375   if (V.HasImmediateCalls) {
6376     ExprEvalContexts.back().DelayedDefaultInitializationContext = {Loc, Field,
6377                                                                    CurContext};
6378     ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
6379         NestedDefaultChecking;
6380 
6381     EnsureImmediateInvocationInDefaultArgs Immediate(*this);
6382     ExprResult Res;
6383     runWithSufficientStackSpace(Loc, [&] {
6384       Res = Immediate.TransformInitializer(Field->getInClassInitializer(),
6385                                            /*CXXDirectInit=*/false);
6386     });
6387     if (!Res.isInvalid())
6388       Res = ConvertMemberDefaultInitExpression(Field, Res.get(), Loc);
6389     if (Res.isInvalid()) {
6390       Field->setInvalidDecl();
6391       return ExprError();
6392     }
6393     Init = Res.get();
6394   }
6395 
6396   if (Field->getInClassInitializer()) {
6397     Expr *E = Init ? Init : Field->getInClassInitializer();
6398     if (!NestedDefaultChecking)
6399       runWithSufficientStackSpace(Loc, [&] {
6400         MarkDeclarationsReferencedInExpr(E, /*SkipLocalVariables=*/false);
6401       });
6402     // C++11 [class.base.init]p7:
6403     //   The initialization of each base and member constitutes a
6404     //   full-expression.
6405     ExprResult Res = ActOnFinishFullExpr(E, /*DiscardedValue=*/false);
6406     if (Res.isInvalid()) {
6407       Field->setInvalidDecl();
6408       return ExprError();
6409     }
6410     Init = Res.get();
6411 
6412     return CXXDefaultInitExpr::Create(Context, InitializationContext->Loc,
6413                                       Field, InitializationContext->Context,
6414                                       Init);
6415   }
6416 
6417   // DR1351:
6418   //   If the brace-or-equal-initializer of a non-static data member
6419   //   invokes a defaulted default constructor of its class or of an
6420   //   enclosing class in a potentially evaluated subexpression, the
6421   //   program is ill-formed.
6422   //
6423   // This resolution is unworkable: the exception specification of the
6424   // default constructor can be needed in an unevaluated context, in
6425   // particular, in the operand of a noexcept-expression, and we can be
6426   // unable to compute an exception specification for an enclosed class.
6427   //
6428   // Any attempt to resolve the exception specification of a defaulted default
6429   // constructor before the initializer is lexically complete will ultimately
6430   // come here at which point we can diagnose it.
6431   RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
6432   Diag(Loc, diag::err_default_member_initializer_not_yet_parsed)
6433       << OutermostClass << Field;
6434   Diag(Field->getEndLoc(),
6435        diag::note_default_member_initializer_not_yet_parsed);
6436   // Recover by marking the field invalid, unless we're in a SFINAE context.
6437   if (!isSFINAEContext())
6438     Field->setInvalidDecl();
6439   return ExprError();
6440 }
6441 
6442 Sema::VariadicCallType
getVariadicCallType(FunctionDecl * FDecl,const FunctionProtoType * Proto,Expr * Fn)6443 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
6444                           Expr *Fn) {
6445   if (Proto && Proto->isVariadic()) {
6446     if (isa_and_nonnull<CXXConstructorDecl>(FDecl))
6447       return VariadicConstructor;
6448     else if (Fn && Fn->getType()->isBlockPointerType())
6449       return VariadicBlock;
6450     else if (FDecl) {
6451       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
6452         if (Method->isInstance())
6453           return VariadicMethod;
6454     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
6455       return VariadicMethod;
6456     return VariadicFunction;
6457   }
6458   return VariadicDoesNotApply;
6459 }
6460 
6461 namespace {
6462 class FunctionCallCCC final : public FunctionCallFilterCCC {
6463 public:
FunctionCallCCC(Sema & SemaRef,const IdentifierInfo * FuncName,unsigned NumArgs,MemberExpr * ME)6464   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
6465                   unsigned NumArgs, MemberExpr *ME)
6466       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
6467         FunctionName(FuncName) {}
6468 
ValidateCandidate(const TypoCorrection & candidate)6469   bool ValidateCandidate(const TypoCorrection &candidate) override {
6470     if (!candidate.getCorrectionSpecifier() ||
6471         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
6472       return false;
6473     }
6474 
6475     return FunctionCallFilterCCC::ValidateCandidate(candidate);
6476   }
6477 
clone()6478   std::unique_ptr<CorrectionCandidateCallback> clone() override {
6479     return std::make_unique<FunctionCallCCC>(*this);
6480   }
6481 
6482 private:
6483   const IdentifierInfo *const FunctionName;
6484 };
6485 }
6486 
TryTypoCorrectionForCall(Sema & S,Expr * Fn,FunctionDecl * FDecl,ArrayRef<Expr * > Args)6487 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
6488                                                FunctionDecl *FDecl,
6489                                                ArrayRef<Expr *> Args) {
6490   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
6491   DeclarationName FuncName = FDecl->getDeclName();
6492   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
6493 
6494   FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
6495   if (TypoCorrection Corrected = S.CorrectTypo(
6496           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
6497           S.getScopeForContext(S.CurContext), nullptr, CCC,
6498           Sema::CTK_ErrorRecovery)) {
6499     if (NamedDecl *ND = Corrected.getFoundDecl()) {
6500       if (Corrected.isOverloaded()) {
6501         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
6502         OverloadCandidateSet::iterator Best;
6503         for (NamedDecl *CD : Corrected) {
6504           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
6505             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
6506                                    OCS);
6507         }
6508         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
6509         case OR_Success:
6510           ND = Best->FoundDecl;
6511           Corrected.setCorrectionDecl(ND);
6512           break;
6513         default:
6514           break;
6515         }
6516       }
6517       ND = ND->getUnderlyingDecl();
6518       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
6519         return Corrected;
6520     }
6521   }
6522   return TypoCorrection();
6523 }
6524 
6525 /// ConvertArgumentsForCall - Converts the arguments specified in
6526 /// Args/NumArgs to the parameter types of the function FDecl with
6527 /// function prototype Proto. Call is the call expression itself, and
6528 /// Fn is the function expression. For a C++ member function, this
6529 /// routine does not attempt to convert the object argument. Returns
6530 /// true if the call is ill-formed.
6531 bool
ConvertArgumentsForCall(CallExpr * Call,Expr * Fn,FunctionDecl * FDecl,const FunctionProtoType * Proto,ArrayRef<Expr * > Args,SourceLocation RParenLoc,bool IsExecConfig)6532 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
6533                               FunctionDecl *FDecl,
6534                               const FunctionProtoType *Proto,
6535                               ArrayRef<Expr *> Args,
6536                               SourceLocation RParenLoc,
6537                               bool IsExecConfig) {
6538   // Bail out early if calling a builtin with custom typechecking.
6539   if (FDecl)
6540     if (unsigned ID = FDecl->getBuiltinID())
6541       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
6542         return false;
6543 
6544   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
6545   // assignment, to the types of the corresponding parameter, ...
6546   bool HasExplicitObjectParameter =
6547       FDecl && FDecl->hasCXXExplicitFunctionObjectParameter();
6548   unsigned ExplicitObjectParameterOffset = HasExplicitObjectParameter ? 1 : 0;
6549   unsigned NumParams = Proto->getNumParams();
6550   bool Invalid = false;
6551   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
6552   unsigned FnKind = Fn->getType()->isBlockPointerType()
6553                        ? 1 /* block */
6554                        : (IsExecConfig ? 3 /* kernel function (exec config) */
6555                                        : 0 /* function */);
6556 
6557   // If too few arguments are available (and we don't have default
6558   // arguments for the remaining parameters), don't make the call.
6559   if (Args.size() < NumParams) {
6560     if (Args.size() < MinArgs) {
6561       TypoCorrection TC;
6562       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6563         unsigned diag_id =
6564             MinArgs == NumParams && !Proto->isVariadic()
6565                 ? diag::err_typecheck_call_too_few_args_suggest
6566                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
6567         diagnoseTypo(
6568             TC, PDiag(diag_id)
6569                     << FnKind << MinArgs - ExplicitObjectParameterOffset
6570                     << static_cast<unsigned>(Args.size()) -
6571                            ExplicitObjectParameterOffset
6572                     << HasExplicitObjectParameter << TC.getCorrectionRange());
6573       } else if (MinArgs - ExplicitObjectParameterOffset == 1 && FDecl &&
6574                  FDecl->getParamDecl(ExplicitObjectParameterOffset)
6575                      ->getDeclName())
6576         Diag(RParenLoc,
6577              MinArgs == NumParams && !Proto->isVariadic()
6578                  ? diag::err_typecheck_call_too_few_args_one
6579                  : diag::err_typecheck_call_too_few_args_at_least_one)
6580             << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
6581             << HasExplicitObjectParameter << Fn->getSourceRange();
6582       else
6583         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
6584                             ? diag::err_typecheck_call_too_few_args
6585                             : diag::err_typecheck_call_too_few_args_at_least)
6586             << FnKind << MinArgs - ExplicitObjectParameterOffset
6587             << static_cast<unsigned>(Args.size()) -
6588                    ExplicitObjectParameterOffset
6589             << HasExplicitObjectParameter << Fn->getSourceRange();
6590 
6591       // Emit the location of the prototype.
6592       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6593         Diag(FDecl->getLocation(), diag::note_callee_decl)
6594             << FDecl << FDecl->getParametersSourceRange();
6595 
6596       return true;
6597     }
6598     // We reserve space for the default arguments when we create
6599     // the call expression, before calling ConvertArgumentsForCall.
6600     assert((Call->getNumArgs() == NumParams) &&
6601            "We should have reserved space for the default arguments before!");
6602   }
6603 
6604   // If too many are passed and not variadic, error on the extras and drop
6605   // them.
6606   if (Args.size() > NumParams) {
6607     if (!Proto->isVariadic()) {
6608       TypoCorrection TC;
6609       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6610         unsigned diag_id =
6611             MinArgs == NumParams && !Proto->isVariadic()
6612                 ? diag::err_typecheck_call_too_many_args_suggest
6613                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
6614         diagnoseTypo(
6615             TC, PDiag(diag_id)
6616                     << FnKind << NumParams - ExplicitObjectParameterOffset
6617                     << static_cast<unsigned>(Args.size()) -
6618                            ExplicitObjectParameterOffset
6619                     << HasExplicitObjectParameter << TC.getCorrectionRange());
6620       } else if (NumParams - ExplicitObjectParameterOffset == 1 && FDecl &&
6621                  FDecl->getParamDecl(ExplicitObjectParameterOffset)
6622                      ->getDeclName())
6623         Diag(Args[NumParams]->getBeginLoc(),
6624              MinArgs == NumParams
6625                  ? diag::err_typecheck_call_too_many_args_one
6626                  : diag::err_typecheck_call_too_many_args_at_most_one)
6627             << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
6628             << static_cast<unsigned>(Args.size()) -
6629                    ExplicitObjectParameterOffset
6630             << HasExplicitObjectParameter << Fn->getSourceRange()
6631             << SourceRange(Args[NumParams]->getBeginLoc(),
6632                            Args.back()->getEndLoc());
6633       else
6634         Diag(Args[NumParams]->getBeginLoc(),
6635              MinArgs == NumParams
6636                  ? diag::err_typecheck_call_too_many_args
6637                  : diag::err_typecheck_call_too_many_args_at_most)
6638             << FnKind << NumParams - ExplicitObjectParameterOffset
6639             << static_cast<unsigned>(Args.size()) -
6640                    ExplicitObjectParameterOffset
6641             << HasExplicitObjectParameter << Fn->getSourceRange()
6642             << SourceRange(Args[NumParams]->getBeginLoc(),
6643                            Args.back()->getEndLoc());
6644 
6645       // Emit the location of the prototype.
6646       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6647         Diag(FDecl->getLocation(), diag::note_callee_decl)
6648             << FDecl << FDecl->getParametersSourceRange();
6649 
6650       // This deletes the extra arguments.
6651       Call->shrinkNumArgs(NumParams);
6652       return true;
6653     }
6654   }
6655   SmallVector<Expr *, 8> AllArgs;
6656   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
6657 
6658   Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
6659                                    AllArgs, CallType);
6660   if (Invalid)
6661     return true;
6662   unsigned TotalNumArgs = AllArgs.size();
6663   for (unsigned i = 0; i < TotalNumArgs; ++i)
6664     Call->setArg(i, AllArgs[i]);
6665 
6666   Call->computeDependence();
6667   return false;
6668 }
6669 
GatherArgumentsForCall(SourceLocation CallLoc,FunctionDecl * FDecl,const FunctionProtoType * Proto,unsigned FirstParam,ArrayRef<Expr * > Args,SmallVectorImpl<Expr * > & AllArgs,VariadicCallType CallType,bool AllowExplicit,bool IsListInitialization)6670 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
6671                                   const FunctionProtoType *Proto,
6672                                   unsigned FirstParam, ArrayRef<Expr *> Args,
6673                                   SmallVectorImpl<Expr *> &AllArgs,
6674                                   VariadicCallType CallType, bool AllowExplicit,
6675                                   bool IsListInitialization) {
6676   unsigned NumParams = Proto->getNumParams();
6677   bool Invalid = false;
6678   size_t ArgIx = 0;
6679   // Continue to check argument types (even if we have too few/many args).
6680   for (unsigned i = FirstParam; i < NumParams; i++) {
6681     QualType ProtoArgType = Proto->getParamType(i);
6682 
6683     Expr *Arg;
6684     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
6685     if (ArgIx < Args.size()) {
6686       Arg = Args[ArgIx++];
6687 
6688       if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
6689                               diag::err_call_incomplete_argument, Arg))
6690         return true;
6691 
6692       // Strip the unbridged-cast placeholder expression off, if applicable.
6693       bool CFAudited = false;
6694       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
6695           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6696           (!Param || !Param->hasAttr<CFConsumedAttr>()))
6697         Arg = stripARCUnbridgedCast(Arg);
6698       else if (getLangOpts().ObjCAutoRefCount &&
6699                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6700                (!Param || !Param->hasAttr<CFConsumedAttr>()))
6701         CFAudited = true;
6702 
6703       if (Proto->getExtParameterInfo(i).isNoEscape() &&
6704           ProtoArgType->isBlockPointerType())
6705         if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
6706           BE->getBlockDecl()->setDoesNotEscape();
6707 
6708       InitializedEntity Entity =
6709           Param ? InitializedEntity::InitializeParameter(Context, Param,
6710                                                          ProtoArgType)
6711                 : InitializedEntity::InitializeParameter(
6712                       Context, ProtoArgType, Proto->isParamConsumed(i));
6713 
6714       // Remember that parameter belongs to a CF audited API.
6715       if (CFAudited)
6716         Entity.setParameterCFAudited();
6717 
6718       ExprResult ArgE = PerformCopyInitialization(
6719           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
6720       if (ArgE.isInvalid())
6721         return true;
6722 
6723       Arg = ArgE.getAs<Expr>();
6724     } else {
6725       assert(Param && "can't use default arguments without a known callee");
6726 
6727       ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
6728       if (ArgExpr.isInvalid())
6729         return true;
6730 
6731       Arg = ArgExpr.getAs<Expr>();
6732     }
6733 
6734     // Check for array bounds violations for each argument to the call. This
6735     // check only triggers warnings when the argument isn't a more complex Expr
6736     // with its own checking, such as a BinaryOperator.
6737     CheckArrayAccess(Arg);
6738 
6739     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
6740     CheckStaticArrayArgument(CallLoc, Param, Arg);
6741 
6742     AllArgs.push_back(Arg);
6743   }
6744 
6745   // If this is a variadic call, handle args passed through "...".
6746   if (CallType != VariadicDoesNotApply) {
6747     // Assume that extern "C" functions with variadic arguments that
6748     // return __unknown_anytype aren't *really* variadic.
6749     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
6750         FDecl->isExternC()) {
6751       for (Expr *A : Args.slice(ArgIx)) {
6752         QualType paramType; // ignored
6753         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
6754         Invalid |= arg.isInvalid();
6755         AllArgs.push_back(arg.get());
6756       }
6757 
6758     // Otherwise do argument promotion, (C99 6.5.2.2p7).
6759     } else {
6760       for (Expr *A : Args.slice(ArgIx)) {
6761         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
6762         Invalid |= Arg.isInvalid();
6763         AllArgs.push_back(Arg.get());
6764       }
6765     }
6766 
6767     // Check for array bounds violations.
6768     for (Expr *A : Args.slice(ArgIx))
6769       CheckArrayAccess(A);
6770   }
6771   return Invalid;
6772 }
6773 
DiagnoseCalleeStaticArrayParam(Sema & S,ParmVarDecl * PVD)6774 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
6775   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6776   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6777     TL = DTL.getOriginalLoc();
6778   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6779     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6780       << ATL.getLocalSourceRange();
6781 }
6782 
6783 /// CheckStaticArrayArgument - If the given argument corresponds to a static
6784 /// array parameter, check that it is non-null, and that if it is formed by
6785 /// array-to-pointer decay, the underlying array is sufficiently large.
6786 ///
6787 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
6788 /// array type derivation, then for each call to the function, the value of the
6789 /// corresponding actual argument shall provide access to the first element of
6790 /// an array with at least as many elements as specified by the size expression.
6791 void
CheckStaticArrayArgument(SourceLocation CallLoc,ParmVarDecl * Param,const Expr * ArgExpr)6792 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6793                                ParmVarDecl *Param,
6794                                const Expr *ArgExpr) {
6795   // Static array parameters are not supported in C++.
6796   if (!Param || getLangOpts().CPlusPlus)
6797     return;
6798 
6799   QualType OrigTy = Param->getOriginalType();
6800 
6801   const ArrayType *AT = Context.getAsArrayType(OrigTy);
6802   if (!AT || AT->getSizeModifier() != ArraySizeModifier::Static)
6803     return;
6804 
6805   if (ArgExpr->isNullPointerConstant(Context,
6806                                      Expr::NPC_NeverValueDependent)) {
6807     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6808     DiagnoseCalleeStaticArrayParam(*this, Param);
6809     return;
6810   }
6811 
6812   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6813   if (!CAT)
6814     return;
6815 
6816   const ConstantArrayType *ArgCAT =
6817     Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6818   if (!ArgCAT)
6819     return;
6820 
6821   if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6822                                              ArgCAT->getElementType())) {
6823     if (ArgCAT->getSize().ult(CAT->getSize())) {
6824       Diag(CallLoc, diag::warn_static_array_too_small)
6825           << ArgExpr->getSourceRange()
6826           << (unsigned)ArgCAT->getSize().getZExtValue()
6827           << (unsigned)CAT->getSize().getZExtValue() << 0;
6828       DiagnoseCalleeStaticArrayParam(*this, Param);
6829     }
6830     return;
6831   }
6832 
6833   std::optional<CharUnits> ArgSize =
6834       getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6835   std::optional<CharUnits> ParmSize =
6836       getASTContext().getTypeSizeInCharsIfKnown(CAT);
6837   if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6838     Diag(CallLoc, diag::warn_static_array_too_small)
6839         << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6840         << (unsigned)ParmSize->getQuantity() << 1;
6841     DiagnoseCalleeStaticArrayParam(*this, Param);
6842   }
6843 }
6844 
6845 /// Given a function expression of unknown-any type, try to rebuild it
6846 /// to have a function type.
6847 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6848 
6849 /// Is the given type a placeholder that we need to lower out
6850 /// immediately during argument processing?
isPlaceholderToRemoveAsArg(QualType type)6851 static bool isPlaceholderToRemoveAsArg(QualType type) {
6852   // Placeholders are never sugared.
6853   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6854   if (!placeholder) return false;
6855 
6856   switch (placeholder->getKind()) {
6857   // Ignore all the non-placeholder types.
6858 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6859   case BuiltinType::Id:
6860 #include "clang/Basic/OpenCLImageTypes.def"
6861 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6862   case BuiltinType::Id:
6863 #include "clang/Basic/OpenCLExtensionTypes.def"
6864   // In practice we'll never use this, since all SVE types are sugared
6865   // via TypedefTypes rather than exposed directly as BuiltinTypes.
6866 #define SVE_TYPE(Name, Id, SingletonId) \
6867   case BuiltinType::Id:
6868 #include "clang/Basic/AArch64SVEACLETypes.def"
6869 #define PPC_VECTOR_TYPE(Name, Id, Size) \
6870   case BuiltinType::Id:
6871 #include "clang/Basic/PPCTypes.def"
6872 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6873 #include "clang/Basic/RISCVVTypes.def"
6874 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6875 #include "clang/Basic/WebAssemblyReferenceTypes.def"
6876 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6877 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6878 #include "clang/AST/BuiltinTypes.def"
6879     return false;
6880 
6881   // We cannot lower out overload sets; they might validly be resolved
6882   // by the call machinery.
6883   case BuiltinType::Overload:
6884     return false;
6885 
6886   // Unbridged casts in ARC can be handled in some call positions and
6887   // should be left in place.
6888   case BuiltinType::ARCUnbridgedCast:
6889     return false;
6890 
6891   // Pseudo-objects should be converted as soon as possible.
6892   case BuiltinType::PseudoObject:
6893     return true;
6894 
6895   // The debugger mode could theoretically but currently does not try
6896   // to resolve unknown-typed arguments based on known parameter types.
6897   case BuiltinType::UnknownAny:
6898     return true;
6899 
6900   // These are always invalid as call arguments and should be reported.
6901   case BuiltinType::BoundMember:
6902   case BuiltinType::BuiltinFn:
6903   case BuiltinType::IncompleteMatrixIdx:
6904   case BuiltinType::OMPArraySection:
6905   case BuiltinType::OMPArrayShaping:
6906   case BuiltinType::OMPIterator:
6907     return true;
6908 
6909   }
6910   llvm_unreachable("bad builtin type kind");
6911 }
6912 
CheckArgsForPlaceholders(MultiExprArg args)6913 bool Sema::CheckArgsForPlaceholders(MultiExprArg args) {
6914   // Apply this processing to all the arguments at once instead of
6915   // dying at the first failure.
6916   bool hasInvalid = false;
6917   for (size_t i = 0, e = args.size(); i != e; i++) {
6918     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6919       ExprResult result = CheckPlaceholderExpr(args[i]);
6920       if (result.isInvalid()) hasInvalid = true;
6921       else args[i] = result.get();
6922     }
6923   }
6924   return hasInvalid;
6925 }
6926 
6927 /// If a builtin function has a pointer argument with no explicit address
6928 /// space, then it should be able to accept a pointer to any address
6929 /// space as input.  In order to do this, we need to replace the
6930 /// standard builtin declaration with one that uses the same address space
6931 /// as the call.
6932 ///
6933 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6934 ///                  it does not contain any pointer arguments without
6935 ///                  an address space qualifer.  Otherwise the rewritten
6936 ///                  FunctionDecl is returned.
6937 /// TODO: Handle pointer return types.
rewriteBuiltinFunctionDecl(Sema * Sema,ASTContext & Context,FunctionDecl * FDecl,MultiExprArg ArgExprs)6938 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6939                                                 FunctionDecl *FDecl,
6940                                                 MultiExprArg ArgExprs) {
6941 
6942   QualType DeclType = FDecl->getType();
6943   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6944 
6945   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6946       ArgExprs.size() < FT->getNumParams())
6947     return nullptr;
6948 
6949   bool NeedsNewDecl = false;
6950   unsigned i = 0;
6951   SmallVector<QualType, 8> OverloadParams;
6952 
6953   for (QualType ParamType : FT->param_types()) {
6954 
6955     // Convert array arguments to pointer to simplify type lookup.
6956     ExprResult ArgRes =
6957         Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6958     if (ArgRes.isInvalid())
6959       return nullptr;
6960     Expr *Arg = ArgRes.get();
6961     QualType ArgType = Arg->getType();
6962     if (!ParamType->isPointerType() || ParamType.hasAddressSpace() ||
6963         !ArgType->isPointerType() ||
6964         !ArgType->getPointeeType().hasAddressSpace() ||
6965         isPtrSizeAddressSpace(ArgType->getPointeeType().getAddressSpace())) {
6966       OverloadParams.push_back(ParamType);
6967       continue;
6968     }
6969 
6970     QualType PointeeType = ParamType->getPointeeType();
6971     if (PointeeType.hasAddressSpace())
6972       continue;
6973 
6974     NeedsNewDecl = true;
6975     LangAS AS = ArgType->getPointeeType().getAddressSpace();
6976 
6977     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6978     OverloadParams.push_back(Context.getPointerType(PointeeType));
6979   }
6980 
6981   if (!NeedsNewDecl)
6982     return nullptr;
6983 
6984   FunctionProtoType::ExtProtoInfo EPI;
6985   EPI.Variadic = FT->isVariadic();
6986   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6987                                                 OverloadParams, EPI);
6988   DeclContext *Parent = FDecl->getParent();
6989   FunctionDecl *OverloadDecl = FunctionDecl::Create(
6990       Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
6991       FDecl->getIdentifier(), OverloadTy,
6992       /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
6993       false,
6994       /*hasPrototype=*/true);
6995   SmallVector<ParmVarDecl*, 16> Params;
6996   FT = cast<FunctionProtoType>(OverloadTy);
6997   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6998     QualType ParamType = FT->getParamType(i);
6999     ParmVarDecl *Parm =
7000         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
7001                                 SourceLocation(), nullptr, ParamType,
7002                                 /*TInfo=*/nullptr, SC_None, nullptr);
7003     Parm->setScopeInfo(0, i);
7004     Params.push_back(Parm);
7005   }
7006   OverloadDecl->setParams(Params);
7007   Sema->mergeDeclAttributes(OverloadDecl, FDecl);
7008   return OverloadDecl;
7009 }
7010 
checkDirectCallValidity(Sema & S,const Expr * Fn,FunctionDecl * Callee,MultiExprArg ArgExprs)7011 static void checkDirectCallValidity(Sema &S, const Expr *Fn,
7012                                     FunctionDecl *Callee,
7013                                     MultiExprArg ArgExprs) {
7014   // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
7015   // similar attributes) really don't like it when functions are called with an
7016   // invalid number of args.
7017   if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
7018                          /*PartialOverloading=*/false) &&
7019       !Callee->isVariadic())
7020     return;
7021   if (Callee->getMinRequiredArguments() > ArgExprs.size())
7022     return;
7023 
7024   if (const EnableIfAttr *Attr =
7025           S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
7026     S.Diag(Fn->getBeginLoc(),
7027            isa<CXXMethodDecl>(Callee)
7028                ? diag::err_ovl_no_viable_member_function_in_call
7029                : diag::err_ovl_no_viable_function_in_call)
7030         << Callee << Callee->getSourceRange();
7031     S.Diag(Callee->getLocation(),
7032            diag::note_ovl_candidate_disabled_by_function_cond_attr)
7033         << Attr->getCond()->getSourceRange() << Attr->getMessage();
7034     return;
7035   }
7036 }
7037 
enclosingClassIsRelatedToClassInWhichMembersWereFound(const UnresolvedMemberExpr * const UME,Sema & S)7038 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
7039     const UnresolvedMemberExpr *const UME, Sema &S) {
7040 
7041   const auto GetFunctionLevelDCIfCXXClass =
7042       [](Sema &S) -> const CXXRecordDecl * {
7043     const DeclContext *const DC = S.getFunctionLevelDeclContext();
7044     if (!DC || !DC->getParent())
7045       return nullptr;
7046 
7047     // If the call to some member function was made from within a member
7048     // function body 'M' return return 'M's parent.
7049     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
7050       return MD->getParent()->getCanonicalDecl();
7051     // else the call was made from within a default member initializer of a
7052     // class, so return the class.
7053     if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
7054       return RD->getCanonicalDecl();
7055     return nullptr;
7056   };
7057   // If our DeclContext is neither a member function nor a class (in the
7058   // case of a lambda in a default member initializer), we can't have an
7059   // enclosing 'this'.
7060 
7061   const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
7062   if (!CurParentClass)
7063     return false;
7064 
7065   // The naming class for implicit member functions call is the class in which
7066   // name lookup starts.
7067   const CXXRecordDecl *const NamingClass =
7068       UME->getNamingClass()->getCanonicalDecl();
7069   assert(NamingClass && "Must have naming class even for implicit access");
7070 
7071   // If the unresolved member functions were found in a 'naming class' that is
7072   // related (either the same or derived from) to the class that contains the
7073   // member function that itself contained the implicit member access.
7074 
7075   return CurParentClass == NamingClass ||
7076          CurParentClass->isDerivedFrom(NamingClass);
7077 }
7078 
7079 static void
tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(Sema & S,const UnresolvedMemberExpr * const UME,SourceLocation CallLoc)7080 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
7081     Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
7082 
7083   if (!UME)
7084     return;
7085 
7086   LambdaScopeInfo *const CurLSI = S.getCurLambda();
7087   // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
7088   // already been captured, or if this is an implicit member function call (if
7089   // it isn't, an attempt to capture 'this' should already have been made).
7090   if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
7091       !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
7092     return;
7093 
7094   // Check if the naming class in which the unresolved members were found is
7095   // related (same as or is a base of) to the enclosing class.
7096 
7097   if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
7098     return;
7099 
7100 
7101   DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
7102   // If the enclosing function is not dependent, then this lambda is
7103   // capture ready, so if we can capture this, do so.
7104   if (!EnclosingFunctionCtx->isDependentContext()) {
7105     // If the current lambda and all enclosing lambdas can capture 'this' -
7106     // then go ahead and capture 'this' (since our unresolved overload set
7107     // contains at least one non-static member function).
7108     if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
7109       S.CheckCXXThisCapture(CallLoc);
7110   } else if (S.CurContext->isDependentContext()) {
7111     // ... since this is an implicit member reference, that might potentially
7112     // involve a 'this' capture, mark 'this' for potential capture in
7113     // enclosing lambdas.
7114     if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
7115       CurLSI->addPotentialThisCapture(CallLoc);
7116   }
7117 }
7118 
7119 // Once a call is fully resolved, warn for unqualified calls to specific
7120 // C++ standard functions, like move and forward.
DiagnosedUnqualifiedCallsToStdFunctions(Sema & S,const CallExpr * Call)7121 static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S,
7122                                                     const CallExpr *Call) {
7123   // We are only checking unary move and forward so exit early here.
7124   if (Call->getNumArgs() != 1)
7125     return;
7126 
7127   const Expr *E = Call->getCallee()->IgnoreParenImpCasts();
7128   if (!E || isa<UnresolvedLookupExpr>(E))
7129     return;
7130   const DeclRefExpr *DRE = dyn_cast_if_present<DeclRefExpr>(E);
7131   if (!DRE || !DRE->getLocation().isValid())
7132     return;
7133 
7134   if (DRE->getQualifier())
7135     return;
7136 
7137   const FunctionDecl *FD = Call->getDirectCallee();
7138   if (!FD)
7139     return;
7140 
7141   // Only warn for some functions deemed more frequent or problematic.
7142   unsigned BuiltinID = FD->getBuiltinID();
7143   if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward)
7144     return;
7145 
7146   S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function)
7147       << FD->getQualifiedNameAsString()
7148       << FixItHint::CreateInsertion(DRE->getLocation(), "std::");
7149 }
7150 
ActOnCallExpr(Scope * Scope,Expr * Fn,SourceLocation LParenLoc,MultiExprArg ArgExprs,SourceLocation RParenLoc,Expr * ExecConfig)7151 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
7152                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
7153                                Expr *ExecConfig) {
7154   ExprResult Call =
7155       BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
7156                     /*IsExecConfig=*/false, /*AllowRecovery=*/true);
7157   if (Call.isInvalid())
7158     return Call;
7159 
7160   // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
7161   // language modes.
7162   if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn);
7163       ULE && ULE->hasExplicitTemplateArgs() &&
7164       ULE->decls_begin() == ULE->decls_end()) {
7165     Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
7166                                ? diag::warn_cxx17_compat_adl_only_template_id
7167                                : diag::ext_adl_only_template_id)
7168         << ULE->getName();
7169   }
7170 
7171   if (LangOpts.OpenMP)
7172     Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
7173                            ExecConfig);
7174   if (LangOpts.CPlusPlus) {
7175     if (const auto *CE = dyn_cast<CallExpr>(Call.get()))
7176       DiagnosedUnqualifiedCallsToStdFunctions(*this, CE);
7177   }
7178   return Call;
7179 }
7180 
7181 /// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
7182 /// This provides the location of the left/right parens and a list of comma
7183 /// locations.
BuildCallExpr(Scope * Scope,Expr * Fn,SourceLocation LParenLoc,MultiExprArg ArgExprs,SourceLocation RParenLoc,Expr * ExecConfig,bool IsExecConfig,bool AllowRecovery)7184 ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
7185                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
7186                                Expr *ExecConfig, bool IsExecConfig,
7187                                bool AllowRecovery) {
7188   // Since this might be a postfix expression, get rid of ParenListExprs.
7189   ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
7190   if (Result.isInvalid()) return ExprError();
7191   Fn = Result.get();
7192 
7193   if (CheckArgsForPlaceholders(ArgExprs))
7194     return ExprError();
7195 
7196   if (getLangOpts().CPlusPlus) {
7197     // If this is a pseudo-destructor expression, build the call immediately.
7198     if (isa<CXXPseudoDestructorExpr>(Fn)) {
7199       if (!ArgExprs.empty()) {
7200         // Pseudo-destructor calls should not have any arguments.
7201         Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
7202             << FixItHint::CreateRemoval(
7203                    SourceRange(ArgExprs.front()->getBeginLoc(),
7204                                ArgExprs.back()->getEndLoc()));
7205       }
7206 
7207       return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
7208                               VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7209     }
7210     if (Fn->getType() == Context.PseudoObjectTy) {
7211       ExprResult result = CheckPlaceholderExpr(Fn);
7212       if (result.isInvalid()) return ExprError();
7213       Fn = result.get();
7214     }
7215 
7216     // Determine whether this is a dependent call inside a C++ template,
7217     // in which case we won't do any semantic analysis now.
7218     if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
7219       if (ExecConfig) {
7220         return CUDAKernelCallExpr::Create(Context, Fn,
7221                                           cast<CallExpr>(ExecConfig), ArgExprs,
7222                                           Context.DependentTy, VK_PRValue,
7223                                           RParenLoc, CurFPFeatureOverrides());
7224       } else {
7225 
7226         tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
7227             *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
7228             Fn->getBeginLoc());
7229 
7230         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
7231                                 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7232       }
7233     }
7234 
7235     // Determine whether this is a call to an object (C++ [over.call.object]).
7236     if (Fn->getType()->isRecordType())
7237       return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
7238                                           RParenLoc);
7239 
7240     if (Fn->getType() == Context.UnknownAnyTy) {
7241       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
7242       if (result.isInvalid()) return ExprError();
7243       Fn = result.get();
7244     }
7245 
7246     if (Fn->getType() == Context.BoundMemberTy) {
7247       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
7248                                        RParenLoc, ExecConfig, IsExecConfig,
7249                                        AllowRecovery);
7250     }
7251   }
7252 
7253   // Check for overloaded calls.  This can happen even in C due to extensions.
7254   if (Fn->getType() == Context.OverloadTy) {
7255     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
7256 
7257     // We aren't supposed to apply this logic if there's an '&' involved.
7258     if (!find.HasFormOfMemberPointer) {
7259       if (Expr::hasAnyTypeDependentArguments(ArgExprs))
7260         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
7261                                 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7262       OverloadExpr *ovl = find.Expression;
7263       if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
7264         return BuildOverloadedCallExpr(
7265             Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
7266             /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
7267       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
7268                                        RParenLoc, ExecConfig, IsExecConfig,
7269                                        AllowRecovery);
7270     }
7271   }
7272 
7273   // If we're directly calling a function, get the appropriate declaration.
7274   if (Fn->getType() == Context.UnknownAnyTy) {
7275     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
7276     if (result.isInvalid()) return ExprError();
7277     Fn = result.get();
7278   }
7279 
7280   Expr *NakedFn = Fn->IgnoreParens();
7281 
7282   bool CallingNDeclIndirectly = false;
7283   NamedDecl *NDecl = nullptr;
7284   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
7285     if (UnOp->getOpcode() == UO_AddrOf) {
7286       CallingNDeclIndirectly = true;
7287       NakedFn = UnOp->getSubExpr()->IgnoreParens();
7288     }
7289   }
7290 
7291   if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
7292     NDecl = DRE->getDecl();
7293 
7294     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
7295     if (FDecl && FDecl->getBuiltinID()) {
7296       // Rewrite the function decl for this builtin by replacing parameters
7297       // with no explicit address space with the address space of the arguments
7298       // in ArgExprs.
7299       if ((FDecl =
7300                rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
7301         NDecl = FDecl;
7302         Fn = DeclRefExpr::Create(
7303             Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
7304             SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
7305             nullptr, DRE->isNonOdrUse());
7306       }
7307     }
7308   } else if (auto *ME = dyn_cast<MemberExpr>(NakedFn))
7309     NDecl = ME->getMemberDecl();
7310 
7311   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
7312     if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
7313                                       FD, /*Complain=*/true, Fn->getBeginLoc()))
7314       return ExprError();
7315 
7316     checkDirectCallValidity(*this, Fn, FD, ArgExprs);
7317 
7318     // If this expression is a call to a builtin function in HIP device
7319     // compilation, allow a pointer-type argument to default address space to be
7320     // passed as a pointer-type parameter to a non-default address space.
7321     // If Arg is declared in the default address space and Param is declared
7322     // in a non-default address space, perform an implicit address space cast to
7323     // the parameter type.
7324     if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
7325         FD->getBuiltinID()) {
7326       for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) {
7327         ParmVarDecl *Param = FD->getParamDecl(Idx);
7328         if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
7329             !ArgExprs[Idx]->getType()->isPointerType())
7330           continue;
7331 
7332         auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
7333         auto ArgTy = ArgExprs[Idx]->getType();
7334         auto ArgPtTy = ArgTy->getPointeeType();
7335         auto ArgAS = ArgPtTy.getAddressSpace();
7336 
7337         // Add address space cast if target address spaces are different
7338         bool NeedImplicitASC =
7339           ParamAS != LangAS::Default &&       // Pointer params in generic AS don't need special handling.
7340           ( ArgAS == LangAS::Default  ||      // We do allow implicit conversion from generic AS
7341                                               // or from specific AS which has target AS matching that of Param.
7342           getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS));
7343         if (!NeedImplicitASC)
7344           continue;
7345 
7346         // First, ensure that the Arg is an RValue.
7347         if (ArgExprs[Idx]->isGLValue()) {
7348           ArgExprs[Idx] = ImplicitCastExpr::Create(
7349               Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx],
7350               nullptr, VK_PRValue, FPOptionsOverride());
7351         }
7352 
7353         // Construct a new arg type with address space of Param
7354         Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
7355         ArgPtQuals.setAddressSpace(ParamAS);
7356         auto NewArgPtTy =
7357             Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals);
7358         auto NewArgTy =
7359             Context.getQualifiedType(Context.getPointerType(NewArgPtTy),
7360                                      ArgTy.getQualifiers());
7361 
7362         // Finally perform an implicit address space cast
7363         ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy,
7364                                           CK_AddressSpaceConversion)
7365                             .get();
7366       }
7367     }
7368   }
7369 
7370   if (Context.isDependenceAllowed() &&
7371       (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
7372     assert(!getLangOpts().CPlusPlus);
7373     assert((Fn->containsErrors() ||
7374             llvm::any_of(ArgExprs,
7375                          [](clang::Expr *E) { return E->containsErrors(); })) &&
7376            "should only occur in error-recovery path.");
7377     return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
7378                             VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7379   }
7380   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
7381                                ExecConfig, IsExecConfig);
7382 }
7383 
7384 /// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id
7385 //  with the specified CallArgs
BuildBuiltinCallExpr(SourceLocation Loc,Builtin::ID Id,MultiExprArg CallArgs)7386 Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
7387                                  MultiExprArg CallArgs) {
7388   StringRef Name = Context.BuiltinInfo.getName(Id);
7389   LookupResult R(*this, &Context.Idents.get(Name), Loc,
7390                  Sema::LookupOrdinaryName);
7391   LookupName(R, TUScope, /*AllowBuiltinCreation=*/true);
7392 
7393   auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
7394   assert(BuiltInDecl && "failed to find builtin declaration");
7395 
7396   ExprResult DeclRef =
7397       BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
7398   assert(DeclRef.isUsable() && "Builtin reference cannot fail");
7399 
7400   ExprResult Call =
7401       BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc);
7402 
7403   assert(!Call.isInvalid() && "Call to builtin cannot fail!");
7404   return Call.get();
7405 }
7406 
7407 /// Parse a __builtin_astype expression.
7408 ///
7409 /// __builtin_astype( value, dst type )
7410 ///
ActOnAsTypeExpr(Expr * E,ParsedType ParsedDestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)7411 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
7412                                  SourceLocation BuiltinLoc,
7413                                  SourceLocation RParenLoc) {
7414   QualType DstTy = GetTypeFromParser(ParsedDestTy);
7415   return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
7416 }
7417 
7418 /// Create a new AsTypeExpr node (bitcast) from the arguments.
BuildAsTypeExpr(Expr * E,QualType DestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)7419 ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
7420                                  SourceLocation BuiltinLoc,
7421                                  SourceLocation RParenLoc) {
7422   ExprValueKind VK = VK_PRValue;
7423   ExprObjectKind OK = OK_Ordinary;
7424   QualType SrcTy = E->getType();
7425   if (!SrcTy->isDependentType() &&
7426       Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
7427     return ExprError(
7428         Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
7429         << DestTy << SrcTy << E->getSourceRange());
7430   return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
7431 }
7432 
7433 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
7434 /// provided arguments.
7435 ///
7436 /// __builtin_convertvector( value, dst type )
7437 ///
ActOnConvertVectorExpr(Expr * E,ParsedType ParsedDestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)7438 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
7439                                         SourceLocation BuiltinLoc,
7440                                         SourceLocation RParenLoc) {
7441   TypeSourceInfo *TInfo;
7442   GetTypeFromParser(ParsedDestTy, &TInfo);
7443   return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
7444 }
7445 
7446 /// BuildResolvedCallExpr - Build a call to a resolved expression,
7447 /// i.e. an expression not of \p OverloadTy.  The expression should
7448 /// unary-convert to an expression of function-pointer or
7449 /// block-pointer type.
7450 ///
7451 /// \param NDecl the declaration being called, if available
BuildResolvedCallExpr(Expr * Fn,NamedDecl * NDecl,SourceLocation LParenLoc,ArrayRef<Expr * > Args,SourceLocation RParenLoc,Expr * Config,bool IsExecConfig,ADLCallKind UsesADL)7452 ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
7453                                        SourceLocation LParenLoc,
7454                                        ArrayRef<Expr *> Args,
7455                                        SourceLocation RParenLoc, Expr *Config,
7456                                        bool IsExecConfig, ADLCallKind UsesADL) {
7457   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
7458   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
7459 
7460   // Functions with 'interrupt' attribute cannot be called directly.
7461   if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
7462     Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
7463     return ExprError();
7464   }
7465 
7466   // Interrupt handlers don't save off the VFP regs automatically on ARM,
7467   // so there's some risk when calling out to non-interrupt handler functions
7468   // that the callee might not preserve them. This is easy to diagnose here,
7469   // but can be very challenging to debug.
7470   // Likewise, X86 interrupt handlers may only call routines with attribute
7471   // no_caller_saved_registers since there is no efficient way to
7472   // save and restore the non-GPR state.
7473   if (auto *Caller = getCurFunctionDecl()) {
7474     if (Caller->hasAttr<ARMInterruptAttr>()) {
7475       bool VFP = Context.getTargetInfo().hasFeature("vfp");
7476       if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) {
7477         Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
7478         if (FDecl)
7479           Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
7480       }
7481     }
7482     if (Caller->hasAttr<AnyX86InterruptAttr>() ||
7483         Caller->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) {
7484       const TargetInfo &TI = Context.getTargetInfo();
7485       bool HasNonGPRRegisters =
7486           TI.hasFeature("sse") || TI.hasFeature("x87") || TI.hasFeature("mmx");
7487       if (HasNonGPRRegisters &&
7488           (!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())) {
7489         Diag(Fn->getExprLoc(), diag::warn_anyx86_excessive_regsave)
7490             << (Caller->hasAttr<AnyX86InterruptAttr>() ? 0 : 1);
7491         if (FDecl)
7492           Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
7493       }
7494     }
7495   }
7496 
7497   // Promote the function operand.
7498   // We special-case function promotion here because we only allow promoting
7499   // builtin functions to function pointers in the callee of a call.
7500   ExprResult Result;
7501   QualType ResultTy;
7502   if (BuiltinID &&
7503       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
7504     // Extract the return type from the (builtin) function pointer type.
7505     // FIXME Several builtins still have setType in
7506     // Sema::CheckBuiltinFunctionCall. One should review their definitions in
7507     // Builtins.def to ensure they are correct before removing setType calls.
7508     QualType FnPtrTy = Context.getPointerType(FDecl->getType());
7509     Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
7510     ResultTy = FDecl->getCallResultType();
7511   } else {
7512     Result = CallExprUnaryConversions(Fn);
7513     ResultTy = Context.BoolTy;
7514   }
7515   if (Result.isInvalid())
7516     return ExprError();
7517   Fn = Result.get();
7518 
7519   // Check for a valid function type, but only if it is not a builtin which
7520   // requires custom type checking. These will be handled by
7521   // CheckBuiltinFunctionCall below just after creation of the call expression.
7522   const FunctionType *FuncT = nullptr;
7523   if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
7524   retry:
7525     if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
7526       // C99 6.5.2.2p1 - "The expression that denotes the called function shall
7527       // have type pointer to function".
7528       FuncT = PT->getPointeeType()->getAs<FunctionType>();
7529       if (!FuncT)
7530         return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
7531                          << Fn->getType() << Fn->getSourceRange());
7532     } else if (const BlockPointerType *BPT =
7533                    Fn->getType()->getAs<BlockPointerType>()) {
7534       FuncT = BPT->getPointeeType()->castAs<FunctionType>();
7535     } else {
7536       // Handle calls to expressions of unknown-any type.
7537       if (Fn->getType() == Context.UnknownAnyTy) {
7538         ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
7539         if (rewrite.isInvalid())
7540           return ExprError();
7541         Fn = rewrite.get();
7542         goto retry;
7543       }
7544 
7545       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
7546                        << Fn->getType() << Fn->getSourceRange());
7547     }
7548   }
7549 
7550   // Get the number of parameters in the function prototype, if any.
7551   // We will allocate space for max(Args.size(), NumParams) arguments
7552   // in the call expression.
7553   const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
7554   unsigned NumParams = Proto ? Proto->getNumParams() : 0;
7555 
7556   CallExpr *TheCall;
7557   if (Config) {
7558     assert(UsesADL == ADLCallKind::NotADL &&
7559            "CUDAKernelCallExpr should not use ADL");
7560     TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
7561                                          Args, ResultTy, VK_PRValue, RParenLoc,
7562                                          CurFPFeatureOverrides(), NumParams);
7563   } else {
7564     TheCall =
7565         CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7566                          CurFPFeatureOverrides(), NumParams, UsesADL);
7567   }
7568 
7569   if (!Context.isDependenceAllowed()) {
7570     // Forget about the nulled arguments since typo correction
7571     // do not handle them well.
7572     TheCall->shrinkNumArgs(Args.size());
7573     // C cannot always handle TypoExpr nodes in builtin calls and direct
7574     // function calls as their argument checking don't necessarily handle
7575     // dependent types properly, so make sure any TypoExprs have been
7576     // dealt with.
7577     ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
7578     if (!Result.isUsable()) return ExprError();
7579     CallExpr *TheOldCall = TheCall;
7580     TheCall = dyn_cast<CallExpr>(Result.get());
7581     bool CorrectedTypos = TheCall != TheOldCall;
7582     if (!TheCall) return Result;
7583     Args = llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
7584 
7585     // A new call expression node was created if some typos were corrected.
7586     // However it may not have been constructed with enough storage. In this
7587     // case, rebuild the node with enough storage. The waste of space is
7588     // immaterial since this only happens when some typos were corrected.
7589     if (CorrectedTypos && Args.size() < NumParams) {
7590       if (Config)
7591         TheCall = CUDAKernelCallExpr::Create(
7592             Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue,
7593             RParenLoc, CurFPFeatureOverrides(), NumParams);
7594       else
7595         TheCall =
7596             CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7597                              CurFPFeatureOverrides(), NumParams, UsesADL);
7598     }
7599     // We can now handle the nulled arguments for the default arguments.
7600     TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
7601   }
7602 
7603   // Bail out early if calling a builtin with custom type checking.
7604   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
7605     return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7606 
7607   if (getLangOpts().CUDA) {
7608     if (Config) {
7609       // CUDA: Kernel calls must be to global functions
7610       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
7611         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
7612             << FDecl << Fn->getSourceRange());
7613 
7614       // CUDA: Kernel function must have 'void' return type
7615       if (!FuncT->getReturnType()->isVoidType() &&
7616           !FuncT->getReturnType()->getAs<AutoType>() &&
7617           !FuncT->getReturnType()->isInstantiationDependentType())
7618         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
7619             << Fn->getType() << Fn->getSourceRange());
7620     } else {
7621       // CUDA: Calls to global functions must be configured
7622       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
7623         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
7624             << FDecl << Fn->getSourceRange());
7625     }
7626   }
7627 
7628   // Check for a valid return type
7629   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
7630                           FDecl))
7631     return ExprError();
7632 
7633   // We know the result type of the call, set it.
7634   TheCall->setType(FuncT->getCallResultType(Context));
7635   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
7636 
7637   // WebAssembly tables can't be used as arguments.
7638   if (Context.getTargetInfo().getTriple().isWasm()) {
7639     for (const Expr *Arg : Args) {
7640       if (Arg && Arg->getType()->isWebAssemblyTableType()) {
7641         return ExprError(Diag(Arg->getExprLoc(),
7642                               diag::err_wasm_table_as_function_parameter));
7643       }
7644     }
7645   }
7646 
7647   if (Proto) {
7648     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
7649                                 IsExecConfig))
7650       return ExprError();
7651   } else {
7652     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
7653 
7654     if (FDecl) {
7655       // Check if we have too few/too many template arguments, based
7656       // on our knowledge of the function definition.
7657       const FunctionDecl *Def = nullptr;
7658       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
7659         Proto = Def->getType()->getAs<FunctionProtoType>();
7660        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
7661           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
7662           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
7663       }
7664 
7665       // If the function we're calling isn't a function prototype, but we have
7666       // a function prototype from a prior declaratiom, use that prototype.
7667       if (!FDecl->hasPrototype())
7668         Proto = FDecl->getType()->getAs<FunctionProtoType>();
7669     }
7670 
7671     // If we still haven't found a prototype to use but there are arguments to
7672     // the call, diagnose this as calling a function without a prototype.
7673     // However, if we found a function declaration, check to see if
7674     // -Wdeprecated-non-prototype was disabled where the function was declared.
7675     // If so, we will silence the diagnostic here on the assumption that this
7676     // interface is intentional and the user knows what they're doing. We will
7677     // also silence the diagnostic if there is a function declaration but it
7678     // was implicitly defined (the user already gets diagnostics about the
7679     // creation of the implicit function declaration, so the additional warning
7680     // is not helpful).
7681     if (!Proto && !Args.empty() &&
7682         (!FDecl || (!FDecl->isImplicit() &&
7683                     !Diags.isIgnored(diag::warn_strict_uses_without_prototype,
7684                                      FDecl->getLocation()))))
7685       Diag(LParenLoc, diag::warn_strict_uses_without_prototype)
7686           << (FDecl != nullptr) << FDecl;
7687 
7688     // Promote the arguments (C99 6.5.2.2p6).
7689     for (unsigned i = 0, e = Args.size(); i != e; i++) {
7690       Expr *Arg = Args[i];
7691 
7692       if (Proto && i < Proto->getNumParams()) {
7693         InitializedEntity Entity = InitializedEntity::InitializeParameter(
7694             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
7695         ExprResult ArgE =
7696             PerformCopyInitialization(Entity, SourceLocation(), Arg);
7697         if (ArgE.isInvalid())
7698           return true;
7699 
7700         Arg = ArgE.getAs<Expr>();
7701 
7702       } else {
7703         ExprResult ArgE = DefaultArgumentPromotion(Arg);
7704 
7705         if (ArgE.isInvalid())
7706           return true;
7707 
7708         Arg = ArgE.getAs<Expr>();
7709       }
7710 
7711       if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
7712                               diag::err_call_incomplete_argument, Arg))
7713         return ExprError();
7714 
7715       TheCall->setArg(i, Arg);
7716     }
7717     TheCall->computeDependence();
7718   }
7719 
7720   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
7721     if (Method->isImplicitObjectMemberFunction())
7722       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
7723                        << Fn->getSourceRange() << 0);
7724 
7725   // Check for sentinels
7726   if (NDecl)
7727     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
7728 
7729   // Warn for unions passing across security boundary (CMSE).
7730   if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
7731     for (unsigned i = 0, e = Args.size(); i != e; i++) {
7732       if (const auto *RT =
7733               dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
7734         if (RT->getDecl()->isOrContainsUnion())
7735           Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
7736               << 0 << i;
7737       }
7738     }
7739   }
7740 
7741   // Do special checking on direct calls to functions.
7742   if (FDecl) {
7743     if (CheckFunctionCall(FDecl, TheCall, Proto))
7744       return ExprError();
7745 
7746     checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
7747 
7748     if (BuiltinID)
7749       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7750   } else if (NDecl) {
7751     if (CheckPointerCall(NDecl, TheCall, Proto))
7752       return ExprError();
7753   } else {
7754     if (CheckOtherCall(TheCall, Proto))
7755       return ExprError();
7756   }
7757 
7758   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
7759 }
7760 
7761 ExprResult
ActOnCompoundLiteral(SourceLocation LParenLoc,ParsedType Ty,SourceLocation RParenLoc,Expr * InitExpr)7762 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
7763                            SourceLocation RParenLoc, Expr *InitExpr) {
7764   assert(Ty && "ActOnCompoundLiteral(): missing type");
7765   assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
7766 
7767   TypeSourceInfo *TInfo;
7768   QualType literalType = GetTypeFromParser(Ty, &TInfo);
7769   if (!TInfo)
7770     TInfo = Context.getTrivialTypeSourceInfo(literalType);
7771 
7772   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
7773 }
7774 
7775 ExprResult
BuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * LiteralExpr)7776 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
7777                                SourceLocation RParenLoc, Expr *LiteralExpr) {
7778   QualType literalType = TInfo->getType();
7779 
7780   if (literalType->isArrayType()) {
7781     if (RequireCompleteSizedType(
7782             LParenLoc, Context.getBaseElementType(literalType),
7783             diag::err_array_incomplete_or_sizeless_type,
7784             SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7785       return ExprError();
7786     if (literalType->isVariableArrayType()) {
7787       // C23 6.7.10p4: An entity of variable length array type shall not be
7788       // initialized except by an empty initializer.
7789       //
7790       // The C extension warnings are issued from ParseBraceInitializer() and
7791       // do not need to be issued here. However, we continue to issue an error
7792       // in the case there are initializers or we are compiling C++. We allow
7793       // use of VLAs in C++, but it's not clear we want to allow {} to zero
7794       // init a VLA in C++ in all cases (such as with non-trivial constructors).
7795       // FIXME: should we allow this construct in C++ when it makes sense to do
7796       // so?
7797       std::optional<unsigned> NumInits;
7798       if (const auto *ILE = dyn_cast<InitListExpr>(LiteralExpr))
7799         NumInits = ILE->getNumInits();
7800       if ((LangOpts.CPlusPlus || NumInits.value_or(0)) &&
7801           !tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
7802                                            diag::err_variable_object_no_init))
7803         return ExprError();
7804     }
7805   } else if (!literalType->isDependentType() &&
7806              RequireCompleteType(LParenLoc, literalType,
7807                diag::err_typecheck_decl_incomplete_type,
7808                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7809     return ExprError();
7810 
7811   InitializedEntity Entity
7812     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
7813   InitializationKind Kind
7814     = InitializationKind::CreateCStyleCast(LParenLoc,
7815                                            SourceRange(LParenLoc, RParenLoc),
7816                                            /*InitList=*/true);
7817   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7818   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
7819                                       &literalType);
7820   if (Result.isInvalid())
7821     return ExprError();
7822   LiteralExpr = Result.get();
7823 
7824   bool isFileScope = !CurContext->isFunctionOrMethod();
7825 
7826   // In C, compound literals are l-values for some reason.
7827   // For GCC compatibility, in C++, file-scope array compound literals with
7828   // constant initializers are also l-values, and compound literals are
7829   // otherwise prvalues.
7830   //
7831   // (GCC also treats C++ list-initialized file-scope array prvalues with
7832   // constant initializers as l-values, but that's non-conforming, so we don't
7833   // follow it there.)
7834   //
7835   // FIXME: It would be better to handle the lvalue cases as materializing and
7836   // lifetime-extending a temporary object, but our materialized temporaries
7837   // representation only supports lifetime extension from a variable, not "out
7838   // of thin air".
7839   // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7840   // is bound to the result of applying array-to-pointer decay to the compound
7841   // literal.
7842   // FIXME: GCC supports compound literals of reference type, which should
7843   // obviously have a value kind derived from the kind of reference involved.
7844   ExprValueKind VK =
7845       (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
7846           ? VK_PRValue
7847           : VK_LValue;
7848 
7849   if (isFileScope)
7850     if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
7851       for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7852         Expr *Init = ILE->getInit(i);
7853         ILE->setInit(i, ConstantExpr::Create(Context, Init));
7854       }
7855 
7856   auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
7857                                               VK, LiteralExpr, isFileScope);
7858   if (isFileScope) {
7859     if (!LiteralExpr->isTypeDependent() &&
7860         !LiteralExpr->isValueDependent() &&
7861         !literalType->isDependentType()) // C99 6.5.2.5p3
7862       if (CheckForConstantInitializer(LiteralExpr, literalType))
7863         return ExprError();
7864   } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7865              literalType.getAddressSpace() != LangAS::Default) {
7866     // Embedded-C extensions to C99 6.5.2.5:
7867     //   "If the compound literal occurs inside the body of a function, the
7868     //   type name shall not be qualified by an address-space qualifier."
7869     Diag(LParenLoc, diag::err_compound_literal_with_address_space)
7870       << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7871     return ExprError();
7872   }
7873 
7874   if (!isFileScope && !getLangOpts().CPlusPlus) {
7875     // Compound literals that have automatic storage duration are destroyed at
7876     // the end of the scope in C; in C++, they're just temporaries.
7877 
7878     // Emit diagnostics if it is or contains a C union type that is non-trivial
7879     // to destruct.
7880     if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7881       checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
7882                             NTCUC_CompoundLiteral, NTCUK_Destruct);
7883 
7884     // Diagnose jumps that enter or exit the lifetime of the compound literal.
7885     if (literalType.isDestructedType()) {
7886       Cleanup.setExprNeedsCleanups(true);
7887       ExprCleanupObjects.push_back(E);
7888       getCurFunction()->setHasBranchProtectedScope();
7889     }
7890   }
7891 
7892   if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7893       E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7894     checkNonTrivialCUnionInInitializer(E->getInitializer(),
7895                                        E->getInitializer()->getExprLoc());
7896 
7897   return MaybeBindToTemporary(E);
7898 }
7899 
7900 ExprResult
ActOnInitList(SourceLocation LBraceLoc,MultiExprArg InitArgList,SourceLocation RBraceLoc)7901 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7902                     SourceLocation RBraceLoc) {
7903   // Only produce each kind of designated initialization diagnostic once.
7904   SourceLocation FirstDesignator;
7905   bool DiagnosedArrayDesignator = false;
7906   bool DiagnosedNestedDesignator = false;
7907   bool DiagnosedMixedDesignator = false;
7908 
7909   // Check that any designated initializers are syntactically valid in the
7910   // current language mode.
7911   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7912     if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
7913       if (FirstDesignator.isInvalid())
7914         FirstDesignator = DIE->getBeginLoc();
7915 
7916       if (!getLangOpts().CPlusPlus)
7917         break;
7918 
7919       if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7920         DiagnosedNestedDesignator = true;
7921         Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
7922           << DIE->getDesignatorsSourceRange();
7923       }
7924 
7925       for (auto &Desig : DIE->designators()) {
7926         if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7927           DiagnosedArrayDesignator = true;
7928           Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7929             << Desig.getSourceRange();
7930         }
7931       }
7932 
7933       if (!DiagnosedMixedDesignator &&
7934           !isa<DesignatedInitExpr>(InitArgList[0])) {
7935         DiagnosedMixedDesignator = true;
7936         Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7937           << DIE->getSourceRange();
7938         Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7939           << InitArgList[0]->getSourceRange();
7940       }
7941     } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7942                isa<DesignatedInitExpr>(InitArgList[0])) {
7943       DiagnosedMixedDesignator = true;
7944       auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
7945       Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7946         << DIE->getSourceRange();
7947       Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7948         << InitArgList[I]->getSourceRange();
7949     }
7950   }
7951 
7952   if (FirstDesignator.isValid()) {
7953     // Only diagnose designated initiaization as a C++20 extension if we didn't
7954     // already diagnose use of (non-C++20) C99 designator syntax.
7955     if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7956         !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7957       Diag(FirstDesignator, getLangOpts().CPlusPlus20
7958                                 ? diag::warn_cxx17_compat_designated_init
7959                                 : diag::ext_cxx_designated_init);
7960     } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7961       Diag(FirstDesignator, diag::ext_designated_init);
7962     }
7963   }
7964 
7965   return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7966 }
7967 
7968 ExprResult
BuildInitList(SourceLocation LBraceLoc,MultiExprArg InitArgList,SourceLocation RBraceLoc)7969 Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7970                     SourceLocation RBraceLoc) {
7971   // Semantic analysis for initializers is done by ActOnDeclarator() and
7972   // CheckInitializer() - it requires knowledge of the object being initialized.
7973 
7974   // Immediately handle non-overload placeholders.  Overloads can be
7975   // resolved contextually, but everything else here can't.
7976   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7977     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7978       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7979 
7980       // Ignore failures; dropping the entire initializer list because
7981       // of one failure would be terrible for indexing/etc.
7982       if (result.isInvalid()) continue;
7983 
7984       InitArgList[I] = result.get();
7985     }
7986   }
7987 
7988   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
7989                                                RBraceLoc);
7990   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7991   return E;
7992 }
7993 
7994 /// Do an explicit extend of the given block pointer if we're in ARC.
maybeExtendBlockObject(ExprResult & E)7995 void Sema::maybeExtendBlockObject(ExprResult &E) {
7996   assert(E.get()->getType()->isBlockPointerType());
7997   assert(E.get()->isPRValue());
7998 
7999   // Only do this in an r-value context.
8000   if (!getLangOpts().ObjCAutoRefCount) return;
8001 
8002   E = ImplicitCastExpr::Create(
8003       Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
8004       /*base path*/ nullptr, VK_PRValue, FPOptionsOverride());
8005   Cleanup.setExprNeedsCleanups(true);
8006 }
8007 
8008 /// Prepare a conversion of the given expression to an ObjC object
8009 /// pointer type.
PrepareCastToObjCObjectPointer(ExprResult & E)8010 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
8011   QualType type = E.get()->getType();
8012   if (type->isObjCObjectPointerType()) {
8013     return CK_BitCast;
8014   } else if (type->isBlockPointerType()) {
8015     maybeExtendBlockObject(E);
8016     return CK_BlockPointerToObjCPointerCast;
8017   } else {
8018     assert(type->isPointerType());
8019     return CK_CPointerToObjCPointerCast;
8020   }
8021 }
8022 
8023 /// Prepares for a scalar cast, performing all the necessary stages
8024 /// except the final cast and returning the kind required.
PrepareScalarCast(ExprResult & Src,QualType DestTy)8025 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
8026   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
8027   // Also, callers should have filtered out the invalid cases with
8028   // pointers.  Everything else should be possible.
8029 
8030   QualType SrcTy = Src.get()->getType();
8031   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
8032     return CK_NoOp;
8033 
8034   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
8035   case Type::STK_MemberPointer:
8036     llvm_unreachable("member pointer type in C");
8037 
8038   case Type::STK_CPointer:
8039   case Type::STK_BlockPointer:
8040   case Type::STK_ObjCObjectPointer:
8041     switch (DestTy->getScalarTypeKind()) {
8042     case Type::STK_CPointer: {
8043       LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
8044       LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
8045       if (SrcAS != DestAS)
8046         return CK_AddressSpaceConversion;
8047       if (Context.hasCvrSimilarType(SrcTy, DestTy))
8048         return CK_NoOp;
8049       return CK_BitCast;
8050     }
8051     case Type::STK_BlockPointer:
8052       return (SrcKind == Type::STK_BlockPointer
8053                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
8054     case Type::STK_ObjCObjectPointer:
8055       if (SrcKind == Type::STK_ObjCObjectPointer)
8056         return CK_BitCast;
8057       if (SrcKind == Type::STK_CPointer)
8058         return CK_CPointerToObjCPointerCast;
8059       maybeExtendBlockObject(Src);
8060       return CK_BlockPointerToObjCPointerCast;
8061     case Type::STK_Bool:
8062       return CK_PointerToBoolean;
8063     case Type::STK_Integral:
8064       return CK_PointerToIntegral;
8065     case Type::STK_Floating:
8066     case Type::STK_FloatingComplex:
8067     case Type::STK_IntegralComplex:
8068     case Type::STK_MemberPointer:
8069     case Type::STK_FixedPoint:
8070       llvm_unreachable("illegal cast from pointer");
8071     }
8072     llvm_unreachable("Should have returned before this");
8073 
8074   case Type::STK_FixedPoint:
8075     switch (DestTy->getScalarTypeKind()) {
8076     case Type::STK_FixedPoint:
8077       return CK_FixedPointCast;
8078     case Type::STK_Bool:
8079       return CK_FixedPointToBoolean;
8080     case Type::STK_Integral:
8081       return CK_FixedPointToIntegral;
8082     case Type::STK_Floating:
8083       return CK_FixedPointToFloating;
8084     case Type::STK_IntegralComplex:
8085     case Type::STK_FloatingComplex:
8086       Diag(Src.get()->getExprLoc(),
8087            diag::err_unimplemented_conversion_with_fixed_point_type)
8088           << DestTy;
8089       return CK_IntegralCast;
8090     case Type::STK_CPointer:
8091     case Type::STK_ObjCObjectPointer:
8092     case Type::STK_BlockPointer:
8093     case Type::STK_MemberPointer:
8094       llvm_unreachable("illegal cast to pointer type");
8095     }
8096     llvm_unreachable("Should have returned before this");
8097 
8098   case Type::STK_Bool: // casting from bool is like casting from an integer
8099   case Type::STK_Integral:
8100     switch (DestTy->getScalarTypeKind()) {
8101     case Type::STK_CPointer:
8102     case Type::STK_ObjCObjectPointer:
8103     case Type::STK_BlockPointer:
8104       if (Src.get()->isNullPointerConstant(Context,
8105                                            Expr::NPC_ValueDependentIsNull))
8106         return CK_NullToPointer;
8107       return CK_IntegralToPointer;
8108     case Type::STK_Bool:
8109       return CK_IntegralToBoolean;
8110     case Type::STK_Integral:
8111       return CK_IntegralCast;
8112     case Type::STK_Floating:
8113       return CK_IntegralToFloating;
8114     case Type::STK_IntegralComplex:
8115       Src = ImpCastExprToType(Src.get(),
8116                       DestTy->castAs<ComplexType>()->getElementType(),
8117                       CK_IntegralCast);
8118       return CK_IntegralRealToComplex;
8119     case Type::STK_FloatingComplex:
8120       Src = ImpCastExprToType(Src.get(),
8121                       DestTy->castAs<ComplexType>()->getElementType(),
8122                       CK_IntegralToFloating);
8123       return CK_FloatingRealToComplex;
8124     case Type::STK_MemberPointer:
8125       llvm_unreachable("member pointer type in C");
8126     case Type::STK_FixedPoint:
8127       return CK_IntegralToFixedPoint;
8128     }
8129     llvm_unreachable("Should have returned before this");
8130 
8131   case Type::STK_Floating:
8132     switch (DestTy->getScalarTypeKind()) {
8133     case Type::STK_Floating:
8134       return CK_FloatingCast;
8135     case Type::STK_Bool:
8136       return CK_FloatingToBoolean;
8137     case Type::STK_Integral:
8138       return CK_FloatingToIntegral;
8139     case Type::STK_FloatingComplex:
8140       Src = ImpCastExprToType(Src.get(),
8141                               DestTy->castAs<ComplexType>()->getElementType(),
8142                               CK_FloatingCast);
8143       return CK_FloatingRealToComplex;
8144     case Type::STK_IntegralComplex:
8145       Src = ImpCastExprToType(Src.get(),
8146                               DestTy->castAs<ComplexType>()->getElementType(),
8147                               CK_FloatingToIntegral);
8148       return CK_IntegralRealToComplex;
8149     case Type::STK_CPointer:
8150     case Type::STK_ObjCObjectPointer:
8151     case Type::STK_BlockPointer:
8152       llvm_unreachable("valid float->pointer cast?");
8153     case Type::STK_MemberPointer:
8154       llvm_unreachable("member pointer type in C");
8155     case Type::STK_FixedPoint:
8156       return CK_FloatingToFixedPoint;
8157     }
8158     llvm_unreachable("Should have returned before this");
8159 
8160   case Type::STK_FloatingComplex:
8161     switch (DestTy->getScalarTypeKind()) {
8162     case Type::STK_FloatingComplex:
8163       return CK_FloatingComplexCast;
8164     case Type::STK_IntegralComplex:
8165       return CK_FloatingComplexToIntegralComplex;
8166     case Type::STK_Floating: {
8167       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
8168       if (Context.hasSameType(ET, DestTy))
8169         return CK_FloatingComplexToReal;
8170       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
8171       return CK_FloatingCast;
8172     }
8173     case Type::STK_Bool:
8174       return CK_FloatingComplexToBoolean;
8175     case Type::STK_Integral:
8176       Src = ImpCastExprToType(Src.get(),
8177                               SrcTy->castAs<ComplexType>()->getElementType(),
8178                               CK_FloatingComplexToReal);
8179       return CK_FloatingToIntegral;
8180     case Type::STK_CPointer:
8181     case Type::STK_ObjCObjectPointer:
8182     case Type::STK_BlockPointer:
8183       llvm_unreachable("valid complex float->pointer cast?");
8184     case Type::STK_MemberPointer:
8185       llvm_unreachable("member pointer type in C");
8186     case Type::STK_FixedPoint:
8187       Diag(Src.get()->getExprLoc(),
8188            diag::err_unimplemented_conversion_with_fixed_point_type)
8189           << SrcTy;
8190       return CK_IntegralCast;
8191     }
8192     llvm_unreachable("Should have returned before this");
8193 
8194   case Type::STK_IntegralComplex:
8195     switch (DestTy->getScalarTypeKind()) {
8196     case Type::STK_FloatingComplex:
8197       return CK_IntegralComplexToFloatingComplex;
8198     case Type::STK_IntegralComplex:
8199       return CK_IntegralComplexCast;
8200     case Type::STK_Integral: {
8201       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
8202       if (Context.hasSameType(ET, DestTy))
8203         return CK_IntegralComplexToReal;
8204       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
8205       return CK_IntegralCast;
8206     }
8207     case Type::STK_Bool:
8208       return CK_IntegralComplexToBoolean;
8209     case Type::STK_Floating:
8210       Src = ImpCastExprToType(Src.get(),
8211                               SrcTy->castAs<ComplexType>()->getElementType(),
8212                               CK_IntegralComplexToReal);
8213       return CK_IntegralToFloating;
8214     case Type::STK_CPointer:
8215     case Type::STK_ObjCObjectPointer:
8216     case Type::STK_BlockPointer:
8217       llvm_unreachable("valid complex int->pointer cast?");
8218     case Type::STK_MemberPointer:
8219       llvm_unreachable("member pointer type in C");
8220     case Type::STK_FixedPoint:
8221       Diag(Src.get()->getExprLoc(),
8222            diag::err_unimplemented_conversion_with_fixed_point_type)
8223           << SrcTy;
8224       return CK_IntegralCast;
8225     }
8226     llvm_unreachable("Should have returned before this");
8227   }
8228 
8229   llvm_unreachable("Unhandled scalar cast");
8230 }
8231 
breakDownVectorType(QualType type,uint64_t & len,QualType & eltType)8232 static bool breakDownVectorType(QualType type, uint64_t &len,
8233                                 QualType &eltType) {
8234   // Vectors are simple.
8235   if (const VectorType *vecType = type->getAs<VectorType>()) {
8236     len = vecType->getNumElements();
8237     eltType = vecType->getElementType();
8238     assert(eltType->isScalarType());
8239     return true;
8240   }
8241 
8242   // We allow lax conversion to and from non-vector types, but only if
8243   // they're real types (i.e. non-complex, non-pointer scalar types).
8244   if (!type->isRealType()) return false;
8245 
8246   len = 1;
8247   eltType = type;
8248   return true;
8249 }
8250 
8251 /// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
8252 /// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
8253 /// allowed?
8254 ///
8255 /// This will also return false if the two given types do not make sense from
8256 /// the perspective of SVE bitcasts.
isValidSveBitcast(QualType srcTy,QualType destTy)8257 bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
8258   assert(srcTy->isVectorType() || destTy->isVectorType());
8259 
8260   auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
8261     if (!FirstType->isSVESizelessBuiltinType())
8262       return false;
8263 
8264     const auto *VecTy = SecondType->getAs<VectorType>();
8265     return VecTy && VecTy->getVectorKind() == VectorKind::SveFixedLengthData;
8266   };
8267 
8268   return ValidScalableConversion(srcTy, destTy) ||
8269          ValidScalableConversion(destTy, srcTy);
8270 }
8271 
8272 /// Are the two types RVV-bitcast-compatible types? I.e. is bitcasting from the
8273 /// first RVV type (e.g. an RVV scalable type) to the second type (e.g. an RVV
8274 /// VLS type) allowed?
8275 ///
8276 /// This will also return false if the two given types do not make sense from
8277 /// the perspective of RVV bitcasts.
isValidRVVBitcast(QualType srcTy,QualType destTy)8278 bool Sema::isValidRVVBitcast(QualType srcTy, QualType destTy) {
8279   assert(srcTy->isVectorType() || destTy->isVectorType());
8280 
8281   auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
8282     if (!FirstType->isRVVSizelessBuiltinType())
8283       return false;
8284 
8285     const auto *VecTy = SecondType->getAs<VectorType>();
8286     return VecTy && VecTy->getVectorKind() == VectorKind::RVVFixedLengthData;
8287   };
8288 
8289   return ValidScalableConversion(srcTy, destTy) ||
8290          ValidScalableConversion(destTy, srcTy);
8291 }
8292 
8293 /// Are the two types matrix types and do they have the same dimensions i.e.
8294 /// do they have the same number of rows and the same number of columns?
areMatrixTypesOfTheSameDimension(QualType srcTy,QualType destTy)8295 bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
8296   if (!destTy->isMatrixType() || !srcTy->isMatrixType())
8297     return false;
8298 
8299   const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
8300   const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
8301 
8302   return matSrcType->getNumRows() == matDestType->getNumRows() &&
8303          matSrcType->getNumColumns() == matDestType->getNumColumns();
8304 }
8305 
areVectorTypesSameSize(QualType SrcTy,QualType DestTy)8306 bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
8307   assert(DestTy->isVectorType() || SrcTy->isVectorType());
8308 
8309   uint64_t SrcLen, DestLen;
8310   QualType SrcEltTy, DestEltTy;
8311   if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
8312     return false;
8313   if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
8314     return false;
8315 
8316   // ASTContext::getTypeSize will return the size rounded up to a
8317   // power of 2, so instead of using that, we need to use the raw
8318   // element size multiplied by the element count.
8319   uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
8320   uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
8321 
8322   return (SrcLen * SrcEltSize == DestLen * DestEltSize);
8323 }
8324 
8325 // This returns true if at least one of the types is an altivec vector.
anyAltivecTypes(QualType SrcTy,QualType DestTy)8326 bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) {
8327   assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
8328          "expected at least one type to be a vector here");
8329 
8330   bool IsSrcTyAltivec =
8331       SrcTy->isVectorType() && ((SrcTy->castAs<VectorType>()->getVectorKind() ==
8332                                  VectorKind::AltiVecVector) ||
8333                                 (SrcTy->castAs<VectorType>()->getVectorKind() ==
8334                                  VectorKind::AltiVecBool) ||
8335                                 (SrcTy->castAs<VectorType>()->getVectorKind() ==
8336                                  VectorKind::AltiVecPixel));
8337 
8338   bool IsDestTyAltivec = DestTy->isVectorType() &&
8339                          ((DestTy->castAs<VectorType>()->getVectorKind() ==
8340                            VectorKind::AltiVecVector) ||
8341                           (DestTy->castAs<VectorType>()->getVectorKind() ==
8342                            VectorKind::AltiVecBool) ||
8343                           (DestTy->castAs<VectorType>()->getVectorKind() ==
8344                            VectorKind::AltiVecPixel));
8345 
8346   return (IsSrcTyAltivec || IsDestTyAltivec);
8347 }
8348 
8349 /// Are the two types lax-compatible vector types?  That is, given
8350 /// that one of them is a vector, do they have equal storage sizes,
8351 /// where the storage size is the number of elements times the element
8352 /// size?
8353 ///
8354 /// This will also return false if either of the types is neither a
8355 /// vector nor a real type.
areLaxCompatibleVectorTypes(QualType srcTy,QualType destTy)8356 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
8357   assert(destTy->isVectorType() || srcTy->isVectorType());
8358 
8359   // Disallow lax conversions between scalars and ExtVectors (these
8360   // conversions are allowed for other vector types because common headers
8361   // depend on them).  Most scalar OP ExtVector cases are handled by the
8362   // splat path anyway, which does what we want (convert, not bitcast).
8363   // What this rules out for ExtVectors is crazy things like char4*float.
8364   if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
8365   if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
8366 
8367   return areVectorTypesSameSize(srcTy, destTy);
8368 }
8369 
8370 /// Is this a legal conversion between two types, one of which is
8371 /// known to be a vector type?
isLaxVectorConversion(QualType srcTy,QualType destTy)8372 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
8373   assert(destTy->isVectorType() || srcTy->isVectorType());
8374 
8375   switch (Context.getLangOpts().getLaxVectorConversions()) {
8376   case LangOptions::LaxVectorConversionKind::None:
8377     return false;
8378 
8379   case LangOptions::LaxVectorConversionKind::Integer:
8380     if (!srcTy->isIntegralOrEnumerationType()) {
8381       auto *Vec = srcTy->getAs<VectorType>();
8382       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
8383         return false;
8384     }
8385     if (!destTy->isIntegralOrEnumerationType()) {
8386       auto *Vec = destTy->getAs<VectorType>();
8387       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
8388         return false;
8389     }
8390     // OK, integer (vector) -> integer (vector) bitcast.
8391     break;
8392 
8393     case LangOptions::LaxVectorConversionKind::All:
8394     break;
8395   }
8396 
8397   return areLaxCompatibleVectorTypes(srcTy, destTy);
8398 }
8399 
CheckMatrixCast(SourceRange R,QualType DestTy,QualType SrcTy,CastKind & Kind)8400 bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
8401                            CastKind &Kind) {
8402   if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
8403     if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
8404       return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
8405              << DestTy << SrcTy << R;
8406     }
8407   } else if (SrcTy->isMatrixType()) {
8408     return Diag(R.getBegin(),
8409                 diag::err_invalid_conversion_between_matrix_and_type)
8410            << SrcTy << DestTy << R;
8411   } else if (DestTy->isMatrixType()) {
8412     return Diag(R.getBegin(),
8413                 diag::err_invalid_conversion_between_matrix_and_type)
8414            << DestTy << SrcTy << R;
8415   }
8416 
8417   Kind = CK_MatrixCast;
8418   return false;
8419 }
8420 
CheckVectorCast(SourceRange R,QualType VectorTy,QualType Ty,CastKind & Kind)8421 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
8422                            CastKind &Kind) {
8423   assert(VectorTy->isVectorType() && "Not a vector type!");
8424 
8425   if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
8426     if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
8427       return Diag(R.getBegin(),
8428                   Ty->isVectorType() ?
8429                   diag::err_invalid_conversion_between_vectors :
8430                   diag::err_invalid_conversion_between_vector_and_integer)
8431         << VectorTy << Ty << R;
8432   } else
8433     return Diag(R.getBegin(),
8434                 diag::err_invalid_conversion_between_vector_and_scalar)
8435       << VectorTy << Ty << R;
8436 
8437   Kind = CK_BitCast;
8438   return false;
8439 }
8440 
prepareVectorSplat(QualType VectorTy,Expr * SplattedExpr)8441 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
8442   QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
8443 
8444   if (DestElemTy == SplattedExpr->getType())
8445     return SplattedExpr;
8446 
8447   assert(DestElemTy->isFloatingType() ||
8448          DestElemTy->isIntegralOrEnumerationType());
8449 
8450   CastKind CK;
8451   if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
8452     // OpenCL requires that we convert `true` boolean expressions to -1, but
8453     // only when splatting vectors.
8454     if (DestElemTy->isFloatingType()) {
8455       // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
8456       // in two steps: boolean to signed integral, then to floating.
8457       ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
8458                                                  CK_BooleanToSignedIntegral);
8459       SplattedExpr = CastExprRes.get();
8460       CK = CK_IntegralToFloating;
8461     } else {
8462       CK = CK_BooleanToSignedIntegral;
8463     }
8464   } else {
8465     ExprResult CastExprRes = SplattedExpr;
8466     CK = PrepareScalarCast(CastExprRes, DestElemTy);
8467     if (CastExprRes.isInvalid())
8468       return ExprError();
8469     SplattedExpr = CastExprRes.get();
8470   }
8471   return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
8472 }
8473 
CheckExtVectorCast(SourceRange R,QualType DestTy,Expr * CastExpr,CastKind & Kind)8474 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
8475                                     Expr *CastExpr, CastKind &Kind) {
8476   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
8477 
8478   QualType SrcTy = CastExpr->getType();
8479 
8480   // If SrcTy is a VectorType, the total size must match to explicitly cast to
8481   // an ExtVectorType.
8482   // In OpenCL, casts between vectors of different types are not allowed.
8483   // (See OpenCL 6.2).
8484   if (SrcTy->isVectorType()) {
8485     if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
8486         (getLangOpts().OpenCL &&
8487          !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
8488       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
8489         << DestTy << SrcTy << R;
8490       return ExprError();
8491     }
8492     Kind = CK_BitCast;
8493     return CastExpr;
8494   }
8495 
8496   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
8497   // conversion will take place first from scalar to elt type, and then
8498   // splat from elt type to vector.
8499   if (SrcTy->isPointerType())
8500     return Diag(R.getBegin(),
8501                 diag::err_invalid_conversion_between_vector_and_scalar)
8502       << DestTy << SrcTy << R;
8503 
8504   Kind = CK_VectorSplat;
8505   return prepareVectorSplat(DestTy, CastExpr);
8506 }
8507 
8508 ExprResult
ActOnCastExpr(Scope * S,SourceLocation LParenLoc,Declarator & D,ParsedType & Ty,SourceLocation RParenLoc,Expr * CastExpr)8509 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
8510                     Declarator &D, ParsedType &Ty,
8511                     SourceLocation RParenLoc, Expr *CastExpr) {
8512   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
8513          "ActOnCastExpr(): missing type or expr");
8514 
8515   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
8516   if (D.isInvalidType())
8517     return ExprError();
8518 
8519   if (getLangOpts().CPlusPlus) {
8520     // Check that there are no default arguments (C++ only).
8521     CheckExtraCXXDefaultArguments(D);
8522   } else {
8523     // Make sure any TypoExprs have been dealt with.
8524     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
8525     if (!Res.isUsable())
8526       return ExprError();
8527     CastExpr = Res.get();
8528   }
8529 
8530   checkUnusedDeclAttributes(D);
8531 
8532   QualType castType = castTInfo->getType();
8533   Ty = CreateParsedType(castType, castTInfo);
8534 
8535   bool isVectorLiteral = false;
8536 
8537   // Check for an altivec or OpenCL literal,
8538   // i.e. all the elements are integer constants.
8539   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
8540   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
8541   if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
8542        && castType->isVectorType() && (PE || PLE)) {
8543     if (PLE && PLE->getNumExprs() == 0) {
8544       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
8545       return ExprError();
8546     }
8547     if (PE || PLE->getNumExprs() == 1) {
8548       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
8549       if (!E->isTypeDependent() && !E->getType()->isVectorType())
8550         isVectorLiteral = true;
8551     }
8552     else
8553       isVectorLiteral = true;
8554   }
8555 
8556   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
8557   // then handle it as such.
8558   if (isVectorLiteral)
8559     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
8560 
8561   // If the Expr being casted is a ParenListExpr, handle it specially.
8562   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
8563   // sequence of BinOp comma operators.
8564   if (isa<ParenListExpr>(CastExpr)) {
8565     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
8566     if (Result.isInvalid()) return ExprError();
8567     CastExpr = Result.get();
8568   }
8569 
8570   if (getLangOpts().CPlusPlus && !castType->isVoidType())
8571     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
8572 
8573   CheckTollFreeBridgeCast(castType, CastExpr);
8574 
8575   CheckObjCBridgeRelatedCast(castType, CastExpr);
8576 
8577   DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
8578 
8579   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
8580 }
8581 
BuildVectorLiteral(SourceLocation LParenLoc,SourceLocation RParenLoc,Expr * E,TypeSourceInfo * TInfo)8582 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
8583                                     SourceLocation RParenLoc, Expr *E,
8584                                     TypeSourceInfo *TInfo) {
8585   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
8586          "Expected paren or paren list expression");
8587 
8588   Expr **exprs;
8589   unsigned numExprs;
8590   Expr *subExpr;
8591   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
8592   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
8593     LiteralLParenLoc = PE->getLParenLoc();
8594     LiteralRParenLoc = PE->getRParenLoc();
8595     exprs = PE->getExprs();
8596     numExprs = PE->getNumExprs();
8597   } else { // isa<ParenExpr> by assertion at function entrance
8598     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
8599     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
8600     subExpr = cast<ParenExpr>(E)->getSubExpr();
8601     exprs = &subExpr;
8602     numExprs = 1;
8603   }
8604 
8605   QualType Ty = TInfo->getType();
8606   assert(Ty->isVectorType() && "Expected vector type");
8607 
8608   SmallVector<Expr *, 8> initExprs;
8609   const VectorType *VTy = Ty->castAs<VectorType>();
8610   unsigned numElems = VTy->getNumElements();
8611 
8612   // '(...)' form of vector initialization in AltiVec: the number of
8613   // initializers must be one or must match the size of the vector.
8614   // If a single value is specified in the initializer then it will be
8615   // replicated to all the components of the vector
8616   if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty,
8617                                  VTy->getElementType()))
8618     return ExprError();
8619   if (ShouldSplatAltivecScalarInCast(VTy)) {
8620     // The number of initializers must be one or must match the size of the
8621     // vector. If a single value is specified in the initializer then it will
8622     // be replicated to all the components of the vector
8623     if (numExprs == 1) {
8624       QualType ElemTy = VTy->getElementType();
8625       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8626       if (Literal.isInvalid())
8627         return ExprError();
8628       Literal = ImpCastExprToType(Literal.get(), ElemTy,
8629                                   PrepareScalarCast(Literal, ElemTy));
8630       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8631     }
8632     else if (numExprs < numElems) {
8633       Diag(E->getExprLoc(),
8634            diag::err_incorrect_number_of_vector_initializers);
8635       return ExprError();
8636     }
8637     else
8638       initExprs.append(exprs, exprs + numExprs);
8639   }
8640   else {
8641     // For OpenCL, when the number of initializers is a single value,
8642     // it will be replicated to all components of the vector.
8643     if (getLangOpts().OpenCL && VTy->getVectorKind() == VectorKind::Generic &&
8644         numExprs == 1) {
8645       QualType ElemTy = VTy->getElementType();
8646       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8647       if (Literal.isInvalid())
8648         return ExprError();
8649       Literal = ImpCastExprToType(Literal.get(), ElemTy,
8650                                   PrepareScalarCast(Literal, ElemTy));
8651       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8652     }
8653 
8654     initExprs.append(exprs, exprs + numExprs);
8655   }
8656   // FIXME: This means that pretty-printing the final AST will produce curly
8657   // braces instead of the original commas.
8658   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
8659                                                    initExprs, LiteralRParenLoc);
8660   initE->setType(Ty);
8661   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
8662 }
8663 
8664 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
8665 /// the ParenListExpr into a sequence of comma binary operators.
8666 ExprResult
MaybeConvertParenListExprToParenExpr(Scope * S,Expr * OrigExpr)8667 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
8668   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
8669   if (!E)
8670     return OrigExpr;
8671 
8672   ExprResult Result(E->getExpr(0));
8673 
8674   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
8675     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
8676                         E->getExpr(i));
8677 
8678   if (Result.isInvalid()) return ExprError();
8679 
8680   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
8681 }
8682 
ActOnParenListExpr(SourceLocation L,SourceLocation R,MultiExprArg Val)8683 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
8684                                     SourceLocation R,
8685                                     MultiExprArg Val) {
8686   return ParenListExpr::Create(Context, L, Val, R);
8687 }
8688 
8689 /// Emit a specialized diagnostic when one expression is a null pointer
8690 /// constant and the other is not a pointer.  Returns true if a diagnostic is
8691 /// emitted.
DiagnoseConditionalForNull(const Expr * LHSExpr,const Expr * RHSExpr,SourceLocation QuestionLoc)8692 bool Sema::DiagnoseConditionalForNull(const Expr *LHSExpr, const Expr *RHSExpr,
8693                                       SourceLocation QuestionLoc) {
8694   const Expr *NullExpr = LHSExpr;
8695   const Expr *NonPointerExpr = RHSExpr;
8696   Expr::NullPointerConstantKind NullKind =
8697       NullExpr->isNullPointerConstant(Context,
8698                                       Expr::NPC_ValueDependentIsNotNull);
8699 
8700   if (NullKind == Expr::NPCK_NotNull) {
8701     NullExpr = RHSExpr;
8702     NonPointerExpr = LHSExpr;
8703     NullKind =
8704         NullExpr->isNullPointerConstant(Context,
8705                                         Expr::NPC_ValueDependentIsNotNull);
8706   }
8707 
8708   if (NullKind == Expr::NPCK_NotNull)
8709     return false;
8710 
8711   if (NullKind == Expr::NPCK_ZeroExpression)
8712     return false;
8713 
8714   if (NullKind == Expr::NPCK_ZeroLiteral) {
8715     // In this case, check to make sure that we got here from a "NULL"
8716     // string in the source code.
8717     NullExpr = NullExpr->IgnoreParenImpCasts();
8718     SourceLocation loc = NullExpr->getExprLoc();
8719     if (!findMacroSpelling(loc, "NULL"))
8720       return false;
8721   }
8722 
8723   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
8724   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
8725       << NonPointerExpr->getType() << DiagType
8726       << NonPointerExpr->getSourceRange();
8727   return true;
8728 }
8729 
8730 /// Return false if the condition expression is valid, true otherwise.
checkCondition(Sema & S,const Expr * Cond,SourceLocation QuestionLoc)8731 static bool checkCondition(Sema &S, const Expr *Cond,
8732                            SourceLocation QuestionLoc) {
8733   QualType CondTy = Cond->getType();
8734 
8735   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
8736   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
8737     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8738       << CondTy << Cond->getSourceRange();
8739     return true;
8740   }
8741 
8742   // C99 6.5.15p2
8743   if (CondTy->isScalarType()) return false;
8744 
8745   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
8746     << CondTy << Cond->getSourceRange();
8747   return true;
8748 }
8749 
8750 /// Return false if the NullExpr can be promoted to PointerTy,
8751 /// true otherwise.
checkConditionalNullPointer(Sema & S,ExprResult & NullExpr,QualType PointerTy)8752 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
8753                                         QualType PointerTy) {
8754   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
8755       !NullExpr.get()->isNullPointerConstant(S.Context,
8756                                             Expr::NPC_ValueDependentIsNull))
8757     return true;
8758 
8759   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
8760   return false;
8761 }
8762 
8763 /// Checks compatibility between two pointers and return the resulting
8764 /// type.
checkConditionalPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)8765 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
8766                                                      ExprResult &RHS,
8767                                                      SourceLocation Loc) {
8768   QualType LHSTy = LHS.get()->getType();
8769   QualType RHSTy = RHS.get()->getType();
8770 
8771   if (S.Context.hasSameType(LHSTy, RHSTy)) {
8772     // Two identical pointers types are always compatible.
8773     return S.Context.getCommonSugaredType(LHSTy, RHSTy);
8774   }
8775 
8776   QualType lhptee, rhptee;
8777 
8778   // Get the pointee types.
8779   bool IsBlockPointer = false;
8780   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
8781     lhptee = LHSBTy->getPointeeType();
8782     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
8783     IsBlockPointer = true;
8784   } else {
8785     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8786     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8787   }
8788 
8789   // C99 6.5.15p6: If both operands are pointers to compatible types or to
8790   // differently qualified versions of compatible types, the result type is
8791   // a pointer to an appropriately qualified version of the composite
8792   // type.
8793 
8794   // Only CVR-qualifiers exist in the standard, and the differently-qualified
8795   // clause doesn't make sense for our extensions. E.g. address space 2 should
8796   // be incompatible with address space 3: they may live on different devices or
8797   // anything.
8798   Qualifiers lhQual = lhptee.getQualifiers();
8799   Qualifiers rhQual = rhptee.getQualifiers();
8800 
8801   LangAS ResultAddrSpace = LangAS::Default;
8802   LangAS LAddrSpace = lhQual.getAddressSpace();
8803   LangAS RAddrSpace = rhQual.getAddressSpace();
8804 
8805   // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
8806   // spaces is disallowed.
8807   if (lhQual.isAddressSpaceSupersetOf(rhQual))
8808     ResultAddrSpace = LAddrSpace;
8809   else if (rhQual.isAddressSpaceSupersetOf(lhQual))
8810     ResultAddrSpace = RAddrSpace;
8811   else {
8812     S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8813         << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
8814         << RHS.get()->getSourceRange();
8815     return QualType();
8816   }
8817 
8818   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
8819   auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
8820   lhQual.removeCVRQualifiers();
8821   rhQual.removeCVRQualifiers();
8822 
8823   // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
8824   // (C99 6.7.3) for address spaces. We assume that the check should behave in
8825   // the same manner as it's defined for CVR qualifiers, so for OpenCL two
8826   // qual types are compatible iff
8827   //  * corresponded types are compatible
8828   //  * CVR qualifiers are equal
8829   //  * address spaces are equal
8830   // Thus for conditional operator we merge CVR and address space unqualified
8831   // pointees and if there is a composite type we return a pointer to it with
8832   // merged qualifiers.
8833   LHSCastKind =
8834       LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8835   RHSCastKind =
8836       RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8837   lhQual.removeAddressSpace();
8838   rhQual.removeAddressSpace();
8839 
8840   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
8841   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
8842 
8843   QualType CompositeTy = S.Context.mergeTypes(
8844       lhptee, rhptee, /*OfBlockPointer=*/false, /*Unqualified=*/false,
8845       /*BlockReturnType=*/false, /*IsConditionalOperator=*/true);
8846 
8847   if (CompositeTy.isNull()) {
8848     // In this situation, we assume void* type. No especially good
8849     // reason, but this is what gcc does, and we do have to pick
8850     // to get a consistent AST.
8851     QualType incompatTy;
8852     incompatTy = S.Context.getPointerType(
8853         S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
8854     LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
8855     RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
8856 
8857     // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8858     // for casts between types with incompatible address space qualifiers.
8859     // For the following code the compiler produces casts between global and
8860     // local address spaces of the corresponded innermost pointees:
8861     // local int *global *a;
8862     // global int *global *b;
8863     // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8864     S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
8865         << LHSTy << RHSTy << LHS.get()->getSourceRange()
8866         << RHS.get()->getSourceRange();
8867 
8868     return incompatTy;
8869   }
8870 
8871   // The pointer types are compatible.
8872   // In case of OpenCL ResultTy should have the address space qualifier
8873   // which is a superset of address spaces of both the 2nd and the 3rd
8874   // operands of the conditional operator.
8875   QualType ResultTy = [&, ResultAddrSpace]() {
8876     if (S.getLangOpts().OpenCL) {
8877       Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8878       CompositeQuals.setAddressSpace(ResultAddrSpace);
8879       return S.Context
8880           .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
8881           .withCVRQualifiers(MergedCVRQual);
8882     }
8883     return CompositeTy.withCVRQualifiers(MergedCVRQual);
8884   }();
8885   if (IsBlockPointer)
8886     ResultTy = S.Context.getBlockPointerType(ResultTy);
8887   else
8888     ResultTy = S.Context.getPointerType(ResultTy);
8889 
8890   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
8891   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
8892   return ResultTy;
8893 }
8894 
8895 /// Return the resulting type when the operands are both block pointers.
checkConditionalBlockPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)8896 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8897                                                           ExprResult &LHS,
8898                                                           ExprResult &RHS,
8899                                                           SourceLocation Loc) {
8900   QualType LHSTy = LHS.get()->getType();
8901   QualType RHSTy = RHS.get()->getType();
8902 
8903   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8904     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8905       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
8906       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8907       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8908       return destType;
8909     }
8910     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
8911       << LHSTy << RHSTy << LHS.get()->getSourceRange()
8912       << RHS.get()->getSourceRange();
8913     return QualType();
8914   }
8915 
8916   // We have 2 block pointer types.
8917   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8918 }
8919 
8920 /// Return the resulting type when the operands are both pointers.
8921 static QualType
checkConditionalObjectPointersCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)8922 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8923                                             ExprResult &RHS,
8924                                             SourceLocation Loc) {
8925   // get the pointer types
8926   QualType LHSTy = LHS.get()->getType();
8927   QualType RHSTy = RHS.get()->getType();
8928 
8929   // get the "pointed to" types
8930   QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8931   QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8932 
8933   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8934   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8935     // Figure out necessary qualifiers (C99 6.5.15p6)
8936     QualType destPointee
8937       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8938     QualType destType = S.Context.getPointerType(destPointee);
8939     // Add qualifiers if necessary.
8940     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8941     // Promote to void*.
8942     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8943     return destType;
8944   }
8945   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8946     QualType destPointee
8947       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8948     QualType destType = S.Context.getPointerType(destPointee);
8949     // Add qualifiers if necessary.
8950     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8951     // Promote to void*.
8952     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8953     return destType;
8954   }
8955 
8956   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8957 }
8958 
8959 /// Return false if the first expression is not an integer and the second
8960 /// expression is not a pointer, true otherwise.
checkPointerIntegerMismatch(Sema & S,ExprResult & Int,Expr * PointerExpr,SourceLocation Loc,bool IsIntFirstExpr)8961 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8962                                         Expr* PointerExpr, SourceLocation Loc,
8963                                         bool IsIntFirstExpr) {
8964   if (!PointerExpr->getType()->isPointerType() ||
8965       !Int.get()->getType()->isIntegerType())
8966     return false;
8967 
8968   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8969   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8970 
8971   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8972     << Expr1->getType() << Expr2->getType()
8973     << Expr1->getSourceRange() << Expr2->getSourceRange();
8974   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
8975                             CK_IntegralToPointer);
8976   return true;
8977 }
8978 
8979 /// Simple conversion between integer and floating point types.
8980 ///
8981 /// Used when handling the OpenCL conditional operator where the
8982 /// condition is a vector while the other operands are scalar.
8983 ///
8984 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8985 /// types are either integer or floating type. Between the two
8986 /// operands, the type with the higher rank is defined as the "result
8987 /// type". The other operand needs to be promoted to the same type. No
8988 /// other type promotion is allowed. We cannot use
8989 /// UsualArithmeticConversions() for this purpose, since it always
8990 /// promotes promotable types.
OpenCLArithmeticConversions(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)8991 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8992                                             ExprResult &RHS,
8993                                             SourceLocation QuestionLoc) {
8994   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
8995   if (LHS.isInvalid())
8996     return QualType();
8997   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8998   if (RHS.isInvalid())
8999     return QualType();
9000 
9001   // For conversion purposes, we ignore any qualifiers.
9002   // For example, "const float" and "float" are equivalent.
9003   QualType LHSType =
9004     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
9005   QualType RHSType =
9006     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
9007 
9008   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
9009     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
9010       << LHSType << LHS.get()->getSourceRange();
9011     return QualType();
9012   }
9013 
9014   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
9015     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
9016       << RHSType << RHS.get()->getSourceRange();
9017     return QualType();
9018   }
9019 
9020   // If both types are identical, no conversion is needed.
9021   if (LHSType == RHSType)
9022     return LHSType;
9023 
9024   // Now handle "real" floating types (i.e. float, double, long double).
9025   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
9026     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
9027                                  /*IsCompAssign = */ false);
9028 
9029   // Finally, we have two differing integer types.
9030   return handleIntegerConversion<doIntegralCast, doIntegralCast>
9031   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
9032 }
9033 
9034 /// Convert scalar operands to a vector that matches the
9035 ///        condition in length.
9036 ///
9037 /// Used when handling the OpenCL conditional operator where the
9038 /// condition is a vector while the other operands are scalar.
9039 ///
9040 /// We first compute the "result type" for the scalar operands
9041 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
9042 /// into a vector of that type where the length matches the condition
9043 /// vector type. s6.11.6 requires that the element types of the result
9044 /// and the condition must have the same number of bits.
9045 static QualType
OpenCLConvertScalarsToVectors(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType CondTy,SourceLocation QuestionLoc)9046 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
9047                               QualType CondTy, SourceLocation QuestionLoc) {
9048   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
9049   if (ResTy.isNull()) return QualType();
9050 
9051   const VectorType *CV = CondTy->getAs<VectorType>();
9052   assert(CV);
9053 
9054   // Determine the vector result type
9055   unsigned NumElements = CV->getNumElements();
9056   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
9057 
9058   // Ensure that all types have the same number of bits
9059   if (S.Context.getTypeSize(CV->getElementType())
9060       != S.Context.getTypeSize(ResTy)) {
9061     // Since VectorTy is created internally, it does not pretty print
9062     // with an OpenCL name. Instead, we just print a description.
9063     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
9064     SmallString<64> Str;
9065     llvm::raw_svector_ostream OS(Str);
9066     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
9067     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
9068       << CondTy << OS.str();
9069     return QualType();
9070   }
9071 
9072   // Convert operands to the vector result type
9073   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
9074   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
9075 
9076   return VectorTy;
9077 }
9078 
9079 /// Return false if this is a valid OpenCL condition vector
checkOpenCLConditionVector(Sema & S,Expr * Cond,SourceLocation QuestionLoc)9080 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
9081                                        SourceLocation QuestionLoc) {
9082   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
9083   // integral type.
9084   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
9085   assert(CondTy);
9086   QualType EleTy = CondTy->getElementType();
9087   if (EleTy->isIntegerType()) return false;
9088 
9089   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
9090     << Cond->getType() << Cond->getSourceRange();
9091   return true;
9092 }
9093 
9094 /// Return false if the vector condition type and the vector
9095 ///        result type are compatible.
9096 ///
9097 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
9098 /// number of elements, and their element types have the same number
9099 /// of bits.
checkVectorResult(Sema & S,QualType CondTy,QualType VecResTy,SourceLocation QuestionLoc)9100 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
9101                               SourceLocation QuestionLoc) {
9102   const VectorType *CV = CondTy->getAs<VectorType>();
9103   const VectorType *RV = VecResTy->getAs<VectorType>();
9104   assert(CV && RV);
9105 
9106   if (CV->getNumElements() != RV->getNumElements()) {
9107     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
9108       << CondTy << VecResTy;
9109     return true;
9110   }
9111 
9112   QualType CVE = CV->getElementType();
9113   QualType RVE = RV->getElementType();
9114 
9115   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
9116     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
9117       << CondTy << VecResTy;
9118     return true;
9119   }
9120 
9121   return false;
9122 }
9123 
9124 /// Return the resulting type for the conditional operator in
9125 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
9126 ///        s6.3.i) when the condition is a vector type.
9127 static QualType
OpenCLCheckVectorConditional(Sema & S,ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)9128 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
9129                              ExprResult &LHS, ExprResult &RHS,
9130                              SourceLocation QuestionLoc) {
9131   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
9132   if (Cond.isInvalid())
9133     return QualType();
9134   QualType CondTy = Cond.get()->getType();
9135 
9136   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
9137     return QualType();
9138 
9139   // If either operand is a vector then find the vector type of the
9140   // result as specified in OpenCL v1.1 s6.3.i.
9141   if (LHS.get()->getType()->isVectorType() ||
9142       RHS.get()->getType()->isVectorType()) {
9143     bool IsBoolVecLang =
9144         !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus;
9145     QualType VecResTy =
9146         S.CheckVectorOperands(LHS, RHS, QuestionLoc,
9147                               /*isCompAssign*/ false,
9148                               /*AllowBothBool*/ true,
9149                               /*AllowBoolConversions*/ false,
9150                               /*AllowBooleanOperation*/ IsBoolVecLang,
9151                               /*ReportInvalid*/ true);
9152     if (VecResTy.isNull())
9153       return QualType();
9154     // The result type must match the condition type as specified in
9155     // OpenCL v1.1 s6.11.6.
9156     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
9157       return QualType();
9158     return VecResTy;
9159   }
9160 
9161   // Both operands are scalar.
9162   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
9163 }
9164 
9165 /// Return true if the Expr is block type
checkBlockType(Sema & S,const Expr * E)9166 static bool checkBlockType(Sema &S, const Expr *E) {
9167   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
9168     QualType Ty = CE->getCallee()->getType();
9169     if (Ty->isBlockPointerType()) {
9170       S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
9171       return true;
9172     }
9173   }
9174   return false;
9175 }
9176 
9177 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
9178 /// In that case, LHS = cond.
9179 /// C99 6.5.15
CheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)9180 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
9181                                         ExprResult &RHS, ExprValueKind &VK,
9182                                         ExprObjectKind &OK,
9183                                         SourceLocation QuestionLoc) {
9184 
9185   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
9186   if (!LHSResult.isUsable()) return QualType();
9187   LHS = LHSResult;
9188 
9189   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
9190   if (!RHSResult.isUsable()) return QualType();
9191   RHS = RHSResult;
9192 
9193   // C++ is sufficiently different to merit its own checker.
9194   if (getLangOpts().CPlusPlus)
9195     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
9196 
9197   VK = VK_PRValue;
9198   OK = OK_Ordinary;
9199 
9200   if (Context.isDependenceAllowed() &&
9201       (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
9202        RHS.get()->isTypeDependent())) {
9203     assert(!getLangOpts().CPlusPlus);
9204     assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
9205             RHS.get()->containsErrors()) &&
9206            "should only occur in error-recovery path.");
9207     return Context.DependentTy;
9208   }
9209 
9210   // The OpenCL operator with a vector condition is sufficiently
9211   // different to merit its own checker.
9212   if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
9213       Cond.get()->getType()->isExtVectorType())
9214     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
9215 
9216   // First, check the condition.
9217   Cond = UsualUnaryConversions(Cond.get());
9218   if (Cond.isInvalid())
9219     return QualType();
9220   if (checkCondition(*this, Cond.get(), QuestionLoc))
9221     return QualType();
9222 
9223   // Handle vectors.
9224   if (LHS.get()->getType()->isVectorType() ||
9225       RHS.get()->getType()->isVectorType())
9226     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
9227                                /*AllowBothBool*/ true,
9228                                /*AllowBoolConversions*/ false,
9229                                /*AllowBooleanOperation*/ false,
9230                                /*ReportInvalid*/ true);
9231 
9232   QualType ResTy =
9233       UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
9234   if (LHS.isInvalid() || RHS.isInvalid())
9235     return QualType();
9236 
9237   // WebAssembly tables are not allowed as conditional LHS or RHS.
9238   QualType LHSTy = LHS.get()->getType();
9239   QualType RHSTy = RHS.get()->getType();
9240   if (LHSTy->isWebAssemblyTableType() || RHSTy->isWebAssemblyTableType()) {
9241     Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
9242         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9243     return QualType();
9244   }
9245 
9246   // Diagnose attempts to convert between __ibm128, __float128 and long double
9247   // where such conversions currently can't be handled.
9248   if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
9249     Diag(QuestionLoc,
9250          diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
9251       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9252     return QualType();
9253   }
9254 
9255   // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
9256   // selection operator (?:).
9257   if (getLangOpts().OpenCL &&
9258       ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) {
9259     return QualType();
9260   }
9261 
9262   // If both operands have arithmetic type, do the usual arithmetic conversions
9263   // to find a common type: C99 6.5.15p3,5.
9264   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
9265     // Disallow invalid arithmetic conversions, such as those between bit-
9266     // precise integers types of different sizes, or between a bit-precise
9267     // integer and another type.
9268     if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
9269       Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
9270           << LHSTy << RHSTy << LHS.get()->getSourceRange()
9271           << RHS.get()->getSourceRange();
9272       return QualType();
9273     }
9274 
9275     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
9276     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
9277 
9278     return ResTy;
9279   }
9280 
9281   // If both operands are the same structure or union type, the result is that
9282   // type.
9283   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
9284     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
9285       if (LHSRT->getDecl() == RHSRT->getDecl())
9286         // "If both the operands have structure or union type, the result has
9287         // that type."  This implies that CV qualifiers are dropped.
9288         return Context.getCommonSugaredType(LHSTy.getUnqualifiedType(),
9289                                             RHSTy.getUnqualifiedType());
9290     // FIXME: Type of conditional expression must be complete in C mode.
9291   }
9292 
9293   // C99 6.5.15p5: "If both operands have void type, the result has void type."
9294   // The following || allows only one side to be void (a GCC-ism).
9295   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
9296     QualType ResTy;
9297     if (LHSTy->isVoidType() && RHSTy->isVoidType()) {
9298       ResTy = Context.getCommonSugaredType(LHSTy, RHSTy);
9299     } else if (RHSTy->isVoidType()) {
9300       ResTy = RHSTy;
9301       Diag(RHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
9302           << RHS.get()->getSourceRange();
9303     } else {
9304       ResTy = LHSTy;
9305       Diag(LHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
9306           << LHS.get()->getSourceRange();
9307     }
9308     LHS = ImpCastExprToType(LHS.get(), ResTy, CK_ToVoid);
9309     RHS = ImpCastExprToType(RHS.get(), ResTy, CK_ToVoid);
9310     return ResTy;
9311   }
9312 
9313   // C23 6.5.15p7:
9314   //   ... if both the second and third operands have nullptr_t type, the
9315   //   result also has that type.
9316   if (LHSTy->isNullPtrType() && Context.hasSameType(LHSTy, RHSTy))
9317     return ResTy;
9318 
9319   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
9320   // the type of the other operand."
9321   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
9322   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
9323 
9324   // All objective-c pointer type analysis is done here.
9325   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
9326                                                         QuestionLoc);
9327   if (LHS.isInvalid() || RHS.isInvalid())
9328     return QualType();
9329   if (!compositeType.isNull())
9330     return compositeType;
9331 
9332 
9333   // Handle block pointer types.
9334   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
9335     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
9336                                                      QuestionLoc);
9337 
9338   // Check constraints for C object pointers types (C99 6.5.15p3,6).
9339   if (LHSTy->isPointerType() && RHSTy->isPointerType())
9340     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
9341                                                        QuestionLoc);
9342 
9343   // GCC compatibility: soften pointer/integer mismatch.  Note that
9344   // null pointers have been filtered out by this point.
9345   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
9346       /*IsIntFirstExpr=*/true))
9347     return RHSTy;
9348   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
9349       /*IsIntFirstExpr=*/false))
9350     return LHSTy;
9351 
9352   // Emit a better diagnostic if one of the expressions is a null pointer
9353   // constant and the other is not a pointer type. In this case, the user most
9354   // likely forgot to take the address of the other expression.
9355   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
9356     return QualType();
9357 
9358   // Finally, if the LHS and RHS types are canonically the same type, we can
9359   // use the common sugared type.
9360   if (Context.hasSameType(LHSTy, RHSTy))
9361     return Context.getCommonSugaredType(LHSTy, RHSTy);
9362 
9363   // Otherwise, the operands are not compatible.
9364   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
9365     << LHSTy << RHSTy << LHS.get()->getSourceRange()
9366     << RHS.get()->getSourceRange();
9367   return QualType();
9368 }
9369 
9370 /// FindCompositeObjCPointerType - Helper method to find composite type of
9371 /// two objective-c pointer types of the two input expressions.
FindCompositeObjCPointerType(ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)9372 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
9373                                             SourceLocation QuestionLoc) {
9374   QualType LHSTy = LHS.get()->getType();
9375   QualType RHSTy = RHS.get()->getType();
9376 
9377   // Handle things like Class and struct objc_class*.  Here we case the result
9378   // to the pseudo-builtin, because that will be implicitly cast back to the
9379   // redefinition type if an attempt is made to access its fields.
9380   if (LHSTy->isObjCClassType() &&
9381       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
9382     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
9383     return LHSTy;
9384   }
9385   if (RHSTy->isObjCClassType() &&
9386       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
9387     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
9388     return RHSTy;
9389   }
9390   // And the same for struct objc_object* / id
9391   if (LHSTy->isObjCIdType() &&
9392       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
9393     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
9394     return LHSTy;
9395   }
9396   if (RHSTy->isObjCIdType() &&
9397       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
9398     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
9399     return RHSTy;
9400   }
9401   // And the same for struct objc_selector* / SEL
9402   if (Context.isObjCSelType(LHSTy) &&
9403       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
9404     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
9405     return LHSTy;
9406   }
9407   if (Context.isObjCSelType(RHSTy) &&
9408       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
9409     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
9410     return RHSTy;
9411   }
9412   // Check constraints for Objective-C object pointers types.
9413   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
9414 
9415     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
9416       // Two identical object pointer types are always compatible.
9417       return LHSTy;
9418     }
9419     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
9420     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
9421     QualType compositeType = LHSTy;
9422 
9423     // If both operands are interfaces and either operand can be
9424     // assigned to the other, use that type as the composite
9425     // type. This allows
9426     //   xxx ? (A*) a : (B*) b
9427     // where B is a subclass of A.
9428     //
9429     // Additionally, as for assignment, if either type is 'id'
9430     // allow silent coercion. Finally, if the types are
9431     // incompatible then make sure to use 'id' as the composite
9432     // type so the result is acceptable for sending messages to.
9433 
9434     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
9435     // It could return the composite type.
9436     if (!(compositeType =
9437           Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
9438       // Nothing more to do.
9439     } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
9440       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
9441     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
9442       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
9443     } else if ((LHSOPT->isObjCQualifiedIdType() ||
9444                 RHSOPT->isObjCQualifiedIdType()) &&
9445                Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
9446                                                          true)) {
9447       // Need to handle "id<xx>" explicitly.
9448       // GCC allows qualified id and any Objective-C type to devolve to
9449       // id. Currently localizing to here until clear this should be
9450       // part of ObjCQualifiedIdTypesAreCompatible.
9451       compositeType = Context.getObjCIdType();
9452     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
9453       compositeType = Context.getObjCIdType();
9454     } else {
9455       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
9456       << LHSTy << RHSTy
9457       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9458       QualType incompatTy = Context.getObjCIdType();
9459       LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
9460       RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
9461       return incompatTy;
9462     }
9463     // The object pointer types are compatible.
9464     LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
9465     RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
9466     return compositeType;
9467   }
9468   // Check Objective-C object pointer types and 'void *'
9469   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
9470     if (getLangOpts().ObjCAutoRefCount) {
9471       // ARC forbids the implicit conversion of object pointers to 'void *',
9472       // so these types are not compatible.
9473       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
9474           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9475       LHS = RHS = true;
9476       return QualType();
9477     }
9478     QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
9479     QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
9480     QualType destPointee
9481     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
9482     QualType destType = Context.getPointerType(destPointee);
9483     // Add qualifiers if necessary.
9484     LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
9485     // Promote to void*.
9486     RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
9487     return destType;
9488   }
9489   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
9490     if (getLangOpts().ObjCAutoRefCount) {
9491       // ARC forbids the implicit conversion of object pointers to 'void *',
9492       // so these types are not compatible.
9493       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
9494           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9495       LHS = RHS = true;
9496       return QualType();
9497     }
9498     QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
9499     QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
9500     QualType destPointee
9501     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
9502     QualType destType = Context.getPointerType(destPointee);
9503     // Add qualifiers if necessary.
9504     RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
9505     // Promote to void*.
9506     LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
9507     return destType;
9508   }
9509   return QualType();
9510 }
9511 
9512 /// SuggestParentheses - Emit a note with a fixit hint that wraps
9513 /// ParenRange in parentheses.
SuggestParentheses(Sema & Self,SourceLocation Loc,const PartialDiagnostic & Note,SourceRange ParenRange)9514 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
9515                                const PartialDiagnostic &Note,
9516                                SourceRange ParenRange) {
9517   SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
9518   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
9519       EndLoc.isValid()) {
9520     Self.Diag(Loc, Note)
9521       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
9522       << FixItHint::CreateInsertion(EndLoc, ")");
9523   } else {
9524     // We can't display the parentheses, so just show the bare note.
9525     Self.Diag(Loc, Note) << ParenRange;
9526   }
9527 }
9528 
IsArithmeticOp(BinaryOperatorKind Opc)9529 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
9530   return BinaryOperator::isAdditiveOp(Opc) ||
9531          BinaryOperator::isMultiplicativeOp(Opc) ||
9532          BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
9533   // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
9534   // not any of the logical operators.  Bitwise-xor is commonly used as a
9535   // logical-xor because there is no logical-xor operator.  The logical
9536   // operators, including uses of xor, have a high false positive rate for
9537   // precedence warnings.
9538 }
9539 
9540 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
9541 /// expression, either using a built-in or overloaded operator,
9542 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
9543 /// expression.
IsArithmeticBinaryExpr(const Expr * E,BinaryOperatorKind * Opcode,const Expr ** RHSExprs)9544 static bool IsArithmeticBinaryExpr(const Expr *E, BinaryOperatorKind *Opcode,
9545                                    const Expr **RHSExprs) {
9546   // Don't strip parenthesis: we should not warn if E is in parenthesis.
9547   E = E->IgnoreImpCasts();
9548   E = E->IgnoreConversionOperatorSingleStep();
9549   E = E->IgnoreImpCasts();
9550   if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
9551     E = MTE->getSubExpr();
9552     E = E->IgnoreImpCasts();
9553   }
9554 
9555   // Built-in binary operator.
9556   if (const auto *OP = dyn_cast<BinaryOperator>(E);
9557       OP && IsArithmeticOp(OP->getOpcode())) {
9558     *Opcode = OP->getOpcode();
9559     *RHSExprs = OP->getRHS();
9560     return true;
9561   }
9562 
9563   // Overloaded operator.
9564   if (const auto *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
9565     if (Call->getNumArgs() != 2)
9566       return false;
9567 
9568     // Make sure this is really a binary operator that is safe to pass into
9569     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
9570     OverloadedOperatorKind OO = Call->getOperator();
9571     if (OO < OO_Plus || OO > OO_Arrow ||
9572         OO == OO_PlusPlus || OO == OO_MinusMinus)
9573       return false;
9574 
9575     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
9576     if (IsArithmeticOp(OpKind)) {
9577       *Opcode = OpKind;
9578       *RHSExprs = Call->getArg(1);
9579       return true;
9580     }
9581   }
9582 
9583   return false;
9584 }
9585 
9586 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
9587 /// or is a logical expression such as (x==y) which has int type, but is
9588 /// commonly interpreted as boolean.
ExprLooksBoolean(const Expr * E)9589 static bool ExprLooksBoolean(const Expr *E) {
9590   E = E->IgnoreParenImpCasts();
9591 
9592   if (E->getType()->isBooleanType())
9593     return true;
9594   if (const auto *OP = dyn_cast<BinaryOperator>(E))
9595     return OP->isComparisonOp() || OP->isLogicalOp();
9596   if (const auto *OP = dyn_cast<UnaryOperator>(E))
9597     return OP->getOpcode() == UO_LNot;
9598   if (E->getType()->isPointerType())
9599     return true;
9600   // FIXME: What about overloaded operator calls returning "unspecified boolean
9601   // type"s (commonly pointer-to-members)?
9602 
9603   return false;
9604 }
9605 
9606 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
9607 /// and binary operator are mixed in a way that suggests the programmer assumed
9608 /// the conditional operator has higher precedence, for example:
9609 /// "int x = a + someBinaryCondition ? 1 : 2".
DiagnoseConditionalPrecedence(Sema & Self,SourceLocation OpLoc,Expr * Condition,const Expr * LHSExpr,const Expr * RHSExpr)9610 static void DiagnoseConditionalPrecedence(Sema &Self, SourceLocation OpLoc,
9611                                           Expr *Condition, const Expr *LHSExpr,
9612                                           const Expr *RHSExpr) {
9613   BinaryOperatorKind CondOpcode;
9614   const Expr *CondRHS;
9615 
9616   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
9617     return;
9618   if (!ExprLooksBoolean(CondRHS))
9619     return;
9620 
9621   // The condition is an arithmetic binary expression, with a right-
9622   // hand side that looks boolean, so warn.
9623 
9624   unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
9625                         ? diag::warn_precedence_bitwise_conditional
9626                         : diag::warn_precedence_conditional;
9627 
9628   Self.Diag(OpLoc, DiagID)
9629       << Condition->getSourceRange()
9630       << BinaryOperator::getOpcodeStr(CondOpcode);
9631 
9632   SuggestParentheses(
9633       Self, OpLoc,
9634       Self.PDiag(diag::note_precedence_silence)
9635           << BinaryOperator::getOpcodeStr(CondOpcode),
9636       SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
9637 
9638   SuggestParentheses(Self, OpLoc,
9639                      Self.PDiag(diag::note_precedence_conditional_first),
9640                      SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
9641 }
9642 
9643 /// Compute the nullability of a conditional expression.
computeConditionalNullability(QualType ResTy,bool IsBin,QualType LHSTy,QualType RHSTy,ASTContext & Ctx)9644 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
9645                                               QualType LHSTy, QualType RHSTy,
9646                                               ASTContext &Ctx) {
9647   if (!ResTy->isAnyPointerType())
9648     return ResTy;
9649 
9650   auto GetNullability = [](QualType Ty) {
9651     std::optional<NullabilityKind> Kind = Ty->getNullability();
9652     if (Kind) {
9653       // For our purposes, treat _Nullable_result as _Nullable.
9654       if (*Kind == NullabilityKind::NullableResult)
9655         return NullabilityKind::Nullable;
9656       return *Kind;
9657     }
9658     return NullabilityKind::Unspecified;
9659   };
9660 
9661   auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
9662   NullabilityKind MergedKind;
9663 
9664   // Compute nullability of a binary conditional expression.
9665   if (IsBin) {
9666     if (LHSKind == NullabilityKind::NonNull)
9667       MergedKind = NullabilityKind::NonNull;
9668     else
9669       MergedKind = RHSKind;
9670   // Compute nullability of a normal conditional expression.
9671   } else {
9672     if (LHSKind == NullabilityKind::Nullable ||
9673         RHSKind == NullabilityKind::Nullable)
9674       MergedKind = NullabilityKind::Nullable;
9675     else if (LHSKind == NullabilityKind::NonNull)
9676       MergedKind = RHSKind;
9677     else if (RHSKind == NullabilityKind::NonNull)
9678       MergedKind = LHSKind;
9679     else
9680       MergedKind = NullabilityKind::Unspecified;
9681   }
9682 
9683   // Return if ResTy already has the correct nullability.
9684   if (GetNullability(ResTy) == MergedKind)
9685     return ResTy;
9686 
9687   // Strip all nullability from ResTy.
9688   while (ResTy->getNullability())
9689     ResTy = ResTy.getSingleStepDesugaredType(Ctx);
9690 
9691   // Create a new AttributedType with the new nullability kind.
9692   auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
9693   return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
9694 }
9695 
9696 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
9697 /// in the case of a the GNU conditional expr extension.
ActOnConditionalOp(SourceLocation QuestionLoc,SourceLocation ColonLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr)9698 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
9699                                     SourceLocation ColonLoc,
9700                                     Expr *CondExpr, Expr *LHSExpr,
9701                                     Expr *RHSExpr) {
9702   if (!Context.isDependenceAllowed()) {
9703     // C cannot handle TypoExpr nodes in the condition because it
9704     // doesn't handle dependent types properly, so make sure any TypoExprs have
9705     // been dealt with before checking the operands.
9706     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
9707     ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
9708     ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
9709 
9710     if (!CondResult.isUsable())
9711       return ExprError();
9712 
9713     if (LHSExpr) {
9714       if (!LHSResult.isUsable())
9715         return ExprError();
9716     }
9717 
9718     if (!RHSResult.isUsable())
9719       return ExprError();
9720 
9721     CondExpr = CondResult.get();
9722     LHSExpr = LHSResult.get();
9723     RHSExpr = RHSResult.get();
9724   }
9725 
9726   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
9727   // was the condition.
9728   OpaqueValueExpr *opaqueValue = nullptr;
9729   Expr *commonExpr = nullptr;
9730   if (!LHSExpr) {
9731     commonExpr = CondExpr;
9732     // Lower out placeholder types first.  This is important so that we don't
9733     // try to capture a placeholder. This happens in few cases in C++; such
9734     // as Objective-C++'s dictionary subscripting syntax.
9735     if (commonExpr->hasPlaceholderType()) {
9736       ExprResult result = CheckPlaceholderExpr(commonExpr);
9737       if (!result.isUsable()) return ExprError();
9738       commonExpr = result.get();
9739     }
9740     // We usually want to apply unary conversions *before* saving, except
9741     // in the special case of a C++ l-value conditional.
9742     if (!(getLangOpts().CPlusPlus
9743           && !commonExpr->isTypeDependent()
9744           && commonExpr->getValueKind() == RHSExpr->getValueKind()
9745           && commonExpr->isGLValue()
9746           && commonExpr->isOrdinaryOrBitFieldObject()
9747           && RHSExpr->isOrdinaryOrBitFieldObject()
9748           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
9749       ExprResult commonRes = UsualUnaryConversions(commonExpr);
9750       if (commonRes.isInvalid())
9751         return ExprError();
9752       commonExpr = commonRes.get();
9753     }
9754 
9755     // If the common expression is a class or array prvalue, materialize it
9756     // so that we can safely refer to it multiple times.
9757     if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
9758                                     commonExpr->getType()->isArrayType())) {
9759       ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
9760       if (MatExpr.isInvalid())
9761         return ExprError();
9762       commonExpr = MatExpr.get();
9763     }
9764 
9765     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
9766                                                 commonExpr->getType(),
9767                                                 commonExpr->getValueKind(),
9768                                                 commonExpr->getObjectKind(),
9769                                                 commonExpr);
9770     LHSExpr = CondExpr = opaqueValue;
9771   }
9772 
9773   QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
9774   ExprValueKind VK = VK_PRValue;
9775   ExprObjectKind OK = OK_Ordinary;
9776   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
9777   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
9778                                              VK, OK, QuestionLoc);
9779   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
9780       RHS.isInvalid())
9781     return ExprError();
9782 
9783   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
9784                                 RHS.get());
9785 
9786   CheckBoolLikeConversion(Cond.get(), QuestionLoc);
9787 
9788   result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
9789                                          Context);
9790 
9791   if (!commonExpr)
9792     return new (Context)
9793         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
9794                             RHS.get(), result, VK, OK);
9795 
9796   return new (Context) BinaryConditionalOperator(
9797       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
9798       ColonLoc, result, VK, OK);
9799 }
9800 
9801 // Check that the SME attributes for PSTATE.ZA and PSTATE.SM are compatible.
IsInvalidSMECallConversion(QualType FromType,QualType ToType)9802 bool Sema::IsInvalidSMECallConversion(QualType FromType, QualType ToType) {
9803   unsigned FromAttributes = 0, ToAttributes = 0;
9804   if (const auto *FromFn =
9805           dyn_cast<FunctionProtoType>(Context.getCanonicalType(FromType)))
9806     FromAttributes =
9807         FromFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
9808   if (const auto *ToFn =
9809           dyn_cast<FunctionProtoType>(Context.getCanonicalType(ToType)))
9810     ToAttributes =
9811         ToFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
9812 
9813   return FromAttributes != ToAttributes;
9814 }
9815 
9816 // Check if we have a conversion between incompatible cmse function pointer
9817 // types, that is, a conversion between a function pointer with the
9818 // cmse_nonsecure_call attribute and one without.
IsInvalidCmseNSCallConversion(Sema & S,QualType FromType,QualType ToType)9819 static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
9820                                           QualType ToType) {
9821   if (const auto *ToFn =
9822           dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
9823     if (const auto *FromFn =
9824             dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
9825       FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
9826       FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
9827 
9828       return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
9829     }
9830   }
9831   return false;
9832 }
9833 
9834 // checkPointerTypesForAssignment - This is a very tricky routine (despite
9835 // being closely modeled after the C99 spec:-). The odd characteristic of this
9836 // routine is it effectively iqnores the qualifiers on the top level pointee.
9837 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
9838 // FIXME: add a couple examples in this comment.
9839 static Sema::AssignConvertType
checkPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType,SourceLocation Loc)9840 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType,
9841                                SourceLocation Loc) {
9842   assert(LHSType.isCanonical() && "LHS not canonicalized!");
9843   assert(RHSType.isCanonical() && "RHS not canonicalized!");
9844 
9845   // get the "pointed to" type (ignoring qualifiers at the top level)
9846   const Type *lhptee, *rhptee;
9847   Qualifiers lhq, rhq;
9848   std::tie(lhptee, lhq) =
9849       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
9850   std::tie(rhptee, rhq) =
9851       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
9852 
9853   Sema::AssignConvertType ConvTy = Sema::Compatible;
9854 
9855   // C99 6.5.16.1p1: This following citation is common to constraints
9856   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
9857   // qualifiers of the type *pointed to* by the right;
9858 
9859   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
9860   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
9861       lhq.compatiblyIncludesObjCLifetime(rhq)) {
9862     // Ignore lifetime for further calculation.
9863     lhq.removeObjCLifetime();
9864     rhq.removeObjCLifetime();
9865   }
9866 
9867   if (!lhq.compatiblyIncludes(rhq)) {
9868     // Treat address-space mismatches as fatal.
9869     if (!lhq.isAddressSpaceSupersetOf(rhq))
9870       return Sema::IncompatiblePointerDiscardsQualifiers;
9871 
9872     // It's okay to add or remove GC or lifetime qualifiers when converting to
9873     // and from void*.
9874     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
9875                         .compatiblyIncludes(
9876                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
9877              && (lhptee->isVoidType() || rhptee->isVoidType()))
9878       ; // keep old
9879 
9880     // Treat lifetime mismatches as fatal.
9881     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
9882       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
9883 
9884     // For GCC/MS compatibility, other qualifier mismatches are treated
9885     // as still compatible in C.
9886     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9887   }
9888 
9889   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
9890   // incomplete type and the other is a pointer to a qualified or unqualified
9891   // version of void...
9892   if (lhptee->isVoidType()) {
9893     if (rhptee->isIncompleteOrObjectType())
9894       return ConvTy;
9895 
9896     // As an extension, we allow cast to/from void* to function pointer.
9897     assert(rhptee->isFunctionType());
9898     return Sema::FunctionVoidPointer;
9899   }
9900 
9901   if (rhptee->isVoidType()) {
9902     if (lhptee->isIncompleteOrObjectType())
9903       return ConvTy;
9904 
9905     // As an extension, we allow cast to/from void* to function pointer.
9906     assert(lhptee->isFunctionType());
9907     return Sema::FunctionVoidPointer;
9908   }
9909 
9910   if (!S.Diags.isIgnored(
9911           diag::warn_typecheck_convert_incompatible_function_pointer_strict,
9912           Loc) &&
9913       RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType() &&
9914       !S.IsFunctionConversion(RHSType, LHSType, RHSType))
9915     return Sema::IncompatibleFunctionPointerStrict;
9916 
9917   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9918   // unqualified versions of compatible types, ...
9919   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
9920   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
9921     // Check if the pointee types are compatible ignoring the sign.
9922     // We explicitly check for char so that we catch "char" vs
9923     // "unsigned char" on systems where "char" is unsigned.
9924     if (lhptee->isCharType())
9925       ltrans = S.Context.UnsignedCharTy;
9926     else if (lhptee->hasSignedIntegerRepresentation())
9927       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
9928 
9929     if (rhptee->isCharType())
9930       rtrans = S.Context.UnsignedCharTy;
9931     else if (rhptee->hasSignedIntegerRepresentation())
9932       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
9933 
9934     if (ltrans == rtrans) {
9935       // Types are compatible ignoring the sign. Qualifier incompatibility
9936       // takes priority over sign incompatibility because the sign
9937       // warning can be disabled.
9938       if (ConvTy != Sema::Compatible)
9939         return ConvTy;
9940 
9941       return Sema::IncompatiblePointerSign;
9942     }
9943 
9944     // If we are a multi-level pointer, it's possible that our issue is simply
9945     // one of qualification - e.g. char ** -> const char ** is not allowed. If
9946     // the eventual target type is the same and the pointers have the same
9947     // level of indirection, this must be the issue.
9948     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
9949       do {
9950         std::tie(lhptee, lhq) =
9951           cast<PointerType>(lhptee)->getPointeeType().split().asPair();
9952         std::tie(rhptee, rhq) =
9953           cast<PointerType>(rhptee)->getPointeeType().split().asPair();
9954 
9955         // Inconsistent address spaces at this point is invalid, even if the
9956         // address spaces would be compatible.
9957         // FIXME: This doesn't catch address space mismatches for pointers of
9958         // different nesting levels, like:
9959         //   __local int *** a;
9960         //   int ** b = a;
9961         // It's not clear how to actually determine when such pointers are
9962         // invalidly incompatible.
9963         if (lhq.getAddressSpace() != rhq.getAddressSpace())
9964           return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
9965 
9966       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
9967 
9968       if (lhptee == rhptee)
9969         return Sema::IncompatibleNestedPointerQualifiers;
9970     }
9971 
9972     // General pointer incompatibility takes priority over qualifiers.
9973     if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
9974       return Sema::IncompatibleFunctionPointer;
9975     return Sema::IncompatiblePointer;
9976   }
9977   if (!S.getLangOpts().CPlusPlus &&
9978       S.IsFunctionConversion(ltrans, rtrans, ltrans))
9979     return Sema::IncompatibleFunctionPointer;
9980   if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
9981     return Sema::IncompatibleFunctionPointer;
9982   if (S.IsInvalidSMECallConversion(rtrans, ltrans))
9983     return Sema::IncompatibleFunctionPointer;
9984   return ConvTy;
9985 }
9986 
9987 /// checkBlockPointerTypesForAssignment - This routine determines whether two
9988 /// block pointer types are compatible or whether a block and normal pointer
9989 /// are compatible. It is more restrict than comparing two function pointer
9990 // types.
9991 static Sema::AssignConvertType
checkBlockPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)9992 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
9993                                     QualType RHSType) {
9994   assert(LHSType.isCanonical() && "LHS not canonicalized!");
9995   assert(RHSType.isCanonical() && "RHS not canonicalized!");
9996 
9997   QualType lhptee, rhptee;
9998 
9999   // get the "pointed to" type (ignoring qualifiers at the top level)
10000   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
10001   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
10002 
10003   // In C++, the types have to match exactly.
10004   if (S.getLangOpts().CPlusPlus)
10005     return Sema::IncompatibleBlockPointer;
10006 
10007   Sema::AssignConvertType ConvTy = Sema::Compatible;
10008 
10009   // For blocks we enforce that qualifiers are identical.
10010   Qualifiers LQuals = lhptee.getLocalQualifiers();
10011   Qualifiers RQuals = rhptee.getLocalQualifiers();
10012   if (S.getLangOpts().OpenCL) {
10013     LQuals.removeAddressSpace();
10014     RQuals.removeAddressSpace();
10015   }
10016   if (LQuals != RQuals)
10017     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
10018 
10019   // FIXME: OpenCL doesn't define the exact compile time semantics for a block
10020   // assignment.
10021   // The current behavior is similar to C++ lambdas. A block might be
10022   // assigned to a variable iff its return type and parameters are compatible
10023   // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
10024   // an assignment. Presumably it should behave in way that a function pointer
10025   // assignment does in C, so for each parameter and return type:
10026   //  * CVR and address space of LHS should be a superset of CVR and address
10027   //  space of RHS.
10028   //  * unqualified types should be compatible.
10029   if (S.getLangOpts().OpenCL) {
10030     if (!S.Context.typesAreBlockPointerCompatible(
10031             S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
10032             S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
10033       return Sema::IncompatibleBlockPointer;
10034   } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
10035     return Sema::IncompatibleBlockPointer;
10036 
10037   return ConvTy;
10038 }
10039 
10040 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
10041 /// for assignment compatibility.
10042 static Sema::AssignConvertType
checkObjCPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)10043 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
10044                                    QualType RHSType) {
10045   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
10046   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
10047 
10048   if (LHSType->isObjCBuiltinType()) {
10049     // Class is not compatible with ObjC object pointers.
10050     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
10051         !RHSType->isObjCQualifiedClassType())
10052       return Sema::IncompatiblePointer;
10053     return Sema::Compatible;
10054   }
10055   if (RHSType->isObjCBuiltinType()) {
10056     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
10057         !LHSType->isObjCQualifiedClassType())
10058       return Sema::IncompatiblePointer;
10059     return Sema::Compatible;
10060   }
10061   QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
10062   QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
10063 
10064   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
10065       // make an exception for id<P>
10066       !LHSType->isObjCQualifiedIdType())
10067     return Sema::CompatiblePointerDiscardsQualifiers;
10068 
10069   if (S.Context.typesAreCompatible(LHSType, RHSType))
10070     return Sema::Compatible;
10071   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
10072     return Sema::IncompatibleObjCQualifiedId;
10073   return Sema::IncompatiblePointer;
10074 }
10075 
10076 Sema::AssignConvertType
CheckAssignmentConstraints(SourceLocation Loc,QualType LHSType,QualType RHSType)10077 Sema::CheckAssignmentConstraints(SourceLocation Loc,
10078                                  QualType LHSType, QualType RHSType) {
10079   // Fake up an opaque expression.  We don't actually care about what
10080   // cast operations are required, so if CheckAssignmentConstraints
10081   // adds casts to this they'll be wasted, but fortunately that doesn't
10082   // usually happen on valid code.
10083   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
10084   ExprResult RHSPtr = &RHSExpr;
10085   CastKind K;
10086 
10087   return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
10088 }
10089 
10090 /// This helper function returns true if QT is a vector type that has element
10091 /// type ElementType.
isVector(QualType QT,QualType ElementType)10092 static bool isVector(QualType QT, QualType ElementType) {
10093   if (const VectorType *VT = QT->getAs<VectorType>())
10094     return VT->getElementType().getCanonicalType() == ElementType;
10095   return false;
10096 }
10097 
10098 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
10099 /// has code to accommodate several GCC extensions when type checking
10100 /// pointers. Here are some objectionable examples that GCC considers warnings:
10101 ///
10102 ///  int a, *pint;
10103 ///  short *pshort;
10104 ///  struct foo *pfoo;
10105 ///
10106 ///  pint = pshort; // warning: assignment from incompatible pointer type
10107 ///  a = pint; // warning: assignment makes integer from pointer without a cast
10108 ///  pint = a; // warning: assignment makes pointer from integer without a cast
10109 ///  pint = pfoo; // warning: assignment from incompatible pointer type
10110 ///
10111 /// As a result, the code for dealing with pointers is more complex than the
10112 /// C99 spec dictates.
10113 ///
10114 /// Sets 'Kind' for any result kind except Incompatible.
10115 Sema::AssignConvertType
CheckAssignmentConstraints(QualType LHSType,ExprResult & RHS,CastKind & Kind,bool ConvertRHS)10116 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
10117                                  CastKind &Kind, bool ConvertRHS) {
10118   QualType RHSType = RHS.get()->getType();
10119   QualType OrigLHSType = LHSType;
10120 
10121   // Get canonical types.  We're not formatting these types, just comparing
10122   // them.
10123   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
10124   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
10125 
10126   // Common case: no conversion required.
10127   if (LHSType == RHSType) {
10128     Kind = CK_NoOp;
10129     return Compatible;
10130   }
10131 
10132   // If the LHS has an __auto_type, there are no additional type constraints
10133   // to be worried about.
10134   if (const auto *AT = dyn_cast<AutoType>(LHSType)) {
10135     if (AT->isGNUAutoType()) {
10136       Kind = CK_NoOp;
10137       return Compatible;
10138     }
10139   }
10140 
10141   // If we have an atomic type, try a non-atomic assignment, then just add an
10142   // atomic qualification step.
10143   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
10144     Sema::AssignConvertType result =
10145       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
10146     if (result != Compatible)
10147       return result;
10148     if (Kind != CK_NoOp && ConvertRHS)
10149       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
10150     Kind = CK_NonAtomicToAtomic;
10151     return Compatible;
10152   }
10153 
10154   // If the left-hand side is a reference type, then we are in a
10155   // (rare!) case where we've allowed the use of references in C,
10156   // e.g., as a parameter type in a built-in function. In this case,
10157   // just make sure that the type referenced is compatible with the
10158   // right-hand side type. The caller is responsible for adjusting
10159   // LHSType so that the resulting expression does not have reference
10160   // type.
10161   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
10162     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
10163       Kind = CK_LValueBitCast;
10164       return Compatible;
10165     }
10166     return Incompatible;
10167   }
10168 
10169   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
10170   // to the same ExtVector type.
10171   if (LHSType->isExtVectorType()) {
10172     if (RHSType->isExtVectorType())
10173       return Incompatible;
10174     if (RHSType->isArithmeticType()) {
10175       // CK_VectorSplat does T -> vector T, so first cast to the element type.
10176       if (ConvertRHS)
10177         RHS = prepareVectorSplat(LHSType, RHS.get());
10178       Kind = CK_VectorSplat;
10179       return Compatible;
10180     }
10181   }
10182 
10183   // Conversions to or from vector type.
10184   if (LHSType->isVectorType() || RHSType->isVectorType()) {
10185     if (LHSType->isVectorType() && RHSType->isVectorType()) {
10186       // Allow assignments of an AltiVec vector type to an equivalent GCC
10187       // vector type and vice versa
10188       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10189         Kind = CK_BitCast;
10190         return Compatible;
10191       }
10192 
10193       // If we are allowing lax vector conversions, and LHS and RHS are both
10194       // vectors, the total size only needs to be the same. This is a bitcast;
10195       // no bits are changed but the result type is different.
10196       if (isLaxVectorConversion(RHSType, LHSType)) {
10197         // The default for lax vector conversions with Altivec vectors will
10198         // change, so if we are converting between vector types where
10199         // at least one is an Altivec vector, emit a warning.
10200         if (Context.getTargetInfo().getTriple().isPPC() &&
10201             anyAltivecTypes(RHSType, LHSType) &&
10202             !Context.areCompatibleVectorTypes(RHSType, LHSType))
10203           Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
10204               << RHSType << LHSType;
10205         Kind = CK_BitCast;
10206         return IncompatibleVectors;
10207       }
10208     }
10209 
10210     // When the RHS comes from another lax conversion (e.g. binops between
10211     // scalars and vectors) the result is canonicalized as a vector. When the
10212     // LHS is also a vector, the lax is allowed by the condition above. Handle
10213     // the case where LHS is a scalar.
10214     if (LHSType->isScalarType()) {
10215       const VectorType *VecType = RHSType->getAs<VectorType>();
10216       if (VecType && VecType->getNumElements() == 1 &&
10217           isLaxVectorConversion(RHSType, LHSType)) {
10218         if (Context.getTargetInfo().getTriple().isPPC() &&
10219             (VecType->getVectorKind() == VectorKind::AltiVecVector ||
10220              VecType->getVectorKind() == VectorKind::AltiVecBool ||
10221              VecType->getVectorKind() == VectorKind::AltiVecPixel))
10222           Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
10223               << RHSType << LHSType;
10224         ExprResult *VecExpr = &RHS;
10225         *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
10226         Kind = CK_BitCast;
10227         return Compatible;
10228       }
10229     }
10230 
10231     // Allow assignments between fixed-length and sizeless SVE vectors.
10232     if ((LHSType->isSVESizelessBuiltinType() && RHSType->isVectorType()) ||
10233         (LHSType->isVectorType() && RHSType->isSVESizelessBuiltinType()))
10234       if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
10235           Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
10236         Kind = CK_BitCast;
10237         return Compatible;
10238       }
10239 
10240     // Allow assignments between fixed-length and sizeless RVV vectors.
10241     if ((LHSType->isRVVSizelessBuiltinType() && RHSType->isVectorType()) ||
10242         (LHSType->isVectorType() && RHSType->isRVVSizelessBuiltinType())) {
10243       if (Context.areCompatibleRVVTypes(LHSType, RHSType) ||
10244           Context.areLaxCompatibleRVVTypes(LHSType, RHSType)) {
10245         Kind = CK_BitCast;
10246         return Compatible;
10247       }
10248     }
10249 
10250     return Incompatible;
10251   }
10252 
10253   // Diagnose attempts to convert between __ibm128, __float128 and long double
10254   // where such conversions currently can't be handled.
10255   if (unsupportedTypeConversion(*this, LHSType, RHSType))
10256     return Incompatible;
10257 
10258   // Disallow assigning a _Complex to a real type in C++ mode since it simply
10259   // discards the imaginary part.
10260   if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
10261       !LHSType->getAs<ComplexType>())
10262     return Incompatible;
10263 
10264   // Arithmetic conversions.
10265   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
10266       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
10267     if (ConvertRHS)
10268       Kind = PrepareScalarCast(RHS, LHSType);
10269     return Compatible;
10270   }
10271 
10272   // Conversions to normal pointers.
10273   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
10274     // U* -> T*
10275     if (isa<PointerType>(RHSType)) {
10276       LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
10277       LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
10278       if (AddrSpaceL != AddrSpaceR)
10279         Kind = CK_AddressSpaceConversion;
10280       else if (Context.hasCvrSimilarType(RHSType, LHSType))
10281         Kind = CK_NoOp;
10282       else
10283         Kind = CK_BitCast;
10284       return checkPointerTypesForAssignment(*this, LHSType, RHSType,
10285                                             RHS.get()->getBeginLoc());
10286     }
10287 
10288     // int -> T*
10289     if (RHSType->isIntegerType()) {
10290       Kind = CK_IntegralToPointer; // FIXME: null?
10291       return IntToPointer;
10292     }
10293 
10294     // C pointers are not compatible with ObjC object pointers,
10295     // with two exceptions:
10296     if (isa<ObjCObjectPointerType>(RHSType)) {
10297       //  - conversions to void*
10298       if (LHSPointer->getPointeeType()->isVoidType()) {
10299         Kind = CK_BitCast;
10300         return Compatible;
10301       }
10302 
10303       //  - conversions from 'Class' to the redefinition type
10304       if (RHSType->isObjCClassType() &&
10305           Context.hasSameType(LHSType,
10306                               Context.getObjCClassRedefinitionType())) {
10307         Kind = CK_BitCast;
10308         return Compatible;
10309       }
10310 
10311       Kind = CK_BitCast;
10312       return IncompatiblePointer;
10313     }
10314 
10315     // U^ -> void*
10316     if (RHSType->getAs<BlockPointerType>()) {
10317       if (LHSPointer->getPointeeType()->isVoidType()) {
10318         LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
10319         LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
10320                                 ->getPointeeType()
10321                                 .getAddressSpace();
10322         Kind =
10323             AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
10324         return Compatible;
10325       }
10326     }
10327 
10328     return Incompatible;
10329   }
10330 
10331   // Conversions to block pointers.
10332   if (isa<BlockPointerType>(LHSType)) {
10333     // U^ -> T^
10334     if (RHSType->isBlockPointerType()) {
10335       LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
10336                               ->getPointeeType()
10337                               .getAddressSpace();
10338       LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
10339                               ->getPointeeType()
10340                               .getAddressSpace();
10341       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
10342       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
10343     }
10344 
10345     // int or null -> T^
10346     if (RHSType->isIntegerType()) {
10347       Kind = CK_IntegralToPointer; // FIXME: null
10348       return IntToBlockPointer;
10349     }
10350 
10351     // id -> T^
10352     if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
10353       Kind = CK_AnyPointerToBlockPointerCast;
10354       return Compatible;
10355     }
10356 
10357     // void* -> T^
10358     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
10359       if (RHSPT->getPointeeType()->isVoidType()) {
10360         Kind = CK_AnyPointerToBlockPointerCast;
10361         return Compatible;
10362       }
10363 
10364     return Incompatible;
10365   }
10366 
10367   // Conversions to Objective-C pointers.
10368   if (isa<ObjCObjectPointerType>(LHSType)) {
10369     // A* -> B*
10370     if (RHSType->isObjCObjectPointerType()) {
10371       Kind = CK_BitCast;
10372       Sema::AssignConvertType result =
10373         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
10374       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10375           result == Compatible &&
10376           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
10377         result = IncompatibleObjCWeakRef;
10378       return result;
10379     }
10380 
10381     // int or null -> A*
10382     if (RHSType->isIntegerType()) {
10383       Kind = CK_IntegralToPointer; // FIXME: null
10384       return IntToPointer;
10385     }
10386 
10387     // In general, C pointers are not compatible with ObjC object pointers,
10388     // with two exceptions:
10389     if (isa<PointerType>(RHSType)) {
10390       Kind = CK_CPointerToObjCPointerCast;
10391 
10392       //  - conversions from 'void*'
10393       if (RHSType->isVoidPointerType()) {
10394         return Compatible;
10395       }
10396 
10397       //  - conversions to 'Class' from its redefinition type
10398       if (LHSType->isObjCClassType() &&
10399           Context.hasSameType(RHSType,
10400                               Context.getObjCClassRedefinitionType())) {
10401         return Compatible;
10402       }
10403 
10404       return IncompatiblePointer;
10405     }
10406 
10407     // Only under strict condition T^ is compatible with an Objective-C pointer.
10408     if (RHSType->isBlockPointerType() &&
10409         LHSType->isBlockCompatibleObjCPointerType(Context)) {
10410       if (ConvertRHS)
10411         maybeExtendBlockObject(RHS);
10412       Kind = CK_BlockPointerToObjCPointerCast;
10413       return Compatible;
10414     }
10415 
10416     return Incompatible;
10417   }
10418 
10419   // Conversion to nullptr_t (C23 only)
10420   if (getLangOpts().C23 && LHSType->isNullPtrType() &&
10421       RHS.get()->isNullPointerConstant(Context,
10422                                        Expr::NPC_ValueDependentIsNull)) {
10423     // null -> nullptr_t
10424     Kind = CK_NullToPointer;
10425     return Compatible;
10426   }
10427 
10428   // Conversions from pointers that are not covered by the above.
10429   if (isa<PointerType>(RHSType)) {
10430     // T* -> _Bool
10431     if (LHSType == Context.BoolTy) {
10432       Kind = CK_PointerToBoolean;
10433       return Compatible;
10434     }
10435 
10436     // T* -> int
10437     if (LHSType->isIntegerType()) {
10438       Kind = CK_PointerToIntegral;
10439       return PointerToInt;
10440     }
10441 
10442     return Incompatible;
10443   }
10444 
10445   // Conversions from Objective-C pointers that are not covered by the above.
10446   if (isa<ObjCObjectPointerType>(RHSType)) {
10447     // T* -> _Bool
10448     if (LHSType == Context.BoolTy) {
10449       Kind = CK_PointerToBoolean;
10450       return Compatible;
10451     }
10452 
10453     // T* -> int
10454     if (LHSType->isIntegerType()) {
10455       Kind = CK_PointerToIntegral;
10456       return PointerToInt;
10457     }
10458 
10459     return Incompatible;
10460   }
10461 
10462   // struct A -> struct B
10463   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
10464     if (Context.typesAreCompatible(LHSType, RHSType)) {
10465       Kind = CK_NoOp;
10466       return Compatible;
10467     }
10468   }
10469 
10470   if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
10471     Kind = CK_IntToOCLSampler;
10472     return Compatible;
10473   }
10474 
10475   return Incompatible;
10476 }
10477 
10478 /// Constructs a transparent union from an expression that is
10479 /// used to initialize the transparent union.
ConstructTransparentUnion(Sema & S,ASTContext & C,ExprResult & EResult,QualType UnionType,FieldDecl * Field)10480 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
10481                                       ExprResult &EResult, QualType UnionType,
10482                                       FieldDecl *Field) {
10483   // Build an initializer list that designates the appropriate member
10484   // of the transparent union.
10485   Expr *E = EResult.get();
10486   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
10487                                                    E, SourceLocation());
10488   Initializer->setType(UnionType);
10489   Initializer->setInitializedFieldInUnion(Field);
10490 
10491   // Build a compound literal constructing a value of the transparent
10492   // union type from this initializer list.
10493   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
10494   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
10495                                         VK_PRValue, Initializer, false);
10496 }
10497 
10498 Sema::AssignConvertType
CheckTransparentUnionArgumentConstraints(QualType ArgType,ExprResult & RHS)10499 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
10500                                                ExprResult &RHS) {
10501   QualType RHSType = RHS.get()->getType();
10502 
10503   // If the ArgType is a Union type, we want to handle a potential
10504   // transparent_union GCC extension.
10505   const RecordType *UT = ArgType->getAsUnionType();
10506   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
10507     return Incompatible;
10508 
10509   // The field to initialize within the transparent union.
10510   RecordDecl *UD = UT->getDecl();
10511   FieldDecl *InitField = nullptr;
10512   // It's compatible if the expression matches any of the fields.
10513   for (auto *it : UD->fields()) {
10514     if (it->getType()->isPointerType()) {
10515       // If the transparent union contains a pointer type, we allow:
10516       // 1) void pointer
10517       // 2) null pointer constant
10518       if (RHSType->isPointerType())
10519         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
10520           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
10521           InitField = it;
10522           break;
10523         }
10524 
10525       if (RHS.get()->isNullPointerConstant(Context,
10526                                            Expr::NPC_ValueDependentIsNull)) {
10527         RHS = ImpCastExprToType(RHS.get(), it->getType(),
10528                                 CK_NullToPointer);
10529         InitField = it;
10530         break;
10531       }
10532     }
10533 
10534     CastKind Kind;
10535     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
10536           == Compatible) {
10537       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
10538       InitField = it;
10539       break;
10540     }
10541   }
10542 
10543   if (!InitField)
10544     return Incompatible;
10545 
10546   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
10547   return Compatible;
10548 }
10549 
10550 Sema::AssignConvertType
CheckSingleAssignmentConstraints(QualType LHSType,ExprResult & CallerRHS,bool Diagnose,bool DiagnoseCFAudited,bool ConvertRHS)10551 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
10552                                        bool Diagnose,
10553                                        bool DiagnoseCFAudited,
10554                                        bool ConvertRHS) {
10555   // We need to be able to tell the caller whether we diagnosed a problem, if
10556   // they ask us to issue diagnostics.
10557   assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
10558 
10559   // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
10560   // we can't avoid *all* modifications at the moment, so we need some somewhere
10561   // to put the updated value.
10562   ExprResult LocalRHS = CallerRHS;
10563   ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
10564 
10565   if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
10566     if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
10567       if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
10568           !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
10569         Diag(RHS.get()->getExprLoc(),
10570              diag::warn_noderef_to_dereferenceable_pointer)
10571             << RHS.get()->getSourceRange();
10572       }
10573     }
10574   }
10575 
10576   if (getLangOpts().CPlusPlus) {
10577     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
10578       // C++ 5.17p3: If the left operand is not of class type, the
10579       // expression is implicitly converted (C++ 4) to the
10580       // cv-unqualified type of the left operand.
10581       QualType RHSType = RHS.get()->getType();
10582       if (Diagnose) {
10583         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10584                                         AA_Assigning);
10585       } else {
10586         ImplicitConversionSequence ICS =
10587             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10588                                   /*SuppressUserConversions=*/false,
10589                                   AllowedExplicit::None,
10590                                   /*InOverloadResolution=*/false,
10591                                   /*CStyle=*/false,
10592                                   /*AllowObjCWritebackConversion=*/false);
10593         if (ICS.isFailure())
10594           return Incompatible;
10595         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10596                                         ICS, AA_Assigning);
10597       }
10598       if (RHS.isInvalid())
10599         return Incompatible;
10600       Sema::AssignConvertType result = Compatible;
10601       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10602           !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
10603         result = IncompatibleObjCWeakRef;
10604       return result;
10605     }
10606 
10607     // FIXME: Currently, we fall through and treat C++ classes like C
10608     // structures.
10609     // FIXME: We also fall through for atomics; not sure what should
10610     // happen there, though.
10611   } else if (RHS.get()->getType() == Context.OverloadTy) {
10612     // As a set of extensions to C, we support overloading on functions. These
10613     // functions need to be resolved here.
10614     DeclAccessPair DAP;
10615     if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
10616             RHS.get(), LHSType, /*Complain=*/false, DAP))
10617       RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
10618     else
10619       return Incompatible;
10620   }
10621 
10622   // This check seems unnatural, however it is necessary to ensure the proper
10623   // conversion of functions/arrays. If the conversion were done for all
10624   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
10625   // expressions that suppress this implicit conversion (&, sizeof). This needs
10626   // to happen before we check for null pointer conversions because C does not
10627   // undergo the same implicit conversions as C++ does above (by the calls to
10628   // TryImplicitConversion() and PerformImplicitConversion()) which insert the
10629   // lvalue to rvalue cast before checking for null pointer constraints. This
10630   // addresses code like: nullptr_t val; int *ptr; ptr = val;
10631   //
10632   // Suppress this for references: C++ 8.5.3p5.
10633   if (!LHSType->isReferenceType()) {
10634     // FIXME: We potentially allocate here even if ConvertRHS is false.
10635     RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
10636     if (RHS.isInvalid())
10637       return Incompatible;
10638   }
10639 
10640   // The constraints are expressed in terms of the atomic, qualified, or
10641   // unqualified type of the LHS.
10642   QualType LHSTypeAfterConversion = LHSType.getAtomicUnqualifiedType();
10643 
10644   // C99 6.5.16.1p1: the left operand is a pointer and the right is
10645   // a null pointer constant <C23>or its type is nullptr_t;</C23>.
10646   if ((LHSTypeAfterConversion->isPointerType() ||
10647        LHSTypeAfterConversion->isObjCObjectPointerType() ||
10648        LHSTypeAfterConversion->isBlockPointerType()) &&
10649       ((getLangOpts().C23 && RHS.get()->getType()->isNullPtrType()) ||
10650        RHS.get()->isNullPointerConstant(Context,
10651                                         Expr::NPC_ValueDependentIsNull))) {
10652     if (Diagnose || ConvertRHS) {
10653       CastKind Kind;
10654       CXXCastPath Path;
10655       CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
10656                              /*IgnoreBaseAccess=*/false, Diagnose);
10657       if (ConvertRHS)
10658         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path);
10659     }
10660     return Compatible;
10661   }
10662   // C23 6.5.16.1p1: the left operand has type atomic, qualified, or
10663   // unqualified bool, and the right operand is a pointer or its type is
10664   // nullptr_t.
10665   if (getLangOpts().C23 && LHSType->isBooleanType() &&
10666       RHS.get()->getType()->isNullPtrType()) {
10667     // NB: T* -> _Bool is handled in CheckAssignmentConstraints, this only
10668     // only handles nullptr -> _Bool due to needing an extra conversion
10669     // step.
10670     // We model this by converting from nullptr -> void * and then let the
10671     // conversion from void * -> _Bool happen naturally.
10672     if (Diagnose || ConvertRHS) {
10673       CastKind Kind;
10674       CXXCastPath Path;
10675       CheckPointerConversion(RHS.get(), Context.VoidPtrTy, Kind, Path,
10676                              /*IgnoreBaseAccess=*/false, Diagnose);
10677       if (ConvertRHS)
10678         RHS = ImpCastExprToType(RHS.get(), Context.VoidPtrTy, Kind, VK_PRValue,
10679                                 &Path);
10680     }
10681   }
10682 
10683   // OpenCL queue_t type assignment.
10684   if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
10685                                  Context, Expr::NPC_ValueDependentIsNull)) {
10686     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10687     return Compatible;
10688   }
10689 
10690   CastKind Kind;
10691   Sema::AssignConvertType result =
10692     CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
10693 
10694   // C99 6.5.16.1p2: The value of the right operand is converted to the
10695   // type of the assignment expression.
10696   // CheckAssignmentConstraints allows the left-hand side to be a reference,
10697   // so that we can use references in built-in functions even in C.
10698   // The getNonReferenceType() call makes sure that the resulting expression
10699   // does not have reference type.
10700   if (result != Incompatible && RHS.get()->getType() != LHSType) {
10701     QualType Ty = LHSType.getNonLValueExprType(Context);
10702     Expr *E = RHS.get();
10703 
10704     // Check for various Objective-C errors. If we are not reporting
10705     // diagnostics and just checking for errors, e.g., during overload
10706     // resolution, return Incompatible to indicate the failure.
10707     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10708         CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
10709                             Diagnose, DiagnoseCFAudited) != ACR_okay) {
10710       if (!Diagnose)
10711         return Incompatible;
10712     }
10713     if (getLangOpts().ObjC &&
10714         (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
10715                                            E->getType(), E, Diagnose) ||
10716          CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
10717       if (!Diagnose)
10718         return Incompatible;
10719       // Replace the expression with a corrected version and continue so we
10720       // can find further errors.
10721       RHS = E;
10722       return Compatible;
10723     }
10724 
10725     if (ConvertRHS)
10726       RHS = ImpCastExprToType(E, Ty, Kind);
10727   }
10728 
10729   return result;
10730 }
10731 
10732 namespace {
10733 /// The original operand to an operator, prior to the application of the usual
10734 /// arithmetic conversions and converting the arguments of a builtin operator
10735 /// candidate.
10736 struct OriginalOperand {
OriginalOperand__anon5d4ff8fc1311::OriginalOperand10737   explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
10738     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
10739       Op = MTE->getSubExpr();
10740     if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
10741       Op = BTE->getSubExpr();
10742     if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
10743       Orig = ICE->getSubExprAsWritten();
10744       Conversion = ICE->getConversionFunction();
10745     }
10746   }
10747 
getType__anon5d4ff8fc1311::OriginalOperand10748   QualType getType() const { return Orig->getType(); }
10749 
10750   Expr *Orig;
10751   NamedDecl *Conversion;
10752 };
10753 }
10754 
InvalidOperands(SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)10755 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
10756                                ExprResult &RHS) {
10757   OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
10758 
10759   Diag(Loc, diag::err_typecheck_invalid_operands)
10760     << OrigLHS.getType() << OrigRHS.getType()
10761     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10762 
10763   // If a user-defined conversion was applied to either of the operands prior
10764   // to applying the built-in operator rules, tell the user about it.
10765   if (OrigLHS.Conversion) {
10766     Diag(OrigLHS.Conversion->getLocation(),
10767          diag::note_typecheck_invalid_operands_converted)
10768       << 0 << LHS.get()->getType();
10769   }
10770   if (OrigRHS.Conversion) {
10771     Diag(OrigRHS.Conversion->getLocation(),
10772          diag::note_typecheck_invalid_operands_converted)
10773       << 1 << RHS.get()->getType();
10774   }
10775 
10776   return QualType();
10777 }
10778 
10779 // Diagnose cases where a scalar was implicitly converted to a vector and
10780 // diagnose the underlying types. Otherwise, diagnose the error
10781 // as invalid vector logical operands for non-C++ cases.
InvalidLogicalVectorOperands(SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)10782 QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
10783                                             ExprResult &RHS) {
10784   QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
10785   QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
10786 
10787   bool LHSNatVec = LHSType->isVectorType();
10788   bool RHSNatVec = RHSType->isVectorType();
10789 
10790   if (!(LHSNatVec && RHSNatVec)) {
10791     Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
10792     Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
10793     Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10794         << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
10795         << Vector->getSourceRange();
10796     return QualType();
10797   }
10798 
10799   Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10800       << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
10801       << RHS.get()->getSourceRange();
10802 
10803   return QualType();
10804 }
10805 
10806 /// Try to convert a value of non-vector type to a vector type by converting
10807 /// the type to the element type of the vector and then performing a splat.
10808 /// If the language is OpenCL, we only use conversions that promote scalar
10809 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
10810 /// for float->int.
10811 ///
10812 /// OpenCL V2.0 6.2.6.p2:
10813 /// An error shall occur if any scalar operand type has greater rank
10814 /// than the type of the vector element.
10815 ///
10816 /// \param scalar - if non-null, actually perform the conversions
10817 /// \return true if the operation fails (but without diagnosing the failure)
tryVectorConvertAndSplat(Sema & S,ExprResult * scalar,QualType scalarTy,QualType vectorEltTy,QualType vectorTy,unsigned & DiagID)10818 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
10819                                      QualType scalarTy,
10820                                      QualType vectorEltTy,
10821                                      QualType vectorTy,
10822                                      unsigned &DiagID) {
10823   // The conversion to apply to the scalar before splatting it,
10824   // if necessary.
10825   CastKind scalarCast = CK_NoOp;
10826 
10827   if (vectorEltTy->isIntegralType(S.Context)) {
10828     if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
10829         (scalarTy->isIntegerType() &&
10830          S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
10831       DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10832       return true;
10833     }
10834     if (!scalarTy->isIntegralType(S.Context))
10835       return true;
10836     scalarCast = CK_IntegralCast;
10837   } else if (vectorEltTy->isRealFloatingType()) {
10838     if (scalarTy->isRealFloatingType()) {
10839       if (S.getLangOpts().OpenCL &&
10840           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
10841         DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10842         return true;
10843       }
10844       scalarCast = CK_FloatingCast;
10845     }
10846     else if (scalarTy->isIntegralType(S.Context))
10847       scalarCast = CK_IntegralToFloating;
10848     else
10849       return true;
10850   } else {
10851     return true;
10852   }
10853 
10854   // Adjust scalar if desired.
10855   if (scalar) {
10856     if (scalarCast != CK_NoOp)
10857       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
10858     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
10859   }
10860   return false;
10861 }
10862 
10863 /// Convert vector E to a vector with the same number of elements but different
10864 /// element type.
convertVector(Expr * E,QualType ElementType,Sema & S)10865 static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
10866   const auto *VecTy = E->getType()->getAs<VectorType>();
10867   assert(VecTy && "Expression E must be a vector");
10868   QualType NewVecTy =
10869       VecTy->isExtVectorType()
10870           ? S.Context.getExtVectorType(ElementType, VecTy->getNumElements())
10871           : S.Context.getVectorType(ElementType, VecTy->getNumElements(),
10872                                     VecTy->getVectorKind());
10873 
10874   // Look through the implicit cast. Return the subexpression if its type is
10875   // NewVecTy.
10876   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
10877     if (ICE->getSubExpr()->getType() == NewVecTy)
10878       return ICE->getSubExpr();
10879 
10880   auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
10881   return S.ImpCastExprToType(E, NewVecTy, Cast);
10882 }
10883 
10884 /// Test if a (constant) integer Int can be casted to another integer type
10885 /// IntTy without losing precision.
canConvertIntToOtherIntTy(Sema & S,ExprResult * Int,QualType OtherIntTy)10886 static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
10887                                       QualType OtherIntTy) {
10888   QualType IntTy = Int->get()->getType().getUnqualifiedType();
10889 
10890   // Reject cases where the value of the Int is unknown as that would
10891   // possibly cause truncation, but accept cases where the scalar can be
10892   // demoted without loss of precision.
10893   Expr::EvalResult EVResult;
10894   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10895   int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
10896   bool IntSigned = IntTy->hasSignedIntegerRepresentation();
10897   bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
10898 
10899   if (CstInt) {
10900     // If the scalar is constant and is of a higher order and has more active
10901     // bits that the vector element type, reject it.
10902     llvm::APSInt Result = EVResult.Val.getInt();
10903     unsigned NumBits = IntSigned
10904                            ? (Result.isNegative() ? Result.getSignificantBits()
10905                                                   : Result.getActiveBits())
10906                            : Result.getActiveBits();
10907     if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
10908       return true;
10909 
10910     // If the signedness of the scalar type and the vector element type
10911     // differs and the number of bits is greater than that of the vector
10912     // element reject it.
10913     return (IntSigned != OtherIntSigned &&
10914             NumBits > S.Context.getIntWidth(OtherIntTy));
10915   }
10916 
10917   // Reject cases where the value of the scalar is not constant and it's
10918   // order is greater than that of the vector element type.
10919   return (Order < 0);
10920 }
10921 
10922 /// Test if a (constant) integer Int can be casted to floating point type
10923 /// FloatTy without losing precision.
canConvertIntTyToFloatTy(Sema & S,ExprResult * Int,QualType FloatTy)10924 static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
10925                                      QualType FloatTy) {
10926   QualType IntTy = Int->get()->getType().getUnqualifiedType();
10927 
10928   // Determine if the integer constant can be expressed as a floating point
10929   // number of the appropriate type.
10930   Expr::EvalResult EVResult;
10931   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10932 
10933   uint64_t Bits = 0;
10934   if (CstInt) {
10935     // Reject constants that would be truncated if they were converted to
10936     // the floating point type. Test by simple to/from conversion.
10937     // FIXME: Ideally the conversion to an APFloat and from an APFloat
10938     //        could be avoided if there was a convertFromAPInt method
10939     //        which could signal back if implicit truncation occurred.
10940     llvm::APSInt Result = EVResult.Val.getInt();
10941     llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
10942     Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
10943                            llvm::APFloat::rmTowardZero);
10944     llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
10945                              !IntTy->hasSignedIntegerRepresentation());
10946     bool Ignored = false;
10947     Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
10948                            &Ignored);
10949     if (Result != ConvertBack)
10950       return true;
10951   } else {
10952     // Reject types that cannot be fully encoded into the mantissa of
10953     // the float.
10954     Bits = S.Context.getTypeSize(IntTy);
10955     unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
10956         S.Context.getFloatTypeSemantics(FloatTy));
10957     if (Bits > FloatPrec)
10958       return true;
10959   }
10960 
10961   return false;
10962 }
10963 
10964 /// Attempt to convert and splat Scalar into a vector whose types matches
10965 /// Vector following GCC conversion rules. The rule is that implicit
10966 /// conversion can occur when Scalar can be casted to match Vector's element
10967 /// type without causing truncation of Scalar.
tryGCCVectorConvertAndSplat(Sema & S,ExprResult * Scalar,ExprResult * Vector)10968 static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
10969                                         ExprResult *Vector) {
10970   QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
10971   QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
10972   QualType VectorEltTy;
10973 
10974   if (const auto *VT = VectorTy->getAs<VectorType>()) {
10975     assert(!isa<ExtVectorType>(VT) &&
10976            "ExtVectorTypes should not be handled here!");
10977     VectorEltTy = VT->getElementType();
10978   } else if (VectorTy->isSveVLSBuiltinType()) {
10979     VectorEltTy =
10980         VectorTy->castAs<BuiltinType>()->getSveEltType(S.getASTContext());
10981   } else {
10982     llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here");
10983   }
10984 
10985   // Reject cases where the vector element type or the scalar element type are
10986   // not integral or floating point types.
10987   if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
10988     return true;
10989 
10990   // The conversion to apply to the scalar before splatting it,
10991   // if necessary.
10992   CastKind ScalarCast = CK_NoOp;
10993 
10994   // Accept cases where the vector elements are integers and the scalar is
10995   // an integer.
10996   // FIXME: Notionally if the scalar was a floating point value with a precise
10997   //        integral representation, we could cast it to an appropriate integer
10998   //        type and then perform the rest of the checks here. GCC will perform
10999   //        this conversion in some cases as determined by the input language.
11000   //        We should accept it on a language independent basis.
11001   if (VectorEltTy->isIntegralType(S.Context) &&
11002       ScalarTy->isIntegralType(S.Context) &&
11003       S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
11004 
11005     if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
11006       return true;
11007 
11008     ScalarCast = CK_IntegralCast;
11009   } else if (VectorEltTy->isIntegralType(S.Context) &&
11010              ScalarTy->isRealFloatingType()) {
11011     if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
11012       ScalarCast = CK_FloatingToIntegral;
11013     else
11014       return true;
11015   } else if (VectorEltTy->isRealFloatingType()) {
11016     if (ScalarTy->isRealFloatingType()) {
11017 
11018       // Reject cases where the scalar type is not a constant and has a higher
11019       // Order than the vector element type.
11020       llvm::APFloat Result(0.0);
11021 
11022       // Determine whether this is a constant scalar. In the event that the
11023       // value is dependent (and thus cannot be evaluated by the constant
11024       // evaluator), skip the evaluation. This will then diagnose once the
11025       // expression is instantiated.
11026       bool CstScalar = Scalar->get()->isValueDependent() ||
11027                        Scalar->get()->EvaluateAsFloat(Result, S.Context);
11028       int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
11029       if (!CstScalar && Order < 0)
11030         return true;
11031 
11032       // If the scalar cannot be safely casted to the vector element type,
11033       // reject it.
11034       if (CstScalar) {
11035         bool Truncated = false;
11036         Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
11037                        llvm::APFloat::rmNearestTiesToEven, &Truncated);
11038         if (Truncated)
11039           return true;
11040       }
11041 
11042       ScalarCast = CK_FloatingCast;
11043     } else if (ScalarTy->isIntegralType(S.Context)) {
11044       if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
11045         return true;
11046 
11047       ScalarCast = CK_IntegralToFloating;
11048     } else
11049       return true;
11050   } else if (ScalarTy->isEnumeralType())
11051     return true;
11052 
11053   // Adjust scalar if desired.
11054   if (ScalarCast != CK_NoOp)
11055     *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
11056   *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
11057   return false;
11058 }
11059 
CheckVectorOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,bool AllowBothBool,bool AllowBoolConversions,bool AllowBoolOperation,bool ReportInvalid)11060 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
11061                                    SourceLocation Loc, bool IsCompAssign,
11062                                    bool AllowBothBool,
11063                                    bool AllowBoolConversions,
11064                                    bool AllowBoolOperation,
11065                                    bool ReportInvalid) {
11066   if (!IsCompAssign) {
11067     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
11068     if (LHS.isInvalid())
11069       return QualType();
11070   }
11071   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
11072   if (RHS.isInvalid())
11073     return QualType();
11074 
11075   // For conversion purposes, we ignore any qualifiers.
11076   // For example, "const float" and "float" are equivalent.
11077   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
11078   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
11079 
11080   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
11081   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
11082   assert(LHSVecType || RHSVecType);
11083 
11084   // AltiVec-style "vector bool op vector bool" combinations are allowed
11085   // for some operators but not others.
11086   if (!AllowBothBool && LHSVecType &&
11087       LHSVecType->getVectorKind() == VectorKind::AltiVecBool && RHSVecType &&
11088       RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
11089     return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
11090 
11091   // This operation may not be performed on boolean vectors.
11092   if (!AllowBoolOperation &&
11093       (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType()))
11094     return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
11095 
11096   // If the vector types are identical, return.
11097   if (Context.hasSameType(LHSType, RHSType))
11098     return Context.getCommonSugaredType(LHSType, RHSType);
11099 
11100   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
11101   if (LHSVecType && RHSVecType &&
11102       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
11103     if (isa<ExtVectorType>(LHSVecType)) {
11104       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11105       return LHSType;
11106     }
11107 
11108     if (!IsCompAssign)
11109       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
11110     return RHSType;
11111   }
11112 
11113   // AllowBoolConversions says that bool and non-bool AltiVec vectors
11114   // can be mixed, with the result being the non-bool type.  The non-bool
11115   // operand must have integer element type.
11116   if (AllowBoolConversions && LHSVecType && RHSVecType &&
11117       LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
11118       (Context.getTypeSize(LHSVecType->getElementType()) ==
11119        Context.getTypeSize(RHSVecType->getElementType()))) {
11120     if (LHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
11121         LHSVecType->getElementType()->isIntegerType() &&
11122         RHSVecType->getVectorKind() == VectorKind::AltiVecBool) {
11123       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11124       return LHSType;
11125     }
11126     if (!IsCompAssign &&
11127         LHSVecType->getVectorKind() == VectorKind::AltiVecBool &&
11128         RHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
11129         RHSVecType->getElementType()->isIntegerType()) {
11130       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
11131       return RHSType;
11132     }
11133   }
11134 
11135   // Expressions containing fixed-length and sizeless SVE/RVV vectors are
11136   // invalid since the ambiguity can affect the ABI.
11137   auto IsSveRVVConversion = [](QualType FirstType, QualType SecondType,
11138                                unsigned &SVEorRVV) {
11139     const VectorType *VecType = SecondType->getAs<VectorType>();
11140     SVEorRVV = 0;
11141     if (FirstType->isSizelessBuiltinType() && VecType) {
11142       if (VecType->getVectorKind() == VectorKind::SveFixedLengthData ||
11143           VecType->getVectorKind() == VectorKind::SveFixedLengthPredicate)
11144         return true;
11145       if (VecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
11146           VecType->getVectorKind() == VectorKind::RVVFixedLengthMask) {
11147         SVEorRVV = 1;
11148         return true;
11149       }
11150     }
11151 
11152     return false;
11153   };
11154 
11155   unsigned SVEorRVV;
11156   if (IsSveRVVConversion(LHSType, RHSType, SVEorRVV) ||
11157       IsSveRVVConversion(RHSType, LHSType, SVEorRVV)) {
11158     Diag(Loc, diag::err_typecheck_sve_rvv_ambiguous)
11159         << SVEorRVV << LHSType << RHSType;
11160     return QualType();
11161   }
11162 
11163   // Expressions containing GNU and SVE or RVV (fixed or sizeless) vectors are
11164   // invalid since the ambiguity can affect the ABI.
11165   auto IsSveRVVGnuConversion = [](QualType FirstType, QualType SecondType,
11166                                   unsigned &SVEorRVV) {
11167     const VectorType *FirstVecType = FirstType->getAs<VectorType>();
11168     const VectorType *SecondVecType = SecondType->getAs<VectorType>();
11169 
11170     SVEorRVV = 0;
11171     if (FirstVecType && SecondVecType) {
11172       if (FirstVecType->getVectorKind() == VectorKind::Generic) {
11173         if (SecondVecType->getVectorKind() == VectorKind::SveFixedLengthData ||
11174             SecondVecType->getVectorKind() ==
11175                 VectorKind::SveFixedLengthPredicate)
11176           return true;
11177         if (SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
11178             SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthMask) {
11179           SVEorRVV = 1;
11180           return true;
11181         }
11182       }
11183       return false;
11184     }
11185 
11186     if (SecondVecType &&
11187         SecondVecType->getVectorKind() == VectorKind::Generic) {
11188       if (FirstType->isSVESizelessBuiltinType())
11189         return true;
11190       if (FirstType->isRVVSizelessBuiltinType()) {
11191         SVEorRVV = 1;
11192         return true;
11193       }
11194     }
11195 
11196     return false;
11197   };
11198 
11199   if (IsSveRVVGnuConversion(LHSType, RHSType, SVEorRVV) ||
11200       IsSveRVVGnuConversion(RHSType, LHSType, SVEorRVV)) {
11201     Diag(Loc, diag::err_typecheck_sve_rvv_gnu_ambiguous)
11202         << SVEorRVV << LHSType << RHSType;
11203     return QualType();
11204   }
11205 
11206   // If there's a vector type and a scalar, try to convert the scalar to
11207   // the vector element type and splat.
11208   unsigned DiagID = diag::err_typecheck_vector_not_convertable;
11209   if (!RHSVecType) {
11210     if (isa<ExtVectorType>(LHSVecType)) {
11211       if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
11212                                     LHSVecType->getElementType(), LHSType,
11213                                     DiagID))
11214         return LHSType;
11215     } else {
11216       if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
11217         return LHSType;
11218     }
11219   }
11220   if (!LHSVecType) {
11221     if (isa<ExtVectorType>(RHSVecType)) {
11222       if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
11223                                     LHSType, RHSVecType->getElementType(),
11224                                     RHSType, DiagID))
11225         return RHSType;
11226     } else {
11227       if (LHS.get()->isLValue() ||
11228           !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
11229         return RHSType;
11230     }
11231   }
11232 
11233   // FIXME: The code below also handles conversion between vectors and
11234   // non-scalars, we should break this down into fine grained specific checks
11235   // and emit proper diagnostics.
11236   QualType VecType = LHSVecType ? LHSType : RHSType;
11237   const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
11238   QualType OtherType = LHSVecType ? RHSType : LHSType;
11239   ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
11240   if (isLaxVectorConversion(OtherType, VecType)) {
11241     if (Context.getTargetInfo().getTriple().isPPC() &&
11242         anyAltivecTypes(RHSType, LHSType) &&
11243         !Context.areCompatibleVectorTypes(RHSType, LHSType))
11244       Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType;
11245     // If we're allowing lax vector conversions, only the total (data) size
11246     // needs to be the same. For non compound assignment, if one of the types is
11247     // scalar, the result is always the vector type.
11248     if (!IsCompAssign) {
11249       *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
11250       return VecType;
11251     // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
11252     // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
11253     // type. Note that this is already done by non-compound assignments in
11254     // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
11255     // <1 x T> -> T. The result is also a vector type.
11256     } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
11257                (OtherType->isScalarType() && VT->getNumElements() == 1)) {
11258       ExprResult *RHSExpr = &RHS;
11259       *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
11260       return VecType;
11261     }
11262   }
11263 
11264   // Okay, the expression is invalid.
11265 
11266   // If there's a non-vector, non-real operand, diagnose that.
11267   if ((!RHSVecType && !RHSType->isRealType()) ||
11268       (!LHSVecType && !LHSType->isRealType())) {
11269     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
11270       << LHSType << RHSType
11271       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11272     return QualType();
11273   }
11274 
11275   // OpenCL V1.1 6.2.6.p1:
11276   // If the operands are of more than one vector type, then an error shall
11277   // occur. Implicit conversions between vector types are not permitted, per
11278   // section 6.2.1.
11279   if (getLangOpts().OpenCL &&
11280       RHSVecType && isa<ExtVectorType>(RHSVecType) &&
11281       LHSVecType && isa<ExtVectorType>(LHSVecType)) {
11282     Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
11283                                                            << RHSType;
11284     return QualType();
11285   }
11286 
11287 
11288   // If there is a vector type that is not a ExtVector and a scalar, we reach
11289   // this point if scalar could not be converted to the vector's element type
11290   // without truncation.
11291   if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
11292       (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
11293     QualType Scalar = LHSVecType ? RHSType : LHSType;
11294     QualType Vector = LHSVecType ? LHSType : RHSType;
11295     unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
11296     Diag(Loc,
11297          diag::err_typecheck_vector_not_convertable_implict_truncation)
11298         << ScalarOrVector << Scalar << Vector;
11299 
11300     return QualType();
11301   }
11302 
11303   // Otherwise, use the generic diagnostic.
11304   Diag(Loc, DiagID)
11305     << LHSType << RHSType
11306     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11307   return QualType();
11308 }
11309 
CheckSizelessVectorOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,ArithConvKind OperationKind)11310 QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
11311                                            SourceLocation Loc,
11312                                            bool IsCompAssign,
11313                                            ArithConvKind OperationKind) {
11314   if (!IsCompAssign) {
11315     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
11316     if (LHS.isInvalid())
11317       return QualType();
11318   }
11319   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
11320   if (RHS.isInvalid())
11321     return QualType();
11322 
11323   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
11324   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
11325 
11326   const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
11327   const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
11328 
11329   unsigned DiagID = diag::err_typecheck_invalid_operands;
11330   if ((OperationKind == ACK_Arithmetic) &&
11331       ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
11332        (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) {
11333     Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
11334                       << RHS.get()->getSourceRange();
11335     return QualType();
11336   }
11337 
11338   if (Context.hasSameType(LHSType, RHSType))
11339     return LHSType;
11340 
11341   if (LHSType->isSveVLSBuiltinType() && !RHSType->isSveVLSBuiltinType()) {
11342     if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
11343       return LHSType;
11344   }
11345   if (RHSType->isSveVLSBuiltinType() && !LHSType->isSveVLSBuiltinType()) {
11346     if (LHS.get()->isLValue() ||
11347         !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
11348       return RHSType;
11349   }
11350 
11351   if ((!LHSType->isSveVLSBuiltinType() && !LHSType->isRealType()) ||
11352       (!RHSType->isSveVLSBuiltinType() && !RHSType->isRealType())) {
11353     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
11354         << LHSType << RHSType << LHS.get()->getSourceRange()
11355         << RHS.get()->getSourceRange();
11356     return QualType();
11357   }
11358 
11359   if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
11360       Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
11361           Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC) {
11362     Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11363         << LHSType << RHSType << LHS.get()->getSourceRange()
11364         << RHS.get()->getSourceRange();
11365     return QualType();
11366   }
11367 
11368   if (LHSType->isSveVLSBuiltinType() || RHSType->isSveVLSBuiltinType()) {
11369     QualType Scalar = LHSType->isSveVLSBuiltinType() ? RHSType : LHSType;
11370     QualType Vector = LHSType->isSveVLSBuiltinType() ? LHSType : RHSType;
11371     bool ScalarOrVector =
11372         LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType();
11373 
11374     Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation)
11375         << ScalarOrVector << Scalar << Vector;
11376 
11377     return QualType();
11378   }
11379 
11380   Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
11381                     << RHS.get()->getSourceRange();
11382   return QualType();
11383 }
11384 
11385 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
11386 // expression.  These are mainly cases where the null pointer is used as an
11387 // integer instead of a pointer.
checkArithmeticNull(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompare)11388 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
11389                                 SourceLocation Loc, bool IsCompare) {
11390   // The canonical way to check for a GNU null is with isNullPointerConstant,
11391   // but we use a bit of a hack here for speed; this is a relatively
11392   // hot path, and isNullPointerConstant is slow.
11393   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
11394   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
11395 
11396   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
11397 
11398   // Avoid analyzing cases where the result will either be invalid (and
11399   // diagnosed as such) or entirely valid and not something to warn about.
11400   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
11401       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
11402     return;
11403 
11404   // Comparison operations would not make sense with a null pointer no matter
11405   // what the other expression is.
11406   if (!IsCompare) {
11407     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
11408         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
11409         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
11410     return;
11411   }
11412 
11413   // The rest of the operations only make sense with a null pointer
11414   // if the other expression is a pointer.
11415   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
11416       NonNullType->canDecayToPointerType())
11417     return;
11418 
11419   S.Diag(Loc, diag::warn_null_in_comparison_operation)
11420       << LHSNull /* LHS is NULL */ << NonNullType
11421       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11422 }
11423 
DiagnoseDivisionSizeofPointerOrArray(Sema & S,Expr * LHS,Expr * RHS,SourceLocation Loc)11424 static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
11425                                           SourceLocation Loc) {
11426   const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
11427   const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
11428   if (!LUE || !RUE)
11429     return;
11430   if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
11431       RUE->getKind() != UETT_SizeOf)
11432     return;
11433 
11434   const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
11435   QualType LHSTy = LHSArg->getType();
11436   QualType RHSTy;
11437 
11438   if (RUE->isArgumentType())
11439     RHSTy = RUE->getArgumentType().getNonReferenceType();
11440   else
11441     RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
11442 
11443   if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
11444     if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
11445       return;
11446 
11447     S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
11448     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
11449       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
11450         S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
11451             << LHSArgDecl;
11452     }
11453   } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
11454     QualType ArrayElemTy = ArrayTy->getElementType();
11455     if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
11456         ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
11457         RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
11458         S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
11459       return;
11460     S.Diag(Loc, diag::warn_division_sizeof_array)
11461         << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
11462     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
11463       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
11464         S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
11465             << LHSArgDecl;
11466     }
11467 
11468     S.Diag(Loc, diag::note_precedence_silence) << RHS;
11469   }
11470 }
11471 
DiagnoseBadDivideOrRemainderValues(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsDiv)11472 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
11473                                                ExprResult &RHS,
11474                                                SourceLocation Loc, bool IsDiv) {
11475   // Check for division/remainder by zero.
11476   Expr::EvalResult RHSValue;
11477   if (!RHS.get()->isValueDependent() &&
11478       RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
11479       RHSValue.Val.getInt() == 0)
11480     S.DiagRuntimeBehavior(Loc, RHS.get(),
11481                           S.PDiag(diag::warn_remainder_division_by_zero)
11482                             << IsDiv << RHS.get()->getSourceRange());
11483 }
11484 
CheckMultiplyDivideOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,bool IsDiv)11485 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
11486                                            SourceLocation Loc,
11487                                            bool IsCompAssign, bool IsDiv) {
11488   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11489 
11490   QualType LHSTy = LHS.get()->getType();
11491   QualType RHSTy = RHS.get()->getType();
11492   if (LHSTy->isVectorType() || RHSTy->isVectorType())
11493     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
11494                                /*AllowBothBool*/ getLangOpts().AltiVec,
11495                                /*AllowBoolConversions*/ false,
11496                                /*AllowBooleanOperation*/ false,
11497                                /*ReportInvalid*/ true);
11498   if (LHSTy->isSveVLSBuiltinType() || RHSTy->isSveVLSBuiltinType())
11499     return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
11500                                        ACK_Arithmetic);
11501   if (!IsDiv &&
11502       (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
11503     return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
11504   // For division, only matrix-by-scalar is supported. Other combinations with
11505   // matrix types are invalid.
11506   if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
11507     return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
11508 
11509   QualType compType = UsualArithmeticConversions(
11510       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
11511   if (LHS.isInvalid() || RHS.isInvalid())
11512     return QualType();
11513 
11514 
11515   if (compType.isNull() || !compType->isArithmeticType())
11516     return InvalidOperands(Loc, LHS, RHS);
11517   if (IsDiv) {
11518     DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
11519     DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
11520   }
11521   return compType;
11522 }
11523 
CheckRemainderOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)11524 QualType Sema::CheckRemainderOperands(
11525   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
11526   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11527 
11528   if (LHS.get()->getType()->isVectorType() ||
11529       RHS.get()->getType()->isVectorType()) {
11530     if (LHS.get()->getType()->hasIntegerRepresentation() &&
11531         RHS.get()->getType()->hasIntegerRepresentation())
11532       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
11533                                  /*AllowBothBool*/ getLangOpts().AltiVec,
11534                                  /*AllowBoolConversions*/ false,
11535                                  /*AllowBooleanOperation*/ false,
11536                                  /*ReportInvalid*/ true);
11537     return InvalidOperands(Loc, LHS, RHS);
11538   }
11539 
11540   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11541       RHS.get()->getType()->isSveVLSBuiltinType()) {
11542     if (LHS.get()->getType()->hasIntegerRepresentation() &&
11543         RHS.get()->getType()->hasIntegerRepresentation())
11544       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
11545                                          ACK_Arithmetic);
11546 
11547     return InvalidOperands(Loc, LHS, RHS);
11548   }
11549 
11550   QualType compType = UsualArithmeticConversions(
11551       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
11552   if (LHS.isInvalid() || RHS.isInvalid())
11553     return QualType();
11554 
11555   if (compType.isNull() || !compType->isIntegerType())
11556     return InvalidOperands(Loc, LHS, RHS);
11557   DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
11558   return compType;
11559 }
11560 
11561 /// Diagnose invalid arithmetic on two void pointers.
diagnoseArithmeticOnTwoVoidPointers(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)11562 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
11563                                                 Expr *LHSExpr, Expr *RHSExpr) {
11564   S.Diag(Loc, S.getLangOpts().CPlusPlus
11565                 ? diag::err_typecheck_pointer_arith_void_type
11566                 : diag::ext_gnu_void_ptr)
11567     << 1 /* two pointers */ << LHSExpr->getSourceRange()
11568                             << RHSExpr->getSourceRange();
11569 }
11570 
11571 /// Diagnose invalid arithmetic on a void pointer.
diagnoseArithmeticOnVoidPointer(Sema & S,SourceLocation Loc,Expr * Pointer)11572 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
11573                                             Expr *Pointer) {
11574   S.Diag(Loc, S.getLangOpts().CPlusPlus
11575                 ? diag::err_typecheck_pointer_arith_void_type
11576                 : diag::ext_gnu_void_ptr)
11577     << 0 /* one pointer */ << Pointer->getSourceRange();
11578 }
11579 
11580 /// Diagnose invalid arithmetic on a null pointer.
11581 ///
11582 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
11583 /// idiom, which we recognize as a GNU extension.
11584 ///
diagnoseArithmeticOnNullPointer(Sema & S,SourceLocation Loc,Expr * Pointer,bool IsGNUIdiom)11585 static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
11586                                             Expr *Pointer, bool IsGNUIdiom) {
11587   if (IsGNUIdiom)
11588     S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
11589       << Pointer->getSourceRange();
11590   else
11591     S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
11592       << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
11593 }
11594 
11595 /// Diagnose invalid subraction on a null pointer.
11596 ///
diagnoseSubtractionOnNullPointer(Sema & S,SourceLocation Loc,Expr * Pointer,bool BothNull)11597 static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
11598                                              Expr *Pointer, bool BothNull) {
11599   // Null - null is valid in C++ [expr.add]p7
11600   if (BothNull && S.getLangOpts().CPlusPlus)
11601     return;
11602 
11603   // Is this s a macro from a system header?
11604   if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc))
11605     return;
11606 
11607   S.DiagRuntimeBehavior(Loc, Pointer,
11608                         S.PDiag(diag::warn_pointer_sub_null_ptr)
11609                             << S.getLangOpts().CPlusPlus
11610                             << Pointer->getSourceRange());
11611 }
11612 
11613 /// Diagnose invalid arithmetic on two function pointers.
diagnoseArithmeticOnTwoFunctionPointers(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)11614 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
11615                                                     Expr *LHS, Expr *RHS) {
11616   assert(LHS->getType()->isAnyPointerType());
11617   assert(RHS->getType()->isAnyPointerType());
11618   S.Diag(Loc, S.getLangOpts().CPlusPlus
11619                 ? diag::err_typecheck_pointer_arith_function_type
11620                 : diag::ext_gnu_ptr_func_arith)
11621     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
11622     // We only show the second type if it differs from the first.
11623     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
11624                                                    RHS->getType())
11625     << RHS->getType()->getPointeeType()
11626     << LHS->getSourceRange() << RHS->getSourceRange();
11627 }
11628 
11629 /// Diagnose invalid arithmetic on a function pointer.
diagnoseArithmeticOnFunctionPointer(Sema & S,SourceLocation Loc,Expr * Pointer)11630 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
11631                                                 Expr *Pointer) {
11632   assert(Pointer->getType()->isAnyPointerType());
11633   S.Diag(Loc, S.getLangOpts().CPlusPlus
11634                 ? diag::err_typecheck_pointer_arith_function_type
11635                 : diag::ext_gnu_ptr_func_arith)
11636     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
11637     << 0 /* one pointer, so only one type */
11638     << Pointer->getSourceRange();
11639 }
11640 
11641 /// Emit error if Operand is incomplete pointer type
11642 ///
11643 /// \returns True if pointer has incomplete type
checkArithmeticIncompletePointerType(Sema & S,SourceLocation Loc,Expr * Operand)11644 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
11645                                                  Expr *Operand) {
11646   QualType ResType = Operand->getType();
11647   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
11648     ResType = ResAtomicType->getValueType();
11649 
11650   assert(ResType->isAnyPointerType() && !ResType->isDependentType());
11651   QualType PointeeTy = ResType->getPointeeType();
11652   return S.RequireCompleteSizedType(
11653       Loc, PointeeTy,
11654       diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
11655       Operand->getSourceRange());
11656 }
11657 
11658 /// Check the validity of an arithmetic pointer operand.
11659 ///
11660 /// If the operand has pointer type, this code will check for pointer types
11661 /// which are invalid in arithmetic operations. These will be diagnosed
11662 /// appropriately, including whether or not the use is supported as an
11663 /// extension.
11664 ///
11665 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticOpPointerOperand(Sema & S,SourceLocation Loc,Expr * Operand)11666 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
11667                                             Expr *Operand) {
11668   QualType ResType = Operand->getType();
11669   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
11670     ResType = ResAtomicType->getValueType();
11671 
11672   if (!ResType->isAnyPointerType()) return true;
11673 
11674   QualType PointeeTy = ResType->getPointeeType();
11675   if (PointeeTy->isVoidType()) {
11676     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
11677     return !S.getLangOpts().CPlusPlus;
11678   }
11679   if (PointeeTy->isFunctionType()) {
11680     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
11681     return !S.getLangOpts().CPlusPlus;
11682   }
11683 
11684   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
11685 
11686   return true;
11687 }
11688 
11689 /// Check the validity of a binary arithmetic operation w.r.t. pointer
11690 /// operands.
11691 ///
11692 /// This routine will diagnose any invalid arithmetic on pointer operands much
11693 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
11694 /// for emitting a single diagnostic even for operations where both LHS and RHS
11695 /// are (potentially problematic) pointers.
11696 ///
11697 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticBinOpPointerOperands(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)11698 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
11699                                                 Expr *LHSExpr, Expr *RHSExpr) {
11700   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
11701   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
11702   if (!isLHSPointer && !isRHSPointer) return true;
11703 
11704   QualType LHSPointeeTy, RHSPointeeTy;
11705   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
11706   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
11707 
11708   // if both are pointers check if operation is valid wrt address spaces
11709   if (isLHSPointer && isRHSPointer) {
11710     if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
11711       S.Diag(Loc,
11712              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
11713           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
11714           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
11715       return false;
11716     }
11717   }
11718 
11719   // Check for arithmetic on pointers to incomplete types.
11720   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
11721   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
11722   if (isLHSVoidPtr || isRHSVoidPtr) {
11723     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
11724     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
11725     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
11726 
11727     return !S.getLangOpts().CPlusPlus;
11728   }
11729 
11730   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
11731   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
11732   if (isLHSFuncPtr || isRHSFuncPtr) {
11733     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
11734     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
11735                                                                 RHSExpr);
11736     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
11737 
11738     return !S.getLangOpts().CPlusPlus;
11739   }
11740 
11741   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
11742     return false;
11743   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
11744     return false;
11745 
11746   return true;
11747 }
11748 
11749 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
11750 /// literal.
diagnoseStringPlusInt(Sema & Self,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)11751 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
11752                                   Expr *LHSExpr, Expr *RHSExpr) {
11753   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
11754   Expr* IndexExpr = RHSExpr;
11755   if (!StrExpr) {
11756     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
11757     IndexExpr = LHSExpr;
11758   }
11759 
11760   bool IsStringPlusInt = StrExpr &&
11761       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
11762   if (!IsStringPlusInt || IndexExpr->isValueDependent())
11763     return;
11764 
11765   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11766   Self.Diag(OpLoc, diag::warn_string_plus_int)
11767       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
11768 
11769   // Only print a fixit for "str" + int, not for int + "str".
11770   if (IndexExpr == RHSExpr) {
11771     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11772     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11773         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11774         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11775         << FixItHint::CreateInsertion(EndLoc, "]");
11776   } else
11777     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11778 }
11779 
11780 /// Emit a warning when adding a char literal to a string.
diagnoseStringPlusChar(Sema & Self,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)11781 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
11782                                    Expr *LHSExpr, Expr *RHSExpr) {
11783   const Expr *StringRefExpr = LHSExpr;
11784   const CharacterLiteral *CharExpr =
11785       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
11786 
11787   if (!CharExpr) {
11788     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
11789     StringRefExpr = RHSExpr;
11790   }
11791 
11792   if (!CharExpr || !StringRefExpr)
11793     return;
11794 
11795   const QualType StringType = StringRefExpr->getType();
11796 
11797   // Return if not a PointerType.
11798   if (!StringType->isAnyPointerType())
11799     return;
11800 
11801   // Return if not a CharacterType.
11802   if (!StringType->getPointeeType()->isAnyCharacterType())
11803     return;
11804 
11805   ASTContext &Ctx = Self.getASTContext();
11806   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11807 
11808   const QualType CharType = CharExpr->getType();
11809   if (!CharType->isAnyCharacterType() &&
11810       CharType->isIntegerType() &&
11811       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
11812     Self.Diag(OpLoc, diag::warn_string_plus_char)
11813         << DiagRange << Ctx.CharTy;
11814   } else {
11815     Self.Diag(OpLoc, diag::warn_string_plus_char)
11816         << DiagRange << CharExpr->getType();
11817   }
11818 
11819   // Only print a fixit for str + char, not for char + str.
11820   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
11821     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11822     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11823         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11824         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11825         << FixItHint::CreateInsertion(EndLoc, "]");
11826   } else {
11827     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11828   }
11829 }
11830 
11831 /// Emit error when two pointers are incompatible.
diagnosePointerIncompatibility(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)11832 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
11833                                            Expr *LHSExpr, Expr *RHSExpr) {
11834   assert(LHSExpr->getType()->isAnyPointerType());
11835   assert(RHSExpr->getType()->isAnyPointerType());
11836   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
11837     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
11838     << RHSExpr->getSourceRange();
11839 }
11840 
11841 // C99 6.5.6
CheckAdditionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc,QualType * CompLHSTy)11842 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
11843                                      SourceLocation Loc, BinaryOperatorKind Opc,
11844                                      QualType* CompLHSTy) {
11845   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11846 
11847   if (LHS.get()->getType()->isVectorType() ||
11848       RHS.get()->getType()->isVectorType()) {
11849     QualType compType =
11850         CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11851                             /*AllowBothBool*/ getLangOpts().AltiVec,
11852                             /*AllowBoolConversions*/ getLangOpts().ZVector,
11853                             /*AllowBooleanOperation*/ false,
11854                             /*ReportInvalid*/ true);
11855     if (CompLHSTy) *CompLHSTy = compType;
11856     return compType;
11857   }
11858 
11859   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11860       RHS.get()->getType()->isSveVLSBuiltinType()) {
11861     QualType compType =
11862         CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11863     if (CompLHSTy)
11864       *CompLHSTy = compType;
11865     return compType;
11866   }
11867 
11868   if (LHS.get()->getType()->isConstantMatrixType() ||
11869       RHS.get()->getType()->isConstantMatrixType()) {
11870     QualType compType =
11871         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11872     if (CompLHSTy)
11873       *CompLHSTy = compType;
11874     return compType;
11875   }
11876 
11877   QualType compType = UsualArithmeticConversions(
11878       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11879   if (LHS.isInvalid() || RHS.isInvalid())
11880     return QualType();
11881 
11882   // Diagnose "string literal" '+' int and string '+' "char literal".
11883   if (Opc == BO_Add) {
11884     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
11885     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
11886   }
11887 
11888   // handle the common case first (both operands are arithmetic).
11889   if (!compType.isNull() && compType->isArithmeticType()) {
11890     if (CompLHSTy) *CompLHSTy = compType;
11891     return compType;
11892   }
11893 
11894   // Type-checking.  Ultimately the pointer's going to be in PExp;
11895   // note that we bias towards the LHS being the pointer.
11896   Expr *PExp = LHS.get(), *IExp = RHS.get();
11897 
11898   bool isObjCPointer;
11899   if (PExp->getType()->isPointerType()) {
11900     isObjCPointer = false;
11901   } else if (PExp->getType()->isObjCObjectPointerType()) {
11902     isObjCPointer = true;
11903   } else {
11904     std::swap(PExp, IExp);
11905     if (PExp->getType()->isPointerType()) {
11906       isObjCPointer = false;
11907     } else if (PExp->getType()->isObjCObjectPointerType()) {
11908       isObjCPointer = true;
11909     } else {
11910       return InvalidOperands(Loc, LHS, RHS);
11911     }
11912   }
11913   assert(PExp->getType()->isAnyPointerType());
11914 
11915   if (!IExp->getType()->isIntegerType())
11916     return InvalidOperands(Loc, LHS, RHS);
11917 
11918   // Adding to a null pointer results in undefined behavior.
11919   if (PExp->IgnoreParenCasts()->isNullPointerConstant(
11920           Context, Expr::NPC_ValueDependentIsNotNull)) {
11921     // In C++ adding zero to a null pointer is defined.
11922     Expr::EvalResult KnownVal;
11923     if (!getLangOpts().CPlusPlus ||
11924         (!IExp->isValueDependent() &&
11925          (!IExp->EvaluateAsInt(KnownVal, Context) ||
11926           KnownVal.Val.getInt() != 0))) {
11927       // Check the conditions to see if this is the 'p = nullptr + n' idiom.
11928       bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
11929           Context, BO_Add, PExp, IExp);
11930       diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
11931     }
11932   }
11933 
11934   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
11935     return QualType();
11936 
11937   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
11938     return QualType();
11939 
11940   // Check array bounds for pointer arithemtic
11941   CheckArrayAccess(PExp, IExp);
11942 
11943   if (CompLHSTy) {
11944     QualType LHSTy = Context.isPromotableBitField(LHS.get());
11945     if (LHSTy.isNull()) {
11946       LHSTy = LHS.get()->getType();
11947       if (Context.isPromotableIntegerType(LHSTy))
11948         LHSTy = Context.getPromotedIntegerType(LHSTy);
11949     }
11950     *CompLHSTy = LHSTy;
11951   }
11952 
11953   return PExp->getType();
11954 }
11955 
11956 // C99 6.5.6
CheckSubtractionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,QualType * CompLHSTy)11957 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
11958                                         SourceLocation Loc,
11959                                         QualType* CompLHSTy) {
11960   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11961 
11962   if (LHS.get()->getType()->isVectorType() ||
11963       RHS.get()->getType()->isVectorType()) {
11964     QualType compType =
11965         CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11966                             /*AllowBothBool*/ getLangOpts().AltiVec,
11967                             /*AllowBoolConversions*/ getLangOpts().ZVector,
11968                             /*AllowBooleanOperation*/ false,
11969                             /*ReportInvalid*/ true);
11970     if (CompLHSTy) *CompLHSTy = compType;
11971     return compType;
11972   }
11973 
11974   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11975       RHS.get()->getType()->isSveVLSBuiltinType()) {
11976     QualType compType =
11977         CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11978     if (CompLHSTy)
11979       *CompLHSTy = compType;
11980     return compType;
11981   }
11982 
11983   if (LHS.get()->getType()->isConstantMatrixType() ||
11984       RHS.get()->getType()->isConstantMatrixType()) {
11985     QualType compType =
11986         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11987     if (CompLHSTy)
11988       *CompLHSTy = compType;
11989     return compType;
11990   }
11991 
11992   QualType compType = UsualArithmeticConversions(
11993       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11994   if (LHS.isInvalid() || RHS.isInvalid())
11995     return QualType();
11996 
11997   // Enforce type constraints: C99 6.5.6p3.
11998 
11999   // Handle the common case first (both operands are arithmetic).
12000   if (!compType.isNull() && compType->isArithmeticType()) {
12001     if (CompLHSTy) *CompLHSTy = compType;
12002     return compType;
12003   }
12004 
12005   // Either ptr - int   or   ptr - ptr.
12006   if (LHS.get()->getType()->isAnyPointerType()) {
12007     QualType lpointee = LHS.get()->getType()->getPointeeType();
12008 
12009     // Diagnose bad cases where we step over interface counts.
12010     if (LHS.get()->getType()->isObjCObjectPointerType() &&
12011         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
12012       return QualType();
12013 
12014     // The result type of a pointer-int computation is the pointer type.
12015     if (RHS.get()->getType()->isIntegerType()) {
12016       // Subtracting from a null pointer should produce a warning.
12017       // The last argument to the diagnose call says this doesn't match the
12018       // GNU int-to-pointer idiom.
12019       if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
12020                                            Expr::NPC_ValueDependentIsNotNull)) {
12021         // In C++ adding zero to a null pointer is defined.
12022         Expr::EvalResult KnownVal;
12023         if (!getLangOpts().CPlusPlus ||
12024             (!RHS.get()->isValueDependent() &&
12025              (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
12026               KnownVal.Val.getInt() != 0))) {
12027           diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
12028         }
12029       }
12030 
12031       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
12032         return QualType();
12033 
12034       // Check array bounds for pointer arithemtic
12035       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
12036                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
12037 
12038       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
12039       return LHS.get()->getType();
12040     }
12041 
12042     // Handle pointer-pointer subtractions.
12043     if (const PointerType *RHSPTy
12044           = RHS.get()->getType()->getAs<PointerType>()) {
12045       QualType rpointee = RHSPTy->getPointeeType();
12046 
12047       if (getLangOpts().CPlusPlus) {
12048         // Pointee types must be the same: C++ [expr.add]
12049         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
12050           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
12051         }
12052       } else {
12053         // Pointee types must be compatible C99 6.5.6p3
12054         if (!Context.typesAreCompatible(
12055                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
12056                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
12057           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
12058           return QualType();
12059         }
12060       }
12061 
12062       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
12063                                                LHS.get(), RHS.get()))
12064         return QualType();
12065 
12066       bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
12067           Context, Expr::NPC_ValueDependentIsNotNull);
12068       bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
12069           Context, Expr::NPC_ValueDependentIsNotNull);
12070 
12071       // Subtracting nullptr or from nullptr is suspect
12072       if (LHSIsNullPtr)
12073         diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr);
12074       if (RHSIsNullPtr)
12075         diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr);
12076 
12077       // The pointee type may have zero size.  As an extension, a structure or
12078       // union may have zero size or an array may have zero length.  In this
12079       // case subtraction does not make sense.
12080       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
12081         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
12082         if (ElementSize.isZero()) {
12083           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
12084             << rpointee.getUnqualifiedType()
12085             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12086         }
12087       }
12088 
12089       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
12090       return Context.getPointerDiffType();
12091     }
12092   }
12093 
12094   return InvalidOperands(Loc, LHS, RHS);
12095 }
12096 
isScopedEnumerationType(QualType T)12097 static bool isScopedEnumerationType(QualType T) {
12098   if (const EnumType *ET = T->getAs<EnumType>())
12099     return ET->getDecl()->isScoped();
12100   return false;
12101 }
12102 
DiagnoseBadShiftValues(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc,QualType LHSType)12103 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
12104                                    SourceLocation Loc, BinaryOperatorKind Opc,
12105                                    QualType LHSType) {
12106   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
12107   // so skip remaining warnings as we don't want to modify values within Sema.
12108   if (S.getLangOpts().OpenCL)
12109     return;
12110 
12111   // Check right/shifter operand
12112   Expr::EvalResult RHSResult;
12113   if (RHS.get()->isValueDependent() ||
12114       !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
12115     return;
12116   llvm::APSInt Right = RHSResult.Val.getInt();
12117 
12118   if (Right.isNegative()) {
12119     S.DiagRuntimeBehavior(Loc, RHS.get(),
12120                           S.PDiag(diag::warn_shift_negative)
12121                             << RHS.get()->getSourceRange());
12122     return;
12123   }
12124 
12125   QualType LHSExprType = LHS.get()->getType();
12126   uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
12127   if (LHSExprType->isBitIntType())
12128     LeftSize = S.Context.getIntWidth(LHSExprType);
12129   else if (LHSExprType->isFixedPointType()) {
12130     auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
12131     LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
12132   }
12133   if (Right.uge(LeftSize)) {
12134     S.DiagRuntimeBehavior(Loc, RHS.get(),
12135                           S.PDiag(diag::warn_shift_gt_typewidth)
12136                             << RHS.get()->getSourceRange());
12137     return;
12138   }
12139 
12140   // FIXME: We probably need to handle fixed point types specially here.
12141   if (Opc != BO_Shl || LHSExprType->isFixedPointType())
12142     return;
12143 
12144   // When left shifting an ICE which is signed, we can check for overflow which
12145   // according to C++ standards prior to C++2a has undefined behavior
12146   // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
12147   // more than the maximum value representable in the result type, so never
12148   // warn for those. (FIXME: Unsigned left-shift overflow in a constant
12149   // expression is still probably a bug.)
12150   Expr::EvalResult LHSResult;
12151   if (LHS.get()->isValueDependent() ||
12152       LHSType->hasUnsignedIntegerRepresentation() ||
12153       !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
12154     return;
12155   llvm::APSInt Left = LHSResult.Val.getInt();
12156 
12157   // Don't warn if signed overflow is defined, then all the rest of the
12158   // diagnostics will not be triggered because the behavior is defined.
12159   // Also don't warn in C++20 mode (and newer), as signed left shifts
12160   // always wrap and never overflow.
12161   if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20)
12162     return;
12163 
12164   // If LHS does not have a non-negative value then, the
12165   // behavior is undefined before C++2a. Warn about it.
12166   if (Left.isNegative()) {
12167     S.DiagRuntimeBehavior(Loc, LHS.get(),
12168                           S.PDiag(diag::warn_shift_lhs_negative)
12169                             << LHS.get()->getSourceRange());
12170     return;
12171   }
12172 
12173   llvm::APInt ResultBits =
12174       static_cast<llvm::APInt &>(Right) + Left.getSignificantBits();
12175   if (ResultBits.ule(LeftSize))
12176     return;
12177   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
12178   Result = Result.shl(Right);
12179 
12180   // Print the bit representation of the signed integer as an unsigned
12181   // hexadecimal number.
12182   SmallString<40> HexResult;
12183   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
12184 
12185   // If we are only missing a sign bit, this is less likely to result in actual
12186   // bugs -- if the result is cast back to an unsigned type, it will have the
12187   // expected value. Thus we place this behind a different warning that can be
12188   // turned off separately if needed.
12189   if (ResultBits - 1 == LeftSize) {
12190     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
12191         << HexResult << LHSType
12192         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12193     return;
12194   }
12195 
12196   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
12197       << HexResult.str() << Result.getSignificantBits() << LHSType
12198       << Left.getBitWidth() << LHS.get()->getSourceRange()
12199       << RHS.get()->getSourceRange();
12200 }
12201 
12202 /// Return the resulting type when a vector is shifted
12203 ///        by a scalar or vector shift amount.
checkVectorShift(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)12204 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
12205                                  SourceLocation Loc, bool IsCompAssign) {
12206   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
12207   if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
12208       !LHS.get()->getType()->isVectorType()) {
12209     S.Diag(Loc, diag::err_shift_rhs_only_vector)
12210       << RHS.get()->getType() << LHS.get()->getType()
12211       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12212     return QualType();
12213   }
12214 
12215   if (!IsCompAssign) {
12216     LHS = S.UsualUnaryConversions(LHS.get());
12217     if (LHS.isInvalid()) return QualType();
12218   }
12219 
12220   RHS = S.UsualUnaryConversions(RHS.get());
12221   if (RHS.isInvalid()) return QualType();
12222 
12223   QualType LHSType = LHS.get()->getType();
12224   // Note that LHS might be a scalar because the routine calls not only in
12225   // OpenCL case.
12226   const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
12227   QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
12228 
12229   // Note that RHS might not be a vector.
12230   QualType RHSType = RHS.get()->getType();
12231   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
12232   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
12233 
12234   // Do not allow shifts for boolean vectors.
12235   if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) ||
12236       (RHSVecTy && RHSVecTy->isExtVectorBoolType())) {
12237     S.Diag(Loc, diag::err_typecheck_invalid_operands)
12238         << LHS.get()->getType() << RHS.get()->getType()
12239         << LHS.get()->getSourceRange();
12240     return QualType();
12241   }
12242 
12243   // The operands need to be integers.
12244   if (!LHSEleType->isIntegerType()) {
12245     S.Diag(Loc, diag::err_typecheck_expect_int)
12246       << LHS.get()->getType() << LHS.get()->getSourceRange();
12247     return QualType();
12248   }
12249 
12250   if (!RHSEleType->isIntegerType()) {
12251     S.Diag(Loc, diag::err_typecheck_expect_int)
12252       << RHS.get()->getType() << RHS.get()->getSourceRange();
12253     return QualType();
12254   }
12255 
12256   if (!LHSVecTy) {
12257     assert(RHSVecTy);
12258     if (IsCompAssign)
12259       return RHSType;
12260     if (LHSEleType != RHSEleType) {
12261       LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
12262       LHSEleType = RHSEleType;
12263     }
12264     QualType VecTy =
12265         S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
12266     LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
12267     LHSType = VecTy;
12268   } else if (RHSVecTy) {
12269     // OpenCL v1.1 s6.3.j says that for vector types, the operators
12270     // are applied component-wise. So if RHS is a vector, then ensure
12271     // that the number of elements is the same as LHS...
12272     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
12273       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
12274         << LHS.get()->getType() << RHS.get()->getType()
12275         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12276       return QualType();
12277     }
12278     if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
12279       const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
12280       const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
12281       if (LHSBT != RHSBT &&
12282           S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
12283         S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
12284             << LHS.get()->getType() << RHS.get()->getType()
12285             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12286       }
12287     }
12288   } else {
12289     // ...else expand RHS to match the number of elements in LHS.
12290     QualType VecTy =
12291       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
12292     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
12293   }
12294 
12295   return LHSType;
12296 }
12297 
checkSizelessVectorShift(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)12298 static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS,
12299                                          ExprResult &RHS, SourceLocation Loc,
12300                                          bool IsCompAssign) {
12301   if (!IsCompAssign) {
12302     LHS = S.UsualUnaryConversions(LHS.get());
12303     if (LHS.isInvalid())
12304       return QualType();
12305   }
12306 
12307   RHS = S.UsualUnaryConversions(RHS.get());
12308   if (RHS.isInvalid())
12309     return QualType();
12310 
12311   QualType LHSType = LHS.get()->getType();
12312   const BuiltinType *LHSBuiltinTy = LHSType->castAs<BuiltinType>();
12313   QualType LHSEleType = LHSType->isSveVLSBuiltinType()
12314                             ? LHSBuiltinTy->getSveEltType(S.getASTContext())
12315                             : LHSType;
12316 
12317   // Note that RHS might not be a vector
12318   QualType RHSType = RHS.get()->getType();
12319   const BuiltinType *RHSBuiltinTy = RHSType->castAs<BuiltinType>();
12320   QualType RHSEleType = RHSType->isSveVLSBuiltinType()
12321                             ? RHSBuiltinTy->getSveEltType(S.getASTContext())
12322                             : RHSType;
12323 
12324   if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
12325       (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) {
12326     S.Diag(Loc, diag::err_typecheck_invalid_operands)
12327         << LHSType << RHSType << LHS.get()->getSourceRange();
12328     return QualType();
12329   }
12330 
12331   if (!LHSEleType->isIntegerType()) {
12332     S.Diag(Loc, diag::err_typecheck_expect_int)
12333         << LHS.get()->getType() << LHS.get()->getSourceRange();
12334     return QualType();
12335   }
12336 
12337   if (!RHSEleType->isIntegerType()) {
12338     S.Diag(Loc, diag::err_typecheck_expect_int)
12339         << RHS.get()->getType() << RHS.get()->getSourceRange();
12340     return QualType();
12341   }
12342 
12343   if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
12344       (S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
12345        S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC)) {
12346     S.Diag(Loc, diag::err_typecheck_invalid_operands)
12347         << LHSType << RHSType << LHS.get()->getSourceRange()
12348         << RHS.get()->getSourceRange();
12349     return QualType();
12350   }
12351 
12352   if (!LHSType->isSveVLSBuiltinType()) {
12353     assert(RHSType->isSveVLSBuiltinType());
12354     if (IsCompAssign)
12355       return RHSType;
12356     if (LHSEleType != RHSEleType) {
12357       LHS = S.ImpCastExprToType(LHS.get(), RHSEleType, clang::CK_IntegralCast);
12358       LHSEleType = RHSEleType;
12359     }
12360     const llvm::ElementCount VecSize =
12361         S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC;
12362     QualType VecTy =
12363         S.Context.getScalableVectorType(LHSEleType, VecSize.getKnownMinValue());
12364     LHS = S.ImpCastExprToType(LHS.get(), VecTy, clang::CK_VectorSplat);
12365     LHSType = VecTy;
12366   } else if (RHSBuiltinTy && RHSBuiltinTy->isSveVLSBuiltinType()) {
12367     if (S.Context.getTypeSize(RHSBuiltinTy) !=
12368         S.Context.getTypeSize(LHSBuiltinTy)) {
12369       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
12370           << LHSType << RHSType << LHS.get()->getSourceRange()
12371           << RHS.get()->getSourceRange();
12372       return QualType();
12373     }
12374   } else {
12375     const llvm::ElementCount VecSize =
12376         S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC;
12377     if (LHSEleType != RHSEleType) {
12378       RHS = S.ImpCastExprToType(RHS.get(), LHSEleType, clang::CK_IntegralCast);
12379       RHSEleType = LHSEleType;
12380     }
12381     QualType VecTy =
12382         S.Context.getScalableVectorType(RHSEleType, VecSize.getKnownMinValue());
12383     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
12384   }
12385 
12386   return LHSType;
12387 }
12388 
12389 // C99 6.5.7
CheckShiftOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc,bool IsCompAssign)12390 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
12391                                   SourceLocation Loc, BinaryOperatorKind Opc,
12392                                   bool IsCompAssign) {
12393   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
12394 
12395   // Vector shifts promote their scalar inputs to vector type.
12396   if (LHS.get()->getType()->isVectorType() ||
12397       RHS.get()->getType()->isVectorType()) {
12398     if (LangOpts.ZVector) {
12399       // The shift operators for the z vector extensions work basically
12400       // like general shifts, except that neither the LHS nor the RHS is
12401       // allowed to be a "vector bool".
12402       if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
12403         if (LHSVecType->getVectorKind() == VectorKind::AltiVecBool)
12404           return InvalidOperands(Loc, LHS, RHS);
12405       if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
12406         if (RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
12407           return InvalidOperands(Loc, LHS, RHS);
12408     }
12409     return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
12410   }
12411 
12412   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
12413       RHS.get()->getType()->isSveVLSBuiltinType())
12414     return checkSizelessVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
12415 
12416   // Shifts don't perform usual arithmetic conversions, they just do integer
12417   // promotions on each operand. C99 6.5.7p3
12418 
12419   // For the LHS, do usual unary conversions, but then reset them away
12420   // if this is a compound assignment.
12421   ExprResult OldLHS = LHS;
12422   LHS = UsualUnaryConversions(LHS.get());
12423   if (LHS.isInvalid())
12424     return QualType();
12425   QualType LHSType = LHS.get()->getType();
12426   if (IsCompAssign) LHS = OldLHS;
12427 
12428   // The RHS is simpler.
12429   RHS = UsualUnaryConversions(RHS.get());
12430   if (RHS.isInvalid())
12431     return QualType();
12432   QualType RHSType = RHS.get()->getType();
12433 
12434   // C99 6.5.7p2: Each of the operands shall have integer type.
12435   // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
12436   if ((!LHSType->isFixedPointOrIntegerType() &&
12437        !LHSType->hasIntegerRepresentation()) ||
12438       !RHSType->hasIntegerRepresentation())
12439     return InvalidOperands(Loc, LHS, RHS);
12440 
12441   // C++0x: Don't allow scoped enums. FIXME: Use something better than
12442   // hasIntegerRepresentation() above instead of this.
12443   if (isScopedEnumerationType(LHSType) ||
12444       isScopedEnumerationType(RHSType)) {
12445     return InvalidOperands(Loc, LHS, RHS);
12446   }
12447   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
12448 
12449   // "The type of the result is that of the promoted left operand."
12450   return LHSType;
12451 }
12452 
12453 /// Diagnose bad pointer comparisons.
diagnoseDistinctPointerComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)12454 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
12455                                               ExprResult &LHS, ExprResult &RHS,
12456                                               bool IsError) {
12457   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
12458                       : diag::ext_typecheck_comparison_of_distinct_pointers)
12459     << LHS.get()->getType() << RHS.get()->getType()
12460     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12461 }
12462 
12463 /// Returns false if the pointers are converted to a composite type,
12464 /// true otherwise.
convertPointersToCompositeType(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)12465 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
12466                                            ExprResult &LHS, ExprResult &RHS) {
12467   // C++ [expr.rel]p2:
12468   //   [...] Pointer conversions (4.10) and qualification
12469   //   conversions (4.4) are performed on pointer operands (or on
12470   //   a pointer operand and a null pointer constant) to bring
12471   //   them to their composite pointer type. [...]
12472   //
12473   // C++ [expr.eq]p1 uses the same notion for (in)equality
12474   // comparisons of pointers.
12475 
12476   QualType LHSType = LHS.get()->getType();
12477   QualType RHSType = RHS.get()->getType();
12478   assert(LHSType->isPointerType() || RHSType->isPointerType() ||
12479          LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
12480 
12481   QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
12482   if (T.isNull()) {
12483     if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
12484         (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
12485       diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
12486     else
12487       S.InvalidOperands(Loc, LHS, RHS);
12488     return true;
12489   }
12490 
12491   return false;
12492 }
12493 
diagnoseFunctionPointerToVoidComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)12494 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
12495                                                     ExprResult &LHS,
12496                                                     ExprResult &RHS,
12497                                                     bool IsError) {
12498   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
12499                       : diag::ext_typecheck_comparison_of_fptr_to_void)
12500     << LHS.get()->getType() << RHS.get()->getType()
12501     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12502 }
12503 
isObjCObjectLiteral(ExprResult & E)12504 static bool isObjCObjectLiteral(ExprResult &E) {
12505   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
12506   case Stmt::ObjCArrayLiteralClass:
12507   case Stmt::ObjCDictionaryLiteralClass:
12508   case Stmt::ObjCStringLiteralClass:
12509   case Stmt::ObjCBoxedExprClass:
12510     return true;
12511   default:
12512     // Note that ObjCBoolLiteral is NOT an object literal!
12513     return false;
12514   }
12515 }
12516 
hasIsEqualMethod(Sema & S,const Expr * LHS,const Expr * RHS)12517 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
12518   const ObjCObjectPointerType *Type =
12519     LHS->getType()->getAs<ObjCObjectPointerType>();
12520 
12521   // If this is not actually an Objective-C object, bail out.
12522   if (!Type)
12523     return false;
12524 
12525   // Get the LHS object's interface type.
12526   QualType InterfaceType = Type->getPointeeType();
12527 
12528   // If the RHS isn't an Objective-C object, bail out.
12529   if (!RHS->getType()->isObjCObjectPointerType())
12530     return false;
12531 
12532   // Try to find the -isEqual: method.
12533   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
12534   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
12535                                                       InterfaceType,
12536                                                       /*IsInstance=*/true);
12537   if (!Method) {
12538     if (Type->isObjCIdType()) {
12539       // For 'id', just check the global pool.
12540       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
12541                                                   /*receiverId=*/true);
12542     } else {
12543       // Check protocols.
12544       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
12545                                              /*IsInstance=*/true);
12546     }
12547   }
12548 
12549   if (!Method)
12550     return false;
12551 
12552   QualType T = Method->parameters()[0]->getType();
12553   if (!T->isObjCObjectPointerType())
12554     return false;
12555 
12556   QualType R = Method->getReturnType();
12557   if (!R->isScalarType())
12558     return false;
12559 
12560   return true;
12561 }
12562 
CheckLiteralKind(Expr * FromE)12563 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
12564   FromE = FromE->IgnoreParenImpCasts();
12565   switch (FromE->getStmtClass()) {
12566     default:
12567       break;
12568     case Stmt::ObjCStringLiteralClass:
12569       // "string literal"
12570       return LK_String;
12571     case Stmt::ObjCArrayLiteralClass:
12572       // "array literal"
12573       return LK_Array;
12574     case Stmt::ObjCDictionaryLiteralClass:
12575       // "dictionary literal"
12576       return LK_Dictionary;
12577     case Stmt::BlockExprClass:
12578       return LK_Block;
12579     case Stmt::ObjCBoxedExprClass: {
12580       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
12581       switch (Inner->getStmtClass()) {
12582         case Stmt::IntegerLiteralClass:
12583         case Stmt::FloatingLiteralClass:
12584         case Stmt::CharacterLiteralClass:
12585         case Stmt::ObjCBoolLiteralExprClass:
12586         case Stmt::CXXBoolLiteralExprClass:
12587           // "numeric literal"
12588           return LK_Numeric;
12589         case Stmt::ImplicitCastExprClass: {
12590           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
12591           // Boolean literals can be represented by implicit casts.
12592           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
12593             return LK_Numeric;
12594           break;
12595         }
12596         default:
12597           break;
12598       }
12599       return LK_Boxed;
12600     }
12601   }
12602   return LK_None;
12603 }
12604 
diagnoseObjCLiteralComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,BinaryOperator::Opcode Opc)12605 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
12606                                           ExprResult &LHS, ExprResult &RHS,
12607                                           BinaryOperator::Opcode Opc){
12608   Expr *Literal;
12609   Expr *Other;
12610   if (isObjCObjectLiteral(LHS)) {
12611     Literal = LHS.get();
12612     Other = RHS.get();
12613   } else {
12614     Literal = RHS.get();
12615     Other = LHS.get();
12616   }
12617 
12618   // Don't warn on comparisons against nil.
12619   Other = Other->IgnoreParenCasts();
12620   if (Other->isNullPointerConstant(S.getASTContext(),
12621                                    Expr::NPC_ValueDependentIsNotNull))
12622     return;
12623 
12624   // This should be kept in sync with warn_objc_literal_comparison.
12625   // LK_String should always be after the other literals, since it has its own
12626   // warning flag.
12627   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
12628   assert(LiteralKind != Sema::LK_Block);
12629   if (LiteralKind == Sema::LK_None) {
12630     llvm_unreachable("Unknown Objective-C object literal kind");
12631   }
12632 
12633   if (LiteralKind == Sema::LK_String)
12634     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
12635       << Literal->getSourceRange();
12636   else
12637     S.Diag(Loc, diag::warn_objc_literal_comparison)
12638       << LiteralKind << Literal->getSourceRange();
12639 
12640   if (BinaryOperator::isEqualityOp(Opc) &&
12641       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
12642     SourceLocation Start = LHS.get()->getBeginLoc();
12643     SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
12644     CharSourceRange OpRange =
12645       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
12646 
12647     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
12648       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
12649       << FixItHint::CreateReplacement(OpRange, " isEqual:")
12650       << FixItHint::CreateInsertion(End, "]");
12651   }
12652 }
12653 
12654 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
diagnoseLogicalNotOnLHSofCheck(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)12655 static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
12656                                            ExprResult &RHS, SourceLocation Loc,
12657                                            BinaryOperatorKind Opc) {
12658   // Check that left hand side is !something.
12659   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
12660   if (!UO || UO->getOpcode() != UO_LNot) return;
12661 
12662   // Only check if the right hand side is non-bool arithmetic type.
12663   if (RHS.get()->isKnownToHaveBooleanValue()) return;
12664 
12665   // Make sure that the something in !something is not bool.
12666   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
12667   if (SubExpr->isKnownToHaveBooleanValue()) return;
12668 
12669   // Emit warning.
12670   bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
12671   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
12672       << Loc << IsBitwiseOp;
12673 
12674   // First note suggest !(x < y)
12675   SourceLocation FirstOpen = SubExpr->getBeginLoc();
12676   SourceLocation FirstClose = RHS.get()->getEndLoc();
12677   FirstClose = S.getLocForEndOfToken(FirstClose);
12678   if (FirstClose.isInvalid())
12679     FirstOpen = SourceLocation();
12680   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
12681       << IsBitwiseOp
12682       << FixItHint::CreateInsertion(FirstOpen, "(")
12683       << FixItHint::CreateInsertion(FirstClose, ")");
12684 
12685   // Second note suggests (!x) < y
12686   SourceLocation SecondOpen = LHS.get()->getBeginLoc();
12687   SourceLocation SecondClose = LHS.get()->getEndLoc();
12688   SecondClose = S.getLocForEndOfToken(SecondClose);
12689   if (SecondClose.isInvalid())
12690     SecondOpen = SourceLocation();
12691   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
12692       << FixItHint::CreateInsertion(SecondOpen, "(")
12693       << FixItHint::CreateInsertion(SecondClose, ")");
12694 }
12695 
12696 // Returns true if E refers to a non-weak array.
checkForArray(const Expr * E)12697 static bool checkForArray(const Expr *E) {
12698   const ValueDecl *D = nullptr;
12699   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
12700     D = DR->getDecl();
12701   } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
12702     if (Mem->isImplicitAccess())
12703       D = Mem->getMemberDecl();
12704   }
12705   if (!D)
12706     return false;
12707   return D->getType()->isArrayType() && !D->isWeak();
12708 }
12709 
12710 /// Diagnose some forms of syntactically-obvious tautological comparison.
diagnoseTautologicalComparison(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS,BinaryOperatorKind Opc)12711 static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
12712                                            Expr *LHS, Expr *RHS,
12713                                            BinaryOperatorKind Opc) {
12714   Expr *LHSStripped = LHS->IgnoreParenImpCasts();
12715   Expr *RHSStripped = RHS->IgnoreParenImpCasts();
12716 
12717   QualType LHSType = LHS->getType();
12718   QualType RHSType = RHS->getType();
12719   if (LHSType->hasFloatingRepresentation() ||
12720       (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
12721       S.inTemplateInstantiation())
12722     return;
12723 
12724   // WebAssembly Tables cannot be compared, therefore shouldn't emit
12725   // Tautological diagnostics.
12726   if (LHSType->isWebAssemblyTableType() || RHSType->isWebAssemblyTableType())
12727     return;
12728 
12729   // Comparisons between two array types are ill-formed for operator<=>, so
12730   // we shouldn't emit any additional warnings about it.
12731   if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
12732     return;
12733 
12734   // For non-floating point types, check for self-comparisons of the form
12735   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
12736   // often indicate logic errors in the program.
12737   //
12738   // NOTE: Don't warn about comparison expressions resulting from macro
12739   // expansion. Also don't warn about comparisons which are only self
12740   // comparisons within a template instantiation. The warnings should catch
12741   // obvious cases in the definition of the template anyways. The idea is to
12742   // warn when the typed comparison operator will always evaluate to the same
12743   // result.
12744 
12745   // Used for indexing into %select in warn_comparison_always
12746   enum {
12747     AlwaysConstant,
12748     AlwaysTrue,
12749     AlwaysFalse,
12750     AlwaysEqual, // std::strong_ordering::equal from operator<=>
12751   };
12752 
12753   // C++2a [depr.array.comp]:
12754   //   Equality and relational comparisons ([expr.eq], [expr.rel]) between two
12755   //   operands of array type are deprecated.
12756   if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
12757       RHSStripped->getType()->isArrayType()) {
12758     S.Diag(Loc, diag::warn_depr_array_comparison)
12759         << LHS->getSourceRange() << RHS->getSourceRange()
12760         << LHSStripped->getType() << RHSStripped->getType();
12761     // Carry on to produce the tautological comparison warning, if this
12762     // expression is potentially-evaluated, we can resolve the array to a
12763     // non-weak declaration, and so on.
12764   }
12765 
12766   if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
12767     if (Expr::isSameComparisonOperand(LHS, RHS)) {
12768       unsigned Result;
12769       switch (Opc) {
12770       case BO_EQ:
12771       case BO_LE:
12772       case BO_GE:
12773         Result = AlwaysTrue;
12774         break;
12775       case BO_NE:
12776       case BO_LT:
12777       case BO_GT:
12778         Result = AlwaysFalse;
12779         break;
12780       case BO_Cmp:
12781         Result = AlwaysEqual;
12782         break;
12783       default:
12784         Result = AlwaysConstant;
12785         break;
12786       }
12787       S.DiagRuntimeBehavior(Loc, nullptr,
12788                             S.PDiag(diag::warn_comparison_always)
12789                                 << 0 /*self-comparison*/
12790                                 << Result);
12791     } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
12792       // What is it always going to evaluate to?
12793       unsigned Result;
12794       switch (Opc) {
12795       case BO_EQ: // e.g. array1 == array2
12796         Result = AlwaysFalse;
12797         break;
12798       case BO_NE: // e.g. array1 != array2
12799         Result = AlwaysTrue;
12800         break;
12801       default: // e.g. array1 <= array2
12802         // The best we can say is 'a constant'
12803         Result = AlwaysConstant;
12804         break;
12805       }
12806       S.DiagRuntimeBehavior(Loc, nullptr,
12807                             S.PDiag(diag::warn_comparison_always)
12808                                 << 1 /*array comparison*/
12809                                 << Result);
12810     }
12811   }
12812 
12813   if (isa<CastExpr>(LHSStripped))
12814     LHSStripped = LHSStripped->IgnoreParenCasts();
12815   if (isa<CastExpr>(RHSStripped))
12816     RHSStripped = RHSStripped->IgnoreParenCasts();
12817 
12818   // Warn about comparisons against a string constant (unless the other
12819   // operand is null); the user probably wants string comparison function.
12820   Expr *LiteralString = nullptr;
12821   Expr *LiteralStringStripped = nullptr;
12822   if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
12823       !RHSStripped->isNullPointerConstant(S.Context,
12824                                           Expr::NPC_ValueDependentIsNull)) {
12825     LiteralString = LHS;
12826     LiteralStringStripped = LHSStripped;
12827   } else if ((isa<StringLiteral>(RHSStripped) ||
12828               isa<ObjCEncodeExpr>(RHSStripped)) &&
12829              !LHSStripped->isNullPointerConstant(S.Context,
12830                                           Expr::NPC_ValueDependentIsNull)) {
12831     LiteralString = RHS;
12832     LiteralStringStripped = RHSStripped;
12833   }
12834 
12835   if (LiteralString) {
12836     S.DiagRuntimeBehavior(Loc, nullptr,
12837                           S.PDiag(diag::warn_stringcompare)
12838                               << isa<ObjCEncodeExpr>(LiteralStringStripped)
12839                               << LiteralString->getSourceRange());
12840   }
12841 }
12842 
castKindToImplicitConversionKind(CastKind CK)12843 static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
12844   switch (CK) {
12845   default: {
12846 #ifndef NDEBUG
12847     llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
12848                  << "\n";
12849 #endif
12850     llvm_unreachable("unhandled cast kind");
12851   }
12852   case CK_UserDefinedConversion:
12853     return ICK_Identity;
12854   case CK_LValueToRValue:
12855     return ICK_Lvalue_To_Rvalue;
12856   case CK_ArrayToPointerDecay:
12857     return ICK_Array_To_Pointer;
12858   case CK_FunctionToPointerDecay:
12859     return ICK_Function_To_Pointer;
12860   case CK_IntegralCast:
12861     return ICK_Integral_Conversion;
12862   case CK_FloatingCast:
12863     return ICK_Floating_Conversion;
12864   case CK_IntegralToFloating:
12865   case CK_FloatingToIntegral:
12866     return ICK_Floating_Integral;
12867   case CK_IntegralComplexCast:
12868   case CK_FloatingComplexCast:
12869   case CK_FloatingComplexToIntegralComplex:
12870   case CK_IntegralComplexToFloatingComplex:
12871     return ICK_Complex_Conversion;
12872   case CK_FloatingComplexToReal:
12873   case CK_FloatingRealToComplex:
12874   case CK_IntegralComplexToReal:
12875   case CK_IntegralRealToComplex:
12876     return ICK_Complex_Real;
12877   }
12878 }
12879 
checkThreeWayNarrowingConversion(Sema & S,QualType ToType,Expr * E,QualType FromType,SourceLocation Loc)12880 static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
12881                                              QualType FromType,
12882                                              SourceLocation Loc) {
12883   // Check for a narrowing implicit conversion.
12884   StandardConversionSequence SCS;
12885   SCS.setAsIdentityConversion();
12886   SCS.setToType(0, FromType);
12887   SCS.setToType(1, ToType);
12888   if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
12889     SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
12890 
12891   APValue PreNarrowingValue;
12892   QualType PreNarrowingType;
12893   switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
12894                                PreNarrowingType,
12895                                /*IgnoreFloatToIntegralConversion*/ true)) {
12896   case NK_Dependent_Narrowing:
12897     // Implicit conversion to a narrower type, but the expression is
12898     // value-dependent so we can't tell whether it's actually narrowing.
12899   case NK_Not_Narrowing:
12900     return false;
12901 
12902   case NK_Constant_Narrowing:
12903     // Implicit conversion to a narrower type, and the value is not a constant
12904     // expression.
12905     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12906         << /*Constant*/ 1
12907         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
12908     return true;
12909 
12910   case NK_Variable_Narrowing:
12911     // Implicit conversion to a narrower type, and the value is not a constant
12912     // expression.
12913   case NK_Type_Narrowing:
12914     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12915         << /*Constant*/ 0 << FromType << ToType;
12916     // TODO: It's not a constant expression, but what if the user intended it
12917     // to be? Can we produce notes to help them figure out why it isn't?
12918     return true;
12919   }
12920   llvm_unreachable("unhandled case in switch");
12921 }
12922 
checkArithmeticOrEnumeralThreeWayCompare(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)12923 static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
12924                                                          ExprResult &LHS,
12925                                                          ExprResult &RHS,
12926                                                          SourceLocation Loc) {
12927   QualType LHSType = LHS.get()->getType();
12928   QualType RHSType = RHS.get()->getType();
12929   // Dig out the original argument type and expression before implicit casts
12930   // were applied. These are the types/expressions we need to check the
12931   // [expr.spaceship] requirements against.
12932   ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
12933   ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
12934   QualType LHSStrippedType = LHSStripped.get()->getType();
12935   QualType RHSStrippedType = RHSStripped.get()->getType();
12936 
12937   // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
12938   // other is not, the program is ill-formed.
12939   if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
12940     S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12941     return QualType();
12942   }
12943 
12944   // FIXME: Consider combining this with checkEnumArithmeticConversions.
12945   int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
12946                     RHSStrippedType->isEnumeralType();
12947   if (NumEnumArgs == 1) {
12948     bool LHSIsEnum = LHSStrippedType->isEnumeralType();
12949     QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
12950     if (OtherTy->hasFloatingRepresentation()) {
12951       S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12952       return QualType();
12953     }
12954   }
12955   if (NumEnumArgs == 2) {
12956     // C++2a [expr.spaceship]p5: If both operands have the same enumeration
12957     // type E, the operator yields the result of converting the operands
12958     // to the underlying type of E and applying <=> to the converted operands.
12959     if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
12960       S.InvalidOperands(Loc, LHS, RHS);
12961       return QualType();
12962     }
12963     QualType IntType =
12964         LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
12965     assert(IntType->isArithmeticType());
12966 
12967     // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
12968     // promote the boolean type, and all other promotable integer types, to
12969     // avoid this.
12970     if (S.Context.isPromotableIntegerType(IntType))
12971       IntType = S.Context.getPromotedIntegerType(IntType);
12972 
12973     LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
12974     RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
12975     LHSType = RHSType = IntType;
12976   }
12977 
12978   // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
12979   // usual arithmetic conversions are applied to the operands.
12980   QualType Type =
12981       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12982   if (LHS.isInvalid() || RHS.isInvalid())
12983     return QualType();
12984   if (Type.isNull())
12985     return S.InvalidOperands(Loc, LHS, RHS);
12986 
12987   std::optional<ComparisonCategoryType> CCT =
12988       getComparisonCategoryForBuiltinCmp(Type);
12989   if (!CCT)
12990     return S.InvalidOperands(Loc, LHS, RHS);
12991 
12992   bool HasNarrowing = checkThreeWayNarrowingConversion(
12993       S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
12994   HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
12995                                                    RHS.get()->getBeginLoc());
12996   if (HasNarrowing)
12997     return QualType();
12998 
12999   assert(!Type.isNull() && "composite type for <=> has not been set");
13000 
13001   return S.CheckComparisonCategoryType(
13002       *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
13003 }
13004 
checkArithmeticOrEnumeralCompare(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)13005 static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
13006                                                  ExprResult &RHS,
13007                                                  SourceLocation Loc,
13008                                                  BinaryOperatorKind Opc) {
13009   if (Opc == BO_Cmp)
13010     return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
13011 
13012   // C99 6.5.8p3 / C99 6.5.9p4
13013   QualType Type =
13014       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
13015   if (LHS.isInvalid() || RHS.isInvalid())
13016     return QualType();
13017   if (Type.isNull())
13018     return S.InvalidOperands(Loc, LHS, RHS);
13019   assert(Type->isArithmeticType() || Type->isEnumeralType());
13020 
13021   if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
13022     return S.InvalidOperands(Loc, LHS, RHS);
13023 
13024   // Check for comparisons of floating point operands using != and ==.
13025   if (Type->hasFloatingRepresentation())
13026     S.CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13027 
13028   // The result of comparisons is 'bool' in C++, 'int' in C.
13029   return S.Context.getLogicalOperationType();
13030 }
13031 
CheckPtrComparisonWithNullChar(ExprResult & E,ExprResult & NullE)13032 void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
13033   if (!NullE.get()->getType()->isAnyPointerType())
13034     return;
13035   int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
13036   if (!E.get()->getType()->isAnyPointerType() &&
13037       E.get()->isNullPointerConstant(Context,
13038                                      Expr::NPC_ValueDependentIsNotNull) ==
13039         Expr::NPCK_ZeroExpression) {
13040     if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
13041       if (CL->getValue() == 0)
13042         Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
13043             << NullValue
13044             << FixItHint::CreateReplacement(E.get()->getExprLoc(),
13045                                             NullValue ? "NULL" : "(void *)0");
13046     } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
13047         TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
13048         QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
13049         if (T == Context.CharTy)
13050           Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
13051               << NullValue
13052               << FixItHint::CreateReplacement(E.get()->getExprLoc(),
13053                                               NullValue ? "NULL" : "(void *)0");
13054       }
13055   }
13056 }
13057 
13058 // C99 6.5.8, C++ [expr.rel]
CheckCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)13059 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
13060                                     SourceLocation Loc,
13061                                     BinaryOperatorKind Opc) {
13062   bool IsRelational = BinaryOperator::isRelationalOp(Opc);
13063   bool IsThreeWay = Opc == BO_Cmp;
13064   bool IsOrdered = IsRelational || IsThreeWay;
13065   auto IsAnyPointerType = [](ExprResult E) {
13066     QualType Ty = E.get()->getType();
13067     return Ty->isPointerType() || Ty->isMemberPointerType();
13068   };
13069 
13070   // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
13071   // type, array-to-pointer, ..., conversions are performed on both operands to
13072   // bring them to their composite type.
13073   // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
13074   // any type-related checks.
13075   if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
13076     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13077     if (LHS.isInvalid())
13078       return QualType();
13079     RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13080     if (RHS.isInvalid())
13081       return QualType();
13082   } else {
13083     LHS = DefaultLvalueConversion(LHS.get());
13084     if (LHS.isInvalid())
13085       return QualType();
13086     RHS = DefaultLvalueConversion(RHS.get());
13087     if (RHS.isInvalid())
13088       return QualType();
13089   }
13090 
13091   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
13092   if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
13093     CheckPtrComparisonWithNullChar(LHS, RHS);
13094     CheckPtrComparisonWithNullChar(RHS, LHS);
13095   }
13096 
13097   // Handle vector comparisons separately.
13098   if (LHS.get()->getType()->isVectorType() ||
13099       RHS.get()->getType()->isVectorType())
13100     return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
13101 
13102   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13103       RHS.get()->getType()->isSveVLSBuiltinType())
13104     return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc);
13105 
13106   diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
13107   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13108 
13109   QualType LHSType = LHS.get()->getType();
13110   QualType RHSType = RHS.get()->getType();
13111   if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
13112       (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
13113     return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
13114 
13115   if ((LHSType->isPointerType() &&
13116        LHSType->getPointeeType().isWebAssemblyReferenceType()) ||
13117       (RHSType->isPointerType() &&
13118        RHSType->getPointeeType().isWebAssemblyReferenceType()))
13119     return InvalidOperands(Loc, LHS, RHS);
13120 
13121   const Expr::NullPointerConstantKind LHSNullKind =
13122       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
13123   const Expr::NullPointerConstantKind RHSNullKind =
13124       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
13125   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
13126   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
13127 
13128   auto computeResultTy = [&]() {
13129     if (Opc != BO_Cmp)
13130       return Context.getLogicalOperationType();
13131     assert(getLangOpts().CPlusPlus);
13132     assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
13133 
13134     QualType CompositeTy = LHS.get()->getType();
13135     assert(!CompositeTy->isReferenceType());
13136 
13137     std::optional<ComparisonCategoryType> CCT =
13138         getComparisonCategoryForBuiltinCmp(CompositeTy);
13139     if (!CCT)
13140       return InvalidOperands(Loc, LHS, RHS);
13141 
13142     if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
13143       // P0946R0: Comparisons between a null pointer constant and an object
13144       // pointer result in std::strong_equality, which is ill-formed under
13145       // P1959R0.
13146       Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
13147           << (LHSIsNull ? LHS.get()->getSourceRange()
13148                         : RHS.get()->getSourceRange());
13149       return QualType();
13150     }
13151 
13152     return CheckComparisonCategoryType(
13153         *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
13154   };
13155 
13156   if (!IsOrdered && LHSIsNull != RHSIsNull) {
13157     bool IsEquality = Opc == BO_EQ;
13158     if (RHSIsNull)
13159       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
13160                                    RHS.get()->getSourceRange());
13161     else
13162       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
13163                                    LHS.get()->getSourceRange());
13164   }
13165 
13166   if (IsOrdered && LHSType->isFunctionPointerType() &&
13167       RHSType->isFunctionPointerType()) {
13168     // Valid unless a relational comparison of function pointers
13169     bool IsError = Opc == BO_Cmp;
13170     auto DiagID =
13171         IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
13172         : getLangOpts().CPlusPlus
13173             ? diag::warn_typecheck_ordered_comparison_of_function_pointers
13174             : diag::ext_typecheck_ordered_comparison_of_function_pointers;
13175     Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
13176                       << RHS.get()->getSourceRange();
13177     if (IsError)
13178       return QualType();
13179   }
13180 
13181   if ((LHSType->isIntegerType() && !LHSIsNull) ||
13182       (RHSType->isIntegerType() && !RHSIsNull)) {
13183     // Skip normal pointer conversion checks in this case; we have better
13184     // diagnostics for this below.
13185   } else if (getLangOpts().CPlusPlus) {
13186     // Equality comparison of a function pointer to a void pointer is invalid,
13187     // but we allow it as an extension.
13188     // FIXME: If we really want to allow this, should it be part of composite
13189     // pointer type computation so it works in conditionals too?
13190     if (!IsOrdered &&
13191         ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
13192          (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
13193       // This is a gcc extension compatibility comparison.
13194       // In a SFINAE context, we treat this as a hard error to maintain
13195       // conformance with the C++ standard.
13196       diagnoseFunctionPointerToVoidComparison(
13197           *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
13198 
13199       if (isSFINAEContext())
13200         return QualType();
13201 
13202       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13203       return computeResultTy();
13204     }
13205 
13206     // C++ [expr.eq]p2:
13207     //   If at least one operand is a pointer [...] bring them to their
13208     //   composite pointer type.
13209     // C++ [expr.spaceship]p6
13210     //  If at least one of the operands is of pointer type, [...] bring them
13211     //  to their composite pointer type.
13212     // C++ [expr.rel]p2:
13213     //   If both operands are pointers, [...] bring them to their composite
13214     //   pointer type.
13215     // For <=>, the only valid non-pointer types are arrays and functions, and
13216     // we already decayed those, so this is really the same as the relational
13217     // comparison rule.
13218     if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
13219             (IsOrdered ? 2 : 1) &&
13220         (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
13221                                          RHSType->isObjCObjectPointerType()))) {
13222       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
13223         return QualType();
13224       return computeResultTy();
13225     }
13226   } else if (LHSType->isPointerType() &&
13227              RHSType->isPointerType()) { // C99 6.5.8p2
13228     // All of the following pointer-related warnings are GCC extensions, except
13229     // when handling null pointer constants.
13230     QualType LCanPointeeTy =
13231       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
13232     QualType RCanPointeeTy =
13233       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
13234 
13235     // C99 6.5.9p2 and C99 6.5.8p2
13236     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
13237                                    RCanPointeeTy.getUnqualifiedType())) {
13238       if (IsRelational) {
13239         // Pointers both need to point to complete or incomplete types
13240         if ((LCanPointeeTy->isIncompleteType() !=
13241              RCanPointeeTy->isIncompleteType()) &&
13242             !getLangOpts().C11) {
13243           Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
13244               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
13245               << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
13246               << RCanPointeeTy->isIncompleteType();
13247         }
13248       }
13249     } else if (!IsRelational &&
13250                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
13251       // Valid unless comparison between non-null pointer and function pointer
13252       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
13253           && !LHSIsNull && !RHSIsNull)
13254         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
13255                                                 /*isError*/false);
13256     } else {
13257       // Invalid
13258       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
13259     }
13260     if (LCanPointeeTy != RCanPointeeTy) {
13261       // Treat NULL constant as a special case in OpenCL.
13262       if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
13263         if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
13264           Diag(Loc,
13265                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
13266               << LHSType << RHSType << 0 /* comparison */
13267               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
13268         }
13269       }
13270       LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
13271       LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
13272       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
13273                                                : CK_BitCast;
13274       if (LHSIsNull && !RHSIsNull)
13275         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
13276       else
13277         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
13278     }
13279     return computeResultTy();
13280   }
13281 
13282 
13283   // C++ [expr.eq]p4:
13284   //   Two operands of type std::nullptr_t or one operand of type
13285   //   std::nullptr_t and the other a null pointer constant compare
13286   //   equal.
13287   // C23 6.5.9p5:
13288   //   If both operands have type nullptr_t or one operand has type nullptr_t
13289   //   and the other is a null pointer constant, they compare equal if the
13290   //   former is a null pointer.
13291   if (!IsOrdered && LHSIsNull && RHSIsNull) {
13292     if (LHSType->isNullPtrType()) {
13293       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13294       return computeResultTy();
13295     }
13296     if (RHSType->isNullPtrType()) {
13297       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13298       return computeResultTy();
13299     }
13300   }
13301 
13302   if (!getLangOpts().CPlusPlus && !IsOrdered && (LHSIsNull || RHSIsNull)) {
13303     // C23 6.5.9p6:
13304     //   Otherwise, at least one operand is a pointer. If one is a pointer and
13305     //   the other is a null pointer constant or has type nullptr_t, they
13306     //   compare equal
13307     if (LHSIsNull && RHSType->isPointerType()) {
13308       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13309       return computeResultTy();
13310     }
13311     if (RHSIsNull && LHSType->isPointerType()) {
13312       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13313       return computeResultTy();
13314     }
13315   }
13316 
13317   // Comparison of Objective-C pointers and block pointers against nullptr_t.
13318   // These aren't covered by the composite pointer type rules.
13319   if (!IsOrdered && RHSType->isNullPtrType() &&
13320       (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
13321     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13322     return computeResultTy();
13323   }
13324   if (!IsOrdered && LHSType->isNullPtrType() &&
13325       (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
13326     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13327     return computeResultTy();
13328   }
13329 
13330   if (getLangOpts().CPlusPlus) {
13331     if (IsRelational &&
13332         ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
13333          (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
13334       // HACK: Relational comparison of nullptr_t against a pointer type is
13335       // invalid per DR583, but we allow it within std::less<> and friends,
13336       // since otherwise common uses of it break.
13337       // FIXME: Consider removing this hack once LWG fixes std::less<> and
13338       // friends to have std::nullptr_t overload candidates.
13339       DeclContext *DC = CurContext;
13340       if (isa<FunctionDecl>(DC))
13341         DC = DC->getParent();
13342       if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
13343         if (CTSD->isInStdNamespace() &&
13344             llvm::StringSwitch<bool>(CTSD->getName())
13345                 .Cases("less", "less_equal", "greater", "greater_equal", true)
13346                 .Default(false)) {
13347           if (RHSType->isNullPtrType())
13348             RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13349           else
13350             LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13351           return computeResultTy();
13352         }
13353       }
13354     }
13355 
13356     // C++ [expr.eq]p2:
13357     //   If at least one operand is a pointer to member, [...] bring them to
13358     //   their composite pointer type.
13359     if (!IsOrdered &&
13360         (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
13361       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
13362         return QualType();
13363       else
13364         return computeResultTy();
13365     }
13366   }
13367 
13368   // Handle block pointer types.
13369   if (!IsOrdered && LHSType->isBlockPointerType() &&
13370       RHSType->isBlockPointerType()) {
13371     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
13372     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
13373 
13374     if (!LHSIsNull && !RHSIsNull &&
13375         !Context.typesAreCompatible(lpointee, rpointee)) {
13376       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
13377         << LHSType << RHSType << LHS.get()->getSourceRange()
13378         << RHS.get()->getSourceRange();
13379     }
13380     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13381     return computeResultTy();
13382   }
13383 
13384   // Allow block pointers to be compared with null pointer constants.
13385   if (!IsOrdered
13386       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
13387           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
13388     if (!LHSIsNull && !RHSIsNull) {
13389       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
13390              ->getPointeeType()->isVoidType())
13391             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
13392                 ->getPointeeType()->isVoidType())))
13393         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
13394           << LHSType << RHSType << LHS.get()->getSourceRange()
13395           << RHS.get()->getSourceRange();
13396     }
13397     if (LHSIsNull && !RHSIsNull)
13398       LHS = ImpCastExprToType(LHS.get(), RHSType,
13399                               RHSType->isPointerType() ? CK_BitCast
13400                                 : CK_AnyPointerToBlockPointerCast);
13401     else
13402       RHS = ImpCastExprToType(RHS.get(), LHSType,
13403                               LHSType->isPointerType() ? CK_BitCast
13404                                 : CK_AnyPointerToBlockPointerCast);
13405     return computeResultTy();
13406   }
13407 
13408   if (LHSType->isObjCObjectPointerType() ||
13409       RHSType->isObjCObjectPointerType()) {
13410     const PointerType *LPT = LHSType->getAs<PointerType>();
13411     const PointerType *RPT = RHSType->getAs<PointerType>();
13412     if (LPT || RPT) {
13413       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
13414       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
13415 
13416       if (!LPtrToVoid && !RPtrToVoid &&
13417           !Context.typesAreCompatible(LHSType, RHSType)) {
13418         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
13419                                           /*isError*/false);
13420       }
13421       // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
13422       // the RHS, but we have test coverage for this behavior.
13423       // FIXME: Consider using convertPointersToCompositeType in C++.
13424       if (LHSIsNull && !RHSIsNull) {
13425         Expr *E = LHS.get();
13426         if (getLangOpts().ObjCAutoRefCount)
13427           CheckObjCConversion(SourceRange(), RHSType, E,
13428                               CCK_ImplicitConversion);
13429         LHS = ImpCastExprToType(E, RHSType,
13430                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
13431       }
13432       else {
13433         Expr *E = RHS.get();
13434         if (getLangOpts().ObjCAutoRefCount)
13435           CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
13436                               /*Diagnose=*/true,
13437                               /*DiagnoseCFAudited=*/false, Opc);
13438         RHS = ImpCastExprToType(E, LHSType,
13439                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
13440       }
13441       return computeResultTy();
13442     }
13443     if (LHSType->isObjCObjectPointerType() &&
13444         RHSType->isObjCObjectPointerType()) {
13445       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
13446         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
13447                                           /*isError*/false);
13448       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
13449         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
13450 
13451       if (LHSIsNull && !RHSIsNull)
13452         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
13453       else
13454         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13455       return computeResultTy();
13456     }
13457 
13458     if (!IsOrdered && LHSType->isBlockPointerType() &&
13459         RHSType->isBlockCompatibleObjCPointerType(Context)) {
13460       LHS = ImpCastExprToType(LHS.get(), RHSType,
13461                               CK_BlockPointerToObjCPointerCast);
13462       return computeResultTy();
13463     } else if (!IsOrdered &&
13464                LHSType->isBlockCompatibleObjCPointerType(Context) &&
13465                RHSType->isBlockPointerType()) {
13466       RHS = ImpCastExprToType(RHS.get(), LHSType,
13467                               CK_BlockPointerToObjCPointerCast);
13468       return computeResultTy();
13469     }
13470   }
13471   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
13472       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
13473     unsigned DiagID = 0;
13474     bool isError = false;
13475     if (LangOpts.DebuggerSupport) {
13476       // Under a debugger, allow the comparison of pointers to integers,
13477       // since users tend to want to compare addresses.
13478     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
13479                (RHSIsNull && RHSType->isIntegerType())) {
13480       if (IsOrdered) {
13481         isError = getLangOpts().CPlusPlus;
13482         DiagID =
13483           isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
13484                   : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
13485       }
13486     } else if (getLangOpts().CPlusPlus) {
13487       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
13488       isError = true;
13489     } else if (IsOrdered)
13490       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
13491     else
13492       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
13493 
13494     if (DiagID) {
13495       Diag(Loc, DiagID)
13496         << LHSType << RHSType << LHS.get()->getSourceRange()
13497         << RHS.get()->getSourceRange();
13498       if (isError)
13499         return QualType();
13500     }
13501 
13502     if (LHSType->isIntegerType())
13503       LHS = ImpCastExprToType(LHS.get(), RHSType,
13504                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
13505     else
13506       RHS = ImpCastExprToType(RHS.get(), LHSType,
13507                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
13508     return computeResultTy();
13509   }
13510 
13511   // Handle block pointers.
13512   if (!IsOrdered && RHSIsNull
13513       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
13514     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13515     return computeResultTy();
13516   }
13517   if (!IsOrdered && LHSIsNull
13518       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
13519     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13520     return computeResultTy();
13521   }
13522 
13523   if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
13524     if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
13525       return computeResultTy();
13526     }
13527 
13528     if (LHSType->isQueueT() && RHSType->isQueueT()) {
13529       return computeResultTy();
13530     }
13531 
13532     if (LHSIsNull && RHSType->isQueueT()) {
13533       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13534       return computeResultTy();
13535     }
13536 
13537     if (LHSType->isQueueT() && RHSIsNull) {
13538       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13539       return computeResultTy();
13540     }
13541   }
13542 
13543   return InvalidOperands(Loc, LHS, RHS);
13544 }
13545 
13546 // Return a signed ext_vector_type that is of identical size and number of
13547 // elements. For floating point vectors, return an integer type of identical
13548 // size and number of elements. In the non ext_vector_type case, search from
13549 // the largest type to the smallest type to avoid cases where long long == long,
13550 // where long gets picked over long long.
GetSignedVectorType(QualType V)13551 QualType Sema::GetSignedVectorType(QualType V) {
13552   const VectorType *VTy = V->castAs<VectorType>();
13553   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
13554 
13555   if (isa<ExtVectorType>(VTy)) {
13556     if (VTy->isExtVectorBoolType())
13557       return Context.getExtVectorType(Context.BoolTy, VTy->getNumElements());
13558     if (TypeSize == Context.getTypeSize(Context.CharTy))
13559       return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
13560     if (TypeSize == Context.getTypeSize(Context.ShortTy))
13561       return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
13562     if (TypeSize == Context.getTypeSize(Context.IntTy))
13563       return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
13564     if (TypeSize == Context.getTypeSize(Context.Int128Ty))
13565       return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements());
13566     if (TypeSize == Context.getTypeSize(Context.LongTy))
13567       return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
13568     assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
13569            "Unhandled vector element size in vector compare");
13570     return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
13571   }
13572 
13573   if (TypeSize == Context.getTypeSize(Context.Int128Ty))
13574     return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(),
13575                                  VectorKind::Generic);
13576   if (TypeSize == Context.getTypeSize(Context.LongLongTy))
13577     return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
13578                                  VectorKind::Generic);
13579   if (TypeSize == Context.getTypeSize(Context.LongTy))
13580     return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
13581                                  VectorKind::Generic);
13582   if (TypeSize == Context.getTypeSize(Context.IntTy))
13583     return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
13584                                  VectorKind::Generic);
13585   if (TypeSize == Context.getTypeSize(Context.ShortTy))
13586     return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
13587                                  VectorKind::Generic);
13588   assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
13589          "Unhandled vector element size in vector compare");
13590   return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
13591                                VectorKind::Generic);
13592 }
13593 
GetSignedSizelessVectorType(QualType V)13594 QualType Sema::GetSignedSizelessVectorType(QualType V) {
13595   const BuiltinType *VTy = V->castAs<BuiltinType>();
13596   assert(VTy->isSizelessBuiltinType() && "expected sizeless type");
13597 
13598   const QualType ETy = V->getSveEltType(Context);
13599   const auto TypeSize = Context.getTypeSize(ETy);
13600 
13601   const QualType IntTy = Context.getIntTypeForBitwidth(TypeSize, true);
13602   const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VTy).EC;
13603   return Context.getScalableVectorType(IntTy, VecSize.getKnownMinValue());
13604 }
13605 
13606 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
13607 /// operates on extended vector types.  Instead of producing an IntTy result,
13608 /// like a scalar comparison, a vector comparison produces a vector of integer
13609 /// types.
CheckVectorCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)13610 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
13611                                           SourceLocation Loc,
13612                                           BinaryOperatorKind Opc) {
13613   if (Opc == BO_Cmp) {
13614     Diag(Loc, diag::err_three_way_vector_comparison);
13615     return QualType();
13616   }
13617 
13618   // Check to make sure we're operating on vectors of the same type and width,
13619   // Allowing one side to be a scalar of element type.
13620   QualType vType =
13621       CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ false,
13622                           /*AllowBothBool*/ true,
13623                           /*AllowBoolConversions*/ getLangOpts().ZVector,
13624                           /*AllowBooleanOperation*/ true,
13625                           /*ReportInvalid*/ true);
13626   if (vType.isNull())
13627     return vType;
13628 
13629   QualType LHSType = LHS.get()->getType();
13630 
13631   // Determine the return type of a vector compare. By default clang will return
13632   // a scalar for all vector compares except vector bool and vector pixel.
13633   // With the gcc compiler we will always return a vector type and with the xl
13634   // compiler we will always return a scalar type. This switch allows choosing
13635   // which behavior is prefered.
13636   if (getLangOpts().AltiVec) {
13637     switch (getLangOpts().getAltivecSrcCompat()) {
13638     case LangOptions::AltivecSrcCompatKind::Mixed:
13639       // If AltiVec, the comparison results in a numeric type, i.e.
13640       // bool for C++, int for C
13641       if (vType->castAs<VectorType>()->getVectorKind() ==
13642           VectorKind::AltiVecVector)
13643         return Context.getLogicalOperationType();
13644       else
13645         Diag(Loc, diag::warn_deprecated_altivec_src_compat);
13646       break;
13647     case LangOptions::AltivecSrcCompatKind::GCC:
13648       // For GCC we always return the vector type.
13649       break;
13650     case LangOptions::AltivecSrcCompatKind::XL:
13651       return Context.getLogicalOperationType();
13652       break;
13653     }
13654   }
13655 
13656   // For non-floating point types, check for self-comparisons of the form
13657   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
13658   // often indicate logic errors in the program.
13659   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13660 
13661   // Check for comparisons of floating point operands using != and ==.
13662   if (LHSType->hasFloatingRepresentation()) {
13663     assert(RHS.get()->getType()->hasFloatingRepresentation());
13664     CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13665   }
13666 
13667   // Return a signed type for the vector.
13668   return GetSignedVectorType(vType);
13669 }
13670 
CheckSizelessVectorCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)13671 QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS,
13672                                                   ExprResult &RHS,
13673                                                   SourceLocation Loc,
13674                                                   BinaryOperatorKind Opc) {
13675   if (Opc == BO_Cmp) {
13676     Diag(Loc, diag::err_three_way_vector_comparison);
13677     return QualType();
13678   }
13679 
13680   // Check to make sure we're operating on vectors of the same type and width,
13681   // Allowing one side to be a scalar of element type.
13682   QualType vType = CheckSizelessVectorOperands(
13683       LHS, RHS, Loc, /*isCompAssign*/ false, ACK_Comparison);
13684 
13685   if (vType.isNull())
13686     return vType;
13687 
13688   QualType LHSType = LHS.get()->getType();
13689 
13690   // For non-floating point types, check for self-comparisons of the form
13691   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
13692   // often indicate logic errors in the program.
13693   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13694 
13695   // Check for comparisons of floating point operands using != and ==.
13696   if (LHSType->hasFloatingRepresentation()) {
13697     assert(RHS.get()->getType()->hasFloatingRepresentation());
13698     CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13699   }
13700 
13701   const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
13702   const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>();
13703 
13704   if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() &&
13705       RHSBuiltinTy->isSVEBool())
13706     return LHSType;
13707 
13708   // Return a signed type for the vector.
13709   return GetSignedSizelessVectorType(vType);
13710 }
13711 
diagnoseXorMisusedAsPow(Sema & S,const ExprResult & XorLHS,const ExprResult & XorRHS,const SourceLocation Loc)13712 static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
13713                                     const ExprResult &XorRHS,
13714                                     const SourceLocation Loc) {
13715   // Do not diagnose macros.
13716   if (Loc.isMacroID())
13717     return;
13718 
13719   // Do not diagnose if both LHS and RHS are macros.
13720   if (XorLHS.get()->getExprLoc().isMacroID() &&
13721       XorRHS.get()->getExprLoc().isMacroID())
13722     return;
13723 
13724   bool Negative = false;
13725   bool ExplicitPlus = false;
13726   const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
13727   const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
13728 
13729   if (!LHSInt)
13730     return;
13731   if (!RHSInt) {
13732     // Check negative literals.
13733     if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
13734       UnaryOperatorKind Opc = UO->getOpcode();
13735       if (Opc != UO_Minus && Opc != UO_Plus)
13736         return;
13737       RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
13738       if (!RHSInt)
13739         return;
13740       Negative = (Opc == UO_Minus);
13741       ExplicitPlus = !Negative;
13742     } else {
13743       return;
13744     }
13745   }
13746 
13747   const llvm::APInt &LeftSideValue = LHSInt->getValue();
13748   llvm::APInt RightSideValue = RHSInt->getValue();
13749   if (LeftSideValue != 2 && LeftSideValue != 10)
13750     return;
13751 
13752   if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
13753     return;
13754 
13755   CharSourceRange ExprRange = CharSourceRange::getCharRange(
13756       LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
13757   llvm::StringRef ExprStr =
13758       Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
13759 
13760   CharSourceRange XorRange =
13761       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
13762   llvm::StringRef XorStr =
13763       Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
13764   // Do not diagnose if xor keyword/macro is used.
13765   if (XorStr == "xor")
13766     return;
13767 
13768   std::string LHSStr = std::string(Lexer::getSourceText(
13769       CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
13770       S.getSourceManager(), S.getLangOpts()));
13771   std::string RHSStr = std::string(Lexer::getSourceText(
13772       CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
13773       S.getSourceManager(), S.getLangOpts()));
13774 
13775   if (Negative) {
13776     RightSideValue = -RightSideValue;
13777     RHSStr = "-" + RHSStr;
13778   } else if (ExplicitPlus) {
13779     RHSStr = "+" + RHSStr;
13780   }
13781 
13782   StringRef LHSStrRef = LHSStr;
13783   StringRef RHSStrRef = RHSStr;
13784   // Do not diagnose literals with digit separators, binary, hexadecimal, octal
13785   // literals.
13786   if (LHSStrRef.starts_with("0b") || LHSStrRef.starts_with("0B") ||
13787       RHSStrRef.starts_with("0b") || RHSStrRef.starts_with("0B") ||
13788       LHSStrRef.starts_with("0x") || LHSStrRef.starts_with("0X") ||
13789       RHSStrRef.starts_with("0x") || RHSStrRef.starts_with("0X") ||
13790       (LHSStrRef.size() > 1 && LHSStrRef.starts_with("0")) ||
13791       (RHSStrRef.size() > 1 && RHSStrRef.starts_with("0")) ||
13792       LHSStrRef.contains('\'') || RHSStrRef.contains('\''))
13793     return;
13794 
13795   bool SuggestXor =
13796       S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
13797   const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
13798   int64_t RightSideIntValue = RightSideValue.getSExtValue();
13799   if (LeftSideValue == 2 && RightSideIntValue >= 0) {
13800     std::string SuggestedExpr = "1 << " + RHSStr;
13801     bool Overflow = false;
13802     llvm::APInt One = (LeftSideValue - 1);
13803     llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
13804     if (Overflow) {
13805       if (RightSideIntValue < 64)
13806         S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13807             << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
13808             << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
13809       else if (RightSideIntValue == 64)
13810         S.Diag(Loc, diag::warn_xor_used_as_pow)
13811             << ExprStr << toString(XorValue, 10, true);
13812       else
13813         return;
13814     } else {
13815       S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
13816           << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
13817           << toString(PowValue, 10, true)
13818           << FixItHint::CreateReplacement(
13819                  ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
13820     }
13821 
13822     S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13823         << ("0x2 ^ " + RHSStr) << SuggestXor;
13824   } else if (LeftSideValue == 10) {
13825     std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
13826     S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13827         << ExprStr << toString(XorValue, 10, true) << SuggestedValue
13828         << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
13829     S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13830         << ("0xA ^ " + RHSStr) << SuggestXor;
13831   }
13832 }
13833 
CheckVectorLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)13834 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13835                                           SourceLocation Loc) {
13836   // Ensure that either both operands are of the same vector type, or
13837   // one operand is of a vector type and the other is of its element type.
13838   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
13839                                        /*AllowBothBool*/ true,
13840                                        /*AllowBoolConversions*/ false,
13841                                        /*AllowBooleanOperation*/ false,
13842                                        /*ReportInvalid*/ false);
13843   if (vType.isNull())
13844     return InvalidOperands(Loc, LHS, RHS);
13845   if (getLangOpts().OpenCL &&
13846       getLangOpts().getOpenCLCompatibleVersion() < 120 &&
13847       vType->hasFloatingRepresentation())
13848     return InvalidOperands(Loc, LHS, RHS);
13849   // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
13850   //        usage of the logical operators && and || with vectors in C. This
13851   //        check could be notionally dropped.
13852   if (!getLangOpts().CPlusPlus &&
13853       !(isa<ExtVectorType>(vType->getAs<VectorType>())))
13854     return InvalidLogicalVectorOperands(Loc, LHS, RHS);
13855 
13856   return GetSignedVectorType(LHS.get()->getType());
13857 }
13858 
CheckMatrixElementwiseOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)13859 QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
13860                                               SourceLocation Loc,
13861                                               bool IsCompAssign) {
13862   if (!IsCompAssign) {
13863     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13864     if (LHS.isInvalid())
13865       return QualType();
13866   }
13867   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13868   if (RHS.isInvalid())
13869     return QualType();
13870 
13871   // For conversion purposes, we ignore any qualifiers.
13872   // For example, "const float" and "float" are equivalent.
13873   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
13874   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
13875 
13876   const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
13877   const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
13878   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13879 
13880   if (Context.hasSameType(LHSType, RHSType))
13881     return Context.getCommonSugaredType(LHSType, RHSType);
13882 
13883   // Type conversion may change LHS/RHS. Keep copies to the original results, in
13884   // case we have to return InvalidOperands.
13885   ExprResult OriginalLHS = LHS;
13886   ExprResult OriginalRHS = RHS;
13887   if (LHSMatType && !RHSMatType) {
13888     RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
13889     if (!RHS.isInvalid())
13890       return LHSType;
13891 
13892     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13893   }
13894 
13895   if (!LHSMatType && RHSMatType) {
13896     LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
13897     if (!LHS.isInvalid())
13898       return RHSType;
13899     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13900   }
13901 
13902   return InvalidOperands(Loc, LHS, RHS);
13903 }
13904 
CheckMatrixMultiplyOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)13905 QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
13906                                            SourceLocation Loc,
13907                                            bool IsCompAssign) {
13908   if (!IsCompAssign) {
13909     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13910     if (LHS.isInvalid())
13911       return QualType();
13912   }
13913   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13914   if (RHS.isInvalid())
13915     return QualType();
13916 
13917   auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
13918   auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
13919   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13920 
13921   if (LHSMatType && RHSMatType) {
13922     if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
13923       return InvalidOperands(Loc, LHS, RHS);
13924 
13925     if (Context.hasSameType(LHSMatType, RHSMatType))
13926       return Context.getCommonSugaredType(
13927           LHS.get()->getType().getUnqualifiedType(),
13928           RHS.get()->getType().getUnqualifiedType());
13929 
13930     QualType LHSELTy = LHSMatType->getElementType(),
13931              RHSELTy = RHSMatType->getElementType();
13932     if (!Context.hasSameType(LHSELTy, RHSELTy))
13933       return InvalidOperands(Loc, LHS, RHS);
13934 
13935     return Context.getConstantMatrixType(
13936         Context.getCommonSugaredType(LHSELTy, RHSELTy),
13937         LHSMatType->getNumRows(), RHSMatType->getNumColumns());
13938   }
13939   return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
13940 }
13941 
isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc)13942 static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) {
13943   switch (Opc) {
13944   default:
13945     return false;
13946   case BO_And:
13947   case BO_AndAssign:
13948   case BO_Or:
13949   case BO_OrAssign:
13950   case BO_Xor:
13951   case BO_XorAssign:
13952     return true;
13953   }
13954 }
13955 
CheckBitwiseOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)13956 inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
13957                                            SourceLocation Loc,
13958                                            BinaryOperatorKind Opc) {
13959   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
13960 
13961   bool IsCompAssign =
13962       Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
13963 
13964   bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc);
13965 
13966   if (LHS.get()->getType()->isVectorType() ||
13967       RHS.get()->getType()->isVectorType()) {
13968     if (LHS.get()->getType()->hasIntegerRepresentation() &&
13969         RHS.get()->getType()->hasIntegerRepresentation())
13970       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
13971                                  /*AllowBothBool*/ true,
13972                                  /*AllowBoolConversions*/ getLangOpts().ZVector,
13973                                  /*AllowBooleanOperation*/ LegalBoolVecOperator,
13974                                  /*ReportInvalid*/ true);
13975     return InvalidOperands(Loc, LHS, RHS);
13976   }
13977 
13978   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13979       RHS.get()->getType()->isSveVLSBuiltinType()) {
13980     if (LHS.get()->getType()->hasIntegerRepresentation() &&
13981         RHS.get()->getType()->hasIntegerRepresentation())
13982       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13983                                          ACK_BitwiseOp);
13984     return InvalidOperands(Loc, LHS, RHS);
13985   }
13986 
13987   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13988       RHS.get()->getType()->isSveVLSBuiltinType()) {
13989     if (LHS.get()->getType()->hasIntegerRepresentation() &&
13990         RHS.get()->getType()->hasIntegerRepresentation())
13991       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13992                                          ACK_BitwiseOp);
13993     return InvalidOperands(Loc, LHS, RHS);
13994   }
13995 
13996   if (Opc == BO_And)
13997     diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
13998 
13999   if (LHS.get()->getType()->hasFloatingRepresentation() ||
14000       RHS.get()->getType()->hasFloatingRepresentation())
14001     return InvalidOperands(Loc, LHS, RHS);
14002 
14003   ExprResult LHSResult = LHS, RHSResult = RHS;
14004   QualType compType = UsualArithmeticConversions(
14005       LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
14006   if (LHSResult.isInvalid() || RHSResult.isInvalid())
14007     return QualType();
14008   LHS = LHSResult.get();
14009   RHS = RHSResult.get();
14010 
14011   if (Opc == BO_Xor)
14012     diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
14013 
14014   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
14015     return compType;
14016   return InvalidOperands(Loc, LHS, RHS);
14017 }
14018 
14019 // C99 6.5.[13,14]
CheckLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)14020 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
14021                                            SourceLocation Loc,
14022                                            BinaryOperatorKind Opc) {
14023   // Check vector operands differently.
14024   if (LHS.get()->getType()->isVectorType() ||
14025       RHS.get()->getType()->isVectorType())
14026     return CheckVectorLogicalOperands(LHS, RHS, Loc);
14027 
14028   bool EnumConstantInBoolContext = false;
14029   for (const ExprResult &HS : {LHS, RHS}) {
14030     if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
14031       const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
14032       if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
14033         EnumConstantInBoolContext = true;
14034     }
14035   }
14036 
14037   if (EnumConstantInBoolContext)
14038     Diag(Loc, diag::warn_enum_constant_in_bool_context);
14039 
14040   // WebAssembly tables can't be used with logical operators.
14041   QualType LHSTy = LHS.get()->getType();
14042   QualType RHSTy = RHS.get()->getType();
14043   const auto *LHSATy = dyn_cast<ArrayType>(LHSTy);
14044   const auto *RHSATy = dyn_cast<ArrayType>(RHSTy);
14045   if ((LHSATy && LHSATy->getElementType().isWebAssemblyReferenceType()) ||
14046       (RHSATy && RHSATy->getElementType().isWebAssemblyReferenceType())) {
14047     return InvalidOperands(Loc, LHS, RHS);
14048   }
14049 
14050   // Diagnose cases where the user write a logical and/or but probably meant a
14051   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
14052   // is a constant.
14053   if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
14054       !LHS.get()->getType()->isBooleanType() &&
14055       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
14056       // Don't warn in macros or template instantiations.
14057       !Loc.isMacroID() && !inTemplateInstantiation()) {
14058     // If the RHS can be constant folded, and if it constant folds to something
14059     // that isn't 0 or 1 (which indicate a potential logical operation that
14060     // happened to fold to true/false) then warn.
14061     // Parens on the RHS are ignored.
14062     Expr::EvalResult EVResult;
14063     if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
14064       llvm::APSInt Result = EVResult.Val.getInt();
14065       if ((getLangOpts().CPlusPlus && !RHS.get()->getType()->isBooleanType() &&
14066            !RHS.get()->getExprLoc().isMacroID()) ||
14067           (Result != 0 && Result != 1)) {
14068         Diag(Loc, diag::warn_logical_instead_of_bitwise)
14069             << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||");
14070         // Suggest replacing the logical operator with the bitwise version
14071         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
14072             << (Opc == BO_LAnd ? "&" : "|")
14073             << FixItHint::CreateReplacement(
14074                    SourceRange(Loc, getLocForEndOfToken(Loc)),
14075                    Opc == BO_LAnd ? "&" : "|");
14076         if (Opc == BO_LAnd)
14077           // Suggest replacing "Foo() && kNonZero" with "Foo()"
14078           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
14079               << FixItHint::CreateRemoval(
14080                      SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
14081                                  RHS.get()->getEndLoc()));
14082       }
14083     }
14084   }
14085 
14086   if (!Context.getLangOpts().CPlusPlus) {
14087     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
14088     // not operate on the built-in scalar and vector float types.
14089     if (Context.getLangOpts().OpenCL &&
14090         Context.getLangOpts().OpenCLVersion < 120) {
14091       if (LHS.get()->getType()->isFloatingType() ||
14092           RHS.get()->getType()->isFloatingType())
14093         return InvalidOperands(Loc, LHS, RHS);
14094     }
14095 
14096     LHS = UsualUnaryConversions(LHS.get());
14097     if (LHS.isInvalid())
14098       return QualType();
14099 
14100     RHS = UsualUnaryConversions(RHS.get());
14101     if (RHS.isInvalid())
14102       return QualType();
14103 
14104     if (!LHS.get()->getType()->isScalarType() ||
14105         !RHS.get()->getType()->isScalarType())
14106       return InvalidOperands(Loc, LHS, RHS);
14107 
14108     return Context.IntTy;
14109   }
14110 
14111   // The following is safe because we only use this method for
14112   // non-overloadable operands.
14113 
14114   // C++ [expr.log.and]p1
14115   // C++ [expr.log.or]p1
14116   // The operands are both contextually converted to type bool.
14117   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
14118   if (LHSRes.isInvalid())
14119     return InvalidOperands(Loc, LHS, RHS);
14120   LHS = LHSRes;
14121 
14122   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
14123   if (RHSRes.isInvalid())
14124     return InvalidOperands(Loc, LHS, RHS);
14125   RHS = RHSRes;
14126 
14127   // C++ [expr.log.and]p2
14128   // C++ [expr.log.or]p2
14129   // The result is a bool.
14130   return Context.BoolTy;
14131 }
14132 
IsReadonlyMessage(Expr * E,Sema & S)14133 static bool IsReadonlyMessage(Expr *E, Sema &S) {
14134   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
14135   if (!ME) return false;
14136   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
14137   ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
14138       ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
14139   if (!Base) return false;
14140   return Base->getMethodDecl() != nullptr;
14141 }
14142 
14143 /// Is the given expression (which must be 'const') a reference to a
14144 /// variable which was originally non-const, but which has become
14145 /// 'const' due to being captured within a block?
14146 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
isReferenceToNonConstCapture(Sema & S,Expr * E)14147 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
14148   assert(E->isLValue() && E->getType().isConstQualified());
14149   E = E->IgnoreParens();
14150 
14151   // Must be a reference to a declaration from an enclosing scope.
14152   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
14153   if (!DRE) return NCCK_None;
14154   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
14155 
14156   // The declaration must be a variable which is not declared 'const'.
14157   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
14158   if (!var) return NCCK_None;
14159   if (var->getType().isConstQualified()) return NCCK_None;
14160   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
14161 
14162   // Decide whether the first capture was for a block or a lambda.
14163   DeclContext *DC = S.CurContext, *Prev = nullptr;
14164   // Decide whether the first capture was for a block or a lambda.
14165   while (DC) {
14166     // For init-capture, it is possible that the variable belongs to the
14167     // template pattern of the current context.
14168     if (auto *FD = dyn_cast<FunctionDecl>(DC))
14169       if (var->isInitCapture() &&
14170           FD->getTemplateInstantiationPattern() == var->getDeclContext())
14171         break;
14172     if (DC == var->getDeclContext())
14173       break;
14174     Prev = DC;
14175     DC = DC->getParent();
14176   }
14177   // Unless we have an init-capture, we've gone one step too far.
14178   if (!var->isInitCapture())
14179     DC = Prev;
14180   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
14181 }
14182 
IsTypeModifiable(QualType Ty,bool IsDereference)14183 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
14184   Ty = Ty.getNonReferenceType();
14185   if (IsDereference && Ty->isPointerType())
14186     Ty = Ty->getPointeeType();
14187   return !Ty.isConstQualified();
14188 }
14189 
14190 // Update err_typecheck_assign_const and note_typecheck_assign_const
14191 // when this enum is changed.
14192 enum {
14193   ConstFunction,
14194   ConstVariable,
14195   ConstMember,
14196   ConstMethod,
14197   NestedConstMember,
14198   ConstUnknown,  // Keep as last element
14199 };
14200 
14201 /// Emit the "read-only variable not assignable" error and print notes to give
14202 /// more information about why the variable is not assignable, such as pointing
14203 /// to the declaration of a const variable, showing that a method is const, or
14204 /// that the function is returning a const reference.
DiagnoseConstAssignment(Sema & S,const Expr * E,SourceLocation Loc)14205 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
14206                                     SourceLocation Loc) {
14207   SourceRange ExprRange = E->getSourceRange();
14208 
14209   // Only emit one error on the first const found.  All other consts will emit
14210   // a note to the error.
14211   bool DiagnosticEmitted = false;
14212 
14213   // Track if the current expression is the result of a dereference, and if the
14214   // next checked expression is the result of a dereference.
14215   bool IsDereference = false;
14216   bool NextIsDereference = false;
14217 
14218   // Loop to process MemberExpr chains.
14219   while (true) {
14220     IsDereference = NextIsDereference;
14221 
14222     E = E->IgnoreImplicit()->IgnoreParenImpCasts();
14223     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
14224       NextIsDereference = ME->isArrow();
14225       const ValueDecl *VD = ME->getMemberDecl();
14226       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
14227         // Mutable fields can be modified even if the class is const.
14228         if (Field->isMutable()) {
14229           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
14230           break;
14231         }
14232 
14233         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
14234           if (!DiagnosticEmitted) {
14235             S.Diag(Loc, diag::err_typecheck_assign_const)
14236                 << ExprRange << ConstMember << false /*static*/ << Field
14237                 << Field->getType();
14238             DiagnosticEmitted = true;
14239           }
14240           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
14241               << ConstMember << false /*static*/ << Field << Field->getType()
14242               << Field->getSourceRange();
14243         }
14244         E = ME->getBase();
14245         continue;
14246       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
14247         if (VDecl->getType().isConstQualified()) {
14248           if (!DiagnosticEmitted) {
14249             S.Diag(Loc, diag::err_typecheck_assign_const)
14250                 << ExprRange << ConstMember << true /*static*/ << VDecl
14251                 << VDecl->getType();
14252             DiagnosticEmitted = true;
14253           }
14254           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
14255               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
14256               << VDecl->getSourceRange();
14257         }
14258         // Static fields do not inherit constness from parents.
14259         break;
14260       }
14261       break; // End MemberExpr
14262     } else if (const ArraySubscriptExpr *ASE =
14263                    dyn_cast<ArraySubscriptExpr>(E)) {
14264       E = ASE->getBase()->IgnoreParenImpCasts();
14265       continue;
14266     } else if (const ExtVectorElementExpr *EVE =
14267                    dyn_cast<ExtVectorElementExpr>(E)) {
14268       E = EVE->getBase()->IgnoreParenImpCasts();
14269       continue;
14270     }
14271     break;
14272   }
14273 
14274   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
14275     // Function calls
14276     const FunctionDecl *FD = CE->getDirectCallee();
14277     if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
14278       if (!DiagnosticEmitted) {
14279         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
14280                                                       << ConstFunction << FD;
14281         DiagnosticEmitted = true;
14282       }
14283       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
14284              diag::note_typecheck_assign_const)
14285           << ConstFunction << FD << FD->getReturnType()
14286           << FD->getReturnTypeSourceRange();
14287     }
14288   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
14289     // Point to variable declaration.
14290     if (const ValueDecl *VD = DRE->getDecl()) {
14291       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
14292         if (!DiagnosticEmitted) {
14293           S.Diag(Loc, diag::err_typecheck_assign_const)
14294               << ExprRange << ConstVariable << VD << VD->getType();
14295           DiagnosticEmitted = true;
14296         }
14297         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
14298             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
14299       }
14300     }
14301   } else if (isa<CXXThisExpr>(E)) {
14302     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
14303       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
14304         if (MD->isConst()) {
14305           if (!DiagnosticEmitted) {
14306             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
14307                                                           << ConstMethod << MD;
14308             DiagnosticEmitted = true;
14309           }
14310           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
14311               << ConstMethod << MD << MD->getSourceRange();
14312         }
14313       }
14314     }
14315   }
14316 
14317   if (DiagnosticEmitted)
14318     return;
14319 
14320   // Can't determine a more specific message, so display the generic error.
14321   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
14322 }
14323 
14324 enum OriginalExprKind {
14325   OEK_Variable,
14326   OEK_Member,
14327   OEK_LValue
14328 };
14329 
DiagnoseRecursiveConstFields(Sema & S,const ValueDecl * VD,const RecordType * Ty,SourceLocation Loc,SourceRange Range,OriginalExprKind OEK,bool & DiagnosticEmitted)14330 static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
14331                                          const RecordType *Ty,
14332                                          SourceLocation Loc, SourceRange Range,
14333                                          OriginalExprKind OEK,
14334                                          bool &DiagnosticEmitted) {
14335   std::vector<const RecordType *> RecordTypeList;
14336   RecordTypeList.push_back(Ty);
14337   unsigned NextToCheckIndex = 0;
14338   // We walk the record hierarchy breadth-first to ensure that we print
14339   // diagnostics in field nesting order.
14340   while (RecordTypeList.size() > NextToCheckIndex) {
14341     bool IsNested = NextToCheckIndex > 0;
14342     for (const FieldDecl *Field :
14343          RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
14344       // First, check every field for constness.
14345       QualType FieldTy = Field->getType();
14346       if (FieldTy.isConstQualified()) {
14347         if (!DiagnosticEmitted) {
14348           S.Diag(Loc, diag::err_typecheck_assign_const)
14349               << Range << NestedConstMember << OEK << VD
14350               << IsNested << Field;
14351           DiagnosticEmitted = true;
14352         }
14353         S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
14354             << NestedConstMember << IsNested << Field
14355             << FieldTy << Field->getSourceRange();
14356       }
14357 
14358       // Then we append it to the list to check next in order.
14359       FieldTy = FieldTy.getCanonicalType();
14360       if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
14361         if (!llvm::is_contained(RecordTypeList, FieldRecTy))
14362           RecordTypeList.push_back(FieldRecTy);
14363       }
14364     }
14365     ++NextToCheckIndex;
14366   }
14367 }
14368 
14369 /// Emit an error for the case where a record we are trying to assign to has a
14370 /// const-qualified field somewhere in its hierarchy.
DiagnoseRecursiveConstFields(Sema & S,const Expr * E,SourceLocation Loc)14371 static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
14372                                          SourceLocation Loc) {
14373   QualType Ty = E->getType();
14374   assert(Ty->isRecordType() && "lvalue was not record?");
14375   SourceRange Range = E->getSourceRange();
14376   const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
14377   bool DiagEmitted = false;
14378 
14379   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
14380     DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
14381             Range, OEK_Member, DiagEmitted);
14382   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
14383     DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
14384             Range, OEK_Variable, DiagEmitted);
14385   else
14386     DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
14387             Range, OEK_LValue, DiagEmitted);
14388   if (!DiagEmitted)
14389     DiagnoseConstAssignment(S, E, Loc);
14390 }
14391 
14392 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
14393 /// emit an error and return true.  If so, return false.
CheckForModifiableLvalue(Expr * E,SourceLocation Loc,Sema & S)14394 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
14395   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
14396 
14397   S.CheckShadowingDeclModification(E, Loc);
14398 
14399   SourceLocation OrigLoc = Loc;
14400   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
14401                                                               &Loc);
14402   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
14403     IsLV = Expr::MLV_InvalidMessageExpression;
14404   if (IsLV == Expr::MLV_Valid)
14405     return false;
14406 
14407   unsigned DiagID = 0;
14408   bool NeedType = false;
14409   switch (IsLV) { // C99 6.5.16p2
14410   case Expr::MLV_ConstQualified:
14411     // Use a specialized diagnostic when we're assigning to an object
14412     // from an enclosing function or block.
14413     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
14414       if (NCCK == NCCK_Block)
14415         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
14416       else
14417         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
14418       break;
14419     }
14420 
14421     // In ARC, use some specialized diagnostics for occasions where we
14422     // infer 'const'.  These are always pseudo-strong variables.
14423     if (S.getLangOpts().ObjCAutoRefCount) {
14424       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
14425       if (declRef && isa<VarDecl>(declRef->getDecl())) {
14426         VarDecl *var = cast<VarDecl>(declRef->getDecl());
14427 
14428         // Use the normal diagnostic if it's pseudo-__strong but the
14429         // user actually wrote 'const'.
14430         if (var->isARCPseudoStrong() &&
14431             (!var->getTypeSourceInfo() ||
14432              !var->getTypeSourceInfo()->getType().isConstQualified())) {
14433           // There are three pseudo-strong cases:
14434           //  - self
14435           ObjCMethodDecl *method = S.getCurMethodDecl();
14436           if (method && var == method->getSelfDecl()) {
14437             DiagID = method->isClassMethod()
14438               ? diag::err_typecheck_arc_assign_self_class_method
14439               : diag::err_typecheck_arc_assign_self;
14440 
14441           //  - Objective-C externally_retained attribute.
14442           } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
14443                      isa<ParmVarDecl>(var)) {
14444             DiagID = diag::err_typecheck_arc_assign_externally_retained;
14445 
14446           //  - fast enumeration variables
14447           } else {
14448             DiagID = diag::err_typecheck_arr_assign_enumeration;
14449           }
14450 
14451           SourceRange Assign;
14452           if (Loc != OrigLoc)
14453             Assign = SourceRange(OrigLoc, OrigLoc);
14454           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
14455           // We need to preserve the AST regardless, so migration tool
14456           // can do its job.
14457           return false;
14458         }
14459       }
14460     }
14461 
14462     // If none of the special cases above are triggered, then this is a
14463     // simple const assignment.
14464     if (DiagID == 0) {
14465       DiagnoseConstAssignment(S, E, Loc);
14466       return true;
14467     }
14468 
14469     break;
14470   case Expr::MLV_ConstAddrSpace:
14471     DiagnoseConstAssignment(S, E, Loc);
14472     return true;
14473   case Expr::MLV_ConstQualifiedField:
14474     DiagnoseRecursiveConstFields(S, E, Loc);
14475     return true;
14476   case Expr::MLV_ArrayType:
14477   case Expr::MLV_ArrayTemporary:
14478     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
14479     NeedType = true;
14480     break;
14481   case Expr::MLV_NotObjectType:
14482     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
14483     NeedType = true;
14484     break;
14485   case Expr::MLV_LValueCast:
14486     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
14487     break;
14488   case Expr::MLV_Valid:
14489     llvm_unreachable("did not take early return for MLV_Valid");
14490   case Expr::MLV_InvalidExpression:
14491   case Expr::MLV_MemberFunction:
14492   case Expr::MLV_ClassTemporary:
14493     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
14494     break;
14495   case Expr::MLV_IncompleteType:
14496   case Expr::MLV_IncompleteVoidType:
14497     return S.RequireCompleteType(Loc, E->getType(),
14498              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
14499   case Expr::MLV_DuplicateVectorComponents:
14500     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
14501     break;
14502   case Expr::MLV_NoSetterProperty:
14503     llvm_unreachable("readonly properties should be processed differently");
14504   case Expr::MLV_InvalidMessageExpression:
14505     DiagID = diag::err_readonly_message_assignment;
14506     break;
14507   case Expr::MLV_SubObjCPropertySetting:
14508     DiagID = diag::err_no_subobject_property_setting;
14509     break;
14510   }
14511 
14512   SourceRange Assign;
14513   if (Loc != OrigLoc)
14514     Assign = SourceRange(OrigLoc, OrigLoc);
14515   if (NeedType)
14516     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
14517   else
14518     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
14519   return true;
14520 }
14521 
CheckIdentityFieldAssignment(Expr * LHSExpr,Expr * RHSExpr,SourceLocation Loc,Sema & Sema)14522 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
14523                                          SourceLocation Loc,
14524                                          Sema &Sema) {
14525   if (Sema.inTemplateInstantiation())
14526     return;
14527   if (Sema.isUnevaluatedContext())
14528     return;
14529   if (Loc.isInvalid() || Loc.isMacroID())
14530     return;
14531   if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
14532     return;
14533 
14534   // C / C++ fields
14535   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
14536   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
14537   if (ML && MR) {
14538     if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
14539       return;
14540     const ValueDecl *LHSDecl =
14541         cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
14542     const ValueDecl *RHSDecl =
14543         cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
14544     if (LHSDecl != RHSDecl)
14545       return;
14546     if (LHSDecl->getType().isVolatileQualified())
14547       return;
14548     if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14549       if (RefTy->getPointeeType().isVolatileQualified())
14550         return;
14551 
14552     Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
14553   }
14554 
14555   // Objective-C instance variables
14556   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
14557   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
14558   if (OL && OR && OL->getDecl() == OR->getDecl()) {
14559     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
14560     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
14561     if (RL && RR && RL->getDecl() == RR->getDecl())
14562       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
14563   }
14564 }
14565 
14566 // C99 6.5.16.1
CheckAssignmentOperands(Expr * LHSExpr,ExprResult & RHS,SourceLocation Loc,QualType CompoundType,BinaryOperatorKind Opc)14567 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
14568                                        SourceLocation Loc,
14569                                        QualType CompoundType,
14570                                        BinaryOperatorKind Opc) {
14571   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
14572 
14573   // Verify that LHS is a modifiable lvalue, and emit error if not.
14574   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
14575     return QualType();
14576 
14577   QualType LHSType = LHSExpr->getType();
14578   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
14579                                              CompoundType;
14580   // OpenCL v1.2 s6.1.1.1 p2:
14581   // The half data type can only be used to declare a pointer to a buffer that
14582   // contains half values
14583   if (getLangOpts().OpenCL &&
14584       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
14585       LHSType->isHalfType()) {
14586     Diag(Loc, diag::err_opencl_half_load_store) << 1
14587         << LHSType.getUnqualifiedType();
14588     return QualType();
14589   }
14590 
14591   // WebAssembly tables can't be used on RHS of an assignment expression.
14592   if (RHSType->isWebAssemblyTableType()) {
14593     Diag(Loc, diag::err_wasm_table_art) << 0;
14594     return QualType();
14595   }
14596 
14597   AssignConvertType ConvTy;
14598   if (CompoundType.isNull()) {
14599     Expr *RHSCheck = RHS.get();
14600 
14601     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
14602 
14603     QualType LHSTy(LHSType);
14604     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
14605     if (RHS.isInvalid())
14606       return QualType();
14607     // Special case of NSObject attributes on c-style pointer types.
14608     if (ConvTy == IncompatiblePointer &&
14609         ((Context.isObjCNSObjectType(LHSType) &&
14610           RHSType->isObjCObjectPointerType()) ||
14611          (Context.isObjCNSObjectType(RHSType) &&
14612           LHSType->isObjCObjectPointerType())))
14613       ConvTy = Compatible;
14614 
14615     if (ConvTy == Compatible &&
14616         LHSType->isObjCObjectType())
14617         Diag(Loc, diag::err_objc_object_assignment)
14618           << LHSType;
14619 
14620     // If the RHS is a unary plus or minus, check to see if they = and + are
14621     // right next to each other.  If so, the user may have typo'd "x =+ 4"
14622     // instead of "x += 4".
14623     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
14624       RHSCheck = ICE->getSubExpr();
14625     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
14626       if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
14627           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
14628           // Only if the two operators are exactly adjacent.
14629           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
14630           // And there is a space or other character before the subexpr of the
14631           // unary +/-.  We don't want to warn on "x=-1".
14632           Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
14633           UO->getSubExpr()->getBeginLoc().isFileID()) {
14634         Diag(Loc, diag::warn_not_compound_assign)
14635           << (UO->getOpcode() == UO_Plus ? "+" : "-")
14636           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
14637       }
14638     }
14639 
14640     if (ConvTy == Compatible) {
14641       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
14642         // Warn about retain cycles where a block captures the LHS, but
14643         // not if the LHS is a simple variable into which the block is
14644         // being stored...unless that variable can be captured by reference!
14645         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
14646         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
14647         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
14648           checkRetainCycles(LHSExpr, RHS.get());
14649       }
14650 
14651       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
14652           LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
14653         // It is safe to assign a weak reference into a strong variable.
14654         // Although this code can still have problems:
14655         //   id x = self.weakProp;
14656         //   id y = self.weakProp;
14657         // we do not warn to warn spuriously when 'x' and 'y' are on separate
14658         // paths through the function. This should be revisited if
14659         // -Wrepeated-use-of-weak is made flow-sensitive.
14660         // For ObjCWeak only, we do not warn if the assign is to a non-weak
14661         // variable, which will be valid for the current autorelease scope.
14662         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
14663                              RHS.get()->getBeginLoc()))
14664           getCurFunction()->markSafeWeakUse(RHS.get());
14665 
14666       } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
14667         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
14668       }
14669     }
14670   } else {
14671     // Compound assignment "x += y"
14672     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
14673   }
14674 
14675   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
14676                                RHS.get(), AA_Assigning))
14677     return QualType();
14678 
14679   CheckForNullPointerDereference(*this, LHSExpr);
14680 
14681   if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
14682     if (CompoundType.isNull()) {
14683       // C++2a [expr.ass]p5:
14684       //   A simple-assignment whose left operand is of a volatile-qualified
14685       //   type is deprecated unless the assignment is either a discarded-value
14686       //   expression or an unevaluated operand
14687       ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
14688     }
14689   }
14690 
14691   // C11 6.5.16p3: The type of an assignment expression is the type of the
14692   // left operand would have after lvalue conversion.
14693   // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
14694   // qualified type, the value has the unqualified version of the type of the
14695   // lvalue; additionally, if the lvalue has atomic type, the value has the
14696   // non-atomic version of the type of the lvalue.
14697   // C++ 5.17p1: the type of the assignment expression is that of its left
14698   // operand.
14699   return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType();
14700 }
14701 
14702 // Scenarios to ignore if expression E is:
14703 // 1. an explicit cast expression into void
14704 // 2. a function call expression that returns void
IgnoreCommaOperand(const Expr * E,const ASTContext & Context)14705 static bool IgnoreCommaOperand(const Expr *E, const ASTContext &Context) {
14706   E = E->IgnoreParens();
14707 
14708   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
14709     if (CE->getCastKind() == CK_ToVoid) {
14710       return true;
14711     }
14712 
14713     // static_cast<void> on a dependent type will not show up as CK_ToVoid.
14714     if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
14715         CE->getSubExpr()->getType()->isDependentType()) {
14716       return true;
14717     }
14718   }
14719 
14720   if (const auto *CE = dyn_cast<CallExpr>(E))
14721     return CE->getCallReturnType(Context)->isVoidType();
14722   return false;
14723 }
14724 
14725 // Look for instances where it is likely the comma operator is confused with
14726 // another operator.  There is an explicit list of acceptable expressions for
14727 // the left hand side of the comma operator, otherwise emit a warning.
DiagnoseCommaOperator(const Expr * LHS,SourceLocation Loc)14728 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
14729   // No warnings in macros
14730   if (Loc.isMacroID())
14731     return;
14732 
14733   // Don't warn in template instantiations.
14734   if (inTemplateInstantiation())
14735     return;
14736 
14737   // Scope isn't fine-grained enough to explicitly list the specific cases, so
14738   // instead, skip more than needed, then call back into here with the
14739   // CommaVisitor in SemaStmt.cpp.
14740   // The listed locations are the initialization and increment portions
14741   // of a for loop.  The additional checks are on the condition of
14742   // if statements, do/while loops, and for loops.
14743   // Differences in scope flags for C89 mode requires the extra logic.
14744   const unsigned ForIncrementFlags =
14745       getLangOpts().C99 || getLangOpts().CPlusPlus
14746           ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
14747           : Scope::ContinueScope | Scope::BreakScope;
14748   const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
14749   const unsigned ScopeFlags = getCurScope()->getFlags();
14750   if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
14751       (ScopeFlags & ForInitFlags) == ForInitFlags)
14752     return;
14753 
14754   // If there are multiple comma operators used together, get the RHS of the
14755   // of the comma operator as the LHS.
14756   while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
14757     if (BO->getOpcode() != BO_Comma)
14758       break;
14759     LHS = BO->getRHS();
14760   }
14761 
14762   // Only allow some expressions on LHS to not warn.
14763   if (IgnoreCommaOperand(LHS, Context))
14764     return;
14765 
14766   Diag(Loc, diag::warn_comma_operator);
14767   Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
14768       << LHS->getSourceRange()
14769       << FixItHint::CreateInsertion(LHS->getBeginLoc(),
14770                                     LangOpts.CPlusPlus ? "static_cast<void>("
14771                                                        : "(void)(")
14772       << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
14773                                     ")");
14774 }
14775 
14776 // C99 6.5.17
CheckCommaOperands(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)14777 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
14778                                    SourceLocation Loc) {
14779   LHS = S.CheckPlaceholderExpr(LHS.get());
14780   RHS = S.CheckPlaceholderExpr(RHS.get());
14781   if (LHS.isInvalid() || RHS.isInvalid())
14782     return QualType();
14783 
14784   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
14785   // operands, but not unary promotions.
14786   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
14787 
14788   // So we treat the LHS as a ignored value, and in C++ we allow the
14789   // containing site to determine what should be done with the RHS.
14790   LHS = S.IgnoredValueConversions(LHS.get());
14791   if (LHS.isInvalid())
14792     return QualType();
14793 
14794   S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand);
14795 
14796   if (!S.getLangOpts().CPlusPlus) {
14797     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
14798     if (RHS.isInvalid())
14799       return QualType();
14800     if (!RHS.get()->getType()->isVoidType())
14801       S.RequireCompleteType(Loc, RHS.get()->getType(),
14802                             diag::err_incomplete_type);
14803   }
14804 
14805   if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
14806     S.DiagnoseCommaOperator(LHS.get(), Loc);
14807 
14808   return RHS.get()->getType();
14809 }
14810 
14811 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
14812 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
CheckIncrementDecrementOperand(Sema & S,Expr * Op,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation OpLoc,bool IsInc,bool IsPrefix)14813 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
14814                                                ExprValueKind &VK,
14815                                                ExprObjectKind &OK,
14816                                                SourceLocation OpLoc,
14817                                                bool IsInc, bool IsPrefix) {
14818   if (Op->isTypeDependent())
14819     return S.Context.DependentTy;
14820 
14821   QualType ResType = Op->getType();
14822   // Atomic types can be used for increment / decrement where the non-atomic
14823   // versions can, so ignore the _Atomic() specifier for the purpose of
14824   // checking.
14825   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
14826     ResType = ResAtomicType->getValueType();
14827 
14828   assert(!ResType.isNull() && "no type for increment/decrement expression");
14829 
14830   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
14831     // Decrement of bool is not allowed.
14832     if (!IsInc) {
14833       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
14834       return QualType();
14835     }
14836     // Increment of bool sets it to true, but is deprecated.
14837     S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
14838                                               : diag::warn_increment_bool)
14839       << Op->getSourceRange();
14840   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
14841     // Error on enum increments and decrements in C++ mode
14842     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
14843     return QualType();
14844   } else if (ResType->isRealType()) {
14845     // OK!
14846   } else if (ResType->isPointerType()) {
14847     // C99 6.5.2.4p2, 6.5.6p2
14848     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
14849       return QualType();
14850   } else if (ResType->isObjCObjectPointerType()) {
14851     // On modern runtimes, ObjC pointer arithmetic is forbidden.
14852     // Otherwise, we just need a complete type.
14853     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
14854         checkArithmeticOnObjCPointer(S, OpLoc, Op))
14855       return QualType();
14856   } else if (ResType->isAnyComplexType()) {
14857     // C99 does not support ++/-- on complex types, we allow as an extension.
14858     S.Diag(OpLoc, diag::ext_integer_increment_complex)
14859       << ResType << Op->getSourceRange();
14860   } else if (ResType->isPlaceholderType()) {
14861     ExprResult PR = S.CheckPlaceholderExpr(Op);
14862     if (PR.isInvalid()) return QualType();
14863     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
14864                                           IsInc, IsPrefix);
14865   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
14866     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
14867   } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
14868              (ResType->castAs<VectorType>()->getVectorKind() !=
14869               VectorKind::AltiVecBool)) {
14870     // The z vector extensions allow ++ and -- for non-bool vectors.
14871   } else if (S.getLangOpts().OpenCL && ResType->isVectorType() &&
14872              ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
14873     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
14874   } else {
14875     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
14876       << ResType << int(IsInc) << Op->getSourceRange();
14877     return QualType();
14878   }
14879   // At this point, we know we have a real, complex or pointer type.
14880   // Now make sure the operand is a modifiable lvalue.
14881   if (CheckForModifiableLvalue(Op, OpLoc, S))
14882     return QualType();
14883   if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
14884     // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
14885     //   An operand with volatile-qualified type is deprecated
14886     S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
14887         << IsInc << ResType;
14888   }
14889   // In C++, a prefix increment is the same type as the operand. Otherwise
14890   // (in C or with postfix), the increment is the unqualified type of the
14891   // operand.
14892   if (IsPrefix && S.getLangOpts().CPlusPlus) {
14893     VK = VK_LValue;
14894     OK = Op->getObjectKind();
14895     return ResType;
14896   } else {
14897     VK = VK_PRValue;
14898     return ResType.getUnqualifiedType();
14899   }
14900 }
14901 
14902 
14903 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
14904 /// This routine allows us to typecheck complex/recursive expressions
14905 /// where the declaration is needed for type checking. We only need to
14906 /// handle cases when the expression references a function designator
14907 /// or is an lvalue. Here are some examples:
14908 ///  - &(x) => x
14909 ///  - &*****f => f for f a function designator.
14910 ///  - &s.xx => s
14911 ///  - &s.zz[1].yy -> s, if zz is an array
14912 ///  - *(x + 1) -> x, if x is an array
14913 ///  - &"123"[2] -> 0
14914 ///  - & __real__ x -> x
14915 ///
14916 /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
14917 /// members.
getPrimaryDecl(Expr * E)14918 static ValueDecl *getPrimaryDecl(Expr *E) {
14919   switch (E->getStmtClass()) {
14920   case Stmt::DeclRefExprClass:
14921     return cast<DeclRefExpr>(E)->getDecl();
14922   case Stmt::MemberExprClass:
14923     // If this is an arrow operator, the address is an offset from
14924     // the base's value, so the object the base refers to is
14925     // irrelevant.
14926     if (cast<MemberExpr>(E)->isArrow())
14927       return nullptr;
14928     // Otherwise, the expression refers to a part of the base
14929     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
14930   case Stmt::ArraySubscriptExprClass: {
14931     // FIXME: This code shouldn't be necessary!  We should catch the implicit
14932     // promotion of register arrays earlier.
14933     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
14934     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
14935       if (ICE->getSubExpr()->getType()->isArrayType())
14936         return getPrimaryDecl(ICE->getSubExpr());
14937     }
14938     return nullptr;
14939   }
14940   case Stmt::UnaryOperatorClass: {
14941     UnaryOperator *UO = cast<UnaryOperator>(E);
14942 
14943     switch(UO->getOpcode()) {
14944     case UO_Real:
14945     case UO_Imag:
14946     case UO_Extension:
14947       return getPrimaryDecl(UO->getSubExpr());
14948     default:
14949       return nullptr;
14950     }
14951   }
14952   case Stmt::ParenExprClass:
14953     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
14954   case Stmt::ImplicitCastExprClass:
14955     // If the result of an implicit cast is an l-value, we care about
14956     // the sub-expression; otherwise, the result here doesn't matter.
14957     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
14958   case Stmt::CXXUuidofExprClass:
14959     return cast<CXXUuidofExpr>(E)->getGuidDecl();
14960   default:
14961     return nullptr;
14962   }
14963 }
14964 
14965 namespace {
14966 enum {
14967   AO_Bit_Field = 0,
14968   AO_Vector_Element = 1,
14969   AO_Property_Expansion = 2,
14970   AO_Register_Variable = 3,
14971   AO_Matrix_Element = 4,
14972   AO_No_Error = 5
14973 };
14974 }
14975 /// Diagnose invalid operand for address of operations.
14976 ///
14977 /// \param Type The type of operand which cannot have its address taken.
diagnoseAddressOfInvalidType(Sema & S,SourceLocation Loc,Expr * E,unsigned Type)14978 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
14979                                          Expr *E, unsigned Type) {
14980   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
14981 }
14982 
CheckUseOfCXXMethodAsAddressOfOperand(SourceLocation OpLoc,const Expr * Op,const CXXMethodDecl * MD)14983 bool Sema::CheckUseOfCXXMethodAsAddressOfOperand(SourceLocation OpLoc,
14984                                                  const Expr *Op,
14985                                                  const CXXMethodDecl *MD) {
14986   const auto *DRE = cast<DeclRefExpr>(Op->IgnoreParens());
14987 
14988   if (Op != DRE)
14989     return Diag(OpLoc, diag::err_parens_pointer_member_function)
14990            << Op->getSourceRange();
14991 
14992   // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
14993   if (isa<CXXDestructorDecl>(MD))
14994     return Diag(OpLoc, diag::err_typecheck_addrof_dtor)
14995            << DRE->getSourceRange();
14996 
14997   if (DRE->getQualifier())
14998     return false;
14999 
15000   if (MD->getParent()->getName().empty())
15001     return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
15002            << DRE->getSourceRange();
15003 
15004   SmallString<32> Str;
15005   StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
15006   return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
15007          << DRE->getSourceRange()
15008          << FixItHint::CreateInsertion(DRE->getSourceRange().getBegin(), Qual);
15009 }
15010 
15011 /// CheckAddressOfOperand - The operand of & must be either a function
15012 /// designator or an lvalue designating an object. If it is an lvalue, the
15013 /// object cannot be declared with storage class register or be a bit field.
15014 /// Note: The usual conversions are *not* applied to the operand of the &
15015 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
15016 /// In C++, the operand might be an overloaded function name, in which case
15017 /// we allow the '&' but retain the overloaded-function type.
CheckAddressOfOperand(ExprResult & OrigOp,SourceLocation OpLoc)15018 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
15019   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
15020     if (PTy->getKind() == BuiltinType::Overload) {
15021       Expr *E = OrigOp.get()->IgnoreParens();
15022       if (!isa<OverloadExpr>(E)) {
15023         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
15024         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
15025           << OrigOp.get()->getSourceRange();
15026         return QualType();
15027       }
15028 
15029       OverloadExpr *Ovl = cast<OverloadExpr>(E);
15030       if (isa<UnresolvedMemberExpr>(Ovl))
15031         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
15032           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
15033             << OrigOp.get()->getSourceRange();
15034           return QualType();
15035         }
15036 
15037       return Context.OverloadTy;
15038     }
15039 
15040     if (PTy->getKind() == BuiltinType::UnknownAny)
15041       return Context.UnknownAnyTy;
15042 
15043     if (PTy->getKind() == BuiltinType::BoundMember) {
15044       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
15045         << OrigOp.get()->getSourceRange();
15046       return QualType();
15047     }
15048 
15049     OrigOp = CheckPlaceholderExpr(OrigOp.get());
15050     if (OrigOp.isInvalid()) return QualType();
15051   }
15052 
15053   if (OrigOp.get()->isTypeDependent())
15054     return Context.DependentTy;
15055 
15056   assert(!OrigOp.get()->hasPlaceholderType());
15057 
15058   // Make sure to ignore parentheses in subsequent checks
15059   Expr *op = OrigOp.get()->IgnoreParens();
15060 
15061   // In OpenCL captures for blocks called as lambda functions
15062   // are located in the private address space. Blocks used in
15063   // enqueue_kernel can be located in a different address space
15064   // depending on a vendor implementation. Thus preventing
15065   // taking an address of the capture to avoid invalid AS casts.
15066   if (LangOpts.OpenCL) {
15067     auto* VarRef = dyn_cast<DeclRefExpr>(op);
15068     if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
15069       Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
15070       return QualType();
15071     }
15072   }
15073 
15074   if (getLangOpts().C99) {
15075     // Implement C99-only parts of addressof rules.
15076     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
15077       if (uOp->getOpcode() == UO_Deref)
15078         // Per C99 6.5.3.2, the address of a deref always returns a valid result
15079         // (assuming the deref expression is valid).
15080         return uOp->getSubExpr()->getType();
15081     }
15082     // Technically, there should be a check for array subscript
15083     // expressions here, but the result of one is always an lvalue anyway.
15084   }
15085   ValueDecl *dcl = getPrimaryDecl(op);
15086 
15087   if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
15088     if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
15089                                            op->getBeginLoc()))
15090       return QualType();
15091 
15092   Expr::LValueClassification lval = op->ClassifyLValue(Context);
15093   unsigned AddressOfError = AO_No_Error;
15094 
15095   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
15096     bool sfinae = (bool)isSFINAEContext();
15097     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
15098                                   : diag::ext_typecheck_addrof_temporary)
15099       << op->getType() << op->getSourceRange();
15100     if (sfinae)
15101       return QualType();
15102     // Materialize the temporary as an lvalue so that we can take its address.
15103     OrigOp = op =
15104         CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
15105   } else if (isa<ObjCSelectorExpr>(op)) {
15106     return Context.getPointerType(op->getType());
15107   } else if (lval == Expr::LV_MemberFunction) {
15108     // If it's an instance method, make a member pointer.
15109     // The expression must have exactly the form &A::foo.
15110 
15111     // If the underlying expression isn't a decl ref, give up.
15112     if (!isa<DeclRefExpr>(op)) {
15113       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
15114         << OrigOp.get()->getSourceRange();
15115       return QualType();
15116     }
15117     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
15118     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
15119 
15120     CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, OrigOp.get(), MD);
15121 
15122     QualType MPTy = Context.getMemberPointerType(
15123         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
15124     // Under the MS ABI, lock down the inheritance model now.
15125     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
15126       (void)isCompleteType(OpLoc, MPTy);
15127     return MPTy;
15128   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
15129     // C99 6.5.3.2p1
15130     // The operand must be either an l-value or a function designator
15131     if (!op->getType()->isFunctionType()) {
15132       // Use a special diagnostic for loads from property references.
15133       if (isa<PseudoObjectExpr>(op)) {
15134         AddressOfError = AO_Property_Expansion;
15135       } else {
15136         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
15137           << op->getType() << op->getSourceRange();
15138         return QualType();
15139       }
15140     } else if (const auto *DRE = dyn_cast<DeclRefExpr>(op)) {
15141       if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(DRE->getDecl()))
15142         CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, OrigOp.get(), MD);
15143     }
15144 
15145   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
15146     // The operand cannot be a bit-field
15147     AddressOfError = AO_Bit_Field;
15148   } else if (op->getObjectKind() == OK_VectorComponent) {
15149     // The operand cannot be an element of a vector
15150     AddressOfError = AO_Vector_Element;
15151   } else if (op->getObjectKind() == OK_MatrixComponent) {
15152     // The operand cannot be an element of a matrix.
15153     AddressOfError = AO_Matrix_Element;
15154   } else if (dcl) { // C99 6.5.3.2p1
15155     // We have an lvalue with a decl. Make sure the decl is not declared
15156     // with the register storage-class specifier.
15157     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
15158       // in C++ it is not error to take address of a register
15159       // variable (c++03 7.1.1P3)
15160       if (vd->getStorageClass() == SC_Register &&
15161           !getLangOpts().CPlusPlus) {
15162         AddressOfError = AO_Register_Variable;
15163       }
15164     } else if (isa<MSPropertyDecl>(dcl)) {
15165       AddressOfError = AO_Property_Expansion;
15166     } else if (isa<FunctionTemplateDecl>(dcl)) {
15167       return Context.OverloadTy;
15168     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
15169       // Okay: we can take the address of a field.
15170       // Could be a pointer to member, though, if there is an explicit
15171       // scope qualifier for the class.
15172       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
15173         DeclContext *Ctx = dcl->getDeclContext();
15174         if (Ctx && Ctx->isRecord()) {
15175           if (dcl->getType()->isReferenceType()) {
15176             Diag(OpLoc,
15177                  diag::err_cannot_form_pointer_to_member_of_reference_type)
15178               << dcl->getDeclName() << dcl->getType();
15179             return QualType();
15180           }
15181 
15182           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
15183             Ctx = Ctx->getParent();
15184 
15185           QualType MPTy = Context.getMemberPointerType(
15186               op->getType(),
15187               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
15188           // Under the MS ABI, lock down the inheritance model now.
15189           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
15190             (void)isCompleteType(OpLoc, MPTy);
15191           return MPTy;
15192         }
15193       }
15194     } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl,
15195                     MSGuidDecl, UnnamedGlobalConstantDecl>(dcl))
15196       llvm_unreachable("Unknown/unexpected decl type");
15197   }
15198 
15199   if (AddressOfError != AO_No_Error) {
15200     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
15201     return QualType();
15202   }
15203 
15204   if (lval == Expr::LV_IncompleteVoidType) {
15205     // Taking the address of a void variable is technically illegal, but we
15206     // allow it in cases which are otherwise valid.
15207     // Example: "extern void x; void* y = &x;".
15208     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
15209   }
15210 
15211   // If the operand has type "type", the result has type "pointer to type".
15212   if (op->getType()->isObjCObjectType())
15213     return Context.getObjCObjectPointerType(op->getType());
15214 
15215   // Cannot take the address of WebAssembly references or tables.
15216   if (Context.getTargetInfo().getTriple().isWasm()) {
15217     QualType OpTy = op->getType();
15218     if (OpTy.isWebAssemblyReferenceType()) {
15219       Diag(OpLoc, diag::err_wasm_ca_reference)
15220           << 1 << OrigOp.get()->getSourceRange();
15221       return QualType();
15222     }
15223     if (OpTy->isWebAssemblyTableType()) {
15224       Diag(OpLoc, diag::err_wasm_table_pr)
15225           << 1 << OrigOp.get()->getSourceRange();
15226       return QualType();
15227     }
15228   }
15229 
15230   CheckAddressOfPackedMember(op);
15231 
15232   return Context.getPointerType(op->getType());
15233 }
15234 
RecordModifiableNonNullParam(Sema & S,const Expr * Exp)15235 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
15236   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
15237   if (!DRE)
15238     return;
15239   const Decl *D = DRE->getDecl();
15240   if (!D)
15241     return;
15242   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
15243   if (!Param)
15244     return;
15245   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
15246     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
15247       return;
15248   if (FunctionScopeInfo *FD = S.getCurFunction())
15249     FD->ModifiedNonNullParams.insert(Param);
15250 }
15251 
15252 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
CheckIndirectionOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc,bool IsAfterAmp=false)15253 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
15254                                         SourceLocation OpLoc,
15255                                         bool IsAfterAmp = false) {
15256   if (Op->isTypeDependent())
15257     return S.Context.DependentTy;
15258 
15259   ExprResult ConvResult = S.UsualUnaryConversions(Op);
15260   if (ConvResult.isInvalid())
15261     return QualType();
15262   Op = ConvResult.get();
15263   QualType OpTy = Op->getType();
15264   QualType Result;
15265 
15266   if (isa<CXXReinterpretCastExpr>(Op)) {
15267     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
15268     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
15269                                      Op->getSourceRange());
15270   }
15271 
15272   if (const PointerType *PT = OpTy->getAs<PointerType>())
15273   {
15274     Result = PT->getPointeeType();
15275   }
15276   else if (const ObjCObjectPointerType *OPT =
15277              OpTy->getAs<ObjCObjectPointerType>())
15278     Result = OPT->getPointeeType();
15279   else {
15280     ExprResult PR = S.CheckPlaceholderExpr(Op);
15281     if (PR.isInvalid()) return QualType();
15282     if (PR.get() != Op)
15283       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
15284   }
15285 
15286   if (Result.isNull()) {
15287     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
15288       << OpTy << Op->getSourceRange();
15289     return QualType();
15290   }
15291 
15292   if (Result->isVoidType()) {
15293     // C++ [expr.unary.op]p1:
15294     //   [...] the expression to which [the unary * operator] is applied shall
15295     //   be a pointer to an object type, or a pointer to a function type
15296     LangOptions LO = S.getLangOpts();
15297     if (LO.CPlusPlus)
15298       S.Diag(OpLoc, diag::err_typecheck_indirection_through_void_pointer_cpp)
15299           << OpTy << Op->getSourceRange();
15300     else if (!(LO.C99 && IsAfterAmp) && !S.isUnevaluatedContext())
15301       S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
15302           << OpTy << Op->getSourceRange();
15303   }
15304 
15305   // Dereferences are usually l-values...
15306   VK = VK_LValue;
15307 
15308   // ...except that certain expressions are never l-values in C.
15309   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
15310     VK = VK_PRValue;
15311 
15312   return Result;
15313 }
15314 
ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind)15315 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
15316   BinaryOperatorKind Opc;
15317   switch (Kind) {
15318   default: llvm_unreachable("Unknown binop!");
15319   case tok::periodstar:           Opc = BO_PtrMemD; break;
15320   case tok::arrowstar:            Opc = BO_PtrMemI; break;
15321   case tok::star:                 Opc = BO_Mul; break;
15322   case tok::slash:                Opc = BO_Div; break;
15323   case tok::percent:              Opc = BO_Rem; break;
15324   case tok::plus:                 Opc = BO_Add; break;
15325   case tok::minus:                Opc = BO_Sub; break;
15326   case tok::lessless:             Opc = BO_Shl; break;
15327   case tok::greatergreater:       Opc = BO_Shr; break;
15328   case tok::lessequal:            Opc = BO_LE; break;
15329   case tok::less:                 Opc = BO_LT; break;
15330   case tok::greaterequal:         Opc = BO_GE; break;
15331   case tok::greater:              Opc = BO_GT; break;
15332   case tok::exclaimequal:         Opc = BO_NE; break;
15333   case tok::equalequal:           Opc = BO_EQ; break;
15334   case tok::spaceship:            Opc = BO_Cmp; break;
15335   case tok::amp:                  Opc = BO_And; break;
15336   case tok::caret:                Opc = BO_Xor; break;
15337   case tok::pipe:                 Opc = BO_Or; break;
15338   case tok::ampamp:               Opc = BO_LAnd; break;
15339   case tok::pipepipe:             Opc = BO_LOr; break;
15340   case tok::equal:                Opc = BO_Assign; break;
15341   case tok::starequal:            Opc = BO_MulAssign; break;
15342   case tok::slashequal:           Opc = BO_DivAssign; break;
15343   case tok::percentequal:         Opc = BO_RemAssign; break;
15344   case tok::plusequal:            Opc = BO_AddAssign; break;
15345   case tok::minusequal:           Opc = BO_SubAssign; break;
15346   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
15347   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
15348   case tok::ampequal:             Opc = BO_AndAssign; break;
15349   case tok::caretequal:           Opc = BO_XorAssign; break;
15350   case tok::pipeequal:            Opc = BO_OrAssign; break;
15351   case tok::comma:                Opc = BO_Comma; break;
15352   }
15353   return Opc;
15354 }
15355 
ConvertTokenKindToUnaryOpcode(tok::TokenKind Kind)15356 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
15357   tok::TokenKind Kind) {
15358   UnaryOperatorKind Opc;
15359   switch (Kind) {
15360   default: llvm_unreachable("Unknown unary op!");
15361   case tok::plusplus:     Opc = UO_PreInc; break;
15362   case tok::minusminus:   Opc = UO_PreDec; break;
15363   case tok::amp:          Opc = UO_AddrOf; break;
15364   case tok::star:         Opc = UO_Deref; break;
15365   case tok::plus:         Opc = UO_Plus; break;
15366   case tok::minus:        Opc = UO_Minus; break;
15367   case tok::tilde:        Opc = UO_Not; break;
15368   case tok::exclaim:      Opc = UO_LNot; break;
15369   case tok::kw___real:    Opc = UO_Real; break;
15370   case tok::kw___imag:    Opc = UO_Imag; break;
15371   case tok::kw___extension__: Opc = UO_Extension; break;
15372   }
15373   return Opc;
15374 }
15375 
15376 const FieldDecl *
getSelfAssignmentClassMemberCandidate(const ValueDecl * SelfAssigned)15377 Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) {
15378   // Explore the case for adding 'this->' to the LHS of a self assignment, very
15379   // common for setters.
15380   // struct A {
15381   // int X;
15382   // -void setX(int X) { X = X; }
15383   // +void setX(int X) { this->X = X; }
15384   // };
15385 
15386   // Only consider parameters for self assignment fixes.
15387   if (!isa<ParmVarDecl>(SelfAssigned))
15388     return nullptr;
15389   const auto *Method =
15390       dyn_cast_or_null<CXXMethodDecl>(getCurFunctionDecl(true));
15391   if (!Method)
15392     return nullptr;
15393 
15394   const CXXRecordDecl *Parent = Method->getParent();
15395   // In theory this is fixable if the lambda explicitly captures this, but
15396   // that's added complexity that's rarely going to be used.
15397   if (Parent->isLambda())
15398     return nullptr;
15399 
15400   // FIXME: Use an actual Lookup operation instead of just traversing fields
15401   // in order to get base class fields.
15402   auto Field =
15403       llvm::find_if(Parent->fields(),
15404                     [Name(SelfAssigned->getDeclName())](const FieldDecl *F) {
15405                       return F->getDeclName() == Name;
15406                     });
15407   return (Field != Parent->field_end()) ? *Field : nullptr;
15408 }
15409 
15410 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
15411 /// This warning suppressed in the event of macro expansions.
DiagnoseSelfAssignment(Sema & S,Expr * LHSExpr,Expr * RHSExpr,SourceLocation OpLoc,bool IsBuiltin)15412 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
15413                                    SourceLocation OpLoc, bool IsBuiltin) {
15414   if (S.inTemplateInstantiation())
15415     return;
15416   if (S.isUnevaluatedContext())
15417     return;
15418   if (OpLoc.isInvalid() || OpLoc.isMacroID())
15419     return;
15420   LHSExpr = LHSExpr->IgnoreParenImpCasts();
15421   RHSExpr = RHSExpr->IgnoreParenImpCasts();
15422   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
15423   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
15424   if (!LHSDeclRef || !RHSDeclRef ||
15425       LHSDeclRef->getLocation().isMacroID() ||
15426       RHSDeclRef->getLocation().isMacroID())
15427     return;
15428   const ValueDecl *LHSDecl =
15429     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
15430   const ValueDecl *RHSDecl =
15431     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
15432   if (LHSDecl != RHSDecl)
15433     return;
15434   if (LHSDecl->getType().isVolatileQualified())
15435     return;
15436   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
15437     if (RefTy->getPointeeType().isVolatileQualified())
15438       return;
15439 
15440   auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
15441                                       : diag::warn_self_assignment_overloaded)
15442               << LHSDeclRef->getType() << LHSExpr->getSourceRange()
15443               << RHSExpr->getSourceRange();
15444   if (const FieldDecl *SelfAssignField =
15445           S.getSelfAssignmentClassMemberCandidate(RHSDecl))
15446     Diag << 1 << SelfAssignField
15447          << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
15448   else
15449     Diag << 0;
15450 }
15451 
15452 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
15453 /// is usually indicative of introspection within the Objective-C pointer.
checkObjCPointerIntrospection(Sema & S,ExprResult & L,ExprResult & R,SourceLocation OpLoc)15454 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
15455                                           SourceLocation OpLoc) {
15456   if (!S.getLangOpts().ObjC)
15457     return;
15458 
15459   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
15460   const Expr *LHS = L.get();
15461   const Expr *RHS = R.get();
15462 
15463   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
15464     ObjCPointerExpr = LHS;
15465     OtherExpr = RHS;
15466   }
15467   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
15468     ObjCPointerExpr = RHS;
15469     OtherExpr = LHS;
15470   }
15471 
15472   // This warning is deliberately made very specific to reduce false
15473   // positives with logic that uses '&' for hashing.  This logic mainly
15474   // looks for code trying to introspect into tagged pointers, which
15475   // code should generally never do.
15476   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
15477     unsigned Diag = diag::warn_objc_pointer_masking;
15478     // Determine if we are introspecting the result of performSelectorXXX.
15479     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
15480     // Special case messages to -performSelector and friends, which
15481     // can return non-pointer values boxed in a pointer value.
15482     // Some clients may wish to silence warnings in this subcase.
15483     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
15484       Selector S = ME->getSelector();
15485       StringRef SelArg0 = S.getNameForSlot(0);
15486       if (SelArg0.starts_with("performSelector"))
15487         Diag = diag::warn_objc_pointer_masking_performSelector;
15488     }
15489 
15490     S.Diag(OpLoc, Diag)
15491       << ObjCPointerExpr->getSourceRange();
15492   }
15493 }
15494 
getDeclFromExpr(Expr * E)15495 static NamedDecl *getDeclFromExpr(Expr *E) {
15496   if (!E)
15497     return nullptr;
15498   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
15499     return DRE->getDecl();
15500   if (auto *ME = dyn_cast<MemberExpr>(E))
15501     return ME->getMemberDecl();
15502   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
15503     return IRE->getDecl();
15504   return nullptr;
15505 }
15506 
15507 // This helper function promotes a binary operator's operands (which are of a
15508 // half vector type) to a vector of floats and then truncates the result to
15509 // a vector of either half or short.
convertHalfVecBinOp(Sema & S,ExprResult LHS,ExprResult RHS,BinaryOperatorKind Opc,QualType ResultTy,ExprValueKind VK,ExprObjectKind OK,bool IsCompAssign,SourceLocation OpLoc,FPOptionsOverride FPFeatures)15510 static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
15511                                       BinaryOperatorKind Opc, QualType ResultTy,
15512                                       ExprValueKind VK, ExprObjectKind OK,
15513                                       bool IsCompAssign, SourceLocation OpLoc,
15514                                       FPOptionsOverride FPFeatures) {
15515   auto &Context = S.getASTContext();
15516   assert((isVector(ResultTy, Context.HalfTy) ||
15517           isVector(ResultTy, Context.ShortTy)) &&
15518          "Result must be a vector of half or short");
15519   assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
15520          isVector(RHS.get()->getType(), Context.HalfTy) &&
15521          "both operands expected to be a half vector");
15522 
15523   RHS = convertVector(RHS.get(), Context.FloatTy, S);
15524   QualType BinOpResTy = RHS.get()->getType();
15525 
15526   // If Opc is a comparison, ResultType is a vector of shorts. In that case,
15527   // change BinOpResTy to a vector of ints.
15528   if (isVector(ResultTy, Context.ShortTy))
15529     BinOpResTy = S.GetSignedVectorType(BinOpResTy);
15530 
15531   if (IsCompAssign)
15532     return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
15533                                           ResultTy, VK, OK, OpLoc, FPFeatures,
15534                                           BinOpResTy, BinOpResTy);
15535 
15536   LHS = convertVector(LHS.get(), Context.FloatTy, S);
15537   auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
15538                                     BinOpResTy, VK, OK, OpLoc, FPFeatures);
15539   return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
15540 }
15541 
15542 static std::pair<ExprResult, ExprResult>
CorrectDelayedTyposInBinOp(Sema & S,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)15543 CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
15544                            Expr *RHSExpr) {
15545   ExprResult LHS = LHSExpr, RHS = RHSExpr;
15546   if (!S.Context.isDependenceAllowed()) {
15547     // C cannot handle TypoExpr nodes on either side of a binop because it
15548     // doesn't handle dependent types properly, so make sure any TypoExprs have
15549     // been dealt with before checking the operands.
15550     LHS = S.CorrectDelayedTyposInExpr(LHS);
15551     RHS = S.CorrectDelayedTyposInExpr(
15552         RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
15553         [Opc, LHS](Expr *E) {
15554           if (Opc != BO_Assign)
15555             return ExprResult(E);
15556           // Avoid correcting the RHS to the same Expr as the LHS.
15557           Decl *D = getDeclFromExpr(E);
15558           return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
15559         });
15560   }
15561   return std::make_pair(LHS, RHS);
15562 }
15563 
15564 /// Returns true if conversion between vectors of halfs and vectors of floats
15565 /// is needed.
needsConversionOfHalfVec(bool OpRequiresConversion,ASTContext & Ctx,Expr * E0,Expr * E1=nullptr)15566 static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
15567                                      Expr *E0, Expr *E1 = nullptr) {
15568   if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
15569       Ctx.getTargetInfo().useFP16ConversionIntrinsics())
15570     return false;
15571 
15572   auto HasVectorOfHalfType = [&Ctx](Expr *E) {
15573     QualType Ty = E->IgnoreImplicit()->getType();
15574 
15575     // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
15576     // to vectors of floats. Although the element type of the vectors is __fp16,
15577     // the vectors shouldn't be treated as storage-only types. See the
15578     // discussion here: https://reviews.llvm.org/rG825235c140e7
15579     if (const VectorType *VT = Ty->getAs<VectorType>()) {
15580       if (VT->getVectorKind() == VectorKind::Neon)
15581         return false;
15582       return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
15583     }
15584     return false;
15585   };
15586 
15587   return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
15588 }
15589 
15590 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
15591 /// operator @p Opc at location @c TokLoc. This routine only supports
15592 /// built-in operations; ActOnBinOp handles overloaded operators.
CreateBuiltinBinOp(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)15593 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
15594                                     BinaryOperatorKind Opc,
15595                                     Expr *LHSExpr, Expr *RHSExpr) {
15596   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
15597     // The syntax only allows initializer lists on the RHS of assignment,
15598     // so we don't need to worry about accepting invalid code for
15599     // non-assignment operators.
15600     // C++11 5.17p9:
15601     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
15602     //   of x = {} is x = T().
15603     InitializationKind Kind = InitializationKind::CreateDirectList(
15604         RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
15605     InitializedEntity Entity =
15606         InitializedEntity::InitializeTemporary(LHSExpr->getType());
15607     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
15608     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
15609     if (Init.isInvalid())
15610       return Init;
15611     RHSExpr = Init.get();
15612   }
15613 
15614   ExprResult LHS = LHSExpr, RHS = RHSExpr;
15615   QualType ResultTy;     // Result type of the binary operator.
15616   // The following two variables are used for compound assignment operators
15617   QualType CompLHSTy;    // Type of LHS after promotions for computation
15618   QualType CompResultTy; // Type of computation result
15619   ExprValueKind VK = VK_PRValue;
15620   ExprObjectKind OK = OK_Ordinary;
15621   bool ConvertHalfVec = false;
15622 
15623   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
15624   if (!LHS.isUsable() || !RHS.isUsable())
15625     return ExprError();
15626 
15627   if (getLangOpts().OpenCL) {
15628     QualType LHSTy = LHSExpr->getType();
15629     QualType RHSTy = RHSExpr->getType();
15630     // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
15631     // the ATOMIC_VAR_INIT macro.
15632     if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
15633       SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
15634       if (BO_Assign == Opc)
15635         Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
15636       else
15637         ResultTy = InvalidOperands(OpLoc, LHS, RHS);
15638       return ExprError();
15639     }
15640 
15641     // OpenCL special types - image, sampler, pipe, and blocks are to be used
15642     // only with a builtin functions and therefore should be disallowed here.
15643     if (LHSTy->isImageType() || RHSTy->isImageType() ||
15644         LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
15645         LHSTy->isPipeType() || RHSTy->isPipeType() ||
15646         LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
15647       ResultTy = InvalidOperands(OpLoc, LHS, RHS);
15648       return ExprError();
15649     }
15650   }
15651 
15652   checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
15653   checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
15654 
15655   switch (Opc) {
15656   case BO_Assign:
15657     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType(), Opc);
15658     if (getLangOpts().CPlusPlus &&
15659         LHS.get()->getObjectKind() != OK_ObjCProperty) {
15660       VK = LHS.get()->getValueKind();
15661       OK = LHS.get()->getObjectKind();
15662     }
15663     if (!ResultTy.isNull()) {
15664       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
15665       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
15666 
15667       // Avoid copying a block to the heap if the block is assigned to a local
15668       // auto variable that is declared in the same scope as the block. This
15669       // optimization is unsafe if the local variable is declared in an outer
15670       // scope. For example:
15671       //
15672       // BlockTy b;
15673       // {
15674       //   b = ^{...};
15675       // }
15676       // // It is unsafe to invoke the block here if it wasn't copied to the
15677       // // heap.
15678       // b();
15679 
15680       if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
15681         if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
15682           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
15683             if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
15684               BE->getBlockDecl()->setCanAvoidCopyToHeap();
15685 
15686       if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
15687         checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
15688                               NTCUC_Assignment, NTCUK_Copy);
15689     }
15690     RecordModifiableNonNullParam(*this, LHS.get());
15691     break;
15692   case BO_PtrMemD:
15693   case BO_PtrMemI:
15694     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
15695                                             Opc == BO_PtrMemI);
15696     break;
15697   case BO_Mul:
15698   case BO_Div:
15699     ConvertHalfVec = true;
15700     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
15701                                            Opc == BO_Div);
15702     break;
15703   case BO_Rem:
15704     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
15705     break;
15706   case BO_Add:
15707     ConvertHalfVec = true;
15708     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
15709     break;
15710   case BO_Sub:
15711     ConvertHalfVec = true;
15712     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
15713     break;
15714   case BO_Shl:
15715   case BO_Shr:
15716     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
15717     break;
15718   case BO_LE:
15719   case BO_LT:
15720   case BO_GE:
15721   case BO_GT:
15722     ConvertHalfVec = true;
15723     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15724     break;
15725   case BO_EQ:
15726   case BO_NE:
15727     ConvertHalfVec = true;
15728     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15729     break;
15730   case BO_Cmp:
15731     ConvertHalfVec = true;
15732     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15733     assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
15734     break;
15735   case BO_And:
15736     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
15737     [[fallthrough]];
15738   case BO_Xor:
15739   case BO_Or:
15740     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
15741     break;
15742   case BO_LAnd:
15743   case BO_LOr:
15744     ConvertHalfVec = true;
15745     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
15746     break;
15747   case BO_MulAssign:
15748   case BO_DivAssign:
15749     ConvertHalfVec = true;
15750     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
15751                                                Opc == BO_DivAssign);
15752     CompLHSTy = CompResultTy;
15753     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15754       ResultTy =
15755           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15756     break;
15757   case BO_RemAssign:
15758     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
15759     CompLHSTy = CompResultTy;
15760     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15761       ResultTy =
15762           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15763     break;
15764   case BO_AddAssign:
15765     ConvertHalfVec = true;
15766     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
15767     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15768       ResultTy =
15769           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15770     break;
15771   case BO_SubAssign:
15772     ConvertHalfVec = true;
15773     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
15774     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15775       ResultTy =
15776           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15777     break;
15778   case BO_ShlAssign:
15779   case BO_ShrAssign:
15780     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
15781     CompLHSTy = CompResultTy;
15782     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15783       ResultTy =
15784           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15785     break;
15786   case BO_AndAssign:
15787   case BO_OrAssign: // fallthrough
15788     DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
15789     [[fallthrough]];
15790   case BO_XorAssign:
15791     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
15792     CompLHSTy = CompResultTy;
15793     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15794       ResultTy =
15795           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15796     break;
15797   case BO_Comma:
15798     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
15799     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
15800       VK = RHS.get()->getValueKind();
15801       OK = RHS.get()->getObjectKind();
15802     }
15803     break;
15804   }
15805   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
15806     return ExprError();
15807 
15808   // Some of the binary operations require promoting operands of half vector to
15809   // float vectors and truncating the result back to half vector. For now, we do
15810   // this only when HalfArgsAndReturn is set (that is, when the target is arm or
15811   // arm64).
15812   assert(
15813       (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
15814                               isVector(LHS.get()->getType(), Context.HalfTy)) &&
15815       "both sides are half vectors or neither sides are");
15816   ConvertHalfVec =
15817       needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
15818 
15819   // Check for array bounds violations for both sides of the BinaryOperator
15820   CheckArrayAccess(LHS.get());
15821   CheckArrayAccess(RHS.get());
15822 
15823   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
15824     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
15825                                                  &Context.Idents.get("object_setClass"),
15826                                                  SourceLocation(), LookupOrdinaryName);
15827     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
15828       SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
15829       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
15830           << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
15831                                         "object_setClass(")
15832           << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
15833                                           ",")
15834           << FixItHint::CreateInsertion(RHSLocEnd, ")");
15835     }
15836     else
15837       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
15838   }
15839   else if (const ObjCIvarRefExpr *OIRE =
15840            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
15841     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
15842 
15843   // Opc is not a compound assignment if CompResultTy is null.
15844   if (CompResultTy.isNull()) {
15845     if (ConvertHalfVec)
15846       return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
15847                                  OpLoc, CurFPFeatureOverrides());
15848     return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
15849                                   VK, OK, OpLoc, CurFPFeatureOverrides());
15850   }
15851 
15852   // Handle compound assignments.
15853   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
15854       OK_ObjCProperty) {
15855     VK = VK_LValue;
15856     OK = LHS.get()->getObjectKind();
15857   }
15858 
15859   // The LHS is not converted to the result type for fixed-point compound
15860   // assignment as the common type is computed on demand. Reset the CompLHSTy
15861   // to the LHS type we would have gotten after unary conversions.
15862   if (CompResultTy->isFixedPointType())
15863     CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
15864 
15865   if (ConvertHalfVec)
15866     return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
15867                                OpLoc, CurFPFeatureOverrides());
15868 
15869   return CompoundAssignOperator::Create(
15870       Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
15871       CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
15872 }
15873 
15874 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
15875 /// operators are mixed in a way that suggests that the programmer forgot that
15876 /// comparison operators have higher precedence. The most typical example of
15877 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
DiagnoseBitwisePrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)15878 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
15879                                       SourceLocation OpLoc, Expr *LHSExpr,
15880                                       Expr *RHSExpr) {
15881   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
15882   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
15883 
15884   // Check that one of the sides is a comparison operator and the other isn't.
15885   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
15886   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
15887   if (isLeftComp == isRightComp)
15888     return;
15889 
15890   // Bitwise operations are sometimes used as eager logical ops.
15891   // Don't diagnose this.
15892   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
15893   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
15894   if (isLeftBitwise || isRightBitwise)
15895     return;
15896 
15897   SourceRange DiagRange = isLeftComp
15898                               ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
15899                               : SourceRange(OpLoc, RHSExpr->getEndLoc());
15900   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
15901   SourceRange ParensRange =
15902       isLeftComp
15903           ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
15904           : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
15905 
15906   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
15907     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
15908   SuggestParentheses(Self, OpLoc,
15909     Self.PDiag(diag::note_precedence_silence) << OpStr,
15910     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
15911   SuggestParentheses(Self, OpLoc,
15912     Self.PDiag(diag::note_precedence_bitwise_first)
15913       << BinaryOperator::getOpcodeStr(Opc),
15914     ParensRange);
15915 }
15916 
15917 /// It accepts a '&&' expr that is inside a '||' one.
15918 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
15919 /// in parentheses.
15920 static void
EmitDiagnosticForLogicalAndInLogicalOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)15921 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
15922                                        BinaryOperator *Bop) {
15923   assert(Bop->getOpcode() == BO_LAnd);
15924   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
15925       << Bop->getSourceRange() << OpLoc;
15926   SuggestParentheses(Self, Bop->getOperatorLoc(),
15927     Self.PDiag(diag::note_precedence_silence)
15928       << Bop->getOpcodeStr(),
15929     Bop->getSourceRange());
15930 }
15931 
15932 /// Look for '&&' in the left hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrLHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)15933 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
15934                                              Expr *LHSExpr, Expr *RHSExpr) {
15935   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
15936     if (Bop->getOpcode() == BO_LAnd) {
15937       // If it's "string_literal && a || b" don't warn since the precedence
15938       // doesn't matter.
15939       if (!isa<StringLiteral>(Bop->getLHS()->IgnoreParenImpCasts()))
15940         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15941     } else if (Bop->getOpcode() == BO_LOr) {
15942       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
15943         // If it's "a || b && string_literal || c" we didn't warn earlier for
15944         // "a || b && string_literal", but warn now.
15945         if (RBop->getOpcode() == BO_LAnd &&
15946             isa<StringLiteral>(RBop->getRHS()->IgnoreParenImpCasts()))
15947           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
15948       }
15949     }
15950   }
15951 }
15952 
15953 /// Look for '&&' in the right hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrRHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)15954 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
15955                                              Expr *LHSExpr, Expr *RHSExpr) {
15956   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
15957     if (Bop->getOpcode() == BO_LAnd) {
15958       // If it's "a || b && string_literal" don't warn since the precedence
15959       // doesn't matter.
15960       if (!isa<StringLiteral>(Bop->getRHS()->IgnoreParenImpCasts()))
15961         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15962     }
15963   }
15964 }
15965 
15966 /// Look for bitwise op in the left or right hand of a bitwise op with
15967 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
15968 /// the '&' expression in parentheses.
DiagnoseBitwiseOpInBitwiseOp(Sema & S,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * SubExpr)15969 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
15970                                          SourceLocation OpLoc, Expr *SubExpr) {
15971   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15972     if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
15973       S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
15974         << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
15975         << Bop->getSourceRange() << OpLoc;
15976       SuggestParentheses(S, Bop->getOperatorLoc(),
15977         S.PDiag(diag::note_precedence_silence)
15978           << Bop->getOpcodeStr(),
15979         Bop->getSourceRange());
15980     }
15981   }
15982 }
15983 
DiagnoseAdditionInShift(Sema & S,SourceLocation OpLoc,Expr * SubExpr,StringRef Shift)15984 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
15985                                     Expr *SubExpr, StringRef Shift) {
15986   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15987     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
15988       StringRef Op = Bop->getOpcodeStr();
15989       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
15990           << Bop->getSourceRange() << OpLoc << Shift << Op;
15991       SuggestParentheses(S, Bop->getOperatorLoc(),
15992           S.PDiag(diag::note_precedence_silence) << Op,
15993           Bop->getSourceRange());
15994     }
15995   }
15996 }
15997 
DiagnoseShiftCompare(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)15998 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
15999                                  Expr *LHSExpr, Expr *RHSExpr) {
16000   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
16001   if (!OCE)
16002     return;
16003 
16004   FunctionDecl *FD = OCE->getDirectCallee();
16005   if (!FD || !FD->isOverloadedOperator())
16006     return;
16007 
16008   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
16009   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
16010     return;
16011 
16012   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
16013       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
16014       << (Kind == OO_LessLess);
16015   SuggestParentheses(S, OCE->getOperatorLoc(),
16016                      S.PDiag(diag::note_precedence_silence)
16017                          << (Kind == OO_LessLess ? "<<" : ">>"),
16018                      OCE->getSourceRange());
16019   SuggestParentheses(
16020       S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
16021       SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
16022 }
16023 
16024 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
16025 /// precedence.
DiagnoseBinOpPrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)16026 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
16027                                     SourceLocation OpLoc, Expr *LHSExpr,
16028                                     Expr *RHSExpr){
16029   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
16030   if (BinaryOperator::isBitwiseOp(Opc))
16031     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
16032 
16033   // Diagnose "arg1 & arg2 | arg3"
16034   if ((Opc == BO_Or || Opc == BO_Xor) &&
16035       !OpLoc.isMacroID()/* Don't warn in macros. */) {
16036     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
16037     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
16038   }
16039 
16040   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
16041   // We don't warn for 'assert(a || b && "bad")' since this is safe.
16042   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
16043     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
16044     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
16045   }
16046 
16047   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
16048       || Opc == BO_Shr) {
16049     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
16050     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
16051     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
16052   }
16053 
16054   // Warn on overloaded shift operators and comparisons, such as:
16055   // cout << 5 == 4;
16056   if (BinaryOperator::isComparisonOp(Opc))
16057     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
16058 }
16059 
16060 // Binary Operators.  'Tok' is the token for the operator.
ActOnBinOp(Scope * S,SourceLocation TokLoc,tok::TokenKind Kind,Expr * LHSExpr,Expr * RHSExpr)16061 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
16062                             tok::TokenKind Kind,
16063                             Expr *LHSExpr, Expr *RHSExpr) {
16064   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
16065   assert(LHSExpr && "ActOnBinOp(): missing left expression");
16066   assert(RHSExpr && "ActOnBinOp(): missing right expression");
16067 
16068   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
16069   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
16070 
16071   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
16072 }
16073 
LookupBinOp(Scope * S,SourceLocation OpLoc,BinaryOperatorKind Opc,UnresolvedSetImpl & Functions)16074 void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
16075                        UnresolvedSetImpl &Functions) {
16076   OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
16077   if (OverOp != OO_None && OverOp != OO_Equal)
16078     LookupOverloadedOperatorName(OverOp, S, Functions);
16079 
16080   // In C++20 onwards, we may have a second operator to look up.
16081   if (getLangOpts().CPlusPlus20) {
16082     if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
16083       LookupOverloadedOperatorName(ExtraOp, S, Functions);
16084   }
16085 }
16086 
16087 /// Build an overloaded binary operator expression in the given scope.
BuildOverloadedBinOp(Sema & S,Scope * Sc,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHS,Expr * RHS)16088 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
16089                                        BinaryOperatorKind Opc,
16090                                        Expr *LHS, Expr *RHS) {
16091   switch (Opc) {
16092   case BO_Assign:
16093     // In the non-overloaded case, we warn about self-assignment (x = x) for
16094     // both simple assignment and certain compound assignments where algebra
16095     // tells us the operation yields a constant result.  When the operator is
16096     // overloaded, we can't do the latter because we don't want to assume that
16097     // those algebraic identities still apply; for example, a path-building
16098     // library might use operator/= to append paths.  But it's still reasonable
16099     // to assume that simple assignment is just moving/copying values around
16100     // and so self-assignment is likely a bug.
16101     DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
16102     [[fallthrough]];
16103   case BO_DivAssign:
16104   case BO_RemAssign:
16105   case BO_SubAssign:
16106   case BO_AndAssign:
16107   case BO_OrAssign:
16108   case BO_XorAssign:
16109     CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
16110     break;
16111   default:
16112     break;
16113   }
16114 
16115   // Find all of the overloaded operators visible from this point.
16116   UnresolvedSet<16> Functions;
16117   S.LookupBinOp(Sc, OpLoc, Opc, Functions);
16118 
16119   // Build the (potentially-overloaded, potentially-dependent)
16120   // binary operation.
16121   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
16122 }
16123 
BuildBinOp(Scope * S,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)16124 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
16125                             BinaryOperatorKind Opc,
16126                             Expr *LHSExpr, Expr *RHSExpr) {
16127   ExprResult LHS, RHS;
16128   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
16129   if (!LHS.isUsable() || !RHS.isUsable())
16130     return ExprError();
16131   LHSExpr = LHS.get();
16132   RHSExpr = RHS.get();
16133 
16134   // We want to end up calling one of checkPseudoObjectAssignment
16135   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
16136   // both expressions are overloadable or either is type-dependent),
16137   // or CreateBuiltinBinOp (in any other case).  We also want to get
16138   // any placeholder types out of the way.
16139 
16140   // Handle pseudo-objects in the LHS.
16141   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
16142     // Assignments with a pseudo-object l-value need special analysis.
16143     if (pty->getKind() == BuiltinType::PseudoObject &&
16144         BinaryOperator::isAssignmentOp(Opc))
16145       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
16146 
16147     // Don't resolve overloads if the other type is overloadable.
16148     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
16149       // We can't actually test that if we still have a placeholder,
16150       // though.  Fortunately, none of the exceptions we see in that
16151       // code below are valid when the LHS is an overload set.  Note
16152       // that an overload set can be dependently-typed, but it never
16153       // instantiates to having an overloadable type.
16154       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
16155       if (resolvedRHS.isInvalid()) return ExprError();
16156       RHSExpr = resolvedRHS.get();
16157 
16158       if (RHSExpr->isTypeDependent() ||
16159           RHSExpr->getType()->isOverloadableType())
16160         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16161     }
16162 
16163     // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
16164     // template, diagnose the missing 'template' keyword instead of diagnosing
16165     // an invalid use of a bound member function.
16166     //
16167     // Note that "A::x < b" might be valid if 'b' has an overloadable type due
16168     // to C++1z [over.over]/1.4, but we already checked for that case above.
16169     if (Opc == BO_LT && inTemplateInstantiation() &&
16170         (pty->getKind() == BuiltinType::BoundMember ||
16171          pty->getKind() == BuiltinType::Overload)) {
16172       auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
16173       if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
16174           llvm::any_of(OE->decls(), [](NamedDecl *ND) {
16175             return isa<FunctionTemplateDecl>(ND);
16176           })) {
16177         Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
16178                                 : OE->getNameLoc(),
16179              diag::err_template_kw_missing)
16180           << OE->getName().getAsString() << "";
16181         return ExprError();
16182       }
16183     }
16184 
16185     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
16186     if (LHS.isInvalid()) return ExprError();
16187     LHSExpr = LHS.get();
16188   }
16189 
16190   // Handle pseudo-objects in the RHS.
16191   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
16192     // An overload in the RHS can potentially be resolved by the type
16193     // being assigned to.
16194     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
16195       if (getLangOpts().CPlusPlus &&
16196           (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
16197            LHSExpr->getType()->isOverloadableType()))
16198         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16199 
16200       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
16201     }
16202 
16203     // Don't resolve overloads if the other type is overloadable.
16204     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
16205         LHSExpr->getType()->isOverloadableType())
16206       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16207 
16208     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
16209     if (!resolvedRHS.isUsable()) return ExprError();
16210     RHSExpr = resolvedRHS.get();
16211   }
16212 
16213   if (getLangOpts().CPlusPlus) {
16214     // If either expression is type-dependent, always build an
16215     // overloaded op.
16216     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
16217       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16218 
16219     // Otherwise, build an overloaded op if either expression has an
16220     // overloadable type.
16221     if (LHSExpr->getType()->isOverloadableType() ||
16222         RHSExpr->getType()->isOverloadableType())
16223       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16224   }
16225 
16226   if (getLangOpts().RecoveryAST &&
16227       (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
16228     assert(!getLangOpts().CPlusPlus);
16229     assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
16230            "Should only occur in error-recovery path.");
16231     if (BinaryOperator::isCompoundAssignmentOp(Opc))
16232       // C [6.15.16] p3:
16233       // An assignment expression has the value of the left operand after the
16234       // assignment, but is not an lvalue.
16235       return CompoundAssignOperator::Create(
16236           Context, LHSExpr, RHSExpr, Opc,
16237           LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary,
16238           OpLoc, CurFPFeatureOverrides());
16239     QualType ResultType;
16240     switch (Opc) {
16241     case BO_Assign:
16242       ResultType = LHSExpr->getType().getUnqualifiedType();
16243       break;
16244     case BO_LT:
16245     case BO_GT:
16246     case BO_LE:
16247     case BO_GE:
16248     case BO_EQ:
16249     case BO_NE:
16250     case BO_LAnd:
16251     case BO_LOr:
16252       // These operators have a fixed result type regardless of operands.
16253       ResultType = Context.IntTy;
16254       break;
16255     case BO_Comma:
16256       ResultType = RHSExpr->getType();
16257       break;
16258     default:
16259       ResultType = Context.DependentTy;
16260       break;
16261     }
16262     return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
16263                                   VK_PRValue, OK_Ordinary, OpLoc,
16264                                   CurFPFeatureOverrides());
16265   }
16266 
16267   // Build a built-in binary operation.
16268   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
16269 }
16270 
isOverflowingIntegerType(ASTContext & Ctx,QualType T)16271 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
16272   if (T.isNull() || T->isDependentType())
16273     return false;
16274 
16275   if (!Ctx.isPromotableIntegerType(T))
16276     return true;
16277 
16278   return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
16279 }
16280 
CreateBuiltinUnaryOp(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * InputExpr,bool IsAfterAmp)16281 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
16282                                       UnaryOperatorKind Opc, Expr *InputExpr,
16283                                       bool IsAfterAmp) {
16284   ExprResult Input = InputExpr;
16285   ExprValueKind VK = VK_PRValue;
16286   ExprObjectKind OK = OK_Ordinary;
16287   QualType resultType;
16288   bool CanOverflow = false;
16289 
16290   bool ConvertHalfVec = false;
16291   if (getLangOpts().OpenCL) {
16292     QualType Ty = InputExpr->getType();
16293     // The only legal unary operation for atomics is '&'.
16294     if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
16295     // OpenCL special types - image, sampler, pipe, and blocks are to be used
16296     // only with a builtin functions and therefore should be disallowed here.
16297         (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
16298         || Ty->isBlockPointerType())) {
16299       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16300                        << InputExpr->getType()
16301                        << Input.get()->getSourceRange());
16302     }
16303   }
16304 
16305   if (getLangOpts().HLSL && OpLoc.isValid()) {
16306     if (Opc == UO_AddrOf)
16307       return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0);
16308     if (Opc == UO_Deref)
16309       return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1);
16310   }
16311 
16312   switch (Opc) {
16313   case UO_PreInc:
16314   case UO_PreDec:
16315   case UO_PostInc:
16316   case UO_PostDec:
16317     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
16318                                                 OpLoc,
16319                                                 Opc == UO_PreInc ||
16320                                                 Opc == UO_PostInc,
16321                                                 Opc == UO_PreInc ||
16322                                                 Opc == UO_PreDec);
16323     CanOverflow = isOverflowingIntegerType(Context, resultType);
16324     break;
16325   case UO_AddrOf:
16326     resultType = CheckAddressOfOperand(Input, OpLoc);
16327     CheckAddressOfNoDeref(InputExpr);
16328     RecordModifiableNonNullParam(*this, InputExpr);
16329     break;
16330   case UO_Deref: {
16331     Input = DefaultFunctionArrayLvalueConversion(Input.get());
16332     if (Input.isInvalid()) return ExprError();
16333     resultType =
16334         CheckIndirectionOperand(*this, Input.get(), VK, OpLoc, IsAfterAmp);
16335     break;
16336   }
16337   case UO_Plus:
16338   case UO_Minus:
16339     CanOverflow = Opc == UO_Minus &&
16340                   isOverflowingIntegerType(Context, Input.get()->getType());
16341     Input = UsualUnaryConversions(Input.get());
16342     if (Input.isInvalid()) return ExprError();
16343     // Unary plus and minus require promoting an operand of half vector to a
16344     // float vector and truncating the result back to a half vector. For now, we
16345     // do this only when HalfArgsAndReturns is set (that is, when the target is
16346     // arm or arm64).
16347     ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
16348 
16349     // If the operand is a half vector, promote it to a float vector.
16350     if (ConvertHalfVec)
16351       Input = convertVector(Input.get(), Context.FloatTy, *this);
16352     resultType = Input.get()->getType();
16353     if (resultType->isDependentType())
16354       break;
16355     if (resultType->isArithmeticType()) // C99 6.5.3.3p1
16356       break;
16357     else if (resultType->isVectorType() &&
16358              // The z vector extensions don't allow + or - with bool vectors.
16359              (!Context.getLangOpts().ZVector ||
16360               resultType->castAs<VectorType>()->getVectorKind() !=
16361                   VectorKind::AltiVecBool))
16362       break;
16363     else if (resultType->isSveVLSBuiltinType()) // SVE vectors allow + and -
16364       break;
16365     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
16366              Opc == UO_Plus &&
16367              resultType->isPointerType())
16368       break;
16369 
16370     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16371       << resultType << Input.get()->getSourceRange());
16372 
16373   case UO_Not: // bitwise complement
16374     Input = UsualUnaryConversions(Input.get());
16375     if (Input.isInvalid())
16376       return ExprError();
16377     resultType = Input.get()->getType();
16378     if (resultType->isDependentType())
16379       break;
16380     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
16381     if (resultType->isComplexType() || resultType->isComplexIntegerType())
16382       // C99 does not support '~' for complex conjugation.
16383       Diag(OpLoc, diag::ext_integer_complement_complex)
16384           << resultType << Input.get()->getSourceRange();
16385     else if (resultType->hasIntegerRepresentation())
16386       break;
16387     else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
16388       // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
16389       // on vector float types.
16390       QualType T = resultType->castAs<ExtVectorType>()->getElementType();
16391       if (!T->isIntegerType())
16392         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16393                           << resultType << Input.get()->getSourceRange());
16394     } else {
16395       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16396                        << resultType << Input.get()->getSourceRange());
16397     }
16398     break;
16399 
16400   case UO_LNot: // logical negation
16401     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
16402     Input = DefaultFunctionArrayLvalueConversion(Input.get());
16403     if (Input.isInvalid()) return ExprError();
16404     resultType = Input.get()->getType();
16405 
16406     // Though we still have to promote half FP to float...
16407     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
16408       Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
16409       resultType = Context.FloatTy;
16410     }
16411 
16412     // WebAsembly tables can't be used in unary expressions.
16413     if (resultType->isPointerType() &&
16414         resultType->getPointeeType().isWebAssemblyReferenceType()) {
16415       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16416                        << resultType << Input.get()->getSourceRange());
16417     }
16418 
16419     if (resultType->isDependentType())
16420       break;
16421     if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
16422       // C99 6.5.3.3p1: ok, fallthrough;
16423       if (Context.getLangOpts().CPlusPlus) {
16424         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
16425         // operand contextually converted to bool.
16426         Input = ImpCastExprToType(Input.get(), Context.BoolTy,
16427                                   ScalarTypeToBooleanCastKind(resultType));
16428       } else if (Context.getLangOpts().OpenCL &&
16429                  Context.getLangOpts().OpenCLVersion < 120) {
16430         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
16431         // operate on scalar float types.
16432         if (!resultType->isIntegerType() && !resultType->isPointerType())
16433           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16434                            << resultType << Input.get()->getSourceRange());
16435       }
16436     } else if (resultType->isExtVectorType()) {
16437       if (Context.getLangOpts().OpenCL &&
16438           Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
16439         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
16440         // operate on vector float types.
16441         QualType T = resultType->castAs<ExtVectorType>()->getElementType();
16442         if (!T->isIntegerType())
16443           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16444                            << resultType << Input.get()->getSourceRange());
16445       }
16446       // Vector logical not returns the signed variant of the operand type.
16447       resultType = GetSignedVectorType(resultType);
16448       break;
16449     } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
16450       const VectorType *VTy = resultType->castAs<VectorType>();
16451       if (VTy->getVectorKind() != VectorKind::Generic)
16452         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16453                          << resultType << Input.get()->getSourceRange());
16454 
16455       // Vector logical not returns the signed variant of the operand type.
16456       resultType = GetSignedVectorType(resultType);
16457       break;
16458     } else {
16459       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16460         << resultType << Input.get()->getSourceRange());
16461     }
16462 
16463     // LNot always has type int. C99 6.5.3.3p5.
16464     // In C++, it's bool. C++ 5.3.1p8
16465     resultType = Context.getLogicalOperationType();
16466     break;
16467   case UO_Real:
16468   case UO_Imag:
16469     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
16470     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
16471     // complex l-values to ordinary l-values and all other values to r-values.
16472     if (Input.isInvalid()) return ExprError();
16473     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
16474       if (Input.get()->isGLValue() &&
16475           Input.get()->getObjectKind() == OK_Ordinary)
16476         VK = Input.get()->getValueKind();
16477     } else if (!getLangOpts().CPlusPlus) {
16478       // In C, a volatile scalar is read by __imag. In C++, it is not.
16479       Input = DefaultLvalueConversion(Input.get());
16480     }
16481     break;
16482   case UO_Extension:
16483     resultType = Input.get()->getType();
16484     VK = Input.get()->getValueKind();
16485     OK = Input.get()->getObjectKind();
16486     break;
16487   case UO_Coawait:
16488     // It's unnecessary to represent the pass-through operator co_await in the
16489     // AST; just return the input expression instead.
16490     assert(!Input.get()->getType()->isDependentType() &&
16491                    "the co_await expression must be non-dependant before "
16492                    "building operator co_await");
16493     return Input;
16494   }
16495   if (resultType.isNull() || Input.isInvalid())
16496     return ExprError();
16497 
16498   // Check for array bounds violations in the operand of the UnaryOperator,
16499   // except for the '*' and '&' operators that have to be handled specially
16500   // by CheckArrayAccess (as there are special cases like &array[arraysize]
16501   // that are explicitly defined as valid by the standard).
16502   if (Opc != UO_AddrOf && Opc != UO_Deref)
16503     CheckArrayAccess(Input.get());
16504 
16505   auto *UO =
16506       UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
16507                             OpLoc, CanOverflow, CurFPFeatureOverrides());
16508 
16509   if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
16510       !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
16511       !isUnevaluatedContext())
16512     ExprEvalContexts.back().PossibleDerefs.insert(UO);
16513 
16514   // Convert the result back to a half vector.
16515   if (ConvertHalfVec)
16516     return convertVector(UO, Context.HalfTy, *this);
16517   return UO;
16518 }
16519 
16520 /// Determine whether the given expression is a qualified member
16521 /// access expression, of a form that could be turned into a pointer to member
16522 /// with the address-of operator.
isQualifiedMemberAccess(Expr * E)16523 bool Sema::isQualifiedMemberAccess(Expr *E) {
16524   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
16525     if (!DRE->getQualifier())
16526       return false;
16527 
16528     ValueDecl *VD = DRE->getDecl();
16529     if (!VD->isCXXClassMember())
16530       return false;
16531 
16532     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
16533       return true;
16534     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
16535       return Method->isImplicitObjectMemberFunction();
16536 
16537     return false;
16538   }
16539 
16540   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
16541     if (!ULE->getQualifier())
16542       return false;
16543 
16544     for (NamedDecl *D : ULE->decls()) {
16545       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
16546         if (Method->isImplicitObjectMemberFunction())
16547           return true;
16548       } else {
16549         // Overload set does not contain methods.
16550         break;
16551       }
16552     }
16553 
16554     return false;
16555   }
16556 
16557   return false;
16558 }
16559 
BuildUnaryOp(Scope * S,SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * Input,bool IsAfterAmp)16560 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
16561                               UnaryOperatorKind Opc, Expr *Input,
16562                               bool IsAfterAmp) {
16563   // First things first: handle placeholders so that the
16564   // overloaded-operator check considers the right type.
16565   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
16566     // Increment and decrement of pseudo-object references.
16567     if (pty->getKind() == BuiltinType::PseudoObject &&
16568         UnaryOperator::isIncrementDecrementOp(Opc))
16569       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
16570 
16571     // extension is always a builtin operator.
16572     if (Opc == UO_Extension)
16573       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
16574 
16575     // & gets special logic for several kinds of placeholder.
16576     // The builtin code knows what to do.
16577     if (Opc == UO_AddrOf &&
16578         (pty->getKind() == BuiltinType::Overload ||
16579          pty->getKind() == BuiltinType::UnknownAny ||
16580          pty->getKind() == BuiltinType::BoundMember))
16581       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
16582 
16583     // Anything else needs to be handled now.
16584     ExprResult Result = CheckPlaceholderExpr(Input);
16585     if (Result.isInvalid()) return ExprError();
16586     Input = Result.get();
16587   }
16588 
16589   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
16590       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
16591       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
16592     // Find all of the overloaded operators visible from this point.
16593     UnresolvedSet<16> Functions;
16594     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
16595     if (S && OverOp != OO_None)
16596       LookupOverloadedOperatorName(OverOp, S, Functions);
16597 
16598     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
16599   }
16600 
16601   return CreateBuiltinUnaryOp(OpLoc, Opc, Input, IsAfterAmp);
16602 }
16603 
16604 // Unary Operators.  'Tok' is the token for the operator.
ActOnUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Op,Expr * Input,bool IsAfterAmp)16605 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op,
16606                               Expr *Input, bool IsAfterAmp) {
16607   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input,
16608                       IsAfterAmp);
16609 }
16610 
16611 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ActOnAddrLabel(SourceLocation OpLoc,SourceLocation LabLoc,LabelDecl * TheDecl)16612 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
16613                                 LabelDecl *TheDecl) {
16614   TheDecl->markUsed(Context);
16615   // Create the AST node.  The address of a label always has type 'void*'.
16616   auto *Res = new (Context) AddrLabelExpr(
16617       OpLoc, LabLoc, TheDecl, Context.getPointerType(Context.VoidTy));
16618 
16619   if (getCurFunction())
16620     getCurFunction()->AddrLabels.push_back(Res);
16621 
16622   return Res;
16623 }
16624 
ActOnStartStmtExpr()16625 void Sema::ActOnStartStmtExpr() {
16626   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
16627   // Make sure we diagnose jumping into a statement expression.
16628   setFunctionHasBranchProtectedScope();
16629 }
16630 
ActOnStmtExprError()16631 void Sema::ActOnStmtExprError() {
16632   // Note that function is also called by TreeTransform when leaving a
16633   // StmtExpr scope without rebuilding anything.
16634 
16635   DiscardCleanupsInEvaluationContext();
16636   PopExpressionEvaluationContext();
16637 }
16638 
ActOnStmtExpr(Scope * S,SourceLocation LPLoc,Stmt * SubStmt,SourceLocation RPLoc)16639 ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
16640                                SourceLocation RPLoc) {
16641   return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
16642 }
16643 
BuildStmtExpr(SourceLocation LPLoc,Stmt * SubStmt,SourceLocation RPLoc,unsigned TemplateDepth)16644 ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
16645                                SourceLocation RPLoc, unsigned TemplateDepth) {
16646   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
16647   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
16648 
16649   if (hasAnyUnrecoverableErrorsInThisFunction())
16650     DiscardCleanupsInEvaluationContext();
16651   assert(!Cleanup.exprNeedsCleanups() &&
16652          "cleanups within StmtExpr not correctly bound!");
16653   PopExpressionEvaluationContext();
16654 
16655   // FIXME: there are a variety of strange constraints to enforce here, for
16656   // example, it is not possible to goto into a stmt expression apparently.
16657   // More semantic analysis is needed.
16658 
16659   // If there are sub-stmts in the compound stmt, take the type of the last one
16660   // as the type of the stmtexpr.
16661   QualType Ty = Context.VoidTy;
16662   bool StmtExprMayBindToTemp = false;
16663   if (!Compound->body_empty()) {
16664     // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
16665     if (const auto *LastStmt =
16666             dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
16667       if (const Expr *Value = LastStmt->getExprStmt()) {
16668         StmtExprMayBindToTemp = true;
16669         Ty = Value->getType();
16670       }
16671     }
16672   }
16673 
16674   // FIXME: Check that expression type is complete/non-abstract; statement
16675   // expressions are not lvalues.
16676   Expr *ResStmtExpr =
16677       new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
16678   if (StmtExprMayBindToTemp)
16679     return MaybeBindToTemporary(ResStmtExpr);
16680   return ResStmtExpr;
16681 }
16682 
ActOnStmtExprResult(ExprResult ER)16683 ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
16684   if (ER.isInvalid())
16685     return ExprError();
16686 
16687   // Do function/array conversion on the last expression, but not
16688   // lvalue-to-rvalue.  However, initialize an unqualified type.
16689   ER = DefaultFunctionArrayConversion(ER.get());
16690   if (ER.isInvalid())
16691     return ExprError();
16692   Expr *E = ER.get();
16693 
16694   if (E->isTypeDependent())
16695     return E;
16696 
16697   // In ARC, if the final expression ends in a consume, splice
16698   // the consume out and bind it later.  In the alternate case
16699   // (when dealing with a retainable type), the result
16700   // initialization will create a produce.  In both cases the
16701   // result will be +1, and we'll need to balance that out with
16702   // a bind.
16703   auto *Cast = dyn_cast<ImplicitCastExpr>(E);
16704   if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
16705     return Cast->getSubExpr();
16706 
16707   // FIXME: Provide a better location for the initialization.
16708   return PerformCopyInitialization(
16709       InitializedEntity::InitializeStmtExprResult(
16710           E->getBeginLoc(), E->getType().getUnqualifiedType()),
16711       SourceLocation(), E);
16712 }
16713 
BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,TypeSourceInfo * TInfo,ArrayRef<OffsetOfComponent> Components,SourceLocation RParenLoc)16714 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
16715                                       TypeSourceInfo *TInfo,
16716                                       ArrayRef<OffsetOfComponent> Components,
16717                                       SourceLocation RParenLoc) {
16718   QualType ArgTy = TInfo->getType();
16719   bool Dependent = ArgTy->isDependentType();
16720   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
16721 
16722   // We must have at least one component that refers to the type, and the first
16723   // one is known to be a field designator.  Verify that the ArgTy represents
16724   // a struct/union/class.
16725   if (!Dependent && !ArgTy->isRecordType())
16726     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
16727                        << ArgTy << TypeRange);
16728 
16729   // Type must be complete per C99 7.17p3 because a declaring a variable
16730   // with an incomplete type would be ill-formed.
16731   if (!Dependent
16732       && RequireCompleteType(BuiltinLoc, ArgTy,
16733                              diag::err_offsetof_incomplete_type, TypeRange))
16734     return ExprError();
16735 
16736   bool DidWarnAboutNonPOD = false;
16737   QualType CurrentType = ArgTy;
16738   SmallVector<OffsetOfNode, 4> Comps;
16739   SmallVector<Expr*, 4> Exprs;
16740   for (const OffsetOfComponent &OC : Components) {
16741     if (OC.isBrackets) {
16742       // Offset of an array sub-field.  TODO: Should we allow vector elements?
16743       if (!CurrentType->isDependentType()) {
16744         const ArrayType *AT = Context.getAsArrayType(CurrentType);
16745         if(!AT)
16746           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
16747                            << CurrentType);
16748         CurrentType = AT->getElementType();
16749       } else
16750         CurrentType = Context.DependentTy;
16751 
16752       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
16753       if (IdxRval.isInvalid())
16754         return ExprError();
16755       Expr *Idx = IdxRval.get();
16756 
16757       // The expression must be an integral expression.
16758       // FIXME: An integral constant expression?
16759       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
16760           !Idx->getType()->isIntegerType())
16761         return ExprError(
16762             Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
16763             << Idx->getSourceRange());
16764 
16765       // Record this array index.
16766       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
16767       Exprs.push_back(Idx);
16768       continue;
16769     }
16770 
16771     // Offset of a field.
16772     if (CurrentType->isDependentType()) {
16773       // We have the offset of a field, but we can't look into the dependent
16774       // type. Just record the identifier of the field.
16775       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
16776       CurrentType = Context.DependentTy;
16777       continue;
16778     }
16779 
16780     // We need to have a complete type to look into.
16781     if (RequireCompleteType(OC.LocStart, CurrentType,
16782                             diag::err_offsetof_incomplete_type))
16783       return ExprError();
16784 
16785     // Look for the designated field.
16786     const RecordType *RC = CurrentType->getAs<RecordType>();
16787     if (!RC)
16788       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
16789                        << CurrentType);
16790     RecordDecl *RD = RC->getDecl();
16791 
16792     // C++ [lib.support.types]p5:
16793     //   The macro offsetof accepts a restricted set of type arguments in this
16794     //   International Standard. type shall be a POD structure or a POD union
16795     //   (clause 9).
16796     // C++11 [support.types]p4:
16797     //   If type is not a standard-layout class (Clause 9), the results are
16798     //   undefined.
16799     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
16800       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
16801       unsigned DiagID =
16802         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
16803                             : diag::ext_offsetof_non_pod_type;
16804 
16805       if (!IsSafe && !DidWarnAboutNonPOD && !isUnevaluatedContext()) {
16806         Diag(BuiltinLoc, DiagID)
16807             << SourceRange(Components[0].LocStart, OC.LocEnd) << CurrentType;
16808         DidWarnAboutNonPOD = true;
16809       }
16810     }
16811 
16812     // Look for the field.
16813     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
16814     LookupQualifiedName(R, RD);
16815     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
16816     IndirectFieldDecl *IndirectMemberDecl = nullptr;
16817     if (!MemberDecl) {
16818       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
16819         MemberDecl = IndirectMemberDecl->getAnonField();
16820     }
16821 
16822     if (!MemberDecl) {
16823       // Lookup could be ambiguous when looking up a placeholder variable
16824       // __builtin_offsetof(S, _).
16825       // In that case we would already have emitted a diagnostic
16826       if (!R.isAmbiguous())
16827         Diag(BuiltinLoc, diag::err_no_member)
16828             << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd);
16829       return ExprError();
16830     }
16831 
16832     // C99 7.17p3:
16833     //   (If the specified member is a bit-field, the behavior is undefined.)
16834     //
16835     // We diagnose this as an error.
16836     if (MemberDecl->isBitField()) {
16837       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
16838         << MemberDecl->getDeclName()
16839         << SourceRange(BuiltinLoc, RParenLoc);
16840       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
16841       return ExprError();
16842     }
16843 
16844     RecordDecl *Parent = MemberDecl->getParent();
16845     if (IndirectMemberDecl)
16846       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
16847 
16848     // If the member was found in a base class, introduce OffsetOfNodes for
16849     // the base class indirections.
16850     CXXBasePaths Paths;
16851     if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
16852                       Paths)) {
16853       if (Paths.getDetectedVirtual()) {
16854         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
16855           << MemberDecl->getDeclName()
16856           << SourceRange(BuiltinLoc, RParenLoc);
16857         return ExprError();
16858       }
16859 
16860       CXXBasePath &Path = Paths.front();
16861       for (const CXXBasePathElement &B : Path)
16862         Comps.push_back(OffsetOfNode(B.Base));
16863     }
16864 
16865     if (IndirectMemberDecl) {
16866       for (auto *FI : IndirectMemberDecl->chain()) {
16867         assert(isa<FieldDecl>(FI));
16868         Comps.push_back(OffsetOfNode(OC.LocStart,
16869                                      cast<FieldDecl>(FI), OC.LocEnd));
16870       }
16871     } else
16872       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
16873 
16874     CurrentType = MemberDecl->getType().getNonReferenceType();
16875   }
16876 
16877   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
16878                               Comps, Exprs, RParenLoc);
16879 }
16880 
ActOnBuiltinOffsetOf(Scope * S,SourceLocation BuiltinLoc,SourceLocation TypeLoc,ParsedType ParsedArgTy,ArrayRef<OffsetOfComponent> Components,SourceLocation RParenLoc)16881 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
16882                                       SourceLocation BuiltinLoc,
16883                                       SourceLocation TypeLoc,
16884                                       ParsedType ParsedArgTy,
16885                                       ArrayRef<OffsetOfComponent> Components,
16886                                       SourceLocation RParenLoc) {
16887 
16888   TypeSourceInfo *ArgTInfo;
16889   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
16890   if (ArgTy.isNull())
16891     return ExprError();
16892 
16893   if (!ArgTInfo)
16894     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
16895 
16896   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
16897 }
16898 
16899 
ActOnChooseExpr(SourceLocation BuiltinLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr,SourceLocation RPLoc)16900 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
16901                                  Expr *CondExpr,
16902                                  Expr *LHSExpr, Expr *RHSExpr,
16903                                  SourceLocation RPLoc) {
16904   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
16905 
16906   ExprValueKind VK = VK_PRValue;
16907   ExprObjectKind OK = OK_Ordinary;
16908   QualType resType;
16909   bool CondIsTrue = false;
16910   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
16911     resType = Context.DependentTy;
16912   } else {
16913     // The conditional expression is required to be a constant expression.
16914     llvm::APSInt condEval(32);
16915     ExprResult CondICE = VerifyIntegerConstantExpression(
16916         CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
16917     if (CondICE.isInvalid())
16918       return ExprError();
16919     CondExpr = CondICE.get();
16920     CondIsTrue = condEval.getZExtValue();
16921 
16922     // If the condition is > zero, then the AST type is the same as the LHSExpr.
16923     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
16924 
16925     resType = ActiveExpr->getType();
16926     VK = ActiveExpr->getValueKind();
16927     OK = ActiveExpr->getObjectKind();
16928   }
16929 
16930   return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
16931                                   resType, VK, OK, RPLoc, CondIsTrue);
16932 }
16933 
16934 //===----------------------------------------------------------------------===//
16935 // Clang Extensions.
16936 //===----------------------------------------------------------------------===//
16937 
16938 /// ActOnBlockStart - This callback is invoked when a block literal is started.
ActOnBlockStart(SourceLocation CaretLoc,Scope * CurScope)16939 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
16940   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
16941 
16942   if (LangOpts.CPlusPlus) {
16943     MangleNumberingContext *MCtx;
16944     Decl *ManglingContextDecl;
16945     std::tie(MCtx, ManglingContextDecl) =
16946         getCurrentMangleNumberContext(Block->getDeclContext());
16947     if (MCtx) {
16948       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
16949       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
16950     }
16951   }
16952 
16953   PushBlockScope(CurScope, Block);
16954   CurContext->addDecl(Block);
16955   if (CurScope)
16956     PushDeclContext(CurScope, Block);
16957   else
16958     CurContext = Block;
16959 
16960   getCurBlock()->HasImplicitReturnType = true;
16961 
16962   // Enter a new evaluation context to insulate the block from any
16963   // cleanups from the enclosing full-expression.
16964   PushExpressionEvaluationContext(
16965       ExpressionEvaluationContext::PotentiallyEvaluated);
16966 }
16967 
ActOnBlockArguments(SourceLocation CaretLoc,Declarator & ParamInfo,Scope * CurScope)16968 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
16969                                Scope *CurScope) {
16970   assert(ParamInfo.getIdentifier() == nullptr &&
16971          "block-id should have no identifier!");
16972   assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
16973   BlockScopeInfo *CurBlock = getCurBlock();
16974 
16975   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo);
16976   QualType T = Sig->getType();
16977 
16978   // FIXME: We should allow unexpanded parameter packs here, but that would,
16979   // in turn, make the block expression contain unexpanded parameter packs.
16980   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
16981     // Drop the parameters.
16982     FunctionProtoType::ExtProtoInfo EPI;
16983     EPI.HasTrailingReturn = false;
16984     EPI.TypeQuals.addConst();
16985     T = Context.getFunctionType(Context.DependentTy, std::nullopt, EPI);
16986     Sig = Context.getTrivialTypeSourceInfo(T);
16987   }
16988 
16989   // GetTypeForDeclarator always produces a function type for a block
16990   // literal signature.  Furthermore, it is always a FunctionProtoType
16991   // unless the function was written with a typedef.
16992   assert(T->isFunctionType() &&
16993          "GetTypeForDeclarator made a non-function block signature");
16994 
16995   // Look for an explicit signature in that function type.
16996   FunctionProtoTypeLoc ExplicitSignature;
16997 
16998   if ((ExplicitSignature = Sig->getTypeLoc()
16999                                .getAsAdjusted<FunctionProtoTypeLoc>())) {
17000 
17001     // Check whether that explicit signature was synthesized by
17002     // GetTypeForDeclarator.  If so, don't save that as part of the
17003     // written signature.
17004     if (ExplicitSignature.getLocalRangeBegin() ==
17005         ExplicitSignature.getLocalRangeEnd()) {
17006       // This would be much cheaper if we stored TypeLocs instead of
17007       // TypeSourceInfos.
17008       TypeLoc Result = ExplicitSignature.getReturnLoc();
17009       unsigned Size = Result.getFullDataSize();
17010       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
17011       Sig->getTypeLoc().initializeFullCopy(Result, Size);
17012 
17013       ExplicitSignature = FunctionProtoTypeLoc();
17014     }
17015   }
17016 
17017   CurBlock->TheDecl->setSignatureAsWritten(Sig);
17018   CurBlock->FunctionType = T;
17019 
17020   const auto *Fn = T->castAs<FunctionType>();
17021   QualType RetTy = Fn->getReturnType();
17022   bool isVariadic =
17023       (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
17024 
17025   CurBlock->TheDecl->setIsVariadic(isVariadic);
17026 
17027   // Context.DependentTy is used as a placeholder for a missing block
17028   // return type.  TODO:  what should we do with declarators like:
17029   //   ^ * { ... }
17030   // If the answer is "apply template argument deduction"....
17031   if (RetTy != Context.DependentTy) {
17032     CurBlock->ReturnType = RetTy;
17033     CurBlock->TheDecl->setBlockMissingReturnType(false);
17034     CurBlock->HasImplicitReturnType = false;
17035   }
17036 
17037   // Push block parameters from the declarator if we had them.
17038   SmallVector<ParmVarDecl*, 8> Params;
17039   if (ExplicitSignature) {
17040     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
17041       ParmVarDecl *Param = ExplicitSignature.getParam(I);
17042       if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
17043           !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
17044         // Diagnose this as an extension in C17 and earlier.
17045         if (!getLangOpts().C23)
17046           Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c23);
17047       }
17048       Params.push_back(Param);
17049     }
17050 
17051   // Fake up parameter variables if we have a typedef, like
17052   //   ^ fntype { ... }
17053   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
17054     for (const auto &I : Fn->param_types()) {
17055       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
17056           CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
17057       Params.push_back(Param);
17058     }
17059   }
17060 
17061   // Set the parameters on the block decl.
17062   if (!Params.empty()) {
17063     CurBlock->TheDecl->setParams(Params);
17064     CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
17065                              /*CheckParameterNames=*/false);
17066   }
17067 
17068   // Finally we can process decl attributes.
17069   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
17070 
17071   // Put the parameter variables in scope.
17072   for (auto *AI : CurBlock->TheDecl->parameters()) {
17073     AI->setOwningFunction(CurBlock->TheDecl);
17074 
17075     // If this has an identifier, add it to the scope stack.
17076     if (AI->getIdentifier()) {
17077       CheckShadow(CurBlock->TheScope, AI);
17078 
17079       PushOnScopeChains(AI, CurBlock->TheScope);
17080     }
17081 
17082     if (AI->isInvalidDecl())
17083       CurBlock->TheDecl->setInvalidDecl();
17084   }
17085 }
17086 
17087 /// ActOnBlockError - If there is an error parsing a block, this callback
17088 /// is invoked to pop the information about the block from the action impl.
ActOnBlockError(SourceLocation CaretLoc,Scope * CurScope)17089 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
17090   // Leave the expression-evaluation context.
17091   DiscardCleanupsInEvaluationContext();
17092   PopExpressionEvaluationContext();
17093 
17094   // Pop off CurBlock, handle nested blocks.
17095   PopDeclContext();
17096   PopFunctionScopeInfo();
17097 }
17098 
17099 /// ActOnBlockStmtExpr - This is called when the body of a block statement
17100 /// literal was successfully completed.  ^(int x){...}
ActOnBlockStmtExpr(SourceLocation CaretLoc,Stmt * Body,Scope * CurScope)17101 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
17102                                     Stmt *Body, Scope *CurScope) {
17103   // If blocks are disabled, emit an error.
17104   if (!LangOpts.Blocks)
17105     Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
17106 
17107   // Leave the expression-evaluation context.
17108   if (hasAnyUnrecoverableErrorsInThisFunction())
17109     DiscardCleanupsInEvaluationContext();
17110   assert(!Cleanup.exprNeedsCleanups() &&
17111          "cleanups within block not correctly bound!");
17112   PopExpressionEvaluationContext();
17113 
17114   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
17115   BlockDecl *BD = BSI->TheDecl;
17116 
17117   if (BSI->HasImplicitReturnType)
17118     deduceClosureReturnType(*BSI);
17119 
17120   QualType RetTy = Context.VoidTy;
17121   if (!BSI->ReturnType.isNull())
17122     RetTy = BSI->ReturnType;
17123 
17124   bool NoReturn = BD->hasAttr<NoReturnAttr>();
17125   QualType BlockTy;
17126 
17127   // If the user wrote a function type in some form, try to use that.
17128   if (!BSI->FunctionType.isNull()) {
17129     const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
17130 
17131     FunctionType::ExtInfo Ext = FTy->getExtInfo();
17132     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
17133 
17134     // Turn protoless block types into nullary block types.
17135     if (isa<FunctionNoProtoType>(FTy)) {
17136       FunctionProtoType::ExtProtoInfo EPI;
17137       EPI.ExtInfo = Ext;
17138       BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
17139 
17140       // Otherwise, if we don't need to change anything about the function type,
17141       // preserve its sugar structure.
17142     } else if (FTy->getReturnType() == RetTy &&
17143                (!NoReturn || FTy->getNoReturnAttr())) {
17144       BlockTy = BSI->FunctionType;
17145 
17146     // Otherwise, make the minimal modifications to the function type.
17147     } else {
17148       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
17149       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
17150       EPI.TypeQuals = Qualifiers();
17151       EPI.ExtInfo = Ext;
17152       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
17153     }
17154 
17155   // If we don't have a function type, just build one from nothing.
17156   } else {
17157     FunctionProtoType::ExtProtoInfo EPI;
17158     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
17159     BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
17160   }
17161 
17162   DiagnoseUnusedParameters(BD->parameters());
17163   BlockTy = Context.getBlockPointerType(BlockTy);
17164 
17165   // If needed, diagnose invalid gotos and switches in the block.
17166   if (getCurFunction()->NeedsScopeChecking() &&
17167       !PP.isCodeCompletionEnabled())
17168     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
17169 
17170   BD->setBody(cast<CompoundStmt>(Body));
17171 
17172   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
17173     DiagnoseUnguardedAvailabilityViolations(BD);
17174 
17175   // Try to apply the named return value optimization. We have to check again
17176   // if we can do this, though, because blocks keep return statements around
17177   // to deduce an implicit return type.
17178   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
17179       !BD->isDependentContext())
17180     computeNRVO(Body, BSI);
17181 
17182   if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
17183       RetTy.hasNonTrivialToPrimitiveCopyCUnion())
17184     checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
17185                           NTCUK_Destruct|NTCUK_Copy);
17186 
17187   PopDeclContext();
17188 
17189   // Set the captured variables on the block.
17190   SmallVector<BlockDecl::Capture, 4> Captures;
17191   for (Capture &Cap : BSI->Captures) {
17192     if (Cap.isInvalid() || Cap.isThisCapture())
17193       continue;
17194     // Cap.getVariable() is always a VarDecl because
17195     // blocks cannot capture structured bindings or other ValueDecl kinds.
17196     auto *Var = cast<VarDecl>(Cap.getVariable());
17197     Expr *CopyExpr = nullptr;
17198     if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
17199       if (const RecordType *Record =
17200               Cap.getCaptureType()->getAs<RecordType>()) {
17201         // The capture logic needs the destructor, so make sure we mark it.
17202         // Usually this is unnecessary because most local variables have
17203         // their destructors marked at declaration time, but parameters are
17204         // an exception because it's technically only the call site that
17205         // actually requires the destructor.
17206         if (isa<ParmVarDecl>(Var))
17207           FinalizeVarWithDestructor(Var, Record);
17208 
17209         // Enter a separate potentially-evaluated context while building block
17210         // initializers to isolate their cleanups from those of the block
17211         // itself.
17212         // FIXME: Is this appropriate even when the block itself occurs in an
17213         // unevaluated operand?
17214         EnterExpressionEvaluationContext EvalContext(
17215             *this, ExpressionEvaluationContext::PotentiallyEvaluated);
17216 
17217         SourceLocation Loc = Cap.getLocation();
17218 
17219         ExprResult Result = BuildDeclarationNameExpr(
17220             CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
17221 
17222         // According to the blocks spec, the capture of a variable from
17223         // the stack requires a const copy constructor.  This is not true
17224         // of the copy/move done to move a __block variable to the heap.
17225         if (!Result.isInvalid() &&
17226             !Result.get()->getType().isConstQualified()) {
17227           Result = ImpCastExprToType(Result.get(),
17228                                      Result.get()->getType().withConst(),
17229                                      CK_NoOp, VK_LValue);
17230         }
17231 
17232         if (!Result.isInvalid()) {
17233           Result = PerformCopyInitialization(
17234               InitializedEntity::InitializeBlock(Var->getLocation(),
17235                                                  Cap.getCaptureType()),
17236               Loc, Result.get());
17237         }
17238 
17239         // Build a full-expression copy expression if initialization
17240         // succeeded and used a non-trivial constructor.  Recover from
17241         // errors by pretending that the copy isn't necessary.
17242         if (!Result.isInvalid() &&
17243             !cast<CXXConstructExpr>(Result.get())->getConstructor()
17244                 ->isTrivial()) {
17245           Result = MaybeCreateExprWithCleanups(Result);
17246           CopyExpr = Result.get();
17247         }
17248       }
17249     }
17250 
17251     BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
17252                               CopyExpr);
17253     Captures.push_back(NewCap);
17254   }
17255   BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
17256 
17257   // Pop the block scope now but keep it alive to the end of this function.
17258   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
17259   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
17260 
17261   BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
17262 
17263   // If the block isn't obviously global, i.e. it captures anything at
17264   // all, then we need to do a few things in the surrounding context:
17265   if (Result->getBlockDecl()->hasCaptures()) {
17266     // First, this expression has a new cleanup object.
17267     ExprCleanupObjects.push_back(Result->getBlockDecl());
17268     Cleanup.setExprNeedsCleanups(true);
17269 
17270     // It also gets a branch-protected scope if any of the captured
17271     // variables needs destruction.
17272     for (const auto &CI : Result->getBlockDecl()->captures()) {
17273       const VarDecl *var = CI.getVariable();
17274       if (var->getType().isDestructedType() != QualType::DK_none) {
17275         setFunctionHasBranchProtectedScope();
17276         break;
17277       }
17278     }
17279   }
17280 
17281   if (getCurFunction())
17282     getCurFunction()->addBlock(BD);
17283 
17284   if (BD->isInvalidDecl())
17285     return CreateRecoveryExpr(Result->getBeginLoc(), Result->getEndLoc(),
17286                               {Result}, Result->getType());
17287   return Result;
17288 }
17289 
ActOnVAArg(SourceLocation BuiltinLoc,Expr * E,ParsedType Ty,SourceLocation RPLoc)17290 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
17291                             SourceLocation RPLoc) {
17292   TypeSourceInfo *TInfo;
17293   GetTypeFromParser(Ty, &TInfo);
17294   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
17295 }
17296 
BuildVAArgExpr(SourceLocation BuiltinLoc,Expr * E,TypeSourceInfo * TInfo,SourceLocation RPLoc)17297 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
17298                                 Expr *E, TypeSourceInfo *TInfo,
17299                                 SourceLocation RPLoc) {
17300   Expr *OrigExpr = E;
17301   bool IsMS = false;
17302 
17303   // CUDA device code does not support varargs.
17304   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
17305     if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
17306       CUDAFunctionTarget T = IdentifyCUDATarget(F);
17307       if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
17308         return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
17309     }
17310   }
17311 
17312   // NVPTX does not support va_arg expression.
17313   if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
17314       Context.getTargetInfo().getTriple().isNVPTX())
17315     targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
17316 
17317   // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
17318   // as Microsoft ABI on an actual Microsoft platform, where
17319   // __builtin_ms_va_list and __builtin_va_list are the same.)
17320   if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
17321       Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
17322     QualType MSVaListType = Context.getBuiltinMSVaListType();
17323     if (Context.hasSameType(MSVaListType, E->getType())) {
17324       if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
17325         return ExprError();
17326       IsMS = true;
17327     }
17328   }
17329 
17330   // Get the va_list type
17331   QualType VaListType = Context.getBuiltinVaListType();
17332   if (!IsMS) {
17333     if (VaListType->isArrayType()) {
17334       // Deal with implicit array decay; for example, on x86-64,
17335       // va_list is an array, but it's supposed to decay to
17336       // a pointer for va_arg.
17337       VaListType = Context.getArrayDecayedType(VaListType);
17338       // Make sure the input expression also decays appropriately.
17339       ExprResult Result = UsualUnaryConversions(E);
17340       if (Result.isInvalid())
17341         return ExprError();
17342       E = Result.get();
17343     } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
17344       // If va_list is a record type and we are compiling in C++ mode,
17345       // check the argument using reference binding.
17346       InitializedEntity Entity = InitializedEntity::InitializeParameter(
17347           Context, Context.getLValueReferenceType(VaListType), false);
17348       ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
17349       if (Init.isInvalid())
17350         return ExprError();
17351       E = Init.getAs<Expr>();
17352     } else {
17353       // Otherwise, the va_list argument must be an l-value because
17354       // it is modified by va_arg.
17355       if (!E->isTypeDependent() &&
17356           CheckForModifiableLvalue(E, BuiltinLoc, *this))
17357         return ExprError();
17358     }
17359   }
17360 
17361   if (!IsMS && !E->isTypeDependent() &&
17362       !Context.hasSameType(VaListType, E->getType()))
17363     return ExprError(
17364         Diag(E->getBeginLoc(),
17365              diag::err_first_argument_to_va_arg_not_of_type_va_list)
17366         << OrigExpr->getType() << E->getSourceRange());
17367 
17368   if (!TInfo->getType()->isDependentType()) {
17369     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
17370                             diag::err_second_parameter_to_va_arg_incomplete,
17371                             TInfo->getTypeLoc()))
17372       return ExprError();
17373 
17374     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
17375                                TInfo->getType(),
17376                                diag::err_second_parameter_to_va_arg_abstract,
17377                                TInfo->getTypeLoc()))
17378       return ExprError();
17379 
17380     if (!TInfo->getType().isPODType(Context)) {
17381       Diag(TInfo->getTypeLoc().getBeginLoc(),
17382            TInfo->getType()->isObjCLifetimeType()
17383              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
17384              : diag::warn_second_parameter_to_va_arg_not_pod)
17385         << TInfo->getType()
17386         << TInfo->getTypeLoc().getSourceRange();
17387     }
17388 
17389     // Check for va_arg where arguments of the given type will be promoted
17390     // (i.e. this va_arg is guaranteed to have undefined behavior).
17391     QualType PromoteType;
17392     if (Context.isPromotableIntegerType(TInfo->getType())) {
17393       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
17394       // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
17395       // and C23 7.16.1.1p2 says, in part:
17396       //   If type is not compatible with the type of the actual next argument
17397       //   (as promoted according to the default argument promotions), the
17398       //   behavior is undefined, except for the following cases:
17399       //     - both types are pointers to qualified or unqualified versions of
17400       //       compatible types;
17401       //     - one type is compatible with a signed integer type, the other
17402       //       type is compatible with the corresponding unsigned integer type,
17403       //       and the value is representable in both types;
17404       //     - one type is pointer to qualified or unqualified void and the
17405       //       other is a pointer to a qualified or unqualified character type;
17406       //     - or, the type of the next argument is nullptr_t and type is a
17407       //       pointer type that has the same representation and alignment
17408       //       requirements as a pointer to a character type.
17409       // Given that type compatibility is the primary requirement (ignoring
17410       // qualifications), you would think we could call typesAreCompatible()
17411       // directly to test this. However, in C++, that checks for *same type*,
17412       // which causes false positives when passing an enumeration type to
17413       // va_arg. Instead, get the underlying type of the enumeration and pass
17414       // that.
17415       QualType UnderlyingType = TInfo->getType();
17416       if (const auto *ET = UnderlyingType->getAs<EnumType>())
17417         UnderlyingType = ET->getDecl()->getIntegerType();
17418       if (Context.typesAreCompatible(PromoteType, UnderlyingType,
17419                                      /*CompareUnqualified*/ true))
17420         PromoteType = QualType();
17421 
17422       // If the types are still not compatible, we need to test whether the
17423       // promoted type and the underlying type are the same except for
17424       // signedness. Ask the AST for the correctly corresponding type and see
17425       // if that's compatible.
17426       if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
17427           PromoteType->isUnsignedIntegerType() !=
17428               UnderlyingType->isUnsignedIntegerType()) {
17429         UnderlyingType =
17430             UnderlyingType->isUnsignedIntegerType()
17431                 ? Context.getCorrespondingSignedType(UnderlyingType)
17432                 : Context.getCorrespondingUnsignedType(UnderlyingType);
17433         if (Context.typesAreCompatible(PromoteType, UnderlyingType,
17434                                        /*CompareUnqualified*/ true))
17435           PromoteType = QualType();
17436       }
17437     }
17438     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
17439       PromoteType = Context.DoubleTy;
17440     if (!PromoteType.isNull())
17441       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
17442                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
17443                           << TInfo->getType()
17444                           << PromoteType
17445                           << TInfo->getTypeLoc().getSourceRange());
17446   }
17447 
17448   QualType T = TInfo->getType().getNonLValueExprType(Context);
17449   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
17450 }
17451 
ActOnGNUNullExpr(SourceLocation TokenLoc)17452 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
17453   // The type of __null will be int or long, depending on the size of
17454   // pointers on the target.
17455   QualType Ty;
17456   unsigned pw = Context.getTargetInfo().getPointerWidth(LangAS::Default);
17457   if (pw == Context.getTargetInfo().getIntWidth())
17458     Ty = Context.IntTy;
17459   else if (pw == Context.getTargetInfo().getLongWidth())
17460     Ty = Context.LongTy;
17461   else if (pw == Context.getTargetInfo().getLongLongWidth())
17462     Ty = Context.LongLongTy;
17463   else {
17464     llvm_unreachable("I don't know size of pointer!");
17465   }
17466 
17467   return new (Context) GNUNullExpr(Ty, TokenLoc);
17468 }
17469 
LookupStdSourceLocationImpl(Sema & S,SourceLocation Loc)17470 static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) {
17471   CXXRecordDecl *ImplDecl = nullptr;
17472 
17473   // Fetch the std::source_location::__impl decl.
17474   if (NamespaceDecl *Std = S.getStdNamespace()) {
17475     LookupResult ResultSL(S, &S.PP.getIdentifierTable().get("source_location"),
17476                           Loc, Sema::LookupOrdinaryName);
17477     if (S.LookupQualifiedName(ResultSL, Std)) {
17478       if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) {
17479         LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get("__impl"),
17480                                 Loc, Sema::LookupOrdinaryName);
17481         if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) &&
17482             S.LookupQualifiedName(ResultImpl, SLDecl)) {
17483           ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>();
17484         }
17485       }
17486     }
17487   }
17488 
17489   if (!ImplDecl || !ImplDecl->isCompleteDefinition()) {
17490     S.Diag(Loc, diag::err_std_source_location_impl_not_found);
17491     return nullptr;
17492   }
17493 
17494   // Verify that __impl is a trivial struct type, with no base classes, and with
17495   // only the four expected fields.
17496   if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() ||
17497       ImplDecl->getNumBases() != 0) {
17498     S.Diag(Loc, diag::err_std_source_location_impl_malformed);
17499     return nullptr;
17500   }
17501 
17502   unsigned Count = 0;
17503   for (FieldDecl *F : ImplDecl->fields()) {
17504     StringRef Name = F->getName();
17505 
17506     if (Name == "_M_file_name") {
17507       if (F->getType() !=
17508           S.Context.getPointerType(S.Context.CharTy.withConst()))
17509         break;
17510       Count++;
17511     } else if (Name == "_M_function_name") {
17512       if (F->getType() !=
17513           S.Context.getPointerType(S.Context.CharTy.withConst()))
17514         break;
17515       Count++;
17516     } else if (Name == "_M_line") {
17517       if (!F->getType()->isIntegerType())
17518         break;
17519       Count++;
17520     } else if (Name == "_M_column") {
17521       if (!F->getType()->isIntegerType())
17522         break;
17523       Count++;
17524     } else {
17525       Count = 100; // invalid
17526       break;
17527     }
17528   }
17529   if (Count != 4) {
17530     S.Diag(Loc, diag::err_std_source_location_impl_malformed);
17531     return nullptr;
17532   }
17533 
17534   return ImplDecl;
17535 }
17536 
ActOnSourceLocExpr(SourceLocIdentKind Kind,SourceLocation BuiltinLoc,SourceLocation RPLoc)17537 ExprResult Sema::ActOnSourceLocExpr(SourceLocIdentKind Kind,
17538                                     SourceLocation BuiltinLoc,
17539                                     SourceLocation RPLoc) {
17540   QualType ResultTy;
17541   switch (Kind) {
17542   case SourceLocIdentKind::File:
17543   case SourceLocIdentKind::FileName:
17544   case SourceLocIdentKind::Function:
17545   case SourceLocIdentKind::FuncSig: {
17546     QualType ArrTy = Context.getStringLiteralArrayType(Context.CharTy, 0);
17547     ResultTy =
17548         Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
17549     break;
17550   }
17551   case SourceLocIdentKind::Line:
17552   case SourceLocIdentKind::Column:
17553     ResultTy = Context.UnsignedIntTy;
17554     break;
17555   case SourceLocIdentKind::SourceLocStruct:
17556     if (!StdSourceLocationImplDecl) {
17557       StdSourceLocationImplDecl =
17558           LookupStdSourceLocationImpl(*this, BuiltinLoc);
17559       if (!StdSourceLocationImplDecl)
17560         return ExprError();
17561     }
17562     ResultTy = Context.getPointerType(
17563         Context.getRecordType(StdSourceLocationImplDecl).withConst());
17564     break;
17565   }
17566 
17567   return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, CurContext);
17568 }
17569 
BuildSourceLocExpr(SourceLocIdentKind Kind,QualType ResultTy,SourceLocation BuiltinLoc,SourceLocation RPLoc,DeclContext * ParentContext)17570 ExprResult Sema::BuildSourceLocExpr(SourceLocIdentKind Kind, QualType ResultTy,
17571                                     SourceLocation BuiltinLoc,
17572                                     SourceLocation RPLoc,
17573                                     DeclContext *ParentContext) {
17574   return new (Context)
17575       SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext);
17576 }
17577 
CheckConversionToObjCLiteral(QualType DstType,Expr * & Exp,bool Diagnose)17578 bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
17579                                         bool Diagnose) {
17580   if (!getLangOpts().ObjC)
17581     return false;
17582 
17583   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
17584   if (!PT)
17585     return false;
17586   const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
17587 
17588   // Ignore any parens, implicit casts (should only be
17589   // array-to-pointer decays), and not-so-opaque values.  The last is
17590   // important for making this trigger for property assignments.
17591   Expr *SrcExpr = Exp->IgnoreParenImpCasts();
17592   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
17593     if (OV->getSourceExpr())
17594       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
17595 
17596   if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
17597     if (!PT->isObjCIdType() &&
17598         !(ID && ID->getIdentifier()->isStr("NSString")))
17599       return false;
17600     if (!SL->isOrdinary())
17601       return false;
17602 
17603     if (Diagnose) {
17604       Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
17605           << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
17606       Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
17607     }
17608     return true;
17609   }
17610 
17611   if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
17612       isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
17613       isa<CXXBoolLiteralExpr>(SrcExpr)) &&
17614       !SrcExpr->isNullPointerConstant(
17615           getASTContext(), Expr::NPC_NeverValueDependent)) {
17616     if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
17617       return false;
17618     if (Diagnose) {
17619       Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
17620           << /*number*/1
17621           << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
17622       Expr *NumLit =
17623           BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
17624       if (NumLit)
17625         Exp = NumLit;
17626     }
17627     return true;
17628   }
17629 
17630   return false;
17631 }
17632 
maybeDiagnoseAssignmentToFunction(Sema & S,QualType DstType,const Expr * SrcExpr)17633 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
17634                                               const Expr *SrcExpr) {
17635   if (!DstType->isFunctionPointerType() ||
17636       !SrcExpr->getType()->isFunctionType())
17637     return false;
17638 
17639   auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
17640   if (!DRE)
17641     return false;
17642 
17643   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
17644   if (!FD)
17645     return false;
17646 
17647   return !S.checkAddressOfFunctionIsAvailable(FD,
17648                                               /*Complain=*/true,
17649                                               SrcExpr->getBeginLoc());
17650 }
17651 
DiagnoseAssignmentResult(AssignConvertType ConvTy,SourceLocation Loc,QualType DstType,QualType SrcType,Expr * SrcExpr,AssignmentAction Action,bool * Complained)17652 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
17653                                     SourceLocation Loc,
17654                                     QualType DstType, QualType SrcType,
17655                                     Expr *SrcExpr, AssignmentAction Action,
17656                                     bool *Complained) {
17657   if (Complained)
17658     *Complained = false;
17659 
17660   // Decode the result (notice that AST's are still created for extensions).
17661   bool CheckInferredResultType = false;
17662   bool isInvalid = false;
17663   unsigned DiagKind = 0;
17664   ConversionFixItGenerator ConvHints;
17665   bool MayHaveConvFixit = false;
17666   bool MayHaveFunctionDiff = false;
17667   const ObjCInterfaceDecl *IFace = nullptr;
17668   const ObjCProtocolDecl *PDecl = nullptr;
17669 
17670   switch (ConvTy) {
17671   case Compatible:
17672       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
17673       return false;
17674 
17675   case PointerToInt:
17676     if (getLangOpts().CPlusPlus) {
17677       DiagKind = diag::err_typecheck_convert_pointer_int;
17678       isInvalid = true;
17679     } else {
17680       DiagKind = diag::ext_typecheck_convert_pointer_int;
17681     }
17682     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17683     MayHaveConvFixit = true;
17684     break;
17685   case IntToPointer:
17686     if (getLangOpts().CPlusPlus) {
17687       DiagKind = diag::err_typecheck_convert_int_pointer;
17688       isInvalid = true;
17689     } else {
17690       DiagKind = diag::ext_typecheck_convert_int_pointer;
17691     }
17692     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17693     MayHaveConvFixit = true;
17694     break;
17695   case IncompatibleFunctionPointerStrict:
17696     DiagKind =
17697         diag::warn_typecheck_convert_incompatible_function_pointer_strict;
17698     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17699     MayHaveConvFixit = true;
17700     break;
17701   case IncompatibleFunctionPointer:
17702     if (getLangOpts().CPlusPlus) {
17703       DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
17704       isInvalid = true;
17705     } else {
17706       DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
17707     }
17708     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17709     MayHaveConvFixit = true;
17710     break;
17711   case IncompatiblePointer:
17712     if (Action == AA_Passing_CFAudited) {
17713       DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
17714     } else if (getLangOpts().CPlusPlus) {
17715       DiagKind = diag::err_typecheck_convert_incompatible_pointer;
17716       isInvalid = true;
17717     } else {
17718       DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
17719     }
17720     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
17721       SrcType->isObjCObjectPointerType();
17722     if (!CheckInferredResultType) {
17723       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17724     } else if (CheckInferredResultType) {
17725       SrcType = SrcType.getUnqualifiedType();
17726       DstType = DstType.getUnqualifiedType();
17727     }
17728     MayHaveConvFixit = true;
17729     break;
17730   case IncompatiblePointerSign:
17731     if (getLangOpts().CPlusPlus) {
17732       DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
17733       isInvalid = true;
17734     } else {
17735       DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
17736     }
17737     break;
17738   case FunctionVoidPointer:
17739     if (getLangOpts().CPlusPlus) {
17740       DiagKind = diag::err_typecheck_convert_pointer_void_func;
17741       isInvalid = true;
17742     } else {
17743       DiagKind = diag::ext_typecheck_convert_pointer_void_func;
17744     }
17745     break;
17746   case IncompatiblePointerDiscardsQualifiers: {
17747     // Perform array-to-pointer decay if necessary.
17748     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
17749 
17750     isInvalid = true;
17751 
17752     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
17753     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
17754     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
17755       DiagKind = diag::err_typecheck_incompatible_address_space;
17756       break;
17757 
17758     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
17759       DiagKind = diag::err_typecheck_incompatible_ownership;
17760       break;
17761     }
17762 
17763     llvm_unreachable("unknown error case for discarding qualifiers!");
17764     // fallthrough
17765   }
17766   case CompatiblePointerDiscardsQualifiers:
17767     // If the qualifiers lost were because we were applying the
17768     // (deprecated) C++ conversion from a string literal to a char*
17769     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
17770     // Ideally, this check would be performed in
17771     // checkPointerTypesForAssignment. However, that would require a
17772     // bit of refactoring (so that the second argument is an
17773     // expression, rather than a type), which should be done as part
17774     // of a larger effort to fix checkPointerTypesForAssignment for
17775     // C++ semantics.
17776     if (getLangOpts().CPlusPlus &&
17777         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
17778       return false;
17779     if (getLangOpts().CPlusPlus) {
17780       DiagKind =  diag::err_typecheck_convert_discards_qualifiers;
17781       isInvalid = true;
17782     } else {
17783       DiagKind =  diag::ext_typecheck_convert_discards_qualifiers;
17784     }
17785 
17786     break;
17787   case IncompatibleNestedPointerQualifiers:
17788     if (getLangOpts().CPlusPlus) {
17789       isInvalid = true;
17790       DiagKind = diag::err_nested_pointer_qualifier_mismatch;
17791     } else {
17792       DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
17793     }
17794     break;
17795   case IncompatibleNestedPointerAddressSpaceMismatch:
17796     DiagKind = diag::err_typecheck_incompatible_nested_address_space;
17797     isInvalid = true;
17798     break;
17799   case IntToBlockPointer:
17800     DiagKind = diag::err_int_to_block_pointer;
17801     isInvalid = true;
17802     break;
17803   case IncompatibleBlockPointer:
17804     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
17805     isInvalid = true;
17806     break;
17807   case IncompatibleObjCQualifiedId: {
17808     if (SrcType->isObjCQualifiedIdType()) {
17809       const ObjCObjectPointerType *srcOPT =
17810                 SrcType->castAs<ObjCObjectPointerType>();
17811       for (auto *srcProto : srcOPT->quals()) {
17812         PDecl = srcProto;
17813         break;
17814       }
17815       if (const ObjCInterfaceType *IFaceT =
17816             DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17817         IFace = IFaceT->getDecl();
17818     }
17819     else if (DstType->isObjCQualifiedIdType()) {
17820       const ObjCObjectPointerType *dstOPT =
17821         DstType->castAs<ObjCObjectPointerType>();
17822       for (auto *dstProto : dstOPT->quals()) {
17823         PDecl = dstProto;
17824         break;
17825       }
17826       if (const ObjCInterfaceType *IFaceT =
17827             SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17828         IFace = IFaceT->getDecl();
17829     }
17830     if (getLangOpts().CPlusPlus) {
17831       DiagKind = diag::err_incompatible_qualified_id;
17832       isInvalid = true;
17833     } else {
17834       DiagKind = diag::warn_incompatible_qualified_id;
17835     }
17836     break;
17837   }
17838   case IncompatibleVectors:
17839     if (getLangOpts().CPlusPlus) {
17840       DiagKind = diag::err_incompatible_vectors;
17841       isInvalid = true;
17842     } else {
17843       DiagKind = diag::warn_incompatible_vectors;
17844     }
17845     break;
17846   case IncompatibleObjCWeakRef:
17847     DiagKind = diag::err_arc_weak_unavailable_assign;
17848     isInvalid = true;
17849     break;
17850   case Incompatible:
17851     if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
17852       if (Complained)
17853         *Complained = true;
17854       return true;
17855     }
17856 
17857     DiagKind = diag::err_typecheck_convert_incompatible;
17858     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17859     MayHaveConvFixit = true;
17860     isInvalid = true;
17861     MayHaveFunctionDiff = true;
17862     break;
17863   }
17864 
17865   QualType FirstType, SecondType;
17866   switch (Action) {
17867   case AA_Assigning:
17868   case AA_Initializing:
17869     // The destination type comes first.
17870     FirstType = DstType;
17871     SecondType = SrcType;
17872     break;
17873 
17874   case AA_Returning:
17875   case AA_Passing:
17876   case AA_Passing_CFAudited:
17877   case AA_Converting:
17878   case AA_Sending:
17879   case AA_Casting:
17880     // The source type comes first.
17881     FirstType = SrcType;
17882     SecondType = DstType;
17883     break;
17884   }
17885 
17886   PartialDiagnostic FDiag = PDiag(DiagKind);
17887   AssignmentAction ActionForDiag = Action;
17888   if (Action == AA_Passing_CFAudited)
17889     ActionForDiag = AA_Passing;
17890 
17891   FDiag << FirstType << SecondType << ActionForDiag
17892         << SrcExpr->getSourceRange();
17893 
17894   if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
17895       DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
17896     auto isPlainChar = [](const clang::Type *Type) {
17897       return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
17898              Type->isSpecificBuiltinType(BuiltinType::Char_U);
17899     };
17900     FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
17901               isPlainChar(SecondType->getPointeeOrArrayElementType()));
17902   }
17903 
17904   // If we can fix the conversion, suggest the FixIts.
17905   if (!ConvHints.isNull()) {
17906     for (FixItHint &H : ConvHints.Hints)
17907       FDiag << H;
17908   }
17909 
17910   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
17911 
17912   if (MayHaveFunctionDiff)
17913     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
17914 
17915   Diag(Loc, FDiag);
17916   if ((DiagKind == diag::warn_incompatible_qualified_id ||
17917        DiagKind == diag::err_incompatible_qualified_id) &&
17918       PDecl && IFace && !IFace->hasDefinition())
17919     Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
17920         << IFace << PDecl;
17921 
17922   if (SecondType == Context.OverloadTy)
17923     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
17924                               FirstType, /*TakingAddress=*/true);
17925 
17926   if (CheckInferredResultType)
17927     EmitRelatedResultTypeNote(SrcExpr);
17928 
17929   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
17930     EmitRelatedResultTypeNoteForReturn(DstType);
17931 
17932   if (Complained)
17933     *Complained = true;
17934   return isInvalid;
17935 }
17936 
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,AllowFoldKind CanFold)17937 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17938                                                  llvm::APSInt *Result,
17939                                                  AllowFoldKind CanFold) {
17940   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
17941   public:
17942     SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
17943                                              QualType T) override {
17944       return S.Diag(Loc, diag::err_ice_not_integral)
17945              << T << S.LangOpts.CPlusPlus;
17946     }
17947     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17948       return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
17949     }
17950   } Diagnoser;
17951 
17952   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17953 }
17954 
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,unsigned DiagID,AllowFoldKind CanFold)17955 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17956                                                  llvm::APSInt *Result,
17957                                                  unsigned DiagID,
17958                                                  AllowFoldKind CanFold) {
17959   class IDDiagnoser : public VerifyICEDiagnoser {
17960     unsigned DiagID;
17961 
17962   public:
17963     IDDiagnoser(unsigned DiagID)
17964       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
17965 
17966     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17967       return S.Diag(Loc, DiagID);
17968     }
17969   } Diagnoser(DiagID);
17970 
17971   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17972 }
17973 
17974 Sema::SemaDiagnosticBuilder
diagnoseNotICEType(Sema & S,SourceLocation Loc,QualType T)17975 Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
17976                                              QualType T) {
17977   return diagnoseNotICE(S, Loc);
17978 }
17979 
17980 Sema::SemaDiagnosticBuilder
diagnoseFold(Sema & S,SourceLocation Loc)17981 Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
17982   return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
17983 }
17984 
17985 ExprResult
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,VerifyICEDiagnoser & Diagnoser,AllowFoldKind CanFold)17986 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
17987                                       VerifyICEDiagnoser &Diagnoser,
17988                                       AllowFoldKind CanFold) {
17989   SourceLocation DiagLoc = E->getBeginLoc();
17990 
17991   if (getLangOpts().CPlusPlus11) {
17992     // C++11 [expr.const]p5:
17993     //   If an expression of literal class type is used in a context where an
17994     //   integral constant expression is required, then that class type shall
17995     //   have a single non-explicit conversion function to an integral or
17996     //   unscoped enumeration type
17997     ExprResult Converted;
17998     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
17999       VerifyICEDiagnoser &BaseDiagnoser;
18000     public:
18001       CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
18002           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
18003                                 BaseDiagnoser.Suppress, true),
18004             BaseDiagnoser(BaseDiagnoser) {}
18005 
18006       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
18007                                            QualType T) override {
18008         return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
18009       }
18010 
18011       SemaDiagnosticBuilder diagnoseIncomplete(
18012           Sema &S, SourceLocation Loc, QualType T) override {
18013         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
18014       }
18015 
18016       SemaDiagnosticBuilder diagnoseExplicitConv(
18017           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
18018         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
18019       }
18020 
18021       SemaDiagnosticBuilder noteExplicitConv(
18022           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
18023         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
18024                  << ConvTy->isEnumeralType() << ConvTy;
18025       }
18026 
18027       SemaDiagnosticBuilder diagnoseAmbiguous(
18028           Sema &S, SourceLocation Loc, QualType T) override {
18029         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
18030       }
18031 
18032       SemaDiagnosticBuilder noteAmbiguous(
18033           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
18034         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
18035                  << ConvTy->isEnumeralType() << ConvTy;
18036       }
18037 
18038       SemaDiagnosticBuilder diagnoseConversion(
18039           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
18040         llvm_unreachable("conversion functions are permitted");
18041       }
18042     } ConvertDiagnoser(Diagnoser);
18043 
18044     Converted = PerformContextualImplicitConversion(DiagLoc, E,
18045                                                     ConvertDiagnoser);
18046     if (Converted.isInvalid())
18047       return Converted;
18048     E = Converted.get();
18049     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
18050       return ExprError();
18051   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
18052     // An ICE must be of integral or unscoped enumeration type.
18053     if (!Diagnoser.Suppress)
18054       Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
18055           << E->getSourceRange();
18056     return ExprError();
18057   }
18058 
18059   ExprResult RValueExpr = DefaultLvalueConversion(E);
18060   if (RValueExpr.isInvalid())
18061     return ExprError();
18062 
18063   E = RValueExpr.get();
18064 
18065   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
18066   // in the non-ICE case.
18067   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
18068     if (Result)
18069       *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
18070     if (!isa<ConstantExpr>(E))
18071       E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
18072                  : ConstantExpr::Create(Context, E);
18073     return E;
18074   }
18075 
18076   Expr::EvalResult EvalResult;
18077   SmallVector<PartialDiagnosticAt, 8> Notes;
18078   EvalResult.Diag = &Notes;
18079 
18080   // Try to evaluate the expression, and produce diagnostics explaining why it's
18081   // not a constant expression as a side-effect.
18082   bool Folded =
18083       E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
18084       EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
18085 
18086   if (!isa<ConstantExpr>(E))
18087     E = ConstantExpr::Create(Context, E, EvalResult.Val);
18088 
18089   // In C++11, we can rely on diagnostics being produced for any expression
18090   // which is not a constant expression. If no diagnostics were produced, then
18091   // this is a constant expression.
18092   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
18093     if (Result)
18094       *Result = EvalResult.Val.getInt();
18095     return E;
18096   }
18097 
18098   // If our only note is the usual "invalid subexpression" note, just point
18099   // the caret at its location rather than producing an essentially
18100   // redundant note.
18101   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
18102         diag::note_invalid_subexpr_in_const_expr) {
18103     DiagLoc = Notes[0].first;
18104     Notes.clear();
18105   }
18106 
18107   if (!Folded || !CanFold) {
18108     if (!Diagnoser.Suppress) {
18109       Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
18110       for (const PartialDiagnosticAt &Note : Notes)
18111         Diag(Note.first, Note.second);
18112     }
18113 
18114     return ExprError();
18115   }
18116 
18117   Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
18118   for (const PartialDiagnosticAt &Note : Notes)
18119     Diag(Note.first, Note.second);
18120 
18121   if (Result)
18122     *Result = EvalResult.Val.getInt();
18123   return E;
18124 }
18125 
18126 namespace {
18127   // Handle the case where we conclude a expression which we speculatively
18128   // considered to be unevaluated is actually evaluated.
18129   class TransformToPE : public TreeTransform<TransformToPE> {
18130     typedef TreeTransform<TransformToPE> BaseTransform;
18131 
18132   public:
TransformToPE(Sema & SemaRef)18133     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
18134 
18135     // Make sure we redo semantic analysis
AlwaysRebuild()18136     bool AlwaysRebuild() { return true; }
ReplacingOriginal()18137     bool ReplacingOriginal() { return true; }
18138 
18139     // We need to special-case DeclRefExprs referring to FieldDecls which
18140     // are not part of a member pointer formation; normal TreeTransforming
18141     // doesn't catch this case because of the way we represent them in the AST.
18142     // FIXME: This is a bit ugly; is it really the best way to handle this
18143     // case?
18144     //
18145     // Error on DeclRefExprs referring to FieldDecls.
TransformDeclRefExpr(DeclRefExpr * E)18146     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
18147       if (isa<FieldDecl>(E->getDecl()) &&
18148           !SemaRef.isUnevaluatedContext())
18149         return SemaRef.Diag(E->getLocation(),
18150                             diag::err_invalid_non_static_member_use)
18151             << E->getDecl() << E->getSourceRange();
18152 
18153       return BaseTransform::TransformDeclRefExpr(E);
18154     }
18155 
18156     // Exception: filter out member pointer formation
TransformUnaryOperator(UnaryOperator * E)18157     ExprResult TransformUnaryOperator(UnaryOperator *E) {
18158       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
18159         return E;
18160 
18161       return BaseTransform::TransformUnaryOperator(E);
18162     }
18163 
18164     // The body of a lambda-expression is in a separate expression evaluation
18165     // context so never needs to be transformed.
18166     // FIXME: Ideally we wouldn't transform the closure type either, and would
18167     // just recreate the capture expressions and lambda expression.
TransformLambdaBody(LambdaExpr * E,Stmt * Body)18168     StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
18169       return SkipLambdaBody(E, Body);
18170     }
18171   };
18172 }
18173 
TransformToPotentiallyEvaluated(Expr * E)18174 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
18175   assert(isUnevaluatedContext() &&
18176          "Should only transform unevaluated expressions");
18177   ExprEvalContexts.back().Context =
18178       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
18179   if (isUnevaluatedContext())
18180     return E;
18181   return TransformToPE(*this).TransformExpr(E);
18182 }
18183 
TransformToPotentiallyEvaluated(TypeSourceInfo * TInfo)18184 TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
18185   assert(isUnevaluatedContext() &&
18186          "Should only transform unevaluated expressions");
18187   ExprEvalContexts.back().Context =
18188       ExprEvalContexts[ExprEvalContexts.size() - 2].Context;
18189   if (isUnevaluatedContext())
18190     return TInfo;
18191   return TransformToPE(*this).TransformType(TInfo);
18192 }
18193 
18194 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,Decl * LambdaContextDecl,ExpressionEvaluationContextRecord::ExpressionKind ExprContext)18195 Sema::PushExpressionEvaluationContext(
18196     ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
18197     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
18198   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
18199                                 LambdaContextDecl, ExprContext);
18200 
18201   // Discarded statements and immediate contexts nested in other
18202   // discarded statements or immediate context are themselves
18203   // a discarded statement or an immediate context, respectively.
18204   ExprEvalContexts.back().InDiscardedStatement =
18205       ExprEvalContexts[ExprEvalContexts.size() - 2]
18206           .isDiscardedStatementContext();
18207 
18208   // C++23 [expr.const]/p15
18209   // An expression or conversion is in an immediate function context if [...]
18210   // it is a subexpression of a manifestly constant-evaluated expression or
18211   // conversion.
18212   const auto &Prev = ExprEvalContexts[ExprEvalContexts.size() - 2];
18213   ExprEvalContexts.back().InImmediateFunctionContext =
18214       Prev.isImmediateFunctionContext() || Prev.isConstantEvaluated();
18215 
18216   ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
18217       Prev.InImmediateEscalatingFunctionContext;
18218 
18219   Cleanup.reset();
18220   if (!MaybeODRUseExprs.empty())
18221     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
18222 }
18223 
18224 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,ReuseLambdaContextDecl_t,ExpressionEvaluationContextRecord::ExpressionKind ExprContext)18225 Sema::PushExpressionEvaluationContext(
18226     ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
18227     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
18228   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
18229   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
18230 }
18231 
18232 namespace {
18233 
CheckPossibleDeref(Sema & S,const Expr * PossibleDeref)18234 const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
18235   PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
18236   if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
18237     if (E->getOpcode() == UO_Deref)
18238       return CheckPossibleDeref(S, E->getSubExpr());
18239   } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
18240     return CheckPossibleDeref(S, E->getBase());
18241   } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
18242     return CheckPossibleDeref(S, E->getBase());
18243   } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
18244     QualType Inner;
18245     QualType Ty = E->getType();
18246     if (const auto *Ptr = Ty->getAs<PointerType>())
18247       Inner = Ptr->getPointeeType();
18248     else if (const auto *Arr = S.Context.getAsArrayType(Ty))
18249       Inner = Arr->getElementType();
18250     else
18251       return nullptr;
18252 
18253     if (Inner->hasAttr(attr::NoDeref))
18254       return E;
18255   }
18256   return nullptr;
18257 }
18258 
18259 } // namespace
18260 
WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord & Rec)18261 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
18262   for (const Expr *E : Rec.PossibleDerefs) {
18263     const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
18264     if (DeclRef) {
18265       const ValueDecl *Decl = DeclRef->getDecl();
18266       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
18267           << Decl->getName() << E->getSourceRange();
18268       Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
18269     } else {
18270       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
18271           << E->getSourceRange();
18272     }
18273   }
18274   Rec.PossibleDerefs.clear();
18275 }
18276 
18277 /// Check whether E, which is either a discarded-value expression or an
18278 /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
18279 /// and if so, remove it from the list of volatile-qualified assignments that
18280 /// we are going to warn are deprecated.
CheckUnusedVolatileAssignment(Expr * E)18281 void Sema::CheckUnusedVolatileAssignment(Expr *E) {
18282   if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
18283     return;
18284 
18285   // Note: ignoring parens here is not justified by the standard rules, but
18286   // ignoring parentheses seems like a more reasonable approach, and this only
18287   // drives a deprecation warning so doesn't affect conformance.
18288   if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
18289     if (BO->getOpcode() == BO_Assign) {
18290       auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
18291       llvm::erase(LHSs, BO->getLHS());
18292     }
18293   }
18294 }
18295 
MarkExpressionAsImmediateEscalating(Expr * E)18296 void Sema::MarkExpressionAsImmediateEscalating(Expr *E) {
18297   assert(getLangOpts().CPlusPlus20 &&
18298          ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
18299          "Cannot mark an immediate escalating expression outside of an "
18300          "immediate escalating context");
18301   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreImplicit());
18302       Call && Call->getCallee()) {
18303     if (auto *DeclRef =
18304             dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
18305       DeclRef->setIsImmediateEscalating(true);
18306   } else if (auto *Ctr = dyn_cast<CXXConstructExpr>(E->IgnoreImplicit())) {
18307     Ctr->setIsImmediateEscalating(true);
18308   } else if (auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreImplicit())) {
18309     DeclRef->setIsImmediateEscalating(true);
18310   } else {
18311     assert(false && "expected an immediately escalating expression");
18312   }
18313   if (FunctionScopeInfo *FI = getCurFunction())
18314     FI->FoundImmediateEscalatingExpression = true;
18315 }
18316 
CheckForImmediateInvocation(ExprResult E,FunctionDecl * Decl)18317 ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
18318   if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
18319       !Decl->isImmediateFunction() || isAlwaysConstantEvaluatedContext() ||
18320       isCheckingDefaultArgumentOrInitializer() ||
18321       RebuildingImmediateInvocation || isImmediateFunctionContext())
18322     return E;
18323 
18324   /// Opportunistically remove the callee from ReferencesToConsteval if we can.
18325   /// It's OK if this fails; we'll also remove this in
18326   /// HandleImmediateInvocations, but catching it here allows us to avoid
18327   /// walking the AST looking for it in simple cases.
18328   if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
18329     if (auto *DeclRef =
18330             dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
18331       ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
18332 
18333   // C++23 [expr.const]/p16
18334   // An expression or conversion is immediate-escalating if it is not initially
18335   // in an immediate function context and it is [...] an immediate invocation
18336   // that is not a constant expression and is not a subexpression of an
18337   // immediate invocation.
18338   APValue Cached;
18339   auto CheckConstantExpressionAndKeepResult = [&]() {
18340     llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
18341     Expr::EvalResult Eval;
18342     Eval.Diag = &Notes;
18343     bool Res = E.get()->EvaluateAsConstantExpr(
18344         Eval, getASTContext(), ConstantExprKind::ImmediateInvocation);
18345     if (Res && Notes.empty()) {
18346       Cached = std::move(Eval.Val);
18347       return true;
18348     }
18349     return false;
18350   };
18351 
18352   if (!E.get()->isValueDependent() &&
18353       ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
18354       !CheckConstantExpressionAndKeepResult()) {
18355     MarkExpressionAsImmediateEscalating(E.get());
18356     return E;
18357   }
18358 
18359   if (Cleanup.exprNeedsCleanups()) {
18360     // Since an immediate invocation is a full expression itself - it requires
18361     // an additional ExprWithCleanups node, but it can participate to a bigger
18362     // full expression which actually requires cleanups to be run after so
18363     // create ExprWithCleanups without using MaybeCreateExprWithCleanups as it
18364     // may discard cleanups for outer expression too early.
18365 
18366     // Note that ExprWithCleanups created here must always have empty cleanup
18367     // objects:
18368     // - compound literals do not create cleanup objects in C++ and immediate
18369     // invocations are C++-only.
18370     // - blocks are not allowed inside constant expressions and compiler will
18371     // issue an error if they appear there.
18372     //
18373     // Hence, in correct code any cleanup objects created inside current
18374     // evaluation context must be outside the immediate invocation.
18375     E = ExprWithCleanups::Create(getASTContext(), E.get(),
18376                                  Cleanup.cleanupsHaveSideEffects(), {});
18377   }
18378 
18379   ConstantExpr *Res = ConstantExpr::Create(
18380       getASTContext(), E.get(),
18381       ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
18382                                    getASTContext()),
18383       /*IsImmediateInvocation*/ true);
18384   if (Cached.hasValue())
18385     Res->MoveIntoResult(Cached, getASTContext());
18386   /// Value-dependent constant expressions should not be immediately
18387   /// evaluated until they are instantiated.
18388   if (!Res->isValueDependent())
18389     ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
18390   return Res;
18391 }
18392 
EvaluateAndDiagnoseImmediateInvocation(Sema & SemaRef,Sema::ImmediateInvocationCandidate Candidate)18393 static void EvaluateAndDiagnoseImmediateInvocation(
18394     Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
18395   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
18396   Expr::EvalResult Eval;
18397   Eval.Diag = &Notes;
18398   ConstantExpr *CE = Candidate.getPointer();
18399   bool Result = CE->EvaluateAsConstantExpr(
18400       Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
18401   if (!Result || !Notes.empty()) {
18402     SemaRef.FailedImmediateInvocations.insert(CE);
18403     Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
18404     if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
18405       InnerExpr = FunctionalCast->getSubExpr()->IgnoreImplicit();
18406     FunctionDecl *FD = nullptr;
18407     if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
18408       FD = cast<FunctionDecl>(Call->getCalleeDecl());
18409     else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
18410       FD = Call->getConstructor();
18411     else if (auto *Cast = dyn_cast<CastExpr>(InnerExpr))
18412       FD = dyn_cast_or_null<FunctionDecl>(Cast->getConversionFunction());
18413 
18414     assert(FD && FD->isImmediateFunction() &&
18415            "could not find an immediate function in this expression");
18416     if (FD->isInvalidDecl())
18417       return;
18418     SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call)
18419         << FD << FD->isConsteval();
18420     if (auto Context =
18421             SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
18422       SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
18423           << Context->Decl;
18424       SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
18425     }
18426     if (!FD->isConsteval())
18427       SemaRef.DiagnoseImmediateEscalatingReason(FD);
18428     for (auto &Note : Notes)
18429       SemaRef.Diag(Note.first, Note.second);
18430     return;
18431   }
18432   CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
18433 }
18434 
RemoveNestedImmediateInvocation(Sema & SemaRef,Sema::ExpressionEvaluationContextRecord & Rec,SmallVector<Sema::ImmediateInvocationCandidate,4>::reverse_iterator It)18435 static void RemoveNestedImmediateInvocation(
18436     Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
18437     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
18438   struct ComplexRemove : TreeTransform<ComplexRemove> {
18439     using Base = TreeTransform<ComplexRemove>;
18440     llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
18441     SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
18442     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
18443         CurrentII;
18444     ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
18445                   SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
18446                   SmallVector<Sema::ImmediateInvocationCandidate,
18447                               4>::reverse_iterator Current)
18448         : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
18449     void RemoveImmediateInvocation(ConstantExpr* E) {
18450       auto It = std::find_if(CurrentII, IISet.rend(),
18451                              [E](Sema::ImmediateInvocationCandidate Elem) {
18452                                return Elem.getPointer() == E;
18453                              });
18454       // It is possible that some subexpression of the current immediate
18455       // invocation was handled from another expression evaluation context. Do
18456       // not handle the current immediate invocation if some of its
18457       // subexpressions failed before.
18458       if (It == IISet.rend()) {
18459         if (SemaRef.FailedImmediateInvocations.contains(E))
18460           CurrentII->setInt(1);
18461       } else {
18462         It->setInt(1); // Mark as deleted
18463       }
18464     }
18465     ExprResult TransformConstantExpr(ConstantExpr *E) {
18466       if (!E->isImmediateInvocation())
18467         return Base::TransformConstantExpr(E);
18468       RemoveImmediateInvocation(E);
18469       return Base::TransformExpr(E->getSubExpr());
18470     }
18471     /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
18472     /// we need to remove its DeclRefExpr from the DRSet.
18473     ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
18474       DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
18475       return Base::TransformCXXOperatorCallExpr(E);
18476     }
18477     /// Base::TransformUserDefinedLiteral doesn't preserve the
18478     /// UserDefinedLiteral node.
18479     ExprResult TransformUserDefinedLiteral(UserDefinedLiteral *E) { return E; }
18480     /// Base::TransformInitializer skips ConstantExpr so we need to visit them
18481     /// here.
18482     ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
18483       if (!Init)
18484         return Init;
18485       /// ConstantExpr are the first layer of implicit node to be removed so if
18486       /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
18487       if (auto *CE = dyn_cast<ConstantExpr>(Init))
18488         if (CE->isImmediateInvocation())
18489           RemoveImmediateInvocation(CE);
18490       return Base::TransformInitializer(Init, NotCopyInit);
18491     }
18492     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
18493       DRSet.erase(E);
18494       return E;
18495     }
18496     ExprResult TransformLambdaExpr(LambdaExpr *E) {
18497       // Do not rebuild lambdas to avoid creating a new type.
18498       // Lambdas have already been processed inside their eval context.
18499       return E;
18500     }
18501     bool AlwaysRebuild() { return false; }
18502     bool ReplacingOriginal() { return true; }
18503     bool AllowSkippingCXXConstructExpr() {
18504       bool Res = AllowSkippingFirstCXXConstructExpr;
18505       AllowSkippingFirstCXXConstructExpr = true;
18506       return Res;
18507     }
18508     bool AllowSkippingFirstCXXConstructExpr = true;
18509   } Transformer(SemaRef, Rec.ReferenceToConsteval,
18510                 Rec.ImmediateInvocationCandidates, It);
18511 
18512   /// CXXConstructExpr with a single argument are getting skipped by
18513   /// TreeTransform in some situtation because they could be implicit. This
18514   /// can only occur for the top-level CXXConstructExpr because it is used
18515   /// nowhere in the expression being transformed therefore will not be rebuilt.
18516   /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
18517   /// skipping the first CXXConstructExpr.
18518   if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
18519     Transformer.AllowSkippingFirstCXXConstructExpr = false;
18520 
18521   ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
18522   // The result may not be usable in case of previous compilation errors.
18523   // In this case evaluation of the expression may result in crash so just
18524   // don't do anything further with the result.
18525   if (Res.isUsable()) {
18526     Res = SemaRef.MaybeCreateExprWithCleanups(Res);
18527     It->getPointer()->setSubExpr(Res.get());
18528   }
18529 }
18530 
18531 static void
HandleImmediateInvocations(Sema & SemaRef,Sema::ExpressionEvaluationContextRecord & Rec)18532 HandleImmediateInvocations(Sema &SemaRef,
18533                            Sema::ExpressionEvaluationContextRecord &Rec) {
18534   if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
18535        Rec.ReferenceToConsteval.size() == 0) ||
18536       SemaRef.RebuildingImmediateInvocation)
18537     return;
18538 
18539   /// When we have more than 1 ImmediateInvocationCandidates or previously
18540   /// failed immediate invocations, we need to check for nested
18541   /// ImmediateInvocationCandidates in order to avoid duplicate diagnostics.
18542   /// Otherwise we only need to remove ReferenceToConsteval in the immediate
18543   /// invocation.
18544   if (Rec.ImmediateInvocationCandidates.size() > 1 ||
18545       !SemaRef.FailedImmediateInvocations.empty()) {
18546 
18547     /// Prevent sema calls during the tree transform from adding pointers that
18548     /// are already in the sets.
18549     llvm::SaveAndRestore DisableIITracking(
18550         SemaRef.RebuildingImmediateInvocation, true);
18551 
18552     /// Prevent diagnostic during tree transfrom as they are duplicates
18553     Sema::TentativeAnalysisScope DisableDiag(SemaRef);
18554 
18555     for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
18556          It != Rec.ImmediateInvocationCandidates.rend(); It++)
18557       if (!It->getInt())
18558         RemoveNestedImmediateInvocation(SemaRef, Rec, It);
18559   } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
18560              Rec.ReferenceToConsteval.size()) {
18561     struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
18562       llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
18563       SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
18564       bool VisitDeclRefExpr(DeclRefExpr *E) {
18565         DRSet.erase(E);
18566         return DRSet.size();
18567       }
18568     } Visitor(Rec.ReferenceToConsteval);
18569     Visitor.TraverseStmt(
18570         Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
18571   }
18572   for (auto CE : Rec.ImmediateInvocationCandidates)
18573     if (!CE.getInt())
18574       EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
18575   for (auto *DR : Rec.ReferenceToConsteval) {
18576     // If the expression is immediate escalating, it is not an error;
18577     // The outer context itself becomes immediate and further errors,
18578     // if any, will be handled by DiagnoseImmediateEscalatingReason.
18579     if (DR->isImmediateEscalating())
18580       continue;
18581     auto *FD = cast<FunctionDecl>(DR->getDecl());
18582     const NamedDecl *ND = FD;
18583     if (const auto *MD = dyn_cast<CXXMethodDecl>(ND);
18584         MD && (MD->isLambdaStaticInvoker() || isLambdaCallOperator(MD)))
18585       ND = MD->getParent();
18586 
18587     // C++23 [expr.const]/p16
18588     // An expression or conversion is immediate-escalating if it is not
18589     // initially in an immediate function context and it is [...] a
18590     // potentially-evaluated id-expression that denotes an immediate function
18591     // that is not a subexpression of an immediate invocation.
18592     bool ImmediateEscalating = false;
18593     bool IsPotentiallyEvaluated =
18594         Rec.Context ==
18595             Sema::ExpressionEvaluationContext::PotentiallyEvaluated ||
18596         Rec.Context ==
18597             Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed;
18598     if (SemaRef.inTemplateInstantiation() && IsPotentiallyEvaluated)
18599       ImmediateEscalating = Rec.InImmediateEscalatingFunctionContext;
18600 
18601     if (!Rec.InImmediateEscalatingFunctionContext ||
18602         (SemaRef.inTemplateInstantiation() && !ImmediateEscalating)) {
18603       SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
18604           << ND << isa<CXXRecordDecl>(ND) << FD->isConsteval();
18605       SemaRef.Diag(ND->getLocation(), diag::note_declared_at);
18606       if (auto Context =
18607               SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
18608         SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
18609             << Context->Decl;
18610         SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
18611       }
18612       if (FD->isImmediateEscalating() && !FD->isConsteval())
18613         SemaRef.DiagnoseImmediateEscalatingReason(FD);
18614 
18615     } else {
18616       SemaRef.MarkExpressionAsImmediateEscalating(DR);
18617     }
18618   }
18619 }
18620 
PopExpressionEvaluationContext()18621 void Sema::PopExpressionEvaluationContext() {
18622   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
18623   unsigned NumTypos = Rec.NumTypos;
18624 
18625   if (!Rec.Lambdas.empty()) {
18626     using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
18627     if (!getLangOpts().CPlusPlus20 &&
18628         (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
18629          Rec.isUnevaluated() ||
18630          (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
18631       unsigned D;
18632       if (Rec.isUnevaluated()) {
18633         // C++11 [expr.prim.lambda]p2:
18634         //   A lambda-expression shall not appear in an unevaluated operand
18635         //   (Clause 5).
18636         D = diag::err_lambda_unevaluated_operand;
18637       } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
18638         // C++1y [expr.const]p2:
18639         //   A conditional-expression e is a core constant expression unless the
18640         //   evaluation of e, following the rules of the abstract machine, would
18641         //   evaluate [...] a lambda-expression.
18642         D = diag::err_lambda_in_constant_expression;
18643       } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
18644         // C++17 [expr.prim.lamda]p2:
18645         // A lambda-expression shall not appear [...] in a template-argument.
18646         D = diag::err_lambda_in_invalid_context;
18647       } else
18648         llvm_unreachable("Couldn't infer lambda error message.");
18649 
18650       for (const auto *L : Rec.Lambdas)
18651         Diag(L->getBeginLoc(), D);
18652     }
18653   }
18654 
18655   WarnOnPendingNoDerefs(Rec);
18656   HandleImmediateInvocations(*this, Rec);
18657 
18658   // Warn on any volatile-qualified simple-assignments that are not discarded-
18659   // value expressions nor unevaluated operands (those cases get removed from
18660   // this list by CheckUnusedVolatileAssignment).
18661   for (auto *BO : Rec.VolatileAssignmentLHSs)
18662     Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
18663         << BO->getType();
18664 
18665   // When are coming out of an unevaluated context, clear out any
18666   // temporaries that we may have created as part of the evaluation of
18667   // the expression in that context: they aren't relevant because they
18668   // will never be constructed.
18669   if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
18670     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
18671                              ExprCleanupObjects.end());
18672     Cleanup = Rec.ParentCleanup;
18673     CleanupVarDeclMarking();
18674     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
18675   // Otherwise, merge the contexts together.
18676   } else {
18677     Cleanup.mergeFrom(Rec.ParentCleanup);
18678     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
18679                             Rec.SavedMaybeODRUseExprs.end());
18680   }
18681 
18682   // Pop the current expression evaluation context off the stack.
18683   ExprEvalContexts.pop_back();
18684 
18685   // The global expression evaluation context record is never popped.
18686   ExprEvalContexts.back().NumTypos += NumTypos;
18687 }
18688 
DiscardCleanupsInEvaluationContext()18689 void Sema::DiscardCleanupsInEvaluationContext() {
18690   ExprCleanupObjects.erase(
18691          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
18692          ExprCleanupObjects.end());
18693   Cleanup.reset();
18694   MaybeODRUseExprs.clear();
18695 }
18696 
HandleExprEvaluationContextForTypeof(Expr * E)18697 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
18698   ExprResult Result = CheckPlaceholderExpr(E);
18699   if (Result.isInvalid())
18700     return ExprError();
18701   E = Result.get();
18702   if (!E->getType()->isVariablyModifiedType())
18703     return E;
18704   return TransformToPotentiallyEvaluated(E);
18705 }
18706 
18707 /// Are we in a context that is potentially constant evaluated per C++20
18708 /// [expr.const]p12?
isPotentiallyConstantEvaluatedContext(Sema & SemaRef)18709 static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
18710   /// C++2a [expr.const]p12:
18711   //   An expression or conversion is potentially constant evaluated if it is
18712   switch (SemaRef.ExprEvalContexts.back().Context) {
18713     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
18714     case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
18715 
18716       // -- a manifestly constant-evaluated expression,
18717     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
18718     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18719     case Sema::ExpressionEvaluationContext::DiscardedStatement:
18720       // -- a potentially-evaluated expression,
18721     case Sema::ExpressionEvaluationContext::UnevaluatedList:
18722       // -- an immediate subexpression of a braced-init-list,
18723 
18724       // -- [FIXME] an expression of the form & cast-expression that occurs
18725       //    within a templated entity
18726       // -- a subexpression of one of the above that is not a subexpression of
18727       // a nested unevaluated operand.
18728       return true;
18729 
18730     case Sema::ExpressionEvaluationContext::Unevaluated:
18731     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
18732       // Expressions in this context are never evaluated.
18733       return false;
18734   }
18735   llvm_unreachable("Invalid context");
18736 }
18737 
18738 /// Return true if this function has a calling convention that requires mangling
18739 /// in the size of the parameter pack.
funcHasParameterSizeMangling(Sema & S,FunctionDecl * FD)18740 static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
18741   // These manglings don't do anything on non-Windows or non-x86 platforms, so
18742   // we don't need parameter type sizes.
18743   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
18744   if (!TT.isOSWindows() || !TT.isX86())
18745     return false;
18746 
18747   // If this is C++ and this isn't an extern "C" function, parameters do not
18748   // need to be complete. In this case, C++ mangling will apply, which doesn't
18749   // use the size of the parameters.
18750   if (S.getLangOpts().CPlusPlus && !FD->isExternC())
18751     return false;
18752 
18753   // Stdcall, fastcall, and vectorcall need this special treatment.
18754   CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18755   switch (CC) {
18756   case CC_X86StdCall:
18757   case CC_X86FastCall:
18758   case CC_X86VectorCall:
18759     return true;
18760   default:
18761     break;
18762   }
18763   return false;
18764 }
18765 
18766 /// Require that all of the parameter types of function be complete. Normally,
18767 /// parameter types are only required to be complete when a function is called
18768 /// or defined, but to mangle functions with certain calling conventions, the
18769 /// mangler needs to know the size of the parameter list. In this situation,
18770 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
18771 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
18772 /// result in a linker error. Clang doesn't implement this behavior, and instead
18773 /// attempts to error at compile time.
CheckCompleteParameterTypesForMangler(Sema & S,FunctionDecl * FD,SourceLocation Loc)18774 static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
18775                                                   SourceLocation Loc) {
18776   class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
18777     FunctionDecl *FD;
18778     ParmVarDecl *Param;
18779 
18780   public:
18781     ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
18782         : FD(FD), Param(Param) {}
18783 
18784     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
18785       CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18786       StringRef CCName;
18787       switch (CC) {
18788       case CC_X86StdCall:
18789         CCName = "stdcall";
18790         break;
18791       case CC_X86FastCall:
18792         CCName = "fastcall";
18793         break;
18794       case CC_X86VectorCall:
18795         CCName = "vectorcall";
18796         break;
18797       default:
18798         llvm_unreachable("CC does not need mangling");
18799       }
18800 
18801       S.Diag(Loc, diag::err_cconv_incomplete_param_type)
18802           << Param->getDeclName() << FD->getDeclName() << CCName;
18803     }
18804   };
18805 
18806   for (ParmVarDecl *Param : FD->parameters()) {
18807     ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
18808     S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
18809   }
18810 }
18811 
18812 namespace {
18813 enum class OdrUseContext {
18814   /// Declarations in this context are not odr-used.
18815   None,
18816   /// Declarations in this context are formally odr-used, but this is a
18817   /// dependent context.
18818   Dependent,
18819   /// Declarations in this context are odr-used but not actually used (yet).
18820   FormallyOdrUsed,
18821   /// Declarations in this context are used.
18822   Used
18823 };
18824 }
18825 
18826 /// Are we within a context in which references to resolved functions or to
18827 /// variables result in odr-use?
isOdrUseContext(Sema & SemaRef)18828 static OdrUseContext isOdrUseContext(Sema &SemaRef) {
18829   OdrUseContext Result;
18830 
18831   switch (SemaRef.ExprEvalContexts.back().Context) {
18832     case Sema::ExpressionEvaluationContext::Unevaluated:
18833     case Sema::ExpressionEvaluationContext::UnevaluatedList:
18834     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
18835       return OdrUseContext::None;
18836 
18837     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
18838     case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
18839     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
18840       Result = OdrUseContext::Used;
18841       break;
18842 
18843     case Sema::ExpressionEvaluationContext::DiscardedStatement:
18844       Result = OdrUseContext::FormallyOdrUsed;
18845       break;
18846 
18847     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18848       // A default argument formally results in odr-use, but doesn't actually
18849       // result in a use in any real sense until it itself is used.
18850       Result = OdrUseContext::FormallyOdrUsed;
18851       break;
18852   }
18853 
18854   if (SemaRef.CurContext->isDependentContext())
18855     return OdrUseContext::Dependent;
18856 
18857   return Result;
18858 }
18859 
isImplicitlyDefinableConstexprFunction(FunctionDecl * Func)18860 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
18861   if (!Func->isConstexpr())
18862     return false;
18863 
18864   if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
18865     return true;
18866   auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
18867   return CCD && CCD->getInheritedConstructor();
18868 }
18869 
18870 /// Mark a function referenced, and check whether it is odr-used
18871 /// (C++ [basic.def.odr]p2, C99 6.9p3)
MarkFunctionReferenced(SourceLocation Loc,FunctionDecl * Func,bool MightBeOdrUse)18872 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
18873                                   bool MightBeOdrUse) {
18874   assert(Func && "No function?");
18875 
18876   Func->setReferenced();
18877 
18878   // Recursive functions aren't really used until they're used from some other
18879   // context.
18880   bool IsRecursiveCall = CurContext == Func;
18881 
18882   // C++11 [basic.def.odr]p3:
18883   //   A function whose name appears as a potentially-evaluated expression is
18884   //   odr-used if it is the unique lookup result or the selected member of a
18885   //   set of overloaded functions [...].
18886   //
18887   // We (incorrectly) mark overload resolution as an unevaluated context, so we
18888   // can just check that here.
18889   OdrUseContext OdrUse =
18890       MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
18891   if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
18892     OdrUse = OdrUseContext::FormallyOdrUsed;
18893 
18894   // Trivial default constructors and destructors are never actually used.
18895   // FIXME: What about other special members?
18896   if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
18897       OdrUse == OdrUseContext::Used) {
18898     if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
18899       if (Constructor->isDefaultConstructor())
18900         OdrUse = OdrUseContext::FormallyOdrUsed;
18901     if (isa<CXXDestructorDecl>(Func))
18902       OdrUse = OdrUseContext::FormallyOdrUsed;
18903   }
18904 
18905   // C++20 [expr.const]p12:
18906   //   A function [...] is needed for constant evaluation if it is [...] a
18907   //   constexpr function that is named by an expression that is potentially
18908   //   constant evaluated
18909   bool NeededForConstantEvaluation =
18910       isPotentiallyConstantEvaluatedContext(*this) &&
18911       isImplicitlyDefinableConstexprFunction(Func);
18912 
18913   // Determine whether we require a function definition to exist, per
18914   // C++11 [temp.inst]p3:
18915   //   Unless a function template specialization has been explicitly
18916   //   instantiated or explicitly specialized, the function template
18917   //   specialization is implicitly instantiated when the specialization is
18918   //   referenced in a context that requires a function definition to exist.
18919   // C++20 [temp.inst]p7:
18920   //   The existence of a definition of a [...] function is considered to
18921   //   affect the semantics of the program if the [...] function is needed for
18922   //   constant evaluation by an expression
18923   // C++20 [basic.def.odr]p10:
18924   //   Every program shall contain exactly one definition of every non-inline
18925   //   function or variable that is odr-used in that program outside of a
18926   //   discarded statement
18927   // C++20 [special]p1:
18928   //   The implementation will implicitly define [defaulted special members]
18929   //   if they are odr-used or needed for constant evaluation.
18930   //
18931   // Note that we skip the implicit instantiation of templates that are only
18932   // used in unused default arguments or by recursive calls to themselves.
18933   // This is formally non-conforming, but seems reasonable in practice.
18934   bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
18935                                              NeededForConstantEvaluation);
18936 
18937   // C++14 [temp.expl.spec]p6:
18938   //   If a template [...] is explicitly specialized then that specialization
18939   //   shall be declared before the first use of that specialization that would
18940   //   cause an implicit instantiation to take place, in every translation unit
18941   //   in which such a use occurs
18942   if (NeedDefinition &&
18943       (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
18944        Func->getMemberSpecializationInfo()))
18945     checkSpecializationReachability(Loc, Func);
18946 
18947   if (getLangOpts().CUDA)
18948     CheckCUDACall(Loc, Func);
18949 
18950   // If we need a definition, try to create one.
18951   if (NeedDefinition && !Func->getBody()) {
18952     runWithSufficientStackSpace(Loc, [&] {
18953       if (CXXConstructorDecl *Constructor =
18954               dyn_cast<CXXConstructorDecl>(Func)) {
18955         Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
18956         if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
18957           if (Constructor->isDefaultConstructor()) {
18958             if (Constructor->isTrivial() &&
18959                 !Constructor->hasAttr<DLLExportAttr>())
18960               return;
18961             DefineImplicitDefaultConstructor(Loc, Constructor);
18962           } else if (Constructor->isCopyConstructor()) {
18963             DefineImplicitCopyConstructor(Loc, Constructor);
18964           } else if (Constructor->isMoveConstructor()) {
18965             DefineImplicitMoveConstructor(Loc, Constructor);
18966           }
18967         } else if (Constructor->getInheritedConstructor()) {
18968           DefineInheritingConstructor(Loc, Constructor);
18969         }
18970       } else if (CXXDestructorDecl *Destructor =
18971                      dyn_cast<CXXDestructorDecl>(Func)) {
18972         Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
18973         if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
18974           if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
18975             return;
18976           DefineImplicitDestructor(Loc, Destructor);
18977         }
18978         if (Destructor->isVirtual() && getLangOpts().AppleKext)
18979           MarkVTableUsed(Loc, Destructor->getParent());
18980       } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
18981         if (MethodDecl->isOverloadedOperator() &&
18982             MethodDecl->getOverloadedOperator() == OO_Equal) {
18983           MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
18984           if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
18985             if (MethodDecl->isCopyAssignmentOperator())
18986               DefineImplicitCopyAssignment(Loc, MethodDecl);
18987             else if (MethodDecl->isMoveAssignmentOperator())
18988               DefineImplicitMoveAssignment(Loc, MethodDecl);
18989           }
18990         } else if (isa<CXXConversionDecl>(MethodDecl) &&
18991                    MethodDecl->getParent()->isLambda()) {
18992           CXXConversionDecl *Conversion =
18993               cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
18994           if (Conversion->isLambdaToBlockPointerConversion())
18995             DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
18996           else
18997             DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
18998         } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
18999           MarkVTableUsed(Loc, MethodDecl->getParent());
19000       }
19001 
19002       if (Func->isDefaulted() && !Func->isDeleted()) {
19003         DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
19004         if (DCK != DefaultedComparisonKind::None)
19005           DefineDefaultedComparison(Loc, Func, DCK);
19006       }
19007 
19008       // Implicit instantiation of function templates and member functions of
19009       // class templates.
19010       if (Func->isImplicitlyInstantiable()) {
19011         TemplateSpecializationKind TSK =
19012             Func->getTemplateSpecializationKindForInstantiation();
19013         SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
19014         bool FirstInstantiation = PointOfInstantiation.isInvalid();
19015         if (FirstInstantiation) {
19016           PointOfInstantiation = Loc;
19017           if (auto *MSI = Func->getMemberSpecializationInfo())
19018             MSI->setPointOfInstantiation(Loc);
19019             // FIXME: Notify listener.
19020           else
19021             Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
19022         } else if (TSK != TSK_ImplicitInstantiation) {
19023           // Use the point of use as the point of instantiation, instead of the
19024           // point of explicit instantiation (which we track as the actual point
19025           // of instantiation). This gives better backtraces in diagnostics.
19026           PointOfInstantiation = Loc;
19027         }
19028 
19029         if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
19030             Func->isConstexpr()) {
19031           if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
19032               cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
19033               CodeSynthesisContexts.size())
19034             PendingLocalImplicitInstantiations.push_back(
19035                 std::make_pair(Func, PointOfInstantiation));
19036           else if (Func->isConstexpr())
19037             // Do not defer instantiations of constexpr functions, to avoid the
19038             // expression evaluator needing to call back into Sema if it sees a
19039             // call to such a function.
19040             InstantiateFunctionDefinition(PointOfInstantiation, Func);
19041           else {
19042             Func->setInstantiationIsPending(true);
19043             PendingInstantiations.push_back(
19044                 std::make_pair(Func, PointOfInstantiation));
19045             // Notify the consumer that a function was implicitly instantiated.
19046             Consumer.HandleCXXImplicitFunctionInstantiation(Func);
19047           }
19048         }
19049       } else {
19050         // Walk redefinitions, as some of them may be instantiable.
19051         for (auto *i : Func->redecls()) {
19052           if (!i->isUsed(false) && i->isImplicitlyInstantiable())
19053             MarkFunctionReferenced(Loc, i, MightBeOdrUse);
19054         }
19055       }
19056     });
19057   }
19058 
19059   // If a constructor was defined in the context of a default parameter
19060   // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed
19061   // context), its initializers may not be referenced yet.
19062   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
19063     EnterExpressionEvaluationContext EvalContext(
19064         *this,
19065         Constructor->isImmediateFunction()
19066             ? ExpressionEvaluationContext::ImmediateFunctionContext
19067             : ExpressionEvaluationContext::PotentiallyEvaluated,
19068         Constructor);
19069     for (CXXCtorInitializer *Init : Constructor->inits()) {
19070       if (Init->isInClassMemberInitializer())
19071         runWithSufficientStackSpace(Init->getSourceLocation(), [&]() {
19072           MarkDeclarationsReferencedInExpr(Init->getInit());
19073         });
19074     }
19075   }
19076 
19077   // C++14 [except.spec]p17:
19078   //   An exception-specification is considered to be needed when:
19079   //   - the function is odr-used or, if it appears in an unevaluated operand,
19080   //     would be odr-used if the expression were potentially-evaluated;
19081   //
19082   // Note, we do this even if MightBeOdrUse is false. That indicates that the
19083   // function is a pure virtual function we're calling, and in that case the
19084   // function was selected by overload resolution and we need to resolve its
19085   // exception specification for a different reason.
19086   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
19087   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
19088     ResolveExceptionSpec(Loc, FPT);
19089 
19090   // A callee could be called by a host function then by a device function.
19091   // If we only try recording once, we will miss recording the use on device
19092   // side. Therefore keep trying until it is recorded.
19093   if (LangOpts.OffloadImplicitHostDeviceTemplates && LangOpts.CUDAIsDevice &&
19094       !getASTContext().CUDAImplicitHostDeviceFunUsedByDevice.count(Func))
19095     CUDARecordImplicitHostDeviceFuncUsedByDevice(Func);
19096 
19097   // If this is the first "real" use, act on that.
19098   if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
19099     // Keep track of used but undefined functions.
19100     if (!Func->isDefined()) {
19101       if (mightHaveNonExternalLinkage(Func))
19102         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
19103       else if (Func->getMostRecentDecl()->isInlined() &&
19104                !LangOpts.GNUInline &&
19105                !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
19106         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
19107       else if (isExternalWithNoLinkageType(Func))
19108         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
19109     }
19110 
19111     // Some x86 Windows calling conventions mangle the size of the parameter
19112     // pack into the name. Computing the size of the parameters requires the
19113     // parameter types to be complete. Check that now.
19114     if (funcHasParameterSizeMangling(*this, Func))
19115       CheckCompleteParameterTypesForMangler(*this, Func, Loc);
19116 
19117     // In the MS C++ ABI, the compiler emits destructor variants where they are
19118     // used. If the destructor is used here but defined elsewhere, mark the
19119     // virtual base destructors referenced. If those virtual base destructors
19120     // are inline, this will ensure they are defined when emitting the complete
19121     // destructor variant. This checking may be redundant if the destructor is
19122     // provided later in this TU.
19123     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
19124       if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
19125         CXXRecordDecl *Parent = Dtor->getParent();
19126         if (Parent->getNumVBases() > 0 && !Dtor->getBody())
19127           CheckCompleteDestructorVariant(Loc, Dtor);
19128       }
19129     }
19130 
19131     Func->markUsed(Context);
19132   }
19133 }
19134 
19135 /// Directly mark a variable odr-used. Given a choice, prefer to use
19136 /// MarkVariableReferenced since it does additional checks and then
19137 /// calls MarkVarDeclODRUsed.
19138 /// If the variable must be captured:
19139 ///  - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
19140 ///  - else capture it in the DeclContext that maps to the
19141 ///    *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
19142 static void
MarkVarDeclODRUsed(ValueDecl * V,SourceLocation Loc,Sema & SemaRef,const unsigned * const FunctionScopeIndexToStopAt=nullptr)19143 MarkVarDeclODRUsed(ValueDecl *V, SourceLocation Loc, Sema &SemaRef,
19144                    const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
19145   // Keep track of used but undefined variables.
19146   // FIXME: We shouldn't suppress this warning for static data members.
19147   VarDecl *Var = V->getPotentiallyDecomposedVarDecl();
19148   assert(Var && "expected a capturable variable");
19149 
19150   if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
19151       (!Var->isExternallyVisible() || Var->isInline() ||
19152        SemaRef.isExternalWithNoLinkageType(Var)) &&
19153       !(Var->isStaticDataMember() && Var->hasInit())) {
19154     SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
19155     if (old.isInvalid())
19156       old = Loc;
19157   }
19158   QualType CaptureType, DeclRefType;
19159   if (SemaRef.LangOpts.OpenMP)
19160     SemaRef.tryCaptureOpenMPLambdas(V);
19161   SemaRef.tryCaptureVariable(V, Loc, Sema::TryCapture_Implicit,
19162                              /*EllipsisLoc*/ SourceLocation(),
19163                              /*BuildAndDiagnose*/ true, CaptureType,
19164                              DeclRefType, FunctionScopeIndexToStopAt);
19165 
19166   if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) {
19167     auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
19168     auto VarTarget = SemaRef.IdentifyCUDATarget(Var);
19169     auto UserTarget = SemaRef.IdentifyCUDATarget(FD);
19170     if (VarTarget == Sema::CVT_Host &&
19171         (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice ||
19172          UserTarget == Sema::CFT_Global)) {
19173       // Diagnose ODR-use of host global variables in device functions.
19174       // Reference of device global variables in host functions is allowed
19175       // through shadow variables therefore it is not diagnosed.
19176       if (SemaRef.LangOpts.CUDAIsDevice && !SemaRef.LangOpts.HIPStdPar) {
19177         SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
19178             << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget;
19179         SemaRef.targetDiag(Var->getLocation(),
19180                            Var->getType().isConstQualified()
19181                                ? diag::note_cuda_const_var_unpromoted
19182                                : diag::note_cuda_host_var);
19183       }
19184     } else if (VarTarget == Sema::CVT_Device &&
19185                !Var->hasAttr<CUDASharedAttr>() &&
19186                (UserTarget == Sema::CFT_Host ||
19187                 UserTarget == Sema::CFT_HostDevice)) {
19188       // Record a CUDA/HIP device side variable if it is ODR-used
19189       // by host code. This is done conservatively, when the variable is
19190       // referenced in any of the following contexts:
19191       //   - a non-function context
19192       //   - a host function
19193       //   - a host device function
19194       // This makes the ODR-use of the device side variable by host code to
19195       // be visible in the device compilation for the compiler to be able to
19196       // emit template variables instantiated by host code only and to
19197       // externalize the static device side variable ODR-used by host code.
19198       if (!Var->hasExternalStorage())
19199         SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
19200       else if (SemaRef.LangOpts.GPURelocatableDeviceCode)
19201         SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var);
19202     }
19203   }
19204 
19205   V->markUsed(SemaRef.Context);
19206 }
19207 
MarkCaptureUsedInEnclosingContext(ValueDecl * Capture,SourceLocation Loc,unsigned CapturingScopeIndex)19208 void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl *Capture,
19209                                              SourceLocation Loc,
19210                                              unsigned CapturingScopeIndex) {
19211   MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
19212 }
19213 
diagnoseUncapturableValueReferenceOrBinding(Sema & S,SourceLocation loc,ValueDecl * var)19214 void diagnoseUncapturableValueReferenceOrBinding(Sema &S, SourceLocation loc,
19215                                                  ValueDecl *var) {
19216   DeclContext *VarDC = var->getDeclContext();
19217 
19218   //  If the parameter still belongs to the translation unit, then
19219   //  we're actually just using one parameter in the declaration of
19220   //  the next.
19221   if (isa<ParmVarDecl>(var) &&
19222       isa<TranslationUnitDecl>(VarDC))
19223     return;
19224 
19225   // For C code, don't diagnose about capture if we're not actually in code
19226   // right now; it's impossible to write a non-constant expression outside of
19227   // function context, so we'll get other (more useful) diagnostics later.
19228   //
19229   // For C++, things get a bit more nasty... it would be nice to suppress this
19230   // diagnostic for certain cases like using a local variable in an array bound
19231   // for a member of a local class, but the correct predicate is not obvious.
19232   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
19233     return;
19234 
19235   unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
19236   unsigned ContextKind = 3; // unknown
19237   if (isa<CXXMethodDecl>(VarDC) &&
19238       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
19239     ContextKind = 2;
19240   } else if (isa<FunctionDecl>(VarDC)) {
19241     ContextKind = 0;
19242   } else if (isa<BlockDecl>(VarDC)) {
19243     ContextKind = 1;
19244   }
19245 
19246   S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
19247     << var << ValueKind << ContextKind << VarDC;
19248   S.Diag(var->getLocation(), diag::note_entity_declared_at)
19249       << var;
19250 
19251   // FIXME: Add additional diagnostic info about class etc. which prevents
19252   // capture.
19253 }
19254 
isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo * CSI,ValueDecl * Var,bool & SubCapturesAreNested,QualType & CaptureType,QualType & DeclRefType)19255 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI,
19256                                                  ValueDecl *Var,
19257                                                  bool &SubCapturesAreNested,
19258                                                  QualType &CaptureType,
19259                                                  QualType &DeclRefType) {
19260   // Check whether we've already captured it.
19261   if (CSI->CaptureMap.count(Var)) {
19262     // If we found a capture, any subcaptures are nested.
19263     SubCapturesAreNested = true;
19264 
19265     // Retrieve the capture type for this variable.
19266     CaptureType = CSI->getCapture(Var).getCaptureType();
19267 
19268     // Compute the type of an expression that refers to this variable.
19269     DeclRefType = CaptureType.getNonReferenceType();
19270 
19271     // Similarly to mutable captures in lambda, all the OpenMP captures by copy
19272     // are mutable in the sense that user can change their value - they are
19273     // private instances of the captured declarations.
19274     const Capture &Cap = CSI->getCapture(Var);
19275     if (Cap.isCopyCapture() &&
19276         !(isa<LambdaScopeInfo>(CSI) &&
19277           !cast<LambdaScopeInfo>(CSI)->lambdaCaptureShouldBeConst()) &&
19278         !(isa<CapturedRegionScopeInfo>(CSI) &&
19279           cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
19280       DeclRefType.addConst();
19281     return true;
19282   }
19283   return false;
19284 }
19285 
19286 // Only block literals, captured statements, and lambda expressions can
19287 // capture; other scopes don't work.
getParentOfCapturingContextOrNull(DeclContext * DC,ValueDecl * Var,SourceLocation Loc,const bool Diagnose,Sema & S)19288 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC,
19289                                                       ValueDecl *Var,
19290                                                       SourceLocation Loc,
19291                                                       const bool Diagnose,
19292                                                       Sema &S) {
19293   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
19294     return getLambdaAwareParentOfDeclContext(DC);
19295 
19296   VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl();
19297   if (Underlying) {
19298     if (Underlying->hasLocalStorage() && Diagnose)
19299       diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
19300   }
19301   return nullptr;
19302 }
19303 
19304 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19305 // certain types of variables (unnamed, variably modified types etc.)
19306 // so check for eligibility.
isVariableCapturable(CapturingScopeInfo * CSI,ValueDecl * Var,SourceLocation Loc,const bool Diagnose,Sema & S)19307 static bool isVariableCapturable(CapturingScopeInfo *CSI, ValueDecl *Var,
19308                                  SourceLocation Loc, const bool Diagnose,
19309                                  Sema &S) {
19310 
19311   assert((isa<VarDecl, BindingDecl>(Var)) &&
19312          "Only variables and structured bindings can be captured");
19313 
19314   bool IsBlock = isa<BlockScopeInfo>(CSI);
19315   bool IsLambda = isa<LambdaScopeInfo>(CSI);
19316 
19317   // Lambdas are not allowed to capture unnamed variables
19318   // (e.g. anonymous unions).
19319   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
19320   // assuming that's the intent.
19321   if (IsLambda && !Var->getDeclName()) {
19322     if (Diagnose) {
19323       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
19324       S.Diag(Var->getLocation(), diag::note_declared_at);
19325     }
19326     return false;
19327   }
19328 
19329   // Prohibit variably-modified types in blocks; they're difficult to deal with.
19330   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
19331     if (Diagnose) {
19332       S.Diag(Loc, diag::err_ref_vm_type);
19333       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19334     }
19335     return false;
19336   }
19337   // Prohibit structs with flexible array members too.
19338   // We cannot capture what is in the tail end of the struct.
19339   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
19340     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
19341       if (Diagnose) {
19342         if (IsBlock)
19343           S.Diag(Loc, diag::err_ref_flexarray_type);
19344         else
19345           S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
19346         S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19347       }
19348       return false;
19349     }
19350   }
19351   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
19352   // Lambdas and captured statements are not allowed to capture __block
19353   // variables; they don't support the expected semantics.
19354   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
19355     if (Diagnose) {
19356       S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
19357       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19358     }
19359     return false;
19360   }
19361   // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
19362   if (S.getLangOpts().OpenCL && IsBlock &&
19363       Var->getType()->isBlockPointerType()) {
19364     if (Diagnose)
19365       S.Diag(Loc, diag::err_opencl_block_ref_block);
19366     return false;
19367   }
19368 
19369   if (isa<BindingDecl>(Var)) {
19370     if (!IsLambda || !S.getLangOpts().CPlusPlus) {
19371       if (Diagnose)
19372         diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
19373       return false;
19374     } else if (Diagnose && S.getLangOpts().CPlusPlus) {
19375       S.Diag(Loc, S.LangOpts.CPlusPlus20
19376                       ? diag::warn_cxx17_compat_capture_binding
19377                       : diag::ext_capture_binding)
19378           << Var;
19379       S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
19380     }
19381   }
19382 
19383   return true;
19384 }
19385 
19386 // Returns true if the capture by block was successful.
captureInBlock(BlockScopeInfo * BSI,ValueDecl * Var,SourceLocation Loc,const bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const bool Nested,Sema & S,bool Invalid)19387 static bool captureInBlock(BlockScopeInfo *BSI, ValueDecl *Var,
19388                            SourceLocation Loc, const bool BuildAndDiagnose,
19389                            QualType &CaptureType, QualType &DeclRefType,
19390                            const bool Nested, Sema &S, bool Invalid) {
19391   bool ByRef = false;
19392 
19393   // Blocks are not allowed to capture arrays, excepting OpenCL.
19394   // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
19395   // (decayed to pointers).
19396   if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
19397     if (BuildAndDiagnose) {
19398       S.Diag(Loc, diag::err_ref_array_type);
19399       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19400       Invalid = true;
19401     } else {
19402       return false;
19403     }
19404   }
19405 
19406   // Forbid the block-capture of autoreleasing variables.
19407   if (!Invalid &&
19408       CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
19409     if (BuildAndDiagnose) {
19410       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
19411         << /*block*/ 0;
19412       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19413       Invalid = true;
19414     } else {
19415       return false;
19416     }
19417   }
19418 
19419   // Warn about implicitly autoreleasing indirect parameters captured by blocks.
19420   if (const auto *PT = CaptureType->getAs<PointerType>()) {
19421     QualType PointeeTy = PT->getPointeeType();
19422 
19423     if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
19424         PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
19425         !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
19426       if (BuildAndDiagnose) {
19427         SourceLocation VarLoc = Var->getLocation();
19428         S.Diag(Loc, diag::warn_block_capture_autoreleasing);
19429         S.Diag(VarLoc, diag::note_declare_parameter_strong);
19430       }
19431     }
19432   }
19433 
19434   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
19435   if (HasBlocksAttr || CaptureType->isReferenceType() ||
19436       (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
19437     // Block capture by reference does not change the capture or
19438     // declaration reference types.
19439     ByRef = true;
19440   } else {
19441     // Block capture by copy introduces 'const'.
19442     CaptureType = CaptureType.getNonReferenceType().withConst();
19443     DeclRefType = CaptureType;
19444   }
19445 
19446   // Actually capture the variable.
19447   if (BuildAndDiagnose)
19448     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
19449                     CaptureType, Invalid);
19450 
19451   return !Invalid;
19452 }
19453 
19454 /// Capture the given variable in the captured region.
captureInCapturedRegion(CapturedRegionScopeInfo * RSI,ValueDecl * Var,SourceLocation Loc,const bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const bool RefersToCapturedVariable,Sema::TryCaptureKind Kind,bool IsTopScope,Sema & S,bool Invalid)19455 static bool captureInCapturedRegion(
19456     CapturedRegionScopeInfo *RSI, ValueDecl *Var, SourceLocation Loc,
19457     const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
19458     const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
19459     bool IsTopScope, Sema &S, bool Invalid) {
19460   // By default, capture variables by reference.
19461   bool ByRef = true;
19462   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
19463     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
19464   } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
19465     // Using an LValue reference type is consistent with Lambdas (see below).
19466     if (S.isOpenMPCapturedDecl(Var)) {
19467       bool HasConst = DeclRefType.isConstQualified();
19468       DeclRefType = DeclRefType.getUnqualifiedType();
19469       // Don't lose diagnostics about assignments to const.
19470       if (HasConst)
19471         DeclRefType.addConst();
19472     }
19473     // Do not capture firstprivates in tasks.
19474     if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
19475         OMPC_unknown)
19476       return true;
19477     ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
19478                                     RSI->OpenMPCaptureLevel);
19479   }
19480 
19481   if (ByRef)
19482     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
19483   else
19484     CaptureType = DeclRefType;
19485 
19486   // Actually capture the variable.
19487   if (BuildAndDiagnose)
19488     RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
19489                     Loc, SourceLocation(), CaptureType, Invalid);
19490 
19491   return !Invalid;
19492 }
19493 
19494 /// Capture the given variable in the lambda.
captureInLambda(LambdaScopeInfo * LSI,ValueDecl * Var,SourceLocation Loc,const bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const bool RefersToCapturedVariable,const Sema::TryCaptureKind Kind,SourceLocation EllipsisLoc,const bool IsTopScope,Sema & S,bool Invalid)19495 static bool captureInLambda(LambdaScopeInfo *LSI, ValueDecl *Var,
19496                             SourceLocation Loc, const bool BuildAndDiagnose,
19497                             QualType &CaptureType, QualType &DeclRefType,
19498                             const bool RefersToCapturedVariable,
19499                             const Sema::TryCaptureKind Kind,
19500                             SourceLocation EllipsisLoc, const bool IsTopScope,
19501                             Sema &S, bool Invalid) {
19502   // Determine whether we are capturing by reference or by value.
19503   bool ByRef = false;
19504   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
19505     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
19506   } else {
19507     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
19508   }
19509 
19510   BindingDecl *BD = dyn_cast<BindingDecl>(Var);
19511   // FIXME: We should support capturing structured bindings in OpenMP.
19512   if (!Invalid && BD && S.LangOpts.OpenMP) {
19513     if (BuildAndDiagnose) {
19514       S.Diag(Loc, diag::err_capture_binding_openmp) << Var;
19515       S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
19516     }
19517     Invalid = true;
19518   }
19519 
19520   if (BuildAndDiagnose && S.Context.getTargetInfo().getTriple().isWasm() &&
19521       CaptureType.getNonReferenceType().isWebAssemblyReferenceType()) {
19522     S.Diag(Loc, diag::err_wasm_ca_reference) << 0;
19523     Invalid = true;
19524   }
19525 
19526   // Compute the type of the field that will capture this variable.
19527   if (ByRef) {
19528     // C++11 [expr.prim.lambda]p15:
19529     //   An entity is captured by reference if it is implicitly or
19530     //   explicitly captured but not captured by copy. It is
19531     //   unspecified whether additional unnamed non-static data
19532     //   members are declared in the closure type for entities
19533     //   captured by reference.
19534     //
19535     // FIXME: It is not clear whether we want to build an lvalue reference
19536     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
19537     // to do the former, while EDG does the latter. Core issue 1249 will
19538     // clarify, but for now we follow GCC because it's a more permissive and
19539     // easily defensible position.
19540     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
19541   } else {
19542     // C++11 [expr.prim.lambda]p14:
19543     //   For each entity captured by copy, an unnamed non-static
19544     //   data member is declared in the closure type. The
19545     //   declaration order of these members is unspecified. The type
19546     //   of such a data member is the type of the corresponding
19547     //   captured entity if the entity is not a reference to an
19548     //   object, or the referenced type otherwise. [Note: If the
19549     //   captured entity is a reference to a function, the
19550     //   corresponding data member is also a reference to a
19551     //   function. - end note ]
19552     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
19553       if (!RefType->getPointeeType()->isFunctionType())
19554         CaptureType = RefType->getPointeeType();
19555     }
19556 
19557     // Forbid the lambda copy-capture of autoreleasing variables.
19558     if (!Invalid &&
19559         CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
19560       if (BuildAndDiagnose) {
19561         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
19562         S.Diag(Var->getLocation(), diag::note_previous_decl)
19563           << Var->getDeclName();
19564         Invalid = true;
19565       } else {
19566         return false;
19567       }
19568     }
19569 
19570     // Make sure that by-copy captures are of a complete and non-abstract type.
19571     if (!Invalid && BuildAndDiagnose) {
19572       if (!CaptureType->isDependentType() &&
19573           S.RequireCompleteSizedType(
19574               Loc, CaptureType,
19575               diag::err_capture_of_incomplete_or_sizeless_type,
19576               Var->getDeclName()))
19577         Invalid = true;
19578       else if (S.RequireNonAbstractType(Loc, CaptureType,
19579                                         diag::err_capture_of_abstract_type))
19580         Invalid = true;
19581     }
19582   }
19583 
19584   // Compute the type of a reference to this captured variable.
19585   if (ByRef)
19586     DeclRefType = CaptureType.getNonReferenceType();
19587   else {
19588     // C++ [expr.prim.lambda]p5:
19589     //   The closure type for a lambda-expression has a public inline
19590     //   function call operator [...]. This function call operator is
19591     //   declared const (9.3.1) if and only if the lambda-expression's
19592     //   parameter-declaration-clause is not followed by mutable.
19593     DeclRefType = CaptureType.getNonReferenceType();
19594     bool Const = LSI->lambdaCaptureShouldBeConst();
19595     if (Const && !CaptureType->isReferenceType())
19596       DeclRefType.addConst();
19597   }
19598 
19599   // Add the capture.
19600   if (BuildAndDiagnose)
19601     LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
19602                     Loc, EllipsisLoc, CaptureType, Invalid);
19603 
19604   return !Invalid;
19605 }
19606 
canCaptureVariableByCopy(ValueDecl * Var,const ASTContext & Context)19607 static bool canCaptureVariableByCopy(ValueDecl *Var,
19608                                      const ASTContext &Context) {
19609   // Offer a Copy fix even if the type is dependent.
19610   if (Var->getType()->isDependentType())
19611     return true;
19612   QualType T = Var->getType().getNonReferenceType();
19613   if (T.isTriviallyCopyableType(Context))
19614     return true;
19615   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
19616 
19617     if (!(RD = RD->getDefinition()))
19618       return false;
19619     if (RD->hasSimpleCopyConstructor())
19620       return true;
19621     if (RD->hasUserDeclaredCopyConstructor())
19622       for (CXXConstructorDecl *Ctor : RD->ctors())
19623         if (Ctor->isCopyConstructor())
19624           return !Ctor->isDeleted();
19625   }
19626   return false;
19627 }
19628 
19629 /// Create up to 4 fix-its for explicit reference and value capture of \p Var or
19630 /// default capture. Fixes may be omitted if they aren't allowed by the
19631 /// standard, for example we can't emit a default copy capture fix-it if we
19632 /// already explicitly copy capture capture another variable.
buildLambdaCaptureFixit(Sema & Sema,LambdaScopeInfo * LSI,ValueDecl * Var)19633 static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
19634                                     ValueDecl *Var) {
19635   assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
19636   // Don't offer Capture by copy of default capture by copy fixes if Var is
19637   // known not to be copy constructible.
19638   bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
19639 
19640   SmallString<32> FixBuffer;
19641   StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
19642   if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
19643     SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
19644     if (ShouldOfferCopyFix) {
19645       // Offer fixes to insert an explicit capture for the variable.
19646       // [] -> [VarName]
19647       // [OtherCapture] -> [OtherCapture, VarName]
19648       FixBuffer.assign({Separator, Var->getName()});
19649       Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
19650           << Var << /*value*/ 0
19651           << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
19652     }
19653     // As above but capture by reference.
19654     FixBuffer.assign({Separator, "&", Var->getName()});
19655     Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
19656         << Var << /*reference*/ 1
19657         << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
19658   }
19659 
19660   // Only try to offer default capture if there are no captures excluding this
19661   // and init captures.
19662   // [this]: OK.
19663   // [X = Y]: OK.
19664   // [&A, &B]: Don't offer.
19665   // [A, B]: Don't offer.
19666   if (llvm::any_of(LSI->Captures, [](Capture &C) {
19667         return !C.isThisCapture() && !C.isInitCapture();
19668       }))
19669     return;
19670 
19671   // The default capture specifiers, '=' or '&', must appear first in the
19672   // capture body.
19673   SourceLocation DefaultInsertLoc =
19674       LSI->IntroducerRange.getBegin().getLocWithOffset(1);
19675 
19676   if (ShouldOfferCopyFix) {
19677     bool CanDefaultCopyCapture = true;
19678     // [=, *this] OK since c++17
19679     // [=, this] OK since c++20
19680     if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
19681       CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
19682                                   ? LSI->getCXXThisCapture().isCopyCapture()
19683                                   : false;
19684     // We can't use default capture by copy if any captures already specified
19685     // capture by copy.
19686     if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
19687           return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
19688         })) {
19689       FixBuffer.assign({"=", Separator});
19690       Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
19691           << /*value*/ 0
19692           << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
19693     }
19694   }
19695 
19696   // We can't use default capture by reference if any captures already specified
19697   // capture by reference.
19698   if (llvm::none_of(LSI->Captures, [](Capture &C) {
19699         return !C.isInitCapture() && C.isReferenceCapture() &&
19700                !C.isThisCapture();
19701       })) {
19702     FixBuffer.assign({"&", Separator});
19703     Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
19704         << /*reference*/ 1
19705         << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
19706   }
19707 }
19708 
tryCaptureVariable(ValueDecl * Var,SourceLocation ExprLoc,TryCaptureKind Kind,SourceLocation EllipsisLoc,bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const unsigned * const FunctionScopeIndexToStopAt)19709 bool Sema::tryCaptureVariable(
19710     ValueDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
19711     SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
19712     QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
19713   // An init-capture is notionally from the context surrounding its
19714   // declaration, but its parent DC is the lambda class.
19715   DeclContext *VarDC = Var->getDeclContext();
19716   DeclContext *DC = CurContext;
19717 
19718   // tryCaptureVariable is called every time a DeclRef is formed,
19719   // it can therefore have non-negigible impact on performances.
19720   // For local variables and when there is no capturing scope,
19721   // we can bailout early.
19722   if (CapturingFunctionScopes == 0 && (!BuildAndDiagnose || VarDC == DC))
19723     return true;
19724 
19725   const auto *VD = dyn_cast<VarDecl>(Var);
19726   if (VD) {
19727     if (VD->isInitCapture())
19728       VarDC = VarDC->getParent();
19729   } else {
19730     VD = Var->getPotentiallyDecomposedVarDecl();
19731   }
19732   assert(VD && "Cannot capture a null variable");
19733 
19734   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
19735       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
19736   // We need to sync up the Declaration Context with the
19737   // FunctionScopeIndexToStopAt
19738   if (FunctionScopeIndexToStopAt) {
19739     unsigned FSIndex = FunctionScopes.size() - 1;
19740     while (FSIndex != MaxFunctionScopesIndex) {
19741       DC = getLambdaAwareParentOfDeclContext(DC);
19742       --FSIndex;
19743     }
19744   }
19745 
19746   // Capture global variables if it is required to use private copy of this
19747   // variable.
19748   bool IsGlobal = !VD->hasLocalStorage();
19749   if (IsGlobal &&
19750       !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
19751                                                 MaxFunctionScopesIndex)))
19752     return true;
19753 
19754   if (isa<VarDecl>(Var))
19755     Var = cast<VarDecl>(Var->getCanonicalDecl());
19756 
19757   // Walk up the stack to determine whether we can capture the variable,
19758   // performing the "simple" checks that don't depend on type. We stop when
19759   // we've either hit the declared scope of the variable or find an existing
19760   // capture of that variable.  We start from the innermost capturing-entity
19761   // (the DC) and ensure that all intervening capturing-entities
19762   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
19763   // declcontext can either capture the variable or have already captured
19764   // the variable.
19765   CaptureType = Var->getType();
19766   DeclRefType = CaptureType.getNonReferenceType();
19767   bool Nested = false;
19768   bool Explicit = (Kind != TryCapture_Implicit);
19769   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
19770   do {
19771 
19772     LambdaScopeInfo *LSI = nullptr;
19773     if (!FunctionScopes.empty())
19774       LSI = dyn_cast_or_null<LambdaScopeInfo>(
19775           FunctionScopes[FunctionScopesIndex]);
19776 
19777     bool IsInScopeDeclarationContext =
19778         !LSI || LSI->AfterParameterList || CurContext == LSI->CallOperator;
19779 
19780     if (LSI && !LSI->AfterParameterList) {
19781       // This allows capturing parameters from a default value which does not
19782       // seems correct
19783       if (isa<ParmVarDecl>(Var) && !Var->getDeclContext()->isFunctionOrMethod())
19784         return true;
19785     }
19786     // If the variable is declared in the current context, there is no need to
19787     // capture it.
19788     if (IsInScopeDeclarationContext &&
19789         FunctionScopesIndex == MaxFunctionScopesIndex && VarDC == DC)
19790       return true;
19791 
19792     // Only block literals, captured statements, and lambda expressions can
19793     // capture; other scopes don't work.
19794     DeclContext *ParentDC =
19795         !IsInScopeDeclarationContext
19796             ? DC->getParent()
19797             : getParentOfCapturingContextOrNull(DC, Var, ExprLoc,
19798                                                 BuildAndDiagnose, *this);
19799     // We need to check for the parent *first* because, if we *have*
19800     // private-captured a global variable, we need to recursively capture it in
19801     // intermediate blocks, lambdas, etc.
19802     if (!ParentDC) {
19803       if (IsGlobal) {
19804         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
19805         break;
19806       }
19807       return true;
19808     }
19809 
19810     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
19811     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
19812 
19813     // Check whether we've already captured it.
19814     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
19815                                              DeclRefType)) {
19816       CSI->getCapture(Var).markUsed(BuildAndDiagnose);
19817       break;
19818     }
19819 
19820     // When evaluating some attributes (like enable_if) we might refer to a
19821     // function parameter appertaining to the same declaration as that
19822     // attribute.
19823     if (const auto *Parm = dyn_cast<ParmVarDecl>(Var);
19824         Parm && Parm->getDeclContext() == DC)
19825       return true;
19826 
19827     // If we are instantiating a generic lambda call operator body,
19828     // we do not want to capture new variables.  What was captured
19829     // during either a lambdas transformation or initial parsing
19830     // should be used.
19831     if (isGenericLambdaCallOperatorSpecialization(DC)) {
19832       if (BuildAndDiagnose) {
19833         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19834         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
19835           Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19836           Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19837           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19838           buildLambdaCaptureFixit(*this, LSI, Var);
19839         } else
19840           diagnoseUncapturableValueReferenceOrBinding(*this, ExprLoc, Var);
19841       }
19842       return true;
19843     }
19844 
19845     // Try to capture variable-length arrays types.
19846     if (Var->getType()->isVariablyModifiedType()) {
19847       // We're going to walk down into the type and look for VLA
19848       // expressions.
19849       QualType QTy = Var->getType();
19850       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19851         QTy = PVD->getOriginalType();
19852       captureVariablyModifiedType(Context, QTy, CSI);
19853     }
19854 
19855     if (getLangOpts().OpenMP) {
19856       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19857         // OpenMP private variables should not be captured in outer scope, so
19858         // just break here. Similarly, global variables that are captured in a
19859         // target region should not be captured outside the scope of the region.
19860         if (RSI->CapRegionKind == CR_OpenMP) {
19861           OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
19862               Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
19863           // If the variable is private (i.e. not captured) and has variably
19864           // modified type, we still need to capture the type for correct
19865           // codegen in all regions, associated with the construct. Currently,
19866           // it is captured in the innermost captured region only.
19867           if (IsOpenMPPrivateDecl != OMPC_unknown &&
19868               Var->getType()->isVariablyModifiedType()) {
19869             QualType QTy = Var->getType();
19870             if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19871               QTy = PVD->getOriginalType();
19872             for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
19873                  I < E; ++I) {
19874               auto *OuterRSI = cast<CapturedRegionScopeInfo>(
19875                   FunctionScopes[FunctionScopesIndex - I]);
19876               assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
19877                      "Wrong number of captured regions associated with the "
19878                      "OpenMP construct.");
19879               captureVariablyModifiedType(Context, QTy, OuterRSI);
19880             }
19881           }
19882           bool IsTargetCap =
19883               IsOpenMPPrivateDecl != OMPC_private &&
19884               isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
19885                                          RSI->OpenMPCaptureLevel);
19886           // Do not capture global if it is not privatized in outer regions.
19887           bool IsGlobalCap =
19888               IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
19889                                                      RSI->OpenMPCaptureLevel);
19890 
19891           // When we detect target captures we are looking from inside the
19892           // target region, therefore we need to propagate the capture from the
19893           // enclosing region. Therefore, the capture is not initially nested.
19894           if (IsTargetCap)
19895             adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
19896 
19897           if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
19898               (IsGlobal && !IsGlobalCap)) {
19899             Nested = !IsTargetCap;
19900             bool HasConst = DeclRefType.isConstQualified();
19901             DeclRefType = DeclRefType.getUnqualifiedType();
19902             // Don't lose diagnostics about assignments to const.
19903             if (HasConst)
19904               DeclRefType.addConst();
19905             CaptureType = Context.getLValueReferenceType(DeclRefType);
19906             break;
19907           }
19908         }
19909       }
19910     }
19911     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
19912       // No capture-default, and this is not an explicit capture
19913       // so cannot capture this variable.
19914       if (BuildAndDiagnose) {
19915         Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19916         Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19917         auto *LSI = cast<LambdaScopeInfo>(CSI);
19918         if (LSI->Lambda) {
19919           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19920           buildLambdaCaptureFixit(*this, LSI, Var);
19921         }
19922         // FIXME: If we error out because an outer lambda can not implicitly
19923         // capture a variable that an inner lambda explicitly captures, we
19924         // should have the inner lambda do the explicit capture - because
19925         // it makes for cleaner diagnostics later.  This would purely be done
19926         // so that the diagnostic does not misleadingly claim that a variable
19927         // can not be captured by a lambda implicitly even though it is captured
19928         // explicitly.  Suggestion:
19929         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
19930         //    at the function head
19931         //  - cache the StartingDeclContext - this must be a lambda
19932         //  - captureInLambda in the innermost lambda the variable.
19933       }
19934       return true;
19935     }
19936     Explicit = false;
19937     FunctionScopesIndex--;
19938     if (IsInScopeDeclarationContext)
19939       DC = ParentDC;
19940   } while (!VarDC->Equals(DC));
19941 
19942   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
19943   // computing the type of the capture at each step, checking type-specific
19944   // requirements, and adding captures if requested.
19945   // If the variable had already been captured previously, we start capturing
19946   // at the lambda nested within that one.
19947   bool Invalid = false;
19948   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
19949        ++I) {
19950     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
19951 
19952     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19953     // certain types of variables (unnamed, variably modified types etc.)
19954     // so check for eligibility.
19955     if (!Invalid)
19956       Invalid =
19957           !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
19958 
19959     // After encountering an error, if we're actually supposed to capture, keep
19960     // capturing in nested contexts to suppress any follow-on diagnostics.
19961     if (Invalid && !BuildAndDiagnose)
19962       return true;
19963 
19964     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
19965       Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
19966                                DeclRefType, Nested, *this, Invalid);
19967       Nested = true;
19968     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19969       Invalid = !captureInCapturedRegion(
19970           RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
19971           Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
19972       Nested = true;
19973     } else {
19974       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19975       Invalid =
19976           !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
19977                            DeclRefType, Nested, Kind, EllipsisLoc,
19978                            /*IsTopScope*/ I == N - 1, *this, Invalid);
19979       Nested = true;
19980     }
19981 
19982     if (Invalid && !BuildAndDiagnose)
19983       return true;
19984   }
19985   return Invalid;
19986 }
19987 
tryCaptureVariable(ValueDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc)19988 bool Sema::tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
19989                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
19990   QualType CaptureType;
19991   QualType DeclRefType;
19992   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
19993                             /*BuildAndDiagnose=*/true, CaptureType,
19994                             DeclRefType, nullptr);
19995 }
19996 
NeedToCaptureVariable(ValueDecl * Var,SourceLocation Loc)19997 bool Sema::NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc) {
19998   QualType CaptureType;
19999   QualType DeclRefType;
20000   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
20001                              /*BuildAndDiagnose=*/false, CaptureType,
20002                              DeclRefType, nullptr);
20003 }
20004 
getCapturedDeclRefType(ValueDecl * Var,SourceLocation Loc)20005 QualType Sema::getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc) {
20006   QualType CaptureType;
20007   QualType DeclRefType;
20008 
20009   // Determine whether we can capture this variable.
20010   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
20011                          /*BuildAndDiagnose=*/false, CaptureType,
20012                          DeclRefType, nullptr))
20013     return QualType();
20014 
20015   return DeclRefType;
20016 }
20017 
20018 namespace {
20019 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
20020 // The produced TemplateArgumentListInfo* points to data stored within this
20021 // object, so should only be used in contexts where the pointer will not be
20022 // used after the CopiedTemplateArgs object is destroyed.
20023 class CopiedTemplateArgs {
20024   bool HasArgs;
20025   TemplateArgumentListInfo TemplateArgStorage;
20026 public:
20027   template<typename RefExpr>
CopiedTemplateArgs(RefExpr * E)20028   CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
20029     if (HasArgs)
20030       E->copyTemplateArgumentsInto(TemplateArgStorage);
20031   }
operator TemplateArgumentListInfo*()20032   operator TemplateArgumentListInfo*()
20033 #ifdef __has_cpp_attribute
20034 #if __has_cpp_attribute(clang::lifetimebound)
20035   [[clang::lifetimebound]]
20036 #endif
20037 #endif
20038   {
20039     return HasArgs ? &TemplateArgStorage : nullptr;
20040   }
20041 };
20042 }
20043 
20044 /// Walk the set of potential results of an expression and mark them all as
20045 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
20046 ///
20047 /// \return A new expression if we found any potential results, ExprEmpty() if
20048 ///         not, and ExprError() if we diagnosed an error.
rebuildPotentialResultsAsNonOdrUsed(Sema & S,Expr * E,NonOdrUseReason NOUR)20049 static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
20050                                                       NonOdrUseReason NOUR) {
20051   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
20052   // an object that satisfies the requirements for appearing in a
20053   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
20054   // is immediately applied."  This function handles the lvalue-to-rvalue
20055   // conversion part.
20056   //
20057   // If we encounter a node that claims to be an odr-use but shouldn't be, we
20058   // transform it into the relevant kind of non-odr-use node and rebuild the
20059   // tree of nodes leading to it.
20060   //
20061   // This is a mini-TreeTransform that only transforms a restricted subset of
20062   // nodes (and only certain operands of them).
20063 
20064   // Rebuild a subexpression.
20065   auto Rebuild = [&](Expr *Sub) {
20066     return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
20067   };
20068 
20069   // Check whether a potential result satisfies the requirements of NOUR.
20070   auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
20071     // Any entity other than a VarDecl is always odr-used whenever it's named
20072     // in a potentially-evaluated expression.
20073     auto *VD = dyn_cast<VarDecl>(D);
20074     if (!VD)
20075       return true;
20076 
20077     // C++2a [basic.def.odr]p4:
20078     //   A variable x whose name appears as a potentially-evalauted expression
20079     //   e is odr-used by e unless
20080     //   -- x is a reference that is usable in constant expressions, or
20081     //   -- x is a variable of non-reference type that is usable in constant
20082     //      expressions and has no mutable subobjects, and e is an element of
20083     //      the set of potential results of an expression of
20084     //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
20085     //      conversion is applied, or
20086     //   -- x is a variable of non-reference type, and e is an element of the
20087     //      set of potential results of a discarded-value expression to which
20088     //      the lvalue-to-rvalue conversion is not applied
20089     //
20090     // We check the first bullet and the "potentially-evaluated" condition in
20091     // BuildDeclRefExpr. We check the type requirements in the second bullet
20092     // in CheckLValueToRValueConversionOperand below.
20093     switch (NOUR) {
20094     case NOUR_None:
20095     case NOUR_Unevaluated:
20096       llvm_unreachable("unexpected non-odr-use-reason");
20097 
20098     case NOUR_Constant:
20099       // Constant references were handled when they were built.
20100       if (VD->getType()->isReferenceType())
20101         return true;
20102       if (auto *RD = VD->getType()->getAsCXXRecordDecl())
20103         if (RD->hasMutableFields())
20104           return true;
20105       if (!VD->isUsableInConstantExpressions(S.Context))
20106         return true;
20107       break;
20108 
20109     case NOUR_Discarded:
20110       if (VD->getType()->isReferenceType())
20111         return true;
20112       break;
20113     }
20114     return false;
20115   };
20116 
20117   // Mark that this expression does not constitute an odr-use.
20118   auto MarkNotOdrUsed = [&] {
20119     S.MaybeODRUseExprs.remove(E);
20120     if (LambdaScopeInfo *LSI = S.getCurLambda())
20121       LSI->markVariableExprAsNonODRUsed(E);
20122   };
20123 
20124   // C++2a [basic.def.odr]p2:
20125   //   The set of potential results of an expression e is defined as follows:
20126   switch (E->getStmtClass()) {
20127   //   -- If e is an id-expression, ...
20128   case Expr::DeclRefExprClass: {
20129     auto *DRE = cast<DeclRefExpr>(E);
20130     if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
20131       break;
20132 
20133     // Rebuild as a non-odr-use DeclRefExpr.
20134     MarkNotOdrUsed();
20135     return DeclRefExpr::Create(
20136         S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
20137         DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
20138         DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
20139         DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
20140   }
20141 
20142   case Expr::FunctionParmPackExprClass: {
20143     auto *FPPE = cast<FunctionParmPackExpr>(E);
20144     // If any of the declarations in the pack is odr-used, then the expression
20145     // as a whole constitutes an odr-use.
20146     for (VarDecl *D : *FPPE)
20147       if (IsPotentialResultOdrUsed(D))
20148         return ExprEmpty();
20149 
20150     // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
20151     // nothing cares about whether we marked this as an odr-use, but it might
20152     // be useful for non-compiler tools.
20153     MarkNotOdrUsed();
20154     break;
20155   }
20156 
20157   //   -- If e is a subscripting operation with an array operand...
20158   case Expr::ArraySubscriptExprClass: {
20159     auto *ASE = cast<ArraySubscriptExpr>(E);
20160     Expr *OldBase = ASE->getBase()->IgnoreImplicit();
20161     if (!OldBase->getType()->isArrayType())
20162       break;
20163     ExprResult Base = Rebuild(OldBase);
20164     if (!Base.isUsable())
20165       return Base;
20166     Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
20167     Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
20168     SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
20169     return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
20170                                      ASE->getRBracketLoc());
20171   }
20172 
20173   case Expr::MemberExprClass: {
20174     auto *ME = cast<MemberExpr>(E);
20175     // -- If e is a class member access expression [...] naming a non-static
20176     //    data member...
20177     if (isa<FieldDecl>(ME->getMemberDecl())) {
20178       ExprResult Base = Rebuild(ME->getBase());
20179       if (!Base.isUsable())
20180         return Base;
20181       return MemberExpr::Create(
20182           S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
20183           ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
20184           ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
20185           CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
20186           ME->getObjectKind(), ME->isNonOdrUse());
20187     }
20188 
20189     if (ME->getMemberDecl()->isCXXInstanceMember())
20190       break;
20191 
20192     // -- If e is a class member access expression naming a static data member,
20193     //    ...
20194     if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
20195       break;
20196 
20197     // Rebuild as a non-odr-use MemberExpr.
20198     MarkNotOdrUsed();
20199     return MemberExpr::Create(
20200         S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
20201         ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
20202         ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
20203         ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
20204   }
20205 
20206   case Expr::BinaryOperatorClass: {
20207     auto *BO = cast<BinaryOperator>(E);
20208     Expr *LHS = BO->getLHS();
20209     Expr *RHS = BO->getRHS();
20210     // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
20211     if (BO->getOpcode() == BO_PtrMemD) {
20212       ExprResult Sub = Rebuild(LHS);
20213       if (!Sub.isUsable())
20214         return Sub;
20215       LHS = Sub.get();
20216     //   -- If e is a comma expression, ...
20217     } else if (BO->getOpcode() == BO_Comma) {
20218       ExprResult Sub = Rebuild(RHS);
20219       if (!Sub.isUsable())
20220         return Sub;
20221       RHS = Sub.get();
20222     } else {
20223       break;
20224     }
20225     return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
20226                         LHS, RHS);
20227   }
20228 
20229   //   -- If e has the form (e1)...
20230   case Expr::ParenExprClass: {
20231     auto *PE = cast<ParenExpr>(E);
20232     ExprResult Sub = Rebuild(PE->getSubExpr());
20233     if (!Sub.isUsable())
20234       return Sub;
20235     return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
20236   }
20237 
20238   //   -- If e is a glvalue conditional expression, ...
20239   // We don't apply this to a binary conditional operator. FIXME: Should we?
20240   case Expr::ConditionalOperatorClass: {
20241     auto *CO = cast<ConditionalOperator>(E);
20242     ExprResult LHS = Rebuild(CO->getLHS());
20243     if (LHS.isInvalid())
20244       return ExprError();
20245     ExprResult RHS = Rebuild(CO->getRHS());
20246     if (RHS.isInvalid())
20247       return ExprError();
20248     if (!LHS.isUsable() && !RHS.isUsable())
20249       return ExprEmpty();
20250     if (!LHS.isUsable())
20251       LHS = CO->getLHS();
20252     if (!RHS.isUsable())
20253       RHS = CO->getRHS();
20254     return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
20255                                 CO->getCond(), LHS.get(), RHS.get());
20256   }
20257 
20258   // [Clang extension]
20259   //   -- If e has the form __extension__ e1...
20260   case Expr::UnaryOperatorClass: {
20261     auto *UO = cast<UnaryOperator>(E);
20262     if (UO->getOpcode() != UO_Extension)
20263       break;
20264     ExprResult Sub = Rebuild(UO->getSubExpr());
20265     if (!Sub.isUsable())
20266       return Sub;
20267     return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
20268                           Sub.get());
20269   }
20270 
20271   // [Clang extension]
20272   //   -- If e has the form _Generic(...), the set of potential results is the
20273   //      union of the sets of potential results of the associated expressions.
20274   case Expr::GenericSelectionExprClass: {
20275     auto *GSE = cast<GenericSelectionExpr>(E);
20276 
20277     SmallVector<Expr *, 4> AssocExprs;
20278     bool AnyChanged = false;
20279     for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
20280       ExprResult AssocExpr = Rebuild(OrigAssocExpr);
20281       if (AssocExpr.isInvalid())
20282         return ExprError();
20283       if (AssocExpr.isUsable()) {
20284         AssocExprs.push_back(AssocExpr.get());
20285         AnyChanged = true;
20286       } else {
20287         AssocExprs.push_back(OrigAssocExpr);
20288       }
20289     }
20290 
20291     void *ExOrTy = nullptr;
20292     bool IsExpr = GSE->isExprPredicate();
20293     if (IsExpr)
20294       ExOrTy = GSE->getControllingExpr();
20295     else
20296       ExOrTy = GSE->getControllingType();
20297     return AnyChanged ? S.CreateGenericSelectionExpr(
20298                             GSE->getGenericLoc(), GSE->getDefaultLoc(),
20299                             GSE->getRParenLoc(), IsExpr, ExOrTy,
20300                             GSE->getAssocTypeSourceInfos(), AssocExprs)
20301                       : ExprEmpty();
20302   }
20303 
20304   // [Clang extension]
20305   //   -- If e has the form __builtin_choose_expr(...), the set of potential
20306   //      results is the union of the sets of potential results of the
20307   //      second and third subexpressions.
20308   case Expr::ChooseExprClass: {
20309     auto *CE = cast<ChooseExpr>(E);
20310 
20311     ExprResult LHS = Rebuild(CE->getLHS());
20312     if (LHS.isInvalid())
20313       return ExprError();
20314 
20315     ExprResult RHS = Rebuild(CE->getLHS());
20316     if (RHS.isInvalid())
20317       return ExprError();
20318 
20319     if (!LHS.get() && !RHS.get())
20320       return ExprEmpty();
20321     if (!LHS.isUsable())
20322       LHS = CE->getLHS();
20323     if (!RHS.isUsable())
20324       RHS = CE->getRHS();
20325 
20326     return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
20327                              RHS.get(), CE->getRParenLoc());
20328   }
20329 
20330   // Step through non-syntactic nodes.
20331   case Expr::ConstantExprClass: {
20332     auto *CE = cast<ConstantExpr>(E);
20333     ExprResult Sub = Rebuild(CE->getSubExpr());
20334     if (!Sub.isUsable())
20335       return Sub;
20336     return ConstantExpr::Create(S.Context, Sub.get());
20337   }
20338 
20339   // We could mostly rely on the recursive rebuilding to rebuild implicit
20340   // casts, but not at the top level, so rebuild them here.
20341   case Expr::ImplicitCastExprClass: {
20342     auto *ICE = cast<ImplicitCastExpr>(E);
20343     // Only step through the narrow set of cast kinds we expect to encounter.
20344     // Anything else suggests we've left the region in which potential results
20345     // can be found.
20346     switch (ICE->getCastKind()) {
20347     case CK_NoOp:
20348     case CK_DerivedToBase:
20349     case CK_UncheckedDerivedToBase: {
20350       ExprResult Sub = Rebuild(ICE->getSubExpr());
20351       if (!Sub.isUsable())
20352         return Sub;
20353       CXXCastPath Path(ICE->path());
20354       return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
20355                                  ICE->getValueKind(), &Path);
20356     }
20357 
20358     default:
20359       break;
20360     }
20361     break;
20362   }
20363 
20364   default:
20365     break;
20366   }
20367 
20368   // Can't traverse through this node. Nothing to do.
20369   return ExprEmpty();
20370 }
20371 
CheckLValueToRValueConversionOperand(Expr * E)20372 ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
20373   // Check whether the operand is or contains an object of non-trivial C union
20374   // type.
20375   if (E->getType().isVolatileQualified() &&
20376       (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
20377        E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
20378     checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
20379                           Sema::NTCUC_LValueToRValueVolatile,
20380                           NTCUK_Destruct|NTCUK_Copy);
20381 
20382   // C++2a [basic.def.odr]p4:
20383   //   [...] an expression of non-volatile-qualified non-class type to which
20384   //   the lvalue-to-rvalue conversion is applied [...]
20385   if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
20386     return E;
20387 
20388   ExprResult Result =
20389       rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
20390   if (Result.isInvalid())
20391     return ExprError();
20392   return Result.get() ? Result : E;
20393 }
20394 
ActOnConstantExpression(ExprResult Res)20395 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
20396   Res = CorrectDelayedTyposInExpr(Res);
20397 
20398   if (!Res.isUsable())
20399     return Res;
20400 
20401   // If a constant-expression is a reference to a variable where we delay
20402   // deciding whether it is an odr-use, just assume we will apply the
20403   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
20404   // (a non-type template argument), we have special handling anyway.
20405   return CheckLValueToRValueConversionOperand(Res.get());
20406 }
20407 
CleanupVarDeclMarking()20408 void Sema::CleanupVarDeclMarking() {
20409   // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
20410   // call.
20411   MaybeODRUseExprSet LocalMaybeODRUseExprs;
20412   std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
20413 
20414   for (Expr *E : LocalMaybeODRUseExprs) {
20415     if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
20416       MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
20417                          DRE->getLocation(), *this);
20418     } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
20419       MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
20420                          *this);
20421     } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
20422       for (VarDecl *VD : *FP)
20423         MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
20424     } else {
20425       llvm_unreachable("Unexpected expression");
20426     }
20427   }
20428 
20429   assert(MaybeODRUseExprs.empty() &&
20430          "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
20431 }
20432 
DoMarkPotentialCapture(Sema & SemaRef,SourceLocation Loc,ValueDecl * Var,Expr * E)20433 static void DoMarkPotentialCapture(Sema &SemaRef, SourceLocation Loc,
20434                                    ValueDecl *Var, Expr *E) {
20435   VarDecl *VD = Var->getPotentiallyDecomposedVarDecl();
20436   if (!VD)
20437     return;
20438 
20439   const bool RefersToEnclosingScope =
20440       (SemaRef.CurContext != VD->getDeclContext() &&
20441        VD->getDeclContext()->isFunctionOrMethod() && VD->hasLocalStorage());
20442   if (RefersToEnclosingScope) {
20443     LambdaScopeInfo *const LSI =
20444         SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
20445     if (LSI && (!LSI->CallOperator ||
20446                 !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
20447       // If a variable could potentially be odr-used, defer marking it so
20448       // until we finish analyzing the full expression for any
20449       // lvalue-to-rvalue
20450       // or discarded value conversions that would obviate odr-use.
20451       // Add it to the list of potential captures that will be analyzed
20452       // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
20453       // unless the variable is a reference that was initialized by a constant
20454       // expression (this will never need to be captured or odr-used).
20455       //
20456       // FIXME: We can simplify this a lot after implementing P0588R1.
20457       assert(E && "Capture variable should be used in an expression.");
20458       if (!Var->getType()->isReferenceType() ||
20459           !VD->isUsableInConstantExpressions(SemaRef.Context))
20460         LSI->addPotentialCapture(E->IgnoreParens());
20461     }
20462   }
20463 }
20464 
DoMarkVarDeclReferenced(Sema & SemaRef,SourceLocation Loc,VarDecl * Var,Expr * E,llvm::DenseMap<const VarDecl *,int> & RefsMinusAssignments)20465 static void DoMarkVarDeclReferenced(
20466     Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
20467     llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
20468   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
20469           isa<FunctionParmPackExpr>(E)) &&
20470          "Invalid Expr argument to DoMarkVarDeclReferenced");
20471   Var->setReferenced();
20472 
20473   if (Var->isInvalidDecl())
20474     return;
20475 
20476   auto *MSI = Var->getMemberSpecializationInfo();
20477   TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
20478                                        : Var->getTemplateSpecializationKind();
20479 
20480   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
20481   bool UsableInConstantExpr =
20482       Var->mightBeUsableInConstantExpressions(SemaRef.Context);
20483 
20484   if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
20485     RefsMinusAssignments.insert({Var, 0}).first->getSecond()++;
20486   }
20487 
20488   // C++20 [expr.const]p12:
20489   //   A variable [...] is needed for constant evaluation if it is [...] a
20490   //   variable whose name appears as a potentially constant evaluated
20491   //   expression that is either a contexpr variable or is of non-volatile
20492   //   const-qualified integral type or of reference type
20493   bool NeededForConstantEvaluation =
20494       isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
20495 
20496   bool NeedDefinition =
20497       OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
20498 
20499   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
20500          "Can't instantiate a partial template specialization.");
20501 
20502   // If this might be a member specialization of a static data member, check
20503   // the specialization is visible. We already did the checks for variable
20504   // template specializations when we created them.
20505   if (NeedDefinition && TSK != TSK_Undeclared &&
20506       !isa<VarTemplateSpecializationDecl>(Var))
20507     SemaRef.checkSpecializationVisibility(Loc, Var);
20508 
20509   // Perform implicit instantiation of static data members, static data member
20510   // templates of class templates, and variable template specializations. Delay
20511   // instantiations of variable templates, except for those that could be used
20512   // in a constant expression.
20513   if (NeedDefinition && isTemplateInstantiation(TSK)) {
20514     // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
20515     // instantiation declaration if a variable is usable in a constant
20516     // expression (among other cases).
20517     bool TryInstantiating =
20518         TSK == TSK_ImplicitInstantiation ||
20519         (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
20520 
20521     if (TryInstantiating) {
20522       SourceLocation PointOfInstantiation =
20523           MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
20524       bool FirstInstantiation = PointOfInstantiation.isInvalid();
20525       if (FirstInstantiation) {
20526         PointOfInstantiation = Loc;
20527         if (MSI)
20528           MSI->setPointOfInstantiation(PointOfInstantiation);
20529           // FIXME: Notify listener.
20530         else
20531           Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
20532       }
20533 
20534       if (UsableInConstantExpr) {
20535         // Do not defer instantiations of variables that could be used in a
20536         // constant expression.
20537         SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
20538           SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
20539         });
20540 
20541         // Re-set the member to trigger a recomputation of the dependence bits
20542         // for the expression.
20543         if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
20544           DRE->setDecl(DRE->getDecl());
20545         else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
20546           ME->setMemberDecl(ME->getMemberDecl());
20547       } else if (FirstInstantiation) {
20548         SemaRef.PendingInstantiations
20549             .push_back(std::make_pair(Var, PointOfInstantiation));
20550       } else {
20551         bool Inserted = false;
20552         for (auto &I : SemaRef.SavedPendingInstantiations) {
20553           auto Iter = llvm::find_if(
20554               I, [Var](const Sema::PendingImplicitInstantiation &P) {
20555                 return P.first == Var;
20556               });
20557           if (Iter != I.end()) {
20558             SemaRef.PendingInstantiations.push_back(*Iter);
20559             I.erase(Iter);
20560             Inserted = true;
20561             break;
20562           }
20563         }
20564 
20565         // FIXME: For a specialization of a variable template, we don't
20566         // distinguish between "declaration and type implicitly instantiated"
20567         // and "implicit instantiation of definition requested", so we have
20568         // no direct way to avoid enqueueing the pending instantiation
20569         // multiple times.
20570         if (isa<VarTemplateSpecializationDecl>(Var) && !Inserted)
20571           SemaRef.PendingInstantiations
20572             .push_back(std::make_pair(Var, PointOfInstantiation));
20573       }
20574     }
20575   }
20576 
20577   // C++2a [basic.def.odr]p4:
20578   //   A variable x whose name appears as a potentially-evaluated expression e
20579   //   is odr-used by e unless
20580   //   -- x is a reference that is usable in constant expressions
20581   //   -- x is a variable of non-reference type that is usable in constant
20582   //      expressions and has no mutable subobjects [FIXME], and e is an
20583   //      element of the set of potential results of an expression of
20584   //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
20585   //      conversion is applied
20586   //   -- x is a variable of non-reference type, and e is an element of the set
20587   //      of potential results of a discarded-value expression to which the
20588   //      lvalue-to-rvalue conversion is not applied [FIXME]
20589   //
20590   // We check the first part of the second bullet here, and
20591   // Sema::CheckLValueToRValueConversionOperand deals with the second part.
20592   // FIXME: To get the third bullet right, we need to delay this even for
20593   // variables that are not usable in constant expressions.
20594 
20595   // If we already know this isn't an odr-use, there's nothing more to do.
20596   if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
20597     if (DRE->isNonOdrUse())
20598       return;
20599   if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
20600     if (ME->isNonOdrUse())
20601       return;
20602 
20603   switch (OdrUse) {
20604   case OdrUseContext::None:
20605     // In some cases, a variable may not have been marked unevaluated, if it
20606     // appears in a defaukt initializer.
20607     assert((!E || isa<FunctionParmPackExpr>(E) ||
20608             SemaRef.isUnevaluatedContext()) &&
20609            "missing non-odr-use marking for unevaluated decl ref");
20610     break;
20611 
20612   case OdrUseContext::FormallyOdrUsed:
20613     // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
20614     // behavior.
20615     break;
20616 
20617   case OdrUseContext::Used:
20618     // If we might later find that this expression isn't actually an odr-use,
20619     // delay the marking.
20620     if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
20621       SemaRef.MaybeODRUseExprs.insert(E);
20622     else
20623       MarkVarDeclODRUsed(Var, Loc, SemaRef);
20624     break;
20625 
20626   case OdrUseContext::Dependent:
20627     // If this is a dependent context, we don't need to mark variables as
20628     // odr-used, but we may still need to track them for lambda capture.
20629     // FIXME: Do we also need to do this inside dependent typeid expressions
20630     // (which are modeled as unevaluated at this point)?
20631     DoMarkPotentialCapture(SemaRef, Loc, Var, E);
20632     break;
20633   }
20634 }
20635 
DoMarkBindingDeclReferenced(Sema & SemaRef,SourceLocation Loc,BindingDecl * BD,Expr * E)20636 static void DoMarkBindingDeclReferenced(Sema &SemaRef, SourceLocation Loc,
20637                                         BindingDecl *BD, Expr *E) {
20638   BD->setReferenced();
20639 
20640   if (BD->isInvalidDecl())
20641     return;
20642 
20643   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
20644   if (OdrUse == OdrUseContext::Used) {
20645     QualType CaptureType, DeclRefType;
20646     SemaRef.tryCaptureVariable(BD, Loc, Sema::TryCapture_Implicit,
20647                                /*EllipsisLoc*/ SourceLocation(),
20648                                /*BuildAndDiagnose*/ true, CaptureType,
20649                                DeclRefType,
20650                                /*FunctionScopeIndexToStopAt*/ nullptr);
20651   } else if (OdrUse == OdrUseContext::Dependent) {
20652     DoMarkPotentialCapture(SemaRef, Loc, BD, E);
20653   }
20654 }
20655 
20656 /// Mark a variable referenced, and check whether it is odr-used
20657 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
20658 /// used directly for normal expressions referring to VarDecl.
MarkVariableReferenced(SourceLocation Loc,VarDecl * Var)20659 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
20660   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments);
20661 }
20662 
20663 // C++ [temp.dep.expr]p3:
20664 //   An id-expression is type-dependent if it contains:
20665 //     - an identifier associated by name lookup with an entity captured by copy
20666 //       in a lambda-expression that has an explicit object parameter whose type
20667 //       is dependent ([dcl.fct]),
FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(Sema & SemaRef,ValueDecl * D,Expr * E)20668 static void FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(
20669     Sema &SemaRef, ValueDecl *D, Expr *E) {
20670   auto *ID = dyn_cast<DeclRefExpr>(E);
20671   if (!ID || ID->isTypeDependent())
20672     return;
20673 
20674   auto IsDependent = [&]() {
20675     const LambdaScopeInfo *LSI = SemaRef.getCurLambda();
20676     if (!LSI)
20677       return false;
20678     if (!LSI->ExplicitObjectParameter ||
20679         !LSI->ExplicitObjectParameter->getType()->isDependentType())
20680       return false;
20681     if (!LSI->CaptureMap.count(D))
20682       return false;
20683     const Capture &Cap = LSI->getCapture(D);
20684     return !Cap.isCopyCapture();
20685   }();
20686 
20687   ID->setCapturedByCopyInLambdaWithExplicitObjectParameter(
20688       IsDependent, SemaRef.getASTContext());
20689 }
20690 
20691 static void
MarkExprReferenced(Sema & SemaRef,SourceLocation Loc,Decl * D,Expr * E,bool MightBeOdrUse,llvm::DenseMap<const VarDecl *,int> & RefsMinusAssignments)20692 MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
20693                    bool MightBeOdrUse,
20694                    llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
20695   if (SemaRef.isInOpenMPDeclareTargetContext())
20696     SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
20697 
20698   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
20699     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
20700     if (SemaRef.getLangOpts().CPlusPlus)
20701       FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
20702                                                                        Var, E);
20703     return;
20704   }
20705 
20706   if (BindingDecl *Decl = dyn_cast<BindingDecl>(D)) {
20707     DoMarkBindingDeclReferenced(SemaRef, Loc, Decl, E);
20708     if (SemaRef.getLangOpts().CPlusPlus)
20709       FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
20710                                                                        Decl, E);
20711     return;
20712   }
20713   SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
20714 
20715   // If this is a call to a method via a cast, also mark the method in the
20716   // derived class used in case codegen can devirtualize the call.
20717   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
20718   if (!ME)
20719     return;
20720   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
20721   if (!MD)
20722     return;
20723   // Only attempt to devirtualize if this is truly a virtual call.
20724   bool IsVirtualCall = MD->isVirtual() &&
20725                           ME->performsVirtualDispatch(SemaRef.getLangOpts());
20726   if (!IsVirtualCall)
20727     return;
20728 
20729   // If it's possible to devirtualize the call, mark the called function
20730   // referenced.
20731   CXXMethodDecl *DM = MD->getDevirtualizedMethod(
20732       ME->getBase(), SemaRef.getLangOpts().AppleKext);
20733   if (DM)
20734     SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
20735 }
20736 
20737 /// Perform reference-marking and odr-use handling for a DeclRefExpr.
20738 ///
20739 /// Note, this may change the dependence of the DeclRefExpr, and so needs to be
20740 /// handled with care if the DeclRefExpr is not newly-created.
MarkDeclRefReferenced(DeclRefExpr * E,const Expr * Base)20741 void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
20742   // TODO: update this with DR# once a defect report is filed.
20743   // C++11 defect. The address of a pure member should not be an ODR use, even
20744   // if it's a qualified reference.
20745   bool OdrUse = true;
20746   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
20747     if (Method->isVirtual() &&
20748         !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
20749       OdrUse = false;
20750 
20751   if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl())) {
20752     if (!isUnevaluatedContext() && !isConstantEvaluatedContext() &&
20753         !isImmediateFunctionContext() &&
20754         !isCheckingDefaultArgumentOrInitializer() &&
20755         FD->isImmediateFunction() && !RebuildingImmediateInvocation &&
20756         !FD->isDependentContext())
20757       ExprEvalContexts.back().ReferenceToConsteval.insert(E);
20758   }
20759   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
20760                      RefsMinusAssignments);
20761 }
20762 
20763 /// Perform reference-marking and odr-use handling for a MemberExpr.
MarkMemberReferenced(MemberExpr * E)20764 void Sema::MarkMemberReferenced(MemberExpr *E) {
20765   // C++11 [basic.def.odr]p2:
20766   //   A non-overloaded function whose name appears as a potentially-evaluated
20767   //   expression or a member of a set of candidate functions, if selected by
20768   //   overload resolution when referred to from a potentially-evaluated
20769   //   expression, is odr-used, unless it is a pure virtual function and its
20770   //   name is not explicitly qualified.
20771   bool MightBeOdrUse = true;
20772   if (E->performsVirtualDispatch(getLangOpts())) {
20773     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
20774       if (Method->isPureVirtual())
20775         MightBeOdrUse = false;
20776   }
20777   SourceLocation Loc =
20778       E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
20779   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
20780                      RefsMinusAssignments);
20781 }
20782 
20783 /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
MarkFunctionParmPackReferenced(FunctionParmPackExpr * E)20784 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
20785   for (VarDecl *VD : *E)
20786     MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
20787                        RefsMinusAssignments);
20788 }
20789 
20790 /// Perform marking for a reference to an arbitrary declaration.  It
20791 /// marks the declaration referenced, and performs odr-use checking for
20792 /// functions and variables. This method should not be used when building a
20793 /// normal expression which refers to a variable.
MarkAnyDeclReferenced(SourceLocation Loc,Decl * D,bool MightBeOdrUse)20794 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
20795                                  bool MightBeOdrUse) {
20796   if (MightBeOdrUse) {
20797     if (auto *VD = dyn_cast<VarDecl>(D)) {
20798       MarkVariableReferenced(Loc, VD);
20799       return;
20800     }
20801   }
20802   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
20803     MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
20804     return;
20805   }
20806   D->setReferenced();
20807 }
20808 
20809 namespace {
20810   // Mark all of the declarations used by a type as referenced.
20811   // FIXME: Not fully implemented yet! We need to have a better understanding
20812   // of when we're entering a context we should not recurse into.
20813   // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
20814   // TreeTransforms rebuilding the type in a new context. Rather than
20815   // duplicating the TreeTransform logic, we should consider reusing it here.
20816   // Currently that causes problems when rebuilding LambdaExprs.
20817   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
20818     Sema &S;
20819     SourceLocation Loc;
20820 
20821   public:
20822     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
20823 
MarkReferencedDecls(Sema & S,SourceLocation Loc)20824     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
20825 
20826     bool TraverseTemplateArgument(const TemplateArgument &Arg);
20827   };
20828 }
20829 
TraverseTemplateArgument(const TemplateArgument & Arg)20830 bool MarkReferencedDecls::TraverseTemplateArgument(
20831     const TemplateArgument &Arg) {
20832   {
20833     // A non-type template argument is a constant-evaluated context.
20834     EnterExpressionEvaluationContext Evaluated(
20835         S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
20836     if (Arg.getKind() == TemplateArgument::Declaration) {
20837       if (Decl *D = Arg.getAsDecl())
20838         S.MarkAnyDeclReferenced(Loc, D, true);
20839     } else if (Arg.getKind() == TemplateArgument::Expression) {
20840       S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
20841     }
20842   }
20843 
20844   return Inherited::TraverseTemplateArgument(Arg);
20845 }
20846 
MarkDeclarationsReferencedInType(SourceLocation Loc,QualType T)20847 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
20848   MarkReferencedDecls Marker(*this, Loc);
20849   Marker.TraverseType(T);
20850 }
20851 
20852 namespace {
20853 /// Helper class that marks all of the declarations referenced by
20854 /// potentially-evaluated subexpressions as "referenced".
20855 class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
20856 public:
20857   typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
20858   bool SkipLocalVariables;
20859   ArrayRef<const Expr *> StopAt;
20860 
EvaluatedExprMarker(Sema & S,bool SkipLocalVariables,ArrayRef<const Expr * > StopAt)20861   EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
20862                       ArrayRef<const Expr *> StopAt)
20863       : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
20864 
visitUsedDecl(SourceLocation Loc,Decl * D)20865   void visitUsedDecl(SourceLocation Loc, Decl *D) {
20866     S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
20867   }
20868 
Visit(Expr * E)20869   void Visit(Expr *E) {
20870     if (llvm::is_contained(StopAt, E))
20871       return;
20872     Inherited::Visit(E);
20873   }
20874 
VisitConstantExpr(ConstantExpr * E)20875   void VisitConstantExpr(ConstantExpr *E) {
20876     // Don't mark declarations within a ConstantExpression, as this expression
20877     // will be evaluated and folded to a value.
20878   }
20879 
VisitDeclRefExpr(DeclRefExpr * E)20880   void VisitDeclRefExpr(DeclRefExpr *E) {
20881     // If we were asked not to visit local variables, don't.
20882     if (SkipLocalVariables) {
20883       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
20884         if (VD->hasLocalStorage())
20885           return;
20886     }
20887 
20888     // FIXME: This can trigger the instantiation of the initializer of a
20889     // variable, which can cause the expression to become value-dependent
20890     // or error-dependent. Do we need to propagate the new dependence bits?
20891     S.MarkDeclRefReferenced(E);
20892   }
20893 
VisitMemberExpr(MemberExpr * E)20894   void VisitMemberExpr(MemberExpr *E) {
20895     S.MarkMemberReferenced(E);
20896     Visit(E->getBase());
20897   }
20898 };
20899 } // namespace
20900 
20901 /// Mark any declarations that appear within this expression or any
20902 /// potentially-evaluated subexpressions as "referenced".
20903 ///
20904 /// \param SkipLocalVariables If true, don't mark local variables as
20905 /// 'referenced'.
20906 /// \param StopAt Subexpressions that we shouldn't recurse into.
MarkDeclarationsReferencedInExpr(Expr * E,bool SkipLocalVariables,ArrayRef<const Expr * > StopAt)20907 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
20908                                             bool SkipLocalVariables,
20909                                             ArrayRef<const Expr*> StopAt) {
20910   EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
20911 }
20912 
20913 /// Emit a diagnostic when statements are reachable.
20914 /// FIXME: check for reachability even in expressions for which we don't build a
20915 ///        CFG (eg, in the initializer of a global or in a constant expression).
20916 ///        For example,
20917 ///        namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
DiagIfReachable(SourceLocation Loc,ArrayRef<const Stmt * > Stmts,const PartialDiagnostic & PD)20918 bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
20919                            const PartialDiagnostic &PD) {
20920   if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
20921     if (!FunctionScopes.empty())
20922       FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
20923           sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
20924     return true;
20925   }
20926 
20927   // The initializer of a constexpr variable or of the first declaration of a
20928   // static data member is not syntactically a constant evaluated constant,
20929   // but nonetheless is always required to be a constant expression, so we
20930   // can skip diagnosing.
20931   // FIXME: Using the mangling context here is a hack.
20932   if (auto *VD = dyn_cast_or_null<VarDecl>(
20933           ExprEvalContexts.back().ManglingContextDecl)) {
20934     if (VD->isConstexpr() ||
20935         (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
20936       return false;
20937     // FIXME: For any other kind of variable, we should build a CFG for its
20938     // initializer and check whether the context in question is reachable.
20939   }
20940 
20941   Diag(Loc, PD);
20942   return true;
20943 }
20944 
20945 /// Emit a diagnostic that describes an effect on the run-time behavior
20946 /// of the program being compiled.
20947 ///
20948 /// This routine emits the given diagnostic when the code currently being
20949 /// type-checked is "potentially evaluated", meaning that there is a
20950 /// possibility that the code will actually be executable. Code in sizeof()
20951 /// expressions, code used only during overload resolution, etc., are not
20952 /// potentially evaluated. This routine will suppress such diagnostics or,
20953 /// in the absolutely nutty case of potentially potentially evaluated
20954 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
20955 /// later.
20956 ///
20957 /// This routine should be used for all diagnostics that describe the run-time
20958 /// behavior of a program, such as passing a non-POD value through an ellipsis.
20959 /// Failure to do so will likely result in spurious diagnostics or failures
20960 /// during overload resolution or within sizeof/alignof/typeof/typeid.
DiagRuntimeBehavior(SourceLocation Loc,ArrayRef<const Stmt * > Stmts,const PartialDiagnostic & PD)20961 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
20962                                const PartialDiagnostic &PD) {
20963 
20964   if (ExprEvalContexts.back().isDiscardedStatementContext())
20965     return false;
20966 
20967   switch (ExprEvalContexts.back().Context) {
20968   case ExpressionEvaluationContext::Unevaluated:
20969   case ExpressionEvaluationContext::UnevaluatedList:
20970   case ExpressionEvaluationContext::UnevaluatedAbstract:
20971   case ExpressionEvaluationContext::DiscardedStatement:
20972     // The argument will never be evaluated, so don't complain.
20973     break;
20974 
20975   case ExpressionEvaluationContext::ConstantEvaluated:
20976   case ExpressionEvaluationContext::ImmediateFunctionContext:
20977     // Relevant diagnostics should be produced by constant evaluation.
20978     break;
20979 
20980   case ExpressionEvaluationContext::PotentiallyEvaluated:
20981   case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
20982     return DiagIfReachable(Loc, Stmts, PD);
20983   }
20984 
20985   return false;
20986 }
20987 
DiagRuntimeBehavior(SourceLocation Loc,const Stmt * Statement,const PartialDiagnostic & PD)20988 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
20989                                const PartialDiagnostic &PD) {
20990   return DiagRuntimeBehavior(
20991       Loc, Statement ? llvm::ArrayRef(Statement) : std::nullopt, PD);
20992 }
20993 
CheckCallReturnType(QualType ReturnType,SourceLocation Loc,CallExpr * CE,FunctionDecl * FD)20994 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
20995                                CallExpr *CE, FunctionDecl *FD) {
20996   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
20997     return false;
20998 
20999   // If we're inside a decltype's expression, don't check for a valid return
21000   // type or construct temporaries until we know whether this is the last call.
21001   if (ExprEvalContexts.back().ExprContext ==
21002       ExpressionEvaluationContextRecord::EK_Decltype) {
21003     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
21004     return false;
21005   }
21006 
21007   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
21008     FunctionDecl *FD;
21009     CallExpr *CE;
21010 
21011   public:
21012     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
21013       : FD(FD), CE(CE) { }
21014 
21015     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
21016       if (!FD) {
21017         S.Diag(Loc, diag::err_call_incomplete_return)
21018           << T << CE->getSourceRange();
21019         return;
21020       }
21021 
21022       S.Diag(Loc, diag::err_call_function_incomplete_return)
21023           << CE->getSourceRange() << FD << T;
21024       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
21025           << FD->getDeclName();
21026     }
21027   } Diagnoser(FD, CE);
21028 
21029   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
21030     return true;
21031 
21032   return false;
21033 }
21034 
21035 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
21036 // will prevent this condition from triggering, which is what we want.
DiagnoseAssignmentAsCondition(Expr * E)21037 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
21038   SourceLocation Loc;
21039 
21040   unsigned diagnostic = diag::warn_condition_is_assignment;
21041   bool IsOrAssign = false;
21042 
21043   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
21044     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
21045       return;
21046 
21047     IsOrAssign = Op->getOpcode() == BO_OrAssign;
21048 
21049     // Greylist some idioms by putting them into a warning subcategory.
21050     if (ObjCMessageExpr *ME
21051           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
21052       Selector Sel = ME->getSelector();
21053 
21054       // self = [<foo> init...]
21055       if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
21056         diagnostic = diag::warn_condition_is_idiomatic_assignment;
21057 
21058       // <foo> = [<bar> nextObject]
21059       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
21060         diagnostic = diag::warn_condition_is_idiomatic_assignment;
21061     }
21062 
21063     Loc = Op->getOperatorLoc();
21064   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
21065     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
21066       return;
21067 
21068     IsOrAssign = Op->getOperator() == OO_PipeEqual;
21069     Loc = Op->getOperatorLoc();
21070   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
21071     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
21072   else {
21073     // Not an assignment.
21074     return;
21075   }
21076 
21077   Diag(Loc, diagnostic) << E->getSourceRange();
21078 
21079   SourceLocation Open = E->getBeginLoc();
21080   SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
21081   Diag(Loc, diag::note_condition_assign_silence)
21082         << FixItHint::CreateInsertion(Open, "(")
21083         << FixItHint::CreateInsertion(Close, ")");
21084 
21085   if (IsOrAssign)
21086     Diag(Loc, diag::note_condition_or_assign_to_comparison)
21087       << FixItHint::CreateReplacement(Loc, "!=");
21088   else
21089     Diag(Loc, diag::note_condition_assign_to_comparison)
21090       << FixItHint::CreateReplacement(Loc, "==");
21091 }
21092 
21093 /// Redundant parentheses over an equality comparison can indicate
21094 /// that the user intended an assignment used as condition.
DiagnoseEqualityWithExtraParens(ParenExpr * ParenE)21095 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
21096   // Don't warn if the parens came from a macro.
21097   SourceLocation parenLoc = ParenE->getBeginLoc();
21098   if (parenLoc.isInvalid() || parenLoc.isMacroID())
21099     return;
21100   // Don't warn for dependent expressions.
21101   if (ParenE->isTypeDependent())
21102     return;
21103 
21104   Expr *E = ParenE->IgnoreParens();
21105 
21106   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
21107     if (opE->getOpcode() == BO_EQ &&
21108         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
21109                                                            == Expr::MLV_Valid) {
21110       SourceLocation Loc = opE->getOperatorLoc();
21111 
21112       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
21113       SourceRange ParenERange = ParenE->getSourceRange();
21114       Diag(Loc, diag::note_equality_comparison_silence)
21115         << FixItHint::CreateRemoval(ParenERange.getBegin())
21116         << FixItHint::CreateRemoval(ParenERange.getEnd());
21117       Diag(Loc, diag::note_equality_comparison_to_assign)
21118         << FixItHint::CreateReplacement(Loc, "=");
21119     }
21120 }
21121 
CheckBooleanCondition(SourceLocation Loc,Expr * E,bool IsConstexpr)21122 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
21123                                        bool IsConstexpr) {
21124   DiagnoseAssignmentAsCondition(E);
21125   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
21126     DiagnoseEqualityWithExtraParens(parenE);
21127 
21128   ExprResult result = CheckPlaceholderExpr(E);
21129   if (result.isInvalid()) return ExprError();
21130   E = result.get();
21131 
21132   if (!E->isTypeDependent()) {
21133     if (getLangOpts().CPlusPlus)
21134       return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
21135 
21136     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
21137     if (ERes.isInvalid())
21138       return ExprError();
21139     E = ERes.get();
21140 
21141     QualType T = E->getType();
21142     if (!T->isScalarType()) { // C99 6.8.4.1p1
21143       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
21144         << T << E->getSourceRange();
21145       return ExprError();
21146     }
21147     CheckBoolLikeConversion(E, Loc);
21148   }
21149 
21150   return E;
21151 }
21152 
ActOnCondition(Scope * S,SourceLocation Loc,Expr * SubExpr,ConditionKind CK,bool MissingOK)21153 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
21154                                            Expr *SubExpr, ConditionKind CK,
21155                                            bool MissingOK) {
21156   // MissingOK indicates whether having no condition expression is valid
21157   // (for loop) or invalid (e.g. while loop).
21158   if (!SubExpr)
21159     return MissingOK ? ConditionResult() : ConditionError();
21160 
21161   ExprResult Cond;
21162   switch (CK) {
21163   case ConditionKind::Boolean:
21164     Cond = CheckBooleanCondition(Loc, SubExpr);
21165     break;
21166 
21167   case ConditionKind::ConstexprIf:
21168     Cond = CheckBooleanCondition(Loc, SubExpr, true);
21169     break;
21170 
21171   case ConditionKind::Switch:
21172     Cond = CheckSwitchCondition(Loc, SubExpr);
21173     break;
21174   }
21175   if (Cond.isInvalid()) {
21176     Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
21177                               {SubExpr}, PreferredConditionType(CK));
21178     if (!Cond.get())
21179       return ConditionError();
21180   }
21181   // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
21182   FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
21183   if (!FullExpr.get())
21184     return ConditionError();
21185 
21186   return ConditionResult(*this, nullptr, FullExpr,
21187                          CK == ConditionKind::ConstexprIf);
21188 }
21189 
21190 namespace {
21191   /// A visitor for rebuilding a call to an __unknown_any expression
21192   /// to have an appropriate type.
21193   struct RebuildUnknownAnyFunction
21194     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
21195 
21196     Sema &S;
21197 
RebuildUnknownAnyFunction__anon5d4ff8fc3411::RebuildUnknownAnyFunction21198     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
21199 
VisitStmt__anon5d4ff8fc3411::RebuildUnknownAnyFunction21200     ExprResult VisitStmt(Stmt *S) {
21201       llvm_unreachable("unexpected statement!");
21202     }
21203 
VisitExpr__anon5d4ff8fc3411::RebuildUnknownAnyFunction21204     ExprResult VisitExpr(Expr *E) {
21205       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
21206         << E->getSourceRange();
21207       return ExprError();
21208     }
21209 
21210     /// Rebuild an expression which simply semantically wraps another
21211     /// expression which it shares the type and value kind of.
rebuildSugarExpr__anon5d4ff8fc3411::RebuildUnknownAnyFunction21212     template <class T> ExprResult rebuildSugarExpr(T *E) {
21213       ExprResult SubResult = Visit(E->getSubExpr());
21214       if (SubResult.isInvalid()) return ExprError();
21215 
21216       Expr *SubExpr = SubResult.get();
21217       E->setSubExpr(SubExpr);
21218       E->setType(SubExpr->getType());
21219       E->setValueKind(SubExpr->getValueKind());
21220       assert(E->getObjectKind() == OK_Ordinary);
21221       return E;
21222     }
21223 
VisitParenExpr__anon5d4ff8fc3411::RebuildUnknownAnyFunction21224     ExprResult VisitParenExpr(ParenExpr *E) {
21225       return rebuildSugarExpr(E);
21226     }
21227 
VisitUnaryExtension__anon5d4ff8fc3411::RebuildUnknownAnyFunction21228     ExprResult VisitUnaryExtension(UnaryOperator *E) {
21229       return rebuildSugarExpr(E);
21230     }
21231 
VisitUnaryAddrOf__anon5d4ff8fc3411::RebuildUnknownAnyFunction21232     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
21233       ExprResult SubResult = Visit(E->getSubExpr());
21234       if (SubResult.isInvalid()) return ExprError();
21235 
21236       Expr *SubExpr = SubResult.get();
21237       E->setSubExpr(SubExpr);
21238       E->setType(S.Context.getPointerType(SubExpr->getType()));
21239       assert(E->isPRValue());
21240       assert(E->getObjectKind() == OK_Ordinary);
21241       return E;
21242     }
21243 
resolveDecl__anon5d4ff8fc3411::RebuildUnknownAnyFunction21244     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
21245       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
21246 
21247       E->setType(VD->getType());
21248 
21249       assert(E->isPRValue());
21250       if (S.getLangOpts().CPlusPlus &&
21251           !(isa<CXXMethodDecl>(VD) &&
21252             cast<CXXMethodDecl>(VD)->isInstance()))
21253         E->setValueKind(VK_LValue);
21254 
21255       return E;
21256     }
21257 
VisitMemberExpr__anon5d4ff8fc3411::RebuildUnknownAnyFunction21258     ExprResult VisitMemberExpr(MemberExpr *E) {
21259       return resolveDecl(E, E->getMemberDecl());
21260     }
21261 
VisitDeclRefExpr__anon5d4ff8fc3411::RebuildUnknownAnyFunction21262     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
21263       return resolveDecl(E, E->getDecl());
21264     }
21265   };
21266 }
21267 
21268 /// Given a function expression of unknown-any type, try to rebuild it
21269 /// to have a function type.
rebuildUnknownAnyFunction(Sema & S,Expr * FunctionExpr)21270 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
21271   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
21272   if (Result.isInvalid()) return ExprError();
21273   return S.DefaultFunctionArrayConversion(Result.get());
21274 }
21275 
21276 namespace {
21277   /// A visitor for rebuilding an expression of type __unknown_anytype
21278   /// into one which resolves the type directly on the referring
21279   /// expression.  Strict preservation of the original source
21280   /// structure is not a goal.
21281   struct RebuildUnknownAnyExpr
21282     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
21283 
21284     Sema &S;
21285 
21286     /// The current destination type.
21287     QualType DestType;
21288 
RebuildUnknownAnyExpr__anon5d4ff8fc3511::RebuildUnknownAnyExpr21289     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
21290       : S(S), DestType(CastType) {}
21291 
VisitStmt__anon5d4ff8fc3511::RebuildUnknownAnyExpr21292     ExprResult VisitStmt(Stmt *S) {
21293       llvm_unreachable("unexpected statement!");
21294     }
21295 
VisitExpr__anon5d4ff8fc3511::RebuildUnknownAnyExpr21296     ExprResult VisitExpr(Expr *E) {
21297       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
21298         << E->getSourceRange();
21299       return ExprError();
21300     }
21301 
21302     ExprResult VisitCallExpr(CallExpr *E);
21303     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
21304 
21305     /// Rebuild an expression which simply semantically wraps another
21306     /// expression which it shares the type and value kind of.
rebuildSugarExpr__anon5d4ff8fc3511::RebuildUnknownAnyExpr21307     template <class T> ExprResult rebuildSugarExpr(T *E) {
21308       ExprResult SubResult = Visit(E->getSubExpr());
21309       if (SubResult.isInvalid()) return ExprError();
21310       Expr *SubExpr = SubResult.get();
21311       E->setSubExpr(SubExpr);
21312       E->setType(SubExpr->getType());
21313       E->setValueKind(SubExpr->getValueKind());
21314       assert(E->getObjectKind() == OK_Ordinary);
21315       return E;
21316     }
21317 
VisitParenExpr__anon5d4ff8fc3511::RebuildUnknownAnyExpr21318     ExprResult VisitParenExpr(ParenExpr *E) {
21319       return rebuildSugarExpr(E);
21320     }
21321 
VisitUnaryExtension__anon5d4ff8fc3511::RebuildUnknownAnyExpr21322     ExprResult VisitUnaryExtension(UnaryOperator *E) {
21323       return rebuildSugarExpr(E);
21324     }
21325 
VisitUnaryAddrOf__anon5d4ff8fc3511::RebuildUnknownAnyExpr21326     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
21327       const PointerType *Ptr = DestType->getAs<PointerType>();
21328       if (!Ptr) {
21329         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
21330           << E->getSourceRange();
21331         return ExprError();
21332       }
21333 
21334       if (isa<CallExpr>(E->getSubExpr())) {
21335         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
21336           << E->getSourceRange();
21337         return ExprError();
21338       }
21339 
21340       assert(E->isPRValue());
21341       assert(E->getObjectKind() == OK_Ordinary);
21342       E->setType(DestType);
21343 
21344       // Build the sub-expression as if it were an object of the pointee type.
21345       DestType = Ptr->getPointeeType();
21346       ExprResult SubResult = Visit(E->getSubExpr());
21347       if (SubResult.isInvalid()) return ExprError();
21348       E->setSubExpr(SubResult.get());
21349       return E;
21350     }
21351 
21352     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
21353 
21354     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
21355 
VisitMemberExpr__anon5d4ff8fc3511::RebuildUnknownAnyExpr21356     ExprResult VisitMemberExpr(MemberExpr *E) {
21357       return resolveDecl(E, E->getMemberDecl());
21358     }
21359 
VisitDeclRefExpr__anon5d4ff8fc3511::RebuildUnknownAnyExpr21360     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
21361       return resolveDecl(E, E->getDecl());
21362     }
21363   };
21364 }
21365 
21366 /// Rebuilds a call expression which yielded __unknown_anytype.
VisitCallExpr(CallExpr * E)21367 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
21368   Expr *CalleeExpr = E->getCallee();
21369 
21370   enum FnKind {
21371     FK_MemberFunction,
21372     FK_FunctionPointer,
21373     FK_BlockPointer
21374   };
21375 
21376   FnKind Kind;
21377   QualType CalleeType = CalleeExpr->getType();
21378   if (CalleeType == S.Context.BoundMemberTy) {
21379     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
21380     Kind = FK_MemberFunction;
21381     CalleeType = Expr::findBoundMemberType(CalleeExpr);
21382   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
21383     CalleeType = Ptr->getPointeeType();
21384     Kind = FK_FunctionPointer;
21385   } else {
21386     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
21387     Kind = FK_BlockPointer;
21388   }
21389   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
21390 
21391   // Verify that this is a legal result type of a function.
21392   if (DestType->isArrayType() || DestType->isFunctionType()) {
21393     unsigned diagID = diag::err_func_returning_array_function;
21394     if (Kind == FK_BlockPointer)
21395       diagID = diag::err_block_returning_array_function;
21396 
21397     S.Diag(E->getExprLoc(), diagID)
21398       << DestType->isFunctionType() << DestType;
21399     return ExprError();
21400   }
21401 
21402   // Otherwise, go ahead and set DestType as the call's result.
21403   E->setType(DestType.getNonLValueExprType(S.Context));
21404   E->setValueKind(Expr::getValueKindForType(DestType));
21405   assert(E->getObjectKind() == OK_Ordinary);
21406 
21407   // Rebuild the function type, replacing the result type with DestType.
21408   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
21409   if (Proto) {
21410     // __unknown_anytype(...) is a special case used by the debugger when
21411     // it has no idea what a function's signature is.
21412     //
21413     // We want to build this call essentially under the K&R
21414     // unprototyped rules, but making a FunctionNoProtoType in C++
21415     // would foul up all sorts of assumptions.  However, we cannot
21416     // simply pass all arguments as variadic arguments, nor can we
21417     // portably just call the function under a non-variadic type; see
21418     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
21419     // However, it turns out that in practice it is generally safe to
21420     // call a function declared as "A foo(B,C,D);" under the prototype
21421     // "A foo(B,C,D,...);".  The only known exception is with the
21422     // Windows ABI, where any variadic function is implicitly cdecl
21423     // regardless of its normal CC.  Therefore we change the parameter
21424     // types to match the types of the arguments.
21425     //
21426     // This is a hack, but it is far superior to moving the
21427     // corresponding target-specific code from IR-gen to Sema/AST.
21428 
21429     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
21430     SmallVector<QualType, 8> ArgTypes;
21431     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
21432       ArgTypes.reserve(E->getNumArgs());
21433       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
21434         ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i)));
21435       }
21436       ParamTypes = ArgTypes;
21437     }
21438     DestType = S.Context.getFunctionType(DestType, ParamTypes,
21439                                          Proto->getExtProtoInfo());
21440   } else {
21441     DestType = S.Context.getFunctionNoProtoType(DestType,
21442                                                 FnType->getExtInfo());
21443   }
21444 
21445   // Rebuild the appropriate pointer-to-function type.
21446   switch (Kind) {
21447   case FK_MemberFunction:
21448     // Nothing to do.
21449     break;
21450 
21451   case FK_FunctionPointer:
21452     DestType = S.Context.getPointerType(DestType);
21453     break;
21454 
21455   case FK_BlockPointer:
21456     DestType = S.Context.getBlockPointerType(DestType);
21457     break;
21458   }
21459 
21460   // Finally, we can recurse.
21461   ExprResult CalleeResult = Visit(CalleeExpr);
21462   if (!CalleeResult.isUsable()) return ExprError();
21463   E->setCallee(CalleeResult.get());
21464 
21465   // Bind a temporary if necessary.
21466   return S.MaybeBindToTemporary(E);
21467 }
21468 
VisitObjCMessageExpr(ObjCMessageExpr * E)21469 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
21470   // Verify that this is a legal result type of a call.
21471   if (DestType->isArrayType() || DestType->isFunctionType()) {
21472     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
21473       << DestType->isFunctionType() << DestType;
21474     return ExprError();
21475   }
21476 
21477   // Rewrite the method result type if available.
21478   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
21479     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
21480     Method->setReturnType(DestType);
21481   }
21482 
21483   // Change the type of the message.
21484   E->setType(DestType.getNonReferenceType());
21485   E->setValueKind(Expr::getValueKindForType(DestType));
21486 
21487   return S.MaybeBindToTemporary(E);
21488 }
21489 
VisitImplicitCastExpr(ImplicitCastExpr * E)21490 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
21491   // The only case we should ever see here is a function-to-pointer decay.
21492   if (E->getCastKind() == CK_FunctionToPointerDecay) {
21493     assert(E->isPRValue());
21494     assert(E->getObjectKind() == OK_Ordinary);
21495 
21496     E->setType(DestType);
21497 
21498     // Rebuild the sub-expression as the pointee (function) type.
21499     DestType = DestType->castAs<PointerType>()->getPointeeType();
21500 
21501     ExprResult Result = Visit(E->getSubExpr());
21502     if (!Result.isUsable()) return ExprError();
21503 
21504     E->setSubExpr(Result.get());
21505     return E;
21506   } else if (E->getCastKind() == CK_LValueToRValue) {
21507     assert(E->isPRValue());
21508     assert(E->getObjectKind() == OK_Ordinary);
21509 
21510     assert(isa<BlockPointerType>(E->getType()));
21511 
21512     E->setType(DestType);
21513 
21514     // The sub-expression has to be a lvalue reference, so rebuild it as such.
21515     DestType = S.Context.getLValueReferenceType(DestType);
21516 
21517     ExprResult Result = Visit(E->getSubExpr());
21518     if (!Result.isUsable()) return ExprError();
21519 
21520     E->setSubExpr(Result.get());
21521     return E;
21522   } else {
21523     llvm_unreachable("Unhandled cast type!");
21524   }
21525 }
21526 
resolveDecl(Expr * E,ValueDecl * VD)21527 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
21528   ExprValueKind ValueKind = VK_LValue;
21529   QualType Type = DestType;
21530 
21531   // We know how to make this work for certain kinds of decls:
21532 
21533   //  - functions
21534   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
21535     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
21536       DestType = Ptr->getPointeeType();
21537       ExprResult Result = resolveDecl(E, VD);
21538       if (Result.isInvalid()) return ExprError();
21539       return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay,
21540                                  VK_PRValue);
21541     }
21542 
21543     if (!Type->isFunctionType()) {
21544       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
21545         << VD << E->getSourceRange();
21546       return ExprError();
21547     }
21548     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
21549       // We must match the FunctionDecl's type to the hack introduced in
21550       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
21551       // type. See the lengthy commentary in that routine.
21552       QualType FDT = FD->getType();
21553       const FunctionType *FnType = FDT->castAs<FunctionType>();
21554       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
21555       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
21556       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
21557         SourceLocation Loc = FD->getLocation();
21558         FunctionDecl *NewFD = FunctionDecl::Create(
21559             S.Context, FD->getDeclContext(), Loc, Loc,
21560             FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
21561             SC_None, S.getCurFPFeatures().isFPConstrained(),
21562             false /*isInlineSpecified*/, FD->hasPrototype(),
21563             /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
21564 
21565         if (FD->getQualifier())
21566           NewFD->setQualifierInfo(FD->getQualifierLoc());
21567 
21568         SmallVector<ParmVarDecl*, 16> Params;
21569         for (const auto &AI : FT->param_types()) {
21570           ParmVarDecl *Param =
21571             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
21572           Param->setScopeInfo(0, Params.size());
21573           Params.push_back(Param);
21574         }
21575         NewFD->setParams(Params);
21576         DRE->setDecl(NewFD);
21577         VD = DRE->getDecl();
21578       }
21579     }
21580 
21581     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
21582       if (MD->isInstance()) {
21583         ValueKind = VK_PRValue;
21584         Type = S.Context.BoundMemberTy;
21585       }
21586 
21587     // Function references aren't l-values in C.
21588     if (!S.getLangOpts().CPlusPlus)
21589       ValueKind = VK_PRValue;
21590 
21591   //  - variables
21592   } else if (isa<VarDecl>(VD)) {
21593     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
21594       Type = RefTy->getPointeeType();
21595     } else if (Type->isFunctionType()) {
21596       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
21597         << VD << E->getSourceRange();
21598       return ExprError();
21599     }
21600 
21601   //  - nothing else
21602   } else {
21603     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
21604       << VD << E->getSourceRange();
21605     return ExprError();
21606   }
21607 
21608   // Modifying the declaration like this is friendly to IR-gen but
21609   // also really dangerous.
21610   VD->setType(DestType);
21611   E->setType(Type);
21612   E->setValueKind(ValueKind);
21613   return E;
21614 }
21615 
21616 /// Check a cast of an unknown-any type.  We intentionally only
21617 /// trigger this for C-style casts.
checkUnknownAnyCast(SourceRange TypeRange,QualType CastType,Expr * CastExpr,CastKind & CastKind,ExprValueKind & VK,CXXCastPath & Path)21618 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
21619                                      Expr *CastExpr, CastKind &CastKind,
21620                                      ExprValueKind &VK, CXXCastPath &Path) {
21621   // The type we're casting to must be either void or complete.
21622   if (!CastType->isVoidType() &&
21623       RequireCompleteType(TypeRange.getBegin(), CastType,
21624                           diag::err_typecheck_cast_to_incomplete))
21625     return ExprError();
21626 
21627   // Rewrite the casted expression from scratch.
21628   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
21629   if (!result.isUsable()) return ExprError();
21630 
21631   CastExpr = result.get();
21632   VK = CastExpr->getValueKind();
21633   CastKind = CK_NoOp;
21634 
21635   return CastExpr;
21636 }
21637 
forceUnknownAnyToType(Expr * E,QualType ToType)21638 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
21639   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
21640 }
21641 
checkUnknownAnyArg(SourceLocation callLoc,Expr * arg,QualType & paramType)21642 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
21643                                     Expr *arg, QualType &paramType) {
21644   // If the syntactic form of the argument is not an explicit cast of
21645   // any sort, just do default argument promotion.
21646   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
21647   if (!castArg) {
21648     ExprResult result = DefaultArgumentPromotion(arg);
21649     if (result.isInvalid()) return ExprError();
21650     paramType = result.get()->getType();
21651     return result;
21652   }
21653 
21654   // Otherwise, use the type that was written in the explicit cast.
21655   assert(!arg->hasPlaceholderType());
21656   paramType = castArg->getTypeAsWritten();
21657 
21658   // Copy-initialize a parameter of that type.
21659   InitializedEntity entity =
21660     InitializedEntity::InitializeParameter(Context, paramType,
21661                                            /*consumed*/ false);
21662   return PerformCopyInitialization(entity, callLoc, arg);
21663 }
21664 
diagnoseUnknownAnyExpr(Sema & S,Expr * E)21665 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
21666   Expr *orig = E;
21667   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
21668   while (true) {
21669     E = E->IgnoreParenImpCasts();
21670     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
21671       E = call->getCallee();
21672       diagID = diag::err_uncasted_call_of_unknown_any;
21673     } else {
21674       break;
21675     }
21676   }
21677 
21678   SourceLocation loc;
21679   NamedDecl *d;
21680   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
21681     loc = ref->getLocation();
21682     d = ref->getDecl();
21683   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
21684     loc = mem->getMemberLoc();
21685     d = mem->getMemberDecl();
21686   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
21687     diagID = diag::err_uncasted_call_of_unknown_any;
21688     loc = msg->getSelectorStartLoc();
21689     d = msg->getMethodDecl();
21690     if (!d) {
21691       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
21692         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
21693         << orig->getSourceRange();
21694       return ExprError();
21695     }
21696   } else {
21697     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
21698       << E->getSourceRange();
21699     return ExprError();
21700   }
21701 
21702   S.Diag(loc, diagID) << d << orig->getSourceRange();
21703 
21704   // Never recoverable.
21705   return ExprError();
21706 }
21707 
21708 /// Check for operands with placeholder types and complain if found.
21709 /// Returns ExprError() if there was an error and no recovery was possible.
CheckPlaceholderExpr(Expr * E)21710 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
21711   if (!Context.isDependenceAllowed()) {
21712     // C cannot handle TypoExpr nodes on either side of a binop because it
21713     // doesn't handle dependent types properly, so make sure any TypoExprs have
21714     // been dealt with before checking the operands.
21715     ExprResult Result = CorrectDelayedTyposInExpr(E);
21716     if (!Result.isUsable()) return ExprError();
21717     E = Result.get();
21718   }
21719 
21720   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
21721   if (!placeholderType) return E;
21722 
21723   switch (placeholderType->getKind()) {
21724 
21725   // Overloaded expressions.
21726   case BuiltinType::Overload: {
21727     // Try to resolve a single function template specialization.
21728     // This is obligatory.
21729     ExprResult Result = E;
21730     if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
21731       return Result;
21732 
21733     // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
21734     // leaves Result unchanged on failure.
21735     Result = E;
21736     if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
21737       return Result;
21738 
21739     // If that failed, try to recover with a call.
21740     tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
21741                          /*complain*/ true);
21742     return Result;
21743   }
21744 
21745   // Bound member functions.
21746   case BuiltinType::BoundMember: {
21747     ExprResult result = E;
21748     const Expr *BME = E->IgnoreParens();
21749     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
21750     // Try to give a nicer diagnostic if it is a bound member that we recognize.
21751     if (isa<CXXPseudoDestructorExpr>(BME)) {
21752       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
21753     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
21754       if (ME->getMemberNameInfo().getName().getNameKind() ==
21755           DeclarationName::CXXDestructorName)
21756         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
21757     }
21758     tryToRecoverWithCall(result, PD,
21759                          /*complain*/ true);
21760     return result;
21761   }
21762 
21763   // ARC unbridged casts.
21764   case BuiltinType::ARCUnbridgedCast: {
21765     Expr *realCast = stripARCUnbridgedCast(E);
21766     diagnoseARCUnbridgedCast(realCast);
21767     return realCast;
21768   }
21769 
21770   // Expressions of unknown type.
21771   case BuiltinType::UnknownAny:
21772     return diagnoseUnknownAnyExpr(*this, E);
21773 
21774   // Pseudo-objects.
21775   case BuiltinType::PseudoObject:
21776     return checkPseudoObjectRValue(E);
21777 
21778   case BuiltinType::BuiltinFn: {
21779     // Accept __noop without parens by implicitly converting it to a call expr.
21780     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
21781     if (DRE) {
21782       auto *FD = cast<FunctionDecl>(DRE->getDecl());
21783       unsigned BuiltinID = FD->getBuiltinID();
21784       if (BuiltinID == Builtin::BI__noop) {
21785         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
21786                               CK_BuiltinFnToFnPtr)
21787                 .get();
21788         return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
21789                                 VK_PRValue, SourceLocation(),
21790                                 FPOptionsOverride());
21791       }
21792 
21793       if (Context.BuiltinInfo.isInStdNamespace(BuiltinID)) {
21794         // Any use of these other than a direct call is ill-formed as of C++20,
21795         // because they are not addressable functions. In earlier language
21796         // modes, warn and force an instantiation of the real body.
21797         Diag(E->getBeginLoc(),
21798              getLangOpts().CPlusPlus20
21799                  ? diag::err_use_of_unaddressable_function
21800                  : diag::warn_cxx20_compat_use_of_unaddressable_function);
21801         if (FD->isImplicitlyInstantiable()) {
21802           // Require a definition here because a normal attempt at
21803           // instantiation for a builtin will be ignored, and we won't try
21804           // again later. We assume that the definition of the template
21805           // precedes this use.
21806           InstantiateFunctionDefinition(E->getBeginLoc(), FD,
21807                                         /*Recursive=*/false,
21808                                         /*DefinitionRequired=*/true,
21809                                         /*AtEndOfTU=*/false);
21810         }
21811         // Produce a properly-typed reference to the function.
21812         CXXScopeSpec SS;
21813         SS.Adopt(DRE->getQualifierLoc());
21814         TemplateArgumentListInfo TemplateArgs;
21815         DRE->copyTemplateArgumentsInto(TemplateArgs);
21816         return BuildDeclRefExpr(
21817             FD, FD->getType(), VK_LValue, DRE->getNameInfo(),
21818             DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(),
21819             DRE->getTemplateKeywordLoc(),
21820             DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr);
21821       }
21822     }
21823 
21824     Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
21825     return ExprError();
21826   }
21827 
21828   case BuiltinType::IncompleteMatrixIdx:
21829     Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
21830              ->getRowIdx()
21831              ->getBeginLoc(),
21832          diag::err_matrix_incomplete_index);
21833     return ExprError();
21834 
21835   // Expressions of unknown type.
21836   case BuiltinType::OMPArraySection:
21837     Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
21838     return ExprError();
21839 
21840   // Expressions of unknown type.
21841   case BuiltinType::OMPArrayShaping:
21842     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
21843 
21844   case BuiltinType::OMPIterator:
21845     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
21846 
21847   // Everything else should be impossible.
21848 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
21849   case BuiltinType::Id:
21850 #include "clang/Basic/OpenCLImageTypes.def"
21851 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
21852   case BuiltinType::Id:
21853 #include "clang/Basic/OpenCLExtensionTypes.def"
21854 #define SVE_TYPE(Name, Id, SingletonId) \
21855   case BuiltinType::Id:
21856 #include "clang/Basic/AArch64SVEACLETypes.def"
21857 #define PPC_VECTOR_TYPE(Name, Id, Size) \
21858   case BuiltinType::Id:
21859 #include "clang/Basic/PPCTypes.def"
21860 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21861 #include "clang/Basic/RISCVVTypes.def"
21862 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21863 #include "clang/Basic/WebAssemblyReferenceTypes.def"
21864 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
21865 #define PLACEHOLDER_TYPE(Id, SingletonId)
21866 #include "clang/AST/BuiltinTypes.def"
21867     break;
21868   }
21869 
21870   llvm_unreachable("invalid placeholder type!");
21871 }
21872 
CheckCaseExpression(Expr * E)21873 bool Sema::CheckCaseExpression(Expr *E) {
21874   if (E->isTypeDependent())
21875     return true;
21876   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
21877     return E->getType()->isIntegralOrEnumerationType();
21878   return false;
21879 }
21880 
21881 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
21882 ExprResult
ActOnObjCBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)21883 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
21884   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
21885          "Unknown Objective-C Boolean value!");
21886   QualType BoolT = Context.ObjCBuiltinBoolTy;
21887   if (!Context.getBOOLDecl()) {
21888     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
21889                         Sema::LookupOrdinaryName);
21890     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
21891       NamedDecl *ND = Result.getFoundDecl();
21892       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
21893         Context.setBOOLDecl(TD);
21894     }
21895   }
21896   if (Context.getBOOLDecl())
21897     BoolT = Context.getBOOLType();
21898   return new (Context)
21899       ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
21900 }
21901 
ActOnObjCAvailabilityCheckExpr(llvm::ArrayRef<AvailabilitySpec> AvailSpecs,SourceLocation AtLoc,SourceLocation RParen)21902 ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
21903     llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
21904     SourceLocation RParen) {
21905   auto FindSpecVersion =
21906       [&](StringRef Platform) -> std::optional<VersionTuple> {
21907     auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
21908       return Spec.getPlatform() == Platform;
21909     });
21910     // Transcribe the "ios" availability check to "maccatalyst" when compiling
21911     // for "maccatalyst" if "maccatalyst" is not specified.
21912     if (Spec == AvailSpecs.end() && Platform == "maccatalyst") {
21913       Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
21914         return Spec.getPlatform() == "ios";
21915       });
21916     }
21917     if (Spec == AvailSpecs.end())
21918       return std::nullopt;
21919     return Spec->getVersion();
21920   };
21921 
21922   VersionTuple Version;
21923   if (auto MaybeVersion =
21924           FindSpecVersion(Context.getTargetInfo().getPlatformName()))
21925     Version = *MaybeVersion;
21926 
21927   // The use of `@available` in the enclosing context should be analyzed to
21928   // warn when it's used inappropriately (i.e. not if(@available)).
21929   if (FunctionScopeInfo *Context = getCurFunctionAvailabilityContext())
21930     Context->HasPotentialAvailabilityViolations = true;
21931 
21932   return new (Context)
21933       ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
21934 }
21935 
CreateRecoveryExpr(SourceLocation Begin,SourceLocation End,ArrayRef<Expr * > SubExprs,QualType T)21936 ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
21937                                     ArrayRef<Expr *> SubExprs, QualType T) {
21938   if (!Context.getLangOpts().RecoveryAST)
21939     return ExprError();
21940 
21941   if (isSFINAEContext())
21942     return ExprError();
21943 
21944   if (T.isNull() || T->isUndeducedType() ||
21945       !Context.getLangOpts().RecoveryASTType)
21946     // We don't know the concrete type, fallback to dependent type.
21947     T = Context.DependentTy;
21948 
21949   return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
21950 }
21951