1 ///////////////////////////////////////////////////////////////////////
2 // File: colpartitiongrid.cpp
3 // Description: Class collecting code that acts on a BBGrid of ColPartitions.
4 // Author: Ray Smith
5 //
6 // (C) Copyright 2009, Google Inc.
7 // Licensed under the Apache License, Version 2.0 (the "License");
8 // you may not use this file except in compliance with the License.
9 // You may obtain a copy of the License at
10 // http://www.apache.org/licenses/LICENSE-2.0
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS,
13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 // See the License for the specific language governing permissions and
15 // limitations under the License.
16 //
17 ///////////////////////////////////////////////////////////////////////
18
19 #ifdef HAVE_CONFIG_H
20 # include "config_auto.h"
21 #endif
22
23 #include "colpartitiongrid.h"
24 #include "colpartitionset.h"
25 #include "imagefind.h"
26
27 #include <algorithm>
28 #include <utility>
29
30 namespace tesseract {
31
32 // Max pad factor used to search the neighbourhood of a partition to smooth
33 // partition types.
34 const int kMaxPadFactor = 6;
35 // Max multiple of size (min(height, width)) for the distance of the nearest
36 // neighbour for the change of type to be used.
37 const int kMaxNeighbourDistFactor = 4;
38 // Maximum number of lines in a credible figure caption.
39 const int kMaxCaptionLines = 7;
40 // Min ratio between biggest and smallest gap to bound a caption.
41 const double kMinCaptionGapRatio = 2.0;
42 // Min ratio between biggest gap and mean line height to bound a caption.
43 const double kMinCaptionGapHeightRatio = 0.5;
44 // Min fraction of ColPartition height to be overlapping for margin purposes.
45 const double kMarginOverlapFraction = 0.25;
46 // Size ratio required to consider an unmerged overlapping partition to be big.
47 const double kBigPartSizeRatio = 1.75;
48 // Fraction of gridsize to allow arbitrary overlap between partitions.
49 const double kTinyEnoughTextlineOverlapFraction = 0.25;
50 // Max vertical distance of neighbouring ColPartition as a multiple of
51 // partition height for it to be a partner.
52 // TODO(rays) fix the problem that causes a larger number to not work well.
53 // The value needs to be larger as sparse text blocks in a page that gets
54 // marked as single column will not find adjacent lines as partners, and
55 // will merge horizontally distant, but aligned lines. See rep.4B3 p5.
56 // The value needs to be small because double-spaced legal docs written
57 // in a single column, but justified courier have widely spaced lines
58 // that need to get merged before they partner-up with the lines above
59 // and below. See legal.3B5 p13/17. Neither of these should depend on
60 // the value of kMaxPartitionSpacing to be successful, and ColPartition
61 // merging needs attention to fix this problem.
62 const double kMaxPartitionSpacing = 1.75;
63 // Margin by which text has to beat image or vice-versa to make a firm
64 // decision in GridSmoothNeighbour.
65 const int kSmoothDecisionMargin = 4;
66
ColPartitionGrid(int gridsize,const ICOORD & bleft,const ICOORD & tright)67 ColPartitionGrid::ColPartitionGrid(int gridsize, const ICOORD &bleft,
68 const ICOORD &tright)
69 : BBGrid<ColPartition, ColPartition_CLIST, ColPartition_C_IT>(
70 gridsize, bleft, tright) {}
71
72 // Handles a click event in a display window.
HandleClick(int x,int y)73 void ColPartitionGrid::HandleClick(int x, int y) {
74 BBGrid<ColPartition, ColPartition_CLIST, ColPartition_C_IT>::HandleClick(x,
75 y);
76 // Run a radial search for partitions that overlap.
77 ColPartitionGridSearch radsearch(this);
78 radsearch.SetUniqueMode(true);
79 radsearch.StartRadSearch(x, y, 1);
80 ColPartition *neighbour;
81 FCOORD click(x, y);
82 while ((neighbour = radsearch.NextRadSearch()) != nullptr) {
83 const TBOX &nbox = neighbour->bounding_box();
84 if (nbox.contains(click)) {
85 tprintf("Block box:");
86 neighbour->bounding_box().print();
87 neighbour->Print();
88 }
89 }
90 }
91
92 // Merges ColPartitions in the grid that look like they belong in the same
93 // textline.
94 // For all partitions in the grid, calls the box_cb permanent callback
95 // to compute the search box, searches the box, and if a candidate is found,
96 // calls the confirm_cb to check any more rules. If the confirm_cb returns
97 // true, then the partitions are merged.
98 // Both callbacks are deleted before returning.
Merges(const std::function<bool (ColPartition *,TBOX *)> & box_cb,const std::function<bool (const ColPartition *,const ColPartition *)> & confirm_cb)99 void ColPartitionGrid::Merges(
100 const std::function<bool(ColPartition *, TBOX *)> &box_cb,
101 const std::function<bool(const ColPartition *, const ColPartition *)>
102 &confirm_cb) {
103 // Iterate the ColPartitions in the grid.
104 ColPartitionGridSearch gsearch(this);
105 gsearch.StartFullSearch();
106 ColPartition *part;
107 while ((part = gsearch.NextFullSearch()) != nullptr) {
108 if (MergePart(box_cb, confirm_cb, part)) {
109 gsearch.RepositionIterator();
110 }
111 }
112 }
113
114 // For the given partition, calls the box_cb permanent callback
115 // to compute the search box, searches the box, and if a candidate is found,
116 // calls the confirm_cb to check any more rules. If the confirm_cb returns
117 // true, then the partitions are merged.
118 // Returns true if the partition is consumed by one or more merges.
MergePart(const std::function<bool (ColPartition *,TBOX *)> & box_cb,const std::function<bool (const ColPartition *,const ColPartition *)> & confirm_cb,ColPartition * part)119 bool ColPartitionGrid::MergePart(
120 const std::function<bool(ColPartition *, TBOX *)> &box_cb,
121 const std::function<bool(const ColPartition *, const ColPartition *)>
122 &confirm_cb,
123 ColPartition *part) {
124 if (part->IsUnMergeableType()) {
125 return false;
126 }
127 bool any_done = false;
128 // Repeatedly merge part while we find a best merge candidate that works.
129 bool merge_done = false;
130 do {
131 merge_done = false;
132 TBOX box = part->bounding_box();
133 bool debug = AlignedBlob::WithinTestRegion(2, box.left(), box.bottom());
134 if (debug) {
135 tprintf("Merge candidate:");
136 box.print();
137 }
138 // Set up a rectangle search bounded by the part.
139 if (!box_cb(part, &box)) {
140 continue;
141 }
142 // Create a list of merge candidates.
143 ColPartition_CLIST merge_candidates;
144 FindMergeCandidates(part, box, debug, &merge_candidates);
145 // Find the best merge candidate based on minimal overlap increase.
146 int overlap_increase;
147 ColPartition *neighbour = BestMergeCandidate(part, &merge_candidates, debug,
148 confirm_cb, &overlap_increase);
149 if (neighbour != nullptr && overlap_increase <= 0) {
150 if (debug) {
151 tprintf("Merging:hoverlap=%d, voverlap=%d, OLI=%d\n",
152 part->HCoreOverlap(*neighbour), part->VCoreOverlap(*neighbour),
153 overlap_increase);
154 }
155 // Looks like a good candidate so merge it.
156 RemoveBBox(neighbour);
157 // We will modify the box of part, so remove it from the grid, merge
158 // it and then re-insert it into the grid.
159 RemoveBBox(part);
160 part->Absorb(neighbour, nullptr);
161 InsertBBox(true, true, part);
162 merge_done = true;
163 any_done = true;
164 } else if (neighbour != nullptr) {
165 if (debug) {
166 tprintf("Overlapped when merged with increase %d: ", overlap_increase);
167 neighbour->bounding_box().print();
168 }
169 } else if (debug) {
170 tprintf("No candidate neighbour returned\n");
171 }
172 } while (merge_done);
173 return any_done;
174 }
175
176 // Returns true if the given part and merge candidate might believably
177 // be part of a single text line according to the default rules.
178 // In general we only want to merge partitions that look like they
179 // are on the same text line, ie their median limits overlap, but we have
180 // to make exceptions for diacritics and stray punctuation.
OKMergeCandidate(const ColPartition * part,const ColPartition * candidate,bool debug)181 static bool OKMergeCandidate(const ColPartition *part,
182 const ColPartition *candidate, bool debug) {
183 const TBOX &part_box = part->bounding_box();
184 if (candidate == part) {
185 return false; // Ignore itself.
186 }
187 if (!part->TypesMatch(*candidate) || candidate->IsUnMergeableType()) {
188 return false; // Don't mix inappropriate types.
189 }
190
191 const TBOX &c_box = candidate->bounding_box();
192 if (debug) {
193 tprintf("Examining merge candidate:");
194 c_box.print();
195 }
196 // Candidates must be within a reasonable distance.
197 if (candidate->IsVerticalType() || part->IsVerticalType()) {
198 int h_dist = -part->HCoreOverlap(*candidate);
199 if (h_dist >= std::max(part_box.width(), c_box.width()) / 2) {
200 if (debug) {
201 tprintf("Too far away: h_dist = %d\n", h_dist);
202 }
203 return false;
204 }
205 } else {
206 // Coarse filter by vertical distance between partitions.
207 int v_dist = -part->VCoreOverlap(*candidate);
208 if (v_dist >= std::max(part_box.height(), c_box.height()) / 2) {
209 if (debug) {
210 tprintf("Too far away: v_dist = %d\n", v_dist);
211 }
212 return false;
213 }
214 // Candidates must either overlap in median y,
215 // or part or candidate must be an acceptable diacritic.
216 if (!part->VSignificantCoreOverlap(*candidate) &&
217 !part->OKDiacriticMerge(*candidate, debug) &&
218 !candidate->OKDiacriticMerge(*part, debug)) {
219 if (debug) {
220 tprintf("Candidate fails overlap and diacritic tests!\n");
221 }
222 return false;
223 }
224 }
225 return true;
226 }
227
228 // Helper function to compute the increase in overlap of the parts list of
229 // Colpartitions with the combination of merge1 and merge2, compared to
230 // the overlap with them uncombined.
231 // An overlap is not counted if passes the OKMergeOverlap test with ok_overlap
232 // as the pixel overlap limit. merge1 and merge2 must both be non-nullptr.
IncreaseInOverlap(const ColPartition * merge1,const ColPartition * merge2,int ok_overlap,ColPartition_CLIST * parts)233 static int IncreaseInOverlap(const ColPartition *merge1,
234 const ColPartition *merge2, int ok_overlap,
235 ColPartition_CLIST *parts) {
236 ASSERT_HOST(merge1 != nullptr && merge2 != nullptr);
237 int total_area = 0;
238 ColPartition_C_IT it(parts);
239 TBOX merged_box(merge1->bounding_box());
240 merged_box += merge2->bounding_box();
241 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
242 ColPartition *part = it.data();
243 if (part == merge1 || part == merge2) {
244 continue;
245 }
246 TBOX part_box = part->bounding_box();
247 // Compute the overlap of the merged box with part.
248 int overlap_area = part_box.intersection(merged_box).area();
249 if (overlap_area > 0 &&
250 !part->OKMergeOverlap(*merge1, *merge2, ok_overlap, false)) {
251 total_area += overlap_area;
252 // Subtract the overlap of merge1 and merge2 individually.
253 overlap_area = part_box.intersection(merge1->bounding_box()).area();
254 if (overlap_area > 0) {
255 total_area -= overlap_area;
256 }
257 TBOX intersection_box = part_box.intersection(merge2->bounding_box());
258 overlap_area = intersection_box.area();
259 if (overlap_area > 0) {
260 total_area -= overlap_area;
261 // Add back the 3-way area.
262 intersection_box &= merge1->bounding_box(); // In-place intersection.
263 overlap_area = intersection_box.area();
264 if (overlap_area > 0) {
265 total_area += overlap_area;
266 }
267 }
268 }
269 }
270 return total_area;
271 }
272
273 // Helper function to test that each partition in candidates is either a
274 // good diacritic merge with part or an OK merge candidate with all others
275 // in the candidates list.
276 // ASCII Art Scenario:
277 // We sometimes get text such as "join-this" where the - is actually a long
278 // dash culled from a standard set of extra characters that don't match the
279 // font of the text. This makes its strokewidth not match and forms a broken
280 // set of 3 partitions for "join", "-" and "this" and the dash may slightly
281 // overlap BOTH words.
282 // ------- -------
283 // | ==== |
284 // ------- -------
285 // The standard merge rule: "you can merge 2 partitions as long as there is
286 // no increase in overlap elsewhere" fails miserably here. Merge any pair
287 // of partitions and the combined box overlaps more with the third than
288 // before. To allow the merge, we need to consider whether it is safe to
289 // merge everything, without merging separate text lines. For that we need
290 // everything to be an OKMergeCandidate (which is supposed to prevent
291 // separate text lines merging), but this is hard for diacritics to satisfy,
292 // so an alternative to being OKMergeCandidate with everything is to be an
293 // OKDiacriticMerge with part as the base character.
TestCompatibleCandidates(const ColPartition & part,bool debug,ColPartition_CLIST * candidates)294 static bool TestCompatibleCandidates(const ColPartition &part, bool debug,
295 ColPartition_CLIST *candidates) {
296 ColPartition_C_IT it(candidates);
297 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
298 ColPartition *candidate = it.data();
299 if (!candidate->OKDiacriticMerge(part, false)) {
300 ColPartition_C_IT it2(it);
301 for (it2.mark_cycle_pt(); !it2.cycled_list(); it2.forward()) {
302 ColPartition *candidate2 = it2.data();
303 if (candidate2 != candidate &&
304 !OKMergeCandidate(candidate, candidate2, false)) {
305 if (debug) {
306 tprintf("NC overlap failed:Candidate:");
307 candidate2->bounding_box().print();
308 tprintf("fails to be a good merge with:");
309 candidate->bounding_box().print();
310 }
311 return false;
312 }
313 }
314 }
315 }
316 return true;
317 }
318
319 // Computes and returns the total overlap of all partitions in the grid.
320 // If overlap_grid is non-null, it is filled with a grid that holds empty
321 // partitions representing the union of all overlapped partitions.
ComputeTotalOverlap(ColPartitionGrid ** overlap_grid)322 int ColPartitionGrid::ComputeTotalOverlap(ColPartitionGrid **overlap_grid) {
323 int total_overlap = 0;
324 // Iterate the ColPartitions in the grid.
325 ColPartitionGridSearch gsearch(this);
326 gsearch.StartFullSearch();
327 ColPartition *part;
328 while ((part = gsearch.NextFullSearch()) != nullptr) {
329 ColPartition_CLIST neighbors;
330 const TBOX &part_box = part->bounding_box();
331 FindOverlappingPartitions(part_box, part, &neighbors);
332 ColPartition_C_IT n_it(&neighbors);
333 bool any_part_overlap = false;
334 for (n_it.mark_cycle_pt(); !n_it.cycled_list(); n_it.forward()) {
335 const TBOX &n_box = n_it.data()->bounding_box();
336 int overlap = n_box.intersection(part_box).area();
337 if (overlap > 0 && overlap_grid != nullptr) {
338 if (*overlap_grid == nullptr) {
339 *overlap_grid = new ColPartitionGrid(gridsize(), bleft(), tright());
340 }
341 (*overlap_grid)->InsertBBox(true, true, n_it.data()->ShallowCopy());
342 if (!any_part_overlap) {
343 (*overlap_grid)->InsertBBox(true, true, part->ShallowCopy());
344 }
345 }
346 any_part_overlap = true;
347 total_overlap += overlap;
348 }
349 }
350 return total_overlap;
351 }
352
353 // Finds all the ColPartitions in the grid that overlap with the given
354 // box and returns them SortByBoxLeft(ed) and uniqued in the given list.
355 // Any partition equal to not_this (may be nullptr) is excluded.
FindOverlappingPartitions(const TBOX & box,const ColPartition * not_this,ColPartition_CLIST * parts)356 void ColPartitionGrid::FindOverlappingPartitions(const TBOX &box,
357 const ColPartition *not_this,
358 ColPartition_CLIST *parts) {
359 ColPartitionGridSearch rsearch(this);
360 rsearch.StartRectSearch(box);
361 ColPartition *part;
362 while ((part = rsearch.NextRectSearch()) != nullptr) {
363 if (part != not_this) {
364 parts->add_sorted(SortByBoxLeft<ColPartition>, true, part);
365 }
366 }
367 }
368
369 // Finds and returns the best candidate ColPartition to merge with part,
370 // selected from the candidates list, based on the minimum increase in
371 // pairwise overlap among all the partitions overlapped by the combined box.
372 // If overlap_increase is not nullptr then it returns the increase in overlap
373 // that would result from the merge.
374 // confirm_cb is a permanent callback that (if non-null) will be used to
375 // confirm the validity of a proposed merge candidate before selecting it.
376 //
377 // ======HOW MERGING WORKS======
378 // The problem:
379 // We want to merge all the parts of a textline together, but avoid merging
380 // separate textlines. Diacritics, i dots, punctuation, and broken characters
381 // are examples of small bits that need merging with the main textline.
382 // Drop-caps and descenders in one line that touch ascenders in the one below
383 // are examples of cases where we don't want to merge.
384 //
385 // The solution:
386 // Merges that increase overlap among other partitions are generally bad.
387 // Those that don't increase overlap (much) and minimize the total area
388 // seem to be good.
389 //
390 // Ascii art example:
391 // The text:
392 // groggy descenders
393 // minimum ascenders
394 // The boxes: The === represents a small box near or overlapping the lower box.
395 // -----------------
396 // | |
397 // -----------------
398 // -===-------------
399 // | |
400 // -----------------
401 // In considering what to do with the small === box, we find the 2 larger
402 // boxes as neighbours and possible merge candidates, but merging with the
403 // upper box increases overlap with the lower box, whereas merging with the
404 // lower box does not increase overlap.
405 // If the small === box didn't overlap either to start with, total area
406 // would be minimized by merging with the nearer (lower) box.
407 //
408 // This is a simple example. In reality, we have to allow some increase
409 // in overlap, or tightly spaced text would end up in bits.
BestMergeCandidate(const ColPartition * part,ColPartition_CLIST * candidates,bool debug,const std::function<bool (const ColPartition *,const ColPartition *)> & confirm_cb,int * overlap_increase)410 ColPartition *ColPartitionGrid::BestMergeCandidate(
411 const ColPartition *part, ColPartition_CLIST *candidates, bool debug,
412 const std::function<bool(const ColPartition *, const ColPartition *)>
413 &confirm_cb,
414 int *overlap_increase) {
415 if (overlap_increase != nullptr) {
416 *overlap_increase = 0;
417 }
418 if (candidates->empty()) {
419 return nullptr;
420 }
421 int ok_overlap =
422 static_cast<int>(kTinyEnoughTextlineOverlapFraction * gridsize() + 0.5);
423 // The best neighbour to merge with is the one that causes least
424 // total pairwise overlap among all the neighbours.
425 // If more than one offers the same total overlap, choose the one
426 // with the least total area.
427 const TBOX &part_box = part->bounding_box();
428 ColPartition_C_IT it(candidates);
429 ColPartition *best_candidate = nullptr;
430 // Find the total combined box of all candidates and the original.
431 TBOX full_box(part_box);
432 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
433 ColPartition *candidate = it.data();
434 full_box += candidate->bounding_box();
435 }
436 // Keep valid neighbours in a list.
437 ColPartition_CLIST neighbours;
438 // Now run a rect search of the merged box for overlapping neighbours, as
439 // we need anything that might be overlapped by the merged box.
440 FindOverlappingPartitions(full_box, part, &neighbours);
441 if (debug) {
442 tprintf("Finding best merge candidate from %d, %d neighbours for box:",
443 candidates->length(), neighbours.length());
444 part_box.print();
445 }
446 // If the best increase in overlap is positive, then we also check the
447 // worst non-candidate overlap. This catches the case of multiple good
448 // candidates that overlap each other when merged. If the worst
449 // non-candidate overlap is better than the best overlap, then return
450 // the worst non-candidate overlap instead.
451 ColPartition_CLIST non_candidate_neighbours;
452 non_candidate_neighbours.set_subtract(SortByBoxLeft<ColPartition>, true,
453 &neighbours, candidates);
454 int worst_nc_increase = 0;
455 int best_increase = INT32_MAX;
456 int best_area = 0;
457 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
458 ColPartition *candidate = it.data();
459 if (confirm_cb != nullptr && !confirm_cb(part, candidate)) {
460 if (debug) {
461 tprintf("Candidate not confirmed:");
462 candidate->bounding_box().print();
463 }
464 continue;
465 }
466 int increase = IncreaseInOverlap(part, candidate, ok_overlap, &neighbours);
467 const TBOX &cand_box = candidate->bounding_box();
468 if (best_candidate == nullptr || increase < best_increase) {
469 best_candidate = candidate;
470 best_increase = increase;
471 best_area = cand_box.bounding_union(part_box).area() - cand_box.area();
472 if (debug) {
473 tprintf("New best merge candidate has increase %d, area %d, over box:",
474 increase, best_area);
475 full_box.print();
476 candidate->Print();
477 }
478 } else if (increase == best_increase) {
479 int area = cand_box.bounding_union(part_box).area() - cand_box.area();
480 if (area < best_area) {
481 best_area = area;
482 best_candidate = candidate;
483 }
484 }
485 increase = IncreaseInOverlap(part, candidate, ok_overlap,
486 &non_candidate_neighbours);
487 if (increase > worst_nc_increase) {
488 worst_nc_increase = increase;
489 }
490 }
491 if (best_increase > 0) {
492 // If the worst non-candidate increase is less than the best increase
493 // including the candidates, then all the candidates can merge together
494 // and the increase in outside overlap would be less, so use that result,
495 // but only if each candidate is either a good diacritic merge with part,
496 // or an ok merge candidate with all the others.
497 // See TestCompatibleCandidates for more explanation and a picture.
498 if (worst_nc_increase < best_increase &&
499 TestCompatibleCandidates(*part, debug, candidates)) {
500 best_increase = worst_nc_increase;
501 }
502 }
503 if (overlap_increase != nullptr) {
504 *overlap_increase = best_increase;
505 }
506 return best_candidate;
507 }
508
509 // Helper to remove the given box from the given partition, put it in its
510 // own partition, and add to the partition list.
RemoveBadBox(BLOBNBOX * box,ColPartition * part,ColPartition_LIST * part_list)511 static void RemoveBadBox(BLOBNBOX *box, ColPartition *part,
512 ColPartition_LIST *part_list) {
513 part->RemoveBox(box);
514 ColPartition::MakeBigPartition(box, part_list);
515 }
516
517 // Split partitions where it reduces overlap between their bounding boxes.
518 // ColPartitions are after all supposed to be a partitioning of the blobs
519 // AND of the space on the page!
520 // Blobs that cause overlaps get removed, put in individual partitions
521 // and added to the big_parts list. They are most likely characters on
522 // 2 textlines that touch, or something big like a dropcap.
SplitOverlappingPartitions(ColPartition_LIST * big_parts)523 void ColPartitionGrid::SplitOverlappingPartitions(
524 ColPartition_LIST *big_parts) {
525 int ok_overlap =
526 static_cast<int>(kTinyEnoughTextlineOverlapFraction * gridsize() + 0.5);
527 // Iterate the ColPartitions in the grid.
528 ColPartitionGridSearch gsearch(this);
529 gsearch.StartFullSearch();
530 ColPartition *part;
531 while ((part = gsearch.NextFullSearch()) != nullptr) {
532 // Set up a rectangle search bounded by the part.
533 const TBOX &box = part->bounding_box();
534 ColPartitionGridSearch rsearch(this);
535 rsearch.SetUniqueMode(true);
536 rsearch.StartRectSearch(box);
537 int unresolved_overlaps = 0;
538
539 ColPartition *neighbour;
540 while ((neighbour = rsearch.NextRectSearch()) != nullptr) {
541 if (neighbour == part) {
542 continue;
543 }
544 const TBOX &neighbour_box = neighbour->bounding_box();
545 if (neighbour->OKMergeOverlap(*part, *part, ok_overlap, false) &&
546 part->OKMergeOverlap(*neighbour, *neighbour, ok_overlap, false)) {
547 continue; // The overlap is OK both ways.
548 }
549
550 // If removal of the biggest box from either partition eliminates the
551 // overlap, and it is much bigger than the box left behind, then
552 // it is either a drop-cap, an inter-line join, or some junk that
553 // we don't want anyway, so put it in the big_parts list.
554 if (!part->IsSingleton()) {
555 BLOBNBOX *excluded = part->BiggestBox();
556 TBOX shrunken = part->BoundsWithoutBox(excluded);
557 if (!shrunken.overlap(neighbour_box) &&
558 excluded->bounding_box().height() >
559 kBigPartSizeRatio * shrunken.height()) {
560 // Removing the biggest box fixes the overlap, so do it!
561 gsearch.RemoveBBox();
562 RemoveBadBox(excluded, part, big_parts);
563 InsertBBox(true, true, part);
564 gsearch.RepositionIterator();
565 break;
566 }
567 } else if (box.contains(neighbour_box)) {
568 ++unresolved_overlaps;
569 continue; // No amount of splitting will fix it.
570 }
571 if (!neighbour->IsSingleton()) {
572 BLOBNBOX *excluded = neighbour->BiggestBox();
573 TBOX shrunken = neighbour->BoundsWithoutBox(excluded);
574 if (!shrunken.overlap(box) &&
575 excluded->bounding_box().height() >
576 kBigPartSizeRatio * shrunken.height()) {
577 // Removing the biggest box fixes the overlap, so do it!
578 rsearch.RemoveBBox();
579 RemoveBadBox(excluded, neighbour, big_parts);
580 InsertBBox(true, true, neighbour);
581 gsearch.RepositionIterator();
582 break;
583 }
584 }
585 int part_overlap_count = part->CountOverlappingBoxes(neighbour_box);
586 int neighbour_overlap_count = neighbour->CountOverlappingBoxes(box);
587 ColPartition *right_part = nullptr;
588 if (neighbour_overlap_count <= part_overlap_count ||
589 part->IsSingleton()) {
590 // Try to split the neighbour to reduce overlap.
591 BLOBNBOX *split_blob = neighbour->OverlapSplitBlob(box);
592 if (split_blob != nullptr) {
593 rsearch.RemoveBBox();
594 right_part = neighbour->SplitAtBlob(split_blob);
595 InsertBBox(true, true, neighbour);
596 ASSERT_HOST(right_part != nullptr);
597 }
598 } else {
599 // Try to split part to reduce overlap.
600 BLOBNBOX *split_blob = part->OverlapSplitBlob(neighbour_box);
601 if (split_blob != nullptr) {
602 gsearch.RemoveBBox();
603 right_part = part->SplitAtBlob(split_blob);
604 InsertBBox(true, true, part);
605 ASSERT_HOST(right_part != nullptr);
606 }
607 }
608 if (right_part != nullptr) {
609 InsertBBox(true, true, right_part);
610 gsearch.RepositionIterator();
611 rsearch.RepositionIterator();
612 break;
613 }
614 }
615 if (unresolved_overlaps > 2 && part->IsSingleton()) {
616 // This part is no good so just add to big_parts.
617 RemoveBBox(part);
618 ColPartition_IT big_it(big_parts);
619 part->set_block_owned(true);
620 big_it.add_to_end(part);
621 gsearch.RepositionIterator();
622 }
623 }
624 }
625
626 // Filters partitions of source_type by looking at local neighbours.
627 // Where a majority of neighbours have a text type, the partitions are
628 // changed to text, where the neighbours have image type, they are changed
629 // to image, and partitions that have no definite neighbourhood type are
630 // left unchanged.
631 // im_box and rerotation are used to map blob coordinates onto the
632 // nontext_map, which is used to prevent the spread of text neighbourhoods
633 // into images.
634 // Returns true if anything was changed.
GridSmoothNeighbours(BlobTextFlowType source_type,Image nontext_map,const TBOX & im_box,const FCOORD & rotation)635 bool ColPartitionGrid::GridSmoothNeighbours(BlobTextFlowType source_type,
636 Image nontext_map,
637 const TBOX &im_box,
638 const FCOORD &rotation) {
639 // Iterate the ColPartitions in the grid.
640 ColPartitionGridSearch gsearch(this);
641 gsearch.StartFullSearch();
642 ColPartition *part;
643 bool any_changed = false;
644 while ((part = gsearch.NextFullSearch()) != nullptr) {
645 if (part->flow() != source_type ||
646 BLOBNBOX::IsLineType(part->blob_type())) {
647 continue;
648 }
649 const TBOX &box = part->bounding_box();
650 bool debug = AlignedBlob::WithinTestRegion(2, box.left(), box.bottom());
651 if (SmoothRegionType(nontext_map, im_box, rotation, debug, part)) {
652 any_changed = true;
653 }
654 }
655 return any_changed;
656 }
657
658 // Reflects the grid and its colpartitions in the y-axis, assuming that
659 // all blob boxes have already been done.
ReflectInYAxis()660 void ColPartitionGrid::ReflectInYAxis() {
661 ColPartition_LIST parts;
662 ColPartition_IT part_it(&parts);
663 // Iterate the ColPartitions in the grid to extract them.
664 ColPartitionGridSearch gsearch(this);
665 gsearch.StartFullSearch();
666 ColPartition *part;
667 while ((part = gsearch.NextFullSearch()) != nullptr) {
668 part_it.add_after_then_move(part);
669 }
670 ICOORD bot_left(-tright().x(), bleft().y());
671 ICOORD top_right(-bleft().x(), tright().y());
672 // Reinitializing the grid with reflected coords also clears all the
673 // pointers, so parts will now own the ColPartitions. (Briefly).
674 Init(gridsize(), bot_left, top_right);
675 for (part_it.move_to_first(); !part_it.empty(); part_it.forward()) {
676 part = part_it.extract();
677 part->ReflectInYAxis();
678 InsertBBox(true, true, part);
679 }
680 }
681
682 // Transforms the grid of partitions to the output blocks, putting each
683 // partition into a separate block. We don't really care about the order,
684 // as we just want to get as much text as possible without trying to organize
685 // it into proper blocks or columns.
686 // TODO(rays) some kind of sort function would be useful and probably better
687 // than the default here, which is to sort by order of the grid search.
ExtractPartitionsAsBlocks(BLOCK_LIST * blocks,TO_BLOCK_LIST * to_blocks)688 void ColPartitionGrid::ExtractPartitionsAsBlocks(BLOCK_LIST *blocks,
689 TO_BLOCK_LIST *to_blocks) {
690 TO_BLOCK_IT to_block_it(to_blocks);
691 BLOCK_IT block_it(blocks);
692 // All partitions will be put on this list and deleted on return.
693 ColPartition_LIST parts;
694 ColPartition_IT part_it(&parts);
695 // Iterate the ColPartitions in the grid to extract them.
696 ColPartitionGridSearch gsearch(this);
697 gsearch.StartFullSearch();
698 ColPartition *part;
699 while ((part = gsearch.NextFullSearch()) != nullptr) {
700 part_it.add_after_then_move(part);
701 // The partition has to be at least vaguely like text.
702 BlobRegionType blob_type = part->blob_type();
703 if (BLOBNBOX::IsTextType(blob_type) ||
704 (blob_type == BRT_UNKNOWN && part->boxes_count() > 1)) {
705 PolyBlockType type =
706 blob_type == BRT_VERT_TEXT ? PT_VERTICAL_TEXT : PT_FLOWING_TEXT;
707 // Get metrics from the row that will be used for the block.
708 TBOX box = part->bounding_box();
709 int median_width = part->median_width();
710 int median_height = part->median_height();
711 // Turn the partition into a TO_ROW.
712 TO_ROW *row = part->MakeToRow();
713 if (row == nullptr) {
714 // This partition is dead.
715 part->DeleteBoxes();
716 continue;
717 }
718 auto *block = new BLOCK("", true, 0, 0, box.left(), box.bottom(),
719 box.right(), box.top());
720 block->pdblk.set_poly_block(new POLY_BLOCK(box, type));
721 auto *to_block = new TO_BLOCK(block);
722 TO_ROW_IT row_it(to_block->get_rows());
723 row_it.add_after_then_move(row);
724 // We haven't differentially rotated vertical and horizontal text at
725 // this point, so use width or height as appropriate.
726 if (blob_type == BRT_VERT_TEXT) {
727 to_block->line_size = static_cast<float>(median_width);
728 to_block->line_spacing = static_cast<float>(box.width());
729 to_block->max_blob_size = static_cast<float>(box.width() + 1);
730 } else {
731 to_block->line_size = static_cast<float>(median_height);
732 to_block->line_spacing = static_cast<float>(box.height());
733 to_block->max_blob_size = static_cast<float>(box.height() + 1);
734 }
735 if (to_block->line_size == 0) {
736 to_block->line_size = 1;
737 }
738 block_it.add_to_end(block);
739 to_block_it.add_to_end(to_block);
740 } else {
741 // This partition is dead.
742 part->DeleteBoxes();
743 }
744 }
745 Clear();
746 // Now it is safe to delete the ColPartitions as parts goes out of scope.
747 }
748
749 // Rotates the grid and its colpartitions by the given angle, assuming that
750 // all blob boxes have already been done.
Deskew(const FCOORD & deskew)751 void ColPartitionGrid::Deskew(const FCOORD &deskew) {
752 ColPartition_LIST parts;
753 ColPartition_IT part_it(&parts);
754 // Iterate the ColPartitions in the grid to extract them.
755 ColPartitionGridSearch gsearch(this);
756 gsearch.StartFullSearch();
757 ColPartition *part;
758 while ((part = gsearch.NextFullSearch()) != nullptr) {
759 part_it.add_after_then_move(part);
760 }
761 // Rebuild the grid to the new size.
762 TBOX grid_box(bleft_, tright_);
763 grid_box.rotate_large(deskew);
764 Init(gridsize(), grid_box.botleft(), grid_box.topright());
765 // Reinitializing the grid with rotated coords also clears all the
766 // pointers, so parts will now own the ColPartitions. (Briefly).
767 for (part_it.move_to_first(); !part_it.empty(); part_it.forward()) {
768 part = part_it.extract();
769 part->ComputeLimits();
770 InsertBBox(true, true, part);
771 }
772 }
773
774 // Sets the left and right tabs of the partitions in the grid.
SetTabStops(TabFind * tabgrid)775 void ColPartitionGrid::SetTabStops(TabFind *tabgrid) {
776 // Iterate the ColPartitions in the grid.
777 ColPartitionGridSearch gsearch(this);
778 gsearch.StartFullSearch();
779 ColPartition *part;
780 while ((part = gsearch.NextFullSearch()) != nullptr) {
781 const TBOX &part_box = part->bounding_box();
782 TabVector *left_line = tabgrid->LeftTabForBox(part_box, true, false);
783 // If the overlapping line is not a left tab, try for non-overlapping.
784 if (left_line != nullptr && !left_line->IsLeftTab()) {
785 left_line = tabgrid->LeftTabForBox(part_box, false, false);
786 }
787 if (left_line != nullptr && left_line->IsLeftTab()) {
788 part->SetLeftTab(left_line);
789 }
790 TabVector *right_line = tabgrid->RightTabForBox(part_box, true, false);
791 if (right_line != nullptr && !right_line->IsRightTab()) {
792 right_line = tabgrid->RightTabForBox(part_box, false, false);
793 }
794 if (right_line != nullptr && right_line->IsRightTab()) {
795 part->SetRightTab(right_line);
796 }
797 part->SetColumnGoodness(tabgrid->WidthCB());
798 }
799 }
800
801 // Makes the ColPartSets and puts them in the PartSetVector ready
802 // for finding column bounds. Returns false if no partitions were found.
MakeColPartSets(PartSetVector * part_sets)803 bool ColPartitionGrid::MakeColPartSets(PartSetVector *part_sets) {
804 auto *part_lists = new ColPartition_LIST[gridheight()];
805 part_sets->reserve(gridheight());
806 // Iterate the ColPartitions in the grid to get parts onto lists for the
807 // y bottom of each.
808 ColPartitionGridSearch gsearch(this);
809 gsearch.StartFullSearch();
810 ColPartition *part;
811 bool any_parts_found = false;
812 while ((part = gsearch.NextFullSearch()) != nullptr) {
813 BlobRegionType blob_type = part->blob_type();
814 if (blob_type != BRT_NOISE &&
815 (blob_type != BRT_UNKNOWN || !part->boxes()->singleton())) {
816 int grid_x, grid_y;
817 const TBOX &part_box = part->bounding_box();
818 GridCoords(part_box.left(), part_box.bottom(), &grid_x, &grid_y);
819 ColPartition_IT part_it(&part_lists[grid_y]);
820 part_it.add_to_end(part);
821 any_parts_found = true;
822 }
823 }
824 if (any_parts_found) {
825 for (int grid_y = 0; grid_y < gridheight(); ++grid_y) {
826 ColPartitionSet *line_set = nullptr;
827 if (!part_lists[grid_y].empty()) {
828 line_set = new ColPartitionSet(&part_lists[grid_y]);
829 }
830 part_sets->push_back(line_set);
831 }
832 }
833 delete[] part_lists;
834 return any_parts_found;
835 }
836
837 // Makes a single ColPartitionSet consisting of a single ColPartition that
838 // represents the total horizontal extent of the significant content on the
839 // page. Used for the single column setting in place of automatic detection.
840 // Returns nullptr if the page is empty of significant content.
MakeSingleColumnSet(WidthCallback cb)841 ColPartitionSet *ColPartitionGrid::MakeSingleColumnSet(WidthCallback cb) {
842 ColPartition *single_column_part = nullptr;
843 // Iterate the ColPartitions in the grid to get parts onto lists for the
844 // y bottom of each.
845 ColPartitionGridSearch gsearch(this);
846 gsearch.StartFullSearch();
847 ColPartition *part;
848 while ((part = gsearch.NextFullSearch()) != nullptr) {
849 BlobRegionType blob_type = part->blob_type();
850 if (blob_type != BRT_NOISE &&
851 (blob_type != BRT_UNKNOWN || !part->boxes()->singleton())) {
852 // Consider for single column.
853 BlobTextFlowType flow = part->flow();
854 if ((blob_type == BRT_TEXT &&
855 (flow == BTFT_STRONG_CHAIN || flow == BTFT_CHAIN ||
856 flow == BTFT_LEADER || flow == BTFT_TEXT_ON_IMAGE)) ||
857 blob_type == BRT_RECTIMAGE || blob_type == BRT_POLYIMAGE) {
858 if (single_column_part == nullptr) {
859 single_column_part = part->ShallowCopy();
860 single_column_part->set_blob_type(BRT_TEXT);
861 // Copy the tabs from itself to properly setup the margins.
862 single_column_part->CopyLeftTab(*single_column_part, false);
863 single_column_part->CopyRightTab(*single_column_part, false);
864 } else {
865 if (part->left_key() < single_column_part->left_key()) {
866 single_column_part->CopyLeftTab(*part, false);
867 }
868 if (part->right_key() > single_column_part->right_key()) {
869 single_column_part->CopyRightTab(*part, false);
870 }
871 }
872 }
873 }
874 }
875 if (single_column_part != nullptr) {
876 // Make a ColPartitionSet out of the single_column_part as a candidate
877 // for the single column case.
878 single_column_part->SetColumnGoodness(cb);
879 return new ColPartitionSet(single_column_part);
880 }
881 return nullptr;
882 }
883
884 // Mark the BLOBNBOXes in each partition as being owned by that partition.
ClaimBoxes()885 void ColPartitionGrid::ClaimBoxes() {
886 // Iterate the ColPartitions in the grid.
887 ColPartitionGridSearch gsearch(this);
888 gsearch.StartFullSearch();
889 ColPartition *part;
890 while ((part = gsearch.NextFullSearch()) != nullptr) {
891 part->ClaimBoxes();
892 }
893 }
894
895 // Retypes all the blobs referenced by the partitions in the grid.
896 // Image blobs are found and returned in the im_blobs list, as they are not
897 // owned by the block.
ReTypeBlobs(BLOBNBOX_LIST * im_blobs)898 void ColPartitionGrid::ReTypeBlobs(BLOBNBOX_LIST *im_blobs) {
899 BLOBNBOX_IT im_blob_it(im_blobs);
900 ColPartition_LIST dead_parts;
901 ColPartition_IT dead_part_it(&dead_parts);
902 // Iterate the ColPartitions in the grid.
903 ColPartitionGridSearch gsearch(this);
904 gsearch.StartFullSearch();
905 ColPartition *part;
906 while ((part = gsearch.NextFullSearch()) != nullptr) {
907 BlobRegionType blob_type = part->blob_type();
908 BlobTextFlowType flow = part->flow();
909 bool any_blobs_moved = false;
910 if (blob_type == BRT_POLYIMAGE || blob_type == BRT_RECTIMAGE) {
911 BLOBNBOX_C_IT blob_it(part->boxes());
912 for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
913 BLOBNBOX *blob = blob_it.data();
914 im_blob_it.add_after_then_move(blob);
915 }
916 } else if (blob_type != BRT_NOISE) {
917 // Make sure the blobs are marked with the correct type and flow.
918 BLOBNBOX_C_IT blob_it(part->boxes());
919 for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
920 BLOBNBOX *blob = blob_it.data();
921 if (blob->region_type() == BRT_NOISE) {
922 // TODO(rays) Deprecated. Change this section to an assert to verify
923 // and then delete.
924 ASSERT_HOST(blob->cblob()->area() != 0);
925 blob->set_owner(nullptr);
926 blob_it.extract();
927 any_blobs_moved = true;
928 } else {
929 blob->set_region_type(blob_type);
930 if (blob->flow() != BTFT_LEADER) {
931 blob->set_flow(flow);
932 }
933 }
934 }
935 }
936 if (blob_type == BRT_NOISE || part->boxes()->empty()) {
937 BLOBNBOX_C_IT blob_it(part->boxes());
938 part->DisownBoxes();
939 dead_part_it.add_to_end(part);
940 gsearch.RemoveBBox();
941 for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
942 BLOBNBOX *blob = blob_it.data();
943 if (blob->cblob()->area() == 0) {
944 // Any blob with zero area is a fake image blob and should be deleted.
945 delete blob->cblob();
946 delete blob;
947 }
948 }
949 } else if (any_blobs_moved) {
950 gsearch.RemoveBBox();
951 part->ComputeLimits();
952 InsertBBox(true, true, part);
953 gsearch.RepositionIterator();
954 }
955 }
956 }
957
958 // The boxes within the partitions have changed (by deskew) so recompute
959 // the bounds of all the partitions and reinsert them into the grid.
RecomputeBounds(int gridsize,const ICOORD & bleft,const ICOORD & tright,const ICOORD & vertical)960 void ColPartitionGrid::RecomputeBounds(int gridsize, const ICOORD &bleft,
961 const ICOORD &tright,
962 const ICOORD &vertical) {
963 ColPartition_LIST saved_parts;
964 ColPartition_IT part_it(&saved_parts);
965 // Iterate the ColPartitions in the grid to get parts onto a list.
966 ColPartitionGridSearch gsearch(this);
967 gsearch.StartFullSearch();
968 ColPartition *part;
969 while ((part = gsearch.NextFullSearch()) != nullptr) {
970 part_it.add_to_end(part);
971 }
972 // Reinitialize grid to the new size.
973 Init(gridsize, bleft, tright);
974 // Recompute the bounds of the parts and put them back in the new grid.
975 for (part_it.move_to_first(); !part_it.empty(); part_it.forward()) {
976 part = part_it.extract();
977 part->set_vertical(vertical);
978 part->ComputeLimits();
979 InsertBBox(true, true, part);
980 }
981 }
982
983 // Improves the margins of the ColPartitions in the grid by calling
984 // FindPartitionMargins on each.
985 // best_columns, which may be nullptr, is an array of pointers indicating the
986 // column set at each y-coordinate in the grid.
987 // best_columns is usually the best_columns_ member of ColumnFinder.
GridFindMargins(ColPartitionSet ** best_columns)988 void ColPartitionGrid::GridFindMargins(ColPartitionSet **best_columns) {
989 // Iterate the ColPartitions in the grid.
990 ColPartitionGridSearch gsearch(this);
991 gsearch.StartFullSearch();
992 ColPartition *part;
993 while ((part = gsearch.NextFullSearch()) != nullptr) {
994 // Set up a rectangle search x-bounded by the column and y by the part.
995 ColPartitionSet *columns =
996 best_columns != nullptr ? best_columns[gsearch.GridY()] : nullptr;
997 FindPartitionMargins(columns, part);
998 const TBOX &box = part->bounding_box();
999 if (AlignedBlob::WithinTestRegion(2, box.left(), box.bottom())) {
1000 tprintf("Computed margins for part:");
1001 part->Print();
1002 }
1003 }
1004 }
1005
1006 // Improves the margins of the ColPartitions in the list by calling
1007 // FindPartitionMargins on each.
1008 // best_columns, which may be nullptr, is an array of pointers indicating the
1009 // column set at each y-coordinate in the grid.
1010 // best_columns is usually the best_columns_ member of ColumnFinder.
ListFindMargins(ColPartitionSet ** best_columns,ColPartition_LIST * parts)1011 void ColPartitionGrid::ListFindMargins(ColPartitionSet **best_columns,
1012 ColPartition_LIST *parts) {
1013 ColPartition_IT part_it(parts);
1014 for (part_it.mark_cycle_pt(); !part_it.cycled_list(); part_it.forward()) {
1015 ColPartition *part = part_it.data();
1016 ColPartitionSet *columns = nullptr;
1017 if (best_columns != nullptr) {
1018 const TBOX &part_box = part->bounding_box();
1019 // Get the columns from the y grid coord.
1020 int grid_x, grid_y;
1021 GridCoords(part_box.left(), part_box.bottom(), &grid_x, &grid_y);
1022 columns = best_columns[grid_y];
1023 }
1024 FindPartitionMargins(columns, part);
1025 }
1026 }
1027
1028 // Deletes all the partitions in the grid after disowning all the blobs.
DeleteParts()1029 void ColPartitionGrid::DeleteParts() {
1030 ColPartition_LIST dead_parts;
1031 ColPartition_IT dead_it(&dead_parts);
1032 ColPartitionGridSearch gsearch(this);
1033 gsearch.StartFullSearch();
1034 ColPartition *part;
1035 while ((part = gsearch.NextFullSearch()) != nullptr) {
1036 part->DisownBoxes();
1037 dead_it.add_to_end(part); // Parts will be deleted on return.
1038 }
1039 Clear();
1040 }
1041
1042 // Deletes all the partitions in the grid that are of type BRT_UNKNOWN and
1043 // all the blobs in them.
DeleteUnknownParts(TO_BLOCK * block)1044 void ColPartitionGrid::DeleteUnknownParts(TO_BLOCK *block) {
1045 ColPartitionGridSearch gsearch(this);
1046 gsearch.StartFullSearch();
1047 ColPartition *part;
1048 while ((part = gsearch.NextFullSearch()) != nullptr) {
1049 if (part->blob_type() == BRT_UNKNOWN) {
1050 gsearch.RemoveBBox();
1051 // Once marked, the blobs will be swept up by DeleteUnownedNoise.
1052 part->set_flow(BTFT_NONTEXT);
1053 part->set_blob_type(BRT_NOISE);
1054 part->SetBlobTypes();
1055 part->DisownBoxes();
1056 delete part;
1057 }
1058 }
1059 block->DeleteUnownedNoise();
1060 }
1061
1062 // Deletes all the partitions in the grid that are NOT of flow type BTFT_LEADER.
DeleteNonLeaderParts()1063 void ColPartitionGrid::DeleteNonLeaderParts() {
1064 ColPartitionGridSearch gsearch(this);
1065 gsearch.StartFullSearch();
1066 ColPartition *part;
1067 while ((part = gsearch.NextFullSearch()) != nullptr) {
1068 if (part->flow() != BTFT_LEADER) {
1069 gsearch.RemoveBBox();
1070 if (part->ReleaseNonLeaderBoxes()) {
1071 InsertBBox(true, true, part);
1072 gsearch.RepositionIterator();
1073 } else {
1074 delete part;
1075 }
1076 }
1077 }
1078 }
1079
1080 // Finds and marks text partitions that represent figure captions.
FindFigureCaptions()1081 void ColPartitionGrid::FindFigureCaptions() {
1082 // For each image region find its best candidate text caption region,
1083 // if any and mark it as such.
1084 ColPartitionGridSearch gsearch(this);
1085 gsearch.StartFullSearch();
1086 ColPartition *part;
1087 while ((part = gsearch.NextFullSearch()) != nullptr) {
1088 if (part->IsImageType()) {
1089 const TBOX &part_box = part->bounding_box();
1090 bool debug =
1091 AlignedBlob::WithinTestRegion(2, part_box.left(), part_box.bottom());
1092 ColPartition *best_caption = nullptr;
1093 int best_dist = 0; // Distance to best_caption.
1094 int best_upper = 0; // Direction of best_caption.
1095 // Handle both lower and upper directions.
1096 for (int upper = 0; upper < 2; ++upper) {
1097 ColPartition_C_IT partner_it(upper ? part->upper_partners()
1098 : part->lower_partners());
1099 // If there are no image partners, then this direction is ok.
1100 for (partner_it.mark_cycle_pt(); !partner_it.cycled_list();
1101 partner_it.forward()) {
1102 ColPartition *partner = partner_it.data();
1103 if (partner->IsImageType()) {
1104 break;
1105 }
1106 }
1107 if (!partner_it.cycled_list()) {
1108 continue;
1109 }
1110 // Find the nearest totally overlapping text partner.
1111 for (partner_it.mark_cycle_pt(); !partner_it.cycled_list();
1112 partner_it.forward()) {
1113 ColPartition *partner = partner_it.data();
1114 if (!partner->IsTextType() || partner->type() == PT_TABLE) {
1115 continue;
1116 }
1117 const TBOX &partner_box = partner->bounding_box();
1118 if (debug) {
1119 tprintf("Finding figure captions for image part:");
1120 part_box.print();
1121 tprintf("Considering partner:");
1122 partner_box.print();
1123 }
1124 if (partner_box.left() >= part_box.left() &&
1125 partner_box.right() <= part_box.right()) {
1126 int dist = partner_box.y_gap(part_box);
1127 if (best_caption == nullptr || dist < best_dist) {
1128 best_dist = dist;
1129 best_caption = partner;
1130 best_upper = upper;
1131 }
1132 }
1133 }
1134 }
1135 if (best_caption != nullptr) {
1136 if (debug) {
1137 tprintf("Best caption candidate:");
1138 best_caption->bounding_box().print();
1139 }
1140 // We have a candidate caption. Qualify it as being separable from
1141 // any body text. We are looking for either a small number of lines
1142 // or a big gap that indicates a separation from the body text.
1143 int line_count = 0;
1144 int biggest_gap = 0;
1145 int smallest_gap = INT16_MAX;
1146 int total_height = 0;
1147 int mean_height = 0;
1148 ColPartition *end_partner = nullptr;
1149 ColPartition *next_partner = nullptr;
1150 for (ColPartition *partner = best_caption;
1151 partner != nullptr && line_count <= kMaxCaptionLines;
1152 partner = next_partner) {
1153 if (!partner->IsTextType()) {
1154 end_partner = partner;
1155 break;
1156 }
1157 ++line_count;
1158 total_height += partner->bounding_box().height();
1159 next_partner = partner->SingletonPartner(best_upper);
1160 if (next_partner != nullptr) {
1161 int gap =
1162 partner->bounding_box().y_gap(next_partner->bounding_box());
1163 if (gap > biggest_gap) {
1164 biggest_gap = gap;
1165 end_partner = next_partner;
1166 mean_height = total_height / line_count;
1167 } else if (gap < smallest_gap) {
1168 smallest_gap = gap;
1169 }
1170 // If the gap looks big compared to the text size and the smallest
1171 // gap seen so far, then we can stop.
1172 if (biggest_gap > mean_height * kMinCaptionGapHeightRatio &&
1173 biggest_gap > smallest_gap * kMinCaptionGapRatio) {
1174 break;
1175 }
1176 }
1177 }
1178 if (debug) {
1179 tprintf("Line count=%d, biggest gap %d, smallest%d, mean height %d\n",
1180 line_count, biggest_gap, smallest_gap, mean_height);
1181 if (end_partner != nullptr) {
1182 tprintf("End partner:");
1183 end_partner->bounding_box().print();
1184 }
1185 }
1186 if (next_partner == nullptr && line_count <= kMaxCaptionLines) {
1187 end_partner = nullptr; // No gap, but line count is small.
1188 }
1189 if (line_count <= kMaxCaptionLines) {
1190 // This is a qualified caption. Mark the text as caption.
1191 for (ColPartition *partner = best_caption;
1192 partner != nullptr && partner != end_partner;
1193 partner = next_partner) {
1194 partner->set_type(PT_CAPTION_TEXT);
1195 partner->SetBlobTypes();
1196 if (debug) {
1197 tprintf("Set caption type for partition:");
1198 partner->bounding_box().print();
1199 }
1200 next_partner = partner->SingletonPartner(best_upper);
1201 }
1202 }
1203 }
1204 }
1205 }
1206 }
1207
1208 //////// Functions that manipulate ColPartitions in the part_grid_ /////
1209 //////// to find chains of partner partitions of the same type. ///////
1210
1211 // For every ColPartition in the grid, finds its upper and lower neighbours.
FindPartitionPartners()1212 void ColPartitionGrid::FindPartitionPartners() {
1213 ColPartitionGridSearch gsearch(this);
1214 gsearch.StartFullSearch();
1215 ColPartition *part;
1216 while ((part = gsearch.NextFullSearch()) != nullptr) {
1217 if (part->IsVerticalType()) {
1218 FindVPartitionPartners(true, part);
1219 FindVPartitionPartners(false, part);
1220 } else {
1221 FindPartitionPartners(true, part);
1222 FindPartitionPartners(false, part);
1223 }
1224 }
1225 }
1226
1227 // Finds the best partner in the given direction for the given partition.
1228 // Stores the result with AddPartner.
FindPartitionPartners(bool upper,ColPartition * part)1229 void ColPartitionGrid::FindPartitionPartners(bool upper, ColPartition *part) {
1230 if (part->type() == PT_NOISE) {
1231 return; // Noise is not allowed to partner anything.
1232 }
1233 const TBOX &box = part->bounding_box();
1234 int top = part->median_top();
1235 int bottom = part->median_bottom();
1236 int height = top - bottom;
1237 int mid_y = (bottom + top) / 2;
1238 ColPartitionGridSearch vsearch(this);
1239 // Search down for neighbour below
1240 vsearch.StartVerticalSearch(box.left(), box.right(), part->MidY());
1241 ColPartition *neighbour;
1242 ColPartition *best_neighbour = nullptr;
1243 int best_dist = INT32_MAX;
1244 while ((neighbour = vsearch.NextVerticalSearch(!upper)) != nullptr) {
1245 if (neighbour == part || neighbour->type() == PT_NOISE) {
1246 continue; // Noise is not allowed to partner anything.
1247 }
1248 int neighbour_bottom = neighbour->median_bottom();
1249 int neighbour_top = neighbour->median_top();
1250 int neighbour_y = (neighbour_bottom + neighbour_top) / 2;
1251 if (upper != (neighbour_y > mid_y)) {
1252 continue;
1253 }
1254 if (!part->HOverlaps(*neighbour) && !part->WithinSameMargins(*neighbour)) {
1255 continue;
1256 }
1257 if (!part->TypesMatch(*neighbour)) {
1258 if (best_neighbour == nullptr) {
1259 best_neighbour = neighbour;
1260 }
1261 continue;
1262 }
1263 int dist = upper ? neighbour_bottom - top : bottom - neighbour_top;
1264 if (dist <= kMaxPartitionSpacing * height) {
1265 if (dist < best_dist) {
1266 best_dist = dist;
1267 best_neighbour = neighbour;
1268 }
1269 } else {
1270 break;
1271 }
1272 }
1273 if (best_neighbour != nullptr) {
1274 part->AddPartner(upper, best_neighbour);
1275 }
1276 }
1277
1278 // Finds the best partner in the given direction for the given partition.
1279 // Stores the result with AddPartner.
FindVPartitionPartners(bool to_the_left,ColPartition * part)1280 void ColPartitionGrid::FindVPartitionPartners(bool to_the_left,
1281 ColPartition *part) {
1282 if (part->type() == PT_NOISE) {
1283 return; // Noise is not allowed to partner anything.
1284 }
1285 const TBOX &box = part->bounding_box();
1286 int left = part->median_left();
1287 int right = part->median_right();
1288 int width = right >= left ? right - left : -1;
1289 int mid_x = (left + right) / 2;
1290 ColPartitionGridSearch hsearch(this);
1291 // Search left for neighbour to_the_left
1292 hsearch.StartSideSearch(mid_x, box.bottom(), box.top());
1293 ColPartition *neighbour;
1294 ColPartition *best_neighbour = nullptr;
1295 int best_dist = INT32_MAX;
1296 while ((neighbour = hsearch.NextSideSearch(to_the_left)) != nullptr) {
1297 if (neighbour == part || neighbour->type() == PT_NOISE) {
1298 continue; // Noise is not allowed to partner anything.
1299 }
1300 int neighbour_left = neighbour->median_left();
1301 int neighbour_right = neighbour->median_right();
1302 int neighbour_x = (neighbour_left + neighbour_right) / 2;
1303 if (to_the_left != (neighbour_x < mid_x)) {
1304 continue;
1305 }
1306 if (!part->VOverlaps(*neighbour)) {
1307 continue;
1308 }
1309 if (!part->TypesMatch(*neighbour)) {
1310 continue; // Only match to other vertical text.
1311 }
1312 int dist = to_the_left ? left - neighbour_right : neighbour_left - right;
1313 if (dist <= kMaxPartitionSpacing * width) {
1314 if (dist < best_dist || best_neighbour == nullptr) {
1315 best_dist = dist;
1316 best_neighbour = neighbour;
1317 }
1318 } else {
1319 break;
1320 }
1321 }
1322 // For vertical partitions, the upper partner is to the left, and lower is
1323 // to the right.
1324 if (best_neighbour != nullptr) {
1325 part->AddPartner(to_the_left, best_neighbour);
1326 }
1327 }
1328
1329 // For every ColPartition with multiple partners in the grid, reduces the
1330 // number of partners to 0 or 1. If get_desperate is true, goes to more
1331 // desperate merge methods to merge flowing text before breaking partnerships.
RefinePartitionPartners(bool get_desperate)1332 void ColPartitionGrid::RefinePartitionPartners(bool get_desperate) {
1333 ColPartitionGridSearch gsearch(this);
1334 // Refine in type order so that chasing multiple partners can be done
1335 // before eliminating type mis-matching partners.
1336 for (int type = PT_UNKNOWN + 1; type <= PT_COUNT; type++) {
1337 // Iterate the ColPartitions in the grid.
1338 gsearch.StartFullSearch();
1339 ColPartition *part;
1340 while ((part = gsearch.NextFullSearch()) != nullptr) {
1341 part->RefinePartners(static_cast<PolyBlockType>(type), get_desperate,
1342 this);
1343 // Iterator may have been messed up by a merge.
1344 gsearch.RepositionIterator();
1345 }
1346 }
1347 }
1348
1349 // ========================== PRIVATE CODE ========================
1350
1351 // Finds and returns a list of candidate ColPartitions to merge with part.
1352 // The candidates must overlap search_box, and when merged must not
1353 // overlap any other partitions that are not overlapped by each individually.
FindMergeCandidates(const ColPartition * part,const TBOX & search_box,bool debug,ColPartition_CLIST * candidates)1354 void ColPartitionGrid::FindMergeCandidates(const ColPartition *part,
1355 const TBOX &search_box, bool debug,
1356 ColPartition_CLIST *candidates) {
1357 int ok_overlap =
1358 static_cast<int>(kTinyEnoughTextlineOverlapFraction * gridsize() + 0.5);
1359 const TBOX &part_box = part->bounding_box();
1360 // Now run the rect search.
1361 ColPartitionGridSearch rsearch(this);
1362 rsearch.SetUniqueMode(true);
1363 rsearch.StartRectSearch(search_box);
1364 ColPartition *candidate;
1365 while ((candidate = rsearch.NextRectSearch()) != nullptr) {
1366 if (!OKMergeCandidate(part, candidate, debug)) {
1367 continue;
1368 }
1369 const TBOX &c_box = candidate->bounding_box();
1370 // Candidate seems to be a potential merge with part. If one contains
1371 // the other, then the merge is a no-brainer. Otherwise, search the
1372 // combined box to see if anything else is inappropriately overlapped.
1373 if (!part_box.contains(c_box) && !c_box.contains(part_box)) {
1374 // Search the combined rectangle to see if anything new is overlapped.
1375 // This is a preliminary test designed to quickly weed-out poor
1376 // merge candidates that would create a big list of overlapped objects
1377 // for the squared-order overlap analysis. Eg. vertical and horizontal
1378 // line-like objects that overlap real text when merged:
1379 // || ==========================
1380 // ||
1381 // || r e a l t e x t
1382 // ||
1383 // ||
1384 TBOX merged_box(part_box);
1385 merged_box += c_box;
1386 ColPartitionGridSearch msearch(this);
1387 msearch.SetUniqueMode(true);
1388 msearch.StartRectSearch(merged_box);
1389 ColPartition *neighbour;
1390 while ((neighbour = msearch.NextRectSearch()) != nullptr) {
1391 if (neighbour == part || neighbour == candidate) {
1392 continue; // Ignore itself.
1393 }
1394 if (neighbour->OKMergeOverlap(*part, *candidate, ok_overlap, false)) {
1395 continue; // This kind of merge overlap is OK.
1396 }
1397 TBOX n_box = neighbour->bounding_box();
1398 // The overlap is OK if:
1399 // * the n_box already overlapped the part or the candidate OR
1400 // * the n_box is a suitable merge with either part or candidate
1401 if (!n_box.overlap(part_box) && !n_box.overlap(c_box) &&
1402 !OKMergeCandidate(part, neighbour, false) &&
1403 !OKMergeCandidate(candidate, neighbour, false)) {
1404 break;
1405 }
1406 }
1407 if (neighbour != nullptr) {
1408 if (debug) {
1409 tprintf(
1410 "Combined box overlaps another that is not OK despite"
1411 " allowance of %d:",
1412 ok_overlap);
1413 neighbour->bounding_box().print();
1414 tprintf("Reason:");
1415 OKMergeCandidate(part, neighbour, true);
1416 tprintf("...and:");
1417 OKMergeCandidate(candidate, neighbour, true);
1418 tprintf("Overlap:");
1419 neighbour->OKMergeOverlap(*part, *candidate, ok_overlap, true);
1420 }
1421 continue;
1422 }
1423 }
1424 if (debug) {
1425 tprintf("Adding candidate:");
1426 candidate->bounding_box().print();
1427 }
1428 // Unique elements as they arrive.
1429 candidates->add_sorted(SortByBoxLeft<ColPartition>, true, candidate);
1430 }
1431 }
1432
1433 // Smoothes the region type/flow type of the given part by looking at local
1434 // neighbours and the given image mask. Searches a padded rectangle with the
1435 // padding truncated on one size of the part's box in turn for each side,
1436 // using the result (if any) that has the least distance to all neighbours
1437 // that contribute to the decision. This biases in favor of rectangular
1438 // regions without completely enforcing them.
1439 // If a good decision cannot be reached, the part is left unchanged.
1440 // im_box and rerotation are used to map blob coordinates onto the
1441 // nontext_map, which is used to prevent the spread of text neighbourhoods
1442 // into images.
1443 // Returns true if the partition was changed.
SmoothRegionType(Image nontext_map,const TBOX & im_box,const FCOORD & rerotation,bool debug,ColPartition * part)1444 bool ColPartitionGrid::SmoothRegionType(Image nontext_map, const TBOX &im_box,
1445 const FCOORD &rerotation, bool debug,
1446 ColPartition *part) {
1447 const TBOX &part_box = part->bounding_box();
1448 if (debug) {
1449 tprintf("Smooothing part at:");
1450 part_box.print();
1451 }
1452 BlobRegionType best_type = BRT_UNKNOWN;
1453 int best_dist = INT32_MAX;
1454 int max_dist = std::min(part_box.width(), part_box.height());
1455 max_dist = std::max(max_dist * kMaxNeighbourDistFactor, gridsize() * 2);
1456 // Search with the pad truncated on each side of the box in turn.
1457 bool any_image = false;
1458 bool all_image = true;
1459 for (int d = 0; d < BND_COUNT; ++d) {
1460 int dist;
1461 auto dir = static_cast<BlobNeighbourDir>(d);
1462 BlobRegionType type = SmoothInOneDirection(dir, nontext_map, im_box,
1463 rerotation, debug, *part, &dist);
1464 if (debug) {
1465 tprintf("Result in dir %d = %d at dist %d\n", dir, type, dist);
1466 }
1467 if (type != BRT_UNKNOWN && dist < best_dist) {
1468 best_dist = dist;
1469 best_type = type;
1470 }
1471 if (type == BRT_POLYIMAGE) {
1472 any_image = true;
1473 } else {
1474 all_image = false;
1475 }
1476 }
1477 if (best_dist > max_dist) {
1478 return false; // Too far away to set the type with it.
1479 }
1480 if (part->flow() == BTFT_STRONG_CHAIN && !all_image) {
1481 return false; // We are not modifying it.
1482 }
1483 BlobRegionType new_type = part->blob_type();
1484 BlobTextFlowType new_flow = part->flow();
1485 if (best_type == BRT_TEXT && !any_image) {
1486 new_flow = BTFT_STRONG_CHAIN;
1487 new_type = BRT_TEXT;
1488 } else if (best_type == BRT_VERT_TEXT && !any_image) {
1489 new_flow = BTFT_STRONG_CHAIN;
1490 new_type = BRT_VERT_TEXT;
1491 } else if (best_type == BRT_POLYIMAGE) {
1492 new_flow = BTFT_NONTEXT;
1493 new_type = BRT_UNKNOWN;
1494 }
1495 if (new_type != part->blob_type() || new_flow != part->flow()) {
1496 part->set_flow(new_flow);
1497 part->set_blob_type(new_type);
1498 part->SetBlobTypes();
1499 if (debug) {
1500 tprintf("Modified part:");
1501 part->Print();
1502 }
1503 return true;
1504 } else {
1505 return false;
1506 }
1507 }
1508
1509 // Sets up a search box based on the part_box, padded in all directions
1510 // except direction. Also setup dist_scaling to weight x,y distances according
1511 // to the given direction.
ComputeSearchBoxAndScaling(BlobNeighbourDir direction,const TBOX & part_box,int min_padding,TBOX * search_box,ICOORD * dist_scaling)1512 static void ComputeSearchBoxAndScaling(BlobNeighbourDir direction,
1513 const TBOX &part_box, int min_padding,
1514 TBOX *search_box, ICOORD *dist_scaling) {
1515 *search_box = part_box;
1516 // Generate a pad value based on the min dimension of part_box, but at least
1517 // min_padding and then scaled by kMaxPadFactor.
1518 int padding = std::min(part_box.height(), part_box.width());
1519 padding = std::max(padding, min_padding);
1520 padding *= kMaxPadFactor;
1521 search_box->pad(padding, padding);
1522 // Truncate the box in the appropriate direction and make the distance
1523 // metric slightly biased in the truncated direction.
1524 switch (direction) {
1525 case BND_LEFT:
1526 search_box->set_left(part_box.left());
1527 *dist_scaling = ICOORD(2, 1);
1528 break;
1529 case BND_BELOW:
1530 search_box->set_bottom(part_box.bottom());
1531 *dist_scaling = ICOORD(1, 2);
1532 break;
1533 case BND_RIGHT:
1534 search_box->set_right(part_box.right());
1535 *dist_scaling = ICOORD(2, 1);
1536 break;
1537 case BND_ABOVE:
1538 search_box->set_top(part_box.top());
1539 *dist_scaling = ICOORD(1, 2);
1540 break;
1541 default:
1542 ASSERT_HOST(false);
1543 }
1544 }
1545
1546 // Local enum used by SmoothInOneDirection and AccumulatePartDistances
1547 // for the different types of partition neighbour.
1548 enum NeighbourPartitionType {
1549 NPT_HTEXT, // Definite horizontal text.
1550 NPT_VTEXT, // Definite vertical text.
1551 NPT_WEAK_HTEXT, // Weakly horizontal text. Counts as HTEXT for HTEXT, but
1552 // image for image and VTEXT.
1553 NPT_WEAK_VTEXT, // Weakly vertical text. Counts as VTEXT for VTEXT, but
1554 // image for image and HTEXT.
1555 NPT_IMAGE, // Defininte non-text.
1556 NPT_COUNT // Number of array elements.
1557 };
1558
1559 // Executes the search for SmoothRegionType in a single direction.
1560 // Creates a bounding box that is padded in all directions except direction,
1561 // and searches it for other partitions. Finds the nearest collection of
1562 // partitions that makes a decisive result (if any) and returns the type
1563 // and the distance of the collection. If there are any pixels in the
1564 // nontext_map, then the decision is biased towards image.
SmoothInOneDirection(BlobNeighbourDir direction,Image nontext_map,const TBOX & im_box,const FCOORD & rerotation,bool debug,const ColPartition & part,int * best_distance)1565 BlobRegionType ColPartitionGrid::SmoothInOneDirection(
1566 BlobNeighbourDir direction, Image nontext_map, const TBOX &im_box,
1567 const FCOORD &rerotation, bool debug, const ColPartition &part,
1568 int *best_distance) {
1569 // Set up a rectangle search bounded by the part.
1570 const TBOX &part_box = part.bounding_box();
1571 TBOX search_box;
1572 ICOORD dist_scaling;
1573 ComputeSearchBoxAndScaling(direction, part_box, gridsize(), &search_box,
1574 &dist_scaling);
1575 bool image_region = ImageFind::CountPixelsInRotatedBox(
1576 search_box, im_box, rerotation, nontext_map) > 0;
1577 std::vector<int> dists[NPT_COUNT];
1578 AccumulatePartDistances(part, dist_scaling, search_box, nontext_map, im_box,
1579 rerotation, debug, dists);
1580 // By iteratively including the next smallest distance across the vectors,
1581 // (as in a merge sort) we can use the vector indices as counts of each type
1582 // and find the nearest set of objects that give us a definite decision.
1583 unsigned counts[NPT_COUNT];
1584 memset(counts, 0, sizeof(counts));
1585 // If there is image in the search box, tip the balance in image's favor.
1586 int image_bias = image_region ? kSmoothDecisionMargin / 2 : 0;
1587 BlobRegionType text_dir = part.blob_type();
1588 BlobTextFlowType flow_type = part.flow();
1589 int min_dist = 0;
1590 do {
1591 // Find the minimum new entry across the vectors
1592 min_dist = INT32_MAX;
1593 for (int i = 0; i < NPT_COUNT; ++i) {
1594 if (counts[i] < dists[i].size() && dists[i][counts[i]] < min_dist) {
1595 min_dist = dists[i][counts[i]];
1596 }
1597 }
1598 // Step all the indices/counts forward to include min_dist.
1599 for (int i = 0; i < NPT_COUNT; ++i) {
1600 while (counts[i] < dists[i].size() && dists[i][counts[i]] <= min_dist) {
1601 ++counts[i];
1602 }
1603 }
1604 *best_distance = min_dist;
1605 if (debug) {
1606 tprintf("Totals: htext=%u+%u, vtext=%u+%u, image=%u+%u, at dist=%d\n",
1607 counts[NPT_HTEXT], counts[NPT_WEAK_HTEXT], counts[NPT_VTEXT],
1608 counts[NPT_WEAK_VTEXT], counts[NPT_IMAGE], image_bias, min_dist);
1609 }
1610 // See if we have a decision yet.
1611 auto image_count = counts[NPT_IMAGE];
1612 auto htext_score = counts[NPT_HTEXT] + counts[NPT_WEAK_HTEXT] -
1613 (image_count + counts[NPT_WEAK_VTEXT]);
1614 auto vtext_score = counts[NPT_VTEXT] + counts[NPT_WEAK_VTEXT] -
1615 (image_count + counts[NPT_WEAK_HTEXT]);
1616 if (image_count > 0 && image_bias - htext_score >= kSmoothDecisionMargin &&
1617 image_bias - vtext_score >= kSmoothDecisionMargin) {
1618 *best_distance = dists[NPT_IMAGE][0];
1619 if (!dists[NPT_WEAK_VTEXT].empty() &&
1620 *best_distance > dists[NPT_WEAK_VTEXT][0]) {
1621 *best_distance = dists[NPT_WEAK_VTEXT][0];
1622 }
1623 if (!dists[NPT_WEAK_HTEXT].empty() &&
1624 *best_distance > dists[NPT_WEAK_HTEXT][0]) {
1625 *best_distance = dists[NPT_WEAK_HTEXT][0];
1626 }
1627 return BRT_POLYIMAGE;
1628 }
1629 if ((text_dir != BRT_VERT_TEXT || flow_type != BTFT_CHAIN) &&
1630 counts[NPT_HTEXT] > 0 && htext_score >= kSmoothDecisionMargin) {
1631 *best_distance = dists[NPT_HTEXT][0];
1632 return BRT_TEXT;
1633 } else if ((text_dir != BRT_TEXT || flow_type != BTFT_CHAIN) &&
1634 counts[NPT_VTEXT] > 0 && vtext_score >= kSmoothDecisionMargin) {
1635 *best_distance = dists[NPT_VTEXT][0];
1636 return BRT_VERT_TEXT;
1637 }
1638 } while (min_dist < INT32_MAX);
1639 return BRT_UNKNOWN;
1640 }
1641
1642 // Counts the partitions in the given search_box by appending the gap
1643 // distance (scaled by dist_scaling) of the part from the base_part to the
1644 // vector of the appropriate type for the partition. Prior to return, the
1645 // vectors in the dists array are sorted in increasing order.
1646 // The nontext_map (+im_box, rerotation) is used to make text invisible if
1647 // there is non-text in between.
1648 // dists must be an array of vectors of size NPT_COUNT.
AccumulatePartDistances(const ColPartition & base_part,const ICOORD & dist_scaling,const TBOX & search_box,Image nontext_map,const TBOX & im_box,const FCOORD & rerotation,bool debug,std::vector<int> * dists)1649 void ColPartitionGrid::AccumulatePartDistances(
1650 const ColPartition &base_part, const ICOORD &dist_scaling,
1651 const TBOX &search_box, Image nontext_map, const TBOX &im_box,
1652 const FCOORD &rerotation, bool debug, std::vector<int> *dists) {
1653 const TBOX &part_box = base_part.bounding_box();
1654 ColPartitionGridSearch rsearch(this);
1655 rsearch.SetUniqueMode(true);
1656 rsearch.StartRectSearch(search_box);
1657 ColPartition *neighbour;
1658 // Search for compatible neighbours with a similar strokewidth, but not
1659 // on the other side of a tab vector.
1660 while ((neighbour = rsearch.NextRectSearch()) != nullptr) {
1661 if (neighbour->IsUnMergeableType() ||
1662 !base_part.ConfirmNoTabViolation(*neighbour) ||
1663 neighbour == &base_part) {
1664 continue;
1665 }
1666 TBOX nbox = neighbour->bounding_box();
1667 BlobRegionType n_type = neighbour->blob_type();
1668 if ((n_type == BRT_TEXT || n_type == BRT_VERT_TEXT) &&
1669 !ImageFind::BlankImageInBetween(part_box, nbox, im_box, rerotation,
1670 nontext_map)) {
1671 continue; // Text not visible the other side of image.
1672 }
1673 if (BLOBNBOX::IsLineType(n_type)) {
1674 continue; // Don't use horizontal lines as neighbours.
1675 }
1676 int x_gap = std::max(part_box.x_gap(nbox), 0);
1677 int y_gap = std::max(part_box.y_gap(nbox), 0);
1678 int n_dist = x_gap * dist_scaling.x() + y_gap * dist_scaling.y();
1679 if (debug) {
1680 tprintf("Part has x-gap=%d, y=%d, dist=%d at:", x_gap, y_gap, n_dist);
1681 nbox.print();
1682 }
1683 // Truncate the number of boxes, so text doesn't get too much advantage.
1684 int n_boxes = std::min(neighbour->boxes_count(), kSmoothDecisionMargin);
1685 BlobTextFlowType n_flow = neighbour->flow();
1686 std::vector<int> *count_vector = nullptr;
1687 if (n_flow == BTFT_STRONG_CHAIN) {
1688 if (n_type == BRT_TEXT) {
1689 count_vector = &dists[NPT_HTEXT];
1690 } else {
1691 count_vector = &dists[NPT_VTEXT];
1692 }
1693 if (debug) {
1694 tprintf("%s %d\n", n_type == BRT_TEXT ? "Htext" : "Vtext", n_boxes);
1695 }
1696 } else if ((n_type == BRT_TEXT || n_type == BRT_VERT_TEXT) &&
1697 (n_flow == BTFT_CHAIN || n_flow == BTFT_NEIGHBOURS)) {
1698 // Medium text counts as weak, and all else counts as image.
1699 if (n_type == BRT_TEXT) {
1700 count_vector = &dists[NPT_WEAK_HTEXT];
1701 } else {
1702 count_vector = &dists[NPT_WEAK_VTEXT];
1703 }
1704 if (debug) {
1705 tprintf("Weak %d\n", n_boxes);
1706 }
1707 } else {
1708 count_vector = &dists[NPT_IMAGE];
1709 if (debug) {
1710 tprintf("Image %d\n", n_boxes);
1711 }
1712 }
1713 if (count_vector != nullptr) {
1714 for (int i = 0; i < n_boxes; ++i) {
1715 count_vector->push_back(n_dist);
1716 }
1717 }
1718 if (debug) {
1719 neighbour->Print();
1720 }
1721 }
1722 for (int i = 0; i < NPT_COUNT; ++i) {
1723 std::sort(dists[i].begin(), dists[i].end());
1724 }
1725 }
1726
1727 // Improves the margins of the part ColPartition by searching for
1728 // neighbours that vertically overlap significantly.
1729 // columns may be nullptr, and indicates the assigned column structure this
1730 // is applicable to part.
FindPartitionMargins(ColPartitionSet * columns,ColPartition * part)1731 void ColPartitionGrid::FindPartitionMargins(ColPartitionSet *columns,
1732 ColPartition *part) {
1733 // Set up a rectangle search x-bounded by the column and y by the part.
1734 TBOX box = part->bounding_box();
1735 int y = part->MidY();
1736 // Initial left margin is based on the column, if there is one.
1737 int left_margin = bleft().x();
1738 int right_margin = tright().x();
1739 if (columns != nullptr) {
1740 ColPartition *column = columns->ColumnContaining(box.left(), y);
1741 if (column != nullptr) {
1742 left_margin = column->LeftAtY(y);
1743 }
1744 column = columns->ColumnContaining(box.right(), y);
1745 if (column != nullptr) {
1746 right_margin = column->RightAtY(y);
1747 }
1748 }
1749 left_margin -= kColumnWidthFactor;
1750 right_margin += kColumnWidthFactor;
1751 // Search for ColPartitions that reduce the margin.
1752 left_margin = FindMargin(box.left() + box.height(), true, left_margin,
1753 box.bottom(), box.top(), part);
1754 part->set_left_margin(left_margin);
1755 // Search for ColPartitions that reduce the margin.
1756 right_margin = FindMargin(box.right() - box.height(), false, right_margin,
1757 box.bottom(), box.top(), part);
1758 part->set_right_margin(right_margin);
1759 }
1760
1761 // Starting at x, and going in the specified direction, up to x_limit, finds
1762 // the margin for the given y range by searching sideways,
1763 // and ignoring not_this.
FindMargin(int x,bool right_to_left,int x_limit,int y_bottom,int y_top,const ColPartition * not_this)1764 int ColPartitionGrid::FindMargin(int x, bool right_to_left, int x_limit,
1765 int y_bottom, int y_top,
1766 const ColPartition *not_this) {
1767 int height = y_top - y_bottom;
1768 // Iterate the ColPartitions in the grid.
1769 ColPartitionGridSearch side_search(this);
1770 side_search.SetUniqueMode(true);
1771 side_search.StartSideSearch(x, y_bottom, y_top);
1772 ColPartition *part;
1773 while ((part = side_search.NextSideSearch(right_to_left)) != nullptr) {
1774 // Ignore itself.
1775 if (part == not_this) { // || part->IsLineType())
1776 continue;
1777 }
1778 // Must overlap by enough, based on the min of the heights, so
1779 // large partitions can't smash through small ones.
1780 TBOX box = part->bounding_box();
1781 int min_overlap = std::min(height, static_cast<int>(box.height()));
1782 min_overlap = static_cast<int>(min_overlap * kMarginOverlapFraction + 0.5);
1783 int y_overlap = std::min(y_top, static_cast<int>(box.top())) -
1784 std::max(y_bottom, static_cast<int>(box.bottom()));
1785 if (y_overlap < min_overlap) {
1786 continue;
1787 }
1788 // Must be going the right way.
1789 int x_edge = right_to_left ? box.right() : box.left();
1790 if ((x_edge < x) != right_to_left) {
1791 continue;
1792 }
1793 // If we have gone past x_limit, then x_limit will do.
1794 if ((x_edge < x_limit) == right_to_left) {
1795 break;
1796 }
1797 // It reduces x limit, so save the new one.
1798 x_limit = x_edge;
1799 }
1800 return x_limit;
1801 }
1802
1803 } // namespace tesseract.
1804