1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
10 //
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/TargetFolder.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/Config/config.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantFold.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/IntrinsicsAArch64.h"
46 #include "llvm/IR/IntrinsicsAMDGPU.h"
47 #include "llvm/IR/IntrinsicsARM.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/KnownBits.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <cassert>
58 #include <cerrno>
59 #include <cfenv>
60 #include <cmath>
61 #include <cstdint>
62
63 using namespace llvm;
64
65 namespace {
66
67 //===----------------------------------------------------------------------===//
68 // Constant Folding internal helper functions
69 //===----------------------------------------------------------------------===//
70
foldConstVectorToAPInt(APInt & Result,Type * DestTy,Constant * C,Type * SrcEltTy,unsigned NumSrcElts,const DataLayout & DL)71 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
72 Constant *C, Type *SrcEltTy,
73 unsigned NumSrcElts,
74 const DataLayout &DL) {
75 // Now that we know that the input value is a vector of integers, just shift
76 // and insert them into our result.
77 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
78 for (unsigned i = 0; i != NumSrcElts; ++i) {
79 Constant *Element;
80 if (DL.isLittleEndian())
81 Element = C->getAggregateElement(NumSrcElts - i - 1);
82 else
83 Element = C->getAggregateElement(i);
84
85 if (Element && isa<UndefValue>(Element)) {
86 Result <<= BitShift;
87 continue;
88 }
89
90 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
91 if (!ElementCI)
92 return ConstantExpr::getBitCast(C, DestTy);
93
94 Result <<= BitShift;
95 Result |= ElementCI->getValue().zext(Result.getBitWidth());
96 }
97
98 return nullptr;
99 }
100
101 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
102 /// This always returns a non-null constant, but it may be a
103 /// ConstantExpr if unfoldable.
FoldBitCast(Constant * C,Type * DestTy,const DataLayout & DL)104 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
105 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
106 "Invalid constantexpr bitcast!");
107
108 // Catch the obvious splat cases.
109 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
110 return Res;
111
112 if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
113 // Handle a vector->scalar integer/fp cast.
114 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
115 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
116 Type *SrcEltTy = VTy->getElementType();
117
118 // If the vector is a vector of floating point, convert it to vector of int
119 // to simplify things.
120 if (SrcEltTy->isFloatingPointTy()) {
121 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
122 auto *SrcIVTy = FixedVectorType::get(
123 IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
124 // Ask IR to do the conversion now that #elts line up.
125 C = ConstantExpr::getBitCast(C, SrcIVTy);
126 }
127
128 APInt Result(DL.getTypeSizeInBits(DestTy), 0);
129 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
130 SrcEltTy, NumSrcElts, DL))
131 return CE;
132
133 if (isa<IntegerType>(DestTy))
134 return ConstantInt::get(DestTy, Result);
135
136 APFloat FP(DestTy->getFltSemantics(), Result);
137 return ConstantFP::get(DestTy->getContext(), FP);
138 }
139 }
140
141 // The code below only handles casts to vectors currently.
142 auto *DestVTy = dyn_cast<VectorType>(DestTy);
143 if (!DestVTy)
144 return ConstantExpr::getBitCast(C, DestTy);
145
146 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
147 // vector so the code below can handle it uniformly.
148 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
149 Constant *Ops = C; // don't take the address of C!
150 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
151 }
152
153 // If this is a bitcast from constant vector -> vector, fold it.
154 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
155 return ConstantExpr::getBitCast(C, DestTy);
156
157 // If the element types match, IR can fold it.
158 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
159 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
160 if (NumDstElt == NumSrcElt)
161 return ConstantExpr::getBitCast(C, DestTy);
162
163 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
164 Type *DstEltTy = DestVTy->getElementType();
165
166 // Otherwise, we're changing the number of elements in a vector, which
167 // requires endianness information to do the right thing. For example,
168 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
169 // folds to (little endian):
170 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
171 // and to (big endian):
172 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
173
174 // First thing is first. We only want to think about integer here, so if
175 // we have something in FP form, recast it as integer.
176 if (DstEltTy->isFloatingPointTy()) {
177 // Fold to an vector of integers with same size as our FP type.
178 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
179 auto *DestIVTy = FixedVectorType::get(
180 IntegerType::get(C->getContext(), FPWidth), NumDstElt);
181 // Recursively handle this integer conversion, if possible.
182 C = FoldBitCast(C, DestIVTy, DL);
183
184 // Finally, IR can handle this now that #elts line up.
185 return ConstantExpr::getBitCast(C, DestTy);
186 }
187
188 // Okay, we know the destination is integer, if the input is FP, convert
189 // it to integer first.
190 if (SrcEltTy->isFloatingPointTy()) {
191 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
192 auto *SrcIVTy = FixedVectorType::get(
193 IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
194 // Ask IR to do the conversion now that #elts line up.
195 C = ConstantExpr::getBitCast(C, SrcIVTy);
196 // If IR wasn't able to fold it, bail out.
197 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
198 !isa<ConstantDataVector>(C))
199 return C;
200 }
201
202 // Now we know that the input and output vectors are both integer vectors
203 // of the same size, and that their #elements is not the same. Do the
204 // conversion here, which depends on whether the input or output has
205 // more elements.
206 bool isLittleEndian = DL.isLittleEndian();
207
208 SmallVector<Constant*, 32> Result;
209 if (NumDstElt < NumSrcElt) {
210 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
211 Constant *Zero = Constant::getNullValue(DstEltTy);
212 unsigned Ratio = NumSrcElt/NumDstElt;
213 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
214 unsigned SrcElt = 0;
215 for (unsigned i = 0; i != NumDstElt; ++i) {
216 // Build each element of the result.
217 Constant *Elt = Zero;
218 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
219 for (unsigned j = 0; j != Ratio; ++j) {
220 Constant *Src = C->getAggregateElement(SrcElt++);
221 if (Src && isa<UndefValue>(Src))
222 Src = Constant::getNullValue(
223 cast<VectorType>(C->getType())->getElementType());
224 else
225 Src = dyn_cast_or_null<ConstantInt>(Src);
226 if (!Src) // Reject constantexpr elements.
227 return ConstantExpr::getBitCast(C, DestTy);
228
229 // Zero extend the element to the right size.
230 Src = ConstantExpr::getZExt(Src, Elt->getType());
231
232 // Shift it to the right place, depending on endianness.
233 Src = ConstantExpr::getShl(Src,
234 ConstantInt::get(Src->getType(), ShiftAmt));
235 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
236
237 // Mix it in.
238 Elt = ConstantExpr::getOr(Elt, Src);
239 }
240 Result.push_back(Elt);
241 }
242 return ConstantVector::get(Result);
243 }
244
245 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
246 unsigned Ratio = NumDstElt/NumSrcElt;
247 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
248
249 // Loop over each source value, expanding into multiple results.
250 for (unsigned i = 0; i != NumSrcElt; ++i) {
251 auto *Element = C->getAggregateElement(i);
252
253 if (!Element) // Reject constantexpr elements.
254 return ConstantExpr::getBitCast(C, DestTy);
255
256 if (isa<UndefValue>(Element)) {
257 // Correctly Propagate undef values.
258 Result.append(Ratio, UndefValue::get(DstEltTy));
259 continue;
260 }
261
262 auto *Src = dyn_cast<ConstantInt>(Element);
263 if (!Src)
264 return ConstantExpr::getBitCast(C, DestTy);
265
266 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
267 for (unsigned j = 0; j != Ratio; ++j) {
268 // Shift the piece of the value into the right place, depending on
269 // endianness.
270 Constant *Elt = ConstantExpr::getLShr(Src,
271 ConstantInt::get(Src->getType(), ShiftAmt));
272 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
273
274 // Truncate the element to an integer with the same pointer size and
275 // convert the element back to a pointer using a inttoptr.
276 if (DstEltTy->isPointerTy()) {
277 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
278 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
279 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
280 continue;
281 }
282
283 // Truncate and remember this piece.
284 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
285 }
286 }
287
288 return ConstantVector::get(Result);
289 }
290
291 } // end anonymous namespace
292
293 /// If this constant is a constant offset from a global, return the global and
294 /// the constant. Because of constantexprs, this function is recursive.
IsConstantOffsetFromGlobal(Constant * C,GlobalValue * & GV,APInt & Offset,const DataLayout & DL,DSOLocalEquivalent ** DSOEquiv)295 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
296 APInt &Offset, const DataLayout &DL,
297 DSOLocalEquivalent **DSOEquiv) {
298 if (DSOEquiv)
299 *DSOEquiv = nullptr;
300
301 // Trivial case, constant is the global.
302 if ((GV = dyn_cast<GlobalValue>(C))) {
303 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
304 Offset = APInt(BitWidth, 0);
305 return true;
306 }
307
308 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
309 if (DSOEquiv)
310 *DSOEquiv = FoundDSOEquiv;
311 GV = FoundDSOEquiv->getGlobalValue();
312 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
313 Offset = APInt(BitWidth, 0);
314 return true;
315 }
316
317 // Otherwise, if this isn't a constant expr, bail out.
318 auto *CE = dyn_cast<ConstantExpr>(C);
319 if (!CE) return false;
320
321 // Look through ptr->int and ptr->ptr casts.
322 if (CE->getOpcode() == Instruction::PtrToInt ||
323 CE->getOpcode() == Instruction::BitCast)
324 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
325 DSOEquiv);
326
327 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
328 auto *GEP = dyn_cast<GEPOperator>(CE);
329 if (!GEP)
330 return false;
331
332 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
333 APInt TmpOffset(BitWidth, 0);
334
335 // If the base isn't a global+constant, we aren't either.
336 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
337 DSOEquiv))
338 return false;
339
340 // Otherwise, add any offset that our operands provide.
341 if (!GEP->accumulateConstantOffset(DL, TmpOffset))
342 return false;
343
344 Offset = TmpOffset;
345 return true;
346 }
347
ConstantFoldLoadThroughBitcast(Constant * C,Type * DestTy,const DataLayout & DL)348 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
349 const DataLayout &DL) {
350 do {
351 Type *SrcTy = C->getType();
352 if (SrcTy == DestTy)
353 return C;
354
355 TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
356 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
357 if (!TypeSize::isKnownGE(SrcSize, DestSize))
358 return nullptr;
359
360 // Catch the obvious splat cases (since all-zeros can coerce non-integral
361 // pointers legally).
362 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
363 return Res;
364
365 // If the type sizes are the same and a cast is legal, just directly
366 // cast the constant.
367 // But be careful not to coerce non-integral pointers illegally.
368 if (SrcSize == DestSize &&
369 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
370 DL.isNonIntegralPointerType(DestTy->getScalarType())) {
371 Instruction::CastOps Cast = Instruction::BitCast;
372 // If we are going from a pointer to int or vice versa, we spell the cast
373 // differently.
374 if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
375 Cast = Instruction::IntToPtr;
376 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
377 Cast = Instruction::PtrToInt;
378
379 if (CastInst::castIsValid(Cast, C, DestTy))
380 return ConstantExpr::getCast(Cast, C, DestTy);
381 }
382
383 // If this isn't an aggregate type, there is nothing we can do to drill down
384 // and find a bitcastable constant.
385 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
386 return nullptr;
387
388 // We're simulating a load through a pointer that was bitcast to point to
389 // a different type, so we can try to walk down through the initial
390 // elements of an aggregate to see if some part of the aggregate is
391 // castable to implement the "load" semantic model.
392 if (SrcTy->isStructTy()) {
393 // Struct types might have leading zero-length elements like [0 x i32],
394 // which are certainly not what we are looking for, so skip them.
395 unsigned Elem = 0;
396 Constant *ElemC;
397 do {
398 ElemC = C->getAggregateElement(Elem++);
399 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
400 C = ElemC;
401 } else {
402 // For non-byte-sized vector elements, the first element is not
403 // necessarily located at the vector base address.
404 if (auto *VT = dyn_cast<VectorType>(SrcTy))
405 if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
406 return nullptr;
407
408 C = C->getAggregateElement(0u);
409 }
410 } while (C);
411
412 return nullptr;
413 }
414
415 namespace {
416
417 /// Recursive helper to read bits out of global. C is the constant being copied
418 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
419 /// results into and BytesLeft is the number of bytes left in
420 /// the CurPtr buffer. DL is the DataLayout.
ReadDataFromGlobal(Constant * C,uint64_t ByteOffset,unsigned char * CurPtr,unsigned BytesLeft,const DataLayout & DL)421 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
422 unsigned BytesLeft, const DataLayout &DL) {
423 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
424 "Out of range access");
425
426 // If this element is zero or undefined, we can just return since *CurPtr is
427 // zero initialized.
428 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
429 return true;
430
431 if (auto *CI = dyn_cast<ConstantInt>(C)) {
432 if (CI->getBitWidth() > 64 ||
433 (CI->getBitWidth() & 7) != 0)
434 return false;
435
436 uint64_t Val = CI->getZExtValue();
437 unsigned IntBytes = unsigned(CI->getBitWidth()/8);
438
439 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
440 int n = ByteOffset;
441 if (!DL.isLittleEndian())
442 n = IntBytes - n - 1;
443 CurPtr[i] = (unsigned char)(Val >> (n * 8));
444 ++ByteOffset;
445 }
446 return true;
447 }
448
449 if (auto *CFP = dyn_cast<ConstantFP>(C)) {
450 if (CFP->getType()->isDoubleTy()) {
451 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
452 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
453 }
454 if (CFP->getType()->isFloatTy()){
455 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
456 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
457 }
458 if (CFP->getType()->isHalfTy()){
459 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
460 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
461 }
462 return false;
463 }
464
465 if (auto *CS = dyn_cast<ConstantStruct>(C)) {
466 const StructLayout *SL = DL.getStructLayout(CS->getType());
467 unsigned Index = SL->getElementContainingOffset(ByteOffset);
468 uint64_t CurEltOffset = SL->getElementOffset(Index);
469 ByteOffset -= CurEltOffset;
470
471 while (true) {
472 // If the element access is to the element itself and not to tail padding,
473 // read the bytes from the element.
474 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
475
476 if (ByteOffset < EltSize &&
477 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
478 BytesLeft, DL))
479 return false;
480
481 ++Index;
482
483 // Check to see if we read from the last struct element, if so we're done.
484 if (Index == CS->getType()->getNumElements())
485 return true;
486
487 // If we read all of the bytes we needed from this element we're done.
488 uint64_t NextEltOffset = SL->getElementOffset(Index);
489
490 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
491 return true;
492
493 // Move to the next element of the struct.
494 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
495 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
496 ByteOffset = 0;
497 CurEltOffset = NextEltOffset;
498 }
499 // not reached.
500 }
501
502 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
503 isa<ConstantDataSequential>(C)) {
504 uint64_t NumElts;
505 Type *EltTy;
506 if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
507 NumElts = AT->getNumElements();
508 EltTy = AT->getElementType();
509 } else {
510 NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
511 EltTy = cast<FixedVectorType>(C->getType())->getElementType();
512 }
513 uint64_t EltSize = DL.getTypeAllocSize(EltTy);
514 uint64_t Index = ByteOffset / EltSize;
515 uint64_t Offset = ByteOffset - Index * EltSize;
516
517 for (; Index != NumElts; ++Index) {
518 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
519 BytesLeft, DL))
520 return false;
521
522 uint64_t BytesWritten = EltSize - Offset;
523 assert(BytesWritten <= EltSize && "Not indexing into this element?");
524 if (BytesWritten >= BytesLeft)
525 return true;
526
527 Offset = 0;
528 BytesLeft -= BytesWritten;
529 CurPtr += BytesWritten;
530 }
531 return true;
532 }
533
534 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
535 if (CE->getOpcode() == Instruction::IntToPtr &&
536 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
537 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
538 BytesLeft, DL);
539 }
540 }
541
542 // Otherwise, unknown initializer type.
543 return false;
544 }
545
FoldReinterpretLoadFromConst(Constant * C,Type * LoadTy,int64_t Offset,const DataLayout & DL)546 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
547 int64_t Offset, const DataLayout &DL) {
548 // Bail out early. Not expect to load from scalable global variable.
549 if (isa<ScalableVectorType>(LoadTy))
550 return nullptr;
551
552 auto *IntType = dyn_cast<IntegerType>(LoadTy);
553
554 // If this isn't an integer load we can't fold it directly.
555 if (!IntType) {
556 // If this is a non-integer load, we can try folding it as an int load and
557 // then bitcast the result. This can be useful for union cases. Note
558 // that address spaces don't matter here since we're not going to result in
559 // an actual new load.
560 if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
561 !LoadTy->isVectorTy())
562 return nullptr;
563
564 Type *MapTy = Type::getIntNTy(C->getContext(),
565 DL.getTypeSizeInBits(LoadTy).getFixedValue());
566 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
567 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
568 !LoadTy->isX86_AMXTy())
569 // Materializing a zero can be done trivially without a bitcast
570 return Constant::getNullValue(LoadTy);
571 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
572 Res = FoldBitCast(Res, CastTy, DL);
573 if (LoadTy->isPtrOrPtrVectorTy()) {
574 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
575 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
576 !LoadTy->isX86_AMXTy())
577 return Constant::getNullValue(LoadTy);
578 if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
579 // Be careful not to replace a load of an addrspace value with an inttoptr here
580 return nullptr;
581 Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
582 }
583 return Res;
584 }
585 return nullptr;
586 }
587
588 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
589 if (BytesLoaded > 32 || BytesLoaded == 0)
590 return nullptr;
591
592 // If we're not accessing anything in this constant, the result is undefined.
593 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
594 return PoisonValue::get(IntType);
595
596 // TODO: We should be able to support scalable types.
597 TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
598 if (InitializerSize.isScalable())
599 return nullptr;
600
601 // If we're not accessing anything in this constant, the result is undefined.
602 if (Offset >= (int64_t)InitializerSize.getFixedValue())
603 return PoisonValue::get(IntType);
604
605 unsigned char RawBytes[32] = {0};
606 unsigned char *CurPtr = RawBytes;
607 unsigned BytesLeft = BytesLoaded;
608
609 // If we're loading off the beginning of the global, some bytes may be valid.
610 if (Offset < 0) {
611 CurPtr += -Offset;
612 BytesLeft += Offset;
613 Offset = 0;
614 }
615
616 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
617 return nullptr;
618
619 APInt ResultVal = APInt(IntType->getBitWidth(), 0);
620 if (DL.isLittleEndian()) {
621 ResultVal = RawBytes[BytesLoaded - 1];
622 for (unsigned i = 1; i != BytesLoaded; ++i) {
623 ResultVal <<= 8;
624 ResultVal |= RawBytes[BytesLoaded - 1 - i];
625 }
626 } else {
627 ResultVal = RawBytes[0];
628 for (unsigned i = 1; i != BytesLoaded; ++i) {
629 ResultVal <<= 8;
630 ResultVal |= RawBytes[i];
631 }
632 }
633
634 return ConstantInt::get(IntType->getContext(), ResultVal);
635 }
636
637 } // anonymous namespace
638
639 // If GV is a constant with an initializer read its representation starting
640 // at Offset and return it as a constant array of unsigned char. Otherwise
641 // return null.
ReadByteArrayFromGlobal(const GlobalVariable * GV,uint64_t Offset)642 Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV,
643 uint64_t Offset) {
644 if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
645 return nullptr;
646
647 const DataLayout &DL = GV->getParent()->getDataLayout();
648 Constant *Init = const_cast<Constant *>(GV->getInitializer());
649 TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
650 if (InitSize < Offset)
651 return nullptr;
652
653 uint64_t NBytes = InitSize - Offset;
654 if (NBytes > UINT16_MAX)
655 // Bail for large initializers in excess of 64K to avoid allocating
656 // too much memory.
657 // Offset is assumed to be less than or equal than InitSize (this
658 // is enforced in ReadDataFromGlobal).
659 return nullptr;
660
661 SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
662 unsigned char *CurPtr = RawBytes.data();
663
664 if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
665 return nullptr;
666
667 return ConstantDataArray::get(GV->getContext(), RawBytes);
668 }
669
670 /// If this Offset points exactly to the start of an aggregate element, return
671 /// that element, otherwise return nullptr.
getConstantAtOffset(Constant * Base,APInt Offset,const DataLayout & DL)672 Constant *getConstantAtOffset(Constant *Base, APInt Offset,
673 const DataLayout &DL) {
674 if (Offset.isZero())
675 return Base;
676
677 if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base))
678 return nullptr;
679
680 Type *ElemTy = Base->getType();
681 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
682 if (!Offset.isZero() || !Indices[0].isZero())
683 return nullptr;
684
685 Constant *C = Base;
686 for (const APInt &Index : drop_begin(Indices)) {
687 if (Index.isNegative() || Index.getActiveBits() >= 32)
688 return nullptr;
689
690 C = C->getAggregateElement(Index.getZExtValue());
691 if (!C)
692 return nullptr;
693 }
694
695 return C;
696 }
697
ConstantFoldLoadFromConst(Constant * C,Type * Ty,const APInt & Offset,const DataLayout & DL)698 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
699 const APInt &Offset,
700 const DataLayout &DL) {
701 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
702 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
703 return Result;
704
705 // Explicitly check for out-of-bounds access, so we return poison even if the
706 // constant is a uniform value.
707 TypeSize Size = DL.getTypeAllocSize(C->getType());
708 if (!Size.isScalable() && Offset.sge(Size.getFixedValue()))
709 return PoisonValue::get(Ty);
710
711 // Try an offset-independent fold of a uniform value.
712 if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty))
713 return Result;
714
715 // Try hard to fold loads from bitcasted strange and non-type-safe things.
716 if (Offset.getMinSignedBits() <= 64)
717 if (Constant *Result =
718 FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
719 return Result;
720
721 return nullptr;
722 }
723
ConstantFoldLoadFromConst(Constant * C,Type * Ty,const DataLayout & DL)724 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
725 const DataLayout &DL) {
726 return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL);
727 }
728
ConstantFoldLoadFromConstPtr(Constant * C,Type * Ty,APInt Offset,const DataLayout & DL)729 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
730 APInt Offset,
731 const DataLayout &DL) {
732 C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
733 DL, Offset, /* AllowNonInbounds */ true));
734
735 if (auto *GV = dyn_cast<GlobalVariable>(C))
736 if (GV->isConstant() && GV->hasDefinitiveInitializer())
737 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
738 Offset, DL))
739 return Result;
740
741 // If this load comes from anywhere in a uniform constant global, the value
742 // is always the same, regardless of the loaded offset.
743 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C))) {
744 if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
745 if (Constant *Res =
746 ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty))
747 return Res;
748 }
749 }
750
751 return nullptr;
752 }
753
ConstantFoldLoadFromConstPtr(Constant * C,Type * Ty,const DataLayout & DL)754 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
755 const DataLayout &DL) {
756 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
757 return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL);
758 }
759
ConstantFoldLoadFromUniformValue(Constant * C,Type * Ty)760 Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty) {
761 if (isa<PoisonValue>(C))
762 return PoisonValue::get(Ty);
763 if (isa<UndefValue>(C))
764 return UndefValue::get(Ty);
765 if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy())
766 return Constant::getNullValue(Ty);
767 if (C->isAllOnesValue() &&
768 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
769 return Constant::getAllOnesValue(Ty);
770 return nullptr;
771 }
772
773 namespace {
774
775 /// One of Op0/Op1 is a constant expression.
776 /// Attempt to symbolically evaluate the result of a binary operator merging
777 /// these together. If target data info is available, it is provided as DL,
778 /// otherwise DL is null.
SymbolicallyEvaluateBinop(unsigned Opc,Constant * Op0,Constant * Op1,const DataLayout & DL)779 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
780 const DataLayout &DL) {
781 // SROA
782
783 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
784 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
785 // bits.
786
787 if (Opc == Instruction::And) {
788 KnownBits Known0 = computeKnownBits(Op0, DL);
789 KnownBits Known1 = computeKnownBits(Op1, DL);
790 if ((Known1.One | Known0.Zero).isAllOnes()) {
791 // All the bits of Op0 that the 'and' could be masking are already zero.
792 return Op0;
793 }
794 if ((Known0.One | Known1.Zero).isAllOnes()) {
795 // All the bits of Op1 that the 'and' could be masking are already zero.
796 return Op1;
797 }
798
799 Known0 &= Known1;
800 if (Known0.isConstant())
801 return ConstantInt::get(Op0->getType(), Known0.getConstant());
802 }
803
804 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
805 // constant. This happens frequently when iterating over a global array.
806 if (Opc == Instruction::Sub) {
807 GlobalValue *GV1, *GV2;
808 APInt Offs1, Offs2;
809
810 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
811 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
812 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
813
814 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
815 // PtrToInt may change the bitwidth so we have convert to the right size
816 // first.
817 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
818 Offs2.zextOrTrunc(OpSize));
819 }
820 }
821
822 return nullptr;
823 }
824
825 /// If array indices are not pointer-sized integers, explicitly cast them so
826 /// that they aren't implicitly casted by the getelementptr.
CastGEPIndices(Type * SrcElemTy,ArrayRef<Constant * > Ops,Type * ResultTy,std::optional<unsigned> InRangeIndex,const DataLayout & DL,const TargetLibraryInfo * TLI)827 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
828 Type *ResultTy, std::optional<unsigned> InRangeIndex,
829 const DataLayout &DL, const TargetLibraryInfo *TLI) {
830 Type *IntIdxTy = DL.getIndexType(ResultTy);
831 Type *IntIdxScalarTy = IntIdxTy->getScalarType();
832
833 bool Any = false;
834 SmallVector<Constant*, 32> NewIdxs;
835 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
836 if ((i == 1 ||
837 !isa<StructType>(GetElementPtrInst::getIndexedType(
838 SrcElemTy, Ops.slice(1, i - 1)))) &&
839 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
840 Any = true;
841 Type *NewType = Ops[i]->getType()->isVectorTy()
842 ? IntIdxTy
843 : IntIdxScalarTy;
844 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
845 true,
846 NewType,
847 true),
848 Ops[i], NewType));
849 } else
850 NewIdxs.push_back(Ops[i]);
851 }
852
853 if (!Any)
854 return nullptr;
855
856 Constant *C = ConstantExpr::getGetElementPtr(
857 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
858 return ConstantFoldConstant(C, DL, TLI);
859 }
860
861 /// Strip the pointer casts, but preserve the address space information.
StripPtrCastKeepAS(Constant * Ptr)862 Constant *StripPtrCastKeepAS(Constant *Ptr) {
863 assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
864 auto *OldPtrTy = cast<PointerType>(Ptr->getType());
865 Ptr = cast<Constant>(Ptr->stripPointerCasts());
866 auto *NewPtrTy = cast<PointerType>(Ptr->getType());
867
868 // Preserve the address space number of the pointer.
869 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
870 Ptr = ConstantExpr::getPointerCast(
871 Ptr, PointerType::getWithSamePointeeType(NewPtrTy,
872 OldPtrTy->getAddressSpace()));
873 }
874 return Ptr;
875 }
876
877 /// If we can symbolically evaluate the GEP constant expression, do so.
SymbolicallyEvaluateGEP(const GEPOperator * GEP,ArrayRef<Constant * > Ops,const DataLayout & DL,const TargetLibraryInfo * TLI)878 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
879 ArrayRef<Constant *> Ops,
880 const DataLayout &DL,
881 const TargetLibraryInfo *TLI) {
882 const GEPOperator *InnermostGEP = GEP;
883 bool InBounds = GEP->isInBounds();
884
885 Type *SrcElemTy = GEP->getSourceElementType();
886 Type *ResElemTy = GEP->getResultElementType();
887 Type *ResTy = GEP->getType();
888 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
889 return nullptr;
890
891 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
892 GEP->getInRangeIndex(), DL, TLI))
893 return C;
894
895 Constant *Ptr = Ops[0];
896 if (!Ptr->getType()->isPointerTy())
897 return nullptr;
898
899 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
900
901 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
902 if (!isa<ConstantInt>(Ops[i]))
903 return nullptr;
904
905 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
906 APInt Offset = APInt(
907 BitWidth,
908 DL.getIndexedOffsetInType(
909 SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)));
910 Ptr = StripPtrCastKeepAS(Ptr);
911
912 // If this is a GEP of a GEP, fold it all into a single GEP.
913 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
914 InnermostGEP = GEP;
915 InBounds &= GEP->isInBounds();
916
917 SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
918
919 // Do not try the incorporate the sub-GEP if some index is not a number.
920 bool AllConstantInt = true;
921 for (Value *NestedOp : NestedOps)
922 if (!isa<ConstantInt>(NestedOp)) {
923 AllConstantInt = false;
924 break;
925 }
926 if (!AllConstantInt)
927 break;
928
929 Ptr = cast<Constant>(GEP->getOperand(0));
930 SrcElemTy = GEP->getSourceElementType();
931 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
932 Ptr = StripPtrCastKeepAS(Ptr);
933 }
934
935 // If the base value for this address is a literal integer value, fold the
936 // getelementptr to the resulting integer value casted to the pointer type.
937 APInt BasePtr(BitWidth, 0);
938 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
939 if (CE->getOpcode() == Instruction::IntToPtr) {
940 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
941 BasePtr = Base->getValue().zextOrTrunc(BitWidth);
942 }
943 }
944
945 auto *PTy = cast<PointerType>(Ptr->getType());
946 if ((Ptr->isNullValue() || BasePtr != 0) &&
947 !DL.isNonIntegralPointerType(PTy)) {
948 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
949 return ConstantExpr::getIntToPtr(C, ResTy);
950 }
951
952 // Otherwise form a regular getelementptr. Recompute the indices so that
953 // we eliminate over-indexing of the notional static type array bounds.
954 // This makes it easy to determine if the getelementptr is "inbounds".
955 // Also, this helps GlobalOpt do SROA on GlobalVariables.
956
957 // For GEPs of GlobalValues, use the value type even for opaque pointers.
958 // Otherwise use an i8 GEP.
959 if (auto *GV = dyn_cast<GlobalValue>(Ptr))
960 SrcElemTy = GV->getValueType();
961 else if (!PTy->isOpaque())
962 SrcElemTy = PTy->getNonOpaquePointerElementType();
963 else
964 SrcElemTy = Type::getInt8Ty(Ptr->getContext());
965
966 if (!SrcElemTy->isSized())
967 return nullptr;
968
969 Type *ElemTy = SrcElemTy;
970 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
971 if (Offset != 0)
972 return nullptr;
973
974 // Try to add additional zero indices to reach the desired result element
975 // type.
976 // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and
977 // we'll have to insert a bitcast anyway?
978 while (ElemTy != ResElemTy) {
979 Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0);
980 if (!NextTy)
981 break;
982
983 Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth));
984 ElemTy = NextTy;
985 }
986
987 SmallVector<Constant *, 32> NewIdxs;
988 for (const APInt &Index : Indices)
989 NewIdxs.push_back(ConstantInt::get(
990 Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index));
991
992 // Preserve the inrange index from the innermost GEP if possible. We must
993 // have calculated the same indices up to and including the inrange index.
994 std::optional<unsigned> InRangeIndex;
995 if (std::optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
996 if (SrcElemTy == InnermostGEP->getSourceElementType() &&
997 NewIdxs.size() > *LastIRIndex) {
998 InRangeIndex = LastIRIndex;
999 for (unsigned I = 0; I <= *LastIRIndex; ++I)
1000 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
1001 return nullptr;
1002 }
1003
1004 // Create a GEP.
1005 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
1006 InBounds, InRangeIndex);
1007 assert(
1008 cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) &&
1009 "Computed GetElementPtr has unexpected type!");
1010
1011 // If we ended up indexing a member with a type that doesn't match
1012 // the type of what the original indices indexed, add a cast.
1013 if (C->getType() != ResTy)
1014 C = FoldBitCast(C, ResTy, DL);
1015
1016 return C;
1017 }
1018
1019 /// Attempt to constant fold an instruction with the
1020 /// specified opcode and operands. If successful, the constant result is
1021 /// returned, if not, null is returned. Note that this function can fail when
1022 /// attempting to fold instructions like loads and stores, which have no
1023 /// constant expression form.
ConstantFoldInstOperandsImpl(const Value * InstOrCE,unsigned Opcode,ArrayRef<Constant * > Ops,const DataLayout & DL,const TargetLibraryInfo * TLI)1024 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1025 ArrayRef<Constant *> Ops,
1026 const DataLayout &DL,
1027 const TargetLibraryInfo *TLI) {
1028 Type *DestTy = InstOrCE->getType();
1029
1030 if (Instruction::isUnaryOp(Opcode))
1031 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1032
1033 if (Instruction::isBinaryOp(Opcode)) {
1034 switch (Opcode) {
1035 default:
1036 break;
1037 case Instruction::FAdd:
1038 case Instruction::FSub:
1039 case Instruction::FMul:
1040 case Instruction::FDiv:
1041 case Instruction::FRem:
1042 // Handle floating point instructions separately to account for denormals
1043 // TODO: If a constant expression is being folded rather than an
1044 // instruction, denormals will not be flushed/treated as zero
1045 if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
1046 return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I);
1047 }
1048 }
1049 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1050 }
1051
1052 if (Instruction::isCast(Opcode))
1053 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1054
1055 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1056 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1057 return C;
1058
1059 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
1060 Ops.slice(1), GEP->isInBounds(),
1061 GEP->getInRangeIndex());
1062 }
1063
1064 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) {
1065 if (CE->isCompare())
1066 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1067 DL, TLI);
1068 return CE->getWithOperands(Ops);
1069 }
1070
1071 switch (Opcode) {
1072 default: return nullptr;
1073 case Instruction::ICmp:
1074 case Instruction::FCmp: {
1075 auto *C = cast<CmpInst>(InstOrCE);
1076 return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
1077 DL, TLI, C);
1078 }
1079 case Instruction::Freeze:
1080 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1081 case Instruction::Call:
1082 if (auto *F = dyn_cast<Function>(Ops.back())) {
1083 const auto *Call = cast<CallBase>(InstOrCE);
1084 if (canConstantFoldCallTo(Call, F))
1085 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1086 }
1087 return nullptr;
1088 case Instruction::Select:
1089 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1090 case Instruction::ExtractElement:
1091 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1092 case Instruction::ExtractValue:
1093 return ConstantFoldExtractValueInstruction(
1094 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1095 case Instruction::InsertElement:
1096 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1097 case Instruction::InsertValue:
1098 return ConstantFoldInsertValueInstruction(
1099 Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
1100 case Instruction::ShuffleVector:
1101 return ConstantExpr::getShuffleVector(
1102 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1103 case Instruction::Load: {
1104 const auto *LI = dyn_cast<LoadInst>(InstOrCE);
1105 if (LI->isVolatile())
1106 return nullptr;
1107 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1108 }
1109 }
1110 }
1111
1112 } // end anonymous namespace
1113
1114 //===----------------------------------------------------------------------===//
1115 // Constant Folding public APIs
1116 //===----------------------------------------------------------------------===//
1117
1118 namespace {
1119
1120 Constant *
ConstantFoldConstantImpl(const Constant * C,const DataLayout & DL,const TargetLibraryInfo * TLI,SmallDenseMap<Constant *,Constant * > & FoldedOps)1121 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1122 const TargetLibraryInfo *TLI,
1123 SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1124 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1125 return const_cast<Constant *>(C);
1126
1127 SmallVector<Constant *, 8> Ops;
1128 for (const Use &OldU : C->operands()) {
1129 Constant *OldC = cast<Constant>(&OldU);
1130 Constant *NewC = OldC;
1131 // Recursively fold the ConstantExpr's operands. If we have already folded
1132 // a ConstantExpr, we don't have to process it again.
1133 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1134 auto It = FoldedOps.find(OldC);
1135 if (It == FoldedOps.end()) {
1136 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1137 FoldedOps.insert({OldC, NewC});
1138 } else {
1139 NewC = It->second;
1140 }
1141 }
1142 Ops.push_back(NewC);
1143 }
1144
1145 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1146 if (Constant *Res =
1147 ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI))
1148 return Res;
1149 return const_cast<Constant *>(C);
1150 }
1151
1152 assert(isa<ConstantVector>(C));
1153 return ConstantVector::get(Ops);
1154 }
1155
1156 } // end anonymous namespace
1157
ConstantFoldInstruction(Instruction * I,const DataLayout & DL,const TargetLibraryInfo * TLI)1158 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1159 const TargetLibraryInfo *TLI) {
1160 // Handle PHI nodes quickly here...
1161 if (auto *PN = dyn_cast<PHINode>(I)) {
1162 Constant *CommonValue = nullptr;
1163
1164 SmallDenseMap<Constant *, Constant *> FoldedOps;
1165 for (Value *Incoming : PN->incoming_values()) {
1166 // If the incoming value is undef then skip it. Note that while we could
1167 // skip the value if it is equal to the phi node itself we choose not to
1168 // because that would break the rule that constant folding only applies if
1169 // all operands are constants.
1170 if (isa<UndefValue>(Incoming))
1171 continue;
1172 // If the incoming value is not a constant, then give up.
1173 auto *C = dyn_cast<Constant>(Incoming);
1174 if (!C)
1175 return nullptr;
1176 // Fold the PHI's operands.
1177 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1178 // If the incoming value is a different constant to
1179 // the one we saw previously, then give up.
1180 if (CommonValue && C != CommonValue)
1181 return nullptr;
1182 CommonValue = C;
1183 }
1184
1185 // If we reach here, all incoming values are the same constant or undef.
1186 return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1187 }
1188
1189 // Scan the operand list, checking to see if they are all constants, if so,
1190 // hand off to ConstantFoldInstOperandsImpl.
1191 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1192 return nullptr;
1193
1194 SmallDenseMap<Constant *, Constant *> FoldedOps;
1195 SmallVector<Constant *, 8> Ops;
1196 for (const Use &OpU : I->operands()) {
1197 auto *Op = cast<Constant>(&OpU);
1198 // Fold the Instruction's operands.
1199 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1200 Ops.push_back(Op);
1201 }
1202
1203 return ConstantFoldInstOperands(I, Ops, DL, TLI);
1204 }
1205
ConstantFoldConstant(const Constant * C,const DataLayout & DL,const TargetLibraryInfo * TLI)1206 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1207 const TargetLibraryInfo *TLI) {
1208 SmallDenseMap<Constant *, Constant *> FoldedOps;
1209 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1210 }
1211
ConstantFoldInstOperands(Instruction * I,ArrayRef<Constant * > Ops,const DataLayout & DL,const TargetLibraryInfo * TLI)1212 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1213 ArrayRef<Constant *> Ops,
1214 const DataLayout &DL,
1215 const TargetLibraryInfo *TLI) {
1216 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1217 }
1218
ConstantFoldCompareInstOperands(unsigned IntPredicate,Constant * Ops0,Constant * Ops1,const DataLayout & DL,const TargetLibraryInfo * TLI,const Instruction * I)1219 Constant *llvm::ConstantFoldCompareInstOperands(
1220 unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
1221 const TargetLibraryInfo *TLI, const Instruction *I) {
1222 CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
1223 // fold: icmp (inttoptr x), null -> icmp x, 0
1224 // fold: icmp null, (inttoptr x) -> icmp 0, x
1225 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1226 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1227 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1228 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1229 //
1230 // FIXME: The following comment is out of data and the DataLayout is here now.
1231 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1232 // around to know if bit truncation is happening.
1233 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1234 if (Ops1->isNullValue()) {
1235 if (CE0->getOpcode() == Instruction::IntToPtr) {
1236 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1237 // Convert the integer value to the right size to ensure we get the
1238 // proper extension or truncation.
1239 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1240 IntPtrTy, false);
1241 Constant *Null = Constant::getNullValue(C->getType());
1242 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1243 }
1244
1245 // Only do this transformation if the int is intptrty in size, otherwise
1246 // there is a truncation or extension that we aren't modeling.
1247 if (CE0->getOpcode() == Instruction::PtrToInt) {
1248 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1249 if (CE0->getType() == IntPtrTy) {
1250 Constant *C = CE0->getOperand(0);
1251 Constant *Null = Constant::getNullValue(C->getType());
1252 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1253 }
1254 }
1255 }
1256
1257 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1258 if (CE0->getOpcode() == CE1->getOpcode()) {
1259 if (CE0->getOpcode() == Instruction::IntToPtr) {
1260 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1261
1262 // Convert the integer value to the right size to ensure we get the
1263 // proper extension or truncation.
1264 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1265 IntPtrTy, false);
1266 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1267 IntPtrTy, false);
1268 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1269 }
1270
1271 // Only do this transformation if the int is intptrty in size, otherwise
1272 // there is a truncation or extension that we aren't modeling.
1273 if (CE0->getOpcode() == Instruction::PtrToInt) {
1274 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1275 if (CE0->getType() == IntPtrTy &&
1276 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1277 return ConstantFoldCompareInstOperands(
1278 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1279 }
1280 }
1281 }
1282 }
1283
1284 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1285 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1286 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1287 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1288 Constant *LHS = ConstantFoldCompareInstOperands(
1289 Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1290 Constant *RHS = ConstantFoldCompareInstOperands(
1291 Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1292 unsigned OpC =
1293 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1294 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1295 }
1296
1297 // Convert pointer comparison (base+offset1) pred (base+offset2) into
1298 // offset1 pred offset2, for the case where the offset is inbounds. This
1299 // only works for equality and unsigned comparison, as inbounds permits
1300 // crossing the sign boundary. However, the offset comparison itself is
1301 // signed.
1302 if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
1303 unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
1304 APInt Offset0(IndexWidth, 0);
1305 Value *Stripped0 =
1306 Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0);
1307 APInt Offset1(IndexWidth, 0);
1308 Value *Stripped1 =
1309 Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1);
1310 if (Stripped0 == Stripped1)
1311 return ConstantExpr::getCompare(
1312 ICmpInst::getSignedPredicate(Predicate),
1313 ConstantInt::get(CE0->getContext(), Offset0),
1314 ConstantInt::get(CE0->getContext(), Offset1));
1315 }
1316 } else if (isa<ConstantExpr>(Ops1)) {
1317 // If RHS is a constant expression, but the left side isn't, swap the
1318 // operands and try again.
1319 Predicate = ICmpInst::getSwappedPredicate(Predicate);
1320 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1321 }
1322
1323 // Flush any denormal constant float input according to denormal handling
1324 // mode.
1325 Ops0 = FlushFPConstant(Ops0, I, /* IsOutput */ false);
1326 Ops1 = FlushFPConstant(Ops1, I, /* IsOutput */ false);
1327
1328 return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1329 }
1330
ConstantFoldUnaryOpOperand(unsigned Opcode,Constant * Op,const DataLayout & DL)1331 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1332 const DataLayout &DL) {
1333 assert(Instruction::isUnaryOp(Opcode));
1334
1335 return ConstantFoldUnaryInstruction(Opcode, Op);
1336 }
1337
ConstantFoldBinaryOpOperands(unsigned Opcode,Constant * LHS,Constant * RHS,const DataLayout & DL)1338 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1339 Constant *RHS,
1340 const DataLayout &DL) {
1341 assert(Instruction::isBinaryOp(Opcode));
1342 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1343 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1344 return C;
1345
1346 if (ConstantExpr::isDesirableBinOp(Opcode))
1347 return ConstantExpr::get(Opcode, LHS, RHS);
1348 return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1349 }
1350
FlushFPConstant(Constant * Operand,const Instruction * I,bool IsOutput)1351 Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *I,
1352 bool IsOutput) {
1353 if (!I || !I->getParent() || !I->getFunction())
1354 return Operand;
1355
1356 ConstantFP *CFP = dyn_cast<ConstantFP>(Operand);
1357 if (!CFP)
1358 return Operand;
1359
1360 const APFloat &APF = CFP->getValueAPF();
1361 Type *Ty = CFP->getType();
1362 DenormalMode DenormMode =
1363 I->getFunction()->getDenormalMode(Ty->getFltSemantics());
1364 DenormalMode::DenormalModeKind Mode =
1365 IsOutput ? DenormMode.Output : DenormMode.Input;
1366 switch (Mode) {
1367 default:
1368 llvm_unreachable("unknown denormal mode");
1369 return Operand;
1370 case DenormalMode::IEEE:
1371 return Operand;
1372 case DenormalMode::PreserveSign:
1373 if (APF.isDenormal()) {
1374 return ConstantFP::get(
1375 Ty->getContext(),
1376 APFloat::getZero(Ty->getFltSemantics(), APF.isNegative()));
1377 }
1378 return Operand;
1379 case DenormalMode::PositiveZero:
1380 if (APF.isDenormal()) {
1381 return ConstantFP::get(Ty->getContext(),
1382 APFloat::getZero(Ty->getFltSemantics(), false));
1383 }
1384 return Operand;
1385 }
1386 return Operand;
1387 }
1388
ConstantFoldFPInstOperands(unsigned Opcode,Constant * LHS,Constant * RHS,const DataLayout & DL,const Instruction * I)1389 Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS,
1390 Constant *RHS, const DataLayout &DL,
1391 const Instruction *I) {
1392 if (Instruction::isBinaryOp(Opcode)) {
1393 // Flush denormal inputs if needed.
1394 Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
1395 Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
1396
1397 // Calculate constant result.
1398 Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
1399 if (!C)
1400 return nullptr;
1401
1402 // Flush denormal output if needed.
1403 return FlushFPConstant(C, I, /* IsOutput */ true);
1404 }
1405 // If instruction lacks a parent/function and the denormal mode cannot be
1406 // determined, use the default (IEEE).
1407 return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
1408 }
1409
ConstantFoldCastOperand(unsigned Opcode,Constant * C,Type * DestTy,const DataLayout & DL)1410 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1411 Type *DestTy, const DataLayout &DL) {
1412 assert(Instruction::isCast(Opcode));
1413 switch (Opcode) {
1414 default:
1415 llvm_unreachable("Missing case");
1416 case Instruction::PtrToInt:
1417 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1418 Constant *FoldedValue = nullptr;
1419 // If the input is a inttoptr, eliminate the pair. This requires knowing
1420 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1421 if (CE->getOpcode() == Instruction::IntToPtr) {
1422 // zext/trunc the inttoptr to pointer size.
1423 FoldedValue = ConstantExpr::getIntegerCast(
1424 CE->getOperand(0), DL.getIntPtrType(CE->getType()),
1425 /*IsSigned=*/false);
1426 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1427 // If we have GEP, we can perform the following folds:
1428 // (ptrtoint (gep null, x)) -> x
1429 // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1430 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1431 APInt BaseOffset(BitWidth, 0);
1432 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1433 DL, BaseOffset, /*AllowNonInbounds=*/true));
1434 if (Base->isNullValue()) {
1435 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1436 } else {
1437 // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V
1438 if (GEP->getNumIndices() == 1 &&
1439 GEP->getSourceElementType()->isIntegerTy(8)) {
1440 auto *Ptr = cast<Constant>(GEP->getPointerOperand());
1441 auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
1442 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
1443 if (Sub && Sub->getType() == IntIdxTy &&
1444 Sub->getOpcode() == Instruction::Sub &&
1445 Sub->getOperand(0)->isNullValue())
1446 FoldedValue = ConstantExpr::getSub(
1447 ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1));
1448 }
1449 }
1450 }
1451 if (FoldedValue) {
1452 // Do a zext or trunc to get to the ptrtoint dest size.
1453 return ConstantExpr::getIntegerCast(FoldedValue, DestTy,
1454 /*IsSigned=*/false);
1455 }
1456 }
1457 return ConstantExpr::getCast(Opcode, C, DestTy);
1458 case Instruction::IntToPtr:
1459 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1460 // the int size is >= the ptr size and the address spaces are the same.
1461 // This requires knowing the width of a pointer, so it can't be done in
1462 // ConstantExpr::getCast.
1463 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1464 if (CE->getOpcode() == Instruction::PtrToInt) {
1465 Constant *SrcPtr = CE->getOperand(0);
1466 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1467 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1468
1469 if (MidIntSize >= SrcPtrSize) {
1470 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1471 if (SrcAS == DestTy->getPointerAddressSpace())
1472 return FoldBitCast(CE->getOperand(0), DestTy, DL);
1473 }
1474 }
1475 }
1476
1477 return ConstantExpr::getCast(Opcode, C, DestTy);
1478 case Instruction::Trunc:
1479 case Instruction::ZExt:
1480 case Instruction::SExt:
1481 case Instruction::FPTrunc:
1482 case Instruction::FPExt:
1483 case Instruction::UIToFP:
1484 case Instruction::SIToFP:
1485 case Instruction::FPToUI:
1486 case Instruction::FPToSI:
1487 case Instruction::AddrSpaceCast:
1488 return ConstantExpr::getCast(Opcode, C, DestTy);
1489 case Instruction::BitCast:
1490 return FoldBitCast(C, DestTy, DL);
1491 }
1492 }
1493
1494 //===----------------------------------------------------------------------===//
1495 // Constant Folding for Calls
1496 //
1497
canConstantFoldCallTo(const CallBase * Call,const Function * F)1498 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1499 if (Call->isNoBuiltin())
1500 return false;
1501 if (Call->getFunctionType() != F->getFunctionType())
1502 return false;
1503 switch (F->getIntrinsicID()) {
1504 // Operations that do not operate floating-point numbers and do not depend on
1505 // FP environment can be folded even in strictfp functions.
1506 case Intrinsic::bswap:
1507 case Intrinsic::ctpop:
1508 case Intrinsic::ctlz:
1509 case Intrinsic::cttz:
1510 case Intrinsic::fshl:
1511 case Intrinsic::fshr:
1512 case Intrinsic::launder_invariant_group:
1513 case Intrinsic::strip_invariant_group:
1514 case Intrinsic::masked_load:
1515 case Intrinsic::get_active_lane_mask:
1516 case Intrinsic::abs:
1517 case Intrinsic::smax:
1518 case Intrinsic::smin:
1519 case Intrinsic::umax:
1520 case Intrinsic::umin:
1521 case Intrinsic::sadd_with_overflow:
1522 case Intrinsic::uadd_with_overflow:
1523 case Intrinsic::ssub_with_overflow:
1524 case Intrinsic::usub_with_overflow:
1525 case Intrinsic::smul_with_overflow:
1526 case Intrinsic::umul_with_overflow:
1527 case Intrinsic::sadd_sat:
1528 case Intrinsic::uadd_sat:
1529 case Intrinsic::ssub_sat:
1530 case Intrinsic::usub_sat:
1531 case Intrinsic::smul_fix:
1532 case Intrinsic::smul_fix_sat:
1533 case Intrinsic::bitreverse:
1534 case Intrinsic::is_constant:
1535 case Intrinsic::vector_reduce_add:
1536 case Intrinsic::vector_reduce_mul:
1537 case Intrinsic::vector_reduce_and:
1538 case Intrinsic::vector_reduce_or:
1539 case Intrinsic::vector_reduce_xor:
1540 case Intrinsic::vector_reduce_smin:
1541 case Intrinsic::vector_reduce_smax:
1542 case Intrinsic::vector_reduce_umin:
1543 case Intrinsic::vector_reduce_umax:
1544 // Target intrinsics
1545 case Intrinsic::amdgcn_perm:
1546 case Intrinsic::arm_mve_vctp8:
1547 case Intrinsic::arm_mve_vctp16:
1548 case Intrinsic::arm_mve_vctp32:
1549 case Intrinsic::arm_mve_vctp64:
1550 case Intrinsic::aarch64_sve_convert_from_svbool:
1551 // WebAssembly float semantics are always known
1552 case Intrinsic::wasm_trunc_signed:
1553 case Intrinsic::wasm_trunc_unsigned:
1554 return true;
1555
1556 // Floating point operations cannot be folded in strictfp functions in
1557 // general case. They can be folded if FP environment is known to compiler.
1558 case Intrinsic::minnum:
1559 case Intrinsic::maxnum:
1560 case Intrinsic::minimum:
1561 case Intrinsic::maximum:
1562 case Intrinsic::log:
1563 case Intrinsic::log2:
1564 case Intrinsic::log10:
1565 case Intrinsic::exp:
1566 case Intrinsic::exp2:
1567 case Intrinsic::sqrt:
1568 case Intrinsic::sin:
1569 case Intrinsic::cos:
1570 case Intrinsic::pow:
1571 case Intrinsic::powi:
1572 case Intrinsic::fma:
1573 case Intrinsic::fmuladd:
1574 case Intrinsic::fptoui_sat:
1575 case Intrinsic::fptosi_sat:
1576 case Intrinsic::convert_from_fp16:
1577 case Intrinsic::convert_to_fp16:
1578 case Intrinsic::amdgcn_cos:
1579 case Intrinsic::amdgcn_cubeid:
1580 case Intrinsic::amdgcn_cubema:
1581 case Intrinsic::amdgcn_cubesc:
1582 case Intrinsic::amdgcn_cubetc:
1583 case Intrinsic::amdgcn_fmul_legacy:
1584 case Intrinsic::amdgcn_fma_legacy:
1585 case Intrinsic::amdgcn_fract:
1586 case Intrinsic::amdgcn_ldexp:
1587 case Intrinsic::amdgcn_sin:
1588 // The intrinsics below depend on rounding mode in MXCSR.
1589 case Intrinsic::x86_sse_cvtss2si:
1590 case Intrinsic::x86_sse_cvtss2si64:
1591 case Intrinsic::x86_sse_cvttss2si:
1592 case Intrinsic::x86_sse_cvttss2si64:
1593 case Intrinsic::x86_sse2_cvtsd2si:
1594 case Intrinsic::x86_sse2_cvtsd2si64:
1595 case Intrinsic::x86_sse2_cvttsd2si:
1596 case Intrinsic::x86_sse2_cvttsd2si64:
1597 case Intrinsic::x86_avx512_vcvtss2si32:
1598 case Intrinsic::x86_avx512_vcvtss2si64:
1599 case Intrinsic::x86_avx512_cvttss2si:
1600 case Intrinsic::x86_avx512_cvttss2si64:
1601 case Intrinsic::x86_avx512_vcvtsd2si32:
1602 case Intrinsic::x86_avx512_vcvtsd2si64:
1603 case Intrinsic::x86_avx512_cvttsd2si:
1604 case Intrinsic::x86_avx512_cvttsd2si64:
1605 case Intrinsic::x86_avx512_vcvtss2usi32:
1606 case Intrinsic::x86_avx512_vcvtss2usi64:
1607 case Intrinsic::x86_avx512_cvttss2usi:
1608 case Intrinsic::x86_avx512_cvttss2usi64:
1609 case Intrinsic::x86_avx512_vcvtsd2usi32:
1610 case Intrinsic::x86_avx512_vcvtsd2usi64:
1611 case Intrinsic::x86_avx512_cvttsd2usi:
1612 case Intrinsic::x86_avx512_cvttsd2usi64:
1613 return !Call->isStrictFP();
1614
1615 // Sign operations are actually bitwise operations, they do not raise
1616 // exceptions even for SNANs.
1617 case Intrinsic::fabs:
1618 case Intrinsic::copysign:
1619 case Intrinsic::is_fpclass:
1620 // Non-constrained variants of rounding operations means default FP
1621 // environment, they can be folded in any case.
1622 case Intrinsic::ceil:
1623 case Intrinsic::floor:
1624 case Intrinsic::round:
1625 case Intrinsic::roundeven:
1626 case Intrinsic::trunc:
1627 case Intrinsic::nearbyint:
1628 case Intrinsic::rint:
1629 case Intrinsic::canonicalize:
1630 // Constrained intrinsics can be folded if FP environment is known
1631 // to compiler.
1632 case Intrinsic::experimental_constrained_fma:
1633 case Intrinsic::experimental_constrained_fmuladd:
1634 case Intrinsic::experimental_constrained_fadd:
1635 case Intrinsic::experimental_constrained_fsub:
1636 case Intrinsic::experimental_constrained_fmul:
1637 case Intrinsic::experimental_constrained_fdiv:
1638 case Intrinsic::experimental_constrained_frem:
1639 case Intrinsic::experimental_constrained_ceil:
1640 case Intrinsic::experimental_constrained_floor:
1641 case Intrinsic::experimental_constrained_round:
1642 case Intrinsic::experimental_constrained_roundeven:
1643 case Intrinsic::experimental_constrained_trunc:
1644 case Intrinsic::experimental_constrained_nearbyint:
1645 case Intrinsic::experimental_constrained_rint:
1646 case Intrinsic::experimental_constrained_fcmp:
1647 case Intrinsic::experimental_constrained_fcmps:
1648 return true;
1649 default:
1650 return false;
1651 case Intrinsic::not_intrinsic: break;
1652 }
1653
1654 if (!F->hasName() || Call->isStrictFP())
1655 return false;
1656
1657 // In these cases, the check of the length is required. We don't want to
1658 // return true for a name like "cos\0blah" which strcmp would return equal to
1659 // "cos", but has length 8.
1660 StringRef Name = F->getName();
1661 switch (Name[0]) {
1662 default:
1663 return false;
1664 case 'a':
1665 return Name == "acos" || Name == "acosf" ||
1666 Name == "asin" || Name == "asinf" ||
1667 Name == "atan" || Name == "atanf" ||
1668 Name == "atan2" || Name == "atan2f";
1669 case 'c':
1670 return Name == "ceil" || Name == "ceilf" ||
1671 Name == "cos" || Name == "cosf" ||
1672 Name == "cosh" || Name == "coshf";
1673 case 'e':
1674 return Name == "exp" || Name == "expf" ||
1675 Name == "exp2" || Name == "exp2f";
1676 case 'f':
1677 return Name == "fabs" || Name == "fabsf" ||
1678 Name == "floor" || Name == "floorf" ||
1679 Name == "fmod" || Name == "fmodf";
1680 case 'l':
1681 return Name == "log" || Name == "logf" ||
1682 Name == "log2" || Name == "log2f" ||
1683 Name == "log10" || Name == "log10f";
1684 case 'n':
1685 return Name == "nearbyint" || Name == "nearbyintf";
1686 case 'p':
1687 return Name == "pow" || Name == "powf";
1688 case 'r':
1689 return Name == "remainder" || Name == "remainderf" ||
1690 Name == "rint" || Name == "rintf" ||
1691 Name == "round" || Name == "roundf";
1692 case 's':
1693 return Name == "sin" || Name == "sinf" ||
1694 Name == "sinh" || Name == "sinhf" ||
1695 Name == "sqrt" || Name == "sqrtf";
1696 case 't':
1697 return Name == "tan" || Name == "tanf" ||
1698 Name == "tanh" || Name == "tanhf" ||
1699 Name == "trunc" || Name == "truncf";
1700 case '_':
1701 // Check for various function names that get used for the math functions
1702 // when the header files are preprocessed with the macro
1703 // __FINITE_MATH_ONLY__ enabled.
1704 // The '12' here is the length of the shortest name that can match.
1705 // We need to check the size before looking at Name[1] and Name[2]
1706 // so we may as well check a limit that will eliminate mismatches.
1707 if (Name.size() < 12 || Name[1] != '_')
1708 return false;
1709 switch (Name[2]) {
1710 default:
1711 return false;
1712 case 'a':
1713 return Name == "__acos_finite" || Name == "__acosf_finite" ||
1714 Name == "__asin_finite" || Name == "__asinf_finite" ||
1715 Name == "__atan2_finite" || Name == "__atan2f_finite";
1716 case 'c':
1717 return Name == "__cosh_finite" || Name == "__coshf_finite";
1718 case 'e':
1719 return Name == "__exp_finite" || Name == "__expf_finite" ||
1720 Name == "__exp2_finite" || Name == "__exp2f_finite";
1721 case 'l':
1722 return Name == "__log_finite" || Name == "__logf_finite" ||
1723 Name == "__log10_finite" || Name == "__log10f_finite";
1724 case 'p':
1725 return Name == "__pow_finite" || Name == "__powf_finite";
1726 case 's':
1727 return Name == "__sinh_finite" || Name == "__sinhf_finite";
1728 }
1729 }
1730 }
1731
1732 namespace {
1733
GetConstantFoldFPValue(double V,Type * Ty)1734 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1735 if (Ty->isHalfTy() || Ty->isFloatTy()) {
1736 APFloat APF(V);
1737 bool unused;
1738 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1739 return ConstantFP::get(Ty->getContext(), APF);
1740 }
1741 if (Ty->isDoubleTy())
1742 return ConstantFP::get(Ty->getContext(), APFloat(V));
1743 llvm_unreachable("Can only constant fold half/float/double");
1744 }
1745
1746 /// Clear the floating-point exception state.
llvm_fenv_clearexcept()1747 inline void llvm_fenv_clearexcept() {
1748 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1749 feclearexcept(FE_ALL_EXCEPT);
1750 #endif
1751 errno = 0;
1752 }
1753
1754 /// Test if a floating-point exception was raised.
llvm_fenv_testexcept()1755 inline bool llvm_fenv_testexcept() {
1756 int errno_val = errno;
1757 if (errno_val == ERANGE || errno_val == EDOM)
1758 return true;
1759 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1760 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1761 return true;
1762 #endif
1763 return false;
1764 }
1765
ConstantFoldFP(double (* NativeFP)(double),const APFloat & V,Type * Ty)1766 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
1767 Type *Ty) {
1768 llvm_fenv_clearexcept();
1769 double Result = NativeFP(V.convertToDouble());
1770 if (llvm_fenv_testexcept()) {
1771 llvm_fenv_clearexcept();
1772 return nullptr;
1773 }
1774
1775 return GetConstantFoldFPValue(Result, Ty);
1776 }
1777
ConstantFoldBinaryFP(double (* NativeFP)(double,double),const APFloat & V,const APFloat & W,Type * Ty)1778 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1779 const APFloat &V, const APFloat &W, Type *Ty) {
1780 llvm_fenv_clearexcept();
1781 double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
1782 if (llvm_fenv_testexcept()) {
1783 llvm_fenv_clearexcept();
1784 return nullptr;
1785 }
1786
1787 return GetConstantFoldFPValue(Result, Ty);
1788 }
1789
constantFoldVectorReduce(Intrinsic::ID IID,Constant * Op)1790 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1791 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1792 if (!VT)
1793 return nullptr;
1794
1795 // This isn't strictly necessary, but handle the special/common case of zero:
1796 // all integer reductions of a zero input produce zero.
1797 if (isa<ConstantAggregateZero>(Op))
1798 return ConstantInt::get(VT->getElementType(), 0);
1799
1800 // This is the same as the underlying binops - poison propagates.
1801 if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
1802 return PoisonValue::get(VT->getElementType());
1803
1804 // TODO: Handle undef.
1805 if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
1806 return nullptr;
1807
1808 auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1809 if (!EltC)
1810 return nullptr;
1811
1812 APInt Acc = EltC->getValue();
1813 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
1814 if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1815 return nullptr;
1816 const APInt &X = EltC->getValue();
1817 switch (IID) {
1818 case Intrinsic::vector_reduce_add:
1819 Acc = Acc + X;
1820 break;
1821 case Intrinsic::vector_reduce_mul:
1822 Acc = Acc * X;
1823 break;
1824 case Intrinsic::vector_reduce_and:
1825 Acc = Acc & X;
1826 break;
1827 case Intrinsic::vector_reduce_or:
1828 Acc = Acc | X;
1829 break;
1830 case Intrinsic::vector_reduce_xor:
1831 Acc = Acc ^ X;
1832 break;
1833 case Intrinsic::vector_reduce_smin:
1834 Acc = APIntOps::smin(Acc, X);
1835 break;
1836 case Intrinsic::vector_reduce_smax:
1837 Acc = APIntOps::smax(Acc, X);
1838 break;
1839 case Intrinsic::vector_reduce_umin:
1840 Acc = APIntOps::umin(Acc, X);
1841 break;
1842 case Intrinsic::vector_reduce_umax:
1843 Acc = APIntOps::umax(Acc, X);
1844 break;
1845 }
1846 }
1847
1848 return ConstantInt::get(Op->getContext(), Acc);
1849 }
1850
1851 /// Attempt to fold an SSE floating point to integer conversion of a constant
1852 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1853 /// used (toward nearest, ties to even). This matches the behavior of the
1854 /// non-truncating SSE instructions in the default rounding mode. The desired
1855 /// integer type Ty is used to select how many bits are available for the
1856 /// result. Returns null if the conversion cannot be performed, otherwise
1857 /// returns the Constant value resulting from the conversion.
ConstantFoldSSEConvertToInt(const APFloat & Val,bool roundTowardZero,Type * Ty,bool IsSigned)1858 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1859 Type *Ty, bool IsSigned) {
1860 // All of these conversion intrinsics form an integer of at most 64bits.
1861 unsigned ResultWidth = Ty->getIntegerBitWidth();
1862 assert(ResultWidth <= 64 &&
1863 "Can only constant fold conversions to 64 and 32 bit ints");
1864
1865 uint64_t UIntVal;
1866 bool isExact = false;
1867 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1868 : APFloat::rmNearestTiesToEven;
1869 APFloat::opStatus status =
1870 Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth,
1871 IsSigned, mode, &isExact);
1872 if (status != APFloat::opOK &&
1873 (!roundTowardZero || status != APFloat::opInexact))
1874 return nullptr;
1875 return ConstantInt::get(Ty, UIntVal, IsSigned);
1876 }
1877
getValueAsDouble(ConstantFP * Op)1878 double getValueAsDouble(ConstantFP *Op) {
1879 Type *Ty = Op->getType();
1880
1881 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
1882 return Op->getValueAPF().convertToDouble();
1883
1884 bool unused;
1885 APFloat APF = Op->getValueAPF();
1886 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1887 return APF.convertToDouble();
1888 }
1889
getConstIntOrUndef(Value * Op,const APInt * & C)1890 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1891 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1892 C = &CI->getValue();
1893 return true;
1894 }
1895 if (isa<UndefValue>(Op)) {
1896 C = nullptr;
1897 return true;
1898 }
1899 return false;
1900 }
1901
1902 /// Checks if the given intrinsic call, which evaluates to constant, is allowed
1903 /// to be folded.
1904 ///
1905 /// \param CI Constrained intrinsic call.
1906 /// \param St Exception flags raised during constant evaluation.
mayFoldConstrained(ConstrainedFPIntrinsic * CI,APFloat::opStatus St)1907 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
1908 APFloat::opStatus St) {
1909 std::optional<RoundingMode> ORM = CI->getRoundingMode();
1910 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1911
1912 // If the operation does not change exception status flags, it is safe
1913 // to fold.
1914 if (St == APFloat::opStatus::opOK)
1915 return true;
1916
1917 // If evaluation raised FP exception, the result can depend on rounding
1918 // mode. If the latter is unknown, folding is not possible.
1919 if (ORM && *ORM == RoundingMode::Dynamic)
1920 return false;
1921
1922 // If FP exceptions are ignored, fold the call, even if such exception is
1923 // raised.
1924 if (EB && *EB != fp::ExceptionBehavior::ebStrict)
1925 return true;
1926
1927 // Leave the calculation for runtime so that exception flags be correctly set
1928 // in hardware.
1929 return false;
1930 }
1931
1932 /// Returns the rounding mode that should be used for constant evaluation.
1933 static RoundingMode
getEvaluationRoundingMode(const ConstrainedFPIntrinsic * CI)1934 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
1935 std::optional<RoundingMode> ORM = CI->getRoundingMode();
1936 if (!ORM || *ORM == RoundingMode::Dynamic)
1937 // Even if the rounding mode is unknown, try evaluating the operation.
1938 // If it does not raise inexact exception, rounding was not applied,
1939 // so the result is exact and does not depend on rounding mode. Whether
1940 // other FP exceptions are raised, it does not depend on rounding mode.
1941 return RoundingMode::NearestTiesToEven;
1942 return *ORM;
1943 }
1944
1945 /// Try to constant fold llvm.canonicalize for the given caller and value.
constantFoldCanonicalize(const Type * Ty,const CallBase * CI,const APFloat & Src)1946 static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI,
1947 const APFloat &Src) {
1948 // Zero, positive and negative, is always OK to fold.
1949 if (Src.isZero()) {
1950 // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
1951 return ConstantFP::get(
1952 CI->getContext(),
1953 APFloat::getZero(Src.getSemantics(), Src.isNegative()));
1954 }
1955
1956 if (!Ty->isIEEELikeFPTy())
1957 return nullptr;
1958
1959 // Zero is always canonical and the sign must be preserved.
1960 //
1961 // Denorms and nans may have special encodings, but it should be OK to fold a
1962 // totally average number.
1963 if (Src.isNormal() || Src.isInfinity())
1964 return ConstantFP::get(CI->getContext(), Src);
1965
1966 if (Src.isDenormal() && CI->getParent() && CI->getFunction()) {
1967 DenormalMode DenormMode =
1968 CI->getFunction()->getDenormalMode(Src.getSemantics());
1969 if (DenormMode == DenormalMode::getIEEE())
1970 return nullptr;
1971
1972 bool IsPositive =
1973 (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero ||
1974 (DenormMode.Output == DenormalMode::PositiveZero &&
1975 DenormMode.Input == DenormalMode::IEEE));
1976 return ConstantFP::get(CI->getContext(),
1977 APFloat::getZero(Src.getSemantics(), !IsPositive));
1978 }
1979
1980 return nullptr;
1981 }
1982
ConstantFoldScalarCall1(StringRef Name,Intrinsic::ID IntrinsicID,Type * Ty,ArrayRef<Constant * > Operands,const TargetLibraryInfo * TLI,const CallBase * Call)1983 static Constant *ConstantFoldScalarCall1(StringRef Name,
1984 Intrinsic::ID IntrinsicID,
1985 Type *Ty,
1986 ArrayRef<Constant *> Operands,
1987 const TargetLibraryInfo *TLI,
1988 const CallBase *Call) {
1989 assert(Operands.size() == 1 && "Wrong number of operands.");
1990
1991 if (IntrinsicID == Intrinsic::is_constant) {
1992 // We know we have a "Constant" argument. But we want to only
1993 // return true for manifest constants, not those that depend on
1994 // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1995 if (Operands[0]->isManifestConstant())
1996 return ConstantInt::getTrue(Ty->getContext());
1997 return nullptr;
1998 }
1999
2000 if (isa<PoisonValue>(Operands[0])) {
2001 // TODO: All of these operations should probably propagate poison.
2002 if (IntrinsicID == Intrinsic::canonicalize)
2003 return PoisonValue::get(Ty);
2004 }
2005
2006 if (isa<UndefValue>(Operands[0])) {
2007 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2008 // ctpop() is between 0 and bitwidth, pick 0 for undef.
2009 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2010 if (IntrinsicID == Intrinsic::cos ||
2011 IntrinsicID == Intrinsic::ctpop ||
2012 IntrinsicID == Intrinsic::fptoui_sat ||
2013 IntrinsicID == Intrinsic::fptosi_sat ||
2014 IntrinsicID == Intrinsic::canonicalize)
2015 return Constant::getNullValue(Ty);
2016 if (IntrinsicID == Intrinsic::bswap ||
2017 IntrinsicID == Intrinsic::bitreverse ||
2018 IntrinsicID == Intrinsic::launder_invariant_group ||
2019 IntrinsicID == Intrinsic::strip_invariant_group)
2020 return Operands[0];
2021 }
2022
2023 if (isa<ConstantPointerNull>(Operands[0])) {
2024 // launder(null) == null == strip(null) iff in addrspace 0
2025 if (IntrinsicID == Intrinsic::launder_invariant_group ||
2026 IntrinsicID == Intrinsic::strip_invariant_group) {
2027 // If instruction is not yet put in a basic block (e.g. when cloning
2028 // a function during inlining), Call's caller may not be available.
2029 // So check Call's BB first before querying Call->getCaller.
2030 const Function *Caller =
2031 Call->getParent() ? Call->getCaller() : nullptr;
2032 if (Caller &&
2033 !NullPointerIsDefined(
2034 Caller, Operands[0]->getType()->getPointerAddressSpace())) {
2035 return Operands[0];
2036 }
2037 return nullptr;
2038 }
2039 }
2040
2041 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
2042 if (IntrinsicID == Intrinsic::convert_to_fp16) {
2043 APFloat Val(Op->getValueAPF());
2044
2045 bool lost = false;
2046 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
2047
2048 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
2049 }
2050
2051 APFloat U = Op->getValueAPF();
2052
2053 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2054 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2055 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2056
2057 if (U.isNaN())
2058 return nullptr;
2059
2060 unsigned Width = Ty->getIntegerBitWidth();
2061 APSInt Int(Width, !Signed);
2062 bool IsExact = false;
2063 APFloat::opStatus Status =
2064 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2065
2066 if (Status == APFloat::opOK || Status == APFloat::opInexact)
2067 return ConstantInt::get(Ty, Int);
2068
2069 return nullptr;
2070 }
2071
2072 if (IntrinsicID == Intrinsic::fptoui_sat ||
2073 IntrinsicID == Intrinsic::fptosi_sat) {
2074 // convertToInteger() already has the desired saturation semantics.
2075 APSInt Int(Ty->getIntegerBitWidth(),
2076 IntrinsicID == Intrinsic::fptoui_sat);
2077 bool IsExact;
2078 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2079 return ConstantInt::get(Ty, Int);
2080 }
2081
2082 if (IntrinsicID == Intrinsic::canonicalize)
2083 return constantFoldCanonicalize(Ty, Call, U);
2084
2085 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2086 return nullptr;
2087
2088 // Use internal versions of these intrinsics.
2089
2090 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2091 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2092 return ConstantFP::get(Ty->getContext(), U);
2093 }
2094
2095 if (IntrinsicID == Intrinsic::round) {
2096 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2097 return ConstantFP::get(Ty->getContext(), U);
2098 }
2099
2100 if (IntrinsicID == Intrinsic::roundeven) {
2101 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2102 return ConstantFP::get(Ty->getContext(), U);
2103 }
2104
2105 if (IntrinsicID == Intrinsic::ceil) {
2106 U.roundToIntegral(APFloat::rmTowardPositive);
2107 return ConstantFP::get(Ty->getContext(), U);
2108 }
2109
2110 if (IntrinsicID == Intrinsic::floor) {
2111 U.roundToIntegral(APFloat::rmTowardNegative);
2112 return ConstantFP::get(Ty->getContext(), U);
2113 }
2114
2115 if (IntrinsicID == Intrinsic::trunc) {
2116 U.roundToIntegral(APFloat::rmTowardZero);
2117 return ConstantFP::get(Ty->getContext(), U);
2118 }
2119
2120 if (IntrinsicID == Intrinsic::fabs) {
2121 U.clearSign();
2122 return ConstantFP::get(Ty->getContext(), U);
2123 }
2124
2125 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2126 // The v_fract instruction behaves like the OpenCL spec, which defines
2127 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2128 // there to prevent fract(-small) from returning 1.0. It returns the
2129 // largest positive floating-point number less than 1.0."
2130 APFloat FloorU(U);
2131 FloorU.roundToIntegral(APFloat::rmTowardNegative);
2132 APFloat FractU(U - FloorU);
2133 APFloat AlmostOne(U.getSemantics(), 1);
2134 AlmostOne.next(/*nextDown*/ true);
2135 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2136 }
2137
2138 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2139 // raise FP exceptions, unless the argument is signaling NaN.
2140
2141 std::optional<APFloat::roundingMode> RM;
2142 switch (IntrinsicID) {
2143 default:
2144 break;
2145 case Intrinsic::experimental_constrained_nearbyint:
2146 case Intrinsic::experimental_constrained_rint: {
2147 auto CI = cast<ConstrainedFPIntrinsic>(Call);
2148 RM = CI->getRoundingMode();
2149 if (!RM || *RM == RoundingMode::Dynamic)
2150 return nullptr;
2151 break;
2152 }
2153 case Intrinsic::experimental_constrained_round:
2154 RM = APFloat::rmNearestTiesToAway;
2155 break;
2156 case Intrinsic::experimental_constrained_ceil:
2157 RM = APFloat::rmTowardPositive;
2158 break;
2159 case Intrinsic::experimental_constrained_floor:
2160 RM = APFloat::rmTowardNegative;
2161 break;
2162 case Intrinsic::experimental_constrained_trunc:
2163 RM = APFloat::rmTowardZero;
2164 break;
2165 }
2166 if (RM) {
2167 auto CI = cast<ConstrainedFPIntrinsic>(Call);
2168 if (U.isFinite()) {
2169 APFloat::opStatus St = U.roundToIntegral(*RM);
2170 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2171 St == APFloat::opInexact) {
2172 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2173 if (EB && *EB == fp::ebStrict)
2174 return nullptr;
2175 }
2176 } else if (U.isSignaling()) {
2177 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2178 if (EB && *EB != fp::ebIgnore)
2179 return nullptr;
2180 U = APFloat::getQNaN(U.getSemantics());
2181 }
2182 return ConstantFP::get(Ty->getContext(), U);
2183 }
2184
2185 /// We only fold functions with finite arguments. Folding NaN and inf is
2186 /// likely to be aborted with an exception anyway, and some host libms
2187 /// have known errors raising exceptions.
2188 if (!U.isFinite())
2189 return nullptr;
2190
2191 /// Currently APFloat versions of these functions do not exist, so we use
2192 /// the host native double versions. Float versions are not called
2193 /// directly but for all these it is true (float)(f((double)arg)) ==
2194 /// f(arg). Long double not supported yet.
2195 const APFloat &APF = Op->getValueAPF();
2196
2197 switch (IntrinsicID) {
2198 default: break;
2199 case Intrinsic::log:
2200 return ConstantFoldFP(log, APF, Ty);
2201 case Intrinsic::log2:
2202 // TODO: What about hosts that lack a C99 library?
2203 return ConstantFoldFP(log2, APF, Ty);
2204 case Intrinsic::log10:
2205 // TODO: What about hosts that lack a C99 library?
2206 return ConstantFoldFP(log10, APF, Ty);
2207 case Intrinsic::exp:
2208 return ConstantFoldFP(exp, APF, Ty);
2209 case Intrinsic::exp2:
2210 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2211 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2212 case Intrinsic::sin:
2213 return ConstantFoldFP(sin, APF, Ty);
2214 case Intrinsic::cos:
2215 return ConstantFoldFP(cos, APF, Ty);
2216 case Intrinsic::sqrt:
2217 return ConstantFoldFP(sqrt, APF, Ty);
2218 case Intrinsic::amdgcn_cos:
2219 case Intrinsic::amdgcn_sin: {
2220 double V = getValueAsDouble(Op);
2221 if (V < -256.0 || V > 256.0)
2222 // The gfx8 and gfx9 architectures handle arguments outside the range
2223 // [-256, 256] differently. This should be a rare case so bail out
2224 // rather than trying to handle the difference.
2225 return nullptr;
2226 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2227 double V4 = V * 4.0;
2228 if (V4 == floor(V4)) {
2229 // Force exact results for quarter-integer inputs.
2230 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2231 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2232 } else {
2233 if (IsCos)
2234 V = cos(V * 2.0 * numbers::pi);
2235 else
2236 V = sin(V * 2.0 * numbers::pi);
2237 }
2238 return GetConstantFoldFPValue(V, Ty);
2239 }
2240 }
2241
2242 if (!TLI)
2243 return nullptr;
2244
2245 LibFunc Func = NotLibFunc;
2246 if (!TLI->getLibFunc(Name, Func))
2247 return nullptr;
2248
2249 switch (Func) {
2250 default:
2251 break;
2252 case LibFunc_acos:
2253 case LibFunc_acosf:
2254 case LibFunc_acos_finite:
2255 case LibFunc_acosf_finite:
2256 if (TLI->has(Func))
2257 return ConstantFoldFP(acos, APF, Ty);
2258 break;
2259 case LibFunc_asin:
2260 case LibFunc_asinf:
2261 case LibFunc_asin_finite:
2262 case LibFunc_asinf_finite:
2263 if (TLI->has(Func))
2264 return ConstantFoldFP(asin, APF, Ty);
2265 break;
2266 case LibFunc_atan:
2267 case LibFunc_atanf:
2268 if (TLI->has(Func))
2269 return ConstantFoldFP(atan, APF, Ty);
2270 break;
2271 case LibFunc_ceil:
2272 case LibFunc_ceilf:
2273 if (TLI->has(Func)) {
2274 U.roundToIntegral(APFloat::rmTowardPositive);
2275 return ConstantFP::get(Ty->getContext(), U);
2276 }
2277 break;
2278 case LibFunc_cos:
2279 case LibFunc_cosf:
2280 if (TLI->has(Func))
2281 return ConstantFoldFP(cos, APF, Ty);
2282 break;
2283 case LibFunc_cosh:
2284 case LibFunc_coshf:
2285 case LibFunc_cosh_finite:
2286 case LibFunc_coshf_finite:
2287 if (TLI->has(Func))
2288 return ConstantFoldFP(cosh, APF, Ty);
2289 break;
2290 case LibFunc_exp:
2291 case LibFunc_expf:
2292 case LibFunc_exp_finite:
2293 case LibFunc_expf_finite:
2294 if (TLI->has(Func))
2295 return ConstantFoldFP(exp, APF, Ty);
2296 break;
2297 case LibFunc_exp2:
2298 case LibFunc_exp2f:
2299 case LibFunc_exp2_finite:
2300 case LibFunc_exp2f_finite:
2301 if (TLI->has(Func))
2302 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2303 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2304 break;
2305 case LibFunc_fabs:
2306 case LibFunc_fabsf:
2307 if (TLI->has(Func)) {
2308 U.clearSign();
2309 return ConstantFP::get(Ty->getContext(), U);
2310 }
2311 break;
2312 case LibFunc_floor:
2313 case LibFunc_floorf:
2314 if (TLI->has(Func)) {
2315 U.roundToIntegral(APFloat::rmTowardNegative);
2316 return ConstantFP::get(Ty->getContext(), U);
2317 }
2318 break;
2319 case LibFunc_log:
2320 case LibFunc_logf:
2321 case LibFunc_log_finite:
2322 case LibFunc_logf_finite:
2323 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2324 return ConstantFoldFP(log, APF, Ty);
2325 break;
2326 case LibFunc_log2:
2327 case LibFunc_log2f:
2328 case LibFunc_log2_finite:
2329 case LibFunc_log2f_finite:
2330 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2331 // TODO: What about hosts that lack a C99 library?
2332 return ConstantFoldFP(log2, APF, Ty);
2333 break;
2334 case LibFunc_log10:
2335 case LibFunc_log10f:
2336 case LibFunc_log10_finite:
2337 case LibFunc_log10f_finite:
2338 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2339 // TODO: What about hosts that lack a C99 library?
2340 return ConstantFoldFP(log10, APF, Ty);
2341 break;
2342 case LibFunc_nearbyint:
2343 case LibFunc_nearbyintf:
2344 case LibFunc_rint:
2345 case LibFunc_rintf:
2346 if (TLI->has(Func)) {
2347 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2348 return ConstantFP::get(Ty->getContext(), U);
2349 }
2350 break;
2351 case LibFunc_round:
2352 case LibFunc_roundf:
2353 if (TLI->has(Func)) {
2354 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2355 return ConstantFP::get(Ty->getContext(), U);
2356 }
2357 break;
2358 case LibFunc_sin:
2359 case LibFunc_sinf:
2360 if (TLI->has(Func))
2361 return ConstantFoldFP(sin, APF, Ty);
2362 break;
2363 case LibFunc_sinh:
2364 case LibFunc_sinhf:
2365 case LibFunc_sinh_finite:
2366 case LibFunc_sinhf_finite:
2367 if (TLI->has(Func))
2368 return ConstantFoldFP(sinh, APF, Ty);
2369 break;
2370 case LibFunc_sqrt:
2371 case LibFunc_sqrtf:
2372 if (!APF.isNegative() && TLI->has(Func))
2373 return ConstantFoldFP(sqrt, APF, Ty);
2374 break;
2375 case LibFunc_tan:
2376 case LibFunc_tanf:
2377 if (TLI->has(Func))
2378 return ConstantFoldFP(tan, APF, Ty);
2379 break;
2380 case LibFunc_tanh:
2381 case LibFunc_tanhf:
2382 if (TLI->has(Func))
2383 return ConstantFoldFP(tanh, APF, Ty);
2384 break;
2385 case LibFunc_trunc:
2386 case LibFunc_truncf:
2387 if (TLI->has(Func)) {
2388 U.roundToIntegral(APFloat::rmTowardZero);
2389 return ConstantFP::get(Ty->getContext(), U);
2390 }
2391 break;
2392 }
2393 return nullptr;
2394 }
2395
2396 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2397 switch (IntrinsicID) {
2398 case Intrinsic::bswap:
2399 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2400 case Intrinsic::ctpop:
2401 return ConstantInt::get(Ty, Op->getValue().countPopulation());
2402 case Intrinsic::bitreverse:
2403 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2404 case Intrinsic::convert_from_fp16: {
2405 APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2406
2407 bool lost = false;
2408 APFloat::opStatus status = Val.convert(
2409 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2410
2411 // Conversion is always precise.
2412 (void)status;
2413 assert(status != APFloat::opInexact && !lost &&
2414 "Precision lost during fp16 constfolding");
2415
2416 return ConstantFP::get(Ty->getContext(), Val);
2417 }
2418 default:
2419 return nullptr;
2420 }
2421 }
2422
2423 switch (IntrinsicID) {
2424 default: break;
2425 case Intrinsic::vector_reduce_add:
2426 case Intrinsic::vector_reduce_mul:
2427 case Intrinsic::vector_reduce_and:
2428 case Intrinsic::vector_reduce_or:
2429 case Intrinsic::vector_reduce_xor:
2430 case Intrinsic::vector_reduce_smin:
2431 case Intrinsic::vector_reduce_smax:
2432 case Intrinsic::vector_reduce_umin:
2433 case Intrinsic::vector_reduce_umax:
2434 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
2435 return C;
2436 break;
2437 }
2438
2439 // Support ConstantVector in case we have an Undef in the top.
2440 if (isa<ConstantVector>(Operands[0]) ||
2441 isa<ConstantDataVector>(Operands[0])) {
2442 auto *Op = cast<Constant>(Operands[0]);
2443 switch (IntrinsicID) {
2444 default: break;
2445 case Intrinsic::x86_sse_cvtss2si:
2446 case Intrinsic::x86_sse_cvtss2si64:
2447 case Intrinsic::x86_sse2_cvtsd2si:
2448 case Intrinsic::x86_sse2_cvtsd2si64:
2449 if (ConstantFP *FPOp =
2450 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2451 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2452 /*roundTowardZero=*/false, Ty,
2453 /*IsSigned*/true);
2454 break;
2455 case Intrinsic::x86_sse_cvttss2si:
2456 case Intrinsic::x86_sse_cvttss2si64:
2457 case Intrinsic::x86_sse2_cvttsd2si:
2458 case Intrinsic::x86_sse2_cvttsd2si64:
2459 if (ConstantFP *FPOp =
2460 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2461 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2462 /*roundTowardZero=*/true, Ty,
2463 /*IsSigned*/true);
2464 break;
2465 }
2466 }
2467
2468 return nullptr;
2469 }
2470
evaluateCompare(const APFloat & Op1,const APFloat & Op2,const ConstrainedFPIntrinsic * Call)2471 static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
2472 const ConstrainedFPIntrinsic *Call) {
2473 APFloat::opStatus St = APFloat::opOK;
2474 auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call);
2475 FCmpInst::Predicate Cond = FCmp->getPredicate();
2476 if (FCmp->isSignaling()) {
2477 if (Op1.isNaN() || Op2.isNaN())
2478 St = APFloat::opInvalidOp;
2479 } else {
2480 if (Op1.isSignaling() || Op2.isSignaling())
2481 St = APFloat::opInvalidOp;
2482 }
2483 bool Result = FCmpInst::compare(Op1, Op2, Cond);
2484 if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
2485 return ConstantInt::get(Call->getType()->getScalarType(), Result);
2486 return nullptr;
2487 }
2488
ConstantFoldScalarCall2(StringRef Name,Intrinsic::ID IntrinsicID,Type * Ty,ArrayRef<Constant * > Operands,const TargetLibraryInfo * TLI,const CallBase * Call)2489 static Constant *ConstantFoldScalarCall2(StringRef Name,
2490 Intrinsic::ID IntrinsicID,
2491 Type *Ty,
2492 ArrayRef<Constant *> Operands,
2493 const TargetLibraryInfo *TLI,
2494 const CallBase *Call) {
2495 assert(Operands.size() == 2 && "Wrong number of operands.");
2496
2497 if (Ty->isFloatingPointTy()) {
2498 // TODO: We should have undef handling for all of the FP intrinsics that
2499 // are attempted to be folded in this function.
2500 bool IsOp0Undef = isa<UndefValue>(Operands[0]);
2501 bool IsOp1Undef = isa<UndefValue>(Operands[1]);
2502 switch (IntrinsicID) {
2503 case Intrinsic::maxnum:
2504 case Intrinsic::minnum:
2505 case Intrinsic::maximum:
2506 case Intrinsic::minimum:
2507 // If one argument is undef, return the other argument.
2508 if (IsOp0Undef)
2509 return Operands[1];
2510 if (IsOp1Undef)
2511 return Operands[0];
2512 break;
2513 }
2514 }
2515
2516 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2517 const APFloat &Op1V = Op1->getValueAPF();
2518
2519 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2520 if (Op2->getType() != Op1->getType())
2521 return nullptr;
2522 const APFloat &Op2V = Op2->getValueAPF();
2523
2524 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2525 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2526 APFloat Res = Op1V;
2527 APFloat::opStatus St;
2528 switch (IntrinsicID) {
2529 default:
2530 return nullptr;
2531 case Intrinsic::experimental_constrained_fadd:
2532 St = Res.add(Op2V, RM);
2533 break;
2534 case Intrinsic::experimental_constrained_fsub:
2535 St = Res.subtract(Op2V, RM);
2536 break;
2537 case Intrinsic::experimental_constrained_fmul:
2538 St = Res.multiply(Op2V, RM);
2539 break;
2540 case Intrinsic::experimental_constrained_fdiv:
2541 St = Res.divide(Op2V, RM);
2542 break;
2543 case Intrinsic::experimental_constrained_frem:
2544 St = Res.mod(Op2V);
2545 break;
2546 case Intrinsic::experimental_constrained_fcmp:
2547 case Intrinsic::experimental_constrained_fcmps:
2548 return evaluateCompare(Op1V, Op2V, ConstrIntr);
2549 }
2550 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
2551 St))
2552 return ConstantFP::get(Ty->getContext(), Res);
2553 return nullptr;
2554 }
2555
2556 switch (IntrinsicID) {
2557 default:
2558 break;
2559 case Intrinsic::copysign:
2560 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
2561 case Intrinsic::minnum:
2562 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
2563 case Intrinsic::maxnum:
2564 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
2565 case Intrinsic::minimum:
2566 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
2567 case Intrinsic::maximum:
2568 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
2569 }
2570
2571 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2572 return nullptr;
2573
2574 switch (IntrinsicID) {
2575 default:
2576 break;
2577 case Intrinsic::pow:
2578 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2579 case Intrinsic::amdgcn_fmul_legacy:
2580 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2581 // NaN or infinity, gives +0.0.
2582 if (Op1V.isZero() || Op2V.isZero())
2583 return ConstantFP::getNullValue(Ty);
2584 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
2585 }
2586
2587 if (!TLI)
2588 return nullptr;
2589
2590 LibFunc Func = NotLibFunc;
2591 if (!TLI->getLibFunc(Name, Func))
2592 return nullptr;
2593
2594 switch (Func) {
2595 default:
2596 break;
2597 case LibFunc_pow:
2598 case LibFunc_powf:
2599 case LibFunc_pow_finite:
2600 case LibFunc_powf_finite:
2601 if (TLI->has(Func))
2602 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2603 break;
2604 case LibFunc_fmod:
2605 case LibFunc_fmodf:
2606 if (TLI->has(Func)) {
2607 APFloat V = Op1->getValueAPF();
2608 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2609 return ConstantFP::get(Ty->getContext(), V);
2610 }
2611 break;
2612 case LibFunc_remainder:
2613 case LibFunc_remainderf:
2614 if (TLI->has(Func)) {
2615 APFloat V = Op1->getValueAPF();
2616 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2617 return ConstantFP::get(Ty->getContext(), V);
2618 }
2619 break;
2620 case LibFunc_atan2:
2621 case LibFunc_atan2f:
2622 // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
2623 // (Solaris), so we do not assume a known result for that.
2624 if (Op1V.isZero() && Op2V.isZero())
2625 return nullptr;
2626 [[fallthrough]];
2627 case LibFunc_atan2_finite:
2628 case LibFunc_atan2f_finite:
2629 if (TLI->has(Func))
2630 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2631 break;
2632 }
2633 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2634 switch (IntrinsicID) {
2635 case Intrinsic::is_fpclass: {
2636 uint32_t Mask = Op2C->getZExtValue();
2637 bool Result =
2638 ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) ||
2639 ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) ||
2640 ((Mask & fcNegInf) && Op1V.isInfinity() && Op1V.isNegative()) ||
2641 ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) ||
2642 ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) ||
2643 ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) ||
2644 ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) ||
2645 ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) ||
2646 ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) ||
2647 ((Mask & fcPosInf) && Op1V.isInfinity() && !Op1V.isNegative());
2648 return ConstantInt::get(Ty, Result);
2649 }
2650 default:
2651 break;
2652 }
2653
2654 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2655 return nullptr;
2656 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2657 return ConstantFP::get(
2658 Ty->getContext(),
2659 APFloat((float)std::pow((float)Op1V.convertToDouble(),
2660 (int)Op2C->getZExtValue())));
2661 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2662 return ConstantFP::get(
2663 Ty->getContext(),
2664 APFloat((float)std::pow((float)Op1V.convertToDouble(),
2665 (int)Op2C->getZExtValue())));
2666 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2667 return ConstantFP::get(
2668 Ty->getContext(),
2669 APFloat((double)std::pow(Op1V.convertToDouble(),
2670 (int)Op2C->getZExtValue())));
2671
2672 if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
2673 // FIXME: Should flush denorms depending on FP mode, but that's ignored
2674 // everywhere else.
2675
2676 // scalbn is equivalent to ldexp with float radix 2
2677 APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
2678 APFloat::rmNearestTiesToEven);
2679 return ConstantFP::get(Ty->getContext(), Result);
2680 }
2681 }
2682 return nullptr;
2683 }
2684
2685 if (Operands[0]->getType()->isIntegerTy() &&
2686 Operands[1]->getType()->isIntegerTy()) {
2687 const APInt *C0, *C1;
2688 if (!getConstIntOrUndef(Operands[0], C0) ||
2689 !getConstIntOrUndef(Operands[1], C1))
2690 return nullptr;
2691
2692 switch (IntrinsicID) {
2693 default: break;
2694 case Intrinsic::smax:
2695 case Intrinsic::smin:
2696 case Intrinsic::umax:
2697 case Intrinsic::umin:
2698 // This is the same as for binary ops - poison propagates.
2699 // TODO: Poison handling should be consolidated.
2700 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2701 return PoisonValue::get(Ty);
2702
2703 if (!C0 && !C1)
2704 return UndefValue::get(Ty);
2705 if (!C0 || !C1)
2706 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
2707 return ConstantInt::get(
2708 Ty, ICmpInst::compare(*C0, *C1,
2709 MinMaxIntrinsic::getPredicate(IntrinsicID))
2710 ? *C0
2711 : *C1);
2712
2713 case Intrinsic::usub_with_overflow:
2714 case Intrinsic::ssub_with_overflow:
2715 // X - undef -> { 0, false }
2716 // undef - X -> { 0, false }
2717 if (!C0 || !C1)
2718 return Constant::getNullValue(Ty);
2719 [[fallthrough]];
2720 case Intrinsic::uadd_with_overflow:
2721 case Intrinsic::sadd_with_overflow:
2722 // X + undef -> { -1, false }
2723 // undef + x -> { -1, false }
2724 if (!C0 || !C1) {
2725 return ConstantStruct::get(
2726 cast<StructType>(Ty),
2727 {Constant::getAllOnesValue(Ty->getStructElementType(0)),
2728 Constant::getNullValue(Ty->getStructElementType(1))});
2729 }
2730 [[fallthrough]];
2731 case Intrinsic::smul_with_overflow:
2732 case Intrinsic::umul_with_overflow: {
2733 // undef * X -> { 0, false }
2734 // X * undef -> { 0, false }
2735 if (!C0 || !C1)
2736 return Constant::getNullValue(Ty);
2737
2738 APInt Res;
2739 bool Overflow;
2740 switch (IntrinsicID) {
2741 default: llvm_unreachable("Invalid case");
2742 case Intrinsic::sadd_with_overflow:
2743 Res = C0->sadd_ov(*C1, Overflow);
2744 break;
2745 case Intrinsic::uadd_with_overflow:
2746 Res = C0->uadd_ov(*C1, Overflow);
2747 break;
2748 case Intrinsic::ssub_with_overflow:
2749 Res = C0->ssub_ov(*C1, Overflow);
2750 break;
2751 case Intrinsic::usub_with_overflow:
2752 Res = C0->usub_ov(*C1, Overflow);
2753 break;
2754 case Intrinsic::smul_with_overflow:
2755 Res = C0->smul_ov(*C1, Overflow);
2756 break;
2757 case Intrinsic::umul_with_overflow:
2758 Res = C0->umul_ov(*C1, Overflow);
2759 break;
2760 }
2761 Constant *Ops[] = {
2762 ConstantInt::get(Ty->getContext(), Res),
2763 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2764 };
2765 return ConstantStruct::get(cast<StructType>(Ty), Ops);
2766 }
2767 case Intrinsic::uadd_sat:
2768 case Intrinsic::sadd_sat:
2769 // This is the same as for binary ops - poison propagates.
2770 // TODO: Poison handling should be consolidated.
2771 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2772 return PoisonValue::get(Ty);
2773
2774 if (!C0 && !C1)
2775 return UndefValue::get(Ty);
2776 if (!C0 || !C1)
2777 return Constant::getAllOnesValue(Ty);
2778 if (IntrinsicID == Intrinsic::uadd_sat)
2779 return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2780 else
2781 return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2782 case Intrinsic::usub_sat:
2783 case Intrinsic::ssub_sat:
2784 // This is the same as for binary ops - poison propagates.
2785 // TODO: Poison handling should be consolidated.
2786 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2787 return PoisonValue::get(Ty);
2788
2789 if (!C0 && !C1)
2790 return UndefValue::get(Ty);
2791 if (!C0 || !C1)
2792 return Constant::getNullValue(Ty);
2793 if (IntrinsicID == Intrinsic::usub_sat)
2794 return ConstantInt::get(Ty, C0->usub_sat(*C1));
2795 else
2796 return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2797 case Intrinsic::cttz:
2798 case Intrinsic::ctlz:
2799 assert(C1 && "Must be constant int");
2800
2801 // cttz(0, 1) and ctlz(0, 1) are poison.
2802 if (C1->isOne() && (!C0 || C0->isZero()))
2803 return PoisonValue::get(Ty);
2804 if (!C0)
2805 return Constant::getNullValue(Ty);
2806 if (IntrinsicID == Intrinsic::cttz)
2807 return ConstantInt::get(Ty, C0->countTrailingZeros());
2808 else
2809 return ConstantInt::get(Ty, C0->countLeadingZeros());
2810
2811 case Intrinsic::abs:
2812 assert(C1 && "Must be constant int");
2813 assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
2814
2815 // Undef or minimum val operand with poison min --> undef
2816 if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
2817 return UndefValue::get(Ty);
2818
2819 // Undef operand with no poison min --> 0 (sign bit must be clear)
2820 if (!C0)
2821 return Constant::getNullValue(Ty);
2822
2823 return ConstantInt::get(Ty, C0->abs());
2824 }
2825
2826 return nullptr;
2827 }
2828
2829 // Support ConstantVector in case we have an Undef in the top.
2830 if ((isa<ConstantVector>(Operands[0]) ||
2831 isa<ConstantDataVector>(Operands[0])) &&
2832 // Check for default rounding mode.
2833 // FIXME: Support other rounding modes?
2834 isa<ConstantInt>(Operands[1]) &&
2835 cast<ConstantInt>(Operands[1])->getValue() == 4) {
2836 auto *Op = cast<Constant>(Operands[0]);
2837 switch (IntrinsicID) {
2838 default: break;
2839 case Intrinsic::x86_avx512_vcvtss2si32:
2840 case Intrinsic::x86_avx512_vcvtss2si64:
2841 case Intrinsic::x86_avx512_vcvtsd2si32:
2842 case Intrinsic::x86_avx512_vcvtsd2si64:
2843 if (ConstantFP *FPOp =
2844 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2845 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2846 /*roundTowardZero=*/false, Ty,
2847 /*IsSigned*/true);
2848 break;
2849 case Intrinsic::x86_avx512_vcvtss2usi32:
2850 case Intrinsic::x86_avx512_vcvtss2usi64:
2851 case Intrinsic::x86_avx512_vcvtsd2usi32:
2852 case Intrinsic::x86_avx512_vcvtsd2usi64:
2853 if (ConstantFP *FPOp =
2854 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2855 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2856 /*roundTowardZero=*/false, Ty,
2857 /*IsSigned*/false);
2858 break;
2859 case Intrinsic::x86_avx512_cvttss2si:
2860 case Intrinsic::x86_avx512_cvttss2si64:
2861 case Intrinsic::x86_avx512_cvttsd2si:
2862 case Intrinsic::x86_avx512_cvttsd2si64:
2863 if (ConstantFP *FPOp =
2864 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2865 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2866 /*roundTowardZero=*/true, Ty,
2867 /*IsSigned*/true);
2868 break;
2869 case Intrinsic::x86_avx512_cvttss2usi:
2870 case Intrinsic::x86_avx512_cvttss2usi64:
2871 case Intrinsic::x86_avx512_cvttsd2usi:
2872 case Intrinsic::x86_avx512_cvttsd2usi64:
2873 if (ConstantFP *FPOp =
2874 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2875 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2876 /*roundTowardZero=*/true, Ty,
2877 /*IsSigned*/false);
2878 break;
2879 }
2880 }
2881 return nullptr;
2882 }
2883
ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,const APFloat & S0,const APFloat & S1,const APFloat & S2)2884 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
2885 const APFloat &S0,
2886 const APFloat &S1,
2887 const APFloat &S2) {
2888 unsigned ID;
2889 const fltSemantics &Sem = S0.getSemantics();
2890 APFloat MA(Sem), SC(Sem), TC(Sem);
2891 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
2892 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
2893 // S2 < 0
2894 ID = 5;
2895 SC = -S0;
2896 } else {
2897 ID = 4;
2898 SC = S0;
2899 }
2900 MA = S2;
2901 TC = -S1;
2902 } else if (abs(S1) >= abs(S0)) {
2903 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
2904 // S1 < 0
2905 ID = 3;
2906 TC = -S2;
2907 } else {
2908 ID = 2;
2909 TC = S2;
2910 }
2911 MA = S1;
2912 SC = S0;
2913 } else {
2914 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
2915 // S0 < 0
2916 ID = 1;
2917 SC = S2;
2918 } else {
2919 ID = 0;
2920 SC = -S2;
2921 }
2922 MA = S0;
2923 TC = -S1;
2924 }
2925 switch (IntrinsicID) {
2926 default:
2927 llvm_unreachable("unhandled amdgcn cube intrinsic");
2928 case Intrinsic::amdgcn_cubeid:
2929 return APFloat(Sem, ID);
2930 case Intrinsic::amdgcn_cubema:
2931 return MA + MA;
2932 case Intrinsic::amdgcn_cubesc:
2933 return SC;
2934 case Intrinsic::amdgcn_cubetc:
2935 return TC;
2936 }
2937 }
2938
ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant * > Operands,Type * Ty)2939 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
2940 Type *Ty) {
2941 const APInt *C0, *C1, *C2;
2942 if (!getConstIntOrUndef(Operands[0], C0) ||
2943 !getConstIntOrUndef(Operands[1], C1) ||
2944 !getConstIntOrUndef(Operands[2], C2))
2945 return nullptr;
2946
2947 if (!C2)
2948 return UndefValue::get(Ty);
2949
2950 APInt Val(32, 0);
2951 unsigned NumUndefBytes = 0;
2952 for (unsigned I = 0; I < 32; I += 8) {
2953 unsigned Sel = C2->extractBitsAsZExtValue(8, I);
2954 unsigned B = 0;
2955
2956 if (Sel >= 13)
2957 B = 0xff;
2958 else if (Sel == 12)
2959 B = 0x00;
2960 else {
2961 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
2962 if (!Src)
2963 ++NumUndefBytes;
2964 else if (Sel < 8)
2965 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
2966 else
2967 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
2968 }
2969
2970 Val.insertBits(B, I, 8);
2971 }
2972
2973 if (NumUndefBytes == 4)
2974 return UndefValue::get(Ty);
2975
2976 return ConstantInt::get(Ty, Val);
2977 }
2978
ConstantFoldScalarCall3(StringRef Name,Intrinsic::ID IntrinsicID,Type * Ty,ArrayRef<Constant * > Operands,const TargetLibraryInfo * TLI,const CallBase * Call)2979 static Constant *ConstantFoldScalarCall3(StringRef Name,
2980 Intrinsic::ID IntrinsicID,
2981 Type *Ty,
2982 ArrayRef<Constant *> Operands,
2983 const TargetLibraryInfo *TLI,
2984 const CallBase *Call) {
2985 assert(Operands.size() == 3 && "Wrong number of operands.");
2986
2987 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2988 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2989 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
2990 const APFloat &C1 = Op1->getValueAPF();
2991 const APFloat &C2 = Op2->getValueAPF();
2992 const APFloat &C3 = Op3->getValueAPF();
2993
2994 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2995 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2996 APFloat Res = C1;
2997 APFloat::opStatus St;
2998 switch (IntrinsicID) {
2999 default:
3000 return nullptr;
3001 case Intrinsic::experimental_constrained_fma:
3002 case Intrinsic::experimental_constrained_fmuladd:
3003 St = Res.fusedMultiplyAdd(C2, C3, RM);
3004 break;
3005 }
3006 if (mayFoldConstrained(
3007 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
3008 return ConstantFP::get(Ty->getContext(), Res);
3009 return nullptr;
3010 }
3011
3012 switch (IntrinsicID) {
3013 default: break;
3014 case Intrinsic::amdgcn_fma_legacy: {
3015 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3016 // NaN or infinity, gives +0.0.
3017 if (C1.isZero() || C2.isZero()) {
3018 // It's tempting to just return C3 here, but that would give the
3019 // wrong result if C3 was -0.0.
3020 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
3021 }
3022 [[fallthrough]];
3023 }
3024 case Intrinsic::fma:
3025 case Intrinsic::fmuladd: {
3026 APFloat V = C1;
3027 V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
3028 return ConstantFP::get(Ty->getContext(), V);
3029 }
3030 case Intrinsic::amdgcn_cubeid:
3031 case Intrinsic::amdgcn_cubema:
3032 case Intrinsic::amdgcn_cubesc:
3033 case Intrinsic::amdgcn_cubetc: {
3034 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3035 return ConstantFP::get(Ty->getContext(), V);
3036 }
3037 }
3038 }
3039 }
3040 }
3041
3042 if (IntrinsicID == Intrinsic::smul_fix ||
3043 IntrinsicID == Intrinsic::smul_fix_sat) {
3044 // poison * C -> poison
3045 // C * poison -> poison
3046 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
3047 return PoisonValue::get(Ty);
3048
3049 const APInt *C0, *C1;
3050 if (!getConstIntOrUndef(Operands[0], C0) ||
3051 !getConstIntOrUndef(Operands[1], C1))
3052 return nullptr;
3053
3054 // undef * C -> 0
3055 // C * undef -> 0
3056 if (!C0 || !C1)
3057 return Constant::getNullValue(Ty);
3058
3059 // This code performs rounding towards negative infinity in case the result
3060 // cannot be represented exactly for the given scale. Targets that do care
3061 // about rounding should use a target hook for specifying how rounding
3062 // should be done, and provide their own folding to be consistent with
3063 // rounding. This is the same approach as used by
3064 // DAGTypeLegalizer::ExpandIntRes_MULFIX.
3065 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
3066 unsigned Width = C0->getBitWidth();
3067 assert(Scale < Width && "Illegal scale.");
3068 unsigned ExtendedWidth = Width * 2;
3069 APInt Product =
3070 (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
3071 if (IntrinsicID == Intrinsic::smul_fix_sat) {
3072 APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
3073 APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
3074 Product = APIntOps::smin(Product, Max);
3075 Product = APIntOps::smax(Product, Min);
3076 }
3077 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
3078 }
3079
3080 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
3081 const APInt *C0, *C1, *C2;
3082 if (!getConstIntOrUndef(Operands[0], C0) ||
3083 !getConstIntOrUndef(Operands[1], C1) ||
3084 !getConstIntOrUndef(Operands[2], C2))
3085 return nullptr;
3086
3087 bool IsRight = IntrinsicID == Intrinsic::fshr;
3088 if (!C2)
3089 return Operands[IsRight ? 1 : 0];
3090 if (!C0 && !C1)
3091 return UndefValue::get(Ty);
3092
3093 // The shift amount is interpreted as modulo the bitwidth. If the shift
3094 // amount is effectively 0, avoid UB due to oversized inverse shift below.
3095 unsigned BitWidth = C2->getBitWidth();
3096 unsigned ShAmt = C2->urem(BitWidth);
3097 if (!ShAmt)
3098 return Operands[IsRight ? 1 : 0];
3099
3100 // (C0 << ShlAmt) | (C1 >> LshrAmt)
3101 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
3102 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
3103 if (!C0)
3104 return ConstantInt::get(Ty, C1->lshr(LshrAmt));
3105 if (!C1)
3106 return ConstantInt::get(Ty, C0->shl(ShlAmt));
3107 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
3108 }
3109
3110 if (IntrinsicID == Intrinsic::amdgcn_perm)
3111 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
3112
3113 return nullptr;
3114 }
3115
ConstantFoldScalarCall(StringRef Name,Intrinsic::ID IntrinsicID,Type * Ty,ArrayRef<Constant * > Operands,const TargetLibraryInfo * TLI,const CallBase * Call)3116 static Constant *ConstantFoldScalarCall(StringRef Name,
3117 Intrinsic::ID IntrinsicID,
3118 Type *Ty,
3119 ArrayRef<Constant *> Operands,
3120 const TargetLibraryInfo *TLI,
3121 const CallBase *Call) {
3122 if (Operands.size() == 1)
3123 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
3124
3125 if (Operands.size() == 2)
3126 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
3127
3128 if (Operands.size() == 3)
3129 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
3130
3131 return nullptr;
3132 }
3133
ConstantFoldFixedVectorCall(StringRef Name,Intrinsic::ID IntrinsicID,FixedVectorType * FVTy,ArrayRef<Constant * > Operands,const DataLayout & DL,const TargetLibraryInfo * TLI,const CallBase * Call)3134 static Constant *ConstantFoldFixedVectorCall(
3135 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
3136 ArrayRef<Constant *> Operands, const DataLayout &DL,
3137 const TargetLibraryInfo *TLI, const CallBase *Call) {
3138 SmallVector<Constant *, 4> Result(FVTy->getNumElements());
3139 SmallVector<Constant *, 4> Lane(Operands.size());
3140 Type *Ty = FVTy->getElementType();
3141
3142 switch (IntrinsicID) {
3143 case Intrinsic::masked_load: {
3144 auto *SrcPtr = Operands[0];
3145 auto *Mask = Operands[2];
3146 auto *Passthru = Operands[3];
3147
3148 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
3149
3150 SmallVector<Constant *, 32> NewElements;
3151 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3152 auto *MaskElt = Mask->getAggregateElement(I);
3153 if (!MaskElt)
3154 break;
3155 auto *PassthruElt = Passthru->getAggregateElement(I);
3156 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
3157 if (isa<UndefValue>(MaskElt)) {
3158 if (PassthruElt)
3159 NewElements.push_back(PassthruElt);
3160 else if (VecElt)
3161 NewElements.push_back(VecElt);
3162 else
3163 return nullptr;
3164 }
3165 if (MaskElt->isNullValue()) {
3166 if (!PassthruElt)
3167 return nullptr;
3168 NewElements.push_back(PassthruElt);
3169 } else if (MaskElt->isOneValue()) {
3170 if (!VecElt)
3171 return nullptr;
3172 NewElements.push_back(VecElt);
3173 } else {
3174 return nullptr;
3175 }
3176 }
3177 if (NewElements.size() != FVTy->getNumElements())
3178 return nullptr;
3179 return ConstantVector::get(NewElements);
3180 }
3181 case Intrinsic::arm_mve_vctp8:
3182 case Intrinsic::arm_mve_vctp16:
3183 case Intrinsic::arm_mve_vctp32:
3184 case Intrinsic::arm_mve_vctp64: {
3185 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3186 unsigned Lanes = FVTy->getNumElements();
3187 uint64_t Limit = Op->getZExtValue();
3188
3189 SmallVector<Constant *, 16> NCs;
3190 for (unsigned i = 0; i < Lanes; i++) {
3191 if (i < Limit)
3192 NCs.push_back(ConstantInt::getTrue(Ty));
3193 else
3194 NCs.push_back(ConstantInt::getFalse(Ty));
3195 }
3196 return ConstantVector::get(NCs);
3197 }
3198 return nullptr;
3199 }
3200 case Intrinsic::get_active_lane_mask: {
3201 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
3202 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
3203 if (Op0 && Op1) {
3204 unsigned Lanes = FVTy->getNumElements();
3205 uint64_t Base = Op0->getZExtValue();
3206 uint64_t Limit = Op1->getZExtValue();
3207
3208 SmallVector<Constant *, 16> NCs;
3209 for (unsigned i = 0; i < Lanes; i++) {
3210 if (Base + i < Limit)
3211 NCs.push_back(ConstantInt::getTrue(Ty));
3212 else
3213 NCs.push_back(ConstantInt::getFalse(Ty));
3214 }
3215 return ConstantVector::get(NCs);
3216 }
3217 return nullptr;
3218 }
3219 default:
3220 break;
3221 }
3222
3223 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3224 // Gather a column of constants.
3225 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
3226 // Some intrinsics use a scalar type for certain arguments.
3227 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) {
3228 Lane[J] = Operands[J];
3229 continue;
3230 }
3231
3232 Constant *Agg = Operands[J]->getAggregateElement(I);
3233 if (!Agg)
3234 return nullptr;
3235
3236 Lane[J] = Agg;
3237 }
3238
3239 // Use the regular scalar folding to simplify this column.
3240 Constant *Folded =
3241 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
3242 if (!Folded)
3243 return nullptr;
3244 Result[I] = Folded;
3245 }
3246
3247 return ConstantVector::get(Result);
3248 }
3249
ConstantFoldScalableVectorCall(StringRef Name,Intrinsic::ID IntrinsicID,ScalableVectorType * SVTy,ArrayRef<Constant * > Operands,const DataLayout & DL,const TargetLibraryInfo * TLI,const CallBase * Call)3250 static Constant *ConstantFoldScalableVectorCall(
3251 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
3252 ArrayRef<Constant *> Operands, const DataLayout &DL,
3253 const TargetLibraryInfo *TLI, const CallBase *Call) {
3254 switch (IntrinsicID) {
3255 case Intrinsic::aarch64_sve_convert_from_svbool: {
3256 auto *Src = dyn_cast<Constant>(Operands[0]);
3257 if (!Src || !Src->isNullValue())
3258 break;
3259
3260 return ConstantInt::getFalse(SVTy);
3261 }
3262 default:
3263 break;
3264 }
3265 return nullptr;
3266 }
3267
3268 } // end anonymous namespace
3269
ConstantFoldCall(const CallBase * Call,Function * F,ArrayRef<Constant * > Operands,const TargetLibraryInfo * TLI)3270 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
3271 ArrayRef<Constant *> Operands,
3272 const TargetLibraryInfo *TLI) {
3273 if (Call->isNoBuiltin())
3274 return nullptr;
3275 if (!F->hasName())
3276 return nullptr;
3277
3278 // If this is not an intrinsic and not recognized as a library call, bail out.
3279 if (F->getIntrinsicID() == Intrinsic::not_intrinsic) {
3280 if (!TLI)
3281 return nullptr;
3282 LibFunc LibF;
3283 if (!TLI->getLibFunc(*F, LibF))
3284 return nullptr;
3285 }
3286
3287 StringRef Name = F->getName();
3288 Type *Ty = F->getReturnType();
3289 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
3290 return ConstantFoldFixedVectorCall(
3291 Name, F->getIntrinsicID(), FVTy, Operands,
3292 F->getParent()->getDataLayout(), TLI, Call);
3293
3294 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
3295 return ConstantFoldScalableVectorCall(
3296 Name, F->getIntrinsicID(), SVTy, Operands,
3297 F->getParent()->getDataLayout(), TLI, Call);
3298
3299 // TODO: If this is a library function, we already discovered that above,
3300 // so we should pass the LibFunc, not the name (and it might be better
3301 // still to separate intrinsic handling from libcalls).
3302 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
3303 Call);
3304 }
3305
isMathLibCallNoop(const CallBase * Call,const TargetLibraryInfo * TLI)3306 bool llvm::isMathLibCallNoop(const CallBase *Call,
3307 const TargetLibraryInfo *TLI) {
3308 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3309 // (and to some extent ConstantFoldScalarCall).
3310 if (Call->isNoBuiltin() || Call->isStrictFP())
3311 return false;
3312 Function *F = Call->getCalledFunction();
3313 if (!F)
3314 return false;
3315
3316 LibFunc Func;
3317 if (!TLI || !TLI->getLibFunc(*F, Func))
3318 return false;
3319
3320 if (Call->arg_size() == 1) {
3321 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
3322 const APFloat &Op = OpC->getValueAPF();
3323 switch (Func) {
3324 case LibFunc_logl:
3325 case LibFunc_log:
3326 case LibFunc_logf:
3327 case LibFunc_log2l:
3328 case LibFunc_log2:
3329 case LibFunc_log2f:
3330 case LibFunc_log10l:
3331 case LibFunc_log10:
3332 case LibFunc_log10f:
3333 return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
3334
3335 case LibFunc_expl:
3336 case LibFunc_exp:
3337 case LibFunc_expf:
3338 // FIXME: These boundaries are slightly conservative.
3339 if (OpC->getType()->isDoubleTy())
3340 return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
3341 if (OpC->getType()->isFloatTy())
3342 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
3343 break;
3344
3345 case LibFunc_exp2l:
3346 case LibFunc_exp2:
3347 case LibFunc_exp2f:
3348 // FIXME: These boundaries are slightly conservative.
3349 if (OpC->getType()->isDoubleTy())
3350 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
3351 if (OpC->getType()->isFloatTy())
3352 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
3353 break;
3354
3355 case LibFunc_sinl:
3356 case LibFunc_sin:
3357 case LibFunc_sinf:
3358 case LibFunc_cosl:
3359 case LibFunc_cos:
3360 case LibFunc_cosf:
3361 return !Op.isInfinity();
3362
3363 case LibFunc_tanl:
3364 case LibFunc_tan:
3365 case LibFunc_tanf: {
3366 // FIXME: Stop using the host math library.
3367 // FIXME: The computation isn't done in the right precision.
3368 Type *Ty = OpC->getType();
3369 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
3370 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
3371 break;
3372 }
3373
3374 case LibFunc_atan:
3375 case LibFunc_atanf:
3376 case LibFunc_atanl:
3377 // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
3378 return true;
3379
3380
3381 case LibFunc_asinl:
3382 case LibFunc_asin:
3383 case LibFunc_asinf:
3384 case LibFunc_acosl:
3385 case LibFunc_acos:
3386 case LibFunc_acosf:
3387 return !(Op < APFloat(Op.getSemantics(), "-1") ||
3388 Op > APFloat(Op.getSemantics(), "1"));
3389
3390 case LibFunc_sinh:
3391 case LibFunc_cosh:
3392 case LibFunc_sinhf:
3393 case LibFunc_coshf:
3394 case LibFunc_sinhl:
3395 case LibFunc_coshl:
3396 // FIXME: These boundaries are slightly conservative.
3397 if (OpC->getType()->isDoubleTy())
3398 return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
3399 if (OpC->getType()->isFloatTy())
3400 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
3401 break;
3402
3403 case LibFunc_sqrtl:
3404 case LibFunc_sqrt:
3405 case LibFunc_sqrtf:
3406 return Op.isNaN() || Op.isZero() || !Op.isNegative();
3407
3408 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3409 // maybe others?
3410 default:
3411 break;
3412 }
3413 }
3414 }
3415
3416 if (Call->arg_size() == 2) {
3417 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
3418 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
3419 if (Op0C && Op1C) {
3420 const APFloat &Op0 = Op0C->getValueAPF();
3421 const APFloat &Op1 = Op1C->getValueAPF();
3422
3423 switch (Func) {
3424 case LibFunc_powl:
3425 case LibFunc_pow:
3426 case LibFunc_powf: {
3427 // FIXME: Stop using the host math library.
3428 // FIXME: The computation isn't done in the right precision.
3429 Type *Ty = Op0C->getType();
3430 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
3431 if (Ty == Op1C->getType())
3432 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
3433 }
3434 break;
3435 }
3436
3437 case LibFunc_fmodl:
3438 case LibFunc_fmod:
3439 case LibFunc_fmodf:
3440 case LibFunc_remainderl:
3441 case LibFunc_remainder:
3442 case LibFunc_remainderf:
3443 return Op0.isNaN() || Op1.isNaN() ||
3444 (!Op0.isInfinity() && !Op1.isZero());
3445
3446 case LibFunc_atan2:
3447 case LibFunc_atan2f:
3448 case LibFunc_atan2l:
3449 // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
3450 // GLIBC and MSVC do not appear to raise an error on those, we
3451 // cannot rely on that behavior. POSIX and C11 say that a domain error
3452 // may occur, so allow for that possibility.
3453 return !Op0.isZero() || !Op1.isZero();
3454
3455 default:
3456 break;
3457 }
3458 }
3459 }
3460
3461 return false;
3462 }
3463
anchor()3464 void TargetFolder::anchor() {}
3465