1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the NumericLiteralParser, CharLiteralParser, and
10 // StringLiteralParser interfaces.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Lex/LiteralSupport.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/LangOptions.h"
17 #include "clang/Basic/SourceLocation.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Lex/LexDiagnostic.h"
20 #include "clang/Lex/Lexer.h"
21 #include "clang/Lex/Preprocessor.h"
22 #include "clang/Lex/Token.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/Support/ConvertUTF.h"
28 #include "llvm/Support/Error.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/Unicode.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <cstddef>
34 #include <cstdint>
35 #include <cstring>
36 #include <string>
37
38 using namespace clang;
39
getCharWidth(tok::TokenKind kind,const TargetInfo & Target)40 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
41 switch (kind) {
42 default: llvm_unreachable("Unknown token type!");
43 case tok::char_constant:
44 case tok::string_literal:
45 case tok::utf8_char_constant:
46 case tok::utf8_string_literal:
47 return Target.getCharWidth();
48 case tok::wide_char_constant:
49 case tok::wide_string_literal:
50 return Target.getWCharWidth();
51 case tok::utf16_char_constant:
52 case tok::utf16_string_literal:
53 return Target.getChar16Width();
54 case tok::utf32_char_constant:
55 case tok::utf32_string_literal:
56 return Target.getChar32Width();
57 }
58 }
59
MakeCharSourceRange(const LangOptions & Features,FullSourceLoc TokLoc,const char * TokBegin,const char * TokRangeBegin,const char * TokRangeEnd)60 static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
61 FullSourceLoc TokLoc,
62 const char *TokBegin,
63 const char *TokRangeBegin,
64 const char *TokRangeEnd) {
65 SourceLocation Begin =
66 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
67 TokLoc.getManager(), Features);
68 SourceLocation End =
69 Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
70 TokLoc.getManager(), Features);
71 return CharSourceRange::getCharRange(Begin, End);
72 }
73
74 /// Produce a diagnostic highlighting some portion of a literal.
75 ///
76 /// Emits the diagnostic \p DiagID, highlighting the range of characters from
77 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
78 /// a substring of a spelling buffer for the token beginning at \p TokBegin.
Diag(DiagnosticsEngine * Diags,const LangOptions & Features,FullSourceLoc TokLoc,const char * TokBegin,const char * TokRangeBegin,const char * TokRangeEnd,unsigned DiagID)79 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
80 const LangOptions &Features, FullSourceLoc TokLoc,
81 const char *TokBegin, const char *TokRangeBegin,
82 const char *TokRangeEnd, unsigned DiagID) {
83 SourceLocation Begin =
84 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
85 TokLoc.getManager(), Features);
86 return Diags->Report(Begin, DiagID) <<
87 MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
88 }
89
90 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
91 /// either a character or a string literal.
ProcessCharEscape(const char * ThisTokBegin,const char * & ThisTokBuf,const char * ThisTokEnd,bool & HadError,FullSourceLoc Loc,unsigned CharWidth,DiagnosticsEngine * Diags,const LangOptions & Features)92 static unsigned ProcessCharEscape(const char *ThisTokBegin,
93 const char *&ThisTokBuf,
94 const char *ThisTokEnd, bool &HadError,
95 FullSourceLoc Loc, unsigned CharWidth,
96 DiagnosticsEngine *Diags,
97 const LangOptions &Features) {
98 const char *EscapeBegin = ThisTokBuf;
99 bool Delimited = false;
100 bool EndDelimiterFound = false;
101
102 // Skip the '\' char.
103 ++ThisTokBuf;
104
105 // We know that this character can't be off the end of the buffer, because
106 // that would have been \", which would not have been the end of string.
107 unsigned ResultChar = *ThisTokBuf++;
108 switch (ResultChar) {
109 // These map to themselves.
110 case '\\': case '\'': case '"': case '?': break;
111
112 // These have fixed mappings.
113 case 'a':
114 // TODO: K&R: the meaning of '\\a' is different in traditional C
115 ResultChar = 7;
116 break;
117 case 'b':
118 ResultChar = 8;
119 break;
120 case 'e':
121 if (Diags)
122 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
123 diag::ext_nonstandard_escape) << "e";
124 ResultChar = 27;
125 break;
126 case 'E':
127 if (Diags)
128 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
129 diag::ext_nonstandard_escape) << "E";
130 ResultChar = 27;
131 break;
132 case 'f':
133 ResultChar = 12;
134 break;
135 case 'n':
136 ResultChar = 10;
137 break;
138 case 'r':
139 ResultChar = 13;
140 break;
141 case 't':
142 ResultChar = 9;
143 break;
144 case 'v':
145 ResultChar = 11;
146 break;
147 case 'x': { // Hex escape.
148 ResultChar = 0;
149 if (ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
150 Delimited = true;
151 ThisTokBuf++;
152 if (*ThisTokBuf == '}') {
153 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
154 diag::err_delimited_escape_empty);
155 return ResultChar;
156 }
157 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
158 if (Diags)
159 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
160 diag::err_hex_escape_no_digits) << "x";
161 return ResultChar;
162 }
163
164 // Hex escapes are a maximal series of hex digits.
165 bool Overflow = false;
166 for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
167 if (Delimited && *ThisTokBuf == '}') {
168 ThisTokBuf++;
169 EndDelimiterFound = true;
170 break;
171 }
172 int CharVal = llvm::hexDigitValue(*ThisTokBuf);
173 if (CharVal == -1) {
174 // Non delimited hex escape sequences stop at the first non-hex digit.
175 if (!Delimited)
176 break;
177 HadError = true;
178 if (Diags)
179 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
180 diag::err_delimited_escape_invalid)
181 << StringRef(ThisTokBuf, 1);
182 continue;
183 }
184 // About to shift out a digit?
185 if (ResultChar & 0xF0000000)
186 Overflow = true;
187 ResultChar <<= 4;
188 ResultChar |= CharVal;
189 }
190 // See if any bits will be truncated when evaluated as a character.
191 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
192 Overflow = true;
193 ResultChar &= ~0U >> (32-CharWidth);
194 }
195
196 // Check for overflow.
197 if (!HadError && Overflow) { // Too many digits to fit in
198 HadError = true;
199 if (Diags)
200 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
201 diag::err_escape_too_large)
202 << 0;
203 }
204 break;
205 }
206 case '0': case '1': case '2': case '3':
207 case '4': case '5': case '6': case '7': {
208 // Octal escapes.
209 --ThisTokBuf;
210 ResultChar = 0;
211
212 // Octal escapes are a series of octal digits with maximum length 3.
213 // "\0123" is a two digit sequence equal to "\012" "3".
214 unsigned NumDigits = 0;
215 do {
216 ResultChar <<= 3;
217 ResultChar |= *ThisTokBuf++ - '0';
218 ++NumDigits;
219 } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
220 ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
221
222 // Check for overflow. Reject '\777', but not L'\777'.
223 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
224 if (Diags)
225 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
226 diag::err_escape_too_large) << 1;
227 ResultChar &= ~0U >> (32-CharWidth);
228 }
229 break;
230 }
231 case 'o': {
232 bool Overflow = false;
233 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') {
234 HadError = true;
235 if (Diags)
236 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
237 diag::err_delimited_escape_missing_brace)
238 << "o";
239
240 break;
241 }
242 ResultChar = 0;
243 Delimited = true;
244 ++ThisTokBuf;
245 if (*ThisTokBuf == '}') {
246 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
247 diag::err_delimited_escape_empty);
248 return ResultChar;
249 }
250
251 while (ThisTokBuf != ThisTokEnd) {
252 if (*ThisTokBuf == '}') {
253 EndDelimiterFound = true;
254 ThisTokBuf++;
255 break;
256 }
257 if (*ThisTokBuf < '0' || *ThisTokBuf > '7') {
258 HadError = true;
259 if (Diags)
260 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
261 diag::err_delimited_escape_invalid)
262 << StringRef(ThisTokBuf, 1);
263 ThisTokBuf++;
264 continue;
265 }
266 if (ResultChar & 0x020000000)
267 Overflow = true;
268
269 ResultChar <<= 3;
270 ResultChar |= *ThisTokBuf++ - '0';
271 }
272 // Check for overflow. Reject '\777', but not L'\777'.
273 if (!HadError &&
274 (Overflow || (CharWidth != 32 && (ResultChar >> CharWidth) != 0))) {
275 HadError = true;
276 if (Diags)
277 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
278 diag::err_escape_too_large)
279 << 1;
280 ResultChar &= ~0U >> (32 - CharWidth);
281 }
282 break;
283 }
284 // Otherwise, these are not valid escapes.
285 case '(': case '{': case '[': case '%':
286 // GCC accepts these as extensions. We warn about them as such though.
287 if (Diags)
288 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
289 diag::ext_nonstandard_escape)
290 << std::string(1, ResultChar);
291 break;
292 default:
293 if (!Diags)
294 break;
295
296 if (isPrintable(ResultChar))
297 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
298 diag::ext_unknown_escape)
299 << std::string(1, ResultChar);
300 else
301 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
302 diag::ext_unknown_escape)
303 << "x" + llvm::utohexstr(ResultChar);
304 break;
305 }
306
307 if (Delimited && Diags) {
308 if (!EndDelimiterFound)
309 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
310 diag::err_expected)
311 << tok::r_brace;
312 else if (!HadError) {
313 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
314 Features.CPlusPlus2b ? diag::warn_cxx2b_delimited_escape_sequence
315 : diag::ext_delimited_escape_sequence)
316 << /*delimited*/ 0 << (Features.CPlusPlus ? 1 : 0);
317 }
318 }
319
320 return ResultChar;
321 }
322
appendCodePoint(unsigned Codepoint,llvm::SmallVectorImpl<char> & Str)323 static void appendCodePoint(unsigned Codepoint,
324 llvm::SmallVectorImpl<char> &Str) {
325 char ResultBuf[4];
326 char *ResultPtr = ResultBuf;
327 if (llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr))
328 Str.append(ResultBuf, ResultPtr);
329 }
330
expandUCNs(SmallVectorImpl<char> & Buf,StringRef Input)331 void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
332 for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
333 if (*I != '\\') {
334 Buf.push_back(*I);
335 continue;
336 }
337
338 ++I;
339 char Kind = *I;
340 ++I;
341
342 assert(Kind == 'u' || Kind == 'U' || Kind == 'N');
343 uint32_t CodePoint = 0;
344
345 if (Kind == 'u' && *I == '{') {
346 for (++I; *I != '}'; ++I) {
347 unsigned Value = llvm::hexDigitValue(*I);
348 assert(Value != -1U);
349 CodePoint <<= 4;
350 CodePoint += Value;
351 }
352 appendCodePoint(CodePoint, Buf);
353 continue;
354 }
355
356 if (Kind == 'N') {
357 assert(*I == '{');
358 ++I;
359 auto Delim = std::find(I, Input.end(), '}');
360 assert(Delim != Input.end());
361 std::optional<llvm::sys::unicode::LooseMatchingResult> Res =
362 llvm::sys::unicode::nameToCodepointLooseMatching(
363 StringRef(I, std::distance(I, Delim)));
364 assert(Res);
365 CodePoint = Res->CodePoint;
366 assert(CodePoint != 0xFFFFFFFF);
367 appendCodePoint(CodePoint, Buf);
368 I = Delim;
369 continue;
370 }
371
372 unsigned NumHexDigits;
373 if (Kind == 'u')
374 NumHexDigits = 4;
375 else
376 NumHexDigits = 8;
377
378 assert(I + NumHexDigits <= E);
379
380 for (; NumHexDigits != 0; ++I, --NumHexDigits) {
381 unsigned Value = llvm::hexDigitValue(*I);
382 assert(Value != -1U);
383
384 CodePoint <<= 4;
385 CodePoint += Value;
386 }
387
388 appendCodePoint(CodePoint, Buf);
389 --I;
390 }
391 }
392
ProcessNumericUCNEscape(const char * ThisTokBegin,const char * & ThisTokBuf,const char * ThisTokEnd,uint32_t & UcnVal,unsigned short & UcnLen,bool & Delimited,FullSourceLoc Loc,DiagnosticsEngine * Diags,const LangOptions & Features,bool in_char_string_literal=false)393 static bool ProcessNumericUCNEscape(const char *ThisTokBegin,
394 const char *&ThisTokBuf,
395 const char *ThisTokEnd, uint32_t &UcnVal,
396 unsigned short &UcnLen, bool &Delimited,
397 FullSourceLoc Loc, DiagnosticsEngine *Diags,
398 const LangOptions &Features,
399 bool in_char_string_literal = false) {
400 const char *UcnBegin = ThisTokBuf;
401 bool HasError = false;
402 bool EndDelimiterFound = false;
403
404 // Skip the '\u' char's.
405 ThisTokBuf += 2;
406 Delimited = false;
407 if (UcnBegin[1] == 'u' && in_char_string_literal &&
408 ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
409 Delimited = true;
410 ThisTokBuf++;
411 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
412 if (Diags)
413 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
414 diag::err_hex_escape_no_digits)
415 << StringRef(&ThisTokBuf[-1], 1);
416 return false;
417 }
418 UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
419
420 bool Overflow = false;
421 unsigned short Count = 0;
422 for (; ThisTokBuf != ThisTokEnd && (Delimited || Count != UcnLen);
423 ++ThisTokBuf) {
424 if (Delimited && *ThisTokBuf == '}') {
425 ++ThisTokBuf;
426 EndDelimiterFound = true;
427 break;
428 }
429 int CharVal = llvm::hexDigitValue(*ThisTokBuf);
430 if (CharVal == -1) {
431 HasError = true;
432 if (!Delimited)
433 break;
434 if (Diags) {
435 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
436 diag::err_delimited_escape_invalid)
437 << StringRef(ThisTokBuf, 1);
438 }
439 Count++;
440 continue;
441 }
442 if (UcnVal & 0xF0000000) {
443 Overflow = true;
444 continue;
445 }
446 UcnVal <<= 4;
447 UcnVal |= CharVal;
448 Count++;
449 }
450
451 if (Overflow) {
452 if (Diags)
453 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
454 diag::err_escape_too_large)
455 << 0;
456 return false;
457 }
458
459 if (Delimited && !EndDelimiterFound) {
460 if (Diags) {
461 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
462 diag::err_expected)
463 << tok::r_brace;
464 }
465 return false;
466 }
467
468 // If we didn't consume the proper number of digits, there is a problem.
469 if (Count == 0 || (!Delimited && Count != UcnLen)) {
470 if (Diags)
471 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
472 Delimited ? diag::err_delimited_escape_empty
473 : diag::err_ucn_escape_incomplete);
474 return false;
475 }
476 return !HasError;
477 }
478
DiagnoseInvalidUnicodeCharacterName(DiagnosticsEngine * Diags,const LangOptions & Features,FullSourceLoc Loc,const char * TokBegin,const char * TokRangeBegin,const char * TokRangeEnd,llvm::StringRef Name)479 static void DiagnoseInvalidUnicodeCharacterName(
480 DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc Loc,
481 const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd,
482 llvm::StringRef Name) {
483
484 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
485 diag::err_invalid_ucn_name)
486 << Name;
487
488 namespace u = llvm::sys::unicode;
489
490 std::optional<u::LooseMatchingResult> Res =
491 u::nameToCodepointLooseMatching(Name);
492 if (Res) {
493 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
494 diag::note_invalid_ucn_name_loose_matching)
495 << FixItHint::CreateReplacement(
496 MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin,
497 TokRangeEnd),
498 Res->Name);
499 return;
500 }
501
502 unsigned Distance = 0;
503 SmallVector<u::MatchForCodepointName> Matches =
504 u::nearestMatchesForCodepointName(Name, 5);
505 assert(!Matches.empty() && "No unicode characters found");
506
507 for (const auto &Match : Matches) {
508 if (Distance == 0)
509 Distance = Match.Distance;
510 if (std::max(Distance, Match.Distance) -
511 std::min(Distance, Match.Distance) >
512 3)
513 break;
514 Distance = Match.Distance;
515
516 std::string Str;
517 llvm::UTF32 V = Match.Value;
518 bool Converted =
519 llvm::convertUTF32ToUTF8String(llvm::ArrayRef<llvm::UTF32>(&V, 1), Str);
520 (void)Converted;
521 assert(Converted && "Found a match wich is not a unicode character");
522
523 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
524 diag::note_invalid_ucn_name_candidate)
525 << Match.Name << llvm::utohexstr(Match.Value)
526 << Str // FIXME: Fix the rendering of non printable characters
527 << FixItHint::CreateReplacement(
528 MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin,
529 TokRangeEnd),
530 Match.Name);
531 }
532 }
533
ProcessNamedUCNEscape(const char * ThisTokBegin,const char * & ThisTokBuf,const char * ThisTokEnd,uint32_t & UcnVal,unsigned short & UcnLen,FullSourceLoc Loc,DiagnosticsEngine * Diags,const LangOptions & Features)534 static bool ProcessNamedUCNEscape(const char *ThisTokBegin,
535 const char *&ThisTokBuf,
536 const char *ThisTokEnd, uint32_t &UcnVal,
537 unsigned short &UcnLen, FullSourceLoc Loc,
538 DiagnosticsEngine *Diags,
539 const LangOptions &Features) {
540 const char *UcnBegin = ThisTokBuf;
541 assert(UcnBegin[0] == '\\' && UcnBegin[1] == 'N');
542 ThisTokBuf += 2;
543 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') {
544 if (Diags) {
545 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
546 diag::err_delimited_escape_missing_brace)
547 << StringRef(&ThisTokBuf[-1], 1);
548 }
549 return false;
550 }
551 ThisTokBuf++;
552 const char *ClosingBrace = std::find_if(ThisTokBuf, ThisTokEnd, [](char C) {
553 return C == '}' || isVerticalWhitespace(C);
554 });
555 bool Incomplete = ClosingBrace == ThisTokEnd;
556 bool Empty = ClosingBrace == ThisTokBuf;
557 if (Incomplete || Empty) {
558 if (Diags) {
559 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
560 Incomplete ? diag::err_ucn_escape_incomplete
561 : diag::err_delimited_escape_empty)
562 << StringRef(&UcnBegin[1], 1);
563 }
564 ThisTokBuf = ClosingBrace == ThisTokEnd ? ClosingBrace : ClosingBrace + 1;
565 return false;
566 }
567 StringRef Name(ThisTokBuf, ClosingBrace - ThisTokBuf);
568 ThisTokBuf = ClosingBrace + 1;
569 std::optional<char32_t> Res = llvm::sys::unicode::nameToCodepointStrict(Name);
570 if (!Res) {
571 if (Diags)
572 DiagnoseInvalidUnicodeCharacterName(Diags, Features, Loc, ThisTokBegin,
573 &UcnBegin[3], ClosingBrace, Name);
574 return false;
575 }
576 UcnVal = *Res;
577 UcnLen = UcnVal > 0xFFFF ? 8 : 4;
578 return true;
579 }
580
581 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
582 /// return the UTF32.
ProcessUCNEscape(const char * ThisTokBegin,const char * & ThisTokBuf,const char * ThisTokEnd,uint32_t & UcnVal,unsigned short & UcnLen,FullSourceLoc Loc,DiagnosticsEngine * Diags,const LangOptions & Features,bool in_char_string_literal=false)583 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
584 const char *ThisTokEnd, uint32_t &UcnVal,
585 unsigned short &UcnLen, FullSourceLoc Loc,
586 DiagnosticsEngine *Diags,
587 const LangOptions &Features,
588 bool in_char_string_literal = false) {
589
590 bool HasError;
591 const char *UcnBegin = ThisTokBuf;
592 bool IsDelimitedEscapeSequence = false;
593 bool IsNamedEscapeSequence = false;
594 if (ThisTokBuf[1] == 'N') {
595 IsNamedEscapeSequence = true;
596 HasError = !ProcessNamedUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
597 UcnVal, UcnLen, Loc, Diags, Features);
598 } else {
599 HasError =
600 !ProcessNumericUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
601 UcnLen, IsDelimitedEscapeSequence, Loc, Diags,
602 Features, in_char_string_literal);
603 }
604 if (HasError)
605 return false;
606
607 // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
608 if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
609 UcnVal > 0x10FFFF) { // maximum legal UTF32 value
610 if (Diags)
611 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
612 diag::err_ucn_escape_invalid);
613 return false;
614 }
615
616 // C++11 allows UCNs that refer to control characters and basic source
617 // characters inside character and string literals
618 if (UcnVal < 0xa0 &&
619 (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { // $, @, `
620 bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
621 if (Diags) {
622 char BasicSCSChar = UcnVal;
623 if (UcnVal >= 0x20 && UcnVal < 0x7f)
624 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
625 IsError ? diag::err_ucn_escape_basic_scs :
626 diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
627 << StringRef(&BasicSCSChar, 1);
628 else
629 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
630 IsError ? diag::err_ucn_control_character :
631 diag::warn_cxx98_compat_literal_ucn_control_character);
632 }
633 if (IsError)
634 return false;
635 }
636
637 if (!Features.CPlusPlus && !Features.C99 && Diags)
638 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
639 diag::warn_ucn_not_valid_in_c89_literal);
640
641 if ((IsDelimitedEscapeSequence || IsNamedEscapeSequence) && Diags)
642 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
643 Features.CPlusPlus2b ? diag::warn_cxx2b_delimited_escape_sequence
644 : diag::ext_delimited_escape_sequence)
645 << (IsNamedEscapeSequence ? 1 : 0) << (Features.CPlusPlus ? 1 : 0);
646
647 return true;
648 }
649
650 /// MeasureUCNEscape - Determine the number of bytes within the resulting string
651 /// which this UCN will occupy.
MeasureUCNEscape(const char * ThisTokBegin,const char * & ThisTokBuf,const char * ThisTokEnd,unsigned CharByteWidth,const LangOptions & Features,bool & HadError)652 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
653 const char *ThisTokEnd, unsigned CharByteWidth,
654 const LangOptions &Features, bool &HadError) {
655 // UTF-32: 4 bytes per escape.
656 if (CharByteWidth == 4)
657 return 4;
658
659 uint32_t UcnVal = 0;
660 unsigned short UcnLen = 0;
661 FullSourceLoc Loc;
662
663 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
664 UcnLen, Loc, nullptr, Features, true)) {
665 HadError = true;
666 return 0;
667 }
668
669 // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
670 if (CharByteWidth == 2)
671 return UcnVal <= 0xFFFF ? 2 : 4;
672
673 // UTF-8.
674 if (UcnVal < 0x80)
675 return 1;
676 if (UcnVal < 0x800)
677 return 2;
678 if (UcnVal < 0x10000)
679 return 3;
680 return 4;
681 }
682
683 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
684 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
685 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
686 /// we will likely rework our support for UCN's.
EncodeUCNEscape(const char * ThisTokBegin,const char * & ThisTokBuf,const char * ThisTokEnd,char * & ResultBuf,bool & HadError,FullSourceLoc Loc,unsigned CharByteWidth,DiagnosticsEngine * Diags,const LangOptions & Features)687 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
688 const char *ThisTokEnd,
689 char *&ResultBuf, bool &HadError,
690 FullSourceLoc Loc, unsigned CharByteWidth,
691 DiagnosticsEngine *Diags,
692 const LangOptions &Features) {
693 typedef uint32_t UTF32;
694 UTF32 UcnVal = 0;
695 unsigned short UcnLen = 0;
696 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
697 Loc, Diags, Features, true)) {
698 HadError = true;
699 return;
700 }
701
702 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
703 "only character widths of 1, 2, or 4 bytes supported");
704
705 (void)UcnLen;
706 assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
707
708 if (CharByteWidth == 4) {
709 // FIXME: Make the type of the result buffer correct instead of
710 // using reinterpret_cast.
711 llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf);
712 *ResultPtr = UcnVal;
713 ResultBuf += 4;
714 return;
715 }
716
717 if (CharByteWidth == 2) {
718 // FIXME: Make the type of the result buffer correct instead of
719 // using reinterpret_cast.
720 llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf);
721
722 if (UcnVal <= (UTF32)0xFFFF) {
723 *ResultPtr = UcnVal;
724 ResultBuf += 2;
725 return;
726 }
727
728 // Convert to UTF16.
729 UcnVal -= 0x10000;
730 *ResultPtr = 0xD800 + (UcnVal >> 10);
731 *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
732 ResultBuf += 4;
733 return;
734 }
735
736 assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
737
738 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
739 // The conversion below was inspired by:
740 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
741 // First, we determine how many bytes the result will require.
742 typedef uint8_t UTF8;
743
744 unsigned short bytesToWrite = 0;
745 if (UcnVal < (UTF32)0x80)
746 bytesToWrite = 1;
747 else if (UcnVal < (UTF32)0x800)
748 bytesToWrite = 2;
749 else if (UcnVal < (UTF32)0x10000)
750 bytesToWrite = 3;
751 else
752 bytesToWrite = 4;
753
754 const unsigned byteMask = 0xBF;
755 const unsigned byteMark = 0x80;
756
757 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
758 // into the first byte, depending on how many bytes follow.
759 static const UTF8 firstByteMark[5] = {
760 0x00, 0x00, 0xC0, 0xE0, 0xF0
761 };
762 // Finally, we write the bytes into ResultBuf.
763 ResultBuf += bytesToWrite;
764 switch (bytesToWrite) { // note: everything falls through.
765 case 4:
766 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
767 [[fallthrough]];
768 case 3:
769 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
770 [[fallthrough]];
771 case 2:
772 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
773 [[fallthrough]];
774 case 1:
775 *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
776 }
777 // Update the buffer.
778 ResultBuf += bytesToWrite;
779 }
780
781 /// integer-constant: [C99 6.4.4.1]
782 /// decimal-constant integer-suffix
783 /// octal-constant integer-suffix
784 /// hexadecimal-constant integer-suffix
785 /// binary-literal integer-suffix [GNU, C++1y]
786 /// user-defined-integer-literal: [C++11 lex.ext]
787 /// decimal-literal ud-suffix
788 /// octal-literal ud-suffix
789 /// hexadecimal-literal ud-suffix
790 /// binary-literal ud-suffix [GNU, C++1y]
791 /// decimal-constant:
792 /// nonzero-digit
793 /// decimal-constant digit
794 /// octal-constant:
795 /// 0
796 /// octal-constant octal-digit
797 /// hexadecimal-constant:
798 /// hexadecimal-prefix hexadecimal-digit
799 /// hexadecimal-constant hexadecimal-digit
800 /// hexadecimal-prefix: one of
801 /// 0x 0X
802 /// binary-literal:
803 /// 0b binary-digit
804 /// 0B binary-digit
805 /// binary-literal binary-digit
806 /// integer-suffix:
807 /// unsigned-suffix [long-suffix]
808 /// unsigned-suffix [long-long-suffix]
809 /// long-suffix [unsigned-suffix]
810 /// long-long-suffix [unsigned-sufix]
811 /// nonzero-digit:
812 /// 1 2 3 4 5 6 7 8 9
813 /// octal-digit:
814 /// 0 1 2 3 4 5 6 7
815 /// hexadecimal-digit:
816 /// 0 1 2 3 4 5 6 7 8 9
817 /// a b c d e f
818 /// A B C D E F
819 /// binary-digit:
820 /// 0
821 /// 1
822 /// unsigned-suffix: one of
823 /// u U
824 /// long-suffix: one of
825 /// l L
826 /// long-long-suffix: one of
827 /// ll LL
828 ///
829 /// floating-constant: [C99 6.4.4.2]
830 /// TODO: add rules...
831 ///
NumericLiteralParser(StringRef TokSpelling,SourceLocation TokLoc,const SourceManager & SM,const LangOptions & LangOpts,const TargetInfo & Target,DiagnosticsEngine & Diags)832 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
833 SourceLocation TokLoc,
834 const SourceManager &SM,
835 const LangOptions &LangOpts,
836 const TargetInfo &Target,
837 DiagnosticsEngine &Diags)
838 : SM(SM), LangOpts(LangOpts), Diags(Diags),
839 ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
840
841 s = DigitsBegin = ThisTokBegin;
842 saw_exponent = false;
843 saw_period = false;
844 saw_ud_suffix = false;
845 saw_fixed_point_suffix = false;
846 isLong = false;
847 isUnsigned = false;
848 isLongLong = false;
849 isSizeT = false;
850 isHalf = false;
851 isFloat = false;
852 isImaginary = false;
853 isFloat16 = false;
854 isFloat128 = false;
855 MicrosoftInteger = 0;
856 isFract = false;
857 isAccum = false;
858 hadError = false;
859 isBitInt = false;
860
861 // This routine assumes that the range begin/end matches the regex for integer
862 // and FP constants (specifically, the 'pp-number' regex), and assumes that
863 // the byte at "*end" is both valid and not part of the regex. Because of
864 // this, it doesn't have to check for 'overscan' in various places.
865 if (isPreprocessingNumberBody(*ThisTokEnd)) {
866 Diags.Report(TokLoc, diag::err_lexing_numeric);
867 hadError = true;
868 return;
869 }
870
871 if (*s == '0') { // parse radix
872 ParseNumberStartingWithZero(TokLoc);
873 if (hadError)
874 return;
875 } else { // the first digit is non-zero
876 radix = 10;
877 s = SkipDigits(s);
878 if (s == ThisTokEnd) {
879 // Done.
880 } else {
881 ParseDecimalOrOctalCommon(TokLoc);
882 if (hadError)
883 return;
884 }
885 }
886
887 SuffixBegin = s;
888 checkSeparator(TokLoc, s, CSK_AfterDigits);
889
890 // Initial scan to lookahead for fixed point suffix.
891 if (LangOpts.FixedPoint) {
892 for (const char *c = s; c != ThisTokEnd; ++c) {
893 if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') {
894 saw_fixed_point_suffix = true;
895 break;
896 }
897 }
898 }
899
900 // Parse the suffix. At this point we can classify whether we have an FP or
901 // integer constant.
902 bool isFixedPointConstant = isFixedPointLiteral();
903 bool isFPConstant = isFloatingLiteral();
904 bool HasSize = false;
905
906 // Loop over all of the characters of the suffix. If we see something bad,
907 // we break out of the loop.
908 for (; s != ThisTokEnd; ++s) {
909 switch (*s) {
910 case 'R':
911 case 'r':
912 if (!LangOpts.FixedPoint)
913 break;
914 if (isFract || isAccum) break;
915 if (!(saw_period || saw_exponent)) break;
916 isFract = true;
917 continue;
918 case 'K':
919 case 'k':
920 if (!LangOpts.FixedPoint)
921 break;
922 if (isFract || isAccum) break;
923 if (!(saw_period || saw_exponent)) break;
924 isAccum = true;
925 continue;
926 case 'h': // FP Suffix for "half".
927 case 'H':
928 // OpenCL Extension v1.2 s9.5 - h or H suffix for half type.
929 if (!(LangOpts.Half || LangOpts.FixedPoint))
930 break;
931 if (isIntegerLiteral()) break; // Error for integer constant.
932 if (HasSize)
933 break;
934 HasSize = true;
935 isHalf = true;
936 continue; // Success.
937 case 'f': // FP Suffix for "float"
938 case 'F':
939 if (!isFPConstant) break; // Error for integer constant.
940 if (HasSize)
941 break;
942 HasSize = true;
943
944 // CUDA host and device may have different _Float16 support, therefore
945 // allows f16 literals to avoid false alarm.
946 // When we compile for OpenMP target offloading on NVPTX, f16 suffix
947 // should also be supported.
948 // ToDo: more precise check for CUDA.
949 // TODO: AMDGPU might also support it in the future.
950 if ((Target.hasFloat16Type() || LangOpts.CUDA ||
951 (LangOpts.OpenMPIsDevice && Target.getTriple().isNVPTX())) &&
952 s + 2 < ThisTokEnd && s[1] == '1' && s[2] == '6') {
953 s += 2; // success, eat up 2 characters.
954 isFloat16 = true;
955 continue;
956 }
957
958 isFloat = true;
959 continue; // Success.
960 case 'q': // FP Suffix for "__float128"
961 case 'Q':
962 if (!isFPConstant) break; // Error for integer constant.
963 if (HasSize)
964 break;
965 HasSize = true;
966 isFloat128 = true;
967 continue; // Success.
968 case 'u':
969 case 'U':
970 if (isFPConstant) break; // Error for floating constant.
971 if (isUnsigned) break; // Cannot be repeated.
972 isUnsigned = true;
973 continue; // Success.
974 case 'l':
975 case 'L':
976 if (HasSize)
977 break;
978 HasSize = true;
979
980 // Check for long long. The L's need to be adjacent and the same case.
981 if (s[1] == s[0]) {
982 assert(s + 1 < ThisTokEnd && "didn't maximally munch?");
983 if (isFPConstant) break; // long long invalid for floats.
984 isLongLong = true;
985 ++s; // Eat both of them.
986 } else {
987 isLong = true;
988 }
989 continue; // Success.
990 case 'z':
991 case 'Z':
992 if (isFPConstant)
993 break; // Invalid for floats.
994 if (HasSize)
995 break;
996 HasSize = true;
997 isSizeT = true;
998 continue;
999 case 'i':
1000 case 'I':
1001 if (LangOpts.MicrosoftExt && !isFPConstant) {
1002 // Allow i8, i16, i32, and i64. First, look ahead and check if
1003 // suffixes are Microsoft integers and not the imaginary unit.
1004 uint8_t Bits = 0;
1005 size_t ToSkip = 0;
1006 switch (s[1]) {
1007 case '8': // i8 suffix
1008 Bits = 8;
1009 ToSkip = 2;
1010 break;
1011 case '1':
1012 if (s[2] == '6') { // i16 suffix
1013 Bits = 16;
1014 ToSkip = 3;
1015 }
1016 break;
1017 case '3':
1018 if (s[2] == '2') { // i32 suffix
1019 Bits = 32;
1020 ToSkip = 3;
1021 }
1022 break;
1023 case '6':
1024 if (s[2] == '4') { // i64 suffix
1025 Bits = 64;
1026 ToSkip = 3;
1027 }
1028 break;
1029 default:
1030 break;
1031 }
1032 if (Bits) {
1033 if (HasSize)
1034 break;
1035 HasSize = true;
1036 MicrosoftInteger = Bits;
1037 s += ToSkip;
1038 assert(s <= ThisTokEnd && "didn't maximally munch?");
1039 break;
1040 }
1041 }
1042 [[fallthrough]];
1043 case 'j':
1044 case 'J':
1045 if (isImaginary) break; // Cannot be repeated.
1046 isImaginary = true;
1047 continue; // Success.
1048 case 'w':
1049 case 'W':
1050 if (isFPConstant)
1051 break; // Invalid for floats.
1052 if (HasSize)
1053 break; // Invalid if we already have a size for the literal.
1054
1055 // wb and WB are allowed, but a mixture of cases like Wb or wB is not. We
1056 // explicitly do not support the suffix in C++ as an extension because a
1057 // library-based UDL that resolves to a library type may be more
1058 // appropriate there.
1059 if (!LangOpts.CPlusPlus && ((s[0] == 'w' && s[1] == 'b') ||
1060 (s[0] == 'W' && s[1] == 'B'))) {
1061 isBitInt = true;
1062 HasSize = true;
1063 ++s; // Skip both characters (2nd char skipped on continue).
1064 continue; // Success.
1065 }
1066 }
1067 // If we reached here, there was an error or a ud-suffix.
1068 break;
1069 }
1070
1071 // "i", "if", and "il" are user-defined suffixes in C++1y.
1072 if (s != ThisTokEnd || isImaginary) {
1073 // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
1074 expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
1075 if (isValidUDSuffix(LangOpts, UDSuffixBuf)) {
1076 if (!isImaginary) {
1077 // Any suffix pieces we might have parsed are actually part of the
1078 // ud-suffix.
1079 isLong = false;
1080 isUnsigned = false;
1081 isLongLong = false;
1082 isSizeT = false;
1083 isFloat = false;
1084 isFloat16 = false;
1085 isHalf = false;
1086 isImaginary = false;
1087 isBitInt = false;
1088 MicrosoftInteger = 0;
1089 saw_fixed_point_suffix = false;
1090 isFract = false;
1091 isAccum = false;
1092 }
1093
1094 saw_ud_suffix = true;
1095 return;
1096 }
1097
1098 if (s != ThisTokEnd) {
1099 // Report an error if there are any.
1100 Diags.Report(Lexer::AdvanceToTokenCharacter(
1101 TokLoc, SuffixBegin - ThisTokBegin, SM, LangOpts),
1102 diag::err_invalid_suffix_constant)
1103 << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)
1104 << (isFixedPointConstant ? 2 : isFPConstant);
1105 hadError = true;
1106 }
1107 }
1108
1109 if (!hadError && saw_fixed_point_suffix) {
1110 assert(isFract || isAccum);
1111 }
1112 }
1113
1114 /// ParseDecimalOrOctalCommon - This method is called for decimal or octal
1115 /// numbers. It issues an error for illegal digits, and handles floating point
1116 /// parsing. If it detects a floating point number, the radix is set to 10.
ParseDecimalOrOctalCommon(SourceLocation TokLoc)1117 void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){
1118 assert((radix == 8 || radix == 10) && "Unexpected radix");
1119
1120 // If we have a hex digit other than 'e' (which denotes a FP exponent) then
1121 // the code is using an incorrect base.
1122 if (isHexDigit(*s) && *s != 'e' && *s != 'E' &&
1123 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
1124 Diags.Report(
1125 Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, LangOpts),
1126 diag::err_invalid_digit)
1127 << StringRef(s, 1) << (radix == 8 ? 1 : 0);
1128 hadError = true;
1129 return;
1130 }
1131
1132 if (*s == '.') {
1133 checkSeparator(TokLoc, s, CSK_AfterDigits);
1134 s++;
1135 radix = 10;
1136 saw_period = true;
1137 checkSeparator(TokLoc, s, CSK_BeforeDigits);
1138 s = SkipDigits(s); // Skip suffix.
1139 }
1140 if (*s == 'e' || *s == 'E') { // exponent
1141 checkSeparator(TokLoc, s, CSK_AfterDigits);
1142 const char *Exponent = s;
1143 s++;
1144 radix = 10;
1145 saw_exponent = true;
1146 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
1147 const char *first_non_digit = SkipDigits(s);
1148 if (containsDigits(s, first_non_digit)) {
1149 checkSeparator(TokLoc, s, CSK_BeforeDigits);
1150 s = first_non_digit;
1151 } else {
1152 if (!hadError) {
1153 Diags.Report(Lexer::AdvanceToTokenCharacter(
1154 TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
1155 diag::err_exponent_has_no_digits);
1156 hadError = true;
1157 }
1158 return;
1159 }
1160 }
1161 }
1162
1163 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
1164 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
1165 /// treat it as an invalid suffix.
isValidUDSuffix(const LangOptions & LangOpts,StringRef Suffix)1166 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
1167 StringRef Suffix) {
1168 if (!LangOpts.CPlusPlus11 || Suffix.empty())
1169 return false;
1170
1171 // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
1172 if (Suffix[0] == '_')
1173 return true;
1174
1175 // In C++11, there are no library suffixes.
1176 if (!LangOpts.CPlusPlus14)
1177 return false;
1178
1179 // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library.
1180 // Per tweaked N3660, "il", "i", and "if" are also used in the library.
1181 // In C++2a "d" and "y" are used in the library.
1182 return llvm::StringSwitch<bool>(Suffix)
1183 .Cases("h", "min", "s", true)
1184 .Cases("ms", "us", "ns", true)
1185 .Cases("il", "i", "if", true)
1186 .Cases("d", "y", LangOpts.CPlusPlus20)
1187 .Default(false);
1188 }
1189
checkSeparator(SourceLocation TokLoc,const char * Pos,CheckSeparatorKind IsAfterDigits)1190 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
1191 const char *Pos,
1192 CheckSeparatorKind IsAfterDigits) {
1193 if (IsAfterDigits == CSK_AfterDigits) {
1194 if (Pos == ThisTokBegin)
1195 return;
1196 --Pos;
1197 } else if (Pos == ThisTokEnd)
1198 return;
1199
1200 if (isDigitSeparator(*Pos)) {
1201 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin, SM,
1202 LangOpts),
1203 diag::err_digit_separator_not_between_digits)
1204 << IsAfterDigits;
1205 hadError = true;
1206 }
1207 }
1208
1209 /// ParseNumberStartingWithZero - This method is called when the first character
1210 /// of the number is found to be a zero. This means it is either an octal
1211 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
1212 /// a floating point number (01239.123e4). Eat the prefix, determining the
1213 /// radix etc.
ParseNumberStartingWithZero(SourceLocation TokLoc)1214 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
1215 assert(s[0] == '0' && "Invalid method call");
1216 s++;
1217
1218 int c1 = s[0];
1219
1220 // Handle a hex number like 0x1234.
1221 if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
1222 s++;
1223 assert(s < ThisTokEnd && "didn't maximally munch?");
1224 radix = 16;
1225 DigitsBegin = s;
1226 s = SkipHexDigits(s);
1227 bool HasSignificandDigits = containsDigits(DigitsBegin, s);
1228 if (s == ThisTokEnd) {
1229 // Done.
1230 } else if (*s == '.') {
1231 s++;
1232 saw_period = true;
1233 const char *floatDigitsBegin = s;
1234 s = SkipHexDigits(s);
1235 if (containsDigits(floatDigitsBegin, s))
1236 HasSignificandDigits = true;
1237 if (HasSignificandDigits)
1238 checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits);
1239 }
1240
1241 if (!HasSignificandDigits) {
1242 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1243 LangOpts),
1244 diag::err_hex_constant_requires)
1245 << LangOpts.CPlusPlus << 1;
1246 hadError = true;
1247 return;
1248 }
1249
1250 // A binary exponent can appear with or with a '.'. If dotted, the
1251 // binary exponent is required.
1252 if (*s == 'p' || *s == 'P') {
1253 checkSeparator(TokLoc, s, CSK_AfterDigits);
1254 const char *Exponent = s;
1255 s++;
1256 saw_exponent = true;
1257 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
1258 const char *first_non_digit = SkipDigits(s);
1259 if (!containsDigits(s, first_non_digit)) {
1260 if (!hadError) {
1261 Diags.Report(Lexer::AdvanceToTokenCharacter(
1262 TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
1263 diag::err_exponent_has_no_digits);
1264 hadError = true;
1265 }
1266 return;
1267 }
1268 checkSeparator(TokLoc, s, CSK_BeforeDigits);
1269 s = first_non_digit;
1270
1271 if (!LangOpts.HexFloats)
1272 Diags.Report(TokLoc, LangOpts.CPlusPlus
1273 ? diag::ext_hex_literal_invalid
1274 : diag::ext_hex_constant_invalid);
1275 else if (LangOpts.CPlusPlus17)
1276 Diags.Report(TokLoc, diag::warn_cxx17_hex_literal);
1277 } else if (saw_period) {
1278 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1279 LangOpts),
1280 diag::err_hex_constant_requires)
1281 << LangOpts.CPlusPlus << 0;
1282 hadError = true;
1283 }
1284 return;
1285 }
1286
1287 // Handle simple binary numbers 0b01010
1288 if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
1289 // 0b101010 is a C++1y / GCC extension.
1290 Diags.Report(TokLoc, LangOpts.CPlusPlus14
1291 ? diag::warn_cxx11_compat_binary_literal
1292 : LangOpts.CPlusPlus ? diag::ext_binary_literal_cxx14
1293 : diag::ext_binary_literal);
1294 ++s;
1295 assert(s < ThisTokEnd && "didn't maximally munch?");
1296 radix = 2;
1297 DigitsBegin = s;
1298 s = SkipBinaryDigits(s);
1299 if (s == ThisTokEnd) {
1300 // Done.
1301 } else if (isHexDigit(*s) &&
1302 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
1303 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1304 LangOpts),
1305 diag::err_invalid_digit)
1306 << StringRef(s, 1) << 2;
1307 hadError = true;
1308 }
1309 // Other suffixes will be diagnosed by the caller.
1310 return;
1311 }
1312
1313 // For now, the radix is set to 8. If we discover that we have a
1314 // floating point constant, the radix will change to 10. Octal floating
1315 // point constants are not permitted (only decimal and hexadecimal).
1316 radix = 8;
1317 const char *PossibleNewDigitStart = s;
1318 s = SkipOctalDigits(s);
1319 // When the value is 0 followed by a suffix (like 0wb), we want to leave 0
1320 // as the start of the digits. So if skipping octal digits does not skip
1321 // anything, we leave the digit start where it was.
1322 if (s != PossibleNewDigitStart)
1323 DigitsBegin = PossibleNewDigitStart;
1324
1325 if (s == ThisTokEnd)
1326 return; // Done, simple octal number like 01234
1327
1328 // If we have some other non-octal digit that *is* a decimal digit, see if
1329 // this is part of a floating point number like 094.123 or 09e1.
1330 if (isDigit(*s)) {
1331 const char *EndDecimal = SkipDigits(s);
1332 if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
1333 s = EndDecimal;
1334 radix = 10;
1335 }
1336 }
1337
1338 ParseDecimalOrOctalCommon(TokLoc);
1339 }
1340
alwaysFitsInto64Bits(unsigned Radix,unsigned NumDigits)1341 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
1342 switch (Radix) {
1343 case 2:
1344 return NumDigits <= 64;
1345 case 8:
1346 return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
1347 case 10:
1348 return NumDigits <= 19; // floor(log10(2^64))
1349 case 16:
1350 return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
1351 default:
1352 llvm_unreachable("impossible Radix");
1353 }
1354 }
1355
1356 /// GetIntegerValue - Convert this numeric literal value to an APInt that
1357 /// matches Val's input width. If there is an overflow, set Val to the low bits
1358 /// of the result and return true. Otherwise, return false.
GetIntegerValue(llvm::APInt & Val)1359 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
1360 // Fast path: Compute a conservative bound on the maximum number of
1361 // bits per digit in this radix. If we can't possibly overflow a
1362 // uint64 based on that bound then do the simple conversion to
1363 // integer. This avoids the expensive overflow checking below, and
1364 // handles the common cases that matter (small decimal integers and
1365 // hex/octal values which don't overflow).
1366 const unsigned NumDigits = SuffixBegin - DigitsBegin;
1367 if (alwaysFitsInto64Bits(radix, NumDigits)) {
1368 uint64_t N = 0;
1369 for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
1370 if (!isDigitSeparator(*Ptr))
1371 N = N * radix + llvm::hexDigitValue(*Ptr);
1372
1373 // This will truncate the value to Val's input width. Simply check
1374 // for overflow by comparing.
1375 Val = N;
1376 return Val.getZExtValue() != N;
1377 }
1378
1379 Val = 0;
1380 const char *Ptr = DigitsBegin;
1381
1382 llvm::APInt RadixVal(Val.getBitWidth(), radix);
1383 llvm::APInt CharVal(Val.getBitWidth(), 0);
1384 llvm::APInt OldVal = Val;
1385
1386 bool OverflowOccurred = false;
1387 while (Ptr < SuffixBegin) {
1388 if (isDigitSeparator(*Ptr)) {
1389 ++Ptr;
1390 continue;
1391 }
1392
1393 unsigned C = llvm::hexDigitValue(*Ptr++);
1394
1395 // If this letter is out of bound for this radix, reject it.
1396 assert(C < radix && "NumericLiteralParser ctor should have rejected this");
1397
1398 CharVal = C;
1399
1400 // Add the digit to the value in the appropriate radix. If adding in digits
1401 // made the value smaller, then this overflowed.
1402 OldVal = Val;
1403
1404 // Multiply by radix, did overflow occur on the multiply?
1405 Val *= RadixVal;
1406 OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
1407
1408 // Add value, did overflow occur on the value?
1409 // (a + b) ult b <=> overflow
1410 Val += CharVal;
1411 OverflowOccurred |= Val.ult(CharVal);
1412 }
1413 return OverflowOccurred;
1414 }
1415
1416 llvm::APFloat::opStatus
GetFloatValue(llvm::APFloat & Result)1417 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
1418 using llvm::APFloat;
1419
1420 unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
1421
1422 llvm::SmallString<16> Buffer;
1423 StringRef Str(ThisTokBegin, n);
1424 if (Str.contains('\'')) {
1425 Buffer.reserve(n);
1426 std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
1427 &isDigitSeparator);
1428 Str = Buffer;
1429 }
1430
1431 auto StatusOrErr =
1432 Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
1433 assert(StatusOrErr && "Invalid floating point representation");
1434 return !errorToBool(StatusOrErr.takeError()) ? *StatusOrErr
1435 : APFloat::opInvalidOp;
1436 }
1437
IsExponentPart(char c)1438 static inline bool IsExponentPart(char c) {
1439 return c == 'p' || c == 'P' || c == 'e' || c == 'E';
1440 }
1441
GetFixedPointValue(llvm::APInt & StoreVal,unsigned Scale)1442 bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) {
1443 assert(radix == 16 || radix == 10);
1444
1445 // Find how many digits are needed to store the whole literal.
1446 unsigned NumDigits = SuffixBegin - DigitsBegin;
1447 if (saw_period) --NumDigits;
1448
1449 // Initial scan of the exponent if it exists
1450 bool ExpOverflowOccurred = false;
1451 bool NegativeExponent = false;
1452 const char *ExponentBegin;
1453 uint64_t Exponent = 0;
1454 int64_t BaseShift = 0;
1455 if (saw_exponent) {
1456 const char *Ptr = DigitsBegin;
1457
1458 while (!IsExponentPart(*Ptr)) ++Ptr;
1459 ExponentBegin = Ptr;
1460 ++Ptr;
1461 NegativeExponent = *Ptr == '-';
1462 if (NegativeExponent) ++Ptr;
1463
1464 unsigned NumExpDigits = SuffixBegin - Ptr;
1465 if (alwaysFitsInto64Bits(radix, NumExpDigits)) {
1466 llvm::StringRef ExpStr(Ptr, NumExpDigits);
1467 llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10);
1468 Exponent = ExpInt.getZExtValue();
1469 } else {
1470 ExpOverflowOccurred = true;
1471 }
1472
1473 if (NegativeExponent) BaseShift -= Exponent;
1474 else BaseShift += Exponent;
1475 }
1476
1477 // Number of bits needed for decimal literal is
1478 // ceil(NumDigits * log2(10)) Integral part
1479 // + Scale Fractional part
1480 // + ceil(Exponent * log2(10)) Exponent
1481 // --------------------------------------------------
1482 // ceil((NumDigits + Exponent) * log2(10)) + Scale
1483 //
1484 // But for simplicity in handling integers, we can round up log2(10) to 4,
1485 // making:
1486 // 4 * (NumDigits + Exponent) + Scale
1487 //
1488 // Number of digits needed for hexadecimal literal is
1489 // 4 * NumDigits Integral part
1490 // + Scale Fractional part
1491 // + Exponent Exponent
1492 // --------------------------------------------------
1493 // (4 * NumDigits) + Scale + Exponent
1494 uint64_t NumBitsNeeded;
1495 if (radix == 10)
1496 NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale;
1497 else
1498 NumBitsNeeded = 4 * NumDigits + Exponent + Scale;
1499
1500 if (NumBitsNeeded > std::numeric_limits<unsigned>::max())
1501 ExpOverflowOccurred = true;
1502 llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false);
1503
1504 bool FoundDecimal = false;
1505
1506 int64_t FractBaseShift = 0;
1507 const char *End = saw_exponent ? ExponentBegin : SuffixBegin;
1508 for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) {
1509 if (*Ptr == '.') {
1510 FoundDecimal = true;
1511 continue;
1512 }
1513
1514 // Normal reading of an integer
1515 unsigned C = llvm::hexDigitValue(*Ptr);
1516 assert(C < radix && "NumericLiteralParser ctor should have rejected this");
1517
1518 Val *= radix;
1519 Val += C;
1520
1521 if (FoundDecimal)
1522 // Keep track of how much we will need to adjust this value by from the
1523 // number of digits past the radix point.
1524 --FractBaseShift;
1525 }
1526
1527 // For a radix of 16, we will be multiplying by 2 instead of 16.
1528 if (radix == 16) FractBaseShift *= 4;
1529 BaseShift += FractBaseShift;
1530
1531 Val <<= Scale;
1532
1533 uint64_t Base = (radix == 16) ? 2 : 10;
1534 if (BaseShift > 0) {
1535 for (int64_t i = 0; i < BaseShift; ++i) {
1536 Val *= Base;
1537 }
1538 } else if (BaseShift < 0) {
1539 for (int64_t i = BaseShift; i < 0 && !Val.isZero(); ++i)
1540 Val = Val.udiv(Base);
1541 }
1542
1543 bool IntOverflowOccurred = false;
1544 auto MaxVal = llvm::APInt::getMaxValue(StoreVal.getBitWidth());
1545 if (Val.getBitWidth() > StoreVal.getBitWidth()) {
1546 IntOverflowOccurred |= Val.ugt(MaxVal.zext(Val.getBitWidth()));
1547 StoreVal = Val.trunc(StoreVal.getBitWidth());
1548 } else if (Val.getBitWidth() < StoreVal.getBitWidth()) {
1549 IntOverflowOccurred |= Val.zext(MaxVal.getBitWidth()).ugt(MaxVal);
1550 StoreVal = Val.zext(StoreVal.getBitWidth());
1551 } else {
1552 StoreVal = Val;
1553 }
1554
1555 return IntOverflowOccurred || ExpOverflowOccurred;
1556 }
1557
1558 /// \verbatim
1559 /// user-defined-character-literal: [C++11 lex.ext]
1560 /// character-literal ud-suffix
1561 /// ud-suffix:
1562 /// identifier
1563 /// character-literal: [C++11 lex.ccon]
1564 /// ' c-char-sequence '
1565 /// u' c-char-sequence '
1566 /// U' c-char-sequence '
1567 /// L' c-char-sequence '
1568 /// u8' c-char-sequence ' [C++1z lex.ccon]
1569 /// c-char-sequence:
1570 /// c-char
1571 /// c-char-sequence c-char
1572 /// c-char:
1573 /// any member of the source character set except the single-quote ',
1574 /// backslash \, or new-line character
1575 /// escape-sequence
1576 /// universal-character-name
1577 /// escape-sequence:
1578 /// simple-escape-sequence
1579 /// octal-escape-sequence
1580 /// hexadecimal-escape-sequence
1581 /// simple-escape-sequence:
1582 /// one of \' \" \? \\ \a \b \f \n \r \t \v
1583 /// octal-escape-sequence:
1584 /// \ octal-digit
1585 /// \ octal-digit octal-digit
1586 /// \ octal-digit octal-digit octal-digit
1587 /// hexadecimal-escape-sequence:
1588 /// \x hexadecimal-digit
1589 /// hexadecimal-escape-sequence hexadecimal-digit
1590 /// universal-character-name: [C++11 lex.charset]
1591 /// \u hex-quad
1592 /// \U hex-quad hex-quad
1593 /// hex-quad:
1594 /// hex-digit hex-digit hex-digit hex-digit
1595 /// \endverbatim
1596 ///
CharLiteralParser(const char * begin,const char * end,SourceLocation Loc,Preprocessor & PP,tok::TokenKind kind)1597 CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
1598 SourceLocation Loc, Preprocessor &PP,
1599 tok::TokenKind kind) {
1600 // At this point we know that the character matches the regex "(L|u|U)?'.*'".
1601 HadError = false;
1602
1603 Kind = kind;
1604
1605 const char *TokBegin = begin;
1606
1607 // Skip over wide character determinant.
1608 if (Kind != tok::char_constant)
1609 ++begin;
1610 if (Kind == tok::utf8_char_constant)
1611 ++begin;
1612
1613 // Skip over the entry quote.
1614 if (begin[0] != '\'') {
1615 PP.Diag(Loc, diag::err_lexing_char);
1616 HadError = true;
1617 return;
1618 }
1619
1620 ++begin;
1621
1622 // Remove an optional ud-suffix.
1623 if (end[-1] != '\'') {
1624 const char *UDSuffixEnd = end;
1625 do {
1626 --end;
1627 } while (end[-1] != '\'');
1628 // FIXME: Don't bother with this if !tok.hasUCN().
1629 expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
1630 UDSuffixOffset = end - TokBegin;
1631 }
1632
1633 // Trim the ending quote.
1634 assert(end != begin && "Invalid token lexed");
1635 --end;
1636
1637 // FIXME: The "Value" is an uint64_t so we can handle char literals of
1638 // up to 64-bits.
1639 // FIXME: This extensively assumes that 'char' is 8-bits.
1640 assert(PP.getTargetInfo().getCharWidth() == 8 &&
1641 "Assumes char is 8 bits");
1642 assert(PP.getTargetInfo().getIntWidth() <= 64 &&
1643 (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
1644 "Assumes sizeof(int) on target is <= 64 and a multiple of char");
1645 assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
1646 "Assumes sizeof(wchar) on target is <= 64");
1647
1648 SmallVector<uint32_t, 4> codepoint_buffer;
1649 codepoint_buffer.resize(end - begin);
1650 uint32_t *buffer_begin = &codepoint_buffer.front();
1651 uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
1652
1653 // Unicode escapes representing characters that cannot be correctly
1654 // represented in a single code unit are disallowed in character literals
1655 // by this implementation.
1656 uint32_t largest_character_for_kind;
1657 if (tok::wide_char_constant == Kind) {
1658 largest_character_for_kind =
1659 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
1660 } else if (tok::utf8_char_constant == Kind) {
1661 largest_character_for_kind = 0x7F;
1662 } else if (tok::utf16_char_constant == Kind) {
1663 largest_character_for_kind = 0xFFFF;
1664 } else if (tok::utf32_char_constant == Kind) {
1665 largest_character_for_kind = 0x10FFFF;
1666 } else {
1667 largest_character_for_kind = 0x7Fu;
1668 }
1669
1670 while (begin != end) {
1671 // Is this a span of non-escape characters?
1672 if (begin[0] != '\\') {
1673 char const *start = begin;
1674 do {
1675 ++begin;
1676 } while (begin != end && *begin != '\\');
1677
1678 char const *tmp_in_start = start;
1679 uint32_t *tmp_out_start = buffer_begin;
1680 llvm::ConversionResult res =
1681 llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start),
1682 reinterpret_cast<llvm::UTF8 const *>(begin),
1683 &buffer_begin, buffer_end, llvm::strictConversion);
1684 if (res != llvm::conversionOK) {
1685 // If we see bad encoding for unprefixed character literals, warn and
1686 // simply copy the byte values, for compatibility with gcc and
1687 // older versions of clang.
1688 bool NoErrorOnBadEncoding = isOrdinary();
1689 unsigned Msg = diag::err_bad_character_encoding;
1690 if (NoErrorOnBadEncoding)
1691 Msg = diag::warn_bad_character_encoding;
1692 PP.Diag(Loc, Msg);
1693 if (NoErrorOnBadEncoding) {
1694 start = tmp_in_start;
1695 buffer_begin = tmp_out_start;
1696 for (; start != begin; ++start, ++buffer_begin)
1697 *buffer_begin = static_cast<uint8_t>(*start);
1698 } else {
1699 HadError = true;
1700 }
1701 } else {
1702 for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
1703 if (*tmp_out_start > largest_character_for_kind) {
1704 HadError = true;
1705 PP.Diag(Loc, diag::err_character_too_large);
1706 }
1707 }
1708 }
1709
1710 continue;
1711 }
1712 // Is this a Universal Character Name escape?
1713 if (begin[1] == 'u' || begin[1] == 'U' || begin[1] == 'N') {
1714 unsigned short UcnLen = 0;
1715 if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
1716 FullSourceLoc(Loc, PP.getSourceManager()),
1717 &PP.getDiagnostics(), PP.getLangOpts(), true)) {
1718 HadError = true;
1719 } else if (*buffer_begin > largest_character_for_kind) {
1720 HadError = true;
1721 PP.Diag(Loc, diag::err_character_too_large);
1722 }
1723
1724 ++buffer_begin;
1725 continue;
1726 }
1727 unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
1728 uint64_t result =
1729 ProcessCharEscape(TokBegin, begin, end, HadError,
1730 FullSourceLoc(Loc,PP.getSourceManager()),
1731 CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
1732 *buffer_begin++ = result;
1733 }
1734
1735 unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
1736
1737 if (NumCharsSoFar > 1) {
1738 if (isOrdinary() && NumCharsSoFar == 4)
1739 PP.Diag(Loc, diag::warn_four_char_character_literal);
1740 else if (isOrdinary())
1741 PP.Diag(Loc, diag::warn_multichar_character_literal);
1742 else {
1743 PP.Diag(Loc, diag::err_multichar_character_literal) << (isWide() ? 0 : 1);
1744 HadError = true;
1745 }
1746 IsMultiChar = true;
1747 } else {
1748 IsMultiChar = false;
1749 }
1750
1751 llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
1752
1753 // Narrow character literals act as though their value is concatenated
1754 // in this implementation, but warn on overflow.
1755 bool multi_char_too_long = false;
1756 if (isOrdinary() && isMultiChar()) {
1757 LitVal = 0;
1758 for (size_t i = 0; i < NumCharsSoFar; ++i) {
1759 // check for enough leading zeros to shift into
1760 multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
1761 LitVal <<= 8;
1762 LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
1763 }
1764 } else if (NumCharsSoFar > 0) {
1765 // otherwise just take the last character
1766 LitVal = buffer_begin[-1];
1767 }
1768
1769 if (!HadError && multi_char_too_long) {
1770 PP.Diag(Loc, diag::warn_char_constant_too_large);
1771 }
1772
1773 // Transfer the value from APInt to uint64_t
1774 Value = LitVal.getZExtValue();
1775
1776 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
1777 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
1778 // character constants are not sign extended in the this implementation:
1779 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
1780 if (isOrdinary() && NumCharsSoFar == 1 && (Value & 128) &&
1781 PP.getLangOpts().CharIsSigned)
1782 Value = (signed char)Value;
1783 }
1784
1785 /// \verbatim
1786 /// string-literal: [C++0x lex.string]
1787 /// encoding-prefix " [s-char-sequence] "
1788 /// encoding-prefix R raw-string
1789 /// encoding-prefix:
1790 /// u8
1791 /// u
1792 /// U
1793 /// L
1794 /// s-char-sequence:
1795 /// s-char
1796 /// s-char-sequence s-char
1797 /// s-char:
1798 /// any member of the source character set except the double-quote ",
1799 /// backslash \, or new-line character
1800 /// escape-sequence
1801 /// universal-character-name
1802 /// raw-string:
1803 /// " d-char-sequence ( r-char-sequence ) d-char-sequence "
1804 /// r-char-sequence:
1805 /// r-char
1806 /// r-char-sequence r-char
1807 /// r-char:
1808 /// any member of the source character set, except a right parenthesis )
1809 /// followed by the initial d-char-sequence (which may be empty)
1810 /// followed by a double quote ".
1811 /// d-char-sequence:
1812 /// d-char
1813 /// d-char-sequence d-char
1814 /// d-char:
1815 /// any member of the basic source character set except:
1816 /// space, the left parenthesis (, the right parenthesis ),
1817 /// the backslash \, and the control characters representing horizontal
1818 /// tab, vertical tab, form feed, and newline.
1819 /// escape-sequence: [C++0x lex.ccon]
1820 /// simple-escape-sequence
1821 /// octal-escape-sequence
1822 /// hexadecimal-escape-sequence
1823 /// simple-escape-sequence:
1824 /// one of \' \" \? \\ \a \b \f \n \r \t \v
1825 /// octal-escape-sequence:
1826 /// \ octal-digit
1827 /// \ octal-digit octal-digit
1828 /// \ octal-digit octal-digit octal-digit
1829 /// hexadecimal-escape-sequence:
1830 /// \x hexadecimal-digit
1831 /// hexadecimal-escape-sequence hexadecimal-digit
1832 /// universal-character-name:
1833 /// \u hex-quad
1834 /// \U hex-quad hex-quad
1835 /// hex-quad:
1836 /// hex-digit hex-digit hex-digit hex-digit
1837 /// \endverbatim
1838 ///
1839 StringLiteralParser::
StringLiteralParser(ArrayRef<Token> StringToks,Preprocessor & PP)1840 StringLiteralParser(ArrayRef<Token> StringToks,
1841 Preprocessor &PP)
1842 : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
1843 Target(PP.getTargetInfo()), Diags(&PP.getDiagnostics()),
1844 MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
1845 ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
1846 init(StringToks);
1847 }
1848
init(ArrayRef<Token> StringToks)1849 void StringLiteralParser::init(ArrayRef<Token> StringToks){
1850 // The literal token may have come from an invalid source location (e.g. due
1851 // to a PCH error), in which case the token length will be 0.
1852 if (StringToks.empty() || StringToks[0].getLength() < 2)
1853 return DiagnoseLexingError(SourceLocation());
1854
1855 // Scan all of the string portions, remember the max individual token length,
1856 // computing a bound on the concatenated string length, and see whether any
1857 // piece is a wide-string. If any of the string portions is a wide-string
1858 // literal, the result is a wide-string literal [C99 6.4.5p4].
1859 assert(!StringToks.empty() && "expected at least one token");
1860 MaxTokenLength = StringToks[0].getLength();
1861 assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
1862 SizeBound = StringToks[0].getLength()-2; // -2 for "".
1863 Kind = StringToks[0].getKind();
1864
1865 hadError = false;
1866
1867 // Implement Translation Phase #6: concatenation of string literals
1868 /// (C99 5.1.1.2p1). The common case is only one string fragment.
1869 for (unsigned i = 1; i != StringToks.size(); ++i) {
1870 if (StringToks[i].getLength() < 2)
1871 return DiagnoseLexingError(StringToks[i].getLocation());
1872
1873 // The string could be shorter than this if it needs cleaning, but this is a
1874 // reasonable bound, which is all we need.
1875 assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
1876 SizeBound += StringToks[i].getLength()-2; // -2 for "".
1877
1878 // Remember maximum string piece length.
1879 if (StringToks[i].getLength() > MaxTokenLength)
1880 MaxTokenLength = StringToks[i].getLength();
1881
1882 // Remember if we see any wide or utf-8/16/32 strings.
1883 // Also check for illegal concatenations.
1884 if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
1885 if (isOrdinary()) {
1886 Kind = StringToks[i].getKind();
1887 } else {
1888 if (Diags)
1889 Diags->Report(StringToks[i].getLocation(),
1890 diag::err_unsupported_string_concat);
1891 hadError = true;
1892 }
1893 }
1894 }
1895
1896 // Include space for the null terminator.
1897 ++SizeBound;
1898
1899 // TODO: K&R warning: "traditional C rejects string constant concatenation"
1900
1901 // Get the width in bytes of char/wchar_t/char16_t/char32_t
1902 CharByteWidth = getCharWidth(Kind, Target);
1903 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1904 CharByteWidth /= 8;
1905
1906 // The output buffer size needs to be large enough to hold wide characters.
1907 // This is a worst-case assumption which basically corresponds to L"" "long".
1908 SizeBound *= CharByteWidth;
1909
1910 // Size the temporary buffer to hold the result string data.
1911 ResultBuf.resize(SizeBound);
1912
1913 // Likewise, but for each string piece.
1914 SmallString<512> TokenBuf;
1915 TokenBuf.resize(MaxTokenLength);
1916
1917 // Loop over all the strings, getting their spelling, and expanding them to
1918 // wide strings as appropriate.
1919 ResultPtr = &ResultBuf[0]; // Next byte to fill in.
1920
1921 Pascal = false;
1922
1923 SourceLocation UDSuffixTokLoc;
1924
1925 for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
1926 const char *ThisTokBuf = &TokenBuf[0];
1927 // Get the spelling of the token, which eliminates trigraphs, etc. We know
1928 // that ThisTokBuf points to a buffer that is big enough for the whole token
1929 // and 'spelled' tokens can only shrink.
1930 bool StringInvalid = false;
1931 unsigned ThisTokLen =
1932 Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
1933 &StringInvalid);
1934 if (StringInvalid)
1935 return DiagnoseLexingError(StringToks[i].getLocation());
1936
1937 const char *ThisTokBegin = ThisTokBuf;
1938 const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
1939
1940 // Remove an optional ud-suffix.
1941 if (ThisTokEnd[-1] != '"') {
1942 const char *UDSuffixEnd = ThisTokEnd;
1943 do {
1944 --ThisTokEnd;
1945 } while (ThisTokEnd[-1] != '"');
1946
1947 StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
1948
1949 if (UDSuffixBuf.empty()) {
1950 if (StringToks[i].hasUCN())
1951 expandUCNs(UDSuffixBuf, UDSuffix);
1952 else
1953 UDSuffixBuf.assign(UDSuffix);
1954 UDSuffixToken = i;
1955 UDSuffixOffset = ThisTokEnd - ThisTokBuf;
1956 UDSuffixTokLoc = StringToks[i].getLocation();
1957 } else {
1958 SmallString<32> ExpandedUDSuffix;
1959 if (StringToks[i].hasUCN()) {
1960 expandUCNs(ExpandedUDSuffix, UDSuffix);
1961 UDSuffix = ExpandedUDSuffix;
1962 }
1963
1964 // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
1965 // result of a concatenation involving at least one user-defined-string-
1966 // literal, all the participating user-defined-string-literals shall
1967 // have the same ud-suffix.
1968 if (UDSuffixBuf != UDSuffix) {
1969 if (Diags) {
1970 SourceLocation TokLoc = StringToks[i].getLocation();
1971 Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
1972 << UDSuffixBuf << UDSuffix
1973 << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
1974 << SourceRange(TokLoc, TokLoc);
1975 }
1976 hadError = true;
1977 }
1978 }
1979 }
1980
1981 // Strip the end quote.
1982 --ThisTokEnd;
1983
1984 // TODO: Input character set mapping support.
1985
1986 // Skip marker for wide or unicode strings.
1987 if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
1988 ++ThisTokBuf;
1989 // Skip 8 of u8 marker for utf8 strings.
1990 if (ThisTokBuf[0] == '8')
1991 ++ThisTokBuf;
1992 }
1993
1994 // Check for raw string
1995 if (ThisTokBuf[0] == 'R') {
1996 if (ThisTokBuf[1] != '"') {
1997 // The file may have come from PCH and then changed after loading the
1998 // PCH; Fail gracefully.
1999 return DiagnoseLexingError(StringToks[i].getLocation());
2000 }
2001 ThisTokBuf += 2; // skip R"
2002
2003 // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16
2004 // characters.
2005 constexpr unsigned MaxRawStrDelimLen = 16;
2006
2007 const char *Prefix = ThisTokBuf;
2008 while (static_cast<unsigned>(ThisTokBuf - Prefix) < MaxRawStrDelimLen &&
2009 ThisTokBuf[0] != '(')
2010 ++ThisTokBuf;
2011 if (ThisTokBuf[0] != '(')
2012 return DiagnoseLexingError(StringToks[i].getLocation());
2013 ++ThisTokBuf; // skip '('
2014
2015 // Remove same number of characters from the end
2016 ThisTokEnd -= ThisTokBuf - Prefix;
2017 if (ThisTokEnd < ThisTokBuf)
2018 return DiagnoseLexingError(StringToks[i].getLocation());
2019
2020 // C++14 [lex.string]p4: A source-file new-line in a raw string literal
2021 // results in a new-line in the resulting execution string-literal.
2022 StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf);
2023 while (!RemainingTokenSpan.empty()) {
2024 // Split the string literal on \r\n boundaries.
2025 size_t CRLFPos = RemainingTokenSpan.find("\r\n");
2026 StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos);
2027 StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos);
2028
2029 // Copy everything before the \r\n sequence into the string literal.
2030 if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF))
2031 hadError = true;
2032
2033 // Point into the \n inside the \r\n sequence and operate on the
2034 // remaining portion of the literal.
2035 RemainingTokenSpan = AfterCRLF.substr(1);
2036 }
2037 } else {
2038 if (ThisTokBuf[0] != '"') {
2039 // The file may have come from PCH and then changed after loading the
2040 // PCH; Fail gracefully.
2041 return DiagnoseLexingError(StringToks[i].getLocation());
2042 }
2043 ++ThisTokBuf; // skip "
2044
2045 // Check if this is a pascal string
2046 if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
2047 ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
2048
2049 // If the \p sequence is found in the first token, we have a pascal string
2050 // Otherwise, if we already have a pascal string, ignore the first \p
2051 if (i == 0) {
2052 ++ThisTokBuf;
2053 Pascal = true;
2054 } else if (Pascal)
2055 ThisTokBuf += 2;
2056 }
2057
2058 while (ThisTokBuf != ThisTokEnd) {
2059 // Is this a span of non-escape characters?
2060 if (ThisTokBuf[0] != '\\') {
2061 const char *InStart = ThisTokBuf;
2062 do {
2063 ++ThisTokBuf;
2064 } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
2065
2066 // Copy the character span over.
2067 if (CopyStringFragment(StringToks[i], ThisTokBegin,
2068 StringRef(InStart, ThisTokBuf - InStart)))
2069 hadError = true;
2070 continue;
2071 }
2072 // Is this a Universal Character Name escape?
2073 if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U' ||
2074 ThisTokBuf[1] == 'N') {
2075 EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
2076 ResultPtr, hadError,
2077 FullSourceLoc(StringToks[i].getLocation(), SM),
2078 CharByteWidth, Diags, Features);
2079 continue;
2080 }
2081 // Otherwise, this is a non-UCN escape character. Process it.
2082 unsigned ResultChar =
2083 ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
2084 FullSourceLoc(StringToks[i].getLocation(), SM),
2085 CharByteWidth*8, Diags, Features);
2086
2087 if (CharByteWidth == 4) {
2088 // FIXME: Make the type of the result buffer correct instead of
2089 // using reinterpret_cast.
2090 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr);
2091 *ResultWidePtr = ResultChar;
2092 ResultPtr += 4;
2093 } else if (CharByteWidth == 2) {
2094 // FIXME: Make the type of the result buffer correct instead of
2095 // using reinterpret_cast.
2096 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr);
2097 *ResultWidePtr = ResultChar & 0xFFFF;
2098 ResultPtr += 2;
2099 } else {
2100 assert(CharByteWidth == 1 && "Unexpected char width");
2101 *ResultPtr++ = ResultChar & 0xFF;
2102 }
2103 }
2104 }
2105 }
2106
2107 if (Pascal) {
2108 if (CharByteWidth == 4) {
2109 // FIXME: Make the type of the result buffer correct instead of
2110 // using reinterpret_cast.
2111 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data());
2112 ResultWidePtr[0] = GetNumStringChars() - 1;
2113 } else if (CharByteWidth == 2) {
2114 // FIXME: Make the type of the result buffer correct instead of
2115 // using reinterpret_cast.
2116 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data());
2117 ResultWidePtr[0] = GetNumStringChars() - 1;
2118 } else {
2119 assert(CharByteWidth == 1 && "Unexpected char width");
2120 ResultBuf[0] = GetNumStringChars() - 1;
2121 }
2122
2123 // Verify that pascal strings aren't too large.
2124 if (GetStringLength() > 256) {
2125 if (Diags)
2126 Diags->Report(StringToks.front().getLocation(),
2127 diag::err_pascal_string_too_long)
2128 << SourceRange(StringToks.front().getLocation(),
2129 StringToks.back().getLocation());
2130 hadError = true;
2131 return;
2132 }
2133 } else if (Diags) {
2134 // Complain if this string literal has too many characters.
2135 unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
2136
2137 if (GetNumStringChars() > MaxChars)
2138 Diags->Report(StringToks.front().getLocation(),
2139 diag::ext_string_too_long)
2140 << GetNumStringChars() << MaxChars
2141 << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
2142 << SourceRange(StringToks.front().getLocation(),
2143 StringToks.back().getLocation());
2144 }
2145 }
2146
resyncUTF8(const char * Err,const char * End)2147 static const char *resyncUTF8(const char *Err, const char *End) {
2148 if (Err == End)
2149 return End;
2150 End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err);
2151 while (++Err != End && (*Err & 0xC0) == 0x80)
2152 ;
2153 return Err;
2154 }
2155
2156 /// This function copies from Fragment, which is a sequence of bytes
2157 /// within Tok's contents (which begin at TokBegin) into ResultPtr.
2158 /// Performs widening for multi-byte characters.
CopyStringFragment(const Token & Tok,const char * TokBegin,StringRef Fragment)2159 bool StringLiteralParser::CopyStringFragment(const Token &Tok,
2160 const char *TokBegin,
2161 StringRef Fragment) {
2162 const llvm::UTF8 *ErrorPtrTmp;
2163 if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
2164 return false;
2165
2166 // If we see bad encoding for unprefixed string literals, warn and
2167 // simply copy the byte values, for compatibility with gcc and older
2168 // versions of clang.
2169 bool NoErrorOnBadEncoding = isOrdinary();
2170 if (NoErrorOnBadEncoding) {
2171 memcpy(ResultPtr, Fragment.data(), Fragment.size());
2172 ResultPtr += Fragment.size();
2173 }
2174
2175 if (Diags) {
2176 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2177
2178 FullSourceLoc SourceLoc(Tok.getLocation(), SM);
2179 const DiagnosticBuilder &Builder =
2180 Diag(Diags, Features, SourceLoc, TokBegin,
2181 ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
2182 NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
2183 : diag::err_bad_string_encoding);
2184
2185 const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2186 StringRef NextFragment(NextStart, Fragment.end()-NextStart);
2187
2188 // Decode into a dummy buffer.
2189 SmallString<512> Dummy;
2190 Dummy.reserve(Fragment.size() * CharByteWidth);
2191 char *Ptr = Dummy.data();
2192
2193 while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
2194 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2195 NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2196 Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
2197 ErrorPtr, NextStart);
2198 NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
2199 }
2200 }
2201 return !NoErrorOnBadEncoding;
2202 }
2203
DiagnoseLexingError(SourceLocation Loc)2204 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
2205 hadError = true;
2206 if (Diags)
2207 Diags->Report(Loc, diag::err_lexing_string);
2208 }
2209
2210 /// getOffsetOfStringByte - This function returns the offset of the
2211 /// specified byte of the string data represented by Token. This handles
2212 /// advancing over escape sequences in the string.
getOffsetOfStringByte(const Token & Tok,unsigned ByteNo) const2213 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
2214 unsigned ByteNo) const {
2215 // Get the spelling of the token.
2216 SmallString<32> SpellingBuffer;
2217 SpellingBuffer.resize(Tok.getLength());
2218
2219 bool StringInvalid = false;
2220 const char *SpellingPtr = &SpellingBuffer[0];
2221 unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
2222 &StringInvalid);
2223 if (StringInvalid)
2224 return 0;
2225
2226 const char *SpellingStart = SpellingPtr;
2227 const char *SpellingEnd = SpellingPtr+TokLen;
2228
2229 // Handle UTF-8 strings just like narrow strings.
2230 if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
2231 SpellingPtr += 2;
2232
2233 assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
2234 SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
2235
2236 // For raw string literals, this is easy.
2237 if (SpellingPtr[0] == 'R') {
2238 assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
2239 // Skip 'R"'.
2240 SpellingPtr += 2;
2241 while (*SpellingPtr != '(') {
2242 ++SpellingPtr;
2243 assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
2244 }
2245 // Skip '('.
2246 ++SpellingPtr;
2247 return SpellingPtr - SpellingStart + ByteNo;
2248 }
2249
2250 // Skip over the leading quote
2251 assert(SpellingPtr[0] == '"' && "Should be a string literal!");
2252 ++SpellingPtr;
2253
2254 // Skip over bytes until we find the offset we're looking for.
2255 while (ByteNo) {
2256 assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
2257
2258 // Step over non-escapes simply.
2259 if (*SpellingPtr != '\\') {
2260 ++SpellingPtr;
2261 --ByteNo;
2262 continue;
2263 }
2264
2265 // Otherwise, this is an escape character. Advance over it.
2266 bool HadError = false;
2267 if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U' ||
2268 SpellingPtr[1] == 'N') {
2269 const char *EscapePtr = SpellingPtr;
2270 unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
2271 1, Features, HadError);
2272 if (Len > ByteNo) {
2273 // ByteNo is somewhere within the escape sequence.
2274 SpellingPtr = EscapePtr;
2275 break;
2276 }
2277 ByteNo -= Len;
2278 } else {
2279 ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
2280 FullSourceLoc(Tok.getLocation(), SM),
2281 CharByteWidth*8, Diags, Features);
2282 --ByteNo;
2283 }
2284 assert(!HadError && "This method isn't valid on erroneous strings");
2285 }
2286
2287 return SpellingPtr-SpellingStart;
2288 }
2289
2290 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
2291 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
2292 /// treat it as an invalid suffix.
isValidUDSuffix(const LangOptions & LangOpts,StringRef Suffix)2293 bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
2294 StringRef Suffix) {
2295 return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) ||
2296 Suffix == "sv";
2297 }
2298