1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides Objective-C code generation targeting the GNU runtime.  The
10 // class in this file generates structures used by the GNU Objective-C runtime
11 // library.  These structures are defined in objc/objc.h and objc/objc-api.h in
12 // the GNU runtime distribution.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGObjCRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Attr.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/RecordLayout.h"
26 #include "clang/AST/StmtObjC.h"
27 #include "clang/Basic/FileManager.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/CodeGen/ConstantInitBuilder.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/StringMap.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/ConvertUTF.h"
38 #include <cctype>
39 
40 using namespace clang;
41 using namespace CodeGen;
42 
43 namespace {
44 
45 /// Class that lazily initialises the runtime function.  Avoids inserting the
46 /// types and the function declaration into a module if they're not used, and
47 /// avoids constructing the type more than once if it's used more than once.
48 class LazyRuntimeFunction {
49   CodeGenModule *CGM;
50   llvm::FunctionType *FTy;
51   const char *FunctionName;
52   llvm::FunctionCallee Function;
53 
54 public:
55   /// Constructor leaves this class uninitialized, because it is intended to
56   /// be used as a field in another class and not all of the types that are
57   /// used as arguments will necessarily be available at construction time.
LazyRuntimeFunction()58   LazyRuntimeFunction()
59       : CGM(nullptr), FunctionName(nullptr), Function(nullptr) {}
60 
61   /// Initialises the lazy function with the name, return type, and the types
62   /// of the arguments.
63   template <typename... Tys>
init(CodeGenModule * Mod,const char * name,llvm::Type * RetTy,Tys * ...Types)64   void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy,
65             Tys *... Types) {
66     CGM = Mod;
67     FunctionName = name;
68     Function = nullptr;
69     if(sizeof...(Tys)) {
70       SmallVector<llvm::Type *, 8> ArgTys({Types...});
71       FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
72     }
73     else {
74       FTy = llvm::FunctionType::get(RetTy, None, false);
75     }
76   }
77 
getType()78   llvm::FunctionType *getType() { return FTy; }
79 
80   /// Overloaded cast operator, allows the class to be implicitly cast to an
81   /// LLVM constant.
operator llvm::FunctionCallee()82   operator llvm::FunctionCallee() {
83     if (!Function) {
84       if (!FunctionName)
85         return nullptr;
86       Function = CGM->CreateRuntimeFunction(FTy, FunctionName);
87     }
88     return Function;
89   }
90 };
91 
92 
93 /// GNU Objective-C runtime code generation.  This class implements the parts of
94 /// Objective-C support that are specific to the GNU family of runtimes (GCC,
95 /// GNUstep and ObjFW).
96 class CGObjCGNU : public CGObjCRuntime {
97 protected:
98   /// The LLVM module into which output is inserted
99   llvm::Module &TheModule;
100   /// strut objc_super.  Used for sending messages to super.  This structure
101   /// contains the receiver (object) and the expected class.
102   llvm::StructType *ObjCSuperTy;
103   /// struct objc_super*.  The type of the argument to the superclass message
104   /// lookup functions.
105   llvm::PointerType *PtrToObjCSuperTy;
106   /// LLVM type for selectors.  Opaque pointer (i8*) unless a header declaring
107   /// SEL is included in a header somewhere, in which case it will be whatever
108   /// type is declared in that header, most likely {i8*, i8*}.
109   llvm::PointerType *SelectorTy;
110   /// LLVM i8 type.  Cached here to avoid repeatedly getting it in all of the
111   /// places where it's used
112   llvm::IntegerType *Int8Ty;
113   /// Pointer to i8 - LLVM type of char*, for all of the places where the
114   /// runtime needs to deal with C strings.
115   llvm::PointerType *PtrToInt8Ty;
116   /// struct objc_protocol type
117   llvm::StructType *ProtocolTy;
118   /// Protocol * type.
119   llvm::PointerType *ProtocolPtrTy;
120   /// Instance Method Pointer type.  This is a pointer to a function that takes,
121   /// at a minimum, an object and a selector, and is the generic type for
122   /// Objective-C methods.  Due to differences between variadic / non-variadic
123   /// calling conventions, it must always be cast to the correct type before
124   /// actually being used.
125   llvm::PointerType *IMPTy;
126   /// Type of an untyped Objective-C object.  Clang treats id as a built-in type
127   /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
128   /// but if the runtime header declaring it is included then it may be a
129   /// pointer to a structure.
130   llvm::PointerType *IdTy;
131   /// Pointer to a pointer to an Objective-C object.  Used in the new ABI
132   /// message lookup function and some GC-related functions.
133   llvm::PointerType *PtrToIdTy;
134   /// The clang type of id.  Used when using the clang CGCall infrastructure to
135   /// call Objective-C methods.
136   CanQualType ASTIdTy;
137   /// LLVM type for C int type.
138   llvm::IntegerType *IntTy;
139   /// LLVM type for an opaque pointer.  This is identical to PtrToInt8Ty, but is
140   /// used in the code to document the difference between i8* meaning a pointer
141   /// to a C string and i8* meaning a pointer to some opaque type.
142   llvm::PointerType *PtrTy;
143   /// LLVM type for C long type.  The runtime uses this in a lot of places where
144   /// it should be using intptr_t, but we can't fix this without breaking
145   /// compatibility with GCC...
146   llvm::IntegerType *LongTy;
147   /// LLVM type for C size_t.  Used in various runtime data structures.
148   llvm::IntegerType *SizeTy;
149   /// LLVM type for C intptr_t.
150   llvm::IntegerType *IntPtrTy;
151   /// LLVM type for C ptrdiff_t.  Mainly used in property accessor functions.
152   llvm::IntegerType *PtrDiffTy;
153   /// LLVM type for C int*.  Used for GCC-ABI-compatible non-fragile instance
154   /// variables.
155   llvm::PointerType *PtrToIntTy;
156   /// LLVM type for Objective-C BOOL type.
157   llvm::Type *BoolTy;
158   /// 32-bit integer type, to save us needing to look it up every time it's used.
159   llvm::IntegerType *Int32Ty;
160   /// 64-bit integer type, to save us needing to look it up every time it's used.
161   llvm::IntegerType *Int64Ty;
162   /// The type of struct objc_property.
163   llvm::StructType *PropertyMetadataTy;
164   /// Metadata kind used to tie method lookups to message sends.  The GNUstep
165   /// runtime provides some LLVM passes that can use this to do things like
166   /// automatic IMP caching and speculative inlining.
167   unsigned msgSendMDKind;
168   /// Does the current target use SEH-based exceptions? False implies
169   /// Itanium-style DWARF unwinding.
170   bool usesSEHExceptions;
171 
172   /// Helper to check if we are targeting a specific runtime version or later.
isRuntime(ObjCRuntime::Kind kind,unsigned major,unsigned minor=0)173   bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) {
174     const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
175     return (R.getKind() == kind) &&
176       (R.getVersion() >= VersionTuple(major, minor));
177   }
178 
ManglePublicSymbol(StringRef Name)179   std::string ManglePublicSymbol(StringRef Name) {
180     return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str();
181   }
182 
SymbolForProtocol(Twine Name)183   std::string SymbolForProtocol(Twine Name) {
184     return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str();
185   }
186 
SymbolForProtocolRef(StringRef Name)187   std::string SymbolForProtocolRef(StringRef Name) {
188     return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str();
189   }
190 
191 
192   /// Helper function that generates a constant string and returns a pointer to
193   /// the start of the string.  The result of this function can be used anywhere
194   /// where the C code specifies const char*.
MakeConstantString(StringRef Str,const char * Name="")195   llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") {
196     ConstantAddress Array =
197         CGM.GetAddrOfConstantCString(std::string(Str), Name);
198     return llvm::ConstantExpr::getGetElementPtr(Array.getElementType(),
199                                                 Array.getPointer(), Zeros);
200   }
201 
202   /// Emits a linkonce_odr string, whose name is the prefix followed by the
203   /// string value.  This allows the linker to combine the strings between
204   /// different modules.  Used for EH typeinfo names, selector strings, and a
205   /// few other things.
ExportUniqueString(const std::string & Str,const std::string & prefix,bool Private=false)206   llvm::Constant *ExportUniqueString(const std::string &Str,
207                                      const std::string &prefix,
208                                      bool Private=false) {
209     std::string name = prefix + Str;
210     auto *ConstStr = TheModule.getGlobalVariable(name);
211     if (!ConstStr) {
212       llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
213       auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true,
214               llvm::GlobalValue::LinkOnceODRLinkage, value, name);
215       GV->setComdat(TheModule.getOrInsertComdat(name));
216       if (Private)
217         GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
218       ConstStr = GV;
219     }
220     return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
221                                                 ConstStr, Zeros);
222   }
223 
224   /// Returns a property name and encoding string.
MakePropertyEncodingString(const ObjCPropertyDecl * PD,const Decl * Container)225   llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
226                                              const Decl *Container) {
227     assert(!isRuntime(ObjCRuntime::GNUstep, 2));
228     if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) {
229       std::string NameAndAttributes;
230       std::string TypeStr =
231         CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container);
232       NameAndAttributes += '\0';
233       NameAndAttributes += TypeStr.length() + 3;
234       NameAndAttributes += TypeStr;
235       NameAndAttributes += '\0';
236       NameAndAttributes += PD->getNameAsString();
237       return MakeConstantString(NameAndAttributes);
238     }
239     return MakeConstantString(PD->getNameAsString());
240   }
241 
242   /// Push the property attributes into two structure fields.
PushPropertyAttributes(ConstantStructBuilder & Fields,const ObjCPropertyDecl * property,bool isSynthesized=true,bool isDynamic=true)243   void PushPropertyAttributes(ConstantStructBuilder &Fields,
244       const ObjCPropertyDecl *property, bool isSynthesized=true, bool
245       isDynamic=true) {
246     int attrs = property->getPropertyAttributes();
247     // For read-only properties, clear the copy and retain flags
248     if (attrs & ObjCPropertyAttribute::kind_readonly) {
249       attrs &= ~ObjCPropertyAttribute::kind_copy;
250       attrs &= ~ObjCPropertyAttribute::kind_retain;
251       attrs &= ~ObjCPropertyAttribute::kind_weak;
252       attrs &= ~ObjCPropertyAttribute::kind_strong;
253     }
254     // The first flags field has the same attribute values as clang uses internally
255     Fields.addInt(Int8Ty, attrs & 0xff);
256     attrs >>= 8;
257     attrs <<= 2;
258     // For protocol properties, synthesized and dynamic have no meaning, so we
259     // reuse these flags to indicate that this is a protocol property (both set
260     // has no meaning, as a property can't be both synthesized and dynamic)
261     attrs |= isSynthesized ? (1<<0) : 0;
262     attrs |= isDynamic ? (1<<1) : 0;
263     // The second field is the next four fields left shifted by two, with the
264     // low bit set to indicate whether the field is synthesized or dynamic.
265     Fields.addInt(Int8Ty, attrs & 0xff);
266     // Two padding fields
267     Fields.addInt(Int8Ty, 0);
268     Fields.addInt(Int8Ty, 0);
269   }
270 
271   virtual llvm::Constant *GenerateCategoryProtocolList(const
272       ObjCCategoryDecl *OCD);
PushPropertyListHeader(ConstantStructBuilder & Fields,int count)273   virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields,
274       int count) {
275       // int count;
276       Fields.addInt(IntTy, count);
277       // int size; (only in GNUstep v2 ABI.
278       if (isRuntime(ObjCRuntime::GNUstep, 2)) {
279         llvm::DataLayout td(&TheModule);
280         Fields.addInt(IntTy, td.getTypeSizeInBits(PropertyMetadataTy) /
281             CGM.getContext().getCharWidth());
282       }
283       // struct objc_property_list *next;
284       Fields.add(NULLPtr);
285       // struct objc_property properties[]
286       return Fields.beginArray(PropertyMetadataTy);
287   }
PushProperty(ConstantArrayBuilder & PropertiesArray,const ObjCPropertyDecl * property,const Decl * OCD,bool isSynthesized=true,bool isDynamic=true)288   virtual void PushProperty(ConstantArrayBuilder &PropertiesArray,
289             const ObjCPropertyDecl *property,
290             const Decl *OCD,
291             bool isSynthesized=true, bool
292             isDynamic=true) {
293     auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
294     ASTContext &Context = CGM.getContext();
295     Fields.add(MakePropertyEncodingString(property, OCD));
296     PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
297     auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
298       if (accessor) {
299         std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
300         llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
301         Fields.add(MakeConstantString(accessor->getSelector().getAsString()));
302         Fields.add(TypeEncoding);
303       } else {
304         Fields.add(NULLPtr);
305         Fields.add(NULLPtr);
306       }
307     };
308     addPropertyMethod(property->getGetterMethodDecl());
309     addPropertyMethod(property->getSetterMethodDecl());
310     Fields.finishAndAddTo(PropertiesArray);
311   }
312 
313   /// Ensures that the value has the required type, by inserting a bitcast if
314   /// required.  This function lets us avoid inserting bitcasts that are
315   /// redundant.
EnforceType(CGBuilderTy & B,llvm::Value * V,llvm::Type * Ty)316   llvm::Value* EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
317     if (V->getType() == Ty) return V;
318     return B.CreateBitCast(V, Ty);
319   }
EnforceType(CGBuilderTy & B,Address V,llvm::Type * Ty)320   Address EnforceType(CGBuilderTy &B, Address V, llvm::Type *Ty) {
321     if (V.getType() == Ty) return V;
322     return B.CreateBitCast(V, Ty);
323   }
324 
325   // Some zeros used for GEPs in lots of places.
326   llvm::Constant *Zeros[2];
327   /// Null pointer value.  Mainly used as a terminator in various arrays.
328   llvm::Constant *NULLPtr;
329   /// LLVM context.
330   llvm::LLVMContext &VMContext;
331 
332 protected:
333 
334   /// Placeholder for the class.  Lots of things refer to the class before we've
335   /// actually emitted it.  We use this alias as a placeholder, and then replace
336   /// it with a pointer to the class structure before finally emitting the
337   /// module.
338   llvm::GlobalAlias *ClassPtrAlias;
339   /// Placeholder for the metaclass.  Lots of things refer to the class before
340   /// we've / actually emitted it.  We use this alias as a placeholder, and then
341   /// replace / it with a pointer to the metaclass structure before finally
342   /// emitting the / module.
343   llvm::GlobalAlias *MetaClassPtrAlias;
344   /// All of the classes that have been generated for this compilation units.
345   std::vector<llvm::Constant*> Classes;
346   /// All of the categories that have been generated for this compilation units.
347   std::vector<llvm::Constant*> Categories;
348   /// All of the Objective-C constant strings that have been generated for this
349   /// compilation units.
350   std::vector<llvm::Constant*> ConstantStrings;
351   /// Map from string values to Objective-C constant strings in the output.
352   /// Used to prevent emitting Objective-C strings more than once.  This should
353   /// not be required at all - CodeGenModule should manage this list.
354   llvm::StringMap<llvm::Constant*> ObjCStrings;
355   /// All of the protocols that have been declared.
356   llvm::StringMap<llvm::Constant*> ExistingProtocols;
357   /// For each variant of a selector, we store the type encoding and a
358   /// placeholder value.  For an untyped selector, the type will be the empty
359   /// string.  Selector references are all done via the module's selector table,
360   /// so we create an alias as a placeholder and then replace it with the real
361   /// value later.
362   typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
363   /// Type of the selector map.  This is roughly equivalent to the structure
364   /// used in the GNUstep runtime, which maintains a list of all of the valid
365   /// types for a selector in a table.
366   typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
367     SelectorMap;
368   /// A map from selectors to selector types.  This allows us to emit all
369   /// selectors of the same name and type together.
370   SelectorMap SelectorTable;
371 
372   /// Selectors related to memory management.  When compiling in GC mode, we
373   /// omit these.
374   Selector RetainSel, ReleaseSel, AutoreleaseSel;
375   /// Runtime functions used for memory management in GC mode.  Note that clang
376   /// supports code generation for calling these functions, but neither GNU
377   /// runtime actually supports this API properly yet.
378   LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
379     WeakAssignFn, GlobalAssignFn;
380 
381   typedef std::pair<std::string, std::string> ClassAliasPair;
382   /// All classes that have aliases set for them.
383   std::vector<ClassAliasPair> ClassAliases;
384 
385 protected:
386   /// Function used for throwing Objective-C exceptions.
387   LazyRuntimeFunction ExceptionThrowFn;
388   /// Function used for rethrowing exceptions, used at the end of \@finally or
389   /// \@synchronize blocks.
390   LazyRuntimeFunction ExceptionReThrowFn;
391   /// Function called when entering a catch function.  This is required for
392   /// differentiating Objective-C exceptions and foreign exceptions.
393   LazyRuntimeFunction EnterCatchFn;
394   /// Function called when exiting from a catch block.  Used to do exception
395   /// cleanup.
396   LazyRuntimeFunction ExitCatchFn;
397   /// Function called when entering an \@synchronize block.  Acquires the lock.
398   LazyRuntimeFunction SyncEnterFn;
399   /// Function called when exiting an \@synchronize block.  Releases the lock.
400   LazyRuntimeFunction SyncExitFn;
401 
402 private:
403   /// Function called if fast enumeration detects that the collection is
404   /// modified during the update.
405   LazyRuntimeFunction EnumerationMutationFn;
406   /// Function for implementing synthesized property getters that return an
407   /// object.
408   LazyRuntimeFunction GetPropertyFn;
409   /// Function for implementing synthesized property setters that return an
410   /// object.
411   LazyRuntimeFunction SetPropertyFn;
412   /// Function used for non-object declared property getters.
413   LazyRuntimeFunction GetStructPropertyFn;
414   /// Function used for non-object declared property setters.
415   LazyRuntimeFunction SetStructPropertyFn;
416 
417 protected:
418   /// The version of the runtime that this class targets.  Must match the
419   /// version in the runtime.
420   int RuntimeVersion;
421   /// The version of the protocol class.  Used to differentiate between ObjC1
422   /// and ObjC2 protocols.  Objective-C 1 protocols can not contain optional
423   /// components and can not contain declared properties.  We always emit
424   /// Objective-C 2 property structures, but we have to pretend that they're
425   /// Objective-C 1 property structures when targeting the GCC runtime or it
426   /// will abort.
427   const int ProtocolVersion;
428   /// The version of the class ABI.  This value is used in the class structure
429   /// and indicates how various fields should be interpreted.
430   const int ClassABIVersion;
431   /// Generates an instance variable list structure.  This is a structure
432   /// containing a size and an array of structures containing instance variable
433   /// metadata.  This is used purely for introspection in the fragile ABI.  In
434   /// the non-fragile ABI, it's used for instance variable fixup.
435   virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
436                              ArrayRef<llvm::Constant *> IvarTypes,
437                              ArrayRef<llvm::Constant *> IvarOffsets,
438                              ArrayRef<llvm::Constant *> IvarAlign,
439                              ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership);
440 
441   /// Generates a method list structure.  This is a structure containing a size
442   /// and an array of structures containing method metadata.
443   ///
444   /// This structure is used by both classes and categories, and contains a next
445   /// pointer allowing them to be chained together in a linked list.
446   llvm::Constant *GenerateMethodList(StringRef ClassName,
447       StringRef CategoryName,
448       ArrayRef<const ObjCMethodDecl*> Methods,
449       bool isClassMethodList);
450 
451   /// Emits an empty protocol.  This is used for \@protocol() where no protocol
452   /// is found.  The runtime will (hopefully) fix up the pointer to refer to the
453   /// real protocol.
454   virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName);
455 
456   /// Generates a list of property metadata structures.  This follows the same
457   /// pattern as method and instance variable metadata lists.
458   llvm::Constant *GeneratePropertyList(const Decl *Container,
459       const ObjCContainerDecl *OCD,
460       bool isClassProperty=false,
461       bool protocolOptionalProperties=false);
462 
463   /// Generates a list of referenced protocols.  Classes, categories, and
464   /// protocols all use this structure.
465   llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
466 
467   /// To ensure that all protocols are seen by the runtime, we add a category on
468   /// a class defined in the runtime, declaring no methods, but adopting the
469   /// protocols.  This is a horribly ugly hack, but it allows us to collect all
470   /// of the protocols without changing the ABI.
471   void GenerateProtocolHolderCategory();
472 
473   /// Generates a class structure.
474   llvm::Constant *GenerateClassStructure(
475       llvm::Constant *MetaClass,
476       llvm::Constant *SuperClass,
477       unsigned info,
478       const char *Name,
479       llvm::Constant *Version,
480       llvm::Constant *InstanceSize,
481       llvm::Constant *IVars,
482       llvm::Constant *Methods,
483       llvm::Constant *Protocols,
484       llvm::Constant *IvarOffsets,
485       llvm::Constant *Properties,
486       llvm::Constant *StrongIvarBitmap,
487       llvm::Constant *WeakIvarBitmap,
488       bool isMeta=false);
489 
490   /// Generates a method list.  This is used by protocols to define the required
491   /// and optional methods.
492   virtual llvm::Constant *GenerateProtocolMethodList(
493       ArrayRef<const ObjCMethodDecl*> Methods);
494   /// Emits optional and required method lists.
495   template<class T>
EmitProtocolMethodList(T && Methods,llvm::Constant * & Required,llvm::Constant * & Optional)496   void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required,
497       llvm::Constant *&Optional) {
498     SmallVector<const ObjCMethodDecl*, 16> RequiredMethods;
499     SmallVector<const ObjCMethodDecl*, 16> OptionalMethods;
500     for (const auto *I : Methods)
501       if (I->isOptional())
502         OptionalMethods.push_back(I);
503       else
504         RequiredMethods.push_back(I);
505     Required = GenerateProtocolMethodList(RequiredMethods);
506     Optional = GenerateProtocolMethodList(OptionalMethods);
507   }
508 
509   /// Returns a selector with the specified type encoding.  An empty string is
510   /// used to return an untyped selector (with the types field set to NULL).
511   virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
512                                         const std::string &TypeEncoding);
513 
514   /// Returns the name of ivar offset variables.  In the GNUstep v1 ABI, this
515   /// contains the class and ivar names, in the v2 ABI this contains the type
516   /// encoding as well.
GetIVarOffsetVariableName(const ObjCInterfaceDecl * ID,const ObjCIvarDecl * Ivar)517   virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
518                                                 const ObjCIvarDecl *Ivar) {
519     const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
520       + '.' + Ivar->getNameAsString();
521     return Name;
522   }
523   /// Returns the variable used to store the offset of an instance variable.
524   llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
525       const ObjCIvarDecl *Ivar);
526   /// Emits a reference to a class.  This allows the linker to object if there
527   /// is no class of the matching name.
528   void EmitClassRef(const std::string &className);
529 
530   /// Emits a pointer to the named class
531   virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
532                                      const std::string &Name, bool isWeak);
533 
534   /// Looks up the method for sending a message to the specified object.  This
535   /// mechanism differs between the GCC and GNU runtimes, so this method must be
536   /// overridden in subclasses.
537   virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
538                                  llvm::Value *&Receiver,
539                                  llvm::Value *cmd,
540                                  llvm::MDNode *node,
541                                  MessageSendInfo &MSI) = 0;
542 
543   /// Looks up the method for sending a message to a superclass.  This
544   /// mechanism differs between the GCC and GNU runtimes, so this method must
545   /// be overridden in subclasses.
546   virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
547                                       Address ObjCSuper,
548                                       llvm::Value *cmd,
549                                       MessageSendInfo &MSI) = 0;
550 
551   /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
552   /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
553   /// bits set to their values, LSB first, while larger ones are stored in a
554   /// structure of this / form:
555   ///
556   /// struct { int32_t length; int32_t values[length]; };
557   ///
558   /// The values in the array are stored in host-endian format, with the least
559   /// significant bit being assumed to come first in the bitfield.  Therefore,
560   /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
561   /// while a bitfield / with the 63rd bit set will be 1<<64.
562   llvm::Constant *MakeBitField(ArrayRef<bool> bits);
563 
564 public:
565   CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
566       unsigned protocolClassVersion, unsigned classABI=1);
567 
568   ConstantAddress GenerateConstantString(const StringLiteral *) override;
569 
570   RValue
571   GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return,
572                       QualType ResultType, Selector Sel,
573                       llvm::Value *Receiver, const CallArgList &CallArgs,
574                       const ObjCInterfaceDecl *Class,
575                       const ObjCMethodDecl *Method) override;
576   RValue
577   GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return,
578                            QualType ResultType, Selector Sel,
579                            const ObjCInterfaceDecl *Class,
580                            bool isCategoryImpl, llvm::Value *Receiver,
581                            bool IsClassMessage, const CallArgList &CallArgs,
582                            const ObjCMethodDecl *Method) override;
583   llvm::Value *GetClass(CodeGenFunction &CGF,
584                         const ObjCInterfaceDecl *OID) override;
585   llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
586   Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
587   llvm::Value *GetSelector(CodeGenFunction &CGF,
588                            const ObjCMethodDecl *Method) override;
GetConstantSelector(Selector Sel,const std::string & TypeEncoding)589   virtual llvm::Constant *GetConstantSelector(Selector Sel,
590                                               const std::string &TypeEncoding) {
591     llvm_unreachable("Runtime unable to generate constant selector");
592   }
GetConstantSelector(const ObjCMethodDecl * M)593   llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) {
594     return GetConstantSelector(M->getSelector(),
595         CGM.getContext().getObjCEncodingForMethodDecl(M));
596   }
597   llvm::Constant *GetEHType(QualType T) override;
598 
599   llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
600                                  const ObjCContainerDecl *CD) override;
601   void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn,
602                                     const ObjCMethodDecl *OMD,
603                                     const ObjCContainerDecl *CD) override;
604   void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
605   void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
606   void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
607   llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
608                                    const ObjCProtocolDecl *PD) override;
609   void GenerateProtocol(const ObjCProtocolDecl *PD) override;
610 
611   virtual llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD);
612 
GetOrEmitProtocol(const ObjCProtocolDecl * PD)613   llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override {
614     return GenerateProtocolRef(PD);
615   }
616 
617   llvm::Function *ModuleInitFunction() override;
618   llvm::FunctionCallee GetPropertyGetFunction() override;
619   llvm::FunctionCallee GetPropertySetFunction() override;
620   llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
621                                                        bool copy) override;
622   llvm::FunctionCallee GetSetStructFunction() override;
623   llvm::FunctionCallee GetGetStructFunction() override;
624   llvm::FunctionCallee GetCppAtomicObjectGetFunction() override;
625   llvm::FunctionCallee GetCppAtomicObjectSetFunction() override;
626   llvm::FunctionCallee EnumerationMutationFunction() override;
627 
628   void EmitTryStmt(CodeGenFunction &CGF,
629                    const ObjCAtTryStmt &S) override;
630   void EmitSynchronizedStmt(CodeGenFunction &CGF,
631                             const ObjCAtSynchronizedStmt &S) override;
632   void EmitThrowStmt(CodeGenFunction &CGF,
633                      const ObjCAtThrowStmt &S,
634                      bool ClearInsertionPoint=true) override;
635   llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
636                                  Address AddrWeakObj) override;
637   void EmitObjCWeakAssign(CodeGenFunction &CGF,
638                           llvm::Value *src, Address dst) override;
639   void EmitObjCGlobalAssign(CodeGenFunction &CGF,
640                             llvm::Value *src, Address dest,
641                             bool threadlocal=false) override;
642   void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
643                           Address dest, llvm::Value *ivarOffset) override;
644   void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
645                                 llvm::Value *src, Address dest) override;
646   void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr,
647                                 Address SrcPtr,
648                                 llvm::Value *Size) override;
649   LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy,
650                               llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
651                               unsigned CVRQualifiers) override;
652   llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
653                               const ObjCInterfaceDecl *Interface,
654                               const ObjCIvarDecl *Ivar) override;
655   llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
BuildGCBlockLayout(CodeGenModule & CGM,const CGBlockInfo & blockInfo)656   llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
657                                      const CGBlockInfo &blockInfo) override {
658     return NULLPtr;
659   }
BuildRCBlockLayout(CodeGenModule & CGM,const CGBlockInfo & blockInfo)660   llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
661                                      const CGBlockInfo &blockInfo) override {
662     return NULLPtr;
663   }
664 
BuildByrefLayout(CodeGenModule & CGM,QualType T)665   llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
666     return NULLPtr;
667   }
668 };
669 
670 /// Class representing the legacy GCC Objective-C ABI.  This is the default when
671 /// -fobjc-nonfragile-abi is not specified.
672 ///
673 /// The GCC ABI target actually generates code that is approximately compatible
674 /// with the new GNUstep runtime ABI, but refrains from using any features that
675 /// would not work with the GCC runtime.  For example, clang always generates
676 /// the extended form of the class structure, and the extra fields are simply
677 /// ignored by GCC libobjc.
678 class CGObjCGCC : public CGObjCGNU {
679   /// The GCC ABI message lookup function.  Returns an IMP pointing to the
680   /// method implementation for this message.
681   LazyRuntimeFunction MsgLookupFn;
682   /// The GCC ABI superclass message lookup function.  Takes a pointer to a
683   /// structure describing the receiver and the class, and a selector as
684   /// arguments.  Returns the IMP for the corresponding method.
685   LazyRuntimeFunction MsgLookupSuperFn;
686 
687 protected:
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node,MessageSendInfo & MSI)688   llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
689                          llvm::Value *cmd, llvm::MDNode *node,
690                          MessageSendInfo &MSI) override {
691     CGBuilderTy &Builder = CGF.Builder;
692     llvm::Value *args[] = {
693             EnforceType(Builder, Receiver, IdTy),
694             EnforceType(Builder, cmd, SelectorTy) };
695     llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
696     imp->setMetadata(msgSendMDKind, node);
697     return imp;
698   }
699 
LookupIMPSuper(CodeGenFunction & CGF,Address ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)700   llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
701                               llvm::Value *cmd, MessageSendInfo &MSI) override {
702     CGBuilderTy &Builder = CGF.Builder;
703     llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
704         PtrToObjCSuperTy).getPointer(), cmd};
705     return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
706   }
707 
708 public:
CGObjCGCC(CodeGenModule & Mod)709   CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
710     // IMP objc_msg_lookup(id, SEL);
711     MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
712     // IMP objc_msg_lookup_super(struct objc_super*, SEL);
713     MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
714                           PtrToObjCSuperTy, SelectorTy);
715   }
716 };
717 
718 /// Class used when targeting the new GNUstep runtime ABI.
719 class CGObjCGNUstep : public CGObjCGNU {
720     /// The slot lookup function.  Returns a pointer to a cacheable structure
721     /// that contains (among other things) the IMP.
722     LazyRuntimeFunction SlotLookupFn;
723     /// The GNUstep ABI superclass message lookup function.  Takes a pointer to
724     /// a structure describing the receiver and the class, and a selector as
725     /// arguments.  Returns the slot for the corresponding method.  Superclass
726     /// message lookup rarely changes, so this is a good caching opportunity.
727     LazyRuntimeFunction SlotLookupSuperFn;
728     /// Specialised function for setting atomic retain properties
729     LazyRuntimeFunction SetPropertyAtomic;
730     /// Specialised function for setting atomic copy properties
731     LazyRuntimeFunction SetPropertyAtomicCopy;
732     /// Specialised function for setting nonatomic retain properties
733     LazyRuntimeFunction SetPropertyNonAtomic;
734     /// Specialised function for setting nonatomic copy properties
735     LazyRuntimeFunction SetPropertyNonAtomicCopy;
736     /// Function to perform atomic copies of C++ objects with nontrivial copy
737     /// constructors from Objective-C ivars.
738     LazyRuntimeFunction CxxAtomicObjectGetFn;
739     /// Function to perform atomic copies of C++ objects with nontrivial copy
740     /// constructors to Objective-C ivars.
741     LazyRuntimeFunction CxxAtomicObjectSetFn;
742     /// Type of an slot structure pointer.  This is returned by the various
743     /// lookup functions.
744     llvm::Type *SlotTy;
745 
746   public:
747     llvm::Constant *GetEHType(QualType T) override;
748 
749   protected:
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node,MessageSendInfo & MSI)750     llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
751                            llvm::Value *cmd, llvm::MDNode *node,
752                            MessageSendInfo &MSI) override {
753       CGBuilderTy &Builder = CGF.Builder;
754       llvm::FunctionCallee LookupFn = SlotLookupFn;
755 
756       // Store the receiver on the stack so that we can reload it later
757       Address ReceiverPtr =
758         CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign());
759       Builder.CreateStore(Receiver, ReceiverPtr);
760 
761       llvm::Value *self;
762 
763       if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
764         self = CGF.LoadObjCSelf();
765       } else {
766         self = llvm::ConstantPointerNull::get(IdTy);
767       }
768 
769       // The lookup function is guaranteed not to capture the receiver pointer.
770       if (auto *LookupFn2 = dyn_cast<llvm::Function>(LookupFn.getCallee()))
771         LookupFn2->addParamAttr(0, llvm::Attribute::NoCapture);
772 
773       llvm::Value *args[] = {
774               EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy),
775               EnforceType(Builder, cmd, SelectorTy),
776               EnforceType(Builder, self, IdTy) };
777       llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
778       slot->setOnlyReadsMemory();
779       slot->setMetadata(msgSendMDKind, node);
780 
781       // Load the imp from the slot
782       llvm::Value *imp = Builder.CreateAlignedLoad(
783           IMPTy, Builder.CreateStructGEP(nullptr, slot, 4),
784           CGF.getPointerAlign());
785 
786       // The lookup function may have changed the receiver, so make sure we use
787       // the new one.
788       Receiver = Builder.CreateLoad(ReceiverPtr, true);
789       return imp;
790     }
791 
LookupIMPSuper(CodeGenFunction & CGF,Address ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)792     llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
793                                 llvm::Value *cmd,
794                                 MessageSendInfo &MSI) override {
795       CGBuilderTy &Builder = CGF.Builder;
796       llvm::Value *lookupArgs[] = {ObjCSuper.getPointer(), cmd};
797 
798       llvm::CallInst *slot =
799         CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
800       slot->setOnlyReadsMemory();
801 
802       return Builder.CreateAlignedLoad(
803           IMPTy, Builder.CreateStructGEP(nullptr, slot, 4),
804           CGF.getPointerAlign());
805     }
806 
807   public:
CGObjCGNUstep(CodeGenModule & Mod)808     CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {}
CGObjCGNUstep(CodeGenModule & Mod,unsigned ABI,unsigned ProtocolABI,unsigned ClassABI)809     CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI,
810         unsigned ClassABI) :
811       CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) {
812       const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
813 
814       llvm::StructType *SlotStructTy =
815           llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy);
816       SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
817       // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
818       SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
819                         SelectorTy, IdTy);
820       // Slot_t objc_slot_lookup_super(struct objc_super*, SEL);
821       SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
822                              PtrToObjCSuperTy, SelectorTy);
823       // If we're in ObjC++ mode, then we want to make
824       if (usesSEHExceptions) {
825           llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
826           // void objc_exception_rethrow(void)
827           ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy);
828       } else if (CGM.getLangOpts().CPlusPlus) {
829         llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
830         // void *__cxa_begin_catch(void *e)
831         EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy);
832         // void __cxa_end_catch(void)
833         ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy);
834         // void _Unwind_Resume_or_Rethrow(void*)
835         ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
836                                 PtrTy);
837       } else if (R.getVersion() >= VersionTuple(1, 7)) {
838         llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
839         // id objc_begin_catch(void *e)
840         EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy);
841         // void objc_end_catch(void)
842         ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy);
843         // void _Unwind_Resume_or_Rethrow(void*)
844         ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy);
845       }
846       llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
847       SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
848                              SelectorTy, IdTy, PtrDiffTy);
849       SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
850                                  IdTy, SelectorTy, IdTy, PtrDiffTy);
851       SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
852                                 IdTy, SelectorTy, IdTy, PtrDiffTy);
853       SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
854                                     VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy);
855       // void objc_setCppObjectAtomic(void *dest, const void *src, void
856       // *helper);
857       CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
858                                 PtrTy, PtrTy);
859       // void objc_getCppObjectAtomic(void *dest, const void *src, void
860       // *helper);
861       CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
862                                 PtrTy, PtrTy);
863     }
864 
GetCppAtomicObjectGetFunction()865     llvm::FunctionCallee GetCppAtomicObjectGetFunction() override {
866       // The optimised functions were added in version 1.7 of the GNUstep
867       // runtime.
868       assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
869           VersionTuple(1, 7));
870       return CxxAtomicObjectGetFn;
871     }
872 
GetCppAtomicObjectSetFunction()873     llvm::FunctionCallee GetCppAtomicObjectSetFunction() override {
874       // The optimised functions were added in version 1.7 of the GNUstep
875       // runtime.
876       assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
877           VersionTuple(1, 7));
878       return CxxAtomicObjectSetFn;
879     }
880 
GetOptimizedPropertySetFunction(bool atomic,bool copy)881     llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
882                                                          bool copy) override {
883       // The optimised property functions omit the GC check, and so are not
884       // safe to use in GC mode.  The standard functions are fast in GC mode,
885       // so there is less advantage in using them.
886       assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
887       // The optimised functions were added in version 1.7 of the GNUstep
888       // runtime.
889       assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
890           VersionTuple(1, 7));
891 
892       if (atomic) {
893         if (copy) return SetPropertyAtomicCopy;
894         return SetPropertyAtomic;
895       }
896 
897       return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
898     }
899 };
900 
901 /// GNUstep Objective-C ABI version 2 implementation.
902 /// This is the ABI that provides a clean break with the legacy GCC ABI and
903 /// cleans up a number of things that were added to work around 1980s linkers.
904 class CGObjCGNUstep2 : public CGObjCGNUstep {
905   enum SectionKind
906   {
907     SelectorSection = 0,
908     ClassSection,
909     ClassReferenceSection,
910     CategorySection,
911     ProtocolSection,
912     ProtocolReferenceSection,
913     ClassAliasSection,
914     ConstantStringSection
915   };
916   static const char *const SectionsBaseNames[8];
917   static const char *const PECOFFSectionsBaseNames[8];
918   template<SectionKind K>
sectionName()919   std::string sectionName() {
920     if (CGM.getTriple().isOSBinFormatCOFF()) {
921       std::string name(PECOFFSectionsBaseNames[K]);
922       name += "$m";
923       return name;
924     }
925     return SectionsBaseNames[K];
926   }
927   /// The GCC ABI superclass message lookup function.  Takes a pointer to a
928   /// structure describing the receiver and the class, and a selector as
929   /// arguments.  Returns the IMP for the corresponding method.
930   LazyRuntimeFunction MsgLookupSuperFn;
931   /// A flag indicating if we've emitted at least one protocol.
932   /// If we haven't, then we need to emit an empty protocol, to ensure that the
933   /// __start__objc_protocols and __stop__objc_protocols sections exist.
934   bool EmittedProtocol = false;
935   /// A flag indicating if we've emitted at least one protocol reference.
936   /// If we haven't, then we need to emit an empty protocol, to ensure that the
937   /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections
938   /// exist.
939   bool EmittedProtocolRef = false;
940   /// A flag indicating if we've emitted at least one class.
941   /// If we haven't, then we need to emit an empty protocol, to ensure that the
942   /// __start__objc_classes and __stop__objc_classes sections / exist.
943   bool EmittedClass = false;
944   /// Generate the name of a symbol for a reference to a class.  Accesses to
945   /// classes should be indirected via this.
946 
947   typedef std::pair<std::string, std::pair<llvm::Constant*, int>> EarlyInitPair;
948   std::vector<EarlyInitPair> EarlyInitList;
949 
SymbolForClassRef(StringRef Name,bool isWeak)950   std::string SymbolForClassRef(StringRef Name, bool isWeak) {
951     if (isWeak)
952       return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str();
953     else
954       return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str();
955   }
956   /// Generate the name of a class symbol.
SymbolForClass(StringRef Name)957   std::string SymbolForClass(StringRef Name) {
958     return (ManglePublicSymbol("OBJC_CLASS_") + Name).str();
959   }
CallRuntimeFunction(CGBuilderTy & B,StringRef FunctionName,ArrayRef<llvm::Value * > Args)960   void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName,
961       ArrayRef<llvm::Value*> Args) {
962     SmallVector<llvm::Type *,8> Types;
963     for (auto *Arg : Args)
964       Types.push_back(Arg->getType());
965     llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types,
966         false);
967     llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName);
968     B.CreateCall(Fn, Args);
969   }
970 
GenerateConstantString(const StringLiteral * SL)971   ConstantAddress GenerateConstantString(const StringLiteral *SL) override {
972 
973     auto Str = SL->getString();
974     CharUnits Align = CGM.getPointerAlign();
975 
976     // Look for an existing one
977     llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
978     if (old != ObjCStrings.end())
979       return ConstantAddress(old->getValue(), Align);
980 
981     bool isNonASCII = SL->containsNonAscii();
982 
983     auto LiteralLength = SL->getLength();
984 
985     if ((CGM.getTarget().getPointerWidth(0) == 64) &&
986         (LiteralLength < 9) && !isNonASCII) {
987       // Tiny strings are only used on 64-bit platforms.  They store 8 7-bit
988       // ASCII characters in the high 56 bits, followed by a 4-bit length and a
989       // 3-bit tag (which is always 4).
990       uint64_t str = 0;
991       // Fill in the characters
992       for (unsigned i=0 ; i<LiteralLength ; i++)
993         str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7));
994       // Fill in the length
995       str |= LiteralLength << 3;
996       // Set the tag
997       str |= 4;
998       auto *ObjCStr = llvm::ConstantExpr::getIntToPtr(
999           llvm::ConstantInt::get(Int64Ty, str), IdTy);
1000       ObjCStrings[Str] = ObjCStr;
1001       return ConstantAddress(ObjCStr, Align);
1002     }
1003 
1004     StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1005 
1006     if (StringClass.empty()) StringClass = "NSConstantString";
1007 
1008     std::string Sym = SymbolForClass(StringClass);
1009 
1010     llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1011 
1012     if (!isa) {
1013       isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1014               llvm::GlobalValue::ExternalLinkage, nullptr, Sym);
1015       if (CGM.getTriple().isOSBinFormatCOFF()) {
1016         cast<llvm::GlobalValue>(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1017       }
1018     } else if (isa->getType() != PtrToIdTy)
1019       isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
1020 
1021     //  struct
1022     //  {
1023     //    Class isa;
1024     //    uint32_t flags;
1025     //    uint32_t length; // Number of codepoints
1026     //    uint32_t size; // Number of bytes
1027     //    uint32_t hash;
1028     //    const char *data;
1029     //  };
1030 
1031     ConstantInitBuilder Builder(CGM);
1032     auto Fields = Builder.beginStruct();
1033     if (!CGM.getTriple().isOSBinFormatCOFF()) {
1034       Fields.add(isa);
1035     } else {
1036       Fields.addNullPointer(PtrTy);
1037     }
1038     // For now, all non-ASCII strings are represented as UTF-16.  As such, the
1039     // number of bytes is simply double the number of UTF-16 codepoints.  In
1040     // ASCII strings, the number of bytes is equal to the number of non-ASCII
1041     // codepoints.
1042     if (isNonASCII) {
1043       unsigned NumU8CodeUnits = Str.size();
1044       // A UTF-16 representation of a unicode string contains at most the same
1045       // number of code units as a UTF-8 representation.  Allocate that much
1046       // space, plus one for the final null character.
1047       SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1);
1048       const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data();
1049       llvm::UTF16 *ToPtr = &ToBuf[0];
1050       (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits,
1051           &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion);
1052       uint32_t StringLength = ToPtr - &ToBuf[0];
1053       // Add null terminator
1054       *ToPtr = 0;
1055       // Flags: 2 indicates UTF-16 encoding
1056       Fields.addInt(Int32Ty, 2);
1057       // Number of UTF-16 codepoints
1058       Fields.addInt(Int32Ty, StringLength);
1059       // Number of bytes
1060       Fields.addInt(Int32Ty, StringLength * 2);
1061       // Hash.  Not currently initialised by the compiler.
1062       Fields.addInt(Int32Ty, 0);
1063       // pointer to the data string.
1064       auto Arr = llvm::makeArrayRef(&ToBuf[0], ToPtr+1);
1065       auto *C = llvm::ConstantDataArray::get(VMContext, Arr);
1066       auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(),
1067           /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str");
1068       Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1069       Fields.add(Buffer);
1070     } else {
1071       // Flags: 0 indicates ASCII encoding
1072       Fields.addInt(Int32Ty, 0);
1073       // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint
1074       Fields.addInt(Int32Ty, Str.size());
1075       // Number of bytes
1076       Fields.addInt(Int32Ty, Str.size());
1077       // Hash.  Not currently initialised by the compiler.
1078       Fields.addInt(Int32Ty, 0);
1079       // Data pointer
1080       Fields.add(MakeConstantString(Str));
1081     }
1082     std::string StringName;
1083     bool isNamed = !isNonASCII;
1084     if (isNamed) {
1085       StringName = ".objc_str_";
1086       for (int i=0,e=Str.size() ; i<e ; ++i) {
1087         unsigned char c = Str[i];
1088         if (isalnum(c))
1089           StringName += c;
1090         else if (c == ' ')
1091           StringName += '_';
1092         else {
1093           isNamed = false;
1094           break;
1095         }
1096       }
1097     }
1098     auto *ObjCStrGV =
1099       Fields.finishAndCreateGlobal(
1100           isNamed ? StringRef(StringName) : ".objc_string",
1101           Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage
1102                                 : llvm::GlobalValue::PrivateLinkage);
1103     ObjCStrGV->setSection(sectionName<ConstantStringSection>());
1104     if (isNamed) {
1105       ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName));
1106       ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1107     }
1108     if (CGM.getTriple().isOSBinFormatCOFF()) {
1109       std::pair<llvm::Constant*, int> v{ObjCStrGV, 0};
1110       EarlyInitList.emplace_back(Sym, v);
1111     }
1112     llvm::Constant *ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStrGV, IdTy);
1113     ObjCStrings[Str] = ObjCStr;
1114     ConstantStrings.push_back(ObjCStr);
1115     return ConstantAddress(ObjCStr, Align);
1116   }
1117 
PushProperty(ConstantArrayBuilder & PropertiesArray,const ObjCPropertyDecl * property,const Decl * OCD,bool isSynthesized=true,bool isDynamic=true)1118   void PushProperty(ConstantArrayBuilder &PropertiesArray,
1119             const ObjCPropertyDecl *property,
1120             const Decl *OCD,
1121             bool isSynthesized=true, bool
1122             isDynamic=true) override {
1123     // struct objc_property
1124     // {
1125     //   const char *name;
1126     //   const char *attributes;
1127     //   const char *type;
1128     //   SEL getter;
1129     //   SEL setter;
1130     // };
1131     auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
1132     ASTContext &Context = CGM.getContext();
1133     Fields.add(MakeConstantString(property->getNameAsString()));
1134     std::string TypeStr =
1135       CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD);
1136     Fields.add(MakeConstantString(TypeStr));
1137     std::string typeStr;
1138     Context.getObjCEncodingForType(property->getType(), typeStr);
1139     Fields.add(MakeConstantString(typeStr));
1140     auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
1141       if (accessor) {
1142         std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
1143         Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr));
1144       } else {
1145         Fields.add(NULLPtr);
1146       }
1147     };
1148     addPropertyMethod(property->getGetterMethodDecl());
1149     addPropertyMethod(property->getSetterMethodDecl());
1150     Fields.finishAndAddTo(PropertiesArray);
1151   }
1152 
1153   llvm::Constant *
GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl * > Methods)1154   GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override {
1155     // struct objc_protocol_method_description
1156     // {
1157     //   SEL selector;
1158     //   const char *types;
1159     // };
1160     llvm::StructType *ObjCMethodDescTy =
1161       llvm::StructType::get(CGM.getLLVMContext(),
1162           { PtrToInt8Ty, PtrToInt8Ty });
1163     ASTContext &Context = CGM.getContext();
1164     ConstantInitBuilder Builder(CGM);
1165     // struct objc_protocol_method_description_list
1166     // {
1167     //   int count;
1168     //   int size;
1169     //   struct objc_protocol_method_description methods[];
1170     // };
1171     auto MethodList = Builder.beginStruct();
1172     // int count;
1173     MethodList.addInt(IntTy, Methods.size());
1174     // int size; // sizeof(struct objc_method_description)
1175     llvm::DataLayout td(&TheModule);
1176     MethodList.addInt(IntTy, td.getTypeSizeInBits(ObjCMethodDescTy) /
1177         CGM.getContext().getCharWidth());
1178     // struct objc_method_description[]
1179     auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
1180     for (auto *M : Methods) {
1181       auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
1182       Method.add(CGObjCGNU::GetConstantSelector(M));
1183       Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true)));
1184       Method.finishAndAddTo(MethodArray);
1185     }
1186     MethodArray.finishAndAddTo(MethodList);
1187     return MethodList.finishAndCreateGlobal(".objc_protocol_method_list",
1188                                             CGM.getPointerAlign());
1189   }
GenerateCategoryProtocolList(const ObjCCategoryDecl * OCD)1190   llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD)
1191     override {
1192     const auto &ReferencedProtocols = OCD->getReferencedProtocols();
1193     auto RuntimeProtocols = GetRuntimeProtocolList(ReferencedProtocols.begin(),
1194                                                    ReferencedProtocols.end());
1195     SmallVector<llvm::Constant *, 16> Protocols;
1196     for (const auto *PI : RuntimeProtocols)
1197       Protocols.push_back(
1198           llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI),
1199             ProtocolPtrTy));
1200     return GenerateProtocolList(Protocols);
1201   }
1202 
LookupIMPSuper(CodeGenFunction & CGF,Address ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)1203   llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
1204                               llvm::Value *cmd, MessageSendInfo &MSI) override {
1205     // Don't access the slot unless we're trying to cache the result.
1206     CGBuilderTy &Builder = CGF.Builder;
1207     llvm::Value *lookupArgs[] = {CGObjCGNU::EnforceType(Builder, ObjCSuper,
1208         PtrToObjCSuperTy).getPointer(), cmd};
1209     return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
1210   }
1211 
GetClassVar(StringRef Name,bool isWeak=false)1212   llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) {
1213     std::string SymbolName = SymbolForClassRef(Name, isWeak);
1214     auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName);
1215     if (ClassSymbol)
1216       return ClassSymbol;
1217     ClassSymbol = new llvm::GlobalVariable(TheModule,
1218         IdTy, false, llvm::GlobalValue::ExternalLinkage,
1219         nullptr, SymbolName);
1220     // If this is a weak symbol, then we are creating a valid definition for
1221     // the symbol, pointing to a weak definition of the real class pointer.  If
1222     // this is not a weak reference, then we are expecting another compilation
1223     // unit to provide the real indirection symbol.
1224     if (isWeak)
1225       ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule,
1226           Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage,
1227           nullptr, SymbolForClass(Name)));
1228     else {
1229       if (CGM.getTriple().isOSBinFormatCOFF()) {
1230         IdentifierInfo &II = CGM.getContext().Idents.get(Name);
1231         TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
1232         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
1233 
1234         const ObjCInterfaceDecl *OID = nullptr;
1235         for (const auto *Result : DC->lookup(&II))
1236           if ((OID = dyn_cast<ObjCInterfaceDecl>(Result)))
1237             break;
1238 
1239         // The first Interface we find may be a @class,
1240         // which should only be treated as the source of
1241         // truth in the absence of a true declaration.
1242         assert(OID && "Failed to find ObjCInterfaceDecl");
1243         const ObjCInterfaceDecl *OIDDef = OID->getDefinition();
1244         if (OIDDef != nullptr)
1245           OID = OIDDef;
1246 
1247         auto Storage = llvm::GlobalValue::DefaultStorageClass;
1248         if (OID->hasAttr<DLLImportAttr>())
1249           Storage = llvm::GlobalValue::DLLImportStorageClass;
1250         else if (OID->hasAttr<DLLExportAttr>())
1251           Storage = llvm::GlobalValue::DLLExportStorageClass;
1252 
1253         cast<llvm::GlobalValue>(ClassSymbol)->setDLLStorageClass(Storage);
1254       }
1255     }
1256     assert(ClassSymbol->getName() == SymbolName);
1257     return ClassSymbol;
1258   }
GetClassNamed(CodeGenFunction & CGF,const std::string & Name,bool isWeak)1259   llvm::Value *GetClassNamed(CodeGenFunction &CGF,
1260                              const std::string &Name,
1261                              bool isWeak) override {
1262     return CGF.Builder.CreateLoad(Address(GetClassVar(Name, isWeak),
1263           CGM.getPointerAlign()));
1264   }
FlagsForOwnership(Qualifiers::ObjCLifetime Ownership)1265   int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) {
1266     // typedef enum {
1267     //   ownership_invalid = 0,
1268     //   ownership_strong  = 1,
1269     //   ownership_weak    = 2,
1270     //   ownership_unsafe  = 3
1271     // } ivar_ownership;
1272     int Flag;
1273     switch (Ownership) {
1274       case Qualifiers::OCL_Strong:
1275           Flag = 1;
1276           break;
1277       case Qualifiers::OCL_Weak:
1278           Flag = 2;
1279           break;
1280       case Qualifiers::OCL_ExplicitNone:
1281           Flag = 3;
1282           break;
1283       case Qualifiers::OCL_None:
1284       case Qualifiers::OCL_Autoreleasing:
1285         assert(Ownership != Qualifiers::OCL_Autoreleasing);
1286         Flag = 0;
1287     }
1288     return Flag;
1289   }
GenerateIvarList(ArrayRef<llvm::Constant * > IvarNames,ArrayRef<llvm::Constant * > IvarTypes,ArrayRef<llvm::Constant * > IvarOffsets,ArrayRef<llvm::Constant * > IvarAlign,ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership)1290   llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1291                    ArrayRef<llvm::Constant *> IvarTypes,
1292                    ArrayRef<llvm::Constant *> IvarOffsets,
1293                    ArrayRef<llvm::Constant *> IvarAlign,
1294                    ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override {
1295     llvm_unreachable("Method should not be called!");
1296   }
1297 
GenerateEmptyProtocol(StringRef ProtocolName)1298   llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override {
1299     std::string Name = SymbolForProtocol(ProtocolName);
1300     auto *GV = TheModule.getGlobalVariable(Name);
1301     if (!GV) {
1302       // Emit a placeholder symbol.
1303       GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false,
1304           llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1305       GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1306     }
1307     return llvm::ConstantExpr::getBitCast(GV, ProtocolPtrTy);
1308   }
1309 
1310   /// Existing protocol references.
1311   llvm::StringMap<llvm::Constant*> ExistingProtocolRefs;
1312 
GenerateProtocolRef(CodeGenFunction & CGF,const ObjCProtocolDecl * PD)1313   llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1314                                    const ObjCProtocolDecl *PD) override {
1315     auto Name = PD->getNameAsString();
1316     auto *&Ref = ExistingProtocolRefs[Name];
1317     if (!Ref) {
1318       auto *&Protocol = ExistingProtocols[Name];
1319       if (!Protocol)
1320         Protocol = GenerateProtocolRef(PD);
1321       std::string RefName = SymbolForProtocolRef(Name);
1322       assert(!TheModule.getGlobalVariable(RefName));
1323       // Emit a reference symbol.
1324       auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy,
1325           false, llvm::GlobalValue::LinkOnceODRLinkage,
1326           llvm::ConstantExpr::getBitCast(Protocol, ProtocolPtrTy), RefName);
1327       GV->setComdat(TheModule.getOrInsertComdat(RefName));
1328       GV->setSection(sectionName<ProtocolReferenceSection>());
1329       GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1330       Ref = GV;
1331     }
1332     EmittedProtocolRef = true;
1333     return CGF.Builder.CreateAlignedLoad(ProtocolPtrTy, Ref,
1334                                          CGM.getPointerAlign());
1335   }
1336 
GenerateProtocolList(ArrayRef<llvm::Constant * > Protocols)1337   llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) {
1338     llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy,
1339         Protocols.size());
1340     llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1341         Protocols);
1342     ConstantInitBuilder builder(CGM);
1343     auto ProtocolBuilder = builder.beginStruct();
1344     ProtocolBuilder.addNullPointer(PtrTy);
1345     ProtocolBuilder.addInt(SizeTy, Protocols.size());
1346     ProtocolBuilder.add(ProtocolArray);
1347     return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list",
1348         CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage);
1349   }
1350 
GenerateProtocol(const ObjCProtocolDecl * PD)1351   void GenerateProtocol(const ObjCProtocolDecl *PD) override {
1352     // Do nothing - we only emit referenced protocols.
1353   }
GenerateProtocolRef(const ObjCProtocolDecl * PD)1354   llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) override {
1355     std::string ProtocolName = PD->getNameAsString();
1356     auto *&Protocol = ExistingProtocols[ProtocolName];
1357     if (Protocol)
1358       return Protocol;
1359 
1360     EmittedProtocol = true;
1361 
1362     auto SymName = SymbolForProtocol(ProtocolName);
1363     auto *OldGV = TheModule.getGlobalVariable(SymName);
1364 
1365     // Use the protocol definition, if there is one.
1366     if (const ObjCProtocolDecl *Def = PD->getDefinition())
1367       PD = Def;
1368     else {
1369       // If there is no definition, then create an external linkage symbol and
1370       // hope that someone else fills it in for us (and fail to link if they
1371       // don't).
1372       assert(!OldGV);
1373       Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy,
1374         /*isConstant*/false,
1375         llvm::GlobalValue::ExternalLinkage, nullptr, SymName);
1376       return Protocol;
1377     }
1378 
1379     SmallVector<llvm::Constant*, 16> Protocols;
1380     auto RuntimeProtocols =
1381         GetRuntimeProtocolList(PD->protocol_begin(), PD->protocol_end());
1382     for (const auto *PI : RuntimeProtocols)
1383       Protocols.push_back(
1384           llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI),
1385             ProtocolPtrTy));
1386     llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1387 
1388     // Collect information about methods
1389     llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList;
1390     llvm::Constant *ClassMethodList, *OptionalClassMethodList;
1391     EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList,
1392         OptionalInstanceMethodList);
1393     EmitProtocolMethodList(PD->class_methods(), ClassMethodList,
1394         OptionalClassMethodList);
1395 
1396     // The isa pointer must be set to a magic number so the runtime knows it's
1397     // the correct layout.
1398     ConstantInitBuilder builder(CGM);
1399     auto ProtocolBuilder = builder.beginStruct();
1400     ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr(
1401           llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1402     ProtocolBuilder.add(MakeConstantString(ProtocolName));
1403     ProtocolBuilder.add(ProtocolList);
1404     ProtocolBuilder.add(InstanceMethodList);
1405     ProtocolBuilder.add(ClassMethodList);
1406     ProtocolBuilder.add(OptionalInstanceMethodList);
1407     ProtocolBuilder.add(OptionalClassMethodList);
1408     // Required instance properties
1409     ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false));
1410     // Optional instance properties
1411     ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true));
1412     // Required class properties
1413     ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false));
1414     // Optional class properties
1415     ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true));
1416 
1417     auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName,
1418         CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1419     GV->setSection(sectionName<ProtocolSection>());
1420     GV->setComdat(TheModule.getOrInsertComdat(SymName));
1421     if (OldGV) {
1422       OldGV->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GV,
1423             OldGV->getType()));
1424       OldGV->removeFromParent();
1425       GV->setName(SymName);
1426     }
1427     Protocol = GV;
1428     return GV;
1429   }
EnforceType(llvm::Constant * Val,llvm::Type * Ty)1430   llvm::Constant *EnforceType(llvm::Constant *Val, llvm::Type *Ty) {
1431     if (Val->getType() == Ty)
1432       return Val;
1433     return llvm::ConstantExpr::getBitCast(Val, Ty);
1434   }
GetTypedSelector(CodeGenFunction & CGF,Selector Sel,const std::string & TypeEncoding)1435   llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
1436                                 const std::string &TypeEncoding) override {
1437     return GetConstantSelector(Sel, TypeEncoding);
1438   }
GetTypeString(llvm::StringRef TypeEncoding)1439   llvm::Constant  *GetTypeString(llvm::StringRef TypeEncoding) {
1440     if (TypeEncoding.empty())
1441       return NULLPtr;
1442     std::string MangledTypes = std::string(TypeEncoding);
1443     std::replace(MangledTypes.begin(), MangledTypes.end(),
1444       '@', '\1');
1445     std::string TypesVarName = ".objc_sel_types_" + MangledTypes;
1446     auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName);
1447     if (!TypesGlobal) {
1448       llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
1449           TypeEncoding);
1450       auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(),
1451           true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName);
1452       GV->setComdat(TheModule.getOrInsertComdat(TypesVarName));
1453       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1454       TypesGlobal = GV;
1455     }
1456     return llvm::ConstantExpr::getGetElementPtr(TypesGlobal->getValueType(),
1457         TypesGlobal, Zeros);
1458   }
GetConstantSelector(Selector Sel,const std::string & TypeEncoding)1459   llvm::Constant *GetConstantSelector(Selector Sel,
1460                                       const std::string &TypeEncoding) override {
1461     // @ is used as a special character in symbol names (used for symbol
1462     // versioning), so mangle the name to not include it.  Replace it with a
1463     // character that is not a valid type encoding character (and, being
1464     // non-printable, never will be!)
1465     std::string MangledTypes = TypeEncoding;
1466     std::replace(MangledTypes.begin(), MangledTypes.end(),
1467       '@', '\1');
1468     auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" +
1469       MangledTypes).str();
1470     if (auto *GV = TheModule.getNamedGlobal(SelVarName))
1471       return EnforceType(GV, SelectorTy);
1472     ConstantInitBuilder builder(CGM);
1473     auto SelBuilder = builder.beginStruct();
1474     SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_",
1475           true));
1476     SelBuilder.add(GetTypeString(TypeEncoding));
1477     auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName,
1478         CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1479     GV->setComdat(TheModule.getOrInsertComdat(SelVarName));
1480     GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1481     GV->setSection(sectionName<SelectorSection>());
1482     auto *SelVal = EnforceType(GV, SelectorTy);
1483     return SelVal;
1484   }
1485   llvm::StructType *emptyStruct = nullptr;
1486 
1487   /// Return pointers to the start and end of a section.  On ELF platforms, we
1488   /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set
1489   /// to the start and end of section names, as long as those section names are
1490   /// valid identifiers and the symbols are referenced but not defined.  On
1491   /// Windows, we use the fact that MSVC-compatible linkers will lexically sort
1492   /// by subsections and place everything that we want to reference in a middle
1493   /// subsection and then insert zero-sized symbols in subsections a and z.
1494   std::pair<llvm::Constant*,llvm::Constant*>
GetSectionBounds(StringRef Section)1495   GetSectionBounds(StringRef Section) {
1496     if (CGM.getTriple().isOSBinFormatCOFF()) {
1497       if (emptyStruct == nullptr) {
1498         emptyStruct = llvm::StructType::create(VMContext, ".objc_section_sentinel");
1499         emptyStruct->setBody({}, /*isPacked*/true);
1500       }
1501       auto ZeroInit = llvm::Constant::getNullValue(emptyStruct);
1502       auto Sym = [&](StringRef Prefix, StringRef SecSuffix) {
1503         auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct,
1504             /*isConstant*/false,
1505             llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix +
1506             Section);
1507         Sym->setVisibility(llvm::GlobalValue::HiddenVisibility);
1508         Sym->setSection((Section + SecSuffix).str());
1509         Sym->setComdat(TheModule.getOrInsertComdat((Prefix +
1510             Section).str()));
1511         Sym->setAlignment(CGM.getPointerAlign().getAsAlign());
1512         return Sym;
1513       };
1514       return { Sym("__start_", "$a"), Sym("__stop", "$z") };
1515     }
1516     auto *Start = new llvm::GlobalVariable(TheModule, PtrTy,
1517         /*isConstant*/false,
1518         llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") +
1519         Section);
1520     Start->setVisibility(llvm::GlobalValue::HiddenVisibility);
1521     auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy,
1522         /*isConstant*/false,
1523         llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") +
1524         Section);
1525     Stop->setVisibility(llvm::GlobalValue::HiddenVisibility);
1526     return { Start, Stop };
1527   }
getCatchAllTypeInfo()1528   CatchTypeInfo getCatchAllTypeInfo() override {
1529     return CGM.getCXXABI().getCatchAllTypeInfo();
1530   }
ModuleInitFunction()1531   llvm::Function *ModuleInitFunction() override {
1532     llvm::Function *LoadFunction = llvm::Function::Create(
1533       llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
1534       llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function",
1535       &TheModule);
1536     LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility);
1537     LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function"));
1538 
1539     llvm::BasicBlock *EntryBB =
1540         llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
1541     CGBuilderTy B(CGM, VMContext);
1542     B.SetInsertPoint(EntryBB);
1543     ConstantInitBuilder builder(CGM);
1544     auto InitStructBuilder = builder.beginStruct();
1545     InitStructBuilder.addInt(Int64Ty, 0);
1546     auto &sectionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames;
1547     for (auto *s : sectionVec) {
1548       auto bounds = GetSectionBounds(s);
1549       InitStructBuilder.add(bounds.first);
1550       InitStructBuilder.add(bounds.second);
1551     }
1552     auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init",
1553         CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1554     InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility);
1555     InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init"));
1556 
1557     CallRuntimeFunction(B, "__objc_load", {InitStruct});;
1558     B.CreateRetVoid();
1559     // Make sure that the optimisers don't delete this function.
1560     CGM.addCompilerUsedGlobal(LoadFunction);
1561     // FIXME: Currently ELF only!
1562     // We have to do this by hand, rather than with @llvm.ctors, so that the
1563     // linker can remove the duplicate invocations.
1564     auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(),
1565         /*isConstant*/false, llvm::GlobalValue::LinkOnceAnyLinkage,
1566         LoadFunction, ".objc_ctor");
1567     // Check that this hasn't been renamed.  This shouldn't happen, because
1568     // this function should be called precisely once.
1569     assert(InitVar->getName() == ".objc_ctor");
1570     // In Windows, initialisers are sorted by the suffix.  XCL is for library
1571     // initialisers, which run before user initialisers.  We are running
1572     // Objective-C loads at the end of library load.  This means +load methods
1573     // will run before any other static constructors, but that static
1574     // constructors can see a fully initialised Objective-C state.
1575     if (CGM.getTriple().isOSBinFormatCOFF())
1576         InitVar->setSection(".CRT$XCLz");
1577     else
1578     {
1579       if (CGM.getCodeGenOpts().UseInitArray)
1580         InitVar->setSection(".init_array");
1581       else
1582         InitVar->setSection(".ctors");
1583     }
1584     InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility);
1585     InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor"));
1586     CGM.addUsedGlobal(InitVar);
1587     for (auto *C : Categories) {
1588       auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts());
1589       Cat->setSection(sectionName<CategorySection>());
1590       CGM.addUsedGlobal(Cat);
1591     }
1592     auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init,
1593         StringRef Section) {
1594       auto nullBuilder = builder.beginStruct();
1595       for (auto *F : Init)
1596         nullBuilder.add(F);
1597       auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
1598           false, llvm::GlobalValue::LinkOnceODRLinkage);
1599       GV->setSection(Section);
1600       GV->setComdat(TheModule.getOrInsertComdat(Name));
1601       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1602       CGM.addUsedGlobal(GV);
1603       return GV;
1604     };
1605     for (auto clsAlias : ClassAliases)
1606       createNullGlobal(std::string(".objc_class_alias") +
1607           clsAlias.second, { MakeConstantString(clsAlias.second),
1608           GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>());
1609     // On ELF platforms, add a null value for each special section so that we
1610     // can always guarantee that the _start and _stop symbols will exist and be
1611     // meaningful.  This is not required on COFF platforms, where our start and
1612     // stop symbols will create the section.
1613     if (!CGM.getTriple().isOSBinFormatCOFF()) {
1614       createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr},
1615           sectionName<SelectorSection>());
1616       if (Categories.empty())
1617         createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr,
1618                       NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr},
1619             sectionName<CategorySection>());
1620       if (!EmittedClass) {
1621         createNullGlobal(".objc_null_cls_init_ref", NULLPtr,
1622             sectionName<ClassSection>());
1623         createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr },
1624             sectionName<ClassReferenceSection>());
1625       }
1626       if (!EmittedProtocol)
1627         createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr,
1628             NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr,
1629             NULLPtr}, sectionName<ProtocolSection>());
1630       if (!EmittedProtocolRef)
1631         createNullGlobal(".objc_null_protocol_ref", {NULLPtr},
1632             sectionName<ProtocolReferenceSection>());
1633       if (ClassAliases.empty())
1634         createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr },
1635             sectionName<ClassAliasSection>());
1636       if (ConstantStrings.empty()) {
1637         auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0);
1638         createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero,
1639             i32Zero, i32Zero, i32Zero, NULLPtr },
1640             sectionName<ConstantStringSection>());
1641       }
1642     }
1643     ConstantStrings.clear();
1644     Categories.clear();
1645     Classes.clear();
1646 
1647     if (EarlyInitList.size() > 0) {
1648       auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy,
1649             {}), llvm::GlobalValue::InternalLinkage, ".objc_early_init",
1650           &CGM.getModule());
1651       llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry",
1652             Init));
1653       for (const auto &lateInit : EarlyInitList) {
1654         auto *global = TheModule.getGlobalVariable(lateInit.first);
1655         if (global) {
1656           b.CreateAlignedStore(
1657               global,
1658               b.CreateStructGEP(lateInit.second.first, lateInit.second.second),
1659               CGM.getPointerAlign().getAsAlign());
1660         }
1661       }
1662       b.CreateRetVoid();
1663       // We can't use the normal LLVM global initialisation array, because we
1664       // need to specify that this runs early in library initialisation.
1665       auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
1666           /*isConstant*/true, llvm::GlobalValue::InternalLinkage,
1667           Init, ".objc_early_init_ptr");
1668       InitVar->setSection(".CRT$XCLb");
1669       CGM.addUsedGlobal(InitVar);
1670     }
1671     return nullptr;
1672   }
1673   /// In the v2 ABI, ivar offset variables use the type encoding in their name
1674   /// to trigger linker failures if the types don't match.
GetIVarOffsetVariableName(const ObjCInterfaceDecl * ID,const ObjCIvarDecl * Ivar)1675   std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
1676                                         const ObjCIvarDecl *Ivar) override {
1677     std::string TypeEncoding;
1678     CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding);
1679     // Prevent the @ from being interpreted as a symbol version.
1680     std::replace(TypeEncoding.begin(), TypeEncoding.end(),
1681       '@', '\1');
1682     const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
1683       + '.' + Ivar->getNameAsString() + '.' + TypeEncoding;
1684     return Name;
1685   }
EmitIvarOffset(CodeGenFunction & CGF,const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)1686   llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
1687                               const ObjCInterfaceDecl *Interface,
1688                               const ObjCIvarDecl *Ivar) override {
1689     const std::string Name = GetIVarOffsetVariableName(Ivar->getContainingInterface(), Ivar);
1690     llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
1691     if (!IvarOffsetPointer)
1692       IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false,
1693               llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1694     CharUnits Align = CGM.getIntAlign();
1695     llvm::Value *Offset =
1696         CGF.Builder.CreateAlignedLoad(IntTy, IvarOffsetPointer, Align);
1697     if (Offset->getType() != PtrDiffTy)
1698       Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
1699     return Offset;
1700   }
GenerateClass(const ObjCImplementationDecl * OID)1701   void GenerateClass(const ObjCImplementationDecl *OID) override {
1702     ASTContext &Context = CGM.getContext();
1703     bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF();
1704 
1705     // Get the class name
1706     ObjCInterfaceDecl *classDecl =
1707         const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
1708     std::string className = classDecl->getNameAsString();
1709     auto *classNameConstant = MakeConstantString(className);
1710 
1711     ConstantInitBuilder builder(CGM);
1712     auto metaclassFields = builder.beginStruct();
1713     // struct objc_class *isa;
1714     metaclassFields.addNullPointer(PtrTy);
1715     // struct objc_class *super_class;
1716     metaclassFields.addNullPointer(PtrTy);
1717     // const char *name;
1718     metaclassFields.add(classNameConstant);
1719     // long version;
1720     metaclassFields.addInt(LongTy, 0);
1721     // unsigned long info;
1722     // objc_class_flag_meta
1723     metaclassFields.addInt(LongTy, 1);
1724     // long instance_size;
1725     // Setting this to zero is consistent with the older ABI, but it might be
1726     // more sensible to set this to sizeof(struct objc_class)
1727     metaclassFields.addInt(LongTy, 0);
1728     // struct objc_ivar_list *ivars;
1729     metaclassFields.addNullPointer(PtrTy);
1730     // struct objc_method_list *methods
1731     // FIXME: Almost identical code is copied and pasted below for the
1732     // class, but refactoring it cleanly requires C++14 generic lambdas.
1733     if (OID->classmeth_begin() == OID->classmeth_end())
1734       metaclassFields.addNullPointer(PtrTy);
1735     else {
1736       SmallVector<ObjCMethodDecl*, 16> ClassMethods;
1737       ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
1738           OID->classmeth_end());
1739       metaclassFields.addBitCast(
1740               GenerateMethodList(className, "", ClassMethods, true),
1741               PtrTy);
1742     }
1743     // void *dtable;
1744     metaclassFields.addNullPointer(PtrTy);
1745     // IMP cxx_construct;
1746     metaclassFields.addNullPointer(PtrTy);
1747     // IMP cxx_destruct;
1748     metaclassFields.addNullPointer(PtrTy);
1749     // struct objc_class *subclass_list
1750     metaclassFields.addNullPointer(PtrTy);
1751     // struct objc_class *sibling_class
1752     metaclassFields.addNullPointer(PtrTy);
1753     // struct objc_protocol_list *protocols;
1754     metaclassFields.addNullPointer(PtrTy);
1755     // struct reference_list *extra_data;
1756     metaclassFields.addNullPointer(PtrTy);
1757     // long abi_version;
1758     metaclassFields.addInt(LongTy, 0);
1759     // struct objc_property_list *properties
1760     metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true));
1761 
1762     auto *metaclass = metaclassFields.finishAndCreateGlobal(
1763         ManglePublicSymbol("OBJC_METACLASS_") + className,
1764         CGM.getPointerAlign());
1765 
1766     auto classFields = builder.beginStruct();
1767     // struct objc_class *isa;
1768     classFields.add(metaclass);
1769     // struct objc_class *super_class;
1770     // Get the superclass name.
1771     const ObjCInterfaceDecl * SuperClassDecl =
1772       OID->getClassInterface()->getSuperClass();
1773     llvm::Constant *SuperClass = nullptr;
1774     if (SuperClassDecl) {
1775       auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString());
1776       SuperClass = TheModule.getNamedGlobal(SuperClassName);
1777       if (!SuperClass)
1778       {
1779         SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false,
1780             llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName);
1781         if (IsCOFF) {
1782           auto Storage = llvm::GlobalValue::DefaultStorageClass;
1783           if (SuperClassDecl->hasAttr<DLLImportAttr>())
1784             Storage = llvm::GlobalValue::DLLImportStorageClass;
1785           else if (SuperClassDecl->hasAttr<DLLExportAttr>())
1786             Storage = llvm::GlobalValue::DLLExportStorageClass;
1787 
1788           cast<llvm::GlobalValue>(SuperClass)->setDLLStorageClass(Storage);
1789         }
1790       }
1791       if (!IsCOFF)
1792         classFields.add(llvm::ConstantExpr::getBitCast(SuperClass, PtrTy));
1793       else
1794         classFields.addNullPointer(PtrTy);
1795     } else
1796       classFields.addNullPointer(PtrTy);
1797     // const char *name;
1798     classFields.add(classNameConstant);
1799     // long version;
1800     classFields.addInt(LongTy, 0);
1801     // unsigned long info;
1802     // !objc_class_flag_meta
1803     classFields.addInt(LongTy, 0);
1804     // long instance_size;
1805     int superInstanceSize = !SuperClassDecl ? 0 :
1806       Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
1807     // Instance size is negative for classes that have not yet had their ivar
1808     // layout calculated.
1809     classFields.addInt(LongTy,
1810       0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() -
1811       superInstanceSize));
1812 
1813     if (classDecl->all_declared_ivar_begin() == nullptr)
1814       classFields.addNullPointer(PtrTy);
1815     else {
1816       int ivar_count = 0;
1817       for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1818            IVD = IVD->getNextIvar()) ivar_count++;
1819       llvm::DataLayout td(&TheModule);
1820       // struct objc_ivar_list *ivars;
1821       ConstantInitBuilder b(CGM);
1822       auto ivarListBuilder = b.beginStruct();
1823       // int count;
1824       ivarListBuilder.addInt(IntTy, ivar_count);
1825       // size_t size;
1826       llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1827         PtrToInt8Ty,
1828         PtrToInt8Ty,
1829         PtrToInt8Ty,
1830         Int32Ty,
1831         Int32Ty);
1832       ivarListBuilder.addInt(SizeTy, td.getTypeSizeInBits(ObjCIvarTy) /
1833           CGM.getContext().getCharWidth());
1834       // struct objc_ivar ivars[]
1835       auto ivarArrayBuilder = ivarListBuilder.beginArray();
1836       for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1837            IVD = IVD->getNextIvar()) {
1838         auto ivarTy = IVD->getType();
1839         auto ivarBuilder = ivarArrayBuilder.beginStruct();
1840         // const char *name;
1841         ivarBuilder.add(MakeConstantString(IVD->getNameAsString()));
1842         // const char *type;
1843         std::string TypeStr;
1844         //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true);
1845         Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true);
1846         ivarBuilder.add(MakeConstantString(TypeStr));
1847         // int *offset;
1848         uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
1849         uint64_t Offset = BaseOffset - superInstanceSize;
1850         llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
1851         std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD);
1852         llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
1853         if (OffsetVar)
1854           OffsetVar->setInitializer(OffsetValue);
1855         else
1856           OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
1857             false, llvm::GlobalValue::ExternalLinkage,
1858             OffsetValue, OffsetName);
1859         auto ivarVisibility =
1860             (IVD->getAccessControl() == ObjCIvarDecl::Private ||
1861              IVD->getAccessControl() == ObjCIvarDecl::Package ||
1862              classDecl->getVisibility() == HiddenVisibility) ?
1863                     llvm::GlobalValue::HiddenVisibility :
1864                     llvm::GlobalValue::DefaultVisibility;
1865         OffsetVar->setVisibility(ivarVisibility);
1866         ivarBuilder.add(OffsetVar);
1867         // Ivar size
1868         ivarBuilder.addInt(Int32Ty,
1869             CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity());
1870         // Alignment will be stored as a base-2 log of the alignment.
1871         unsigned align =
1872             llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity());
1873         // Objects that require more than 2^64-byte alignment should be impossible!
1874         assert(align < 64);
1875         // uint32_t flags;
1876         // Bits 0-1 are ownership.
1877         // Bit 2 indicates an extended type encoding
1878         // Bits 3-8 contain log2(aligment)
1879         ivarBuilder.addInt(Int32Ty,
1880             (align << 3) | (1<<2) |
1881             FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime()));
1882         ivarBuilder.finishAndAddTo(ivarArrayBuilder);
1883       }
1884       ivarArrayBuilder.finishAndAddTo(ivarListBuilder);
1885       auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list",
1886           CGM.getPointerAlign(), /*constant*/ false,
1887           llvm::GlobalValue::PrivateLinkage);
1888       classFields.add(ivarList);
1889     }
1890     // struct objc_method_list *methods
1891     SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
1892     InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
1893         OID->instmeth_end());
1894     for (auto *propImpl : OID->property_impls())
1895       if (propImpl->getPropertyImplementation() ==
1896           ObjCPropertyImplDecl::Synthesize) {
1897         auto addIfExists = [&](const ObjCMethodDecl *OMD) {
1898           if (OMD && OMD->hasBody())
1899             InstanceMethods.push_back(OMD);
1900         };
1901         addIfExists(propImpl->getGetterMethodDecl());
1902         addIfExists(propImpl->getSetterMethodDecl());
1903       }
1904 
1905     if (InstanceMethods.size() == 0)
1906       classFields.addNullPointer(PtrTy);
1907     else
1908       classFields.addBitCast(
1909               GenerateMethodList(className, "", InstanceMethods, false),
1910               PtrTy);
1911     // void *dtable;
1912     classFields.addNullPointer(PtrTy);
1913     // IMP cxx_construct;
1914     classFields.addNullPointer(PtrTy);
1915     // IMP cxx_destruct;
1916     classFields.addNullPointer(PtrTy);
1917     // struct objc_class *subclass_list
1918     classFields.addNullPointer(PtrTy);
1919     // struct objc_class *sibling_class
1920     classFields.addNullPointer(PtrTy);
1921     // struct objc_protocol_list *protocols;
1922     auto RuntimeProtocols = GetRuntimeProtocolList(classDecl->protocol_begin(),
1923                                                    classDecl->protocol_end());
1924     SmallVector<llvm::Constant *, 16> Protocols;
1925     for (const auto *I : RuntimeProtocols)
1926       Protocols.push_back(
1927           llvm::ConstantExpr::getBitCast(GenerateProtocolRef(I),
1928             ProtocolPtrTy));
1929     if (Protocols.empty())
1930       classFields.addNullPointer(PtrTy);
1931     else
1932       classFields.add(GenerateProtocolList(Protocols));
1933     // struct reference_list *extra_data;
1934     classFields.addNullPointer(PtrTy);
1935     // long abi_version;
1936     classFields.addInt(LongTy, 0);
1937     // struct objc_property_list *properties
1938     classFields.add(GeneratePropertyList(OID, classDecl));
1939 
1940     auto *classStruct =
1941       classFields.finishAndCreateGlobal(SymbolForClass(className),
1942         CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1943 
1944     auto *classRefSymbol = GetClassVar(className);
1945     classRefSymbol->setSection(sectionName<ClassReferenceSection>());
1946     classRefSymbol->setInitializer(llvm::ConstantExpr::getBitCast(classStruct, IdTy));
1947 
1948     if (IsCOFF) {
1949       // we can't import a class struct.
1950       if (OID->getClassInterface()->hasAttr<DLLExportAttr>()) {
1951         cast<llvm::GlobalValue>(classStruct)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1952         cast<llvm::GlobalValue>(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1953       }
1954 
1955       if (SuperClass) {
1956         std::pair<llvm::Constant*, int> v{classStruct, 1};
1957         EarlyInitList.emplace_back(std::string(SuperClass->getName()),
1958                                    std::move(v));
1959       }
1960 
1961     }
1962 
1963 
1964     // Resolve the class aliases, if they exist.
1965     // FIXME: Class pointer aliases shouldn't exist!
1966     if (ClassPtrAlias) {
1967       ClassPtrAlias->replaceAllUsesWith(
1968           llvm::ConstantExpr::getBitCast(classStruct, IdTy));
1969       ClassPtrAlias->eraseFromParent();
1970       ClassPtrAlias = nullptr;
1971     }
1972     if (auto Placeholder =
1973         TheModule.getNamedGlobal(SymbolForClass(className)))
1974       if (Placeholder != classStruct) {
1975         Placeholder->replaceAllUsesWith(
1976             llvm::ConstantExpr::getBitCast(classStruct, Placeholder->getType()));
1977         Placeholder->eraseFromParent();
1978         classStruct->setName(SymbolForClass(className));
1979       }
1980     if (MetaClassPtrAlias) {
1981       MetaClassPtrAlias->replaceAllUsesWith(
1982           llvm::ConstantExpr::getBitCast(metaclass, IdTy));
1983       MetaClassPtrAlias->eraseFromParent();
1984       MetaClassPtrAlias = nullptr;
1985     }
1986     assert(classStruct->getName() == SymbolForClass(className));
1987 
1988     auto classInitRef = new llvm::GlobalVariable(TheModule,
1989         classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage,
1990         classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className);
1991     classInitRef->setSection(sectionName<ClassSection>());
1992     CGM.addUsedGlobal(classInitRef);
1993 
1994     EmittedClass = true;
1995   }
1996   public:
CGObjCGNUstep2(CodeGenModule & Mod)1997     CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) {
1998       MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
1999                             PtrToObjCSuperTy, SelectorTy);
2000       // struct objc_property
2001       // {
2002       //   const char *name;
2003       //   const char *attributes;
2004       //   const char *type;
2005       //   SEL getter;
2006       //   SEL setter;
2007       // }
2008       PropertyMetadataTy =
2009         llvm::StructType::get(CGM.getLLVMContext(),
2010             { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty });
2011     }
2012 
2013 };
2014 
2015 const char *const CGObjCGNUstep2::SectionsBaseNames[8] =
2016 {
2017 "__objc_selectors",
2018 "__objc_classes",
2019 "__objc_class_refs",
2020 "__objc_cats",
2021 "__objc_protocols",
2022 "__objc_protocol_refs",
2023 "__objc_class_aliases",
2024 "__objc_constant_string"
2025 };
2026 
2027 const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] =
2028 {
2029 ".objcrt$SEL",
2030 ".objcrt$CLS",
2031 ".objcrt$CLR",
2032 ".objcrt$CAT",
2033 ".objcrt$PCL",
2034 ".objcrt$PCR",
2035 ".objcrt$CAL",
2036 ".objcrt$STR"
2037 };
2038 
2039 /// Support for the ObjFW runtime.
2040 class CGObjCObjFW: public CGObjCGNU {
2041 protected:
2042   /// The GCC ABI message lookup function.  Returns an IMP pointing to the
2043   /// method implementation for this message.
2044   LazyRuntimeFunction MsgLookupFn;
2045   /// stret lookup function.  While this does not seem to make sense at the
2046   /// first look, this is required to call the correct forwarding function.
2047   LazyRuntimeFunction MsgLookupFnSRet;
2048   /// The GCC ABI superclass message lookup function.  Takes a pointer to a
2049   /// structure describing the receiver and the class, and a selector as
2050   /// arguments.  Returns the IMP for the corresponding method.
2051   LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
2052 
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node,MessageSendInfo & MSI)2053   llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
2054                          llvm::Value *cmd, llvm::MDNode *node,
2055                          MessageSendInfo &MSI) override {
2056     CGBuilderTy &Builder = CGF.Builder;
2057     llvm::Value *args[] = {
2058             EnforceType(Builder, Receiver, IdTy),
2059             EnforceType(Builder, cmd, SelectorTy) };
2060 
2061     llvm::CallBase *imp;
2062     if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2063       imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
2064     else
2065       imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
2066 
2067     imp->setMetadata(msgSendMDKind, node);
2068     return imp;
2069   }
2070 
LookupIMPSuper(CodeGenFunction & CGF,Address ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)2071   llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
2072                               llvm::Value *cmd, MessageSendInfo &MSI) override {
2073     CGBuilderTy &Builder = CGF.Builder;
2074     llvm::Value *lookupArgs[] = {
2075         EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd,
2076     };
2077 
2078     if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2079       return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
2080     else
2081       return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
2082   }
2083 
GetClassNamed(CodeGenFunction & CGF,const std::string & Name,bool isWeak)2084   llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name,
2085                              bool isWeak) override {
2086     if (isWeak)
2087       return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
2088 
2089     EmitClassRef(Name);
2090     std::string SymbolName = "_OBJC_CLASS_" + Name;
2091     llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
2092     if (!ClassSymbol)
2093       ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2094                                              llvm::GlobalValue::ExternalLinkage,
2095                                              nullptr, SymbolName);
2096     return ClassSymbol;
2097   }
2098 
2099 public:
CGObjCObjFW(CodeGenModule & Mod)2100   CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
2101     // IMP objc_msg_lookup(id, SEL);
2102     MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
2103     MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
2104                          SelectorTy);
2105     // IMP objc_msg_lookup_super(struct objc_super*, SEL);
2106     MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
2107                           PtrToObjCSuperTy, SelectorTy);
2108     MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
2109                               PtrToObjCSuperTy, SelectorTy);
2110   }
2111 };
2112 } // end anonymous namespace
2113 
2114 /// Emits a reference to a dummy variable which is emitted with each class.
2115 /// This ensures that a linker error will be generated when trying to link
2116 /// together modules where a referenced class is not defined.
EmitClassRef(const std::string & className)2117 void CGObjCGNU::EmitClassRef(const std::string &className) {
2118   std::string symbolRef = "__objc_class_ref_" + className;
2119   // Don't emit two copies of the same symbol
2120   if (TheModule.getGlobalVariable(symbolRef))
2121     return;
2122   std::string symbolName = "__objc_class_name_" + className;
2123   llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
2124   if (!ClassSymbol) {
2125     ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2126                                            llvm::GlobalValue::ExternalLinkage,
2127                                            nullptr, symbolName);
2128   }
2129   new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
2130     llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
2131 }
2132 
CGObjCGNU(CodeGenModule & cgm,unsigned runtimeABIVersion,unsigned protocolClassVersion,unsigned classABI)2133 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
2134                      unsigned protocolClassVersion, unsigned classABI)
2135   : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
2136     VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
2137     MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
2138     ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) {
2139 
2140   msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
2141   usesSEHExceptions =
2142       cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment();
2143 
2144   CodeGenTypes &Types = CGM.getTypes();
2145   IntTy = cast<llvm::IntegerType>(
2146       Types.ConvertType(CGM.getContext().IntTy));
2147   LongTy = cast<llvm::IntegerType>(
2148       Types.ConvertType(CGM.getContext().LongTy));
2149   SizeTy = cast<llvm::IntegerType>(
2150       Types.ConvertType(CGM.getContext().getSizeType()));
2151   PtrDiffTy = cast<llvm::IntegerType>(
2152       Types.ConvertType(CGM.getContext().getPointerDiffType()));
2153   BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
2154 
2155   Int8Ty = llvm::Type::getInt8Ty(VMContext);
2156   // C string type.  Used in lots of places.
2157   PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
2158   ProtocolPtrTy = llvm::PointerType::getUnqual(
2159       Types.ConvertType(CGM.getContext().getObjCProtoType()));
2160 
2161   Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
2162   Zeros[1] = Zeros[0];
2163   NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2164   // Get the selector Type.
2165   QualType selTy = CGM.getContext().getObjCSelType();
2166   if (QualType() == selTy) {
2167     SelectorTy = PtrToInt8Ty;
2168   } else {
2169     SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
2170   }
2171 
2172   PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
2173   PtrTy = PtrToInt8Ty;
2174 
2175   Int32Ty = llvm::Type::getInt32Ty(VMContext);
2176   Int64Ty = llvm::Type::getInt64Ty(VMContext);
2177 
2178   IntPtrTy =
2179       CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
2180 
2181   // Object type
2182   QualType UnqualIdTy = CGM.getContext().getObjCIdType();
2183   ASTIdTy = CanQualType();
2184   if (UnqualIdTy != QualType()) {
2185     ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
2186     IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2187   } else {
2188     IdTy = PtrToInt8Ty;
2189   }
2190   PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
2191   ProtocolTy = llvm::StructType::get(IdTy,
2192       PtrToInt8Ty, // name
2193       PtrToInt8Ty, // protocols
2194       PtrToInt8Ty, // instance methods
2195       PtrToInt8Ty, // class methods
2196       PtrToInt8Ty, // optional instance methods
2197       PtrToInt8Ty, // optional class methods
2198       PtrToInt8Ty, // properties
2199       PtrToInt8Ty);// optional properties
2200 
2201   // struct objc_property_gsv1
2202   // {
2203   //   const char *name;
2204   //   char attributes;
2205   //   char attributes2;
2206   //   char unused1;
2207   //   char unused2;
2208   //   const char *getter_name;
2209   //   const char *getter_types;
2210   //   const char *setter_name;
2211   //   const char *setter_types;
2212   // }
2213   PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), {
2214       PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty,
2215       PtrToInt8Ty, PtrToInt8Ty });
2216 
2217   ObjCSuperTy = llvm::StructType::get(IdTy, IdTy);
2218   PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
2219 
2220   llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
2221 
2222   // void objc_exception_throw(id);
2223   ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2224   ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2225   // int objc_sync_enter(id);
2226   SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy);
2227   // int objc_sync_exit(id);
2228   SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy);
2229 
2230   // void objc_enumerationMutation (id)
2231   EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy);
2232 
2233   // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
2234   GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
2235                      PtrDiffTy, BoolTy);
2236   // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
2237   SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
2238                      PtrDiffTy, IdTy, BoolTy, BoolTy);
2239   // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2240   GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
2241                            PtrDiffTy, BoolTy, BoolTy);
2242   // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2243   SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
2244                            PtrDiffTy, BoolTy, BoolTy);
2245 
2246   // IMP type
2247   llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
2248   IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
2249               true));
2250 
2251   const LangOptions &Opts = CGM.getLangOpts();
2252   if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
2253     RuntimeVersion = 10;
2254 
2255   // Don't bother initialising the GC stuff unless we're compiling in GC mode
2256   if (Opts.getGC() != LangOptions::NonGC) {
2257     // This is a bit of an hack.  We should sort this out by having a proper
2258     // CGObjCGNUstep subclass for GC, but we may want to really support the old
2259     // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
2260     // Get selectors needed in GC mode
2261     RetainSel = GetNullarySelector("retain", CGM.getContext());
2262     ReleaseSel = GetNullarySelector("release", CGM.getContext());
2263     AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
2264 
2265     // Get functions needed in GC mode
2266 
2267     // id objc_assign_ivar(id, id, ptrdiff_t);
2268     IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy);
2269     // id objc_assign_strongCast (id, id*)
2270     StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
2271                             PtrToIdTy);
2272     // id objc_assign_global(id, id*);
2273     GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy);
2274     // id objc_assign_weak(id, id*);
2275     WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy);
2276     // id objc_read_weak(id*);
2277     WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy);
2278     // void *objc_memmove_collectable(void*, void *, size_t);
2279     MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
2280                    SizeTy);
2281   }
2282 }
2283 
GetClassNamed(CodeGenFunction & CGF,const std::string & Name,bool isWeak)2284 llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
2285                                       const std::string &Name, bool isWeak) {
2286   llvm::Constant *ClassName = MakeConstantString(Name);
2287   // With the incompatible ABI, this will need to be replaced with a direct
2288   // reference to the class symbol.  For the compatible nonfragile ABI we are
2289   // still performing this lookup at run time but emitting the symbol for the
2290   // class externally so that we can make the switch later.
2291   //
2292   // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
2293   // with memoized versions or with static references if it's safe to do so.
2294   if (!isWeak)
2295     EmitClassRef(Name);
2296 
2297   llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction(
2298       llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class");
2299   return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
2300 }
2301 
2302 // This has to perform the lookup every time, since posing and related
2303 // techniques can modify the name -> class mapping.
GetClass(CodeGenFunction & CGF,const ObjCInterfaceDecl * OID)2304 llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
2305                                  const ObjCInterfaceDecl *OID) {
2306   auto *Value =
2307       GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
2308   if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value))
2309     CGM.setGVProperties(ClassSymbol, OID);
2310   return Value;
2311 }
2312 
EmitNSAutoreleasePoolClassRef(CodeGenFunction & CGF)2313 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
2314   auto *Value  = GetClassNamed(CGF, "NSAutoreleasePool", false);
2315   if (CGM.getTriple().isOSBinFormatCOFF()) {
2316     if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) {
2317       IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool");
2318       TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
2319       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2320 
2321       const VarDecl *VD = nullptr;
2322       for (const auto *Result : DC->lookup(&II))
2323         if ((VD = dyn_cast<VarDecl>(Result)))
2324           break;
2325 
2326       CGM.setGVProperties(ClassSymbol, VD);
2327     }
2328   }
2329   return Value;
2330 }
2331 
GetTypedSelector(CodeGenFunction & CGF,Selector Sel,const std::string & TypeEncoding)2332 llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
2333                                          const std::string &TypeEncoding) {
2334   SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
2335   llvm::GlobalAlias *SelValue = nullptr;
2336 
2337   for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2338       e = Types.end() ; i!=e ; i++) {
2339     if (i->first == TypeEncoding) {
2340       SelValue = i->second;
2341       break;
2342     }
2343   }
2344   if (!SelValue) {
2345     SelValue = llvm::GlobalAlias::create(
2346         SelectorTy->getElementType(), 0, llvm::GlobalValue::PrivateLinkage,
2347         ".objc_selector_" + Sel.getAsString(), &TheModule);
2348     Types.emplace_back(TypeEncoding, SelValue);
2349   }
2350 
2351   return SelValue;
2352 }
2353 
GetAddrOfSelector(CodeGenFunction & CGF,Selector Sel)2354 Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
2355   llvm::Value *SelValue = GetSelector(CGF, Sel);
2356 
2357   // Store it to a temporary.  Does this satisfy the semantics of
2358   // GetAddrOfSelector?  Hopefully.
2359   Address tmp = CGF.CreateTempAlloca(SelValue->getType(),
2360                                      CGF.getPointerAlign());
2361   CGF.Builder.CreateStore(SelValue, tmp);
2362   return tmp;
2363 }
2364 
GetSelector(CodeGenFunction & CGF,Selector Sel)2365 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) {
2366   return GetTypedSelector(CGF, Sel, std::string());
2367 }
2368 
GetSelector(CodeGenFunction & CGF,const ObjCMethodDecl * Method)2369 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
2370                                     const ObjCMethodDecl *Method) {
2371   std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method);
2372   return GetTypedSelector(CGF, Method->getSelector(), SelTypes);
2373 }
2374 
GetEHType(QualType T)2375 llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
2376   if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
2377     // With the old ABI, there was only one kind of catchall, which broke
2378     // foreign exceptions.  With the new ABI, we use __objc_id_typeinfo as
2379     // a pointer indicating object catchalls, and NULL to indicate real
2380     // catchalls
2381     if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2382       return MakeConstantString("@id");
2383     } else {
2384       return nullptr;
2385     }
2386   }
2387 
2388   // All other types should be Objective-C interface pointer types.
2389   const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
2390   assert(OPT && "Invalid @catch type.");
2391   const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
2392   assert(IDecl && "Invalid @catch type.");
2393   return MakeConstantString(IDecl->getIdentifier()->getName());
2394 }
2395 
GetEHType(QualType T)2396 llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
2397   if (usesSEHExceptions)
2398     return CGM.getCXXABI().getAddrOfRTTIDescriptor(T);
2399 
2400   if (!CGM.getLangOpts().CPlusPlus)
2401     return CGObjCGNU::GetEHType(T);
2402 
2403   // For Objective-C++, we want to provide the ability to catch both C++ and
2404   // Objective-C objects in the same function.
2405 
2406   // There's a particular fixed type info for 'id'.
2407   if (T->isObjCIdType() ||
2408       T->isObjCQualifiedIdType()) {
2409     llvm::Constant *IDEHType =
2410       CGM.getModule().getGlobalVariable("__objc_id_type_info");
2411     if (!IDEHType)
2412       IDEHType =
2413         new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
2414                                  false,
2415                                  llvm::GlobalValue::ExternalLinkage,
2416                                  nullptr, "__objc_id_type_info");
2417     return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty);
2418   }
2419 
2420   const ObjCObjectPointerType *PT =
2421     T->getAs<ObjCObjectPointerType>();
2422   assert(PT && "Invalid @catch type.");
2423   const ObjCInterfaceType *IT = PT->getInterfaceType();
2424   assert(IT && "Invalid @catch type.");
2425   std::string className =
2426       std::string(IT->getDecl()->getIdentifier()->getName());
2427 
2428   std::string typeinfoName = "__objc_eh_typeinfo_" + className;
2429 
2430   // Return the existing typeinfo if it exists
2431   llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName);
2432   if (typeinfo)
2433     return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty);
2434 
2435   // Otherwise create it.
2436 
2437   // vtable for gnustep::libobjc::__objc_class_type_info
2438   // It's quite ugly hard-coding this.  Ideally we'd generate it using the host
2439   // platform's name mangling.
2440   const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
2441   auto *Vtable = TheModule.getGlobalVariable(vtableName);
2442   if (!Vtable) {
2443     Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
2444                                       llvm::GlobalValue::ExternalLinkage,
2445                                       nullptr, vtableName);
2446   }
2447   llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
2448   auto *BVtable = llvm::ConstantExpr::getBitCast(
2449       llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two),
2450       PtrToInt8Ty);
2451 
2452   llvm::Constant *typeName =
2453     ExportUniqueString(className, "__objc_eh_typename_");
2454 
2455   ConstantInitBuilder builder(CGM);
2456   auto fields = builder.beginStruct();
2457   fields.add(BVtable);
2458   fields.add(typeName);
2459   llvm::Constant *TI =
2460     fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className,
2461                                  CGM.getPointerAlign(),
2462                                  /*constant*/ false,
2463                                  llvm::GlobalValue::LinkOnceODRLinkage);
2464   return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty);
2465 }
2466 
2467 /// Generate an NSConstantString object.
GenerateConstantString(const StringLiteral * SL)2468 ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
2469 
2470   std::string Str = SL->getString().str();
2471   CharUnits Align = CGM.getPointerAlign();
2472 
2473   // Look for an existing one
2474   llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
2475   if (old != ObjCStrings.end())
2476     return ConstantAddress(old->getValue(), Align);
2477 
2478   StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2479 
2480   if (StringClass.empty()) StringClass = "NSConstantString";
2481 
2482   std::string Sym = "_OBJC_CLASS_";
2483   Sym += StringClass;
2484 
2485   llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
2486 
2487   if (!isa)
2488     isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
2489             llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym);
2490   else if (isa->getType() != PtrToIdTy)
2491     isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
2492 
2493   ConstantInitBuilder Builder(CGM);
2494   auto Fields = Builder.beginStruct();
2495   Fields.add(isa);
2496   Fields.add(MakeConstantString(Str));
2497   Fields.addInt(IntTy, Str.size());
2498   llvm::Constant *ObjCStr =
2499     Fields.finishAndCreateGlobal(".objc_str", Align);
2500   ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty);
2501   ObjCStrings[Str] = ObjCStr;
2502   ConstantStrings.push_back(ObjCStr);
2503   return ConstantAddress(ObjCStr, Align);
2504 }
2505 
2506 ///Generates a message send where the super is the receiver.  This is a message
2507 ///send to self with special delivery semantics indicating which class's method
2508 ///should be called.
2509 RValue
GenerateMessageSendSuper(CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,const ObjCInterfaceDecl * Class,bool isCategoryImpl,llvm::Value * Receiver,bool IsClassMessage,const CallArgList & CallArgs,const ObjCMethodDecl * Method)2510 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
2511                                     ReturnValueSlot Return,
2512                                     QualType ResultType,
2513                                     Selector Sel,
2514                                     const ObjCInterfaceDecl *Class,
2515                                     bool isCategoryImpl,
2516                                     llvm::Value *Receiver,
2517                                     bool IsClassMessage,
2518                                     const CallArgList &CallArgs,
2519                                     const ObjCMethodDecl *Method) {
2520   CGBuilderTy &Builder = CGF.Builder;
2521   if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2522     if (Sel == RetainSel || Sel == AutoreleaseSel) {
2523       return RValue::get(EnforceType(Builder, Receiver,
2524                   CGM.getTypes().ConvertType(ResultType)));
2525     }
2526     if (Sel == ReleaseSel) {
2527       return RValue::get(nullptr);
2528     }
2529   }
2530 
2531   llvm::Value *cmd = GetSelector(CGF, Sel);
2532   CallArgList ActualArgs;
2533 
2534   ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
2535   ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2536   ActualArgs.addFrom(CallArgs);
2537 
2538   MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2539 
2540   llvm::Value *ReceiverClass = nullptr;
2541   bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2542   if (isV2ABI) {
2543     ReceiverClass = GetClassNamed(CGF,
2544         Class->getSuperClass()->getNameAsString(), /*isWeak*/false);
2545     if (IsClassMessage)  {
2546       // Load the isa pointer of the superclass is this is a class method.
2547       ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2548                                             llvm::PointerType::getUnqual(IdTy));
2549       ReceiverClass =
2550         Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign());
2551     }
2552     ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy);
2553   } else {
2554     if (isCategoryImpl) {
2555       llvm::FunctionCallee classLookupFunction = nullptr;
2556       if (IsClassMessage)  {
2557         classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2558               IdTy, PtrTy, true), "objc_get_meta_class");
2559       } else {
2560         classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2561               IdTy, PtrTy, true), "objc_get_class");
2562       }
2563       ReceiverClass = Builder.CreateCall(classLookupFunction,
2564           MakeConstantString(Class->getNameAsString()));
2565     } else {
2566       // Set up global aliases for the metaclass or class pointer if they do not
2567       // already exist.  These will are forward-references which will be set to
2568       // pointers to the class and metaclass structure created for the runtime
2569       // load function.  To send a message to super, we look up the value of the
2570       // super_class pointer from either the class or metaclass structure.
2571       if (IsClassMessage)  {
2572         if (!MetaClassPtrAlias) {
2573           MetaClassPtrAlias = llvm::GlobalAlias::create(
2574               IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
2575               ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
2576         }
2577         ReceiverClass = MetaClassPtrAlias;
2578       } else {
2579         if (!ClassPtrAlias) {
2580           ClassPtrAlias = llvm::GlobalAlias::create(
2581               IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
2582               ".objc_class_ref" + Class->getNameAsString(), &TheModule);
2583         }
2584         ReceiverClass = ClassPtrAlias;
2585       }
2586     }
2587     // Cast the pointer to a simplified version of the class structure
2588     llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy);
2589     ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2590                                           llvm::PointerType::getUnqual(CastTy));
2591     // Get the superclass pointer
2592     ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
2593     // Load the superclass pointer
2594     ReceiverClass =
2595       Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign());
2596   }
2597   // Construct the structure used to look up the IMP
2598   llvm::StructType *ObjCSuperTy =
2599       llvm::StructType::get(Receiver->getType(), IdTy);
2600 
2601   Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy,
2602                               CGF.getPointerAlign());
2603 
2604   Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0));
2605   Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1));
2606 
2607   ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy);
2608 
2609   // Get the IMP
2610   llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
2611   imp = EnforceType(Builder, imp, MSI.MessengerType);
2612 
2613   llvm::Metadata *impMD[] = {
2614       llvm::MDString::get(VMContext, Sel.getAsString()),
2615       llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
2616       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2617           llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
2618   llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2619 
2620   CGCallee callee(CGCalleeInfo(), imp);
2621 
2622   llvm::CallBase *call;
2623   RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2624   call->setMetadata(msgSendMDKind, node);
2625   return msgRet;
2626 }
2627 
2628 /// Generate code for a message send expression.
2629 RValue
GenerateMessageSend(CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,llvm::Value * Receiver,const CallArgList & CallArgs,const ObjCInterfaceDecl * Class,const ObjCMethodDecl * Method)2630 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
2631                                ReturnValueSlot Return,
2632                                QualType ResultType,
2633                                Selector Sel,
2634                                llvm::Value *Receiver,
2635                                const CallArgList &CallArgs,
2636                                const ObjCInterfaceDecl *Class,
2637                                const ObjCMethodDecl *Method) {
2638   CGBuilderTy &Builder = CGF.Builder;
2639 
2640   // Strip out message sends to retain / release in GC mode
2641   if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2642     if (Sel == RetainSel || Sel == AutoreleaseSel) {
2643       return RValue::get(EnforceType(Builder, Receiver,
2644                   CGM.getTypes().ConvertType(ResultType)));
2645     }
2646     if (Sel == ReleaseSel) {
2647       return RValue::get(nullptr);
2648     }
2649   }
2650 
2651   // If the return type is something that goes in an integer register, the
2652   // runtime will handle 0 returns.  For other cases, we fill in the 0 value
2653   // ourselves.
2654   //
2655   // The language spec says the result of this kind of message send is
2656   // undefined, but lots of people seem to have forgotten to read that
2657   // paragraph and insist on sending messages to nil that have structure
2658   // returns.  With GCC, this generates a random return value (whatever happens
2659   // to be on the stack / in those registers at the time) on most platforms,
2660   // and generates an illegal instruction trap on SPARC.  With LLVM it corrupts
2661   // the stack.
2662   bool isPointerSizedReturn = (ResultType->isAnyPointerType() ||
2663       ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType());
2664 
2665   llvm::BasicBlock *startBB = nullptr;
2666   llvm::BasicBlock *messageBB = nullptr;
2667   llvm::BasicBlock *continueBB = nullptr;
2668 
2669   if (!isPointerSizedReturn) {
2670     startBB = Builder.GetInsertBlock();
2671     messageBB = CGF.createBasicBlock("msgSend");
2672     continueBB = CGF.createBasicBlock("continue");
2673 
2674     llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
2675             llvm::Constant::getNullValue(Receiver->getType()));
2676     Builder.CreateCondBr(isNil, continueBB, messageBB);
2677     CGF.EmitBlock(messageBB);
2678   }
2679 
2680   IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2681   llvm::Value *cmd;
2682   if (Method)
2683     cmd = GetSelector(CGF, Method);
2684   else
2685     cmd = GetSelector(CGF, Sel);
2686   cmd = EnforceType(Builder, cmd, SelectorTy);
2687   Receiver = EnforceType(Builder, Receiver, IdTy);
2688 
2689   llvm::Metadata *impMD[] = {
2690       llvm::MDString::get(VMContext, Sel.getAsString()),
2691       llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
2692       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2693           llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
2694   llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2695 
2696   CallArgList ActualArgs;
2697   ActualArgs.add(RValue::get(Receiver), ASTIdTy);
2698   ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2699   ActualArgs.addFrom(CallArgs);
2700 
2701   MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2702 
2703   // Get the IMP to call
2704   llvm::Value *imp;
2705 
2706   // If we have non-legacy dispatch specified, we try using the objc_msgSend()
2707   // functions.  These are not supported on all platforms (or all runtimes on a
2708   // given platform), so we
2709   switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
2710     case CodeGenOptions::Legacy:
2711       imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
2712       break;
2713     case CodeGenOptions::Mixed:
2714     case CodeGenOptions::NonLegacy:
2715       if (CGM.ReturnTypeUsesFPRet(ResultType)) {
2716         imp =
2717             CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2718                                       "objc_msgSend_fpret")
2719                 .getCallee();
2720       } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
2721         // The actual types here don't matter - we're going to bitcast the
2722         // function anyway
2723         imp =
2724             CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2725                                       "objc_msgSend_stret")
2726                 .getCallee();
2727       } else {
2728         imp = CGM.CreateRuntimeFunction(
2729                      llvm::FunctionType::get(IdTy, IdTy, true), "objc_msgSend")
2730                   .getCallee();
2731       }
2732   }
2733 
2734   // Reset the receiver in case the lookup modified it
2735   ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy);
2736 
2737   imp = EnforceType(Builder, imp, MSI.MessengerType);
2738 
2739   llvm::CallBase *call;
2740   CGCallee callee(CGCalleeInfo(), imp);
2741   RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2742   call->setMetadata(msgSendMDKind, node);
2743 
2744 
2745   if (!isPointerSizedReturn) {
2746     messageBB = CGF.Builder.GetInsertBlock();
2747     CGF.Builder.CreateBr(continueBB);
2748     CGF.EmitBlock(continueBB);
2749     if (msgRet.isScalar()) {
2750       llvm::Value *v = msgRet.getScalarVal();
2751       llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
2752       phi->addIncoming(v, messageBB);
2753       phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB);
2754       msgRet = RValue::get(phi);
2755     } else if (msgRet.isAggregate()) {
2756       Address v = msgRet.getAggregateAddress();
2757       llvm::PHINode *phi = Builder.CreatePHI(v.getType(), 2);
2758       llvm::Type *RetTy = v.getElementType();
2759       Address NullVal = CGF.CreateTempAlloca(RetTy, v.getAlignment(), "null");
2760       CGF.InitTempAlloca(NullVal, llvm::Constant::getNullValue(RetTy));
2761       phi->addIncoming(v.getPointer(), messageBB);
2762       phi->addIncoming(NullVal.getPointer(), startBB);
2763       msgRet = RValue::getAggregate(Address(phi, v.getAlignment()));
2764     } else /* isComplex() */ {
2765       std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
2766       llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
2767       phi->addIncoming(v.first, messageBB);
2768       phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
2769           startBB);
2770       llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
2771       phi2->addIncoming(v.second, messageBB);
2772       phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
2773           startBB);
2774       msgRet = RValue::getComplex(phi, phi2);
2775     }
2776   }
2777   return msgRet;
2778 }
2779 
2780 /// Generates a MethodList.  Used in construction of a objc_class and
2781 /// objc_category structures.
2782 llvm::Constant *CGObjCGNU::
GenerateMethodList(StringRef ClassName,StringRef CategoryName,ArrayRef<const ObjCMethodDecl * > Methods,bool isClassMethodList)2783 GenerateMethodList(StringRef ClassName,
2784                    StringRef CategoryName,
2785                    ArrayRef<const ObjCMethodDecl*> Methods,
2786                    bool isClassMethodList) {
2787   if (Methods.empty())
2788     return NULLPtr;
2789 
2790   ConstantInitBuilder Builder(CGM);
2791 
2792   auto MethodList = Builder.beginStruct();
2793   MethodList.addNullPointer(CGM.Int8PtrTy);
2794   MethodList.addInt(Int32Ty, Methods.size());
2795 
2796   // Get the method structure type.
2797   llvm::StructType *ObjCMethodTy =
2798     llvm::StructType::get(CGM.getLLVMContext(), {
2799       PtrToInt8Ty, // Really a selector, but the runtime creates it us.
2800       PtrToInt8Ty, // Method types
2801       IMPTy        // Method pointer
2802     });
2803   bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2804   if (isV2ABI) {
2805     // size_t size;
2806     llvm::DataLayout td(&TheModule);
2807     MethodList.addInt(SizeTy, td.getTypeSizeInBits(ObjCMethodTy) /
2808         CGM.getContext().getCharWidth());
2809     ObjCMethodTy =
2810       llvm::StructType::get(CGM.getLLVMContext(), {
2811         IMPTy,       // Method pointer
2812         PtrToInt8Ty, // Selector
2813         PtrToInt8Ty  // Extended type encoding
2814       });
2815   } else {
2816     ObjCMethodTy =
2817       llvm::StructType::get(CGM.getLLVMContext(), {
2818         PtrToInt8Ty, // Really a selector, but the runtime creates it us.
2819         PtrToInt8Ty, // Method types
2820         IMPTy        // Method pointer
2821       });
2822   }
2823   auto MethodArray = MethodList.beginArray();
2824   ASTContext &Context = CGM.getContext();
2825   for (const auto *OMD : Methods) {
2826     llvm::Constant *FnPtr =
2827       TheModule.getFunction(getSymbolNameForMethod(OMD));
2828     assert(FnPtr && "Can't generate metadata for method that doesn't exist");
2829     auto Method = MethodArray.beginStruct(ObjCMethodTy);
2830     if (isV2ABI) {
2831       Method.addBitCast(FnPtr, IMPTy);
2832       Method.add(GetConstantSelector(OMD->getSelector(),
2833           Context.getObjCEncodingForMethodDecl(OMD)));
2834       Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true)));
2835     } else {
2836       Method.add(MakeConstantString(OMD->getSelector().getAsString()));
2837       Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD)));
2838       Method.addBitCast(FnPtr, IMPTy);
2839     }
2840     Method.finishAndAddTo(MethodArray);
2841   }
2842   MethodArray.finishAndAddTo(MethodList);
2843 
2844   // Create an instance of the structure
2845   return MethodList.finishAndCreateGlobal(".objc_method_list",
2846                                           CGM.getPointerAlign());
2847 }
2848 
2849 /// Generates an IvarList.  Used in construction of a objc_class.
2850 llvm::Constant *CGObjCGNU::
GenerateIvarList(ArrayRef<llvm::Constant * > IvarNames,ArrayRef<llvm::Constant * > IvarTypes,ArrayRef<llvm::Constant * > IvarOffsets,ArrayRef<llvm::Constant * > IvarAlign,ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership)2851 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
2852                  ArrayRef<llvm::Constant *> IvarTypes,
2853                  ArrayRef<llvm::Constant *> IvarOffsets,
2854                  ArrayRef<llvm::Constant *> IvarAlign,
2855                  ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) {
2856   if (IvarNames.empty())
2857     return NULLPtr;
2858 
2859   ConstantInitBuilder Builder(CGM);
2860 
2861   // Structure containing array count followed by array.
2862   auto IvarList = Builder.beginStruct();
2863   IvarList.addInt(IntTy, (int)IvarNames.size());
2864 
2865   // Get the ivar structure type.
2866   llvm::StructType *ObjCIvarTy =
2867       llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy);
2868 
2869   // Array of ivar structures.
2870   auto Ivars = IvarList.beginArray(ObjCIvarTy);
2871   for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
2872     auto Ivar = Ivars.beginStruct(ObjCIvarTy);
2873     Ivar.add(IvarNames[i]);
2874     Ivar.add(IvarTypes[i]);
2875     Ivar.add(IvarOffsets[i]);
2876     Ivar.finishAndAddTo(Ivars);
2877   }
2878   Ivars.finishAndAddTo(IvarList);
2879 
2880   // Create an instance of the structure
2881   return IvarList.finishAndCreateGlobal(".objc_ivar_list",
2882                                         CGM.getPointerAlign());
2883 }
2884 
2885 /// Generate a class structure
GenerateClassStructure(llvm::Constant * MetaClass,llvm::Constant * SuperClass,unsigned info,const char * Name,llvm::Constant * Version,llvm::Constant * InstanceSize,llvm::Constant * IVars,llvm::Constant * Methods,llvm::Constant * Protocols,llvm::Constant * IvarOffsets,llvm::Constant * Properties,llvm::Constant * StrongIvarBitmap,llvm::Constant * WeakIvarBitmap,bool isMeta)2886 llvm::Constant *CGObjCGNU::GenerateClassStructure(
2887     llvm::Constant *MetaClass,
2888     llvm::Constant *SuperClass,
2889     unsigned info,
2890     const char *Name,
2891     llvm::Constant *Version,
2892     llvm::Constant *InstanceSize,
2893     llvm::Constant *IVars,
2894     llvm::Constant *Methods,
2895     llvm::Constant *Protocols,
2896     llvm::Constant *IvarOffsets,
2897     llvm::Constant *Properties,
2898     llvm::Constant *StrongIvarBitmap,
2899     llvm::Constant *WeakIvarBitmap,
2900     bool isMeta) {
2901   // Set up the class structure
2902   // Note:  Several of these are char*s when they should be ids.  This is
2903   // because the runtime performs this translation on load.
2904   //
2905   // Fields marked New ABI are part of the GNUstep runtime.  We emit them
2906   // anyway; the classes will still work with the GNU runtime, they will just
2907   // be ignored.
2908   llvm::StructType *ClassTy = llvm::StructType::get(
2909       PtrToInt8Ty,        // isa
2910       PtrToInt8Ty,        // super_class
2911       PtrToInt8Ty,        // name
2912       LongTy,             // version
2913       LongTy,             // info
2914       LongTy,             // instance_size
2915       IVars->getType(),   // ivars
2916       Methods->getType(), // methods
2917       // These are all filled in by the runtime, so we pretend
2918       PtrTy, // dtable
2919       PtrTy, // subclass_list
2920       PtrTy, // sibling_class
2921       PtrTy, // protocols
2922       PtrTy, // gc_object_type
2923       // New ABI:
2924       LongTy,                 // abi_version
2925       IvarOffsets->getType(), // ivar_offsets
2926       Properties->getType(),  // properties
2927       IntPtrTy,               // strong_pointers
2928       IntPtrTy                // weak_pointers
2929       );
2930 
2931   ConstantInitBuilder Builder(CGM);
2932   auto Elements = Builder.beginStruct(ClassTy);
2933 
2934   // Fill in the structure
2935 
2936   // isa
2937   Elements.addBitCast(MetaClass, PtrToInt8Ty);
2938   // super_class
2939   Elements.add(SuperClass);
2940   // name
2941   Elements.add(MakeConstantString(Name, ".class_name"));
2942   // version
2943   Elements.addInt(LongTy, 0);
2944   // info
2945   Elements.addInt(LongTy, info);
2946   // instance_size
2947   if (isMeta) {
2948     llvm::DataLayout td(&TheModule);
2949     Elements.addInt(LongTy,
2950                     td.getTypeSizeInBits(ClassTy) /
2951                       CGM.getContext().getCharWidth());
2952   } else
2953     Elements.add(InstanceSize);
2954   // ivars
2955   Elements.add(IVars);
2956   // methods
2957   Elements.add(Methods);
2958   // These are all filled in by the runtime, so we pretend
2959   // dtable
2960   Elements.add(NULLPtr);
2961   // subclass_list
2962   Elements.add(NULLPtr);
2963   // sibling_class
2964   Elements.add(NULLPtr);
2965   // protocols
2966   Elements.addBitCast(Protocols, PtrTy);
2967   // gc_object_type
2968   Elements.add(NULLPtr);
2969   // abi_version
2970   Elements.addInt(LongTy, ClassABIVersion);
2971   // ivar_offsets
2972   Elements.add(IvarOffsets);
2973   // properties
2974   Elements.add(Properties);
2975   // strong_pointers
2976   Elements.add(StrongIvarBitmap);
2977   // weak_pointers
2978   Elements.add(WeakIvarBitmap);
2979   // Create an instance of the structure
2980   // This is now an externally visible symbol, so that we can speed up class
2981   // messages in the next ABI.  We may already have some weak references to
2982   // this, so check and fix them properly.
2983   std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
2984           std::string(Name));
2985   llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
2986   llvm::Constant *Class =
2987     Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false,
2988                                    llvm::GlobalValue::ExternalLinkage);
2989   if (ClassRef) {
2990     ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class,
2991                   ClassRef->getType()));
2992     ClassRef->removeFromParent();
2993     Class->setName(ClassSym);
2994   }
2995   return Class;
2996 }
2997 
2998 llvm::Constant *CGObjCGNU::
GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl * > Methods)2999 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) {
3000   // Get the method structure type.
3001   llvm::StructType *ObjCMethodDescTy =
3002     llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty });
3003   ASTContext &Context = CGM.getContext();
3004   ConstantInitBuilder Builder(CGM);
3005   auto MethodList = Builder.beginStruct();
3006   MethodList.addInt(IntTy, Methods.size());
3007   auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
3008   for (auto *M : Methods) {
3009     auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
3010     Method.add(MakeConstantString(M->getSelector().getAsString()));
3011     Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M)));
3012     Method.finishAndAddTo(MethodArray);
3013   }
3014   MethodArray.finishAndAddTo(MethodList);
3015   return MethodList.finishAndCreateGlobal(".objc_method_list",
3016                                           CGM.getPointerAlign());
3017 }
3018 
3019 // Create the protocol list structure used in classes, categories and so on
3020 llvm::Constant *
GenerateProtocolList(ArrayRef<std::string> Protocols)3021 CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) {
3022 
3023   ConstantInitBuilder Builder(CGM);
3024   auto ProtocolList = Builder.beginStruct();
3025   ProtocolList.add(NULLPtr);
3026   ProtocolList.addInt(LongTy, Protocols.size());
3027 
3028   auto Elements = ProtocolList.beginArray(PtrToInt8Ty);
3029   for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
3030       iter != endIter ; iter++) {
3031     llvm::Constant *protocol = nullptr;
3032     llvm::StringMap<llvm::Constant*>::iterator value =
3033       ExistingProtocols.find(*iter);
3034     if (value == ExistingProtocols.end()) {
3035       protocol = GenerateEmptyProtocol(*iter);
3036     } else {
3037       protocol = value->getValue();
3038     }
3039     Elements.addBitCast(protocol, PtrToInt8Ty);
3040   }
3041   Elements.finishAndAddTo(ProtocolList);
3042   return ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3043                                             CGM.getPointerAlign());
3044 }
3045 
GenerateProtocolRef(CodeGenFunction & CGF,const ObjCProtocolDecl * PD)3046 llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
3047                                             const ObjCProtocolDecl *PD) {
3048   auto protocol = GenerateProtocolRef(PD);
3049   llvm::Type *T =
3050       CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
3051   return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
3052 }
3053 
GenerateProtocolRef(const ObjCProtocolDecl * PD)3054 llvm::Constant *CGObjCGNU::GenerateProtocolRef(const ObjCProtocolDecl *PD) {
3055   llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()];
3056   if (!protocol)
3057     GenerateProtocol(PD);
3058   assert(protocol && "Unknown protocol");
3059   return protocol;
3060 }
3061 
3062 llvm::Constant *
GenerateEmptyProtocol(StringRef ProtocolName)3063 CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) {
3064   llvm::Constant *ProtocolList = GenerateProtocolList({});
3065   llvm::Constant *MethodList = GenerateProtocolMethodList({});
3066   MethodList = llvm::ConstantExpr::getBitCast(MethodList, PtrToInt8Ty);
3067   // Protocols are objects containing lists of the methods implemented and
3068   // protocols adopted.
3069   ConstantInitBuilder Builder(CGM);
3070   auto Elements = Builder.beginStruct();
3071 
3072   // The isa pointer must be set to a magic number so the runtime knows it's
3073   // the correct layout.
3074   Elements.add(llvm::ConstantExpr::getIntToPtr(
3075           llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3076 
3077   Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name"));
3078   Elements.add(ProtocolList); /* .protocol_list */
3079   Elements.add(MethodList);   /* .instance_methods */
3080   Elements.add(MethodList);   /* .class_methods */
3081   Elements.add(MethodList);   /* .optional_instance_methods */
3082   Elements.add(MethodList);   /* .optional_class_methods */
3083   Elements.add(NULLPtr);      /* .properties */
3084   Elements.add(NULLPtr);      /* .optional_properties */
3085   return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName),
3086                                         CGM.getPointerAlign());
3087 }
3088 
GenerateProtocol(const ObjCProtocolDecl * PD)3089 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
3090   if (PD->isNonRuntimeProtocol())
3091     return;
3092 
3093   std::string ProtocolName = PD->getNameAsString();
3094 
3095   // Use the protocol definition, if there is one.
3096   if (const ObjCProtocolDecl *Def = PD->getDefinition())
3097     PD = Def;
3098 
3099   SmallVector<std::string, 16> Protocols;
3100   for (const auto *PI : PD->protocols())
3101     Protocols.push_back(PI->getNameAsString());
3102   SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
3103   SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods;
3104   for (const auto *I : PD->instance_methods())
3105     if (I->isOptional())
3106       OptionalInstanceMethods.push_back(I);
3107     else
3108       InstanceMethods.push_back(I);
3109   // Collect information about class methods:
3110   SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
3111   SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods;
3112   for (const auto *I : PD->class_methods())
3113     if (I->isOptional())
3114       OptionalClassMethods.push_back(I);
3115     else
3116       ClassMethods.push_back(I);
3117 
3118   llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
3119   llvm::Constant *InstanceMethodList =
3120     GenerateProtocolMethodList(InstanceMethods);
3121   llvm::Constant *ClassMethodList =
3122     GenerateProtocolMethodList(ClassMethods);
3123   llvm::Constant *OptionalInstanceMethodList =
3124     GenerateProtocolMethodList(OptionalInstanceMethods);
3125   llvm::Constant *OptionalClassMethodList =
3126     GenerateProtocolMethodList(OptionalClassMethods);
3127 
3128   // Property metadata: name, attributes, isSynthesized, setter name, setter
3129   // types, getter name, getter types.
3130   // The isSynthesized value is always set to 0 in a protocol.  It exists to
3131   // simplify the runtime library by allowing it to use the same data
3132   // structures for protocol metadata everywhere.
3133 
3134   llvm::Constant *PropertyList =
3135     GeneratePropertyList(nullptr, PD, false, false);
3136   llvm::Constant *OptionalPropertyList =
3137     GeneratePropertyList(nullptr, PD, false, true);
3138 
3139   // Protocols are objects containing lists of the methods implemented and
3140   // protocols adopted.
3141   // The isa pointer must be set to a magic number so the runtime knows it's
3142   // the correct layout.
3143   ConstantInitBuilder Builder(CGM);
3144   auto Elements = Builder.beginStruct();
3145   Elements.add(
3146       llvm::ConstantExpr::getIntToPtr(
3147           llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3148   Elements.add(MakeConstantString(ProtocolName));
3149   Elements.add(ProtocolList);
3150   Elements.add(InstanceMethodList);
3151   Elements.add(ClassMethodList);
3152   Elements.add(OptionalInstanceMethodList);
3153   Elements.add(OptionalClassMethodList);
3154   Elements.add(PropertyList);
3155   Elements.add(OptionalPropertyList);
3156   ExistingProtocols[ProtocolName] =
3157     llvm::ConstantExpr::getBitCast(
3158       Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign()),
3159       IdTy);
3160 }
GenerateProtocolHolderCategory()3161 void CGObjCGNU::GenerateProtocolHolderCategory() {
3162   // Collect information about instance methods
3163 
3164   ConstantInitBuilder Builder(CGM);
3165   auto Elements = Builder.beginStruct();
3166 
3167   const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
3168   const std::string CategoryName = "AnotherHack";
3169   Elements.add(MakeConstantString(CategoryName));
3170   Elements.add(MakeConstantString(ClassName));
3171   // Instance method list
3172   Elements.addBitCast(GenerateMethodList(
3173           ClassName, CategoryName, {}, false), PtrTy);
3174   // Class method list
3175   Elements.addBitCast(GenerateMethodList(
3176           ClassName, CategoryName, {}, true), PtrTy);
3177 
3178   // Protocol list
3179   ConstantInitBuilder ProtocolListBuilder(CGM);
3180   auto ProtocolList = ProtocolListBuilder.beginStruct();
3181   ProtocolList.add(NULLPtr);
3182   ProtocolList.addInt(LongTy, ExistingProtocols.size());
3183   auto ProtocolElements = ProtocolList.beginArray(PtrTy);
3184   for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end();
3185        iter != endIter ; iter++) {
3186     ProtocolElements.addBitCast(iter->getValue(), PtrTy);
3187   }
3188   ProtocolElements.finishAndAddTo(ProtocolList);
3189   Elements.addBitCast(
3190                    ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3191                                                       CGM.getPointerAlign()),
3192                    PtrTy);
3193   Categories.push_back(llvm::ConstantExpr::getBitCast(
3194         Elements.finishAndCreateGlobal("", CGM.getPointerAlign()),
3195         PtrTy));
3196 }
3197 
3198 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
3199 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
3200 /// bits set to their values, LSB first, while larger ones are stored in a
3201 /// structure of this / form:
3202 ///
3203 /// struct { int32_t length; int32_t values[length]; };
3204 ///
3205 /// The values in the array are stored in host-endian format, with the least
3206 /// significant bit being assumed to come first in the bitfield.  Therefore, a
3207 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
3208 /// bitfield / with the 63rd bit set will be 1<<64.
MakeBitField(ArrayRef<bool> bits)3209 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
3210   int bitCount = bits.size();
3211   int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
3212   if (bitCount < ptrBits) {
3213     uint64_t val = 1;
3214     for (int i=0 ; i<bitCount ; ++i) {
3215       if (bits[i]) val |= 1ULL<<(i+1);
3216     }
3217     return llvm::ConstantInt::get(IntPtrTy, val);
3218   }
3219   SmallVector<llvm::Constant *, 8> values;
3220   int v=0;
3221   while (v < bitCount) {
3222     int32_t word = 0;
3223     for (int i=0 ; (i<32) && (v<bitCount)  ; ++i) {
3224       if (bits[v]) word |= 1<<i;
3225       v++;
3226     }
3227     values.push_back(llvm::ConstantInt::get(Int32Ty, word));
3228   }
3229 
3230   ConstantInitBuilder builder(CGM);
3231   auto fields = builder.beginStruct();
3232   fields.addInt(Int32Ty, values.size());
3233   auto array = fields.beginArray();
3234   for (auto v : values) array.add(v);
3235   array.finishAndAddTo(fields);
3236 
3237   llvm::Constant *GS =
3238     fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4));
3239   llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
3240   return ptr;
3241 }
3242 
GenerateCategoryProtocolList(const ObjCCategoryDecl * OCD)3243 llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const
3244     ObjCCategoryDecl *OCD) {
3245   const auto &RefPro = OCD->getReferencedProtocols();
3246   const auto RuntimeProtos =
3247       GetRuntimeProtocolList(RefPro.begin(), RefPro.end());
3248   SmallVector<std::string, 16> Protocols;
3249   for (const auto *PD : RuntimeProtos)
3250     Protocols.push_back(PD->getNameAsString());
3251   return GenerateProtocolList(Protocols);
3252 }
3253 
GenerateCategory(const ObjCCategoryImplDecl * OCD)3254 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3255   const ObjCInterfaceDecl *Class = OCD->getClassInterface();
3256   std::string ClassName = Class->getNameAsString();
3257   std::string CategoryName = OCD->getNameAsString();
3258 
3259   // Collect the names of referenced protocols
3260   const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
3261 
3262   ConstantInitBuilder Builder(CGM);
3263   auto Elements = Builder.beginStruct();
3264   Elements.add(MakeConstantString(CategoryName));
3265   Elements.add(MakeConstantString(ClassName));
3266   // Instance method list
3267   SmallVector<ObjCMethodDecl*, 16> InstanceMethods;
3268   InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(),
3269       OCD->instmeth_end());
3270   Elements.addBitCast(
3271           GenerateMethodList(ClassName, CategoryName, InstanceMethods, false),
3272           PtrTy);
3273   // Class method list
3274 
3275   SmallVector<ObjCMethodDecl*, 16> ClassMethods;
3276   ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(),
3277       OCD->classmeth_end());
3278   Elements.addBitCast(
3279           GenerateMethodList(ClassName, CategoryName, ClassMethods, true),
3280           PtrTy);
3281   // Protocol list
3282   Elements.addBitCast(GenerateCategoryProtocolList(CatDecl), PtrTy);
3283   if (isRuntime(ObjCRuntime::GNUstep, 2)) {
3284     const ObjCCategoryDecl *Category =
3285       Class->FindCategoryDeclaration(OCD->getIdentifier());
3286     if (Category) {
3287       // Instance properties
3288       Elements.addBitCast(GeneratePropertyList(OCD, Category, false), PtrTy);
3289       // Class properties
3290       Elements.addBitCast(GeneratePropertyList(OCD, Category, true), PtrTy);
3291     } else {
3292       Elements.addNullPointer(PtrTy);
3293       Elements.addNullPointer(PtrTy);
3294     }
3295   }
3296 
3297   Categories.push_back(llvm::ConstantExpr::getBitCast(
3298         Elements.finishAndCreateGlobal(
3299           std::string(".objc_category_")+ClassName+CategoryName,
3300           CGM.getPointerAlign()),
3301         PtrTy));
3302 }
3303 
GeneratePropertyList(const Decl * Container,const ObjCContainerDecl * OCD,bool isClassProperty,bool protocolOptionalProperties)3304 llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container,
3305     const ObjCContainerDecl *OCD,
3306     bool isClassProperty,
3307     bool protocolOptionalProperties) {
3308 
3309   SmallVector<const ObjCPropertyDecl *, 16> Properties;
3310   llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet;
3311   bool isProtocol = isa<ObjCProtocolDecl>(OCD);
3312   ASTContext &Context = CGM.getContext();
3313 
3314   std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties
3315     = [&](const ObjCProtocolDecl *Proto) {
3316       for (const auto *P : Proto->protocols())
3317         collectProtocolProperties(P);
3318       for (const auto *PD : Proto->properties()) {
3319         if (isClassProperty != PD->isClassProperty())
3320           continue;
3321         // Skip any properties that are declared in protocols that this class
3322         // conforms to but are not actually implemented by this class.
3323         if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container))
3324           continue;
3325         if (!PropertySet.insert(PD->getIdentifier()).second)
3326           continue;
3327         Properties.push_back(PD);
3328       }
3329     };
3330 
3331   if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3332     for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
3333       for (auto *PD : ClassExt->properties()) {
3334         if (isClassProperty != PD->isClassProperty())
3335           continue;
3336         PropertySet.insert(PD->getIdentifier());
3337         Properties.push_back(PD);
3338       }
3339 
3340   for (const auto *PD : OCD->properties()) {
3341     if (isClassProperty != PD->isClassProperty())
3342       continue;
3343     // If we're generating a list for a protocol, skip optional / required ones
3344     // when generating the other list.
3345     if (isProtocol && (protocolOptionalProperties != PD->isOptional()))
3346       continue;
3347     // Don't emit duplicate metadata for properties that were already in a
3348     // class extension.
3349     if (!PropertySet.insert(PD->getIdentifier()).second)
3350       continue;
3351 
3352     Properties.push_back(PD);
3353   }
3354 
3355   if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3356     for (const auto *P : OID->all_referenced_protocols())
3357       collectProtocolProperties(P);
3358   else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD))
3359     for (const auto *P : CD->protocols())
3360       collectProtocolProperties(P);
3361 
3362   auto numProperties = Properties.size();
3363 
3364   if (numProperties == 0)
3365     return NULLPtr;
3366 
3367   ConstantInitBuilder builder(CGM);
3368   auto propertyList = builder.beginStruct();
3369   auto properties = PushPropertyListHeader(propertyList, numProperties);
3370 
3371   // Add all of the property methods need adding to the method list and to the
3372   // property metadata list.
3373   for (auto *property : Properties) {
3374     bool isSynthesized = false;
3375     bool isDynamic = false;
3376     if (!isProtocol) {
3377       auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container);
3378       if (propertyImpl) {
3379         isSynthesized = (propertyImpl->getPropertyImplementation() ==
3380             ObjCPropertyImplDecl::Synthesize);
3381         isDynamic = (propertyImpl->getPropertyImplementation() ==
3382             ObjCPropertyImplDecl::Dynamic);
3383       }
3384     }
3385     PushProperty(properties, property, Container, isSynthesized, isDynamic);
3386   }
3387   properties.finishAndAddTo(propertyList);
3388 
3389   return propertyList.finishAndCreateGlobal(".objc_property_list",
3390                                             CGM.getPointerAlign());
3391 }
3392 
RegisterAlias(const ObjCCompatibleAliasDecl * OAD)3393 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
3394   // Get the class declaration for which the alias is specified.
3395   ObjCInterfaceDecl *ClassDecl =
3396     const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
3397   ClassAliases.emplace_back(ClassDecl->getNameAsString(),
3398                             OAD->getNameAsString());
3399 }
3400 
GenerateClass(const ObjCImplementationDecl * OID)3401 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
3402   ASTContext &Context = CGM.getContext();
3403 
3404   // Get the superclass name.
3405   const ObjCInterfaceDecl * SuperClassDecl =
3406     OID->getClassInterface()->getSuperClass();
3407   std::string SuperClassName;
3408   if (SuperClassDecl) {
3409     SuperClassName = SuperClassDecl->getNameAsString();
3410     EmitClassRef(SuperClassName);
3411   }
3412 
3413   // Get the class name
3414   ObjCInterfaceDecl *ClassDecl =
3415       const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
3416   std::string ClassName = ClassDecl->getNameAsString();
3417 
3418   // Emit the symbol that is used to generate linker errors if this class is
3419   // referenced in other modules but not declared.
3420   std::string classSymbolName = "__objc_class_name_" + ClassName;
3421   if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) {
3422     symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
3423   } else {
3424     new llvm::GlobalVariable(TheModule, LongTy, false,
3425                              llvm::GlobalValue::ExternalLinkage,
3426                              llvm::ConstantInt::get(LongTy, 0),
3427                              classSymbolName);
3428   }
3429 
3430   // Get the size of instances.
3431   int instanceSize =
3432     Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
3433 
3434   // Collect information about instance variables.
3435   SmallVector<llvm::Constant*, 16> IvarNames;
3436   SmallVector<llvm::Constant*, 16> IvarTypes;
3437   SmallVector<llvm::Constant*, 16> IvarOffsets;
3438   SmallVector<llvm::Constant*, 16> IvarAligns;
3439   SmallVector<Qualifiers::ObjCLifetime, 16> IvarOwnership;
3440 
3441   ConstantInitBuilder IvarOffsetBuilder(CGM);
3442   auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy);
3443   SmallVector<bool, 16> WeakIvars;
3444   SmallVector<bool, 16> StrongIvars;
3445 
3446   int superInstanceSize = !SuperClassDecl ? 0 :
3447     Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
3448   // For non-fragile ivars, set the instance size to 0 - {the size of just this
3449   // class}.  The runtime will then set this to the correct value on load.
3450   if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3451     instanceSize = 0 - (instanceSize - superInstanceSize);
3452   }
3453 
3454   for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3455        IVD = IVD->getNextIvar()) {
3456       // Store the name
3457       IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
3458       // Get the type encoding for this ivar
3459       std::string TypeStr;
3460       Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD);
3461       IvarTypes.push_back(MakeConstantString(TypeStr));
3462       IvarAligns.push_back(llvm::ConstantInt::get(IntTy,
3463             Context.getTypeSize(IVD->getType())));
3464       // Get the offset
3465       uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
3466       uint64_t Offset = BaseOffset;
3467       if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3468         Offset = BaseOffset - superInstanceSize;
3469       }
3470       llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
3471       // Create the direct offset value
3472       std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
3473           IVD->getNameAsString();
3474 
3475       llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
3476       if (OffsetVar) {
3477         OffsetVar->setInitializer(OffsetValue);
3478         // If this is the real definition, change its linkage type so that
3479         // different modules will use this one, rather than their private
3480         // copy.
3481         OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
3482       } else
3483         OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty,
3484           false, llvm::GlobalValue::ExternalLinkage,
3485           OffsetValue, OffsetName);
3486       IvarOffsets.push_back(OffsetValue);
3487       IvarOffsetValues.add(OffsetVar);
3488       Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
3489       IvarOwnership.push_back(lt);
3490       switch (lt) {
3491         case Qualifiers::OCL_Strong:
3492           StrongIvars.push_back(true);
3493           WeakIvars.push_back(false);
3494           break;
3495         case Qualifiers::OCL_Weak:
3496           StrongIvars.push_back(false);
3497           WeakIvars.push_back(true);
3498           break;
3499         default:
3500           StrongIvars.push_back(false);
3501           WeakIvars.push_back(false);
3502       }
3503   }
3504   llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
3505   llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
3506   llvm::GlobalVariable *IvarOffsetArray =
3507     IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets",
3508                                            CGM.getPointerAlign());
3509 
3510   // Collect information about instance methods
3511   SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
3512   InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
3513       OID->instmeth_end());
3514 
3515   SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
3516   ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
3517       OID->classmeth_end());
3518 
3519   llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl);
3520 
3521   // Collect the names of referenced protocols
3522   auto RefProtocols = ClassDecl->protocols();
3523   auto RuntimeProtocols =
3524       GetRuntimeProtocolList(RefProtocols.begin(), RefProtocols.end());
3525   SmallVector<std::string, 16> Protocols;
3526   for (const auto *I : RuntimeProtocols)
3527     Protocols.push_back(I->getNameAsString());
3528 
3529   // Get the superclass pointer.
3530   llvm::Constant *SuperClass;
3531   if (!SuperClassName.empty()) {
3532     SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
3533   } else {
3534     SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
3535   }
3536   // Empty vector used to construct empty method lists
3537   SmallVector<llvm::Constant*, 1>  empty;
3538   // Generate the method and instance variable lists
3539   llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
3540       InstanceMethods, false);
3541   llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
3542       ClassMethods, true);
3543   llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
3544       IvarOffsets, IvarAligns, IvarOwnership);
3545   // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
3546   // we emit a symbol containing the offset for each ivar in the class.  This
3547   // allows code compiled for the non-Fragile ABI to inherit from code compiled
3548   // for the legacy ABI, without causing problems.  The converse is also
3549   // possible, but causes all ivar accesses to be fragile.
3550 
3551   // Offset pointer for getting at the correct field in the ivar list when
3552   // setting up the alias.  These are: The base address for the global, the
3553   // ivar array (second field), the ivar in this list (set for each ivar), and
3554   // the offset (third field in ivar structure)
3555   llvm::Type *IndexTy = Int32Ty;
3556   llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
3557       llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr,
3558       llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) };
3559 
3560   unsigned ivarIndex = 0;
3561   for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3562        IVD = IVD->getNextIvar()) {
3563       const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD);
3564       offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
3565       // Get the correct ivar field
3566       llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
3567           cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
3568           offsetPointerIndexes);
3569       // Get the existing variable, if one exists.
3570       llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
3571       if (offset) {
3572         offset->setInitializer(offsetValue);
3573         // If this is the real definition, change its linkage type so that
3574         // different modules will use this one, rather than their private
3575         // copy.
3576         offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
3577       } else
3578         // Add a new alias if there isn't one already.
3579         new llvm::GlobalVariable(TheModule, offsetValue->getType(),
3580                 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
3581       ++ivarIndex;
3582   }
3583   llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
3584 
3585   //Generate metaclass for class methods
3586   llvm::Constant *MetaClassStruct = GenerateClassStructure(
3587       NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0],
3588       NULLPtr, ClassMethodList, NULLPtr, NULLPtr,
3589       GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true);
3590   CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct),
3591                       OID->getClassInterface());
3592 
3593   // Generate the class structure
3594   llvm::Constant *ClassStruct = GenerateClassStructure(
3595       MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr,
3596       llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList,
3597       GenerateProtocolList(Protocols), IvarOffsetArray, Properties,
3598       StrongIvarBitmap, WeakIvarBitmap);
3599   CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct),
3600                       OID->getClassInterface());
3601 
3602   // Resolve the class aliases, if they exist.
3603   if (ClassPtrAlias) {
3604     ClassPtrAlias->replaceAllUsesWith(
3605         llvm::ConstantExpr::getBitCast(ClassStruct, IdTy));
3606     ClassPtrAlias->eraseFromParent();
3607     ClassPtrAlias = nullptr;
3608   }
3609   if (MetaClassPtrAlias) {
3610     MetaClassPtrAlias->replaceAllUsesWith(
3611         llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy));
3612     MetaClassPtrAlias->eraseFromParent();
3613     MetaClassPtrAlias = nullptr;
3614   }
3615 
3616   // Add class structure to list to be added to the symtab later
3617   ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty);
3618   Classes.push_back(ClassStruct);
3619 }
3620 
ModuleInitFunction()3621 llvm::Function *CGObjCGNU::ModuleInitFunction() {
3622   // Only emit an ObjC load function if no Objective-C stuff has been called
3623   if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
3624       ExistingProtocols.empty() && SelectorTable.empty())
3625     return nullptr;
3626 
3627   // Add all referenced protocols to a category.
3628   GenerateProtocolHolderCategory();
3629 
3630   llvm::StructType *selStructTy =
3631     dyn_cast<llvm::StructType>(SelectorTy->getElementType());
3632   llvm::Type *selStructPtrTy = SelectorTy;
3633   if (!selStructTy) {
3634     selStructTy = llvm::StructType::get(CGM.getLLVMContext(),
3635                                         { PtrToInt8Ty, PtrToInt8Ty });
3636     selStructPtrTy = llvm::PointerType::getUnqual(selStructTy);
3637   }
3638 
3639   // Generate statics list:
3640   llvm::Constant *statics = NULLPtr;
3641   if (!ConstantStrings.empty()) {
3642     llvm::GlobalVariable *fileStatics = [&] {
3643       ConstantInitBuilder builder(CGM);
3644       auto staticsStruct = builder.beginStruct();
3645 
3646       StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass;
3647       if (stringClass.empty()) stringClass = "NXConstantString";
3648       staticsStruct.add(MakeConstantString(stringClass,
3649                                            ".objc_static_class_name"));
3650 
3651       auto array = staticsStruct.beginArray();
3652       array.addAll(ConstantStrings);
3653       array.add(NULLPtr);
3654       array.finishAndAddTo(staticsStruct);
3655 
3656       return staticsStruct.finishAndCreateGlobal(".objc_statics",
3657                                                  CGM.getPointerAlign());
3658     }();
3659 
3660     ConstantInitBuilder builder(CGM);
3661     auto allStaticsArray = builder.beginArray(fileStatics->getType());
3662     allStaticsArray.add(fileStatics);
3663     allStaticsArray.addNullPointer(fileStatics->getType());
3664 
3665     statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr",
3666                                                     CGM.getPointerAlign());
3667     statics = llvm::ConstantExpr::getBitCast(statics, PtrTy);
3668   }
3669 
3670   // Array of classes, categories, and constant objects.
3671 
3672   SmallVector<llvm::GlobalAlias*, 16> selectorAliases;
3673   unsigned selectorCount;
3674 
3675   // Pointer to an array of selectors used in this module.
3676   llvm::GlobalVariable *selectorList = [&] {
3677     ConstantInitBuilder builder(CGM);
3678     auto selectors = builder.beginArray(selStructTy);
3679     auto &table = SelectorTable; // MSVC workaround
3680     std::vector<Selector> allSelectors;
3681     for (auto &entry : table)
3682       allSelectors.push_back(entry.first);
3683     llvm::sort(allSelectors);
3684 
3685     for (auto &untypedSel : allSelectors) {
3686       std::string selNameStr = untypedSel.getAsString();
3687       llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name");
3688 
3689       for (TypedSelector &sel : table[untypedSel]) {
3690         llvm::Constant *selectorTypeEncoding = NULLPtr;
3691         if (!sel.first.empty())
3692           selectorTypeEncoding =
3693             MakeConstantString(sel.first, ".objc_sel_types");
3694 
3695         auto selStruct = selectors.beginStruct(selStructTy);
3696         selStruct.add(selName);
3697         selStruct.add(selectorTypeEncoding);
3698         selStruct.finishAndAddTo(selectors);
3699 
3700         // Store the selector alias for later replacement
3701         selectorAliases.push_back(sel.second);
3702       }
3703     }
3704 
3705     // Remember the number of entries in the selector table.
3706     selectorCount = selectors.size();
3707 
3708     // NULL-terminate the selector list.  This should not actually be required,
3709     // because the selector list has a length field.  Unfortunately, the GCC
3710     // runtime decides to ignore the length field and expects a NULL terminator,
3711     // and GCC cooperates with this by always setting the length to 0.
3712     auto selStruct = selectors.beginStruct(selStructTy);
3713     selStruct.add(NULLPtr);
3714     selStruct.add(NULLPtr);
3715     selStruct.finishAndAddTo(selectors);
3716 
3717     return selectors.finishAndCreateGlobal(".objc_selector_list",
3718                                            CGM.getPointerAlign());
3719   }();
3720 
3721   // Now that all of the static selectors exist, create pointers to them.
3722   for (unsigned i = 0; i < selectorCount; ++i) {
3723     llvm::Constant *idxs[] = {
3724       Zeros[0],
3725       llvm::ConstantInt::get(Int32Ty, i)
3726     };
3727     // FIXME: We're generating redundant loads and stores here!
3728     llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr(
3729         selectorList->getValueType(), selectorList, idxs);
3730     // If selectors are defined as an opaque type, cast the pointer to this
3731     // type.
3732     selPtr = llvm::ConstantExpr::getBitCast(selPtr, SelectorTy);
3733     selectorAliases[i]->replaceAllUsesWith(selPtr);
3734     selectorAliases[i]->eraseFromParent();
3735   }
3736 
3737   llvm::GlobalVariable *symtab = [&] {
3738     ConstantInitBuilder builder(CGM);
3739     auto symtab = builder.beginStruct();
3740 
3741     // Number of static selectors
3742     symtab.addInt(LongTy, selectorCount);
3743 
3744     symtab.addBitCast(selectorList, selStructPtrTy);
3745 
3746     // Number of classes defined.
3747     symtab.addInt(CGM.Int16Ty, Classes.size());
3748     // Number of categories defined
3749     symtab.addInt(CGM.Int16Ty, Categories.size());
3750 
3751     // Create an array of classes, then categories, then static object instances
3752     auto classList = symtab.beginArray(PtrToInt8Ty);
3753     classList.addAll(Classes);
3754     classList.addAll(Categories);
3755     //  NULL-terminated list of static object instances (mainly constant strings)
3756     classList.add(statics);
3757     classList.add(NULLPtr);
3758     classList.finishAndAddTo(symtab);
3759 
3760     // Construct the symbol table.
3761     return symtab.finishAndCreateGlobal("", CGM.getPointerAlign());
3762   }();
3763 
3764   // The symbol table is contained in a module which has some version-checking
3765   // constants
3766   llvm::Constant *module = [&] {
3767     llvm::Type *moduleEltTys[] = {
3768       LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy
3769     };
3770     llvm::StructType *moduleTy =
3771       llvm::StructType::get(CGM.getLLVMContext(),
3772          makeArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10)));
3773 
3774     ConstantInitBuilder builder(CGM);
3775     auto module = builder.beginStruct(moduleTy);
3776     // Runtime version, used for ABI compatibility checking.
3777     module.addInt(LongTy, RuntimeVersion);
3778     // sizeof(ModuleTy)
3779     module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy));
3780 
3781     // The path to the source file where this module was declared
3782     SourceManager &SM = CGM.getContext().getSourceManager();
3783     const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID());
3784     std::string path =
3785       (Twine(mainFile->getDir()->getName()) + "/" + mainFile->getName()).str();
3786     module.add(MakeConstantString(path, ".objc_source_file_name"));
3787     module.add(symtab);
3788 
3789     if (RuntimeVersion >= 10) {
3790       switch (CGM.getLangOpts().getGC()) {
3791       case LangOptions::GCOnly:
3792         module.addInt(IntTy, 2);
3793         break;
3794       case LangOptions::NonGC:
3795         if (CGM.getLangOpts().ObjCAutoRefCount)
3796           module.addInt(IntTy, 1);
3797         else
3798           module.addInt(IntTy, 0);
3799         break;
3800       case LangOptions::HybridGC:
3801         module.addInt(IntTy, 1);
3802         break;
3803       }
3804     }
3805 
3806     return module.finishAndCreateGlobal("", CGM.getPointerAlign());
3807   }();
3808 
3809   // Create the load function calling the runtime entry point with the module
3810   // structure
3811   llvm::Function * LoadFunction = llvm::Function::Create(
3812       llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
3813       llvm::GlobalValue::InternalLinkage, ".objc_load_function",
3814       &TheModule);
3815   llvm::BasicBlock *EntryBB =
3816       llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
3817   CGBuilderTy Builder(CGM, VMContext);
3818   Builder.SetInsertPoint(EntryBB);
3819 
3820   llvm::FunctionType *FT =
3821     llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true);
3822   llvm::FunctionCallee Register =
3823       CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
3824   Builder.CreateCall(Register, module);
3825 
3826   if (!ClassAliases.empty()) {
3827     llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
3828     llvm::FunctionType *RegisterAliasTy =
3829       llvm::FunctionType::get(Builder.getVoidTy(),
3830                               ArgTypes, false);
3831     llvm::Function *RegisterAlias = llvm::Function::Create(
3832       RegisterAliasTy,
3833       llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
3834       &TheModule);
3835     llvm::BasicBlock *AliasBB =
3836       llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
3837     llvm::BasicBlock *NoAliasBB =
3838       llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
3839 
3840     // Branch based on whether the runtime provided class_registerAlias_np()
3841     llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
3842             llvm::Constant::getNullValue(RegisterAlias->getType()));
3843     Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
3844 
3845     // The true branch (has alias registration function):
3846     Builder.SetInsertPoint(AliasBB);
3847     // Emit alias registration calls:
3848     for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
3849        iter != ClassAliases.end(); ++iter) {
3850        llvm::Constant *TheClass =
3851           TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true);
3852        if (TheClass) {
3853          TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy);
3854          Builder.CreateCall(RegisterAlias,
3855                             {TheClass, MakeConstantString(iter->second)});
3856        }
3857     }
3858     // Jump to end:
3859     Builder.CreateBr(NoAliasBB);
3860 
3861     // Missing alias registration function, just return from the function:
3862     Builder.SetInsertPoint(NoAliasBB);
3863   }
3864   Builder.CreateRetVoid();
3865 
3866   return LoadFunction;
3867 }
3868 
GenerateMethod(const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD)3869 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
3870                                           const ObjCContainerDecl *CD) {
3871   CodeGenTypes &Types = CGM.getTypes();
3872   llvm::FunctionType *MethodTy =
3873     Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
3874   std::string FunctionName = getSymbolNameForMethod(OMD);
3875 
3876   llvm::Function *Method
3877     = llvm::Function::Create(MethodTy,
3878                              llvm::GlobalValue::InternalLinkage,
3879                              FunctionName,
3880                              &TheModule);
3881   return Method;
3882 }
3883 
GenerateDirectMethodPrologue(CodeGenFunction & CGF,llvm::Function * Fn,const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD)3884 void CGObjCGNU::GenerateDirectMethodPrologue(CodeGenFunction &CGF,
3885                                              llvm::Function *Fn,
3886                                              const ObjCMethodDecl *OMD,
3887                                              const ObjCContainerDecl *CD) {
3888   // GNU runtime doesn't support direct calls at this time
3889 }
3890 
GetPropertyGetFunction()3891 llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() {
3892   return GetPropertyFn;
3893 }
3894 
GetPropertySetFunction()3895 llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() {
3896   return SetPropertyFn;
3897 }
3898 
GetOptimizedPropertySetFunction(bool atomic,bool copy)3899 llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
3900                                                                 bool copy) {
3901   return nullptr;
3902 }
3903 
GetGetStructFunction()3904 llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() {
3905   return GetStructPropertyFn;
3906 }
3907 
GetSetStructFunction()3908 llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() {
3909   return SetStructPropertyFn;
3910 }
3911 
GetCppAtomicObjectGetFunction()3912 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() {
3913   return nullptr;
3914 }
3915 
GetCppAtomicObjectSetFunction()3916 llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() {
3917   return nullptr;
3918 }
3919 
EnumerationMutationFunction()3920 llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() {
3921   return EnumerationMutationFn;
3922 }
3923 
EmitSynchronizedStmt(CodeGenFunction & CGF,const ObjCAtSynchronizedStmt & S)3924 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
3925                                      const ObjCAtSynchronizedStmt &S) {
3926   EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
3927 }
3928 
3929 
EmitTryStmt(CodeGenFunction & CGF,const ObjCAtTryStmt & S)3930 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
3931                             const ObjCAtTryStmt &S) {
3932   // Unlike the Apple non-fragile runtimes, which also uses
3933   // unwind-based zero cost exceptions, the GNU Objective C runtime's
3934   // EH support isn't a veneer over C++ EH.  Instead, exception
3935   // objects are created by objc_exception_throw and destroyed by
3936   // the personality function; this avoids the need for bracketing
3937   // catch handlers with calls to __blah_begin_catch/__blah_end_catch
3938   // (or even _Unwind_DeleteException), but probably doesn't
3939   // interoperate very well with foreign exceptions.
3940   //
3941   // In Objective-C++ mode, we actually emit something equivalent to the C++
3942   // exception handler.
3943   EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
3944 }
3945 
EmitThrowStmt(CodeGenFunction & CGF,const ObjCAtThrowStmt & S,bool ClearInsertionPoint)3946 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
3947                               const ObjCAtThrowStmt &S,
3948                               bool ClearInsertionPoint) {
3949   llvm::Value *ExceptionAsObject;
3950   bool isRethrow = false;
3951 
3952   if (const Expr *ThrowExpr = S.getThrowExpr()) {
3953     llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
3954     ExceptionAsObject = Exception;
3955   } else {
3956     assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
3957            "Unexpected rethrow outside @catch block.");
3958     ExceptionAsObject = CGF.ObjCEHValueStack.back();
3959     isRethrow = true;
3960   }
3961   if (isRethrow && usesSEHExceptions) {
3962     // For SEH, ExceptionAsObject may be undef, because the catch handler is
3963     // not passed it for catchalls and so it is not visible to the catch
3964     // funclet.  The real thrown object will still be live on the stack at this
3965     // point and will be rethrown.  If we are explicitly rethrowing the object
3966     // that was passed into the `@catch` block, then this code path is not
3967     // reached and we will instead call `objc_exception_throw` with an explicit
3968     // argument.
3969     llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn);
3970     Throw->setDoesNotReturn();
3971   }
3972   else {
3973     ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
3974     llvm::CallBase *Throw =
3975         CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
3976     Throw->setDoesNotReturn();
3977   }
3978   CGF.Builder.CreateUnreachable();
3979   if (ClearInsertionPoint)
3980     CGF.Builder.ClearInsertionPoint();
3981 }
3982 
EmitObjCWeakRead(CodeGenFunction & CGF,Address AddrWeakObj)3983 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
3984                                           Address AddrWeakObj) {
3985   CGBuilderTy &B = CGF.Builder;
3986   AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy);
3987   return B.CreateCall(WeakReadFn, AddrWeakObj.getPointer());
3988 }
3989 
EmitObjCWeakAssign(CodeGenFunction & CGF,llvm::Value * src,Address dst)3990 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
3991                                    llvm::Value *src, Address dst) {
3992   CGBuilderTy &B = CGF.Builder;
3993   src = EnforceType(B, src, IdTy);
3994   dst = EnforceType(B, dst, PtrToIdTy);
3995   B.CreateCall(WeakAssignFn, {src, dst.getPointer()});
3996 }
3997 
EmitObjCGlobalAssign(CodeGenFunction & CGF,llvm::Value * src,Address dst,bool threadlocal)3998 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
3999                                      llvm::Value *src, Address dst,
4000                                      bool threadlocal) {
4001   CGBuilderTy &B = CGF.Builder;
4002   src = EnforceType(B, src, IdTy);
4003   dst = EnforceType(B, dst, PtrToIdTy);
4004   // FIXME. Add threadloca assign API
4005   assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI");
4006   B.CreateCall(GlobalAssignFn, {src, dst.getPointer()});
4007 }
4008 
EmitObjCIvarAssign(CodeGenFunction & CGF,llvm::Value * src,Address dst,llvm::Value * ivarOffset)4009 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
4010                                    llvm::Value *src, Address dst,
4011                                    llvm::Value *ivarOffset) {
4012   CGBuilderTy &B = CGF.Builder;
4013   src = EnforceType(B, src, IdTy);
4014   dst = EnforceType(B, dst, IdTy);
4015   B.CreateCall(IvarAssignFn, {src, dst.getPointer(), ivarOffset});
4016 }
4017 
EmitObjCStrongCastAssign(CodeGenFunction & CGF,llvm::Value * src,Address dst)4018 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
4019                                          llvm::Value *src, Address dst) {
4020   CGBuilderTy &B = CGF.Builder;
4021   src = EnforceType(B, src, IdTy);
4022   dst = EnforceType(B, dst, PtrToIdTy);
4023   B.CreateCall(StrongCastAssignFn, {src, dst.getPointer()});
4024 }
4025 
EmitGCMemmoveCollectable(CodeGenFunction & CGF,Address DestPtr,Address SrcPtr,llvm::Value * Size)4026 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
4027                                          Address DestPtr,
4028                                          Address SrcPtr,
4029                                          llvm::Value *Size) {
4030   CGBuilderTy &B = CGF.Builder;
4031   DestPtr = EnforceType(B, DestPtr, PtrTy);
4032   SrcPtr = EnforceType(B, SrcPtr, PtrTy);
4033 
4034   B.CreateCall(MemMoveFn, {DestPtr.getPointer(), SrcPtr.getPointer(), Size});
4035 }
4036 
ObjCIvarOffsetVariable(const ObjCInterfaceDecl * ID,const ObjCIvarDecl * Ivar)4037 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
4038                               const ObjCInterfaceDecl *ID,
4039                               const ObjCIvarDecl *Ivar) {
4040   const std::string Name = GetIVarOffsetVariableName(ID, Ivar);
4041   // Emit the variable and initialize it with what we think the correct value
4042   // is.  This allows code compiled with non-fragile ivars to work correctly
4043   // when linked against code which isn't (most of the time).
4044   llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
4045   if (!IvarOffsetPointer)
4046     IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
4047             llvm::Type::getInt32PtrTy(VMContext), false,
4048             llvm::GlobalValue::ExternalLinkage, nullptr, Name);
4049   return IvarOffsetPointer;
4050 }
4051 
EmitObjCValueForIvar(CodeGenFunction & CGF,QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)4052 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
4053                                        QualType ObjectTy,
4054                                        llvm::Value *BaseValue,
4055                                        const ObjCIvarDecl *Ivar,
4056                                        unsigned CVRQualifiers) {
4057   const ObjCInterfaceDecl *ID =
4058     ObjectTy->castAs<ObjCObjectType>()->getInterface();
4059   return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
4060                                   EmitIvarOffset(CGF, ID, Ivar));
4061 }
4062 
FindIvarInterface(ASTContext & Context,const ObjCInterfaceDecl * OID,const ObjCIvarDecl * OIVD)4063 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
4064                                                   const ObjCInterfaceDecl *OID,
4065                                                   const ObjCIvarDecl *OIVD) {
4066   for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
4067        next = next->getNextIvar()) {
4068     if (OIVD == next)
4069       return OID;
4070   }
4071 
4072   // Otherwise check in the super class.
4073   if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
4074     return FindIvarInterface(Context, Super, OIVD);
4075 
4076   return nullptr;
4077 }
4078 
EmitIvarOffset(CodeGenFunction & CGF,const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)4079 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
4080                          const ObjCInterfaceDecl *Interface,
4081                          const ObjCIvarDecl *Ivar) {
4082   if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
4083     Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
4084 
4085     // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage
4086     // and ExternalLinkage, so create a reference to the ivar global and rely on
4087     // the definition being created as part of GenerateClass.
4088     if (RuntimeVersion < 10 ||
4089         CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment())
4090       return CGF.Builder.CreateZExtOrBitCast(
4091           CGF.Builder.CreateAlignedLoad(
4092               Int32Ty, CGF.Builder.CreateAlignedLoad(
4093                            llvm::Type::getInt32PtrTy(VMContext),
4094                            ObjCIvarOffsetVariable(Interface, Ivar),
4095                            CGF.getPointerAlign(), "ivar"),
4096               CharUnits::fromQuantity(4)),
4097           PtrDiffTy);
4098     std::string name = "__objc_ivar_offset_value_" +
4099       Interface->getNameAsString() +"." + Ivar->getNameAsString();
4100     CharUnits Align = CGM.getIntAlign();
4101     llvm::Value *Offset = TheModule.getGlobalVariable(name);
4102     if (!Offset) {
4103       auto GV = new llvm::GlobalVariable(TheModule, IntTy,
4104           false, llvm::GlobalValue::LinkOnceAnyLinkage,
4105           llvm::Constant::getNullValue(IntTy), name);
4106       GV->setAlignment(Align.getAsAlign());
4107       Offset = GV;
4108     }
4109     Offset = CGF.Builder.CreateAlignedLoad(IntTy, Offset, Align);
4110     if (Offset->getType() != PtrDiffTy)
4111       Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
4112     return Offset;
4113   }
4114   uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
4115   return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
4116 }
4117 
4118 CGObjCRuntime *
CreateGNUObjCRuntime(CodeGenModule & CGM)4119 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
4120   auto Runtime = CGM.getLangOpts().ObjCRuntime;
4121   switch (Runtime.getKind()) {
4122   case ObjCRuntime::GNUstep:
4123     if (Runtime.getVersion() >= VersionTuple(2, 0))
4124       return new CGObjCGNUstep2(CGM);
4125     return new CGObjCGNUstep(CGM);
4126 
4127   case ObjCRuntime::GCC:
4128     return new CGObjCGCC(CGM);
4129 
4130   case ObjCRuntime::ObjFW:
4131     return new CGObjCObjFW(CGM);
4132 
4133   case ObjCRuntime::FragileMacOSX:
4134   case ObjCRuntime::MacOSX:
4135   case ObjCRuntime::iOS:
4136   case ObjCRuntime::WatchOS:
4137     llvm_unreachable("these runtimes are not GNU runtimes");
4138   }
4139   llvm_unreachable("bad runtime");
4140 }
4141