1 //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the ASTContext interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "CXXABI.h"
15 #include "Interp/Context.h"
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTConcept.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/ASTTypeTraits.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/AttrIterator.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/Comment.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclBase.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclContextInternals.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/DeclarationName.h"
32 #include "clang/AST/DependenceFlags.h"
33 #include "clang/AST/Expr.h"
34 #include "clang/AST/ExprCXX.h"
35 #include "clang/AST/ExprConcepts.h"
36 #include "clang/AST/ExternalASTSource.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/MangleNumberingContext.h"
39 #include "clang/AST/NestedNameSpecifier.h"
40 #include "clang/AST/ParentMapContext.h"
41 #include "clang/AST/RawCommentList.h"
42 #include "clang/AST/RecordLayout.h"
43 #include "clang/AST/Stmt.h"
44 #include "clang/AST/TemplateBase.h"
45 #include "clang/AST/TemplateName.h"
46 #include "clang/AST/Type.h"
47 #include "clang/AST/TypeLoc.h"
48 #include "clang/AST/UnresolvedSet.h"
49 #include "clang/AST/VTableBuilder.h"
50 #include "clang/Basic/AddressSpaces.h"
51 #include "clang/Basic/Builtins.h"
52 #include "clang/Basic/CommentOptions.h"
53 #include "clang/Basic/ExceptionSpecificationType.h"
54 #include "clang/Basic/IdentifierTable.h"
55 #include "clang/Basic/LLVM.h"
56 #include "clang/Basic/LangOptions.h"
57 #include "clang/Basic/Linkage.h"
58 #include "clang/Basic/Module.h"
59 #include "clang/Basic/NoSanitizeList.h"
60 #include "clang/Basic/ObjCRuntime.h"
61 #include "clang/Basic/SourceLocation.h"
62 #include "clang/Basic/SourceManager.h"
63 #include "clang/Basic/Specifiers.h"
64 #include "clang/Basic/TargetCXXABI.h"
65 #include "clang/Basic/TargetInfo.h"
66 #include "clang/Basic/XRayLists.h"
67 #include "llvm/ADT/APFixedPoint.h"
68 #include "llvm/ADT/APInt.h"
69 #include "llvm/ADT/APSInt.h"
70 #include "llvm/ADT/ArrayRef.h"
71 #include "llvm/ADT/DenseMap.h"
72 #include "llvm/ADT/DenseSet.h"
73 #include "llvm/ADT/FoldingSet.h"
74 #include "llvm/ADT/None.h"
75 #include "llvm/ADT/Optional.h"
76 #include "llvm/ADT/PointerUnion.h"
77 #include "llvm/ADT/STLExtras.h"
78 #include "llvm/ADT/SmallPtrSet.h"
79 #include "llvm/ADT/SmallVector.h"
80 #include "llvm/ADT/StringExtras.h"
81 #include "llvm/ADT/StringRef.h"
82 #include "llvm/ADT/Triple.h"
83 #include "llvm/Support/Capacity.h"
84 #include "llvm/Support/Casting.h"
85 #include "llvm/Support/Compiler.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/MD5.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstddef>
93 #include <cstdint>
94 #include <cstdlib>
95 #include <map>
96 #include <memory>
97 #include <string>
98 #include <tuple>
99 #include <utility>
100 
101 using namespace clang;
102 
103 enum FloatingRank {
104   BFloat16Rank, Float16Rank, HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank
105 };
106 
107 /// \returns location that is relevant when searching for Doc comments related
108 /// to \p D.
getDeclLocForCommentSearch(const Decl * D,SourceManager & SourceMgr)109 static SourceLocation getDeclLocForCommentSearch(const Decl *D,
110                                                  SourceManager &SourceMgr) {
111   assert(D);
112 
113   // User can not attach documentation to implicit declarations.
114   if (D->isImplicit())
115     return {};
116 
117   // User can not attach documentation to implicit instantiations.
118   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
119     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
120       return {};
121   }
122 
123   if (const auto *VD = dyn_cast<VarDecl>(D)) {
124     if (VD->isStaticDataMember() &&
125         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
126       return {};
127   }
128 
129   if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
130     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
131       return {};
132   }
133 
134   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
135     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
136     if (TSK == TSK_ImplicitInstantiation ||
137         TSK == TSK_Undeclared)
138       return {};
139   }
140 
141   if (const auto *ED = dyn_cast<EnumDecl>(D)) {
142     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
143       return {};
144   }
145   if (const auto *TD = dyn_cast<TagDecl>(D)) {
146     // When tag declaration (but not definition!) is part of the
147     // decl-specifier-seq of some other declaration, it doesn't get comment
148     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
149       return {};
150   }
151   // TODO: handle comments for function parameters properly.
152   if (isa<ParmVarDecl>(D))
153     return {};
154 
155   // TODO: we could look up template parameter documentation in the template
156   // documentation.
157   if (isa<TemplateTypeParmDecl>(D) ||
158       isa<NonTypeTemplateParmDecl>(D) ||
159       isa<TemplateTemplateParmDecl>(D))
160     return {};
161 
162   // Find declaration location.
163   // For Objective-C declarations we generally don't expect to have multiple
164   // declarators, thus use declaration starting location as the "declaration
165   // location".
166   // For all other declarations multiple declarators are used quite frequently,
167   // so we use the location of the identifier as the "declaration location".
168   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
169       isa<ObjCPropertyDecl>(D) ||
170       isa<RedeclarableTemplateDecl>(D) ||
171       isa<ClassTemplateSpecializationDecl>(D) ||
172       // Allow association with Y across {} in `typedef struct X {} Y`.
173       isa<TypedefDecl>(D))
174     return D->getBeginLoc();
175   else {
176     const SourceLocation DeclLoc = D->getLocation();
177     if (DeclLoc.isMacroID()) {
178       if (isa<TypedefDecl>(D)) {
179         // If location of the typedef name is in a macro, it is because being
180         // declared via a macro. Try using declaration's starting location as
181         // the "declaration location".
182         return D->getBeginLoc();
183       } else if (const auto *TD = dyn_cast<TagDecl>(D)) {
184         // If location of the tag decl is inside a macro, but the spelling of
185         // the tag name comes from a macro argument, it looks like a special
186         // macro like NS_ENUM is being used to define the tag decl.  In that
187         // case, adjust the source location to the expansion loc so that we can
188         // attach the comment to the tag decl.
189         if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
190             TD->isCompleteDefinition())
191           return SourceMgr.getExpansionLoc(DeclLoc);
192       }
193     }
194     return DeclLoc;
195   }
196 
197   return {};
198 }
199 
getRawCommentForDeclNoCacheImpl(const Decl * D,const SourceLocation RepresentativeLocForDecl,const std::map<unsigned,RawComment * > & CommentsInTheFile) const200 RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
201     const Decl *D, const SourceLocation RepresentativeLocForDecl,
202     const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
203   // If the declaration doesn't map directly to a location in a file, we
204   // can't find the comment.
205   if (RepresentativeLocForDecl.isInvalid() ||
206       !RepresentativeLocForDecl.isFileID())
207     return nullptr;
208 
209   // If there are no comments anywhere, we won't find anything.
210   if (CommentsInTheFile.empty())
211     return nullptr;
212 
213   // Decompose the location for the declaration and find the beginning of the
214   // file buffer.
215   const std::pair<FileID, unsigned> DeclLocDecomp =
216       SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
217 
218   // Slow path.
219   auto OffsetCommentBehindDecl =
220       CommentsInTheFile.lower_bound(DeclLocDecomp.second);
221 
222   // First check whether we have a trailing comment.
223   if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
224     RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
225     if ((CommentBehindDecl->isDocumentation() ||
226          LangOpts.CommentOpts.ParseAllComments) &&
227         CommentBehindDecl->isTrailingComment() &&
228         (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
229          isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
230 
231       // Check that Doxygen trailing comment comes after the declaration, starts
232       // on the same line and in the same file as the declaration.
233       if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
234           Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
235                                        OffsetCommentBehindDecl->first)) {
236         return CommentBehindDecl;
237       }
238     }
239   }
240 
241   // The comment just after the declaration was not a trailing comment.
242   // Let's look at the previous comment.
243   if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
244     return nullptr;
245 
246   auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
247   RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
248 
249   // Check that we actually have a non-member Doxygen comment.
250   if (!(CommentBeforeDecl->isDocumentation() ||
251         LangOpts.CommentOpts.ParseAllComments) ||
252       CommentBeforeDecl->isTrailingComment())
253     return nullptr;
254 
255   // Decompose the end of the comment.
256   const unsigned CommentEndOffset =
257       Comments.getCommentEndOffset(CommentBeforeDecl);
258 
259   // Get the corresponding buffer.
260   bool Invalid = false;
261   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
262                                                &Invalid).data();
263   if (Invalid)
264     return nullptr;
265 
266   // Extract text between the comment and declaration.
267   StringRef Text(Buffer + CommentEndOffset,
268                  DeclLocDecomp.second - CommentEndOffset);
269 
270   // There should be no other declarations or preprocessor directives between
271   // comment and declaration.
272   if (Text.find_first_of(";{}#@") != StringRef::npos)
273     return nullptr;
274 
275   return CommentBeforeDecl;
276 }
277 
getRawCommentForDeclNoCache(const Decl * D) const278 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
279   const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
280 
281   // If the declaration doesn't map directly to a location in a file, we
282   // can't find the comment.
283   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
284     return nullptr;
285 
286   if (ExternalSource && !CommentsLoaded) {
287     ExternalSource->ReadComments();
288     CommentsLoaded = true;
289   }
290 
291   if (Comments.empty())
292     return nullptr;
293 
294   const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
295   const auto CommentsInThisFile = Comments.getCommentsInFile(File);
296   if (!CommentsInThisFile || CommentsInThisFile->empty())
297     return nullptr;
298 
299   return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
300 }
301 
addComment(const RawComment & RC)302 void ASTContext::addComment(const RawComment &RC) {
303   assert(LangOpts.RetainCommentsFromSystemHeaders ||
304          !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
305   Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
306 }
307 
308 /// If we have a 'templated' declaration for a template, adjust 'D' to
309 /// refer to the actual template.
310 /// If we have an implicit instantiation, adjust 'D' to refer to template.
adjustDeclToTemplate(const Decl & D)311 static const Decl &adjustDeclToTemplate(const Decl &D) {
312   if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
313     // Is this function declaration part of a function template?
314     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
315       return *FTD;
316 
317     // Nothing to do if function is not an implicit instantiation.
318     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
319       return D;
320 
321     // Function is an implicit instantiation of a function template?
322     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
323       return *FTD;
324 
325     // Function is instantiated from a member definition of a class template?
326     if (const FunctionDecl *MemberDecl =
327             FD->getInstantiatedFromMemberFunction())
328       return *MemberDecl;
329 
330     return D;
331   }
332   if (const auto *VD = dyn_cast<VarDecl>(&D)) {
333     // Static data member is instantiated from a member definition of a class
334     // template?
335     if (VD->isStaticDataMember())
336       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
337         return *MemberDecl;
338 
339     return D;
340   }
341   if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
342     // Is this class declaration part of a class template?
343     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
344       return *CTD;
345 
346     // Class is an implicit instantiation of a class template or partial
347     // specialization?
348     if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
349       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
350         return D;
351       llvm::PointerUnion<ClassTemplateDecl *,
352                          ClassTemplatePartialSpecializationDecl *>
353           PU = CTSD->getSpecializedTemplateOrPartial();
354       return PU.is<ClassTemplateDecl *>()
355                  ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
356                  : *static_cast<const Decl *>(
357                        PU.get<ClassTemplatePartialSpecializationDecl *>());
358     }
359 
360     // Class is instantiated from a member definition of a class template?
361     if (const MemberSpecializationInfo *Info =
362             CRD->getMemberSpecializationInfo())
363       return *Info->getInstantiatedFrom();
364 
365     return D;
366   }
367   if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
368     // Enum is instantiated from a member definition of a class template?
369     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
370       return *MemberDecl;
371 
372     return D;
373   }
374   // FIXME: Adjust alias templates?
375   return D;
376 }
377 
getRawCommentForAnyRedecl(const Decl * D,const Decl ** OriginalDecl) const378 const RawComment *ASTContext::getRawCommentForAnyRedecl(
379                                                 const Decl *D,
380                                                 const Decl **OriginalDecl) const {
381   if (!D) {
382     if (OriginalDecl)
383       OriginalDecl = nullptr;
384     return nullptr;
385   }
386 
387   D = &adjustDeclToTemplate(*D);
388 
389   // Any comment directly attached to D?
390   {
391     auto DeclComment = DeclRawComments.find(D);
392     if (DeclComment != DeclRawComments.end()) {
393       if (OriginalDecl)
394         *OriginalDecl = D;
395       return DeclComment->second;
396     }
397   }
398 
399   // Any comment attached to any redeclaration of D?
400   const Decl *CanonicalD = D->getCanonicalDecl();
401   if (!CanonicalD)
402     return nullptr;
403 
404   {
405     auto RedeclComment = RedeclChainComments.find(CanonicalD);
406     if (RedeclComment != RedeclChainComments.end()) {
407       if (OriginalDecl)
408         *OriginalDecl = RedeclComment->second;
409       auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
410       assert(CommentAtRedecl != DeclRawComments.end() &&
411              "This decl is supposed to have comment attached.");
412       return CommentAtRedecl->second;
413     }
414   }
415 
416   // Any redeclarations of D that we haven't checked for comments yet?
417   // We can't use DenseMap::iterator directly since it'd get invalid.
418   auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
419     auto LookupRes = CommentlessRedeclChains.find(CanonicalD);
420     if (LookupRes != CommentlessRedeclChains.end())
421       return LookupRes->second;
422     return nullptr;
423   }();
424 
425   for (const auto Redecl : D->redecls()) {
426     assert(Redecl);
427     // Skip all redeclarations that have been checked previously.
428     if (LastCheckedRedecl) {
429       if (LastCheckedRedecl == Redecl) {
430         LastCheckedRedecl = nullptr;
431       }
432       continue;
433     }
434     const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
435     if (RedeclComment) {
436       cacheRawCommentForDecl(*Redecl, *RedeclComment);
437       if (OriginalDecl)
438         *OriginalDecl = Redecl;
439       return RedeclComment;
440     }
441     CommentlessRedeclChains[CanonicalD] = Redecl;
442   }
443 
444   if (OriginalDecl)
445     *OriginalDecl = nullptr;
446   return nullptr;
447 }
448 
cacheRawCommentForDecl(const Decl & OriginalD,const RawComment & Comment) const449 void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
450                                         const RawComment &Comment) const {
451   assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
452   DeclRawComments.try_emplace(&OriginalD, &Comment);
453   const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
454   RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
455   CommentlessRedeclChains.erase(CanonicalDecl);
456 }
457 
addRedeclaredMethods(const ObjCMethodDecl * ObjCMethod,SmallVectorImpl<const NamedDecl * > & Redeclared)458 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
459                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
460   const DeclContext *DC = ObjCMethod->getDeclContext();
461   if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
462     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
463     if (!ID)
464       return;
465     // Add redeclared method here.
466     for (const auto *Ext : ID->known_extensions()) {
467       if (ObjCMethodDecl *RedeclaredMethod =
468             Ext->getMethod(ObjCMethod->getSelector(),
469                                   ObjCMethod->isInstanceMethod()))
470         Redeclared.push_back(RedeclaredMethod);
471     }
472   }
473 }
474 
attachCommentsToJustParsedDecls(ArrayRef<Decl * > Decls,const Preprocessor * PP)475 void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
476                                                  const Preprocessor *PP) {
477   if (Comments.empty() || Decls.empty())
478     return;
479 
480   FileID File;
481   for (Decl *D : Decls) {
482     SourceLocation Loc = D->getLocation();
483     if (Loc.isValid()) {
484       // See if there are any new comments that are not attached to a decl.
485       // The location doesn't have to be precise - we care only about the file.
486       File = SourceMgr.getDecomposedLoc(Loc).first;
487       break;
488     }
489   }
490 
491   if (File.isInvalid())
492     return;
493 
494   auto CommentsInThisFile = Comments.getCommentsInFile(File);
495   if (!CommentsInThisFile || CommentsInThisFile->empty() ||
496       CommentsInThisFile->rbegin()->second->isAttached())
497     return;
498 
499   // There is at least one comment not attached to a decl.
500   // Maybe it should be attached to one of Decls?
501   //
502   // Note that this way we pick up not only comments that precede the
503   // declaration, but also comments that *follow* the declaration -- thanks to
504   // the lookahead in the lexer: we've consumed the semicolon and looked
505   // ahead through comments.
506 
507   for (const Decl *D : Decls) {
508     assert(D);
509     if (D->isInvalidDecl())
510       continue;
511 
512     D = &adjustDeclToTemplate(*D);
513 
514     const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
515 
516     if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
517       continue;
518 
519     if (DeclRawComments.count(D) > 0)
520       continue;
521 
522     if (RawComment *const DocComment =
523             getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
524       cacheRawCommentForDecl(*D, *DocComment);
525       comments::FullComment *FC = DocComment->parse(*this, PP, D);
526       ParsedComments[D->getCanonicalDecl()] = FC;
527     }
528   }
529 }
530 
cloneFullComment(comments::FullComment * FC,const Decl * D) const531 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
532                                                     const Decl *D) const {
533   auto *ThisDeclInfo = new (*this) comments::DeclInfo;
534   ThisDeclInfo->CommentDecl = D;
535   ThisDeclInfo->IsFilled = false;
536   ThisDeclInfo->fill();
537   ThisDeclInfo->CommentDecl = FC->getDecl();
538   if (!ThisDeclInfo->TemplateParameters)
539     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
540   comments::FullComment *CFC =
541     new (*this) comments::FullComment(FC->getBlocks(),
542                                       ThisDeclInfo);
543   return CFC;
544 }
545 
getLocalCommentForDeclUncached(const Decl * D) const546 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
547   const RawComment *RC = getRawCommentForDeclNoCache(D);
548   return RC ? RC->parse(*this, nullptr, D) : nullptr;
549 }
550 
getCommentForDecl(const Decl * D,const Preprocessor * PP) const551 comments::FullComment *ASTContext::getCommentForDecl(
552                                               const Decl *D,
553                                               const Preprocessor *PP) const {
554   if (!D || D->isInvalidDecl())
555     return nullptr;
556   D = &adjustDeclToTemplate(*D);
557 
558   const Decl *Canonical = D->getCanonicalDecl();
559   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
560       ParsedComments.find(Canonical);
561 
562   if (Pos != ParsedComments.end()) {
563     if (Canonical != D) {
564       comments::FullComment *FC = Pos->second;
565       comments::FullComment *CFC = cloneFullComment(FC, D);
566       return CFC;
567     }
568     return Pos->second;
569   }
570 
571   const Decl *OriginalDecl = nullptr;
572 
573   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
574   if (!RC) {
575     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
576       SmallVector<const NamedDecl*, 8> Overridden;
577       const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
578       if (OMD && OMD->isPropertyAccessor())
579         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
580           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
581             return cloneFullComment(FC, D);
582       if (OMD)
583         addRedeclaredMethods(OMD, Overridden);
584       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
585       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
586         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
587           return cloneFullComment(FC, D);
588     }
589     else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
590       // Attach any tag type's documentation to its typedef if latter
591       // does not have one of its own.
592       QualType QT = TD->getUnderlyingType();
593       if (const auto *TT = QT->getAs<TagType>())
594         if (const Decl *TD = TT->getDecl())
595           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
596             return cloneFullComment(FC, D);
597     }
598     else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
599       while (IC->getSuperClass()) {
600         IC = IC->getSuperClass();
601         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
602           return cloneFullComment(FC, D);
603       }
604     }
605     else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
606       if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
607         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
608           return cloneFullComment(FC, D);
609     }
610     else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
611       if (!(RD = RD->getDefinition()))
612         return nullptr;
613       // Check non-virtual bases.
614       for (const auto &I : RD->bases()) {
615         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
616           continue;
617         QualType Ty = I.getType();
618         if (Ty.isNull())
619           continue;
620         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
621           if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
622             continue;
623 
624           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
625             return cloneFullComment(FC, D);
626         }
627       }
628       // Check virtual bases.
629       for (const auto &I : RD->vbases()) {
630         if (I.getAccessSpecifier() != AS_public)
631           continue;
632         QualType Ty = I.getType();
633         if (Ty.isNull())
634           continue;
635         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
636           if (!(VirtualBase= VirtualBase->getDefinition()))
637             continue;
638           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
639             return cloneFullComment(FC, D);
640         }
641       }
642     }
643     return nullptr;
644   }
645 
646   // If the RawComment was attached to other redeclaration of this Decl, we
647   // should parse the comment in context of that other Decl.  This is important
648   // because comments can contain references to parameter names which can be
649   // different across redeclarations.
650   if (D != OriginalDecl && OriginalDecl)
651     return getCommentForDecl(OriginalDecl, PP);
652 
653   comments::FullComment *FC = RC->parse(*this, PP, D);
654   ParsedComments[Canonical] = FC;
655   return FC;
656 }
657 
658 void
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & C,TemplateTemplateParmDecl * Parm)659 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
660                                                    const ASTContext &C,
661                                                TemplateTemplateParmDecl *Parm) {
662   ID.AddInteger(Parm->getDepth());
663   ID.AddInteger(Parm->getPosition());
664   ID.AddBoolean(Parm->isParameterPack());
665 
666   TemplateParameterList *Params = Parm->getTemplateParameters();
667   ID.AddInteger(Params->size());
668   for (TemplateParameterList::const_iterator P = Params->begin(),
669                                           PEnd = Params->end();
670        P != PEnd; ++P) {
671     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
672       ID.AddInteger(0);
673       ID.AddBoolean(TTP->isParameterPack());
674       const TypeConstraint *TC = TTP->getTypeConstraint();
675       ID.AddBoolean(TC != nullptr);
676       if (TC)
677         TC->getImmediatelyDeclaredConstraint()->Profile(ID, C,
678                                                         /*Canonical=*/true);
679       if (TTP->isExpandedParameterPack()) {
680         ID.AddBoolean(true);
681         ID.AddInteger(TTP->getNumExpansionParameters());
682       } else
683         ID.AddBoolean(false);
684       continue;
685     }
686 
687     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
688       ID.AddInteger(1);
689       ID.AddBoolean(NTTP->isParameterPack());
690       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
691       if (NTTP->isExpandedParameterPack()) {
692         ID.AddBoolean(true);
693         ID.AddInteger(NTTP->getNumExpansionTypes());
694         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
695           QualType T = NTTP->getExpansionType(I);
696           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
697         }
698       } else
699         ID.AddBoolean(false);
700       continue;
701     }
702 
703     auto *TTP = cast<TemplateTemplateParmDecl>(*P);
704     ID.AddInteger(2);
705     Profile(ID, C, TTP);
706   }
707   Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause();
708   ID.AddBoolean(RequiresClause != nullptr);
709   if (RequiresClause)
710     RequiresClause->Profile(ID, C, /*Canonical=*/true);
711 }
712 
713 static Expr *
canonicalizeImmediatelyDeclaredConstraint(const ASTContext & C,Expr * IDC,QualType ConstrainedType)714 canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC,
715                                           QualType ConstrainedType) {
716   // This is a bit ugly - we need to form a new immediately-declared
717   // constraint that references the new parameter; this would ideally
718   // require semantic analysis (e.g. template<C T> struct S {}; - the
719   // converted arguments of C<T> could be an argument pack if C is
720   // declared as template<typename... T> concept C = ...).
721   // We don't have semantic analysis here so we dig deep into the
722   // ready-made constraint expr and change the thing manually.
723   ConceptSpecializationExpr *CSE;
724   if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC))
725     CSE = cast<ConceptSpecializationExpr>(Fold->getLHS());
726   else
727     CSE = cast<ConceptSpecializationExpr>(IDC);
728   ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments();
729   SmallVector<TemplateArgument, 3> NewConverted;
730   NewConverted.reserve(OldConverted.size());
731   if (OldConverted.front().getKind() == TemplateArgument::Pack) {
732     // The case:
733     // template<typename... T> concept C = true;
734     // template<C<int> T> struct S; -> constraint is C<{T, int}>
735     NewConverted.push_back(ConstrainedType);
736     for (auto &Arg : OldConverted.front().pack_elements().drop_front(1))
737       NewConverted.push_back(Arg);
738     TemplateArgument NewPack(NewConverted);
739 
740     NewConverted.clear();
741     NewConverted.push_back(NewPack);
742     assert(OldConverted.size() == 1 &&
743            "Template parameter pack should be the last parameter");
744   } else {
745     assert(OldConverted.front().getKind() == TemplateArgument::Type &&
746            "Unexpected first argument kind for immediately-declared "
747            "constraint");
748     NewConverted.push_back(ConstrainedType);
749     for (auto &Arg : OldConverted.drop_front(1))
750       NewConverted.push_back(Arg);
751   }
752   Expr *NewIDC = ConceptSpecializationExpr::Create(
753       C, CSE->getNamedConcept(), NewConverted, nullptr,
754       CSE->isInstantiationDependent(), CSE->containsUnexpandedParameterPack());
755 
756   if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC))
757     NewIDC = new (C) CXXFoldExpr(
758         OrigFold->getType(), /*Callee*/nullptr, SourceLocation(), NewIDC,
759         BinaryOperatorKind::BO_LAnd, SourceLocation(), /*RHS=*/nullptr,
760         SourceLocation(), /*NumExpansions=*/None);
761   return NewIDC;
762 }
763 
764 TemplateTemplateParmDecl *
getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl * TTP) const765 ASTContext::getCanonicalTemplateTemplateParmDecl(
766                                           TemplateTemplateParmDecl *TTP) const {
767   // Check if we already have a canonical template template parameter.
768   llvm::FoldingSetNodeID ID;
769   CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
770   void *InsertPos = nullptr;
771   CanonicalTemplateTemplateParm *Canonical
772     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
773   if (Canonical)
774     return Canonical->getParam();
775 
776   // Build a canonical template parameter list.
777   TemplateParameterList *Params = TTP->getTemplateParameters();
778   SmallVector<NamedDecl *, 4> CanonParams;
779   CanonParams.reserve(Params->size());
780   for (TemplateParameterList::const_iterator P = Params->begin(),
781                                           PEnd = Params->end();
782        P != PEnd; ++P) {
783     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
784       TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(*this,
785           getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
786           TTP->getDepth(), TTP->getIndex(), nullptr, false,
787           TTP->isParameterPack(), TTP->hasTypeConstraint(),
788           TTP->isExpandedParameterPack() ?
789           llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
790       if (const auto *TC = TTP->getTypeConstraint()) {
791         QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0);
792         Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint(
793                 *this, TC->getImmediatelyDeclaredConstraint(),
794                 ParamAsArgument);
795         TemplateArgumentListInfo CanonArgsAsWritten;
796         if (auto *Args = TC->getTemplateArgsAsWritten())
797           for (const auto &ArgLoc : Args->arguments())
798             CanonArgsAsWritten.addArgument(
799                 TemplateArgumentLoc(ArgLoc.getArgument(),
800                                     TemplateArgumentLocInfo()));
801         NewTTP->setTypeConstraint(
802             NestedNameSpecifierLoc(),
803             DeclarationNameInfo(TC->getNamedConcept()->getDeclName(),
804                                 SourceLocation()), /*FoundDecl=*/nullptr,
805             // Actually canonicalizing a TemplateArgumentLoc is difficult so we
806             // simply omit the ArgsAsWritten
807             TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC);
808       }
809       CanonParams.push_back(NewTTP);
810     } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
811       QualType T = getCanonicalType(NTTP->getType());
812       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
813       NonTypeTemplateParmDecl *Param;
814       if (NTTP->isExpandedParameterPack()) {
815         SmallVector<QualType, 2> ExpandedTypes;
816         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
817         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
818           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
819           ExpandedTInfos.push_back(
820                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
821         }
822 
823         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
824                                                 SourceLocation(),
825                                                 SourceLocation(),
826                                                 NTTP->getDepth(),
827                                                 NTTP->getPosition(), nullptr,
828                                                 T,
829                                                 TInfo,
830                                                 ExpandedTypes,
831                                                 ExpandedTInfos);
832       } else {
833         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
834                                                 SourceLocation(),
835                                                 SourceLocation(),
836                                                 NTTP->getDepth(),
837                                                 NTTP->getPosition(), nullptr,
838                                                 T,
839                                                 NTTP->isParameterPack(),
840                                                 TInfo);
841       }
842       if (AutoType *AT = T->getContainedAutoType()) {
843         if (AT->isConstrained()) {
844           Param->setPlaceholderTypeConstraint(
845               canonicalizeImmediatelyDeclaredConstraint(
846                   *this, NTTP->getPlaceholderTypeConstraint(), T));
847         }
848       }
849       CanonParams.push_back(Param);
850 
851     } else
852       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
853                                            cast<TemplateTemplateParmDecl>(*P)));
854   }
855 
856   Expr *CanonRequiresClause = nullptr;
857   if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause())
858     CanonRequiresClause = RequiresClause;
859 
860   TemplateTemplateParmDecl *CanonTTP
861     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
862                                        SourceLocation(), TTP->getDepth(),
863                                        TTP->getPosition(),
864                                        TTP->isParameterPack(),
865                                        nullptr,
866                          TemplateParameterList::Create(*this, SourceLocation(),
867                                                        SourceLocation(),
868                                                        CanonParams,
869                                                        SourceLocation(),
870                                                        CanonRequiresClause));
871 
872   // Get the new insert position for the node we care about.
873   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
874   assert(!Canonical && "Shouldn't be in the map!");
875   (void)Canonical;
876 
877   // Create the canonical template template parameter entry.
878   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
879   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
880   return CanonTTP;
881 }
882 
getCXXABIKind() const883 TargetCXXABI::Kind ASTContext::getCXXABIKind() const {
884   auto Kind = getTargetInfo().getCXXABI().getKind();
885   return getLangOpts().CXXABI.getValueOr(Kind);
886 }
887 
createCXXABI(const TargetInfo & T)888 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
889   if (!LangOpts.CPlusPlus) return nullptr;
890 
891   switch (getCXXABIKind()) {
892   case TargetCXXABI::AppleARM64:
893   case TargetCXXABI::Fuchsia:
894   case TargetCXXABI::GenericARM: // Same as Itanium at this level
895   case TargetCXXABI::iOS:
896   case TargetCXXABI::WatchOS:
897   case TargetCXXABI::GenericAArch64:
898   case TargetCXXABI::GenericMIPS:
899   case TargetCXXABI::GenericItanium:
900   case TargetCXXABI::WebAssembly:
901   case TargetCXXABI::XL:
902     return CreateItaniumCXXABI(*this);
903   case TargetCXXABI::Microsoft:
904     return CreateMicrosoftCXXABI(*this);
905   }
906   llvm_unreachable("Invalid CXXABI type!");
907 }
908 
getInterpContext()909 interp::Context &ASTContext::getInterpContext() {
910   if (!InterpContext) {
911     InterpContext.reset(new interp::Context(*this));
912   }
913   return *InterpContext.get();
914 }
915 
getParentMapContext()916 ParentMapContext &ASTContext::getParentMapContext() {
917   if (!ParentMapCtx)
918     ParentMapCtx.reset(new ParentMapContext(*this));
919   return *ParentMapCtx.get();
920 }
921 
getAddressSpaceMap(const TargetInfo & T,const LangOptions & LOpts)922 static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
923                                            const LangOptions &LOpts) {
924   if (LOpts.FakeAddressSpaceMap) {
925     // The fake address space map must have a distinct entry for each
926     // language-specific address space.
927     static const unsigned FakeAddrSpaceMap[] = {
928         0,  // Default
929         1,  // opencl_global
930         3,  // opencl_local
931         2,  // opencl_constant
932         0,  // opencl_private
933         4,  // opencl_generic
934         5,  // opencl_global_device
935         6,  // opencl_global_host
936         7,  // cuda_device
937         8,  // cuda_constant
938         9,  // cuda_shared
939         1,  // sycl_global
940         5,  // sycl_global_device
941         6,  // sycl_global_host
942         3,  // sycl_local
943         0,  // sycl_private
944         10, // ptr32_sptr
945         11, // ptr32_uptr
946         12  // ptr64
947     };
948     return &FakeAddrSpaceMap;
949   } else {
950     return &T.getAddressSpaceMap();
951   }
952 }
953 
isAddrSpaceMapManglingEnabled(const TargetInfo & TI,const LangOptions & LangOpts)954 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
955                                           const LangOptions &LangOpts) {
956   switch (LangOpts.getAddressSpaceMapMangling()) {
957   case LangOptions::ASMM_Target:
958     return TI.useAddressSpaceMapMangling();
959   case LangOptions::ASMM_On:
960     return true;
961   case LangOptions::ASMM_Off:
962     return false;
963   }
964   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
965 }
966 
ASTContext(LangOptions & LOpts,SourceManager & SM,IdentifierTable & idents,SelectorTable & sels,Builtin::Context & builtins)967 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
968                        IdentifierTable &idents, SelectorTable &sels,
969                        Builtin::Context &builtins)
970     : ConstantArrayTypes(this_()), FunctionProtoTypes(this_()),
971       TemplateSpecializationTypes(this_()),
972       DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
973       SubstTemplateTemplateParmPacks(this_()),
974       CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
975       NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)),
976       XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
977                                         LangOpts.XRayNeverInstrumentFiles,
978                                         LangOpts.XRayAttrListFiles, SM)),
979       ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)),
980       PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
981       BuiltinInfo(builtins), DeclarationNames(*this), Comments(SM),
982       CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
983       CompCategories(this_()), LastSDM(nullptr, 0) {
984   TUDecl = TranslationUnitDecl::Create(*this);
985   TraversalScope = {TUDecl};
986 }
987 
~ASTContext()988 ASTContext::~ASTContext() {
989   // Release the DenseMaps associated with DeclContext objects.
990   // FIXME: Is this the ideal solution?
991   ReleaseDeclContextMaps();
992 
993   // Call all of the deallocation functions on all of their targets.
994   for (auto &Pair : Deallocations)
995     (Pair.first)(Pair.second);
996 
997   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
998   // because they can contain DenseMaps.
999   for (llvm::DenseMap<const ObjCContainerDecl*,
1000        const ASTRecordLayout*>::iterator
1001        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
1002     // Increment in loop to prevent using deallocated memory.
1003     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
1004       R->Destroy(*this);
1005 
1006   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
1007        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
1008     // Increment in loop to prevent using deallocated memory.
1009     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
1010       R->Destroy(*this);
1011   }
1012 
1013   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
1014                                                     AEnd = DeclAttrs.end();
1015        A != AEnd; ++A)
1016     A->second->~AttrVec();
1017 
1018   for (const auto &Value : ModuleInitializers)
1019     Value.second->~PerModuleInitializers();
1020 }
1021 
setTraversalScope(const std::vector<Decl * > & TopLevelDecls)1022 void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
1023   TraversalScope = TopLevelDecls;
1024   getParentMapContext().clear();
1025 }
1026 
AddDeallocation(void (* Callback)(void *),void * Data) const1027 void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
1028   Deallocations.push_back({Callback, Data});
1029 }
1030 
1031 void
setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source)1032 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
1033   ExternalSource = std::move(Source);
1034 }
1035 
PrintStats() const1036 void ASTContext::PrintStats() const {
1037   llvm::errs() << "\n*** AST Context Stats:\n";
1038   llvm::errs() << "  " << Types.size() << " types total.\n";
1039 
1040   unsigned counts[] = {
1041 #define TYPE(Name, Parent) 0,
1042 #define ABSTRACT_TYPE(Name, Parent)
1043 #include "clang/AST/TypeNodes.inc"
1044     0 // Extra
1045   };
1046 
1047   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1048     Type *T = Types[i];
1049     counts[(unsigned)T->getTypeClass()]++;
1050   }
1051 
1052   unsigned Idx = 0;
1053   unsigned TotalBytes = 0;
1054 #define TYPE(Name, Parent)                                              \
1055   if (counts[Idx])                                                      \
1056     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
1057                  << " types, " << sizeof(Name##Type) << " each "        \
1058                  << "(" << counts[Idx] * sizeof(Name##Type)             \
1059                  << " bytes)\n";                                        \
1060   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
1061   ++Idx;
1062 #define ABSTRACT_TYPE(Name, Parent)
1063 #include "clang/AST/TypeNodes.inc"
1064 
1065   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
1066 
1067   // Implicit special member functions.
1068   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
1069                << NumImplicitDefaultConstructors
1070                << " implicit default constructors created\n";
1071   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
1072                << NumImplicitCopyConstructors
1073                << " implicit copy constructors created\n";
1074   if (getLangOpts().CPlusPlus)
1075     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
1076                  << NumImplicitMoveConstructors
1077                  << " implicit move constructors created\n";
1078   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
1079                << NumImplicitCopyAssignmentOperators
1080                << " implicit copy assignment operators created\n";
1081   if (getLangOpts().CPlusPlus)
1082     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
1083                  << NumImplicitMoveAssignmentOperators
1084                  << " implicit move assignment operators created\n";
1085   llvm::errs() << NumImplicitDestructorsDeclared << "/"
1086                << NumImplicitDestructors
1087                << " implicit destructors created\n";
1088 
1089   if (ExternalSource) {
1090     llvm::errs() << "\n";
1091     ExternalSource->PrintStats();
1092   }
1093 
1094   BumpAlloc.PrintStats();
1095 }
1096 
mergeDefinitionIntoModule(NamedDecl * ND,Module * M,bool NotifyListeners)1097 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1098                                            bool NotifyListeners) {
1099   if (NotifyListeners)
1100     if (auto *Listener = getASTMutationListener())
1101       Listener->RedefinedHiddenDefinition(ND, M);
1102 
1103   MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
1104 }
1105 
deduplicateMergedDefinitonsFor(NamedDecl * ND)1106 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
1107   auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
1108   if (It == MergedDefModules.end())
1109     return;
1110 
1111   auto &Merged = It->second;
1112   llvm::DenseSet<Module*> Found;
1113   for (Module *&M : Merged)
1114     if (!Found.insert(M).second)
1115       M = nullptr;
1116   Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
1117 }
1118 
1119 ArrayRef<Module *>
getModulesWithMergedDefinition(const NamedDecl * Def)1120 ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) {
1121   auto MergedIt =
1122       MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
1123   if (MergedIt == MergedDefModules.end())
1124     return None;
1125   return MergedIt->second;
1126 }
1127 
resolve(ASTContext & Ctx)1128 void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
1129   if (LazyInitializers.empty())
1130     return;
1131 
1132   auto *Source = Ctx.getExternalSource();
1133   assert(Source && "lazy initializers but no external source");
1134 
1135   auto LazyInits = std::move(LazyInitializers);
1136   LazyInitializers.clear();
1137 
1138   for (auto ID : LazyInits)
1139     Initializers.push_back(Source->GetExternalDecl(ID));
1140 
1141   assert(LazyInitializers.empty() &&
1142          "GetExternalDecl for lazy module initializer added more inits");
1143 }
1144 
addModuleInitializer(Module * M,Decl * D)1145 void ASTContext::addModuleInitializer(Module *M, Decl *D) {
1146   // One special case: if we add a module initializer that imports another
1147   // module, and that module's only initializer is an ImportDecl, simplify.
1148   if (const auto *ID = dyn_cast<ImportDecl>(D)) {
1149     auto It = ModuleInitializers.find(ID->getImportedModule());
1150 
1151     // Maybe the ImportDecl does nothing at all. (Common case.)
1152     if (It == ModuleInitializers.end())
1153       return;
1154 
1155     // Maybe the ImportDecl only imports another ImportDecl.
1156     auto &Imported = *It->second;
1157     if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
1158       Imported.resolve(*this);
1159       auto *OnlyDecl = Imported.Initializers.front();
1160       if (isa<ImportDecl>(OnlyDecl))
1161         D = OnlyDecl;
1162     }
1163   }
1164 
1165   auto *&Inits = ModuleInitializers[M];
1166   if (!Inits)
1167     Inits = new (*this) PerModuleInitializers;
1168   Inits->Initializers.push_back(D);
1169 }
1170 
addLazyModuleInitializers(Module * M,ArrayRef<uint32_t> IDs)1171 void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
1172   auto *&Inits = ModuleInitializers[M];
1173   if (!Inits)
1174     Inits = new (*this) PerModuleInitializers;
1175   Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
1176                                  IDs.begin(), IDs.end());
1177 }
1178 
getModuleInitializers(Module * M)1179 ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
1180   auto It = ModuleInitializers.find(M);
1181   if (It == ModuleInitializers.end())
1182     return None;
1183 
1184   auto *Inits = It->second;
1185   Inits->resolve(*this);
1186   return Inits->Initializers;
1187 }
1188 
getExternCContextDecl() const1189 ExternCContextDecl *ASTContext::getExternCContextDecl() const {
1190   if (!ExternCContext)
1191     ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1192 
1193   return ExternCContext;
1194 }
1195 
1196 BuiltinTemplateDecl *
buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,const IdentifierInfo * II) const1197 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1198                                      const IdentifierInfo *II) const {
1199   auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK);
1200   BuiltinTemplate->setImplicit();
1201   TUDecl->addDecl(BuiltinTemplate);
1202 
1203   return BuiltinTemplate;
1204 }
1205 
1206 BuiltinTemplateDecl *
getMakeIntegerSeqDecl() const1207 ASTContext::getMakeIntegerSeqDecl() const {
1208   if (!MakeIntegerSeqDecl)
1209     MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1210                                                   getMakeIntegerSeqName());
1211   return MakeIntegerSeqDecl;
1212 }
1213 
1214 BuiltinTemplateDecl *
getTypePackElementDecl() const1215 ASTContext::getTypePackElementDecl() const {
1216   if (!TypePackElementDecl)
1217     TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1218                                                    getTypePackElementName());
1219   return TypePackElementDecl;
1220 }
1221 
buildImplicitRecord(StringRef Name,RecordDecl::TagKind TK) const1222 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
1223                                             RecordDecl::TagKind TK) const {
1224   SourceLocation Loc;
1225   RecordDecl *NewDecl;
1226   if (getLangOpts().CPlusPlus)
1227     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1228                                     Loc, &Idents.get(Name));
1229   else
1230     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1231                                  &Idents.get(Name));
1232   NewDecl->setImplicit();
1233   NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1234       const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1235   return NewDecl;
1236 }
1237 
buildImplicitTypedef(QualType T,StringRef Name) const1238 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
1239                                               StringRef Name) const {
1240   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
1241   TypedefDecl *NewDecl = TypedefDecl::Create(
1242       const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1243       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1244   NewDecl->setImplicit();
1245   return NewDecl;
1246 }
1247 
getInt128Decl() const1248 TypedefDecl *ASTContext::getInt128Decl() const {
1249   if (!Int128Decl)
1250     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1251   return Int128Decl;
1252 }
1253 
getUInt128Decl() const1254 TypedefDecl *ASTContext::getUInt128Decl() const {
1255   if (!UInt128Decl)
1256     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1257   return UInt128Decl;
1258 }
1259 
InitBuiltinType(CanQualType & R,BuiltinType::Kind K)1260 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1261   auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
1262   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1263   Types.push_back(Ty);
1264 }
1265 
InitBuiltinTypes(const TargetInfo & Target,const TargetInfo * AuxTarget)1266 void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
1267                                   const TargetInfo *AuxTarget) {
1268   assert((!this->Target || this->Target == &Target) &&
1269          "Incorrect target reinitialization");
1270   assert(VoidTy.isNull() && "Context reinitialized?");
1271 
1272   this->Target = &Target;
1273   this->AuxTarget = AuxTarget;
1274 
1275   ABI.reset(createCXXABI(Target));
1276   AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
1277   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1278 
1279   // C99 6.2.5p19.
1280   InitBuiltinType(VoidTy,              BuiltinType::Void);
1281 
1282   // C99 6.2.5p2.
1283   InitBuiltinType(BoolTy,              BuiltinType::Bool);
1284   // C99 6.2.5p3.
1285   if (LangOpts.CharIsSigned)
1286     InitBuiltinType(CharTy,            BuiltinType::Char_S);
1287   else
1288     InitBuiltinType(CharTy,            BuiltinType::Char_U);
1289   // C99 6.2.5p4.
1290   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
1291   InitBuiltinType(ShortTy,             BuiltinType::Short);
1292   InitBuiltinType(IntTy,               BuiltinType::Int);
1293   InitBuiltinType(LongTy,              BuiltinType::Long);
1294   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
1295 
1296   // C99 6.2.5p6.
1297   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
1298   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
1299   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
1300   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
1301   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
1302 
1303   // C99 6.2.5p10.
1304   InitBuiltinType(FloatTy,             BuiltinType::Float);
1305   InitBuiltinType(DoubleTy,            BuiltinType::Double);
1306   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
1307 
1308   // GNU extension, __float128 for IEEE quadruple precision
1309   InitBuiltinType(Float128Ty,          BuiltinType::Float128);
1310 
1311   // C11 extension ISO/IEC TS 18661-3
1312   InitBuiltinType(Float16Ty,           BuiltinType::Float16);
1313 
1314   // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1315   InitBuiltinType(ShortAccumTy,            BuiltinType::ShortAccum);
1316   InitBuiltinType(AccumTy,                 BuiltinType::Accum);
1317   InitBuiltinType(LongAccumTy,             BuiltinType::LongAccum);
1318   InitBuiltinType(UnsignedShortAccumTy,    BuiltinType::UShortAccum);
1319   InitBuiltinType(UnsignedAccumTy,         BuiltinType::UAccum);
1320   InitBuiltinType(UnsignedLongAccumTy,     BuiltinType::ULongAccum);
1321   InitBuiltinType(ShortFractTy,            BuiltinType::ShortFract);
1322   InitBuiltinType(FractTy,                 BuiltinType::Fract);
1323   InitBuiltinType(LongFractTy,             BuiltinType::LongFract);
1324   InitBuiltinType(UnsignedShortFractTy,    BuiltinType::UShortFract);
1325   InitBuiltinType(UnsignedFractTy,         BuiltinType::UFract);
1326   InitBuiltinType(UnsignedLongFractTy,     BuiltinType::ULongFract);
1327   InitBuiltinType(SatShortAccumTy,         BuiltinType::SatShortAccum);
1328   InitBuiltinType(SatAccumTy,              BuiltinType::SatAccum);
1329   InitBuiltinType(SatLongAccumTy,          BuiltinType::SatLongAccum);
1330   InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1331   InitBuiltinType(SatUnsignedAccumTy,      BuiltinType::SatUAccum);
1332   InitBuiltinType(SatUnsignedLongAccumTy,  BuiltinType::SatULongAccum);
1333   InitBuiltinType(SatShortFractTy,         BuiltinType::SatShortFract);
1334   InitBuiltinType(SatFractTy,              BuiltinType::SatFract);
1335   InitBuiltinType(SatLongFractTy,          BuiltinType::SatLongFract);
1336   InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1337   InitBuiltinType(SatUnsignedFractTy,      BuiltinType::SatUFract);
1338   InitBuiltinType(SatUnsignedLongFractTy,  BuiltinType::SatULongFract);
1339 
1340   // GNU extension, 128-bit integers.
1341   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
1342   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
1343 
1344   // C++ 3.9.1p5
1345   if (TargetInfo::isTypeSigned(Target.getWCharType()))
1346     InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
1347   else  // -fshort-wchar makes wchar_t be unsigned.
1348     InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
1349   if (LangOpts.CPlusPlus && LangOpts.WChar)
1350     WideCharTy = WCharTy;
1351   else {
1352     // C99 (or C++ using -fno-wchar).
1353     WideCharTy = getFromTargetType(Target.getWCharType());
1354   }
1355 
1356   WIntTy = getFromTargetType(Target.getWIntType());
1357 
1358   // C++20 (proposed)
1359   InitBuiltinType(Char8Ty,              BuiltinType::Char8);
1360 
1361   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1362     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
1363   else // C99
1364     Char16Ty = getFromTargetType(Target.getChar16Type());
1365 
1366   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1367     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
1368   else // C99
1369     Char32Ty = getFromTargetType(Target.getChar32Type());
1370 
1371   // Placeholder type for type-dependent expressions whose type is
1372   // completely unknown. No code should ever check a type against
1373   // DependentTy and users should never see it; however, it is here to
1374   // help diagnose failures to properly check for type-dependent
1375   // expressions.
1376   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
1377 
1378   // Placeholder type for functions.
1379   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
1380 
1381   // Placeholder type for bound members.
1382   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
1383 
1384   // Placeholder type for pseudo-objects.
1385   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1386 
1387   // "any" type; useful for debugger-like clients.
1388   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1389 
1390   // Placeholder type for unbridged ARC casts.
1391   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1392 
1393   // Placeholder type for builtin functions.
1394   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1395 
1396   // Placeholder type for OMP array sections.
1397   if (LangOpts.OpenMP) {
1398     InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1399     InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping);
1400     InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator);
1401   }
1402   if (LangOpts.MatrixTypes)
1403     InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx);
1404 
1405   // C99 6.2.5p11.
1406   FloatComplexTy      = getComplexType(FloatTy);
1407   DoubleComplexTy     = getComplexType(DoubleTy);
1408   LongDoubleComplexTy = getComplexType(LongDoubleTy);
1409   Float128ComplexTy   = getComplexType(Float128Ty);
1410 
1411   // Builtin types for 'id', 'Class', and 'SEL'.
1412   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1413   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1414   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1415 
1416   if (LangOpts.OpenCL) {
1417 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1418     InitBuiltinType(SingletonId, BuiltinType::Id);
1419 #include "clang/Basic/OpenCLImageTypes.def"
1420 
1421     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1422     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1423     InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1424     InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1425     InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1426 
1427 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1428     InitBuiltinType(Id##Ty, BuiltinType::Id);
1429 #include "clang/Basic/OpenCLExtensionTypes.def"
1430   }
1431 
1432   if (Target.hasAArch64SVETypes()) {
1433 #define SVE_TYPE(Name, Id, SingletonId) \
1434     InitBuiltinType(SingletonId, BuiltinType::Id);
1435 #include "clang/Basic/AArch64SVEACLETypes.def"
1436   }
1437 
1438   if (Target.getTriple().isPPC64() &&
1439       Target.hasFeature("paired-vector-memops")) {
1440     if (Target.hasFeature("mma")) {
1441 #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \
1442       InitBuiltinType(Id##Ty, BuiltinType::Id);
1443 #include "clang/Basic/PPCTypes.def"
1444     }
1445 #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \
1446     InitBuiltinType(Id##Ty, BuiltinType::Id);
1447 #include "clang/Basic/PPCTypes.def"
1448   }
1449 
1450   if (Target.hasRISCVVTypes()) {
1451 #define RVV_TYPE(Name, Id, SingletonId)                                        \
1452   InitBuiltinType(SingletonId, BuiltinType::Id);
1453 #include "clang/Basic/RISCVVTypes.def"
1454   }
1455 
1456   // Builtin type for __objc_yes and __objc_no
1457   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1458                        SignedCharTy : BoolTy);
1459 
1460   ObjCConstantStringType = QualType();
1461 
1462   ObjCSuperType = QualType();
1463 
1464   // void * type
1465   if (LangOpts.OpenCLGenericAddressSpace) {
1466     auto Q = VoidTy.getQualifiers();
1467     Q.setAddressSpace(LangAS::opencl_generic);
1468     VoidPtrTy = getPointerType(getCanonicalType(
1469         getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
1470   } else {
1471     VoidPtrTy = getPointerType(VoidTy);
1472   }
1473 
1474   // nullptr type (C++0x 2.14.7)
1475   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1476 
1477   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1478   InitBuiltinType(HalfTy, BuiltinType::Half);
1479 
1480   InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16);
1481 
1482   // Builtin type used to help define __builtin_va_list.
1483   VaListTagDecl = nullptr;
1484 
1485   // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls.
1486   if (LangOpts.MicrosoftExt || LangOpts.Borland) {
1487     MSGuidTagDecl = buildImplicitRecord("_GUID");
1488     TUDecl->addDecl(MSGuidTagDecl);
1489   }
1490 }
1491 
getDiagnostics() const1492 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1493   return SourceMgr.getDiagnostics();
1494 }
1495 
getDeclAttrs(const Decl * D)1496 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1497   AttrVec *&Result = DeclAttrs[D];
1498   if (!Result) {
1499     void *Mem = Allocate(sizeof(AttrVec));
1500     Result = new (Mem) AttrVec;
1501   }
1502 
1503   return *Result;
1504 }
1505 
1506 /// Erase the attributes corresponding to the given declaration.
eraseDeclAttrs(const Decl * D)1507 void ASTContext::eraseDeclAttrs(const Decl *D) {
1508   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1509   if (Pos != DeclAttrs.end()) {
1510     Pos->second->~AttrVec();
1511     DeclAttrs.erase(Pos);
1512   }
1513 }
1514 
1515 // FIXME: Remove ?
1516 MemberSpecializationInfo *
getInstantiatedFromStaticDataMember(const VarDecl * Var)1517 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1518   assert(Var->isStaticDataMember() && "Not a static data member");
1519   return getTemplateOrSpecializationInfo(Var)
1520       .dyn_cast<MemberSpecializationInfo *>();
1521 }
1522 
1523 ASTContext::TemplateOrSpecializationInfo
getTemplateOrSpecializationInfo(const VarDecl * Var)1524 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1525   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1526       TemplateOrInstantiation.find(Var);
1527   if (Pos == TemplateOrInstantiation.end())
1528     return {};
1529 
1530   return Pos->second;
1531 }
1532 
1533 void
setInstantiatedFromStaticDataMember(VarDecl * Inst,VarDecl * Tmpl,TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)1534 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1535                                                 TemplateSpecializationKind TSK,
1536                                           SourceLocation PointOfInstantiation) {
1537   assert(Inst->isStaticDataMember() && "Not a static data member");
1538   assert(Tmpl->isStaticDataMember() && "Not a static data member");
1539   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1540                                             Tmpl, TSK, PointOfInstantiation));
1541 }
1542 
1543 void
setTemplateOrSpecializationInfo(VarDecl * Inst,TemplateOrSpecializationInfo TSI)1544 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1545                                             TemplateOrSpecializationInfo TSI) {
1546   assert(!TemplateOrInstantiation[Inst] &&
1547          "Already noted what the variable was instantiated from");
1548   TemplateOrInstantiation[Inst] = TSI;
1549 }
1550 
1551 NamedDecl *
getInstantiatedFromUsingDecl(NamedDecl * UUD)1552 ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
1553   auto Pos = InstantiatedFromUsingDecl.find(UUD);
1554   if (Pos == InstantiatedFromUsingDecl.end())
1555     return nullptr;
1556 
1557   return Pos->second;
1558 }
1559 
1560 void
setInstantiatedFromUsingDecl(NamedDecl * Inst,NamedDecl * Pattern)1561 ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
1562   assert((isa<UsingDecl>(Pattern) ||
1563           isa<UnresolvedUsingValueDecl>(Pattern) ||
1564           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1565          "pattern decl is not a using decl");
1566   assert((isa<UsingDecl>(Inst) ||
1567           isa<UnresolvedUsingValueDecl>(Inst) ||
1568           isa<UnresolvedUsingTypenameDecl>(Inst)) &&
1569          "instantiation did not produce a using decl");
1570   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1571   InstantiatedFromUsingDecl[Inst] = Pattern;
1572 }
1573 
1574 UsingShadowDecl *
getInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst)1575 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1576   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1577     = InstantiatedFromUsingShadowDecl.find(Inst);
1578   if (Pos == InstantiatedFromUsingShadowDecl.end())
1579     return nullptr;
1580 
1581   return Pos->second;
1582 }
1583 
1584 void
setInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst,UsingShadowDecl * Pattern)1585 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1586                                                UsingShadowDecl *Pattern) {
1587   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1588   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1589 }
1590 
getInstantiatedFromUnnamedFieldDecl(FieldDecl * Field)1591 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1592   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1593     = InstantiatedFromUnnamedFieldDecl.find(Field);
1594   if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1595     return nullptr;
1596 
1597   return Pos->second;
1598 }
1599 
setInstantiatedFromUnnamedFieldDecl(FieldDecl * Inst,FieldDecl * Tmpl)1600 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1601                                                      FieldDecl *Tmpl) {
1602   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1603   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1604   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1605          "Already noted what unnamed field was instantiated from");
1606 
1607   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1608 }
1609 
1610 ASTContext::overridden_cxx_method_iterator
overridden_methods_begin(const CXXMethodDecl * Method) const1611 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1612   return overridden_methods(Method).begin();
1613 }
1614 
1615 ASTContext::overridden_cxx_method_iterator
overridden_methods_end(const CXXMethodDecl * Method) const1616 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1617   return overridden_methods(Method).end();
1618 }
1619 
1620 unsigned
overridden_methods_size(const CXXMethodDecl * Method) const1621 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1622   auto Range = overridden_methods(Method);
1623   return Range.end() - Range.begin();
1624 }
1625 
1626 ASTContext::overridden_method_range
overridden_methods(const CXXMethodDecl * Method) const1627 ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
1628   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1629       OverriddenMethods.find(Method->getCanonicalDecl());
1630   if (Pos == OverriddenMethods.end())
1631     return overridden_method_range(nullptr, nullptr);
1632   return overridden_method_range(Pos->second.begin(), Pos->second.end());
1633 }
1634 
addOverriddenMethod(const CXXMethodDecl * Method,const CXXMethodDecl * Overridden)1635 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1636                                      const CXXMethodDecl *Overridden) {
1637   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1638   OverriddenMethods[Method].push_back(Overridden);
1639 }
1640 
getOverriddenMethods(const NamedDecl * D,SmallVectorImpl<const NamedDecl * > & Overridden) const1641 void ASTContext::getOverriddenMethods(
1642                       const NamedDecl *D,
1643                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
1644   assert(D);
1645 
1646   if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1647     Overridden.append(overridden_methods_begin(CXXMethod),
1648                       overridden_methods_end(CXXMethod));
1649     return;
1650   }
1651 
1652   const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1653   if (!Method)
1654     return;
1655 
1656   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1657   Method->getOverriddenMethods(OverDecls);
1658   Overridden.append(OverDecls.begin(), OverDecls.end());
1659 }
1660 
addedLocalImportDecl(ImportDecl * Import)1661 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1662   assert(!Import->getNextLocalImport() &&
1663          "Import declaration already in the chain");
1664   assert(!Import->isFromASTFile() && "Non-local import declaration");
1665   if (!FirstLocalImport) {
1666     FirstLocalImport = Import;
1667     LastLocalImport = Import;
1668     return;
1669   }
1670 
1671   LastLocalImport->setNextLocalImport(Import);
1672   LastLocalImport = Import;
1673 }
1674 
1675 //===----------------------------------------------------------------------===//
1676 //                         Type Sizing and Analysis
1677 //===----------------------------------------------------------------------===//
1678 
1679 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1680 /// scalar floating point type.
getFloatTypeSemantics(QualType T) const1681 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1682   switch (T->castAs<BuiltinType>()->getKind()) {
1683   default:
1684     llvm_unreachable("Not a floating point type!");
1685   case BuiltinType::BFloat16:
1686     return Target->getBFloat16Format();
1687   case BuiltinType::Float16:
1688   case BuiltinType::Half:
1689     return Target->getHalfFormat();
1690   case BuiltinType::Float:      return Target->getFloatFormat();
1691   case BuiltinType::Double:     return Target->getDoubleFormat();
1692   case BuiltinType::LongDouble:
1693     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1694       return AuxTarget->getLongDoubleFormat();
1695     return Target->getLongDoubleFormat();
1696   case BuiltinType::Float128:
1697     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1698       return AuxTarget->getFloat128Format();
1699     return Target->getFloat128Format();
1700   }
1701 }
1702 
getDeclAlign(const Decl * D,bool ForAlignof) const1703 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1704   unsigned Align = Target->getCharWidth();
1705 
1706   bool UseAlignAttrOnly = false;
1707   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1708     Align = AlignFromAttr;
1709 
1710     // __attribute__((aligned)) can increase or decrease alignment
1711     // *except* on a struct or struct member, where it only increases
1712     // alignment unless 'packed' is also specified.
1713     //
1714     // It is an error for alignas to decrease alignment, so we can
1715     // ignore that possibility;  Sema should diagnose it.
1716     if (isa<FieldDecl>(D)) {
1717       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1718         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1719     } else {
1720       UseAlignAttrOnly = true;
1721     }
1722   }
1723   else if (isa<FieldDecl>(D))
1724       UseAlignAttrOnly =
1725         D->hasAttr<PackedAttr>() ||
1726         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1727 
1728   // If we're using the align attribute only, just ignore everything
1729   // else about the declaration and its type.
1730   if (UseAlignAttrOnly) {
1731     // do nothing
1732   } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1733     QualType T = VD->getType();
1734     if (const auto *RT = T->getAs<ReferenceType>()) {
1735       if (ForAlignof)
1736         T = RT->getPointeeType();
1737       else
1738         T = getPointerType(RT->getPointeeType());
1739     }
1740     QualType BaseT = getBaseElementType(T);
1741     if (T->isFunctionType())
1742       Align = getTypeInfoImpl(T.getTypePtr()).Align;
1743     else if (!BaseT->isIncompleteType()) {
1744       // Adjust alignments of declarations with array type by the
1745       // large-array alignment on the target.
1746       if (const ArrayType *arrayType = getAsArrayType(T)) {
1747         unsigned MinWidth = Target->getLargeArrayMinWidth();
1748         if (!ForAlignof && MinWidth) {
1749           if (isa<VariableArrayType>(arrayType))
1750             Align = std::max(Align, Target->getLargeArrayAlign());
1751           else if (isa<ConstantArrayType>(arrayType) &&
1752                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1753             Align = std::max(Align, Target->getLargeArrayAlign());
1754         }
1755       }
1756       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1757       if (BaseT.getQualifiers().hasUnaligned())
1758         Align = Target->getCharWidth();
1759       if (const auto *VD = dyn_cast<VarDecl>(D)) {
1760         if (VD->hasGlobalStorage() && !ForAlignof) {
1761           uint64_t TypeSize = getTypeSize(T.getTypePtr());
1762           Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
1763         }
1764       }
1765     }
1766 
1767     // Fields can be subject to extra alignment constraints, like if
1768     // the field is packed, the struct is packed, or the struct has a
1769     // a max-field-alignment constraint (#pragma pack).  So calculate
1770     // the actual alignment of the field within the struct, and then
1771     // (as we're expected to) constrain that by the alignment of the type.
1772     if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1773       const RecordDecl *Parent = Field->getParent();
1774       // We can only produce a sensible answer if the record is valid.
1775       if (!Parent->isInvalidDecl()) {
1776         const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1777 
1778         // Start with the record's overall alignment.
1779         unsigned FieldAlign = toBits(Layout.getAlignment());
1780 
1781         // Use the GCD of that and the offset within the record.
1782         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1783         if (Offset > 0) {
1784           // Alignment is always a power of 2, so the GCD will be a power of 2,
1785           // which means we get to do this crazy thing instead of Euclid's.
1786           uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1787           if (LowBitOfOffset < FieldAlign)
1788             FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1789         }
1790 
1791         Align = std::min(Align, FieldAlign);
1792       }
1793     }
1794   }
1795 
1796   // Some targets have hard limitation on the maximum requestable alignment in
1797   // aligned attribute for static variables.
1798   const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute();
1799   const auto *VD = dyn_cast<VarDecl>(D);
1800   if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static)
1801     Align = std::min(Align, MaxAlignedAttr);
1802 
1803   return toCharUnitsFromBits(Align);
1804 }
1805 
getExnObjectAlignment() const1806 CharUnits ASTContext::getExnObjectAlignment() const {
1807   return toCharUnitsFromBits(Target->getExnObjectAlignment());
1808 }
1809 
1810 // getTypeInfoDataSizeInChars - Return the size of a type, in
1811 // chars. If the type is a record, its data size is returned.  This is
1812 // the size of the memcpy that's performed when assigning this type
1813 // using a trivial copy/move assignment operator.
getTypeInfoDataSizeInChars(QualType T) const1814 TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1815   TypeInfoChars Info = getTypeInfoInChars(T);
1816 
1817   // In C++, objects can sometimes be allocated into the tail padding
1818   // of a base-class subobject.  We decide whether that's possible
1819   // during class layout, so here we can just trust the layout results.
1820   if (getLangOpts().CPlusPlus) {
1821     if (const auto *RT = T->getAs<RecordType>()) {
1822       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1823       Info.Width = layout.getDataSize();
1824     }
1825   }
1826 
1827   return Info;
1828 }
1829 
1830 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1831 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1832 TypeInfoChars
getConstantArrayInfoInChars(const ASTContext & Context,const ConstantArrayType * CAT)1833 static getConstantArrayInfoInChars(const ASTContext &Context,
1834                                    const ConstantArrayType *CAT) {
1835   TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType());
1836   uint64_t Size = CAT->getSize().getZExtValue();
1837   assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <=
1838               (uint64_t)(-1)/Size) &&
1839          "Overflow in array type char size evaluation");
1840   uint64_t Width = EltInfo.Width.getQuantity() * Size;
1841   unsigned Align = EltInfo.Align.getQuantity();
1842   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1843       Context.getTargetInfo().getPointerWidth(0) == 64)
1844     Width = llvm::alignTo(Width, Align);
1845   return TypeInfoChars(CharUnits::fromQuantity(Width),
1846                        CharUnits::fromQuantity(Align),
1847                        EltInfo.AlignIsRequired);
1848 }
1849 
getTypeInfoInChars(const Type * T) const1850 TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const {
1851   if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1852     return getConstantArrayInfoInChars(*this, CAT);
1853   TypeInfo Info = getTypeInfo(T);
1854   return TypeInfoChars(toCharUnitsFromBits(Info.Width),
1855                        toCharUnitsFromBits(Info.Align),
1856                        Info.AlignIsRequired);
1857 }
1858 
getTypeInfoInChars(QualType T) const1859 TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const {
1860   return getTypeInfoInChars(T.getTypePtr());
1861 }
1862 
isAlignmentRequired(const Type * T) const1863 bool ASTContext::isAlignmentRequired(const Type *T) const {
1864   return getTypeInfo(T).AlignIsRequired;
1865 }
1866 
isAlignmentRequired(QualType T) const1867 bool ASTContext::isAlignmentRequired(QualType T) const {
1868   return isAlignmentRequired(T.getTypePtr());
1869 }
1870 
getTypeAlignIfKnown(QualType T,bool NeedsPreferredAlignment) const1871 unsigned ASTContext::getTypeAlignIfKnown(QualType T,
1872                                          bool NeedsPreferredAlignment) const {
1873   // An alignment on a typedef overrides anything else.
1874   if (const auto *TT = T->getAs<TypedefType>())
1875     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1876       return Align;
1877 
1878   // If we have an (array of) complete type, we're done.
1879   T = getBaseElementType(T);
1880   if (!T->isIncompleteType())
1881     return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T);
1882 
1883   // If we had an array type, its element type might be a typedef
1884   // type with an alignment attribute.
1885   if (const auto *TT = T->getAs<TypedefType>())
1886     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1887       return Align;
1888 
1889   // Otherwise, see if the declaration of the type had an attribute.
1890   if (const auto *TT = T->getAs<TagType>())
1891     return TT->getDecl()->getMaxAlignment();
1892 
1893   return 0;
1894 }
1895 
getTypeInfo(const Type * T) const1896 TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1897   TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1898   if (I != MemoizedTypeInfo.end())
1899     return I->second;
1900 
1901   // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1902   TypeInfo TI = getTypeInfoImpl(T);
1903   MemoizedTypeInfo[T] = TI;
1904   return TI;
1905 }
1906 
1907 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1908 /// method does not work on incomplete types.
1909 ///
1910 /// FIXME: Pointers into different addr spaces could have different sizes and
1911 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1912 /// should take a QualType, &c.
getTypeInfoImpl(const Type * T) const1913 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1914   uint64_t Width = 0;
1915   unsigned Align = 8;
1916   bool AlignIsRequired = false;
1917   unsigned AS = 0;
1918   switch (T->getTypeClass()) {
1919 #define TYPE(Class, Base)
1920 #define ABSTRACT_TYPE(Class, Base)
1921 #define NON_CANONICAL_TYPE(Class, Base)
1922 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1923 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1924   case Type::Class:                                                            \
1925   assert(!T->isDependentType() && "should not see dependent types here");      \
1926   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1927 #include "clang/AST/TypeNodes.inc"
1928     llvm_unreachable("Should not see dependent types");
1929 
1930   case Type::FunctionNoProto:
1931   case Type::FunctionProto:
1932     // GCC extension: alignof(function) = 32 bits
1933     Width = 0;
1934     Align = 32;
1935     break;
1936 
1937   case Type::IncompleteArray:
1938   case Type::VariableArray:
1939   case Type::ConstantArray: {
1940     // Model non-constant sized arrays as size zero, but track the alignment.
1941     uint64_t Size = 0;
1942     if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1943       Size = CAT->getSize().getZExtValue();
1944 
1945     TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType());
1946     assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1947            "Overflow in array type bit size evaluation");
1948     Width = EltInfo.Width * Size;
1949     Align = EltInfo.Align;
1950     AlignIsRequired = EltInfo.AlignIsRequired;
1951     if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1952         getTargetInfo().getPointerWidth(0) == 64)
1953       Width = llvm::alignTo(Width, Align);
1954     break;
1955   }
1956 
1957   case Type::ExtVector:
1958   case Type::Vector: {
1959     const auto *VT = cast<VectorType>(T);
1960     TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1961     Width = EltInfo.Width * VT->getNumElements();
1962     Align = Width;
1963     // If the alignment is not a power of 2, round up to the next power of 2.
1964     // This happens for non-power-of-2 length vectors.
1965     if (Align & (Align-1)) {
1966       Align = llvm::NextPowerOf2(Align);
1967       Width = llvm::alignTo(Width, Align);
1968     }
1969     // Adjust the alignment based on the target max.
1970     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1971     if (TargetVectorAlign && TargetVectorAlign < Align)
1972       Align = TargetVectorAlign;
1973     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
1974       // Adjust the alignment for fixed-length SVE vectors. This is important
1975       // for non-power-of-2 vector lengths.
1976       Align = 128;
1977     else if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
1978       // Adjust the alignment for fixed-length SVE predicates.
1979       Align = 16;
1980     break;
1981   }
1982 
1983   case Type::ConstantMatrix: {
1984     const auto *MT = cast<ConstantMatrixType>(T);
1985     TypeInfo ElementInfo = getTypeInfo(MT->getElementType());
1986     // The internal layout of a matrix value is implementation defined.
1987     // Initially be ABI compatible with arrays with respect to alignment and
1988     // size.
1989     Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns();
1990     Align = ElementInfo.Align;
1991     break;
1992   }
1993 
1994   case Type::Builtin:
1995     switch (cast<BuiltinType>(T)->getKind()) {
1996     default: llvm_unreachable("Unknown builtin type!");
1997     case BuiltinType::Void:
1998       // GCC extension: alignof(void) = 8 bits.
1999       Width = 0;
2000       Align = 8;
2001       break;
2002     case BuiltinType::Bool:
2003       Width = Target->getBoolWidth();
2004       Align = Target->getBoolAlign();
2005       break;
2006     case BuiltinType::Char_S:
2007     case BuiltinType::Char_U:
2008     case BuiltinType::UChar:
2009     case BuiltinType::SChar:
2010     case BuiltinType::Char8:
2011       Width = Target->getCharWidth();
2012       Align = Target->getCharAlign();
2013       break;
2014     case BuiltinType::WChar_S:
2015     case BuiltinType::WChar_U:
2016       Width = Target->getWCharWidth();
2017       Align = Target->getWCharAlign();
2018       break;
2019     case BuiltinType::Char16:
2020       Width = Target->getChar16Width();
2021       Align = Target->getChar16Align();
2022       break;
2023     case BuiltinType::Char32:
2024       Width = Target->getChar32Width();
2025       Align = Target->getChar32Align();
2026       break;
2027     case BuiltinType::UShort:
2028     case BuiltinType::Short:
2029       Width = Target->getShortWidth();
2030       Align = Target->getShortAlign();
2031       break;
2032     case BuiltinType::UInt:
2033     case BuiltinType::Int:
2034       Width = Target->getIntWidth();
2035       Align = Target->getIntAlign();
2036       break;
2037     case BuiltinType::ULong:
2038     case BuiltinType::Long:
2039       Width = Target->getLongWidth();
2040       Align = Target->getLongAlign();
2041       break;
2042     case BuiltinType::ULongLong:
2043     case BuiltinType::LongLong:
2044       Width = Target->getLongLongWidth();
2045       Align = Target->getLongLongAlign();
2046       break;
2047     case BuiltinType::Int128:
2048     case BuiltinType::UInt128:
2049       Width = 128;
2050       Align = 128; // int128_t is 128-bit aligned on all targets.
2051       break;
2052     case BuiltinType::ShortAccum:
2053     case BuiltinType::UShortAccum:
2054     case BuiltinType::SatShortAccum:
2055     case BuiltinType::SatUShortAccum:
2056       Width = Target->getShortAccumWidth();
2057       Align = Target->getShortAccumAlign();
2058       break;
2059     case BuiltinType::Accum:
2060     case BuiltinType::UAccum:
2061     case BuiltinType::SatAccum:
2062     case BuiltinType::SatUAccum:
2063       Width = Target->getAccumWidth();
2064       Align = Target->getAccumAlign();
2065       break;
2066     case BuiltinType::LongAccum:
2067     case BuiltinType::ULongAccum:
2068     case BuiltinType::SatLongAccum:
2069     case BuiltinType::SatULongAccum:
2070       Width = Target->getLongAccumWidth();
2071       Align = Target->getLongAccumAlign();
2072       break;
2073     case BuiltinType::ShortFract:
2074     case BuiltinType::UShortFract:
2075     case BuiltinType::SatShortFract:
2076     case BuiltinType::SatUShortFract:
2077       Width = Target->getShortFractWidth();
2078       Align = Target->getShortFractAlign();
2079       break;
2080     case BuiltinType::Fract:
2081     case BuiltinType::UFract:
2082     case BuiltinType::SatFract:
2083     case BuiltinType::SatUFract:
2084       Width = Target->getFractWidth();
2085       Align = Target->getFractAlign();
2086       break;
2087     case BuiltinType::LongFract:
2088     case BuiltinType::ULongFract:
2089     case BuiltinType::SatLongFract:
2090     case BuiltinType::SatULongFract:
2091       Width = Target->getLongFractWidth();
2092       Align = Target->getLongFractAlign();
2093       break;
2094     case BuiltinType::BFloat16:
2095       Width = Target->getBFloat16Width();
2096       Align = Target->getBFloat16Align();
2097       break;
2098     case BuiltinType::Float16:
2099     case BuiltinType::Half:
2100       if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
2101           !getLangOpts().OpenMPIsDevice) {
2102         Width = Target->getHalfWidth();
2103         Align = Target->getHalfAlign();
2104       } else {
2105         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2106                "Expected OpenMP device compilation.");
2107         Width = AuxTarget->getHalfWidth();
2108         Align = AuxTarget->getHalfAlign();
2109       }
2110       break;
2111     case BuiltinType::Float:
2112       Width = Target->getFloatWidth();
2113       Align = Target->getFloatAlign();
2114       break;
2115     case BuiltinType::Double:
2116       Width = Target->getDoubleWidth();
2117       Align = Target->getDoubleAlign();
2118       break;
2119     case BuiltinType::LongDouble:
2120       if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2121           (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
2122            Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
2123         Width = AuxTarget->getLongDoubleWidth();
2124         Align = AuxTarget->getLongDoubleAlign();
2125       } else {
2126         Width = Target->getLongDoubleWidth();
2127         Align = Target->getLongDoubleAlign();
2128       }
2129       break;
2130     case BuiltinType::Float128:
2131       if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
2132           !getLangOpts().OpenMPIsDevice) {
2133         Width = Target->getFloat128Width();
2134         Align = Target->getFloat128Align();
2135       } else {
2136         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2137                "Expected OpenMP device compilation.");
2138         Width = AuxTarget->getFloat128Width();
2139         Align = AuxTarget->getFloat128Align();
2140       }
2141       break;
2142     case BuiltinType::NullPtr:
2143       Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
2144       Align = Target->getPointerAlign(0); //   == sizeof(void*)
2145       break;
2146     case BuiltinType::ObjCId:
2147     case BuiltinType::ObjCClass:
2148     case BuiltinType::ObjCSel:
2149       Width = Target->getPointerWidth(0);
2150       Align = Target->getPointerAlign(0);
2151       break;
2152     case BuiltinType::OCLSampler:
2153     case BuiltinType::OCLEvent:
2154     case BuiltinType::OCLClkEvent:
2155     case BuiltinType::OCLQueue:
2156     case BuiltinType::OCLReserveID:
2157 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2158     case BuiltinType::Id:
2159 #include "clang/Basic/OpenCLImageTypes.def"
2160 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2161   case BuiltinType::Id:
2162 #include "clang/Basic/OpenCLExtensionTypes.def"
2163       AS = getTargetAddressSpace(
2164           Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
2165       Width = Target->getPointerWidth(AS);
2166       Align = Target->getPointerAlign(AS);
2167       break;
2168     // The SVE types are effectively target-specific.  The length of an
2169     // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
2170     // of 128 bits.  There is one predicate bit for each vector byte, so the
2171     // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
2172     //
2173     // Because the length is only known at runtime, we use a dummy value
2174     // of 0 for the static length.  The alignment values are those defined
2175     // by the Procedure Call Standard for the Arm Architecture.
2176 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
2177                         IsSigned, IsFP, IsBF)                                  \
2178   case BuiltinType::Id:                                                        \
2179     Width = 0;                                                                 \
2180     Align = 128;                                                               \
2181     break;
2182 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
2183   case BuiltinType::Id:                                                        \
2184     Width = 0;                                                                 \
2185     Align = 16;                                                                \
2186     break;
2187 #include "clang/Basic/AArch64SVEACLETypes.def"
2188 #define PPC_VECTOR_TYPE(Name, Id, Size)                                        \
2189   case BuiltinType::Id:                                                        \
2190     Width = Size;                                                              \
2191     Align = Size;                                                              \
2192     break;
2193 #include "clang/Basic/PPCTypes.def"
2194 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned,   \
2195                         IsFP)                                                  \
2196   case BuiltinType::Id:                                                        \
2197     Width = 0;                                                                 \
2198     Align = ElBits;                                                            \
2199     break;
2200 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind)                      \
2201   case BuiltinType::Id:                                                        \
2202     Width = 0;                                                                 \
2203     Align = 8;                                                                 \
2204     break;
2205 #include "clang/Basic/RISCVVTypes.def"
2206     }
2207     break;
2208   case Type::ObjCObjectPointer:
2209     Width = Target->getPointerWidth(0);
2210     Align = Target->getPointerAlign(0);
2211     break;
2212   case Type::BlockPointer:
2213     AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
2214     Width = Target->getPointerWidth(AS);
2215     Align = Target->getPointerAlign(AS);
2216     break;
2217   case Type::LValueReference:
2218   case Type::RValueReference:
2219     // alignof and sizeof should never enter this code path here, so we go
2220     // the pointer route.
2221     AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
2222     Width = Target->getPointerWidth(AS);
2223     Align = Target->getPointerAlign(AS);
2224     break;
2225   case Type::Pointer:
2226     AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
2227     Width = Target->getPointerWidth(AS);
2228     Align = Target->getPointerAlign(AS);
2229     break;
2230   case Type::MemberPointer: {
2231     const auto *MPT = cast<MemberPointerType>(T);
2232     CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
2233     Width = MPI.Width;
2234     Align = MPI.Align;
2235     break;
2236   }
2237   case Type::Complex: {
2238     // Complex types have the same alignment as their elements, but twice the
2239     // size.
2240     TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
2241     Width = EltInfo.Width * 2;
2242     Align = EltInfo.Align;
2243     break;
2244   }
2245   case Type::ObjCObject:
2246     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
2247   case Type::Adjusted:
2248   case Type::Decayed:
2249     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
2250   case Type::ObjCInterface: {
2251     const auto *ObjCI = cast<ObjCInterfaceType>(T);
2252     if (ObjCI->getDecl()->isInvalidDecl()) {
2253       Width = 8;
2254       Align = 8;
2255       break;
2256     }
2257     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2258     Width = toBits(Layout.getSize());
2259     Align = toBits(Layout.getAlignment());
2260     break;
2261   }
2262   case Type::ExtInt: {
2263     const auto *EIT = cast<ExtIntType>(T);
2264     Align =
2265         std::min(static_cast<unsigned>(std::max(
2266                      getCharWidth(), llvm::PowerOf2Ceil(EIT->getNumBits()))),
2267                  Target->getLongLongAlign());
2268     Width = llvm::alignTo(EIT->getNumBits(), Align);
2269     break;
2270   }
2271   case Type::Record:
2272   case Type::Enum: {
2273     const auto *TT = cast<TagType>(T);
2274 
2275     if (TT->getDecl()->isInvalidDecl()) {
2276       Width = 8;
2277       Align = 8;
2278       break;
2279     }
2280 
2281     if (const auto *ET = dyn_cast<EnumType>(TT)) {
2282       const EnumDecl *ED = ET->getDecl();
2283       TypeInfo Info =
2284           getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
2285       if (unsigned AttrAlign = ED->getMaxAlignment()) {
2286         Info.Align = AttrAlign;
2287         Info.AlignIsRequired = true;
2288       }
2289       return Info;
2290     }
2291 
2292     const auto *RT = cast<RecordType>(TT);
2293     const RecordDecl *RD = RT->getDecl();
2294     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2295     Width = toBits(Layout.getSize());
2296     Align = toBits(Layout.getAlignment());
2297     AlignIsRequired = RD->hasAttr<AlignedAttr>();
2298     break;
2299   }
2300 
2301   case Type::SubstTemplateTypeParm:
2302     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
2303                        getReplacementType().getTypePtr());
2304 
2305   case Type::Auto:
2306   case Type::DeducedTemplateSpecialization: {
2307     const auto *A = cast<DeducedType>(T);
2308     assert(!A->getDeducedType().isNull() &&
2309            "cannot request the size of an undeduced or dependent auto type");
2310     return getTypeInfo(A->getDeducedType().getTypePtr());
2311   }
2312 
2313   case Type::Paren:
2314     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
2315 
2316   case Type::MacroQualified:
2317     return getTypeInfo(
2318         cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
2319 
2320   case Type::ObjCTypeParam:
2321     return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
2322 
2323   case Type::Typedef: {
2324     const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
2325     TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
2326     // If the typedef has an aligned attribute on it, it overrides any computed
2327     // alignment we have.  This violates the GCC documentation (which says that
2328     // attribute(aligned) can only round up) but matches its implementation.
2329     if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
2330       Align = AttrAlign;
2331       AlignIsRequired = true;
2332     } else {
2333       Align = Info.Align;
2334       AlignIsRequired = Info.AlignIsRequired;
2335     }
2336     Width = Info.Width;
2337     break;
2338   }
2339 
2340   case Type::Elaborated:
2341     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2342 
2343   case Type::Attributed:
2344     return getTypeInfo(
2345                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2346 
2347   case Type::Atomic: {
2348     // Start with the base type information.
2349     TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2350     Width = Info.Width;
2351     Align = Info.Align;
2352 
2353     if (!Width) {
2354       // An otherwise zero-sized type should still generate an
2355       // atomic operation.
2356       Width = Target->getCharWidth();
2357       assert(Align);
2358     } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2359       // If the size of the type doesn't exceed the platform's max
2360       // atomic promotion width, make the size and alignment more
2361       // favorable to atomic operations:
2362 
2363       // Round the size up to a power of 2.
2364       if (!llvm::isPowerOf2_64(Width))
2365         Width = llvm::NextPowerOf2(Width);
2366 
2367       // Set the alignment equal to the size.
2368       Align = static_cast<unsigned>(Width);
2369     }
2370   }
2371   break;
2372 
2373   case Type::Pipe:
2374     Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
2375     Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
2376     break;
2377   }
2378 
2379   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
2380   return TypeInfo(Width, Align, AlignIsRequired);
2381 }
2382 
getTypeUnadjustedAlign(const Type * T) const2383 unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2384   UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2385   if (I != MemoizedUnadjustedAlign.end())
2386     return I->second;
2387 
2388   unsigned UnadjustedAlign;
2389   if (const auto *RT = T->getAs<RecordType>()) {
2390     const RecordDecl *RD = RT->getDecl();
2391     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2392     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2393   } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2394     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2395     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2396   } else {
2397     UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
2398   }
2399 
2400   MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2401   return UnadjustedAlign;
2402 }
2403 
getOpenMPDefaultSimdAlign(QualType T) const2404 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
2405   unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
2406   return SimdAlign;
2407 }
2408 
2409 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
toCharUnitsFromBits(int64_t BitSize) const2410 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
2411   return CharUnits::fromQuantity(BitSize / getCharWidth());
2412 }
2413 
2414 /// toBits - Convert a size in characters to a size in characters.
toBits(CharUnits CharSize) const2415 int64_t ASTContext::toBits(CharUnits CharSize) const {
2416   return CharSize.getQuantity() * getCharWidth();
2417 }
2418 
2419 /// getTypeSizeInChars - Return the size of the specified type, in characters.
2420 /// This method does not work on incomplete types.
getTypeSizeInChars(QualType T) const2421 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
2422   return getTypeInfoInChars(T).Width;
2423 }
getTypeSizeInChars(const Type * T) const2424 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
2425   return getTypeInfoInChars(T).Width;
2426 }
2427 
2428 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2429 /// characters. This method does not work on incomplete types.
getTypeAlignInChars(QualType T) const2430 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
2431   return toCharUnitsFromBits(getTypeAlign(T));
2432 }
getTypeAlignInChars(const Type * T) const2433 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
2434   return toCharUnitsFromBits(getTypeAlign(T));
2435 }
2436 
2437 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2438 /// type, in characters, before alignment adustments. This method does
2439 /// not work on incomplete types.
getTypeUnadjustedAlignInChars(QualType T) const2440 CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
2441   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2442 }
getTypeUnadjustedAlignInChars(const Type * T) const2443 CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
2444   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2445 }
2446 
2447 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2448 /// type for the current target in bits.  This can be different than the ABI
2449 /// alignment in cases where it is beneficial for performance or backwards
2450 /// compatibility preserving to overalign a data type. (Note: despite the name,
2451 /// the preferred alignment is ABI-impacting, and not an optimization.)
getPreferredTypeAlign(const Type * T) const2452 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2453   TypeInfo TI = getTypeInfo(T);
2454   unsigned ABIAlign = TI.Align;
2455 
2456   T = T->getBaseElementTypeUnsafe();
2457 
2458   // The preferred alignment of member pointers is that of a pointer.
2459   if (T->isMemberPointerType())
2460     return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
2461 
2462   if (!Target->allowsLargerPreferedTypeAlignment())
2463     return ABIAlign;
2464 
2465   if (const auto *RT = T->getAs<RecordType>()) {
2466     if (TI.AlignIsRequired || RT->getDecl()->isInvalidDecl())
2467       return ABIAlign;
2468 
2469     unsigned PreferredAlign = static_cast<unsigned>(
2470         toBits(getASTRecordLayout(RT->getDecl()).PreferredAlignment));
2471     assert(PreferredAlign >= ABIAlign &&
2472            "PreferredAlign should be at least as large as ABIAlign.");
2473     return PreferredAlign;
2474   }
2475 
2476   // Double (and, for targets supporting AIX `power` alignment, long double) and
2477   // long long should be naturally aligned (despite requiring less alignment) if
2478   // possible.
2479   if (const auto *CT = T->getAs<ComplexType>())
2480     T = CT->getElementType().getTypePtr();
2481   if (const auto *ET = T->getAs<EnumType>())
2482     T = ET->getDecl()->getIntegerType().getTypePtr();
2483   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2484       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2485       T->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2486       (T->isSpecificBuiltinType(BuiltinType::LongDouble) &&
2487        Target->defaultsToAIXPowerAlignment()))
2488     // Don't increase the alignment if an alignment attribute was specified on a
2489     // typedef declaration.
2490     if (!TI.AlignIsRequired)
2491       return std::max(ABIAlign, (unsigned)getTypeSize(T));
2492 
2493   return ABIAlign;
2494 }
2495 
2496 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2497 /// for __attribute__((aligned)) on this target, to be used if no alignment
2498 /// value is specified.
getTargetDefaultAlignForAttributeAligned() const2499 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
2500   return getTargetInfo().getDefaultAlignForAttributeAligned();
2501 }
2502 
2503 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
2504 /// to a global variable of the specified type.
getAlignOfGlobalVar(QualType T) const2505 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
2506   uint64_t TypeSize = getTypeSize(T.getTypePtr());
2507   return std::max(getPreferredTypeAlign(T),
2508                   getTargetInfo().getMinGlobalAlign(TypeSize));
2509 }
2510 
2511 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
2512 /// should be given to a global variable of the specified type.
getAlignOfGlobalVarInChars(QualType T) const2513 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
2514   return toCharUnitsFromBits(getAlignOfGlobalVar(T));
2515 }
2516 
getOffsetOfBaseWithVBPtr(const CXXRecordDecl * RD) const2517 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
2518   CharUnits Offset = CharUnits::Zero();
2519   const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2520   while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2521     Offset += Layout->getBaseClassOffset(Base);
2522     Layout = &getASTRecordLayout(Base);
2523   }
2524   return Offset;
2525 }
2526 
getMemberPointerPathAdjustment(const APValue & MP) const2527 CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const {
2528   const ValueDecl *MPD = MP.getMemberPointerDecl();
2529   CharUnits ThisAdjustment = CharUnits::Zero();
2530   ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
2531   bool DerivedMember = MP.isMemberPointerToDerivedMember();
2532   const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
2533   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
2534     const CXXRecordDecl *Base = RD;
2535     const CXXRecordDecl *Derived = Path[I];
2536     if (DerivedMember)
2537       std::swap(Base, Derived);
2538     ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base);
2539     RD = Path[I];
2540   }
2541   if (DerivedMember)
2542     ThisAdjustment = -ThisAdjustment;
2543   return ThisAdjustment;
2544 }
2545 
2546 /// DeepCollectObjCIvars -
2547 /// This routine first collects all declared, but not synthesized, ivars in
2548 /// super class and then collects all ivars, including those synthesized for
2549 /// current class. This routine is used for implementation of current class
2550 /// when all ivars, declared and synthesized are known.
DeepCollectObjCIvars(const ObjCInterfaceDecl * OI,bool leafClass,SmallVectorImpl<const ObjCIvarDecl * > & Ivars) const2551 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
2552                                       bool leafClass,
2553                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2554   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2555     DeepCollectObjCIvars(SuperClass, false, Ivars);
2556   if (!leafClass) {
2557     for (const auto *I : OI->ivars())
2558       Ivars.push_back(I);
2559   } else {
2560     auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2561     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2562          Iv= Iv->getNextIvar())
2563       Ivars.push_back(Iv);
2564   }
2565 }
2566 
2567 /// CollectInheritedProtocols - Collect all protocols in current class and
2568 /// those inherited by it.
CollectInheritedProtocols(const Decl * CDecl,llvm::SmallPtrSet<ObjCProtocolDecl *,8> & Protocols)2569 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
2570                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2571   if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2572     // We can use protocol_iterator here instead of
2573     // all_referenced_protocol_iterator since we are walking all categories.
2574     for (auto *Proto : OI->all_referenced_protocols()) {
2575       CollectInheritedProtocols(Proto, Protocols);
2576     }
2577 
2578     // Categories of this Interface.
2579     for (const auto *Cat : OI->visible_categories())
2580       CollectInheritedProtocols(Cat, Protocols);
2581 
2582     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2583       while (SD) {
2584         CollectInheritedProtocols(SD, Protocols);
2585         SD = SD->getSuperClass();
2586       }
2587   } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2588     for (auto *Proto : OC->protocols()) {
2589       CollectInheritedProtocols(Proto, Protocols);
2590     }
2591   } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2592     // Insert the protocol.
2593     if (!Protocols.insert(
2594           const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2595       return;
2596 
2597     for (auto *Proto : OP->protocols())
2598       CollectInheritedProtocols(Proto, Protocols);
2599   }
2600 }
2601 
unionHasUniqueObjectRepresentations(const ASTContext & Context,const RecordDecl * RD)2602 static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
2603                                                 const RecordDecl *RD) {
2604   assert(RD->isUnion() && "Must be union type");
2605   CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2606 
2607   for (const auto *Field : RD->fields()) {
2608     if (!Context.hasUniqueObjectRepresentations(Field->getType()))
2609       return false;
2610     CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2611     if (FieldSize != UnionSize)
2612       return false;
2613   }
2614   return !RD->field_empty();
2615 }
2616 
isStructEmpty(QualType Ty)2617 static bool isStructEmpty(QualType Ty) {
2618   const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl();
2619 
2620   if (!RD->field_empty())
2621     return false;
2622 
2623   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD))
2624     return ClassDecl->isEmpty();
2625 
2626   return true;
2627 }
2628 
2629 static llvm::Optional<int64_t>
structHasUniqueObjectRepresentations(const ASTContext & Context,const RecordDecl * RD)2630 structHasUniqueObjectRepresentations(const ASTContext &Context,
2631                                      const RecordDecl *RD) {
2632   assert(!RD->isUnion() && "Must be struct/class type");
2633   const auto &Layout = Context.getASTRecordLayout(RD);
2634 
2635   int64_t CurOffsetInBits = 0;
2636   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2637     if (ClassDecl->isDynamicClass())
2638       return llvm::None;
2639 
2640     SmallVector<std::pair<QualType, int64_t>, 4> Bases;
2641     for (const auto &Base : ClassDecl->bases()) {
2642       // Empty types can be inherited from, and non-empty types can potentially
2643       // have tail padding, so just make sure there isn't an error.
2644       if (!isStructEmpty(Base.getType())) {
2645         llvm::Optional<int64_t> Size = structHasUniqueObjectRepresentations(
2646             Context, Base.getType()->castAs<RecordType>()->getDecl());
2647         if (!Size)
2648           return llvm::None;
2649         Bases.emplace_back(Base.getType(), Size.getValue());
2650       }
2651     }
2652 
2653     llvm::sort(Bases, [&](const std::pair<QualType, int64_t> &L,
2654                           const std::pair<QualType, int64_t> &R) {
2655       return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) <
2656              Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl());
2657     });
2658 
2659     for (const auto &Base : Bases) {
2660       int64_t BaseOffset = Context.toBits(
2661           Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl()));
2662       int64_t BaseSize = Base.second;
2663       if (BaseOffset != CurOffsetInBits)
2664         return llvm::None;
2665       CurOffsetInBits = BaseOffset + BaseSize;
2666     }
2667   }
2668 
2669   for (const auto *Field : RD->fields()) {
2670     if (!Field->getType()->isReferenceType() &&
2671         !Context.hasUniqueObjectRepresentations(Field->getType()))
2672       return llvm::None;
2673 
2674     int64_t FieldSizeInBits =
2675         Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2676     if (Field->isBitField()) {
2677       int64_t BitfieldSize = Field->getBitWidthValue(Context);
2678 
2679       if (BitfieldSize > FieldSizeInBits)
2680         return llvm::None;
2681       FieldSizeInBits = BitfieldSize;
2682     }
2683 
2684     int64_t FieldOffsetInBits = Context.getFieldOffset(Field);
2685 
2686     if (FieldOffsetInBits != CurOffsetInBits)
2687       return llvm::None;
2688 
2689     CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits;
2690   }
2691 
2692   return CurOffsetInBits;
2693 }
2694 
hasUniqueObjectRepresentations(QualType Ty) const2695 bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const {
2696   // C++17 [meta.unary.prop]:
2697   //   The predicate condition for a template specialization
2698   //   has_unique_object_representations<T> shall be
2699   //   satisfied if and only if:
2700   //     (9.1) - T is trivially copyable, and
2701   //     (9.2) - any two objects of type T with the same value have the same
2702   //     object representation, where two objects
2703   //   of array or non-union class type are considered to have the same value
2704   //   if their respective sequences of
2705   //   direct subobjects have the same values, and two objects of union type
2706   //   are considered to have the same
2707   //   value if they have the same active member and the corresponding members
2708   //   have the same value.
2709   //   The set of scalar types for which this condition holds is
2710   //   implementation-defined. [ Note: If a type has padding
2711   //   bits, the condition does not hold; otherwise, the condition holds true
2712   //   for unsigned integral types. -- end note ]
2713   assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
2714 
2715   // Arrays are unique only if their element type is unique.
2716   if (Ty->isArrayType())
2717     return hasUniqueObjectRepresentations(getBaseElementType(Ty));
2718 
2719   // (9.1) - T is trivially copyable...
2720   if (!Ty.isTriviallyCopyableType(*this))
2721     return false;
2722 
2723   // All integrals and enums are unique.
2724   if (Ty->isIntegralOrEnumerationType())
2725     return true;
2726 
2727   // All other pointers are unique.
2728   if (Ty->isPointerType())
2729     return true;
2730 
2731   if (Ty->isMemberPointerType()) {
2732     const auto *MPT = Ty->getAs<MemberPointerType>();
2733     return !ABI->getMemberPointerInfo(MPT).HasPadding;
2734   }
2735 
2736   if (Ty->isRecordType()) {
2737     const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
2738 
2739     if (Record->isInvalidDecl())
2740       return false;
2741 
2742     if (Record->isUnion())
2743       return unionHasUniqueObjectRepresentations(*this, Record);
2744 
2745     Optional<int64_t> StructSize =
2746         structHasUniqueObjectRepresentations(*this, Record);
2747 
2748     return StructSize &&
2749            StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty));
2750   }
2751 
2752   // FIXME: More cases to handle here (list by rsmith):
2753   // vectors (careful about, eg, vector of 3 foo)
2754   // _Complex int and friends
2755   // _Atomic T
2756   // Obj-C block pointers
2757   // Obj-C object pointers
2758   // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2759   // clk_event_t, queue_t, reserve_id_t)
2760   // There're also Obj-C class types and the Obj-C selector type, but I think it
2761   // makes sense for those to return false here.
2762 
2763   return false;
2764 }
2765 
CountNonClassIvars(const ObjCInterfaceDecl * OI) const2766 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2767   unsigned count = 0;
2768   // Count ivars declared in class extension.
2769   for (const auto *Ext : OI->known_extensions())
2770     count += Ext->ivar_size();
2771 
2772   // Count ivar defined in this class's implementation.  This
2773   // includes synthesized ivars.
2774   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2775     count += ImplDecl->ivar_size();
2776 
2777   return count;
2778 }
2779 
isSentinelNullExpr(const Expr * E)2780 bool ASTContext::isSentinelNullExpr(const Expr *E) {
2781   if (!E)
2782     return false;
2783 
2784   // nullptr_t is always treated as null.
2785   if (E->getType()->isNullPtrType()) return true;
2786 
2787   if (E->getType()->isAnyPointerType() &&
2788       E->IgnoreParenCasts()->isNullPointerConstant(*this,
2789                                                 Expr::NPC_ValueDependentIsNull))
2790     return true;
2791 
2792   // Unfortunately, __null has type 'int'.
2793   if (isa<GNUNullExpr>(E)) return true;
2794 
2795   return false;
2796 }
2797 
2798 /// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2799 /// exists.
getObjCImplementation(ObjCInterfaceDecl * D)2800 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2801   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2802     I = ObjCImpls.find(D);
2803   if (I != ObjCImpls.end())
2804     return cast<ObjCImplementationDecl>(I->second);
2805   return nullptr;
2806 }
2807 
2808 /// Get the implementation of ObjCCategoryDecl, or nullptr if none
2809 /// exists.
getObjCImplementation(ObjCCategoryDecl * D)2810 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2811   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2812     I = ObjCImpls.find(D);
2813   if (I != ObjCImpls.end())
2814     return cast<ObjCCategoryImplDecl>(I->second);
2815   return nullptr;
2816 }
2817 
2818 /// Set the implementation of ObjCInterfaceDecl.
setObjCImplementation(ObjCInterfaceDecl * IFaceD,ObjCImplementationDecl * ImplD)2819 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2820                            ObjCImplementationDecl *ImplD) {
2821   assert(IFaceD && ImplD && "Passed null params");
2822   ObjCImpls[IFaceD] = ImplD;
2823 }
2824 
2825 /// Set the implementation of ObjCCategoryDecl.
setObjCImplementation(ObjCCategoryDecl * CatD,ObjCCategoryImplDecl * ImplD)2826 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2827                            ObjCCategoryImplDecl *ImplD) {
2828   assert(CatD && ImplD && "Passed null params");
2829   ObjCImpls[CatD] = ImplD;
2830 }
2831 
2832 const ObjCMethodDecl *
getObjCMethodRedeclaration(const ObjCMethodDecl * MD) const2833 ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
2834   return ObjCMethodRedecls.lookup(MD);
2835 }
2836 
setObjCMethodRedeclaration(const ObjCMethodDecl * MD,const ObjCMethodDecl * Redecl)2837 void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2838                                             const ObjCMethodDecl *Redecl) {
2839   assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2840   ObjCMethodRedecls[MD] = Redecl;
2841 }
2842 
getObjContainingInterface(const NamedDecl * ND) const2843 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2844                                               const NamedDecl *ND) const {
2845   if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2846     return ID;
2847   if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2848     return CD->getClassInterface();
2849   if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2850     return IMD->getClassInterface();
2851 
2852   return nullptr;
2853 }
2854 
2855 /// Get the copy initialization expression of VarDecl, or nullptr if
2856 /// none exists.
getBlockVarCopyInit(const VarDecl * VD) const2857 BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
2858   assert(VD && "Passed null params");
2859   assert(VD->hasAttr<BlocksAttr>() &&
2860          "getBlockVarCopyInits - not __block var");
2861   auto I = BlockVarCopyInits.find(VD);
2862   if (I != BlockVarCopyInits.end())
2863     return I->second;
2864   return {nullptr, false};
2865 }
2866 
2867 /// Set the copy initialization expression of a block var decl.
setBlockVarCopyInit(const VarDecl * VD,Expr * CopyExpr,bool CanThrow)2868 void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
2869                                      bool CanThrow) {
2870   assert(VD && CopyExpr && "Passed null params");
2871   assert(VD->hasAttr<BlocksAttr>() &&
2872          "setBlockVarCopyInits - not __block var");
2873   BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
2874 }
2875 
CreateTypeSourceInfo(QualType T,unsigned DataSize) const2876 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2877                                                  unsigned DataSize) const {
2878   if (!DataSize)
2879     DataSize = TypeLoc::getFullDataSizeForType(T);
2880   else
2881     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2882            "incorrect data size provided to CreateTypeSourceInfo!");
2883 
2884   auto *TInfo =
2885     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2886   new (TInfo) TypeSourceInfo(T);
2887   return TInfo;
2888 }
2889 
getTrivialTypeSourceInfo(QualType T,SourceLocation L) const2890 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2891                                                      SourceLocation L) const {
2892   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2893   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2894   return DI;
2895 }
2896 
2897 const ASTRecordLayout &
getASTObjCInterfaceLayout(const ObjCInterfaceDecl * D) const2898 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2899   return getObjCLayout(D, nullptr);
2900 }
2901 
2902 const ASTRecordLayout &
getASTObjCImplementationLayout(const ObjCImplementationDecl * D) const2903 ASTContext::getASTObjCImplementationLayout(
2904                                         const ObjCImplementationDecl *D) const {
2905   return getObjCLayout(D->getClassInterface(), D);
2906 }
2907 
2908 //===----------------------------------------------------------------------===//
2909 //                   Type creation/memoization methods
2910 //===----------------------------------------------------------------------===//
2911 
2912 QualType
getExtQualType(const Type * baseType,Qualifiers quals) const2913 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2914   unsigned fastQuals = quals.getFastQualifiers();
2915   quals.removeFastQualifiers();
2916 
2917   // Check if we've already instantiated this type.
2918   llvm::FoldingSetNodeID ID;
2919   ExtQuals::Profile(ID, baseType, quals);
2920   void *insertPos = nullptr;
2921   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2922     assert(eq->getQualifiers() == quals);
2923     return QualType(eq, fastQuals);
2924   }
2925 
2926   // If the base type is not canonical, make the appropriate canonical type.
2927   QualType canon;
2928   if (!baseType->isCanonicalUnqualified()) {
2929     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2930     canonSplit.Quals.addConsistentQualifiers(quals);
2931     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2932 
2933     // Re-find the insert position.
2934     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2935   }
2936 
2937   auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2938   ExtQualNodes.InsertNode(eq, insertPos);
2939   return QualType(eq, fastQuals);
2940 }
2941 
getAddrSpaceQualType(QualType T,LangAS AddressSpace) const2942 QualType ASTContext::getAddrSpaceQualType(QualType T,
2943                                           LangAS AddressSpace) const {
2944   QualType CanT = getCanonicalType(T);
2945   if (CanT.getAddressSpace() == AddressSpace)
2946     return T;
2947 
2948   // If we are composing extended qualifiers together, merge together
2949   // into one ExtQuals node.
2950   QualifierCollector Quals;
2951   const Type *TypeNode = Quals.strip(T);
2952 
2953   // If this type already has an address space specified, it cannot get
2954   // another one.
2955   assert(!Quals.hasAddressSpace() &&
2956          "Type cannot be in multiple addr spaces!");
2957   Quals.addAddressSpace(AddressSpace);
2958 
2959   return getExtQualType(TypeNode, Quals);
2960 }
2961 
removeAddrSpaceQualType(QualType T) const2962 QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
2963   // If the type is not qualified with an address space, just return it
2964   // immediately.
2965   if (!T.hasAddressSpace())
2966     return T;
2967 
2968   // If we are composing extended qualifiers together, merge together
2969   // into one ExtQuals node.
2970   QualifierCollector Quals;
2971   const Type *TypeNode;
2972 
2973   while (T.hasAddressSpace()) {
2974     TypeNode = Quals.strip(T);
2975 
2976     // If the type no longer has an address space after stripping qualifiers,
2977     // jump out.
2978     if (!QualType(TypeNode, 0).hasAddressSpace())
2979       break;
2980 
2981     // There might be sugar in the way. Strip it and try again.
2982     T = T.getSingleStepDesugaredType(*this);
2983   }
2984 
2985   Quals.removeAddressSpace();
2986 
2987   // Removal of the address space can mean there are no longer any
2988   // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
2989   // or required.
2990   if (Quals.hasNonFastQualifiers())
2991     return getExtQualType(TypeNode, Quals);
2992   else
2993     return QualType(TypeNode, Quals.getFastQualifiers());
2994 }
2995 
getObjCGCQualType(QualType T,Qualifiers::GC GCAttr) const2996 QualType ASTContext::getObjCGCQualType(QualType T,
2997                                        Qualifiers::GC GCAttr) const {
2998   QualType CanT = getCanonicalType(T);
2999   if (CanT.getObjCGCAttr() == GCAttr)
3000     return T;
3001 
3002   if (const auto *ptr = T->getAs<PointerType>()) {
3003     QualType Pointee = ptr->getPointeeType();
3004     if (Pointee->isAnyPointerType()) {
3005       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
3006       return getPointerType(ResultType);
3007     }
3008   }
3009 
3010   // If we are composing extended qualifiers together, merge together
3011   // into one ExtQuals node.
3012   QualifierCollector Quals;
3013   const Type *TypeNode = Quals.strip(T);
3014 
3015   // If this type already has an ObjCGC specified, it cannot get
3016   // another one.
3017   assert(!Quals.hasObjCGCAttr() &&
3018          "Type cannot have multiple ObjCGCs!");
3019   Quals.addObjCGCAttr(GCAttr);
3020 
3021   return getExtQualType(TypeNode, Quals);
3022 }
3023 
removePtrSizeAddrSpace(QualType T) const3024 QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
3025   if (const PointerType *Ptr = T->getAs<PointerType>()) {
3026     QualType Pointee = Ptr->getPointeeType();
3027     if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
3028       return getPointerType(removeAddrSpaceQualType(Pointee));
3029     }
3030   }
3031   return T;
3032 }
3033 
adjustFunctionType(const FunctionType * T,FunctionType::ExtInfo Info)3034 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
3035                                                    FunctionType::ExtInfo Info) {
3036   if (T->getExtInfo() == Info)
3037     return T;
3038 
3039   QualType Result;
3040   if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
3041     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
3042   } else {
3043     const auto *FPT = cast<FunctionProtoType>(T);
3044     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3045     EPI.ExtInfo = Info;
3046     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
3047   }
3048 
3049   return cast<FunctionType>(Result.getTypePtr());
3050 }
3051 
adjustDeducedFunctionResultType(FunctionDecl * FD,QualType ResultType)3052 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
3053                                                  QualType ResultType) {
3054   FD = FD->getMostRecentDecl();
3055   while (true) {
3056     const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
3057     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3058     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
3059     if (FunctionDecl *Next = FD->getPreviousDecl())
3060       FD = Next;
3061     else
3062       break;
3063   }
3064   if (ASTMutationListener *L = getASTMutationListener())
3065     L->DeducedReturnType(FD, ResultType);
3066 }
3067 
3068 /// Get a function type and produce the equivalent function type with the
3069 /// specified exception specification. Type sugar that can be present on a
3070 /// declaration of a function with an exception specification is permitted
3071 /// and preserved. Other type sugar (for instance, typedefs) is not.
getFunctionTypeWithExceptionSpec(QualType Orig,const FunctionProtoType::ExceptionSpecInfo & ESI)3072 QualType ASTContext::getFunctionTypeWithExceptionSpec(
3073     QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) {
3074   // Might have some parens.
3075   if (const auto *PT = dyn_cast<ParenType>(Orig))
3076     return getParenType(
3077         getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
3078 
3079   // Might be wrapped in a macro qualified type.
3080   if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
3081     return getMacroQualifiedType(
3082         getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
3083         MQT->getMacroIdentifier());
3084 
3085   // Might have a calling-convention attribute.
3086   if (const auto *AT = dyn_cast<AttributedType>(Orig))
3087     return getAttributedType(
3088         AT->getAttrKind(),
3089         getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
3090         getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
3091 
3092   // Anything else must be a function type. Rebuild it with the new exception
3093   // specification.
3094   const auto *Proto = Orig->castAs<FunctionProtoType>();
3095   return getFunctionType(
3096       Proto->getReturnType(), Proto->getParamTypes(),
3097       Proto->getExtProtoInfo().withExceptionSpec(ESI));
3098 }
3099 
hasSameFunctionTypeIgnoringExceptionSpec(QualType T,QualType U)3100 bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
3101                                                           QualType U) {
3102   return hasSameType(T, U) ||
3103          (getLangOpts().CPlusPlus17 &&
3104           hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
3105                       getFunctionTypeWithExceptionSpec(U, EST_None)));
3106 }
3107 
getFunctionTypeWithoutPtrSizes(QualType T)3108 QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
3109   if (const auto *Proto = T->getAs<FunctionProtoType>()) {
3110     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3111     SmallVector<QualType, 16> Args(Proto->param_types());
3112     for (unsigned i = 0, n = Args.size(); i != n; ++i)
3113       Args[i] = removePtrSizeAddrSpace(Args[i]);
3114     return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
3115   }
3116 
3117   if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
3118     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3119     return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
3120   }
3121 
3122   return T;
3123 }
3124 
hasSameFunctionTypeIgnoringPtrSizes(QualType T,QualType U)3125 bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
3126   return hasSameType(T, U) ||
3127          hasSameType(getFunctionTypeWithoutPtrSizes(T),
3128                      getFunctionTypeWithoutPtrSizes(U));
3129 }
3130 
adjustExceptionSpec(FunctionDecl * FD,const FunctionProtoType::ExceptionSpecInfo & ESI,bool AsWritten)3131 void ASTContext::adjustExceptionSpec(
3132     FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
3133     bool AsWritten) {
3134   // Update the type.
3135   QualType Updated =
3136       getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
3137   FD->setType(Updated);
3138 
3139   if (!AsWritten)
3140     return;
3141 
3142   // Update the type in the type source information too.
3143   if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
3144     // If the type and the type-as-written differ, we may need to update
3145     // the type-as-written too.
3146     if (TSInfo->getType() != FD->getType())
3147       Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
3148 
3149     // FIXME: When we get proper type location information for exceptions,
3150     // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
3151     // up the TypeSourceInfo;
3152     assert(TypeLoc::getFullDataSizeForType(Updated) ==
3153                TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
3154            "TypeLoc size mismatch from updating exception specification");
3155     TSInfo->overrideType(Updated);
3156   }
3157 }
3158 
3159 /// getComplexType - Return the uniqued reference to the type for a complex
3160 /// number with the specified element type.
getComplexType(QualType T) const3161 QualType ASTContext::getComplexType(QualType T) const {
3162   // Unique pointers, to guarantee there is only one pointer of a particular
3163   // structure.
3164   llvm::FoldingSetNodeID ID;
3165   ComplexType::Profile(ID, T);
3166 
3167   void *InsertPos = nullptr;
3168   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
3169     return QualType(CT, 0);
3170 
3171   // If the pointee type isn't canonical, this won't be a canonical type either,
3172   // so fill in the canonical type field.
3173   QualType Canonical;
3174   if (!T.isCanonical()) {
3175     Canonical = getComplexType(getCanonicalType(T));
3176 
3177     // Get the new insert position for the node we care about.
3178     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
3179     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3180   }
3181   auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
3182   Types.push_back(New);
3183   ComplexTypes.InsertNode(New, InsertPos);
3184   return QualType(New, 0);
3185 }
3186 
3187 /// getPointerType - Return the uniqued reference to the type for a pointer to
3188 /// the specified type.
getPointerType(QualType T) const3189 QualType ASTContext::getPointerType(QualType T) const {
3190   // Unique pointers, to guarantee there is only one pointer of a particular
3191   // structure.
3192   llvm::FoldingSetNodeID ID;
3193   PointerType::Profile(ID, T);
3194 
3195   void *InsertPos = nullptr;
3196   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3197     return QualType(PT, 0);
3198 
3199   // If the pointee type isn't canonical, this won't be a canonical type either,
3200   // so fill in the canonical type field.
3201   QualType Canonical;
3202   if (!T.isCanonical()) {
3203     Canonical = getPointerType(getCanonicalType(T));
3204 
3205     // Get the new insert position for the node we care about.
3206     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3207     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3208   }
3209   auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
3210   Types.push_back(New);
3211   PointerTypes.InsertNode(New, InsertPos);
3212   return QualType(New, 0);
3213 }
3214 
getAdjustedType(QualType Orig,QualType New) const3215 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
3216   llvm::FoldingSetNodeID ID;
3217   AdjustedType::Profile(ID, Orig, New);
3218   void *InsertPos = nullptr;
3219   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3220   if (AT)
3221     return QualType(AT, 0);
3222 
3223   QualType Canonical = getCanonicalType(New);
3224 
3225   // Get the new insert position for the node we care about.
3226   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3227   assert(!AT && "Shouldn't be in the map!");
3228 
3229   AT = new (*this, TypeAlignment)
3230       AdjustedType(Type::Adjusted, Orig, New, Canonical);
3231   Types.push_back(AT);
3232   AdjustedTypes.InsertNode(AT, InsertPos);
3233   return QualType(AT, 0);
3234 }
3235 
getDecayedType(QualType T) const3236 QualType ASTContext::getDecayedType(QualType T) const {
3237   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
3238 
3239   QualType Decayed;
3240 
3241   // C99 6.7.5.3p7:
3242   //   A declaration of a parameter as "array of type" shall be
3243   //   adjusted to "qualified pointer to type", where the type
3244   //   qualifiers (if any) are those specified within the [ and ] of
3245   //   the array type derivation.
3246   if (T->isArrayType())
3247     Decayed = getArrayDecayedType(T);
3248 
3249   // C99 6.7.5.3p8:
3250   //   A declaration of a parameter as "function returning type"
3251   //   shall be adjusted to "pointer to function returning type", as
3252   //   in 6.3.2.1.
3253   if (T->isFunctionType())
3254     Decayed = getPointerType(T);
3255 
3256   llvm::FoldingSetNodeID ID;
3257   AdjustedType::Profile(ID, T, Decayed);
3258   void *InsertPos = nullptr;
3259   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3260   if (AT)
3261     return QualType(AT, 0);
3262 
3263   QualType Canonical = getCanonicalType(Decayed);
3264 
3265   // Get the new insert position for the node we care about.
3266   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3267   assert(!AT && "Shouldn't be in the map!");
3268 
3269   AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
3270   Types.push_back(AT);
3271   AdjustedTypes.InsertNode(AT, InsertPos);
3272   return QualType(AT, 0);
3273 }
3274 
3275 /// getBlockPointerType - Return the uniqued reference to the type for
3276 /// a pointer to the specified block.
getBlockPointerType(QualType T) const3277 QualType ASTContext::getBlockPointerType(QualType T) const {
3278   assert(T->isFunctionType() && "block of function types only");
3279   // Unique pointers, to guarantee there is only one block of a particular
3280   // structure.
3281   llvm::FoldingSetNodeID ID;
3282   BlockPointerType::Profile(ID, T);
3283 
3284   void *InsertPos = nullptr;
3285   if (BlockPointerType *PT =
3286         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3287     return QualType(PT, 0);
3288 
3289   // If the block pointee type isn't canonical, this won't be a canonical
3290   // type either so fill in the canonical type field.
3291   QualType Canonical;
3292   if (!T.isCanonical()) {
3293     Canonical = getBlockPointerType(getCanonicalType(T));
3294 
3295     // Get the new insert position for the node we care about.
3296     BlockPointerType *NewIP =
3297       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3298     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3299   }
3300   auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
3301   Types.push_back(New);
3302   BlockPointerTypes.InsertNode(New, InsertPos);
3303   return QualType(New, 0);
3304 }
3305 
3306 /// getLValueReferenceType - Return the uniqued reference to the type for an
3307 /// lvalue reference to the specified type.
3308 QualType
getLValueReferenceType(QualType T,bool SpelledAsLValue) const3309 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
3310   assert(getCanonicalType(T) != OverloadTy &&
3311          "Unresolved overloaded function type");
3312 
3313   // Unique pointers, to guarantee there is only one pointer of a particular
3314   // structure.
3315   llvm::FoldingSetNodeID ID;
3316   ReferenceType::Profile(ID, T, SpelledAsLValue);
3317 
3318   void *InsertPos = nullptr;
3319   if (LValueReferenceType *RT =
3320         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3321     return QualType(RT, 0);
3322 
3323   const auto *InnerRef = T->getAs<ReferenceType>();
3324 
3325   // If the referencee type isn't canonical, this won't be a canonical type
3326   // either, so fill in the canonical type field.
3327   QualType Canonical;
3328   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
3329     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3330     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
3331 
3332     // Get the new insert position for the node we care about.
3333     LValueReferenceType *NewIP =
3334       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3335     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3336   }
3337 
3338   auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
3339                                                              SpelledAsLValue);
3340   Types.push_back(New);
3341   LValueReferenceTypes.InsertNode(New, InsertPos);
3342 
3343   return QualType(New, 0);
3344 }
3345 
3346 /// getRValueReferenceType - Return the uniqued reference to the type for an
3347 /// rvalue reference to the specified type.
getRValueReferenceType(QualType T) const3348 QualType ASTContext::getRValueReferenceType(QualType T) const {
3349   // Unique pointers, to guarantee there is only one pointer of a particular
3350   // structure.
3351   llvm::FoldingSetNodeID ID;
3352   ReferenceType::Profile(ID, T, false);
3353 
3354   void *InsertPos = nullptr;
3355   if (RValueReferenceType *RT =
3356         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3357     return QualType(RT, 0);
3358 
3359   const auto *InnerRef = T->getAs<ReferenceType>();
3360 
3361   // If the referencee type isn't canonical, this won't be a canonical type
3362   // either, so fill in the canonical type field.
3363   QualType Canonical;
3364   if (InnerRef || !T.isCanonical()) {
3365     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3366     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
3367 
3368     // Get the new insert position for the node we care about.
3369     RValueReferenceType *NewIP =
3370       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3371     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3372   }
3373 
3374   auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
3375   Types.push_back(New);
3376   RValueReferenceTypes.InsertNode(New, InsertPos);
3377   return QualType(New, 0);
3378 }
3379 
3380 /// getMemberPointerType - Return the uniqued reference to the type for a
3381 /// member pointer to the specified type, in the specified class.
getMemberPointerType(QualType T,const Type * Cls) const3382 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
3383   // Unique pointers, to guarantee there is only one pointer of a particular
3384   // structure.
3385   llvm::FoldingSetNodeID ID;
3386   MemberPointerType::Profile(ID, T, Cls);
3387 
3388   void *InsertPos = nullptr;
3389   if (MemberPointerType *PT =
3390       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3391     return QualType(PT, 0);
3392 
3393   // If the pointee or class type isn't canonical, this won't be a canonical
3394   // type either, so fill in the canonical type field.
3395   QualType Canonical;
3396   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
3397     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
3398 
3399     // Get the new insert position for the node we care about.
3400     MemberPointerType *NewIP =
3401       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3402     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3403   }
3404   auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
3405   Types.push_back(New);
3406   MemberPointerTypes.InsertNode(New, InsertPos);
3407   return QualType(New, 0);
3408 }
3409 
3410 /// getConstantArrayType - Return the unique reference to the type for an
3411 /// array of the specified element type.
getConstantArrayType(QualType EltTy,const llvm::APInt & ArySizeIn,const Expr * SizeExpr,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals) const3412 QualType ASTContext::getConstantArrayType(QualType EltTy,
3413                                           const llvm::APInt &ArySizeIn,
3414                                           const Expr *SizeExpr,
3415                                           ArrayType::ArraySizeModifier ASM,
3416                                           unsigned IndexTypeQuals) const {
3417   assert((EltTy->isDependentType() ||
3418           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
3419          "Constant array of VLAs is illegal!");
3420 
3421   // We only need the size as part of the type if it's instantiation-dependent.
3422   if (SizeExpr && !SizeExpr->isInstantiationDependent())
3423     SizeExpr = nullptr;
3424 
3425   // Convert the array size into a canonical width matching the pointer size for
3426   // the target.
3427   llvm::APInt ArySize(ArySizeIn);
3428   ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3429 
3430   llvm::FoldingSetNodeID ID;
3431   ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
3432                              IndexTypeQuals);
3433 
3434   void *InsertPos = nullptr;
3435   if (ConstantArrayType *ATP =
3436       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3437     return QualType(ATP, 0);
3438 
3439   // If the element type isn't canonical or has qualifiers, or the array bound
3440   // is instantiation-dependent, this won't be a canonical type either, so fill
3441   // in the canonical type field.
3442   QualType Canon;
3443   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
3444     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3445     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
3446                                  ASM, IndexTypeQuals);
3447     Canon = getQualifiedType(Canon, canonSplit.Quals);
3448 
3449     // Get the new insert position for the node we care about.
3450     ConstantArrayType *NewIP =
3451       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3452     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3453   }
3454 
3455   void *Mem = Allocate(
3456       ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
3457       TypeAlignment);
3458   auto *New = new (Mem)
3459     ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
3460   ConstantArrayTypes.InsertNode(New, InsertPos);
3461   Types.push_back(New);
3462   return QualType(New, 0);
3463 }
3464 
3465 /// getVariableArrayDecayedType - Turns the given type, which may be
3466 /// variably-modified, into the corresponding type with all the known
3467 /// sizes replaced with [*].
getVariableArrayDecayedType(QualType type) const3468 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
3469   // Vastly most common case.
3470   if (!type->isVariablyModifiedType()) return type;
3471 
3472   QualType result;
3473 
3474   SplitQualType split = type.getSplitDesugaredType();
3475   const Type *ty = split.Ty;
3476   switch (ty->getTypeClass()) {
3477 #define TYPE(Class, Base)
3478 #define ABSTRACT_TYPE(Class, Base)
3479 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3480 #include "clang/AST/TypeNodes.inc"
3481     llvm_unreachable("didn't desugar past all non-canonical types?");
3482 
3483   // These types should never be variably-modified.
3484   case Type::Builtin:
3485   case Type::Complex:
3486   case Type::Vector:
3487   case Type::DependentVector:
3488   case Type::ExtVector:
3489   case Type::DependentSizedExtVector:
3490   case Type::ConstantMatrix:
3491   case Type::DependentSizedMatrix:
3492   case Type::DependentAddressSpace:
3493   case Type::ObjCObject:
3494   case Type::ObjCInterface:
3495   case Type::ObjCObjectPointer:
3496   case Type::Record:
3497   case Type::Enum:
3498   case Type::UnresolvedUsing:
3499   case Type::TypeOfExpr:
3500   case Type::TypeOf:
3501   case Type::Decltype:
3502   case Type::UnaryTransform:
3503   case Type::DependentName:
3504   case Type::InjectedClassName:
3505   case Type::TemplateSpecialization:
3506   case Type::DependentTemplateSpecialization:
3507   case Type::TemplateTypeParm:
3508   case Type::SubstTemplateTypeParmPack:
3509   case Type::Auto:
3510   case Type::DeducedTemplateSpecialization:
3511   case Type::PackExpansion:
3512   case Type::ExtInt:
3513   case Type::DependentExtInt:
3514     llvm_unreachable("type should never be variably-modified");
3515 
3516   // These types can be variably-modified but should never need to
3517   // further decay.
3518   case Type::FunctionNoProto:
3519   case Type::FunctionProto:
3520   case Type::BlockPointer:
3521   case Type::MemberPointer:
3522   case Type::Pipe:
3523     return type;
3524 
3525   // These types can be variably-modified.  All these modifications
3526   // preserve structure except as noted by comments.
3527   // TODO: if we ever care about optimizing VLAs, there are no-op
3528   // optimizations available here.
3529   case Type::Pointer:
3530     result = getPointerType(getVariableArrayDecayedType(
3531                               cast<PointerType>(ty)->getPointeeType()));
3532     break;
3533 
3534   case Type::LValueReference: {
3535     const auto *lv = cast<LValueReferenceType>(ty);
3536     result = getLValueReferenceType(
3537                  getVariableArrayDecayedType(lv->getPointeeType()),
3538                                     lv->isSpelledAsLValue());
3539     break;
3540   }
3541 
3542   case Type::RValueReference: {
3543     const auto *lv = cast<RValueReferenceType>(ty);
3544     result = getRValueReferenceType(
3545                  getVariableArrayDecayedType(lv->getPointeeType()));
3546     break;
3547   }
3548 
3549   case Type::Atomic: {
3550     const auto *at = cast<AtomicType>(ty);
3551     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3552     break;
3553   }
3554 
3555   case Type::ConstantArray: {
3556     const auto *cat = cast<ConstantArrayType>(ty);
3557     result = getConstantArrayType(
3558                  getVariableArrayDecayedType(cat->getElementType()),
3559                                   cat->getSize(),
3560                                   cat->getSizeExpr(),
3561                                   cat->getSizeModifier(),
3562                                   cat->getIndexTypeCVRQualifiers());
3563     break;
3564   }
3565 
3566   case Type::DependentSizedArray: {
3567     const auto *dat = cast<DependentSizedArrayType>(ty);
3568     result = getDependentSizedArrayType(
3569                  getVariableArrayDecayedType(dat->getElementType()),
3570                                         dat->getSizeExpr(),
3571                                         dat->getSizeModifier(),
3572                                         dat->getIndexTypeCVRQualifiers(),
3573                                         dat->getBracketsRange());
3574     break;
3575   }
3576 
3577   // Turn incomplete types into [*] types.
3578   case Type::IncompleteArray: {
3579     const auto *iat = cast<IncompleteArrayType>(ty);
3580     result = getVariableArrayType(
3581                  getVariableArrayDecayedType(iat->getElementType()),
3582                                   /*size*/ nullptr,
3583                                   ArrayType::Normal,
3584                                   iat->getIndexTypeCVRQualifiers(),
3585                                   SourceRange());
3586     break;
3587   }
3588 
3589   // Turn VLA types into [*] types.
3590   case Type::VariableArray: {
3591     const auto *vat = cast<VariableArrayType>(ty);
3592     result = getVariableArrayType(
3593                  getVariableArrayDecayedType(vat->getElementType()),
3594                                   /*size*/ nullptr,
3595                                   ArrayType::Star,
3596                                   vat->getIndexTypeCVRQualifiers(),
3597                                   vat->getBracketsRange());
3598     break;
3599   }
3600   }
3601 
3602   // Apply the top-level qualifiers from the original.
3603   return getQualifiedType(result, split.Quals);
3604 }
3605 
3606 /// getVariableArrayType - Returns a non-unique reference to the type for a
3607 /// variable array of the specified element type.
getVariableArrayType(QualType EltTy,Expr * NumElts,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals,SourceRange Brackets) const3608 QualType ASTContext::getVariableArrayType(QualType EltTy,
3609                                           Expr *NumElts,
3610                                           ArrayType::ArraySizeModifier ASM,
3611                                           unsigned IndexTypeQuals,
3612                                           SourceRange Brackets) const {
3613   // Since we don't unique expressions, it isn't possible to unique VLA's
3614   // that have an expression provided for their size.
3615   QualType Canon;
3616 
3617   // Be sure to pull qualifiers off the element type.
3618   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3619     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3620     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3621                                  IndexTypeQuals, Brackets);
3622     Canon = getQualifiedType(Canon, canonSplit.Quals);
3623   }
3624 
3625   auto *New = new (*this, TypeAlignment)
3626     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3627 
3628   VariableArrayTypes.push_back(New);
3629   Types.push_back(New);
3630   return QualType(New, 0);
3631 }
3632 
3633 /// getDependentSizedArrayType - Returns a non-unique reference to
3634 /// the type for a dependently-sized array of the specified element
3635 /// type.
getDependentSizedArrayType(QualType elementType,Expr * numElements,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals,SourceRange brackets) const3636 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
3637                                                 Expr *numElements,
3638                                                 ArrayType::ArraySizeModifier ASM,
3639                                                 unsigned elementTypeQuals,
3640                                                 SourceRange brackets) const {
3641   assert((!numElements || numElements->isTypeDependent() ||
3642           numElements->isValueDependent()) &&
3643          "Size must be type- or value-dependent!");
3644 
3645   // Dependently-sized array types that do not have a specified number
3646   // of elements will have their sizes deduced from a dependent
3647   // initializer.  We do no canonicalization here at all, which is okay
3648   // because they can't be used in most locations.
3649   if (!numElements) {
3650     auto *newType
3651       = new (*this, TypeAlignment)
3652           DependentSizedArrayType(*this, elementType, QualType(),
3653                                   numElements, ASM, elementTypeQuals,
3654                                   brackets);
3655     Types.push_back(newType);
3656     return QualType(newType, 0);
3657   }
3658 
3659   // Otherwise, we actually build a new type every time, but we
3660   // also build a canonical type.
3661 
3662   SplitQualType canonElementType = getCanonicalType(elementType).split();
3663 
3664   void *insertPos = nullptr;
3665   llvm::FoldingSetNodeID ID;
3666   DependentSizedArrayType::Profile(ID, *this,
3667                                    QualType(canonElementType.Ty, 0),
3668                                    ASM, elementTypeQuals, numElements);
3669 
3670   // Look for an existing type with these properties.
3671   DependentSizedArrayType *canonTy =
3672     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3673 
3674   // If we don't have one, build one.
3675   if (!canonTy) {
3676     canonTy = new (*this, TypeAlignment)
3677       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
3678                               QualType(), numElements, ASM, elementTypeQuals,
3679                               brackets);
3680     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3681     Types.push_back(canonTy);
3682   }
3683 
3684   // Apply qualifiers from the element type to the array.
3685   QualType canon = getQualifiedType(QualType(canonTy,0),
3686                                     canonElementType.Quals);
3687 
3688   // If we didn't need extra canonicalization for the element type or the size
3689   // expression, then just use that as our result.
3690   if (QualType(canonElementType.Ty, 0) == elementType &&
3691       canonTy->getSizeExpr() == numElements)
3692     return canon;
3693 
3694   // Otherwise, we need to build a type which follows the spelling
3695   // of the element type.
3696   auto *sugaredType
3697     = new (*this, TypeAlignment)
3698         DependentSizedArrayType(*this, elementType, canon, numElements,
3699                                 ASM, elementTypeQuals, brackets);
3700   Types.push_back(sugaredType);
3701   return QualType(sugaredType, 0);
3702 }
3703 
getIncompleteArrayType(QualType elementType,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals) const3704 QualType ASTContext::getIncompleteArrayType(QualType elementType,
3705                                             ArrayType::ArraySizeModifier ASM,
3706                                             unsigned elementTypeQuals) const {
3707   llvm::FoldingSetNodeID ID;
3708   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3709 
3710   void *insertPos = nullptr;
3711   if (IncompleteArrayType *iat =
3712        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3713     return QualType(iat, 0);
3714 
3715   // If the element type isn't canonical, this won't be a canonical type
3716   // either, so fill in the canonical type field.  We also have to pull
3717   // qualifiers off the element type.
3718   QualType canon;
3719 
3720   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3721     SplitQualType canonSplit = getCanonicalType(elementType).split();
3722     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3723                                    ASM, elementTypeQuals);
3724     canon = getQualifiedType(canon, canonSplit.Quals);
3725 
3726     // Get the new insert position for the node we care about.
3727     IncompleteArrayType *existing =
3728       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3729     assert(!existing && "Shouldn't be in the map!"); (void) existing;
3730   }
3731 
3732   auto *newType = new (*this, TypeAlignment)
3733     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3734 
3735   IncompleteArrayTypes.InsertNode(newType, insertPos);
3736   Types.push_back(newType);
3737   return QualType(newType, 0);
3738 }
3739 
3740 ASTContext::BuiltinVectorTypeInfo
getBuiltinVectorTypeInfo(const BuiltinType * Ty) const3741 ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const {
3742 #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS)                          \
3743   {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \
3744    NUMVECTORS};
3745 
3746 #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS)                                     \
3747   {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS};
3748 
3749   switch (Ty->getKind()) {
3750   default:
3751     llvm_unreachable("Unsupported builtin vector type");
3752   case BuiltinType::SveInt8:
3753     return SVE_INT_ELTTY(8, 16, true, 1);
3754   case BuiltinType::SveUint8:
3755     return SVE_INT_ELTTY(8, 16, false, 1);
3756   case BuiltinType::SveInt8x2:
3757     return SVE_INT_ELTTY(8, 16, true, 2);
3758   case BuiltinType::SveUint8x2:
3759     return SVE_INT_ELTTY(8, 16, false, 2);
3760   case BuiltinType::SveInt8x3:
3761     return SVE_INT_ELTTY(8, 16, true, 3);
3762   case BuiltinType::SveUint8x3:
3763     return SVE_INT_ELTTY(8, 16, false, 3);
3764   case BuiltinType::SveInt8x4:
3765     return SVE_INT_ELTTY(8, 16, true, 4);
3766   case BuiltinType::SveUint8x4:
3767     return SVE_INT_ELTTY(8, 16, false, 4);
3768   case BuiltinType::SveInt16:
3769     return SVE_INT_ELTTY(16, 8, true, 1);
3770   case BuiltinType::SveUint16:
3771     return SVE_INT_ELTTY(16, 8, false, 1);
3772   case BuiltinType::SveInt16x2:
3773     return SVE_INT_ELTTY(16, 8, true, 2);
3774   case BuiltinType::SveUint16x2:
3775     return SVE_INT_ELTTY(16, 8, false, 2);
3776   case BuiltinType::SveInt16x3:
3777     return SVE_INT_ELTTY(16, 8, true, 3);
3778   case BuiltinType::SveUint16x3:
3779     return SVE_INT_ELTTY(16, 8, false, 3);
3780   case BuiltinType::SveInt16x4:
3781     return SVE_INT_ELTTY(16, 8, true, 4);
3782   case BuiltinType::SveUint16x4:
3783     return SVE_INT_ELTTY(16, 8, false, 4);
3784   case BuiltinType::SveInt32:
3785     return SVE_INT_ELTTY(32, 4, true, 1);
3786   case BuiltinType::SveUint32:
3787     return SVE_INT_ELTTY(32, 4, false, 1);
3788   case BuiltinType::SveInt32x2:
3789     return SVE_INT_ELTTY(32, 4, true, 2);
3790   case BuiltinType::SveUint32x2:
3791     return SVE_INT_ELTTY(32, 4, false, 2);
3792   case BuiltinType::SveInt32x3:
3793     return SVE_INT_ELTTY(32, 4, true, 3);
3794   case BuiltinType::SveUint32x3:
3795     return SVE_INT_ELTTY(32, 4, false, 3);
3796   case BuiltinType::SveInt32x4:
3797     return SVE_INT_ELTTY(32, 4, true, 4);
3798   case BuiltinType::SveUint32x4:
3799     return SVE_INT_ELTTY(32, 4, false, 4);
3800   case BuiltinType::SveInt64:
3801     return SVE_INT_ELTTY(64, 2, true, 1);
3802   case BuiltinType::SveUint64:
3803     return SVE_INT_ELTTY(64, 2, false, 1);
3804   case BuiltinType::SveInt64x2:
3805     return SVE_INT_ELTTY(64, 2, true, 2);
3806   case BuiltinType::SveUint64x2:
3807     return SVE_INT_ELTTY(64, 2, false, 2);
3808   case BuiltinType::SveInt64x3:
3809     return SVE_INT_ELTTY(64, 2, true, 3);
3810   case BuiltinType::SveUint64x3:
3811     return SVE_INT_ELTTY(64, 2, false, 3);
3812   case BuiltinType::SveInt64x4:
3813     return SVE_INT_ELTTY(64, 2, true, 4);
3814   case BuiltinType::SveUint64x4:
3815     return SVE_INT_ELTTY(64, 2, false, 4);
3816   case BuiltinType::SveBool:
3817     return SVE_ELTTY(BoolTy, 16, 1);
3818   case BuiltinType::SveFloat16:
3819     return SVE_ELTTY(HalfTy, 8, 1);
3820   case BuiltinType::SveFloat16x2:
3821     return SVE_ELTTY(HalfTy, 8, 2);
3822   case BuiltinType::SveFloat16x3:
3823     return SVE_ELTTY(HalfTy, 8, 3);
3824   case BuiltinType::SveFloat16x4:
3825     return SVE_ELTTY(HalfTy, 8, 4);
3826   case BuiltinType::SveFloat32:
3827     return SVE_ELTTY(FloatTy, 4, 1);
3828   case BuiltinType::SveFloat32x2:
3829     return SVE_ELTTY(FloatTy, 4, 2);
3830   case BuiltinType::SveFloat32x3:
3831     return SVE_ELTTY(FloatTy, 4, 3);
3832   case BuiltinType::SveFloat32x4:
3833     return SVE_ELTTY(FloatTy, 4, 4);
3834   case BuiltinType::SveFloat64:
3835     return SVE_ELTTY(DoubleTy, 2, 1);
3836   case BuiltinType::SveFloat64x2:
3837     return SVE_ELTTY(DoubleTy, 2, 2);
3838   case BuiltinType::SveFloat64x3:
3839     return SVE_ELTTY(DoubleTy, 2, 3);
3840   case BuiltinType::SveFloat64x4:
3841     return SVE_ELTTY(DoubleTy, 2, 4);
3842   case BuiltinType::SveBFloat16:
3843     return SVE_ELTTY(BFloat16Ty, 8, 1);
3844   case BuiltinType::SveBFloat16x2:
3845     return SVE_ELTTY(BFloat16Ty, 8, 2);
3846   case BuiltinType::SveBFloat16x3:
3847     return SVE_ELTTY(BFloat16Ty, 8, 3);
3848   case BuiltinType::SveBFloat16x4:
3849     return SVE_ELTTY(BFloat16Ty, 8, 4);
3850 #define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF,         \
3851                             IsSigned)                                          \
3852   case BuiltinType::Id:                                                        \
3853     return {getIntTypeForBitwidth(ElBits, IsSigned),                           \
3854             llvm::ElementCount::getScalable(NumEls), NF};
3855 #define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF)       \
3856   case BuiltinType::Id:                                                        \
3857     return {ElBits == 16 ? HalfTy : (ElBits == 32 ? FloatTy : DoubleTy),       \
3858             llvm::ElementCount::getScalable(NumEls), NF};
3859 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
3860   case BuiltinType::Id:                                                        \
3861     return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1};
3862 #include "clang/Basic/RISCVVTypes.def"
3863   }
3864 }
3865 
3866 /// getScalableVectorType - Return the unique reference to a scalable vector
3867 /// type of the specified element type and size. VectorType must be a built-in
3868 /// type.
getScalableVectorType(QualType EltTy,unsigned NumElts) const3869 QualType ASTContext::getScalableVectorType(QualType EltTy,
3870                                            unsigned NumElts) const {
3871   if (Target->hasAArch64SVETypes()) {
3872     uint64_t EltTySize = getTypeSize(EltTy);
3873 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
3874                         IsSigned, IsFP, IsBF)                                  \
3875   if (!EltTy->isBooleanType() &&                                               \
3876       ((EltTy->hasIntegerRepresentation() &&                                   \
3877         EltTy->hasSignedIntegerRepresentation() == IsSigned) ||                \
3878        (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() &&      \
3879         IsFP && !IsBF) ||                                                      \
3880        (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() &&       \
3881         IsBF && !IsFP)) &&                                                     \
3882       EltTySize == ElBits && NumElts == NumEls) {                              \
3883     return SingletonId;                                                        \
3884   }
3885 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
3886   if (EltTy->isBooleanType() && NumElts == NumEls)                             \
3887     return SingletonId;
3888 #include "clang/Basic/AArch64SVEACLETypes.def"
3889   } else if (Target->hasRISCVVTypes()) {
3890     uint64_t EltTySize = getTypeSize(EltTy);
3891 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned,   \
3892                         IsFP)                                                  \
3893     if (!EltTy->isBooleanType() &&                                             \
3894         ((EltTy->hasIntegerRepresentation() &&                                 \
3895           EltTy->hasSignedIntegerRepresentation() == IsSigned) ||              \
3896          (EltTy->hasFloatingRepresentation() && IsFP)) &&                      \
3897         EltTySize == ElBits && NumElts == NumEls)                              \
3898       return SingletonId;
3899 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
3900     if (EltTy->isBooleanType() && NumElts == NumEls)                           \
3901       return SingletonId;
3902 #include "clang/Basic/RISCVVTypes.def"
3903   }
3904   return QualType();
3905 }
3906 
3907 /// getVectorType - Return the unique reference to a vector type of
3908 /// the specified element type and size. VectorType must be a built-in type.
getVectorType(QualType vecType,unsigned NumElts,VectorType::VectorKind VecKind) const3909 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
3910                                    VectorType::VectorKind VecKind) const {
3911   assert(vecType->isBuiltinType());
3912 
3913   // Check if we've already instantiated a vector of this type.
3914   llvm::FoldingSetNodeID ID;
3915   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
3916 
3917   void *InsertPos = nullptr;
3918   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3919     return QualType(VTP, 0);
3920 
3921   // If the element type isn't canonical, this won't be a canonical type either,
3922   // so fill in the canonical type field.
3923   QualType Canonical;
3924   if (!vecType.isCanonical()) {
3925     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
3926 
3927     // Get the new insert position for the node we care about.
3928     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3929     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3930   }
3931   auto *New = new (*this, TypeAlignment)
3932     VectorType(vecType, NumElts, Canonical, VecKind);
3933   VectorTypes.InsertNode(New, InsertPos);
3934   Types.push_back(New);
3935   return QualType(New, 0);
3936 }
3937 
3938 QualType
getDependentVectorType(QualType VecType,Expr * SizeExpr,SourceLocation AttrLoc,VectorType::VectorKind VecKind) const3939 ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
3940                                    SourceLocation AttrLoc,
3941                                    VectorType::VectorKind VecKind) const {
3942   llvm::FoldingSetNodeID ID;
3943   DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
3944                                VecKind);
3945   void *InsertPos = nullptr;
3946   DependentVectorType *Canon =
3947       DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3948   DependentVectorType *New;
3949 
3950   if (Canon) {
3951     New = new (*this, TypeAlignment) DependentVectorType(
3952         *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
3953   } else {
3954     QualType CanonVecTy = getCanonicalType(VecType);
3955     if (CanonVecTy == VecType) {
3956       New = new (*this, TypeAlignment) DependentVectorType(
3957           *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
3958 
3959       DependentVectorType *CanonCheck =
3960           DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3961       assert(!CanonCheck &&
3962              "Dependent-sized vector_size canonical type broken");
3963       (void)CanonCheck;
3964       DependentVectorTypes.InsertNode(New, InsertPos);
3965     } else {
3966       QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr,
3967                                                 SourceLocation(), VecKind);
3968       New = new (*this, TypeAlignment) DependentVectorType(
3969           *this, VecType, CanonTy, SizeExpr, AttrLoc, VecKind);
3970     }
3971   }
3972 
3973   Types.push_back(New);
3974   return QualType(New, 0);
3975 }
3976 
3977 /// getExtVectorType - Return the unique reference to an extended vector type of
3978 /// the specified element type and size. VectorType must be a built-in type.
3979 QualType
getExtVectorType(QualType vecType,unsigned NumElts) const3980 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
3981   assert(vecType->isBuiltinType() || vecType->isDependentType());
3982 
3983   // Check if we've already instantiated a vector of this type.
3984   llvm::FoldingSetNodeID ID;
3985   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
3986                       VectorType::GenericVector);
3987   void *InsertPos = nullptr;
3988   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3989     return QualType(VTP, 0);
3990 
3991   // If the element type isn't canonical, this won't be a canonical type either,
3992   // so fill in the canonical type field.
3993   QualType Canonical;
3994   if (!vecType.isCanonical()) {
3995     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
3996 
3997     // Get the new insert position for the node we care about.
3998     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3999     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4000   }
4001   auto *New = new (*this, TypeAlignment)
4002     ExtVectorType(vecType, NumElts, Canonical);
4003   VectorTypes.InsertNode(New, InsertPos);
4004   Types.push_back(New);
4005   return QualType(New, 0);
4006 }
4007 
4008 QualType
getDependentSizedExtVectorType(QualType vecType,Expr * SizeExpr,SourceLocation AttrLoc) const4009 ASTContext::getDependentSizedExtVectorType(QualType vecType,
4010                                            Expr *SizeExpr,
4011                                            SourceLocation AttrLoc) const {
4012   llvm::FoldingSetNodeID ID;
4013   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
4014                                        SizeExpr);
4015 
4016   void *InsertPos = nullptr;
4017   DependentSizedExtVectorType *Canon
4018     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4019   DependentSizedExtVectorType *New;
4020   if (Canon) {
4021     // We already have a canonical version of this array type; use it as
4022     // the canonical type for a newly-built type.
4023     New = new (*this, TypeAlignment)
4024       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
4025                                   SizeExpr, AttrLoc);
4026   } else {
4027     QualType CanonVecTy = getCanonicalType(vecType);
4028     if (CanonVecTy == vecType) {
4029       New = new (*this, TypeAlignment)
4030         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
4031                                     AttrLoc);
4032 
4033       DependentSizedExtVectorType *CanonCheck
4034         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4035       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
4036       (void)CanonCheck;
4037       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
4038     } else {
4039       QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
4040                                                            SourceLocation());
4041       New = new (*this, TypeAlignment) DependentSizedExtVectorType(
4042           *this, vecType, CanonExtTy, SizeExpr, AttrLoc);
4043     }
4044   }
4045 
4046   Types.push_back(New);
4047   return QualType(New, 0);
4048 }
4049 
getConstantMatrixType(QualType ElementTy,unsigned NumRows,unsigned NumColumns) const4050 QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows,
4051                                            unsigned NumColumns) const {
4052   llvm::FoldingSetNodeID ID;
4053   ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns,
4054                               Type::ConstantMatrix);
4055 
4056   assert(MatrixType::isValidElementType(ElementTy) &&
4057          "need a valid element type");
4058   assert(ConstantMatrixType::isDimensionValid(NumRows) &&
4059          ConstantMatrixType::isDimensionValid(NumColumns) &&
4060          "need valid matrix dimensions");
4061   void *InsertPos = nullptr;
4062   if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos))
4063     return QualType(MTP, 0);
4064 
4065   QualType Canonical;
4066   if (!ElementTy.isCanonical()) {
4067     Canonical =
4068         getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns);
4069 
4070     ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4071     assert(!NewIP && "Matrix type shouldn't already exist in the map");
4072     (void)NewIP;
4073   }
4074 
4075   auto *New = new (*this, TypeAlignment)
4076       ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical);
4077   MatrixTypes.InsertNode(New, InsertPos);
4078   Types.push_back(New);
4079   return QualType(New, 0);
4080 }
4081 
getDependentSizedMatrixType(QualType ElementTy,Expr * RowExpr,Expr * ColumnExpr,SourceLocation AttrLoc) const4082 QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy,
4083                                                  Expr *RowExpr,
4084                                                  Expr *ColumnExpr,
4085                                                  SourceLocation AttrLoc) const {
4086   QualType CanonElementTy = getCanonicalType(ElementTy);
4087   llvm::FoldingSetNodeID ID;
4088   DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr,
4089                                     ColumnExpr);
4090 
4091   void *InsertPos = nullptr;
4092   DependentSizedMatrixType *Canon =
4093       DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4094 
4095   if (!Canon) {
4096     Canon = new (*this, TypeAlignment) DependentSizedMatrixType(
4097         *this, CanonElementTy, QualType(), RowExpr, ColumnExpr, AttrLoc);
4098 #ifndef NDEBUG
4099     DependentSizedMatrixType *CanonCheck =
4100         DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4101     assert(!CanonCheck && "Dependent-sized matrix canonical type broken");
4102 #endif
4103     DependentSizedMatrixTypes.InsertNode(Canon, InsertPos);
4104     Types.push_back(Canon);
4105   }
4106 
4107   // Already have a canonical version of the matrix type
4108   //
4109   // If it exactly matches the requested type, use it directly.
4110   if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr &&
4111       Canon->getRowExpr() == ColumnExpr)
4112     return QualType(Canon, 0);
4113 
4114   // Use Canon as the canonical type for newly-built type.
4115   DependentSizedMatrixType *New = new (*this, TypeAlignment)
4116       DependentSizedMatrixType(*this, ElementTy, QualType(Canon, 0), RowExpr,
4117                                ColumnExpr, AttrLoc);
4118   Types.push_back(New);
4119   return QualType(New, 0);
4120 }
4121 
getDependentAddressSpaceType(QualType PointeeType,Expr * AddrSpaceExpr,SourceLocation AttrLoc) const4122 QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
4123                                                   Expr *AddrSpaceExpr,
4124                                                   SourceLocation AttrLoc) const {
4125   assert(AddrSpaceExpr->isInstantiationDependent());
4126 
4127   QualType canonPointeeType = getCanonicalType(PointeeType);
4128 
4129   void *insertPos = nullptr;
4130   llvm::FoldingSetNodeID ID;
4131   DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
4132                                      AddrSpaceExpr);
4133 
4134   DependentAddressSpaceType *canonTy =
4135     DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
4136 
4137   if (!canonTy) {
4138     canonTy = new (*this, TypeAlignment)
4139       DependentAddressSpaceType(*this, canonPointeeType,
4140                                 QualType(), AddrSpaceExpr, AttrLoc);
4141     DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
4142     Types.push_back(canonTy);
4143   }
4144 
4145   if (canonPointeeType == PointeeType &&
4146       canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
4147     return QualType(canonTy, 0);
4148 
4149   auto *sugaredType
4150     = new (*this, TypeAlignment)
4151         DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
4152                                   AddrSpaceExpr, AttrLoc);
4153   Types.push_back(sugaredType);
4154   return QualType(sugaredType, 0);
4155 }
4156 
4157 /// Determine whether \p T is canonical as the result type of a function.
isCanonicalResultType(QualType T)4158 static bool isCanonicalResultType(QualType T) {
4159   return T.isCanonical() &&
4160          (T.getObjCLifetime() == Qualifiers::OCL_None ||
4161           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
4162 }
4163 
4164 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
4165 QualType
getFunctionNoProtoType(QualType ResultTy,const FunctionType::ExtInfo & Info) const4166 ASTContext::getFunctionNoProtoType(QualType ResultTy,
4167                                    const FunctionType::ExtInfo &Info) const {
4168   // Unique functions, to guarantee there is only one function of a particular
4169   // structure.
4170   llvm::FoldingSetNodeID ID;
4171   FunctionNoProtoType::Profile(ID, ResultTy, Info);
4172 
4173   void *InsertPos = nullptr;
4174   if (FunctionNoProtoType *FT =
4175         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
4176     return QualType(FT, 0);
4177 
4178   QualType Canonical;
4179   if (!isCanonicalResultType(ResultTy)) {
4180     Canonical =
4181       getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
4182 
4183     // Get the new insert position for the node we care about.
4184     FunctionNoProtoType *NewIP =
4185       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4186     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4187   }
4188 
4189   auto *New = new (*this, TypeAlignment)
4190     FunctionNoProtoType(ResultTy, Canonical, Info);
4191   Types.push_back(New);
4192   FunctionNoProtoTypes.InsertNode(New, InsertPos);
4193   return QualType(New, 0);
4194 }
4195 
4196 CanQualType
getCanonicalFunctionResultType(QualType ResultType) const4197 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
4198   CanQualType CanResultType = getCanonicalType(ResultType);
4199 
4200   // Canonical result types do not have ARC lifetime qualifiers.
4201   if (CanResultType.getQualifiers().hasObjCLifetime()) {
4202     Qualifiers Qs = CanResultType.getQualifiers();
4203     Qs.removeObjCLifetime();
4204     return CanQualType::CreateUnsafe(
4205              getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
4206   }
4207 
4208   return CanResultType;
4209 }
4210 
isCanonicalExceptionSpecification(const FunctionProtoType::ExceptionSpecInfo & ESI,bool NoexceptInType)4211 static bool isCanonicalExceptionSpecification(
4212     const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
4213   if (ESI.Type == EST_None)
4214     return true;
4215   if (!NoexceptInType)
4216     return false;
4217 
4218   // C++17 onwards: exception specification is part of the type, as a simple
4219   // boolean "can this function type throw".
4220   if (ESI.Type == EST_BasicNoexcept)
4221     return true;
4222 
4223   // A noexcept(expr) specification is (possibly) canonical if expr is
4224   // value-dependent.
4225   if (ESI.Type == EST_DependentNoexcept)
4226     return true;
4227 
4228   // A dynamic exception specification is canonical if it only contains pack
4229   // expansions (so we can't tell whether it's non-throwing) and all its
4230   // contained types are canonical.
4231   if (ESI.Type == EST_Dynamic) {
4232     bool AnyPackExpansions = false;
4233     for (QualType ET : ESI.Exceptions) {
4234       if (!ET.isCanonical())
4235         return false;
4236       if (ET->getAs<PackExpansionType>())
4237         AnyPackExpansions = true;
4238     }
4239     return AnyPackExpansions;
4240   }
4241 
4242   return false;
4243 }
4244 
getFunctionTypeInternal(QualType ResultTy,ArrayRef<QualType> ArgArray,const FunctionProtoType::ExtProtoInfo & EPI,bool OnlyWantCanonical) const4245 QualType ASTContext::getFunctionTypeInternal(
4246     QualType ResultTy, ArrayRef<QualType> ArgArray,
4247     const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
4248   size_t NumArgs = ArgArray.size();
4249 
4250   // Unique functions, to guarantee there is only one function of a particular
4251   // structure.
4252   llvm::FoldingSetNodeID ID;
4253   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
4254                              *this, true);
4255 
4256   QualType Canonical;
4257   bool Unique = false;
4258 
4259   void *InsertPos = nullptr;
4260   if (FunctionProtoType *FPT =
4261         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
4262     QualType Existing = QualType(FPT, 0);
4263 
4264     // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
4265     // it so long as our exception specification doesn't contain a dependent
4266     // noexcept expression, or we're just looking for a canonical type.
4267     // Otherwise, we're going to need to create a type
4268     // sugar node to hold the concrete expression.
4269     if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
4270         EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
4271       return Existing;
4272 
4273     // We need a new type sugar node for this one, to hold the new noexcept
4274     // expression. We do no canonicalization here, but that's OK since we don't
4275     // expect to see the same noexcept expression much more than once.
4276     Canonical = getCanonicalType(Existing);
4277     Unique = true;
4278   }
4279 
4280   bool NoexceptInType = getLangOpts().CPlusPlus17;
4281   bool IsCanonicalExceptionSpec =
4282       isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
4283 
4284   // Determine whether the type being created is already canonical or not.
4285   bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
4286                      isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
4287   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
4288     if (!ArgArray[i].isCanonicalAsParam())
4289       isCanonical = false;
4290 
4291   if (OnlyWantCanonical)
4292     assert(isCanonical &&
4293            "given non-canonical parameters constructing canonical type");
4294 
4295   // If this type isn't canonical, get the canonical version of it if we don't
4296   // already have it. The exception spec is only partially part of the
4297   // canonical type, and only in C++17 onwards.
4298   if (!isCanonical && Canonical.isNull()) {
4299     SmallVector<QualType, 16> CanonicalArgs;
4300     CanonicalArgs.reserve(NumArgs);
4301     for (unsigned i = 0; i != NumArgs; ++i)
4302       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
4303 
4304     llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
4305     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
4306     CanonicalEPI.HasTrailingReturn = false;
4307 
4308     if (IsCanonicalExceptionSpec) {
4309       // Exception spec is already OK.
4310     } else if (NoexceptInType) {
4311       switch (EPI.ExceptionSpec.Type) {
4312       case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
4313         // We don't know yet. It shouldn't matter what we pick here; no-one
4314         // should ever look at this.
4315         LLVM_FALLTHROUGH;
4316       case EST_None: case EST_MSAny: case EST_NoexceptFalse:
4317         CanonicalEPI.ExceptionSpec.Type = EST_None;
4318         break;
4319 
4320         // A dynamic exception specification is almost always "not noexcept",
4321         // with the exception that a pack expansion might expand to no types.
4322       case EST_Dynamic: {
4323         bool AnyPacks = false;
4324         for (QualType ET : EPI.ExceptionSpec.Exceptions) {
4325           if (ET->getAs<PackExpansionType>())
4326             AnyPacks = true;
4327           ExceptionTypeStorage.push_back(getCanonicalType(ET));
4328         }
4329         if (!AnyPacks)
4330           CanonicalEPI.ExceptionSpec.Type = EST_None;
4331         else {
4332           CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
4333           CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
4334         }
4335         break;
4336       }
4337 
4338       case EST_DynamicNone:
4339       case EST_BasicNoexcept:
4340       case EST_NoexceptTrue:
4341       case EST_NoThrow:
4342         CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
4343         break;
4344 
4345       case EST_DependentNoexcept:
4346         llvm_unreachable("dependent noexcept is already canonical");
4347       }
4348     } else {
4349       CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
4350     }
4351 
4352     // Adjust the canonical function result type.
4353     CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
4354     Canonical =
4355         getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
4356 
4357     // Get the new insert position for the node we care about.
4358     FunctionProtoType *NewIP =
4359       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4360     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4361   }
4362 
4363   // Compute the needed size to hold this FunctionProtoType and the
4364   // various trailing objects.
4365   auto ESH = FunctionProtoType::getExceptionSpecSize(
4366       EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
4367   size_t Size = FunctionProtoType::totalSizeToAlloc<
4368       QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
4369       FunctionType::ExceptionType, Expr *, FunctionDecl *,
4370       FunctionProtoType::ExtParameterInfo, Qualifiers>(
4371       NumArgs, EPI.Variadic,
4372       FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type),
4373       ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
4374       EPI.ExtParameterInfos ? NumArgs : 0,
4375       EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
4376 
4377   auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
4378   FunctionProtoType::ExtProtoInfo newEPI = EPI;
4379   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
4380   Types.push_back(FTP);
4381   if (!Unique)
4382     FunctionProtoTypes.InsertNode(FTP, InsertPos);
4383   return QualType(FTP, 0);
4384 }
4385 
getPipeType(QualType T,bool ReadOnly) const4386 QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
4387   llvm::FoldingSetNodeID ID;
4388   PipeType::Profile(ID, T, ReadOnly);
4389 
4390   void *InsertPos = nullptr;
4391   if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
4392     return QualType(PT, 0);
4393 
4394   // If the pipe element type isn't canonical, this won't be a canonical type
4395   // either, so fill in the canonical type field.
4396   QualType Canonical;
4397   if (!T.isCanonical()) {
4398     Canonical = getPipeType(getCanonicalType(T), ReadOnly);
4399 
4400     // Get the new insert position for the node we care about.
4401     PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
4402     assert(!NewIP && "Shouldn't be in the map!");
4403     (void)NewIP;
4404   }
4405   auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
4406   Types.push_back(New);
4407   PipeTypes.InsertNode(New, InsertPos);
4408   return QualType(New, 0);
4409 }
4410 
adjustStringLiteralBaseType(QualType Ty) const4411 QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
4412   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
4413   return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
4414                          : Ty;
4415 }
4416 
getReadPipeType(QualType T) const4417 QualType ASTContext::getReadPipeType(QualType T) const {
4418   return getPipeType(T, true);
4419 }
4420 
getWritePipeType(QualType T) const4421 QualType ASTContext::getWritePipeType(QualType T) const {
4422   return getPipeType(T, false);
4423 }
4424 
getExtIntType(bool IsUnsigned,unsigned NumBits) const4425 QualType ASTContext::getExtIntType(bool IsUnsigned, unsigned NumBits) const {
4426   llvm::FoldingSetNodeID ID;
4427   ExtIntType::Profile(ID, IsUnsigned, NumBits);
4428 
4429   void *InsertPos = nullptr;
4430   if (ExtIntType *EIT = ExtIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4431     return QualType(EIT, 0);
4432 
4433   auto *New = new (*this, TypeAlignment) ExtIntType(IsUnsigned, NumBits);
4434   ExtIntTypes.InsertNode(New, InsertPos);
4435   Types.push_back(New);
4436   return QualType(New, 0);
4437 }
4438 
getDependentExtIntType(bool IsUnsigned,Expr * NumBitsExpr) const4439 QualType ASTContext::getDependentExtIntType(bool IsUnsigned,
4440                                             Expr *NumBitsExpr) const {
4441   assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent");
4442   llvm::FoldingSetNodeID ID;
4443   DependentExtIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr);
4444 
4445   void *InsertPos = nullptr;
4446   if (DependentExtIntType *Existing =
4447           DependentExtIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4448     return QualType(Existing, 0);
4449 
4450   auto *New = new (*this, TypeAlignment)
4451       DependentExtIntType(*this, IsUnsigned, NumBitsExpr);
4452   DependentExtIntTypes.InsertNode(New, InsertPos);
4453 
4454   Types.push_back(New);
4455   return QualType(New, 0);
4456 }
4457 
4458 #ifndef NDEBUG
NeedsInjectedClassNameType(const RecordDecl * D)4459 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
4460   if (!isa<CXXRecordDecl>(D)) return false;
4461   const auto *RD = cast<CXXRecordDecl>(D);
4462   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
4463     return true;
4464   if (RD->getDescribedClassTemplate() &&
4465       !isa<ClassTemplateSpecializationDecl>(RD))
4466     return true;
4467   return false;
4468 }
4469 #endif
4470 
4471 /// getInjectedClassNameType - Return the unique reference to the
4472 /// injected class name type for the specified templated declaration.
getInjectedClassNameType(CXXRecordDecl * Decl,QualType TST) const4473 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
4474                                               QualType TST) const {
4475   assert(NeedsInjectedClassNameType(Decl));
4476   if (Decl->TypeForDecl) {
4477     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4478   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
4479     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
4480     Decl->TypeForDecl = PrevDecl->TypeForDecl;
4481     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4482   } else {
4483     Type *newType =
4484       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
4485     Decl->TypeForDecl = newType;
4486     Types.push_back(newType);
4487   }
4488   return QualType(Decl->TypeForDecl, 0);
4489 }
4490 
4491 /// getTypeDeclType - Return the unique reference to the type for the
4492 /// specified type declaration.
getTypeDeclTypeSlow(const TypeDecl * Decl) const4493 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
4494   assert(Decl && "Passed null for Decl param");
4495   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
4496 
4497   if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
4498     return getTypedefType(Typedef);
4499 
4500   assert(!isa<TemplateTypeParmDecl>(Decl) &&
4501          "Template type parameter types are always available.");
4502 
4503   if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
4504     assert(Record->isFirstDecl() && "struct/union has previous declaration");
4505     assert(!NeedsInjectedClassNameType(Record));
4506     return getRecordType(Record);
4507   } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
4508     assert(Enum->isFirstDecl() && "enum has previous declaration");
4509     return getEnumType(Enum);
4510   } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
4511     Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
4512     Decl->TypeForDecl = newType;
4513     Types.push_back(newType);
4514   } else
4515     llvm_unreachable("TypeDecl without a type?");
4516 
4517   return QualType(Decl->TypeForDecl, 0);
4518 }
4519 
4520 /// getTypedefType - Return the unique reference to the type for the
4521 /// specified typedef name decl.
getTypedefType(const TypedefNameDecl * Decl,QualType Underlying) const4522 QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl,
4523                                     QualType Underlying) const {
4524   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4525 
4526   if (Underlying.isNull())
4527     Underlying = Decl->getUnderlyingType();
4528   QualType Canonical = getCanonicalType(Underlying);
4529   auto *newType = new (*this, TypeAlignment)
4530       TypedefType(Type::Typedef, Decl, Underlying, Canonical);
4531   Decl->TypeForDecl = newType;
4532   Types.push_back(newType);
4533   return QualType(newType, 0);
4534 }
4535 
getRecordType(const RecordDecl * Decl) const4536 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
4537   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4538 
4539   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
4540     if (PrevDecl->TypeForDecl)
4541       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4542 
4543   auto *newType = new (*this, TypeAlignment) RecordType(Decl);
4544   Decl->TypeForDecl = newType;
4545   Types.push_back(newType);
4546   return QualType(newType, 0);
4547 }
4548 
getEnumType(const EnumDecl * Decl) const4549 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
4550   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4551 
4552   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
4553     if (PrevDecl->TypeForDecl)
4554       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4555 
4556   auto *newType = new (*this, TypeAlignment) EnumType(Decl);
4557   Decl->TypeForDecl = newType;
4558   Types.push_back(newType);
4559   return QualType(newType, 0);
4560 }
4561 
getAttributedType(attr::Kind attrKind,QualType modifiedType,QualType equivalentType)4562 QualType ASTContext::getAttributedType(attr::Kind attrKind,
4563                                        QualType modifiedType,
4564                                        QualType equivalentType) {
4565   llvm::FoldingSetNodeID id;
4566   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
4567 
4568   void *insertPos = nullptr;
4569   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
4570   if (type) return QualType(type, 0);
4571 
4572   QualType canon = getCanonicalType(equivalentType);
4573   type = new (*this, TypeAlignment)
4574       AttributedType(canon, attrKind, modifiedType, equivalentType);
4575 
4576   Types.push_back(type);
4577   AttributedTypes.InsertNode(type, insertPos);
4578 
4579   return QualType(type, 0);
4580 }
4581 
4582 /// Retrieve a substitution-result type.
4583 QualType
getSubstTemplateTypeParmType(const TemplateTypeParmType * Parm,QualType Replacement) const4584 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
4585                                          QualType Replacement) const {
4586   assert(Replacement.isCanonical()
4587          && "replacement types must always be canonical");
4588 
4589   llvm::FoldingSetNodeID ID;
4590   SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
4591   void *InsertPos = nullptr;
4592   SubstTemplateTypeParmType *SubstParm
4593     = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4594 
4595   if (!SubstParm) {
4596     SubstParm = new (*this, TypeAlignment)
4597       SubstTemplateTypeParmType(Parm, Replacement);
4598     Types.push_back(SubstParm);
4599     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
4600   }
4601 
4602   return QualType(SubstParm, 0);
4603 }
4604 
4605 /// Retrieve a
getSubstTemplateTypeParmPackType(const TemplateTypeParmType * Parm,const TemplateArgument & ArgPack)4606 QualType ASTContext::getSubstTemplateTypeParmPackType(
4607                                           const TemplateTypeParmType *Parm,
4608                                               const TemplateArgument &ArgPack) {
4609 #ifndef NDEBUG
4610   for (const auto &P : ArgPack.pack_elements()) {
4611     assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
4612     assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
4613   }
4614 #endif
4615 
4616   llvm::FoldingSetNodeID ID;
4617   SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
4618   void *InsertPos = nullptr;
4619   if (SubstTemplateTypeParmPackType *SubstParm
4620         = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
4621     return QualType(SubstParm, 0);
4622 
4623   QualType Canon;
4624   if (!Parm->isCanonicalUnqualified()) {
4625     Canon = getCanonicalType(QualType(Parm, 0));
4626     Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
4627                                              ArgPack);
4628     SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
4629   }
4630 
4631   auto *SubstParm
4632     = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
4633                                                                ArgPack);
4634   Types.push_back(SubstParm);
4635   SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
4636   return QualType(SubstParm, 0);
4637 }
4638 
4639 /// Retrieve the template type parameter type for a template
4640 /// parameter or parameter pack with the given depth, index, and (optionally)
4641 /// name.
getTemplateTypeParmType(unsigned Depth,unsigned Index,bool ParameterPack,TemplateTypeParmDecl * TTPDecl) const4642 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
4643                                              bool ParameterPack,
4644                                              TemplateTypeParmDecl *TTPDecl) const {
4645   llvm::FoldingSetNodeID ID;
4646   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
4647   void *InsertPos = nullptr;
4648   TemplateTypeParmType *TypeParm
4649     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4650 
4651   if (TypeParm)
4652     return QualType(TypeParm, 0);
4653 
4654   if (TTPDecl) {
4655     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
4656     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
4657 
4658     TemplateTypeParmType *TypeCheck
4659       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4660     assert(!TypeCheck && "Template type parameter canonical type broken");
4661     (void)TypeCheck;
4662   } else
4663     TypeParm = new (*this, TypeAlignment)
4664       TemplateTypeParmType(Depth, Index, ParameterPack);
4665 
4666   Types.push_back(TypeParm);
4667   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
4668 
4669   return QualType(TypeParm, 0);
4670 }
4671 
4672 TypeSourceInfo *
getTemplateSpecializationTypeInfo(TemplateName Name,SourceLocation NameLoc,const TemplateArgumentListInfo & Args,QualType Underlying) const4673 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
4674                                               SourceLocation NameLoc,
4675                                         const TemplateArgumentListInfo &Args,
4676                                               QualType Underlying) const {
4677   assert(!Name.getAsDependentTemplateName() &&
4678          "No dependent template names here!");
4679   QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
4680 
4681   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
4682   TemplateSpecializationTypeLoc TL =
4683       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
4684   TL.setTemplateKeywordLoc(SourceLocation());
4685   TL.setTemplateNameLoc(NameLoc);
4686   TL.setLAngleLoc(Args.getLAngleLoc());
4687   TL.setRAngleLoc(Args.getRAngleLoc());
4688   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
4689     TL.setArgLocInfo(i, Args[i].getLocInfo());
4690   return DI;
4691 }
4692 
4693 QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgumentListInfo & Args,QualType Underlying) const4694 ASTContext::getTemplateSpecializationType(TemplateName Template,
4695                                           const TemplateArgumentListInfo &Args,
4696                                           QualType Underlying) const {
4697   assert(!Template.getAsDependentTemplateName() &&
4698          "No dependent template names here!");
4699 
4700   SmallVector<TemplateArgument, 4> ArgVec;
4701   ArgVec.reserve(Args.size());
4702   for (const TemplateArgumentLoc &Arg : Args.arguments())
4703     ArgVec.push_back(Arg.getArgument());
4704 
4705   return getTemplateSpecializationType(Template, ArgVec, Underlying);
4706 }
4707 
4708 #ifndef NDEBUG
hasAnyPackExpansions(ArrayRef<TemplateArgument> Args)4709 static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
4710   for (const TemplateArgument &Arg : Args)
4711     if (Arg.isPackExpansion())
4712       return true;
4713 
4714   return true;
4715 }
4716 #endif
4717 
4718 QualType
getTemplateSpecializationType(TemplateName Template,ArrayRef<TemplateArgument> Args,QualType Underlying) const4719 ASTContext::getTemplateSpecializationType(TemplateName Template,
4720                                           ArrayRef<TemplateArgument> Args,
4721                                           QualType Underlying) const {
4722   assert(!Template.getAsDependentTemplateName() &&
4723          "No dependent template names here!");
4724   // Look through qualified template names.
4725   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4726     Template = TemplateName(QTN->getTemplateDecl());
4727 
4728   bool IsTypeAlias =
4729     Template.getAsTemplateDecl() &&
4730     isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
4731   QualType CanonType;
4732   if (!Underlying.isNull())
4733     CanonType = getCanonicalType(Underlying);
4734   else {
4735     // We can get here with an alias template when the specialization contains
4736     // a pack expansion that does not match up with a parameter pack.
4737     assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
4738            "Caller must compute aliased type");
4739     IsTypeAlias = false;
4740     CanonType = getCanonicalTemplateSpecializationType(Template, Args);
4741   }
4742 
4743   // Allocate the (non-canonical) template specialization type, but don't
4744   // try to unique it: these types typically have location information that
4745   // we don't unique and don't want to lose.
4746   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
4747                        sizeof(TemplateArgument) * Args.size() +
4748                        (IsTypeAlias? sizeof(QualType) : 0),
4749                        TypeAlignment);
4750   auto *Spec
4751     = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
4752                                          IsTypeAlias ? Underlying : QualType());
4753 
4754   Types.push_back(Spec);
4755   return QualType(Spec, 0);
4756 }
4757 
getCanonicalTemplateSpecializationType(TemplateName Template,ArrayRef<TemplateArgument> Args) const4758 QualType ASTContext::getCanonicalTemplateSpecializationType(
4759     TemplateName Template, ArrayRef<TemplateArgument> Args) const {
4760   assert(!Template.getAsDependentTemplateName() &&
4761          "No dependent template names here!");
4762 
4763   // Look through qualified template names.
4764   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4765     Template = TemplateName(QTN->getTemplateDecl());
4766 
4767   // Build the canonical template specialization type.
4768   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
4769   SmallVector<TemplateArgument, 4> CanonArgs;
4770   unsigned NumArgs = Args.size();
4771   CanonArgs.reserve(NumArgs);
4772   for (const TemplateArgument &Arg : Args)
4773     CanonArgs.push_back(getCanonicalTemplateArgument(Arg));
4774 
4775   // Determine whether this canonical template specialization type already
4776   // exists.
4777   llvm::FoldingSetNodeID ID;
4778   TemplateSpecializationType::Profile(ID, CanonTemplate,
4779                                       CanonArgs, *this);
4780 
4781   void *InsertPos = nullptr;
4782   TemplateSpecializationType *Spec
4783     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4784 
4785   if (!Spec) {
4786     // Allocate a new canonical template specialization type.
4787     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
4788                           sizeof(TemplateArgument) * NumArgs),
4789                          TypeAlignment);
4790     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
4791                                                 CanonArgs,
4792                                                 QualType(), QualType());
4793     Types.push_back(Spec);
4794     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
4795   }
4796 
4797   assert(Spec->isDependentType() &&
4798          "Non-dependent template-id type must have a canonical type");
4799   return QualType(Spec, 0);
4800 }
4801 
getElaboratedType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,QualType NamedType,TagDecl * OwnedTagDecl) const4802 QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
4803                                        NestedNameSpecifier *NNS,
4804                                        QualType NamedType,
4805                                        TagDecl *OwnedTagDecl) const {
4806   llvm::FoldingSetNodeID ID;
4807   ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
4808 
4809   void *InsertPos = nullptr;
4810   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4811   if (T)
4812     return QualType(T, 0);
4813 
4814   QualType Canon = NamedType;
4815   if (!Canon.isCanonical()) {
4816     Canon = getCanonicalType(NamedType);
4817     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4818     assert(!CheckT && "Elaborated canonical type broken");
4819     (void)CheckT;
4820   }
4821 
4822   void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
4823                        TypeAlignment);
4824   T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
4825 
4826   Types.push_back(T);
4827   ElaboratedTypes.InsertNode(T, InsertPos);
4828   return QualType(T, 0);
4829 }
4830 
4831 QualType
getParenType(QualType InnerType) const4832 ASTContext::getParenType(QualType InnerType) const {
4833   llvm::FoldingSetNodeID ID;
4834   ParenType::Profile(ID, InnerType);
4835 
4836   void *InsertPos = nullptr;
4837   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4838   if (T)
4839     return QualType(T, 0);
4840 
4841   QualType Canon = InnerType;
4842   if (!Canon.isCanonical()) {
4843     Canon = getCanonicalType(InnerType);
4844     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4845     assert(!CheckT && "Paren canonical type broken");
4846     (void)CheckT;
4847   }
4848 
4849   T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
4850   Types.push_back(T);
4851   ParenTypes.InsertNode(T, InsertPos);
4852   return QualType(T, 0);
4853 }
4854 
4855 QualType
getMacroQualifiedType(QualType UnderlyingTy,const IdentifierInfo * MacroII) const4856 ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
4857                                   const IdentifierInfo *MacroII) const {
4858   QualType Canon = UnderlyingTy;
4859   if (!Canon.isCanonical())
4860     Canon = getCanonicalType(UnderlyingTy);
4861 
4862   auto *newType = new (*this, TypeAlignment)
4863       MacroQualifiedType(UnderlyingTy, Canon, MacroII);
4864   Types.push_back(newType);
4865   return QualType(newType, 0);
4866 }
4867 
getDependentNameType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,QualType Canon) const4868 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
4869                                           NestedNameSpecifier *NNS,
4870                                           const IdentifierInfo *Name,
4871                                           QualType Canon) const {
4872   if (Canon.isNull()) {
4873     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4874     if (CanonNNS != NNS)
4875       Canon = getDependentNameType(Keyword, CanonNNS, Name);
4876   }
4877 
4878   llvm::FoldingSetNodeID ID;
4879   DependentNameType::Profile(ID, Keyword, NNS, Name);
4880 
4881   void *InsertPos = nullptr;
4882   DependentNameType *T
4883     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
4884   if (T)
4885     return QualType(T, 0);
4886 
4887   T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
4888   Types.push_back(T);
4889   DependentNameTypes.InsertNode(T, InsertPos);
4890   return QualType(T, 0);
4891 }
4892 
4893 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,const TemplateArgumentListInfo & Args) const4894 ASTContext::getDependentTemplateSpecializationType(
4895                                  ElaboratedTypeKeyword Keyword,
4896                                  NestedNameSpecifier *NNS,
4897                                  const IdentifierInfo *Name,
4898                                  const TemplateArgumentListInfo &Args) const {
4899   // TODO: avoid this copy
4900   SmallVector<TemplateArgument, 16> ArgCopy;
4901   for (unsigned I = 0, E = Args.size(); I != E; ++I)
4902     ArgCopy.push_back(Args[I].getArgument());
4903   return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
4904 }
4905 
4906 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,ArrayRef<TemplateArgument> Args) const4907 ASTContext::getDependentTemplateSpecializationType(
4908                                  ElaboratedTypeKeyword Keyword,
4909                                  NestedNameSpecifier *NNS,
4910                                  const IdentifierInfo *Name,
4911                                  ArrayRef<TemplateArgument> Args) const {
4912   assert((!NNS || NNS->isDependent()) &&
4913          "nested-name-specifier must be dependent");
4914 
4915   llvm::FoldingSetNodeID ID;
4916   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
4917                                                Name, Args);
4918 
4919   void *InsertPos = nullptr;
4920   DependentTemplateSpecializationType *T
4921     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4922   if (T)
4923     return QualType(T, 0);
4924 
4925   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4926 
4927   ElaboratedTypeKeyword CanonKeyword = Keyword;
4928   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
4929 
4930   bool AnyNonCanonArgs = false;
4931   unsigned NumArgs = Args.size();
4932   SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
4933   for (unsigned I = 0; I != NumArgs; ++I) {
4934     CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
4935     if (!CanonArgs[I].structurallyEquals(Args[I]))
4936       AnyNonCanonArgs = true;
4937   }
4938 
4939   QualType Canon;
4940   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
4941     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
4942                                                    Name,
4943                                                    CanonArgs);
4944 
4945     // Find the insert position again.
4946     DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4947   }
4948 
4949   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
4950                         sizeof(TemplateArgument) * NumArgs),
4951                        TypeAlignment);
4952   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
4953                                                     Name, Args, Canon);
4954   Types.push_back(T);
4955   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
4956   return QualType(T, 0);
4957 }
4958 
getInjectedTemplateArg(NamedDecl * Param)4959 TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
4960   TemplateArgument Arg;
4961   if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4962     QualType ArgType = getTypeDeclType(TTP);
4963     if (TTP->isParameterPack())
4964       ArgType = getPackExpansionType(ArgType, None);
4965 
4966     Arg = TemplateArgument(ArgType);
4967   } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4968     QualType T =
4969         NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this);
4970     // For class NTTPs, ensure we include the 'const' so the type matches that
4971     // of a real template argument.
4972     // FIXME: It would be more faithful to model this as something like an
4973     // lvalue-to-rvalue conversion applied to a const-qualified lvalue.
4974     if (T->isRecordType())
4975       T.addConst();
4976     Expr *E = new (*this) DeclRefExpr(
4977         *this, NTTP, /*enclosing*/ false, T,
4978         Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
4979 
4980     if (NTTP->isParameterPack())
4981       E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
4982                                         None);
4983     Arg = TemplateArgument(E);
4984   } else {
4985     auto *TTP = cast<TemplateTemplateParmDecl>(Param);
4986     if (TTP->isParameterPack())
4987       Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
4988     else
4989       Arg = TemplateArgument(TemplateName(TTP));
4990   }
4991 
4992   if (Param->isTemplateParameterPack())
4993     Arg = TemplateArgument::CreatePackCopy(*this, Arg);
4994 
4995   return Arg;
4996 }
4997 
4998 void
getInjectedTemplateArgs(const TemplateParameterList * Params,SmallVectorImpl<TemplateArgument> & Args)4999 ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
5000                                     SmallVectorImpl<TemplateArgument> &Args) {
5001   Args.reserve(Args.size() + Params->size());
5002 
5003   for (NamedDecl *Param : *Params)
5004     Args.push_back(getInjectedTemplateArg(Param));
5005 }
5006 
getPackExpansionType(QualType Pattern,Optional<unsigned> NumExpansions,bool ExpectPackInType)5007 QualType ASTContext::getPackExpansionType(QualType Pattern,
5008                                           Optional<unsigned> NumExpansions,
5009                                           bool ExpectPackInType) {
5010   assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) &&
5011          "Pack expansions must expand one or more parameter packs");
5012 
5013   llvm::FoldingSetNodeID ID;
5014   PackExpansionType::Profile(ID, Pattern, NumExpansions);
5015 
5016   void *InsertPos = nullptr;
5017   PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5018   if (T)
5019     return QualType(T, 0);
5020 
5021   QualType Canon;
5022   if (!Pattern.isCanonical()) {
5023     Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions,
5024                                  /*ExpectPackInType=*/false);
5025 
5026     // Find the insert position again, in case we inserted an element into
5027     // PackExpansionTypes and invalidated our insert position.
5028     PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5029   }
5030 
5031   T = new (*this, TypeAlignment)
5032       PackExpansionType(Pattern, Canon, NumExpansions);
5033   Types.push_back(T);
5034   PackExpansionTypes.InsertNode(T, InsertPos);
5035   return QualType(T, 0);
5036 }
5037 
5038 /// CmpProtocolNames - Comparison predicate for sorting protocols
5039 /// alphabetically.
CmpProtocolNames(ObjCProtocolDecl * const * LHS,ObjCProtocolDecl * const * RHS)5040 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
5041                             ObjCProtocolDecl *const *RHS) {
5042   return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
5043 }
5044 
areSortedAndUniqued(ArrayRef<ObjCProtocolDecl * > Protocols)5045 static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
5046   if (Protocols.empty()) return true;
5047 
5048   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
5049     return false;
5050 
5051   for (unsigned i = 1; i != Protocols.size(); ++i)
5052     if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
5053         Protocols[i]->getCanonicalDecl() != Protocols[i])
5054       return false;
5055   return true;
5056 }
5057 
5058 static void
SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl * > & Protocols)5059 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
5060   // Sort protocols, keyed by name.
5061   llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
5062 
5063   // Canonicalize.
5064   for (ObjCProtocolDecl *&P : Protocols)
5065     P = P->getCanonicalDecl();
5066 
5067   // Remove duplicates.
5068   auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
5069   Protocols.erase(ProtocolsEnd, Protocols.end());
5070 }
5071 
getObjCObjectType(QualType BaseType,ObjCProtocolDecl * const * Protocols,unsigned NumProtocols) const5072 QualType ASTContext::getObjCObjectType(QualType BaseType,
5073                                        ObjCProtocolDecl * const *Protocols,
5074                                        unsigned NumProtocols) const {
5075   return getObjCObjectType(BaseType, {},
5076                            llvm::makeArrayRef(Protocols, NumProtocols),
5077                            /*isKindOf=*/false);
5078 }
5079 
getObjCObjectType(QualType baseType,ArrayRef<QualType> typeArgs,ArrayRef<ObjCProtocolDecl * > protocols,bool isKindOf) const5080 QualType ASTContext::getObjCObjectType(
5081            QualType baseType,
5082            ArrayRef<QualType> typeArgs,
5083            ArrayRef<ObjCProtocolDecl *> protocols,
5084            bool isKindOf) const {
5085   // If the base type is an interface and there aren't any protocols or
5086   // type arguments to add, then the interface type will do just fine.
5087   if (typeArgs.empty() && protocols.empty() && !isKindOf &&
5088       isa<ObjCInterfaceType>(baseType))
5089     return baseType;
5090 
5091   // Look in the folding set for an existing type.
5092   llvm::FoldingSetNodeID ID;
5093   ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
5094   void *InsertPos = nullptr;
5095   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
5096     return QualType(QT, 0);
5097 
5098   // Determine the type arguments to be used for canonicalization,
5099   // which may be explicitly specified here or written on the base
5100   // type.
5101   ArrayRef<QualType> effectiveTypeArgs = typeArgs;
5102   if (effectiveTypeArgs.empty()) {
5103     if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
5104       effectiveTypeArgs = baseObject->getTypeArgs();
5105   }
5106 
5107   // Build the canonical type, which has the canonical base type and a
5108   // sorted-and-uniqued list of protocols and the type arguments
5109   // canonicalized.
5110   QualType canonical;
5111   bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
5112                                           effectiveTypeArgs.end(),
5113                                           [&](QualType type) {
5114                                             return type.isCanonical();
5115                                           });
5116   bool protocolsSorted = areSortedAndUniqued(protocols);
5117   if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
5118     // Determine the canonical type arguments.
5119     ArrayRef<QualType> canonTypeArgs;
5120     SmallVector<QualType, 4> canonTypeArgsVec;
5121     if (!typeArgsAreCanonical) {
5122       canonTypeArgsVec.reserve(effectiveTypeArgs.size());
5123       for (auto typeArg : effectiveTypeArgs)
5124         canonTypeArgsVec.push_back(getCanonicalType(typeArg));
5125       canonTypeArgs = canonTypeArgsVec;
5126     } else {
5127       canonTypeArgs = effectiveTypeArgs;
5128     }
5129 
5130     ArrayRef<ObjCProtocolDecl *> canonProtocols;
5131     SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
5132     if (!protocolsSorted) {
5133       canonProtocolsVec.append(protocols.begin(), protocols.end());
5134       SortAndUniqueProtocols(canonProtocolsVec);
5135       canonProtocols = canonProtocolsVec;
5136     } else {
5137       canonProtocols = protocols;
5138     }
5139 
5140     canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
5141                                   canonProtocols, isKindOf);
5142 
5143     // Regenerate InsertPos.
5144     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
5145   }
5146 
5147   unsigned size = sizeof(ObjCObjectTypeImpl);
5148   size += typeArgs.size() * sizeof(QualType);
5149   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5150   void *mem = Allocate(size, TypeAlignment);
5151   auto *T =
5152     new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
5153                                  isKindOf);
5154 
5155   Types.push_back(T);
5156   ObjCObjectTypes.InsertNode(T, InsertPos);
5157   return QualType(T, 0);
5158 }
5159 
5160 /// Apply Objective-C protocol qualifiers to the given type.
5161 /// If this is for the canonical type of a type parameter, we can apply
5162 /// protocol qualifiers on the ObjCObjectPointerType.
5163 QualType
applyObjCProtocolQualifiers(QualType type,ArrayRef<ObjCProtocolDecl * > protocols,bool & hasError,bool allowOnPointerType) const5164 ASTContext::applyObjCProtocolQualifiers(QualType type,
5165                   ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
5166                   bool allowOnPointerType) const {
5167   hasError = false;
5168 
5169   if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
5170     return getObjCTypeParamType(objT->getDecl(), protocols);
5171   }
5172 
5173   // Apply protocol qualifiers to ObjCObjectPointerType.
5174   if (allowOnPointerType) {
5175     if (const auto *objPtr =
5176             dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
5177       const ObjCObjectType *objT = objPtr->getObjectType();
5178       // Merge protocol lists and construct ObjCObjectType.
5179       SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
5180       protocolsVec.append(objT->qual_begin(),
5181                           objT->qual_end());
5182       protocolsVec.append(protocols.begin(), protocols.end());
5183       ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
5184       type = getObjCObjectType(
5185              objT->getBaseType(),
5186              objT->getTypeArgsAsWritten(),
5187              protocols,
5188              objT->isKindOfTypeAsWritten());
5189       return getObjCObjectPointerType(type);
5190     }
5191   }
5192 
5193   // Apply protocol qualifiers to ObjCObjectType.
5194   if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
5195     // FIXME: Check for protocols to which the class type is already
5196     // known to conform.
5197 
5198     return getObjCObjectType(objT->getBaseType(),
5199                              objT->getTypeArgsAsWritten(),
5200                              protocols,
5201                              objT->isKindOfTypeAsWritten());
5202   }
5203 
5204   // If the canonical type is ObjCObjectType, ...
5205   if (type->isObjCObjectType()) {
5206     // Silently overwrite any existing protocol qualifiers.
5207     // TODO: determine whether that's the right thing to do.
5208 
5209     // FIXME: Check for protocols to which the class type is already
5210     // known to conform.
5211     return getObjCObjectType(type, {}, protocols, false);
5212   }
5213 
5214   // id<protocol-list>
5215   if (type->isObjCIdType()) {
5216     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5217     type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
5218                                  objPtr->isKindOfType());
5219     return getObjCObjectPointerType(type);
5220   }
5221 
5222   // Class<protocol-list>
5223   if (type->isObjCClassType()) {
5224     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5225     type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
5226                                  objPtr->isKindOfType());
5227     return getObjCObjectPointerType(type);
5228   }
5229 
5230   hasError = true;
5231   return type;
5232 }
5233 
5234 QualType
getObjCTypeParamType(const ObjCTypeParamDecl * Decl,ArrayRef<ObjCProtocolDecl * > protocols) const5235 ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
5236                                  ArrayRef<ObjCProtocolDecl *> protocols) const {
5237   // Look in the folding set for an existing type.
5238   llvm::FoldingSetNodeID ID;
5239   ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols);
5240   void *InsertPos = nullptr;
5241   if (ObjCTypeParamType *TypeParam =
5242       ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
5243     return QualType(TypeParam, 0);
5244 
5245   // We canonicalize to the underlying type.
5246   QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
5247   if (!protocols.empty()) {
5248     // Apply the protocol qualifers.
5249     bool hasError;
5250     Canonical = getCanonicalType(applyObjCProtocolQualifiers(
5251         Canonical, protocols, hasError, true /*allowOnPointerType*/));
5252     assert(!hasError && "Error when apply protocol qualifier to bound type");
5253   }
5254 
5255   unsigned size = sizeof(ObjCTypeParamType);
5256   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5257   void *mem = Allocate(size, TypeAlignment);
5258   auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
5259 
5260   Types.push_back(newType);
5261   ObjCTypeParamTypes.InsertNode(newType, InsertPos);
5262   return QualType(newType, 0);
5263 }
5264 
adjustObjCTypeParamBoundType(const ObjCTypeParamDecl * Orig,ObjCTypeParamDecl * New) const5265 void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
5266                                               ObjCTypeParamDecl *New) const {
5267   New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType()));
5268   // Update TypeForDecl after updating TypeSourceInfo.
5269   auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl());
5270   SmallVector<ObjCProtocolDecl *, 8> protocols;
5271   protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end());
5272   QualType UpdatedTy = getObjCTypeParamType(New, protocols);
5273   New->setTypeForDecl(UpdatedTy.getTypePtr());
5274 }
5275 
5276 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
5277 /// protocol list adopt all protocols in QT's qualified-id protocol
5278 /// list.
ObjCObjectAdoptsQTypeProtocols(QualType QT,ObjCInterfaceDecl * IC)5279 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
5280                                                 ObjCInterfaceDecl *IC) {
5281   if (!QT->isObjCQualifiedIdType())
5282     return false;
5283 
5284   if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
5285     // If both the right and left sides have qualifiers.
5286     for (auto *Proto : OPT->quals()) {
5287       if (!IC->ClassImplementsProtocol(Proto, false))
5288         return false;
5289     }
5290     return true;
5291   }
5292   return false;
5293 }
5294 
5295 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
5296 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
5297 /// of protocols.
QIdProtocolsAdoptObjCObjectProtocols(QualType QT,ObjCInterfaceDecl * IDecl)5298 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
5299                                                 ObjCInterfaceDecl *IDecl) {
5300   if (!QT->isObjCQualifiedIdType())
5301     return false;
5302   const auto *OPT = QT->getAs<ObjCObjectPointerType>();
5303   if (!OPT)
5304     return false;
5305   if (!IDecl->hasDefinition())
5306     return false;
5307   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
5308   CollectInheritedProtocols(IDecl, InheritedProtocols);
5309   if (InheritedProtocols.empty())
5310     return false;
5311   // Check that if every protocol in list of id<plist> conforms to a protocol
5312   // of IDecl's, then bridge casting is ok.
5313   bool Conforms = false;
5314   for (auto *Proto : OPT->quals()) {
5315     Conforms = false;
5316     for (auto *PI : InheritedProtocols) {
5317       if (ProtocolCompatibleWithProtocol(Proto, PI)) {
5318         Conforms = true;
5319         break;
5320       }
5321     }
5322     if (!Conforms)
5323       break;
5324   }
5325   if (Conforms)
5326     return true;
5327 
5328   for (auto *PI : InheritedProtocols) {
5329     // If both the right and left sides have qualifiers.
5330     bool Adopts = false;
5331     for (auto *Proto : OPT->quals()) {
5332       // return 'true' if 'PI' is in the inheritance hierarchy of Proto
5333       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
5334         break;
5335     }
5336     if (!Adopts)
5337       return false;
5338   }
5339   return true;
5340 }
5341 
5342 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
5343 /// the given object type.
getObjCObjectPointerType(QualType ObjectT) const5344 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
5345   llvm::FoldingSetNodeID ID;
5346   ObjCObjectPointerType::Profile(ID, ObjectT);
5347 
5348   void *InsertPos = nullptr;
5349   if (ObjCObjectPointerType *QT =
5350               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
5351     return QualType(QT, 0);
5352 
5353   // Find the canonical object type.
5354   QualType Canonical;
5355   if (!ObjectT.isCanonical()) {
5356     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
5357 
5358     // Regenerate InsertPos.
5359     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
5360   }
5361 
5362   // No match.
5363   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
5364   auto *QType =
5365     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
5366 
5367   Types.push_back(QType);
5368   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
5369   return QualType(QType, 0);
5370 }
5371 
5372 /// getObjCInterfaceType - Return the unique reference to the type for the
5373 /// specified ObjC interface decl. The list of protocols is optional.
getObjCInterfaceType(const ObjCInterfaceDecl * Decl,ObjCInterfaceDecl * PrevDecl) const5374 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
5375                                           ObjCInterfaceDecl *PrevDecl) const {
5376   if (Decl->TypeForDecl)
5377     return QualType(Decl->TypeForDecl, 0);
5378 
5379   if (PrevDecl) {
5380     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
5381     Decl->TypeForDecl = PrevDecl->TypeForDecl;
5382     return QualType(PrevDecl->TypeForDecl, 0);
5383   }
5384 
5385   // Prefer the definition, if there is one.
5386   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
5387     Decl = Def;
5388 
5389   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
5390   auto *T = new (Mem) ObjCInterfaceType(Decl);
5391   Decl->TypeForDecl = T;
5392   Types.push_back(T);
5393   return QualType(T, 0);
5394 }
5395 
5396 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
5397 /// TypeOfExprType AST's (since expression's are never shared). For example,
5398 /// multiple declarations that refer to "typeof(x)" all contain different
5399 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
5400 /// on canonical type's (which are always unique).
getTypeOfExprType(Expr * tofExpr) const5401 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
5402   TypeOfExprType *toe;
5403   if (tofExpr->isTypeDependent()) {
5404     llvm::FoldingSetNodeID ID;
5405     DependentTypeOfExprType::Profile(ID, *this, tofExpr);
5406 
5407     void *InsertPos = nullptr;
5408     DependentTypeOfExprType *Canon
5409       = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
5410     if (Canon) {
5411       // We already have a "canonical" version of an identical, dependent
5412       // typeof(expr) type. Use that as our canonical type.
5413       toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
5414                                           QualType((TypeOfExprType*)Canon, 0));
5415     } else {
5416       // Build a new, canonical typeof(expr) type.
5417       Canon
5418         = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
5419       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
5420       toe = Canon;
5421     }
5422   } else {
5423     QualType Canonical = getCanonicalType(tofExpr->getType());
5424     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
5425   }
5426   Types.push_back(toe);
5427   return QualType(toe, 0);
5428 }
5429 
5430 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
5431 /// TypeOfType nodes. The only motivation to unique these nodes would be
5432 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
5433 /// an issue. This doesn't affect the type checker, since it operates
5434 /// on canonical types (which are always unique).
getTypeOfType(QualType tofType) const5435 QualType ASTContext::getTypeOfType(QualType tofType) const {
5436   QualType Canonical = getCanonicalType(tofType);
5437   auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
5438   Types.push_back(tot);
5439   return QualType(tot, 0);
5440 }
5441 
5442 /// Unlike many "get<Type>" functions, we don't unique DecltypeType
5443 /// nodes. This would never be helpful, since each such type has its own
5444 /// expression, and would not give a significant memory saving, since there
5445 /// is an Expr tree under each such type.
getDecltypeType(Expr * e,QualType UnderlyingType) const5446 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
5447   DecltypeType *dt;
5448 
5449   // C++11 [temp.type]p2:
5450   //   If an expression e involves a template parameter, decltype(e) denotes a
5451   //   unique dependent type. Two such decltype-specifiers refer to the same
5452   //   type only if their expressions are equivalent (14.5.6.1).
5453   if (e->isInstantiationDependent()) {
5454     llvm::FoldingSetNodeID ID;
5455     DependentDecltypeType::Profile(ID, *this, e);
5456 
5457     void *InsertPos = nullptr;
5458     DependentDecltypeType *Canon
5459       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
5460     if (!Canon) {
5461       // Build a new, canonical decltype(expr) type.
5462       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
5463       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
5464     }
5465     dt = new (*this, TypeAlignment)
5466         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
5467   } else {
5468     dt = new (*this, TypeAlignment)
5469         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
5470   }
5471   Types.push_back(dt);
5472   return QualType(dt, 0);
5473 }
5474 
5475 /// getUnaryTransformationType - We don't unique these, since the memory
5476 /// savings are minimal and these are rare.
getUnaryTransformType(QualType BaseType,QualType UnderlyingType,UnaryTransformType::UTTKind Kind) const5477 QualType ASTContext::getUnaryTransformType(QualType BaseType,
5478                                            QualType UnderlyingType,
5479                                            UnaryTransformType::UTTKind Kind)
5480     const {
5481   UnaryTransformType *ut = nullptr;
5482 
5483   if (BaseType->isDependentType()) {
5484     // Look in the folding set for an existing type.
5485     llvm::FoldingSetNodeID ID;
5486     DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
5487 
5488     void *InsertPos = nullptr;
5489     DependentUnaryTransformType *Canon
5490       = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
5491 
5492     if (!Canon) {
5493       // Build a new, canonical __underlying_type(type) type.
5494       Canon = new (*this, TypeAlignment)
5495              DependentUnaryTransformType(*this, getCanonicalType(BaseType),
5496                                          Kind);
5497       DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
5498     }
5499     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5500                                                         QualType(), Kind,
5501                                                         QualType(Canon, 0));
5502   } else {
5503     QualType CanonType = getCanonicalType(UnderlyingType);
5504     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5505                                                         UnderlyingType, Kind,
5506                                                         CanonType);
5507   }
5508   Types.push_back(ut);
5509   return QualType(ut, 0);
5510 }
5511 
5512 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
5513 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
5514 /// canonical deduced-but-dependent 'auto' type.
5515 QualType
getAutoType(QualType DeducedType,AutoTypeKeyword Keyword,bool IsDependent,bool IsPack,ConceptDecl * TypeConstraintConcept,ArrayRef<TemplateArgument> TypeConstraintArgs) const5516 ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
5517                         bool IsDependent, bool IsPack,
5518                         ConceptDecl *TypeConstraintConcept,
5519                         ArrayRef<TemplateArgument> TypeConstraintArgs) const {
5520   assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
5521   if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
5522       !TypeConstraintConcept && !IsDependent)
5523     return getAutoDeductType();
5524 
5525   // Look in the folding set for an existing type.
5526   void *InsertPos = nullptr;
5527   llvm::FoldingSetNodeID ID;
5528   AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
5529                     TypeConstraintConcept, TypeConstraintArgs);
5530   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
5531     return QualType(AT, 0);
5532 
5533   void *Mem = Allocate(sizeof(AutoType) +
5534                        sizeof(TemplateArgument) * TypeConstraintArgs.size(),
5535                        TypeAlignment);
5536   auto *AT = new (Mem) AutoType(
5537       DeducedType, Keyword,
5538       (IsDependent ? TypeDependence::DependentInstantiation
5539                    : TypeDependence::None) |
5540           (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None),
5541       TypeConstraintConcept, TypeConstraintArgs);
5542   Types.push_back(AT);
5543   if (InsertPos)
5544     AutoTypes.InsertNode(AT, InsertPos);
5545   return QualType(AT, 0);
5546 }
5547 
5548 /// Return the uniqued reference to the deduced template specialization type
5549 /// which has been deduced to the given type, or to the canonical undeduced
5550 /// such type, or the canonical deduced-but-dependent such type.
getDeducedTemplateSpecializationType(TemplateName Template,QualType DeducedType,bool IsDependent) const5551 QualType ASTContext::getDeducedTemplateSpecializationType(
5552     TemplateName Template, QualType DeducedType, bool IsDependent) const {
5553   // Look in the folding set for an existing type.
5554   void *InsertPos = nullptr;
5555   llvm::FoldingSetNodeID ID;
5556   DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
5557                                              IsDependent);
5558   if (DeducedTemplateSpecializationType *DTST =
5559           DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
5560     return QualType(DTST, 0);
5561 
5562   auto *DTST = new (*this, TypeAlignment)
5563       DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
5564   Types.push_back(DTST);
5565   if (InsertPos)
5566     DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
5567   return QualType(DTST, 0);
5568 }
5569 
5570 /// getAtomicType - Return the uniqued reference to the atomic type for
5571 /// the given value type.
getAtomicType(QualType T) const5572 QualType ASTContext::getAtomicType(QualType T) const {
5573   // Unique pointers, to guarantee there is only one pointer of a particular
5574   // structure.
5575   llvm::FoldingSetNodeID ID;
5576   AtomicType::Profile(ID, T);
5577 
5578   void *InsertPos = nullptr;
5579   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
5580     return QualType(AT, 0);
5581 
5582   // If the atomic value type isn't canonical, this won't be a canonical type
5583   // either, so fill in the canonical type field.
5584   QualType Canonical;
5585   if (!T.isCanonical()) {
5586     Canonical = getAtomicType(getCanonicalType(T));
5587 
5588     // Get the new insert position for the node we care about.
5589     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
5590     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
5591   }
5592   auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
5593   Types.push_back(New);
5594   AtomicTypes.InsertNode(New, InsertPos);
5595   return QualType(New, 0);
5596 }
5597 
5598 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
getAutoDeductType() const5599 QualType ASTContext::getAutoDeductType() const {
5600   if (AutoDeductTy.isNull())
5601     AutoDeductTy = QualType(new (*this, TypeAlignment)
5602                                 AutoType(QualType(), AutoTypeKeyword::Auto,
5603                                          TypeDependence::None,
5604                                          /*concept*/ nullptr, /*args*/ {}),
5605                             0);
5606   return AutoDeductTy;
5607 }
5608 
5609 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
getAutoRRefDeductType() const5610 QualType ASTContext::getAutoRRefDeductType() const {
5611   if (AutoRRefDeductTy.isNull())
5612     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
5613   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
5614   return AutoRRefDeductTy;
5615 }
5616 
5617 /// getTagDeclType - Return the unique reference to the type for the
5618 /// specified TagDecl (struct/union/class/enum) decl.
getTagDeclType(const TagDecl * Decl) const5619 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
5620   assert(Decl);
5621   // FIXME: What is the design on getTagDeclType when it requires casting
5622   // away const?  mutable?
5623   return getTypeDeclType(const_cast<TagDecl*>(Decl));
5624 }
5625 
5626 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
5627 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
5628 /// needs to agree with the definition in <stddef.h>.
getSizeType() const5629 CanQualType ASTContext::getSizeType() const {
5630   return getFromTargetType(Target->getSizeType());
5631 }
5632 
5633 /// Return the unique signed counterpart of the integer type
5634 /// corresponding to size_t.
getSignedSizeType() const5635 CanQualType ASTContext::getSignedSizeType() const {
5636   return getFromTargetType(Target->getSignedSizeType());
5637 }
5638 
5639 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
getIntMaxType() const5640 CanQualType ASTContext::getIntMaxType() const {
5641   return getFromTargetType(Target->getIntMaxType());
5642 }
5643 
5644 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
getUIntMaxType() const5645 CanQualType ASTContext::getUIntMaxType() const {
5646   return getFromTargetType(Target->getUIntMaxType());
5647 }
5648 
5649 /// getSignedWCharType - Return the type of "signed wchar_t".
5650 /// Used when in C++, as a GCC extension.
getSignedWCharType() const5651 QualType ASTContext::getSignedWCharType() const {
5652   // FIXME: derive from "Target" ?
5653   return WCharTy;
5654 }
5655 
5656 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
5657 /// Used when in C++, as a GCC extension.
getUnsignedWCharType() const5658 QualType ASTContext::getUnsignedWCharType() const {
5659   // FIXME: derive from "Target" ?
5660   return UnsignedIntTy;
5661 }
5662 
getIntPtrType() const5663 QualType ASTContext::getIntPtrType() const {
5664   return getFromTargetType(Target->getIntPtrType());
5665 }
5666 
getUIntPtrType() const5667 QualType ASTContext::getUIntPtrType() const {
5668   return getCorrespondingUnsignedType(getIntPtrType());
5669 }
5670 
5671 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
5672 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
getPointerDiffType() const5673 QualType ASTContext::getPointerDiffType() const {
5674   return getFromTargetType(Target->getPtrDiffType(0));
5675 }
5676 
5677 /// Return the unique unsigned counterpart of "ptrdiff_t"
5678 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
5679 /// in the definition of %tu format specifier.
getUnsignedPointerDiffType() const5680 QualType ASTContext::getUnsignedPointerDiffType() const {
5681   return getFromTargetType(Target->getUnsignedPtrDiffType(0));
5682 }
5683 
5684 /// Return the unique type for "pid_t" defined in
5685 /// <sys/types.h>. We need this to compute the correct type for vfork().
getProcessIDType() const5686 QualType ASTContext::getProcessIDType() const {
5687   return getFromTargetType(Target->getProcessIDType());
5688 }
5689 
5690 //===----------------------------------------------------------------------===//
5691 //                              Type Operators
5692 //===----------------------------------------------------------------------===//
5693 
getCanonicalParamType(QualType T) const5694 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
5695   // Push qualifiers into arrays, and then discard any remaining
5696   // qualifiers.
5697   T = getCanonicalType(T);
5698   T = getVariableArrayDecayedType(T);
5699   const Type *Ty = T.getTypePtr();
5700   QualType Result;
5701   if (isa<ArrayType>(Ty)) {
5702     Result = getArrayDecayedType(QualType(Ty,0));
5703   } else if (isa<FunctionType>(Ty)) {
5704     Result = getPointerType(QualType(Ty, 0));
5705   } else {
5706     Result = QualType(Ty, 0);
5707   }
5708 
5709   return CanQualType::CreateUnsafe(Result);
5710 }
5711 
getUnqualifiedArrayType(QualType type,Qualifiers & quals)5712 QualType ASTContext::getUnqualifiedArrayType(QualType type,
5713                                              Qualifiers &quals) {
5714   SplitQualType splitType = type.getSplitUnqualifiedType();
5715 
5716   // FIXME: getSplitUnqualifiedType() actually walks all the way to
5717   // the unqualified desugared type and then drops it on the floor.
5718   // We then have to strip that sugar back off with
5719   // getUnqualifiedDesugaredType(), which is silly.
5720   const auto *AT =
5721       dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
5722 
5723   // If we don't have an array, just use the results in splitType.
5724   if (!AT) {
5725     quals = splitType.Quals;
5726     return QualType(splitType.Ty, 0);
5727   }
5728 
5729   // Otherwise, recurse on the array's element type.
5730   QualType elementType = AT->getElementType();
5731   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
5732 
5733   // If that didn't change the element type, AT has no qualifiers, so we
5734   // can just use the results in splitType.
5735   if (elementType == unqualElementType) {
5736     assert(quals.empty()); // from the recursive call
5737     quals = splitType.Quals;
5738     return QualType(splitType.Ty, 0);
5739   }
5740 
5741   // Otherwise, add in the qualifiers from the outermost type, then
5742   // build the type back up.
5743   quals.addConsistentQualifiers(splitType.Quals);
5744 
5745   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
5746     return getConstantArrayType(unqualElementType, CAT->getSize(),
5747                                 CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
5748   }
5749 
5750   if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
5751     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
5752   }
5753 
5754   if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
5755     return getVariableArrayType(unqualElementType,
5756                                 VAT->getSizeExpr(),
5757                                 VAT->getSizeModifier(),
5758                                 VAT->getIndexTypeCVRQualifiers(),
5759                                 VAT->getBracketsRange());
5760   }
5761 
5762   const auto *DSAT = cast<DependentSizedArrayType>(AT);
5763   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
5764                                     DSAT->getSizeModifier(), 0,
5765                                     SourceRange());
5766 }
5767 
5768 /// Attempt to unwrap two types that may both be array types with the same bound
5769 /// (or both be array types of unknown bound) for the purpose of comparing the
5770 /// cv-decomposition of two types per C++ [conv.qual].
UnwrapSimilarArrayTypes(QualType & T1,QualType & T2)5771 void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2) {
5772   while (true) {
5773     auto *AT1 = getAsArrayType(T1);
5774     if (!AT1)
5775       return;
5776 
5777     auto *AT2 = getAsArrayType(T2);
5778     if (!AT2)
5779       return;
5780 
5781     // If we don't have two array types with the same constant bound nor two
5782     // incomplete array types, we've unwrapped everything we can.
5783     if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
5784       auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
5785       if (!CAT2 || CAT1->getSize() != CAT2->getSize())
5786         return;
5787     } else if (!isa<IncompleteArrayType>(AT1) ||
5788                !isa<IncompleteArrayType>(AT2)) {
5789       return;
5790     }
5791 
5792     T1 = AT1->getElementType();
5793     T2 = AT2->getElementType();
5794   }
5795 }
5796 
5797 /// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
5798 ///
5799 /// If T1 and T2 are both pointer types of the same kind, or both array types
5800 /// with the same bound, unwraps layers from T1 and T2 until a pointer type is
5801 /// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
5802 ///
5803 /// This function will typically be called in a loop that successively
5804 /// "unwraps" pointer and pointer-to-member types to compare them at each
5805 /// level.
5806 ///
5807 /// \return \c true if a pointer type was unwrapped, \c false if we reached a
5808 /// pair of types that can't be unwrapped further.
UnwrapSimilarTypes(QualType & T1,QualType & T2)5809 bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2) {
5810   UnwrapSimilarArrayTypes(T1, T2);
5811 
5812   const auto *T1PtrType = T1->getAs<PointerType>();
5813   const auto *T2PtrType = T2->getAs<PointerType>();
5814   if (T1PtrType && T2PtrType) {
5815     T1 = T1PtrType->getPointeeType();
5816     T2 = T2PtrType->getPointeeType();
5817     return true;
5818   }
5819 
5820   const auto *T1MPType = T1->getAs<MemberPointerType>();
5821   const auto *T2MPType = T2->getAs<MemberPointerType>();
5822   if (T1MPType && T2MPType &&
5823       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
5824                              QualType(T2MPType->getClass(), 0))) {
5825     T1 = T1MPType->getPointeeType();
5826     T2 = T2MPType->getPointeeType();
5827     return true;
5828   }
5829 
5830   if (getLangOpts().ObjC) {
5831     const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
5832     const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
5833     if (T1OPType && T2OPType) {
5834       T1 = T1OPType->getPointeeType();
5835       T2 = T2OPType->getPointeeType();
5836       return true;
5837     }
5838   }
5839 
5840   // FIXME: Block pointers, too?
5841 
5842   return false;
5843 }
5844 
hasSimilarType(QualType T1,QualType T2)5845 bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
5846   while (true) {
5847     Qualifiers Quals;
5848     T1 = getUnqualifiedArrayType(T1, Quals);
5849     T2 = getUnqualifiedArrayType(T2, Quals);
5850     if (hasSameType(T1, T2))
5851       return true;
5852     if (!UnwrapSimilarTypes(T1, T2))
5853       return false;
5854   }
5855 }
5856 
hasCvrSimilarType(QualType T1,QualType T2)5857 bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
5858   while (true) {
5859     Qualifiers Quals1, Quals2;
5860     T1 = getUnqualifiedArrayType(T1, Quals1);
5861     T2 = getUnqualifiedArrayType(T2, Quals2);
5862 
5863     Quals1.removeCVRQualifiers();
5864     Quals2.removeCVRQualifiers();
5865     if (Quals1 != Quals2)
5866       return false;
5867 
5868     if (hasSameType(T1, T2))
5869       return true;
5870 
5871     if (!UnwrapSimilarTypes(T1, T2))
5872       return false;
5873   }
5874 }
5875 
5876 DeclarationNameInfo
getNameForTemplate(TemplateName Name,SourceLocation NameLoc) const5877 ASTContext::getNameForTemplate(TemplateName Name,
5878                                SourceLocation NameLoc) const {
5879   switch (Name.getKind()) {
5880   case TemplateName::QualifiedTemplate:
5881   case TemplateName::Template:
5882     // DNInfo work in progress: CHECKME: what about DNLoc?
5883     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
5884                                NameLoc);
5885 
5886   case TemplateName::OverloadedTemplate: {
5887     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
5888     // DNInfo work in progress: CHECKME: what about DNLoc?
5889     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
5890   }
5891 
5892   case TemplateName::AssumedTemplate: {
5893     AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
5894     return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
5895   }
5896 
5897   case TemplateName::DependentTemplate: {
5898     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
5899     DeclarationName DName;
5900     if (DTN->isIdentifier()) {
5901       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
5902       return DeclarationNameInfo(DName, NameLoc);
5903     } else {
5904       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
5905       // DNInfo work in progress: FIXME: source locations?
5906       DeclarationNameLoc DNLoc =
5907           DeclarationNameLoc::makeCXXOperatorNameLoc(SourceRange());
5908       return DeclarationNameInfo(DName, NameLoc, DNLoc);
5909     }
5910   }
5911 
5912   case TemplateName::SubstTemplateTemplateParm: {
5913     SubstTemplateTemplateParmStorage *subst
5914       = Name.getAsSubstTemplateTemplateParm();
5915     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
5916                                NameLoc);
5917   }
5918 
5919   case TemplateName::SubstTemplateTemplateParmPack: {
5920     SubstTemplateTemplateParmPackStorage *subst
5921       = Name.getAsSubstTemplateTemplateParmPack();
5922     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
5923                                NameLoc);
5924   }
5925   }
5926 
5927   llvm_unreachable("bad template name kind!");
5928 }
5929 
getCanonicalTemplateName(TemplateName Name) const5930 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
5931   switch (Name.getKind()) {
5932   case TemplateName::QualifiedTemplate:
5933   case TemplateName::Template: {
5934     TemplateDecl *Template = Name.getAsTemplateDecl();
5935     if (auto *TTP  = dyn_cast<TemplateTemplateParmDecl>(Template))
5936       Template = getCanonicalTemplateTemplateParmDecl(TTP);
5937 
5938     // The canonical template name is the canonical template declaration.
5939     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
5940   }
5941 
5942   case TemplateName::OverloadedTemplate:
5943   case TemplateName::AssumedTemplate:
5944     llvm_unreachable("cannot canonicalize unresolved template");
5945 
5946   case TemplateName::DependentTemplate: {
5947     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
5948     assert(DTN && "Non-dependent template names must refer to template decls.");
5949     return DTN->CanonicalTemplateName;
5950   }
5951 
5952   case TemplateName::SubstTemplateTemplateParm: {
5953     SubstTemplateTemplateParmStorage *subst
5954       = Name.getAsSubstTemplateTemplateParm();
5955     return getCanonicalTemplateName(subst->getReplacement());
5956   }
5957 
5958   case TemplateName::SubstTemplateTemplateParmPack: {
5959     SubstTemplateTemplateParmPackStorage *subst
5960                                   = Name.getAsSubstTemplateTemplateParmPack();
5961     TemplateTemplateParmDecl *canonParameter
5962       = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
5963     TemplateArgument canonArgPack
5964       = getCanonicalTemplateArgument(subst->getArgumentPack());
5965     return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
5966   }
5967   }
5968 
5969   llvm_unreachable("bad template name!");
5970 }
5971 
hasSameTemplateName(TemplateName X,TemplateName Y)5972 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
5973   X = getCanonicalTemplateName(X);
5974   Y = getCanonicalTemplateName(Y);
5975   return X.getAsVoidPointer() == Y.getAsVoidPointer();
5976 }
5977 
5978 TemplateArgument
getCanonicalTemplateArgument(const TemplateArgument & Arg) const5979 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
5980   switch (Arg.getKind()) {
5981     case TemplateArgument::Null:
5982       return Arg;
5983 
5984     case TemplateArgument::Expression:
5985       return Arg;
5986 
5987     case TemplateArgument::Declaration: {
5988       auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
5989       return TemplateArgument(D, Arg.getParamTypeForDecl());
5990     }
5991 
5992     case TemplateArgument::NullPtr:
5993       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
5994                               /*isNullPtr*/true);
5995 
5996     case TemplateArgument::Template:
5997       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
5998 
5999     case TemplateArgument::TemplateExpansion:
6000       return TemplateArgument(getCanonicalTemplateName(
6001                                          Arg.getAsTemplateOrTemplatePattern()),
6002                               Arg.getNumTemplateExpansions());
6003 
6004     case TemplateArgument::Integral:
6005       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
6006 
6007     case TemplateArgument::Type:
6008       return TemplateArgument(getCanonicalType(Arg.getAsType()));
6009 
6010     case TemplateArgument::Pack: {
6011       if (Arg.pack_size() == 0)
6012         return Arg;
6013 
6014       auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
6015       unsigned Idx = 0;
6016       for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
6017                                         AEnd = Arg.pack_end();
6018            A != AEnd; (void)++A, ++Idx)
6019         CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
6020 
6021       return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
6022     }
6023   }
6024 
6025   // Silence GCC warning
6026   llvm_unreachable("Unhandled template argument kind");
6027 }
6028 
6029 NestedNameSpecifier *
getCanonicalNestedNameSpecifier(NestedNameSpecifier * NNS) const6030 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
6031   if (!NNS)
6032     return nullptr;
6033 
6034   switch (NNS->getKind()) {
6035   case NestedNameSpecifier::Identifier:
6036     // Canonicalize the prefix but keep the identifier the same.
6037     return NestedNameSpecifier::Create(*this,
6038                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
6039                                        NNS->getAsIdentifier());
6040 
6041   case NestedNameSpecifier::Namespace:
6042     // A namespace is canonical; build a nested-name-specifier with
6043     // this namespace and no prefix.
6044     return NestedNameSpecifier::Create(*this, nullptr,
6045                                  NNS->getAsNamespace()->getOriginalNamespace());
6046 
6047   case NestedNameSpecifier::NamespaceAlias:
6048     // A namespace is canonical; build a nested-name-specifier with
6049     // this namespace and no prefix.
6050     return NestedNameSpecifier::Create(*this, nullptr,
6051                                     NNS->getAsNamespaceAlias()->getNamespace()
6052                                                       ->getOriginalNamespace());
6053 
6054   case NestedNameSpecifier::TypeSpec:
6055   case NestedNameSpecifier::TypeSpecWithTemplate: {
6056     QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
6057 
6058     // If we have some kind of dependent-named type (e.g., "typename T::type"),
6059     // break it apart into its prefix and identifier, then reconsititute those
6060     // as the canonical nested-name-specifier. This is required to canonicalize
6061     // a dependent nested-name-specifier involving typedefs of dependent-name
6062     // types, e.g.,
6063     //   typedef typename T::type T1;
6064     //   typedef typename T1::type T2;
6065     if (const auto *DNT = T->getAs<DependentNameType>())
6066       return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
6067                            const_cast<IdentifierInfo *>(DNT->getIdentifier()));
6068 
6069     // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
6070     // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
6071     // first place?
6072     return NestedNameSpecifier::Create(*this, nullptr, false,
6073                                        const_cast<Type *>(T.getTypePtr()));
6074   }
6075 
6076   case NestedNameSpecifier::Global:
6077   case NestedNameSpecifier::Super:
6078     // The global specifier and __super specifer are canonical and unique.
6079     return NNS;
6080   }
6081 
6082   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6083 }
6084 
getAsArrayType(QualType T) const6085 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
6086   // Handle the non-qualified case efficiently.
6087   if (!T.hasLocalQualifiers()) {
6088     // Handle the common positive case fast.
6089     if (const auto *AT = dyn_cast<ArrayType>(T))
6090       return AT;
6091   }
6092 
6093   // Handle the common negative case fast.
6094   if (!isa<ArrayType>(T.getCanonicalType()))
6095     return nullptr;
6096 
6097   // Apply any qualifiers from the array type to the element type.  This
6098   // implements C99 6.7.3p8: "If the specification of an array type includes
6099   // any type qualifiers, the element type is so qualified, not the array type."
6100 
6101   // If we get here, we either have type qualifiers on the type, or we have
6102   // sugar such as a typedef in the way.  If we have type qualifiers on the type
6103   // we must propagate them down into the element type.
6104 
6105   SplitQualType split = T.getSplitDesugaredType();
6106   Qualifiers qs = split.Quals;
6107 
6108   // If we have a simple case, just return now.
6109   const auto *ATy = dyn_cast<ArrayType>(split.Ty);
6110   if (!ATy || qs.empty())
6111     return ATy;
6112 
6113   // Otherwise, we have an array and we have qualifiers on it.  Push the
6114   // qualifiers into the array element type and return a new array type.
6115   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
6116 
6117   if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
6118     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
6119                                                 CAT->getSizeExpr(),
6120                                                 CAT->getSizeModifier(),
6121                                            CAT->getIndexTypeCVRQualifiers()));
6122   if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
6123     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
6124                                                   IAT->getSizeModifier(),
6125                                            IAT->getIndexTypeCVRQualifiers()));
6126 
6127   if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
6128     return cast<ArrayType>(
6129                      getDependentSizedArrayType(NewEltTy,
6130                                                 DSAT->getSizeExpr(),
6131                                                 DSAT->getSizeModifier(),
6132                                               DSAT->getIndexTypeCVRQualifiers(),
6133                                                 DSAT->getBracketsRange()));
6134 
6135   const auto *VAT = cast<VariableArrayType>(ATy);
6136   return cast<ArrayType>(getVariableArrayType(NewEltTy,
6137                                               VAT->getSizeExpr(),
6138                                               VAT->getSizeModifier(),
6139                                               VAT->getIndexTypeCVRQualifiers(),
6140                                               VAT->getBracketsRange()));
6141 }
6142 
getAdjustedParameterType(QualType T) const6143 QualType ASTContext::getAdjustedParameterType(QualType T) const {
6144   if (T->isArrayType() || T->isFunctionType())
6145     return getDecayedType(T);
6146   return T;
6147 }
6148 
getSignatureParameterType(QualType T) const6149 QualType ASTContext::getSignatureParameterType(QualType T) const {
6150   T = getVariableArrayDecayedType(T);
6151   T = getAdjustedParameterType(T);
6152   return T.getUnqualifiedType();
6153 }
6154 
getExceptionObjectType(QualType T) const6155 QualType ASTContext::getExceptionObjectType(QualType T) const {
6156   // C++ [except.throw]p3:
6157   //   A throw-expression initializes a temporary object, called the exception
6158   //   object, the type of which is determined by removing any top-level
6159   //   cv-qualifiers from the static type of the operand of throw and adjusting
6160   //   the type from "array of T" or "function returning T" to "pointer to T"
6161   //   or "pointer to function returning T", [...]
6162   T = getVariableArrayDecayedType(T);
6163   if (T->isArrayType() || T->isFunctionType())
6164     T = getDecayedType(T);
6165   return T.getUnqualifiedType();
6166 }
6167 
6168 /// getArrayDecayedType - Return the properly qualified result of decaying the
6169 /// specified array type to a pointer.  This operation is non-trivial when
6170 /// handling typedefs etc.  The canonical type of "T" must be an array type,
6171 /// this returns a pointer to a properly qualified element of the array.
6172 ///
6173 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
getArrayDecayedType(QualType Ty) const6174 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
6175   // Get the element type with 'getAsArrayType' so that we don't lose any
6176   // typedefs in the element type of the array.  This also handles propagation
6177   // of type qualifiers from the array type into the element type if present
6178   // (C99 6.7.3p8).
6179   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
6180   assert(PrettyArrayType && "Not an array type!");
6181 
6182   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
6183 
6184   // int x[restrict 4] ->  int *restrict
6185   QualType Result = getQualifiedType(PtrTy,
6186                                      PrettyArrayType->getIndexTypeQualifiers());
6187 
6188   // int x[_Nullable] -> int * _Nullable
6189   if (auto Nullability = Ty->getNullability(*this)) {
6190     Result = const_cast<ASTContext *>(this)->getAttributedType(
6191         AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
6192   }
6193   return Result;
6194 }
6195 
getBaseElementType(const ArrayType * array) const6196 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
6197   return getBaseElementType(array->getElementType());
6198 }
6199 
getBaseElementType(QualType type) const6200 QualType ASTContext::getBaseElementType(QualType type) const {
6201   Qualifiers qs;
6202   while (true) {
6203     SplitQualType split = type.getSplitDesugaredType();
6204     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
6205     if (!array) break;
6206 
6207     type = array->getElementType();
6208     qs.addConsistentQualifiers(split.Quals);
6209   }
6210 
6211   return getQualifiedType(type, qs);
6212 }
6213 
6214 /// getConstantArrayElementCount - Returns number of constant array elements.
6215 uint64_t
getConstantArrayElementCount(const ConstantArrayType * CA) const6216 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
6217   uint64_t ElementCount = 1;
6218   do {
6219     ElementCount *= CA->getSize().getZExtValue();
6220     CA = dyn_cast_or_null<ConstantArrayType>(
6221       CA->getElementType()->getAsArrayTypeUnsafe());
6222   } while (CA);
6223   return ElementCount;
6224 }
6225 
6226 /// getFloatingRank - Return a relative rank for floating point types.
6227 /// This routine will assert if passed a built-in type that isn't a float.
getFloatingRank(QualType T)6228 static FloatingRank getFloatingRank(QualType T) {
6229   if (const auto *CT = T->getAs<ComplexType>())
6230     return getFloatingRank(CT->getElementType());
6231 
6232   switch (T->castAs<BuiltinType>()->getKind()) {
6233   default: llvm_unreachable("getFloatingRank(): not a floating type");
6234   case BuiltinType::Float16:    return Float16Rank;
6235   case BuiltinType::Half:       return HalfRank;
6236   case BuiltinType::Float:      return FloatRank;
6237   case BuiltinType::Double:     return DoubleRank;
6238   case BuiltinType::LongDouble: return LongDoubleRank;
6239   case BuiltinType::Float128:   return Float128Rank;
6240   case BuiltinType::BFloat16:   return BFloat16Rank;
6241   }
6242 }
6243 
6244 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
6245 /// point or a complex type (based on typeDomain/typeSize).
6246 /// 'typeDomain' is a real floating point or complex type.
6247 /// 'typeSize' is a real floating point or complex type.
getFloatingTypeOfSizeWithinDomain(QualType Size,QualType Domain) const6248 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
6249                                                        QualType Domain) const {
6250   FloatingRank EltRank = getFloatingRank(Size);
6251   if (Domain->isComplexType()) {
6252     switch (EltRank) {
6253     case BFloat16Rank: llvm_unreachable("Complex bfloat16 is not supported");
6254     case Float16Rank:
6255     case HalfRank: llvm_unreachable("Complex half is not supported");
6256     case FloatRank:      return FloatComplexTy;
6257     case DoubleRank:     return DoubleComplexTy;
6258     case LongDoubleRank: return LongDoubleComplexTy;
6259     case Float128Rank:   return Float128ComplexTy;
6260     }
6261   }
6262 
6263   assert(Domain->isRealFloatingType() && "Unknown domain!");
6264   switch (EltRank) {
6265   case Float16Rank:    return HalfTy;
6266   case BFloat16Rank:   return BFloat16Ty;
6267   case HalfRank:       return HalfTy;
6268   case FloatRank:      return FloatTy;
6269   case DoubleRank:     return DoubleTy;
6270   case LongDoubleRank: return LongDoubleTy;
6271   case Float128Rank:   return Float128Ty;
6272   }
6273   llvm_unreachable("getFloatingRank(): illegal value for rank");
6274 }
6275 
6276 /// getFloatingTypeOrder - Compare the rank of the two specified floating
6277 /// point types, ignoring the domain of the type (i.e. 'double' ==
6278 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
6279 /// LHS < RHS, return -1.
getFloatingTypeOrder(QualType LHS,QualType RHS) const6280 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
6281   FloatingRank LHSR = getFloatingRank(LHS);
6282   FloatingRank RHSR = getFloatingRank(RHS);
6283 
6284   if (LHSR == RHSR)
6285     return 0;
6286   if (LHSR > RHSR)
6287     return 1;
6288   return -1;
6289 }
6290 
getFloatingTypeSemanticOrder(QualType LHS,QualType RHS) const6291 int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
6292   if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
6293     return 0;
6294   return getFloatingTypeOrder(LHS, RHS);
6295 }
6296 
6297 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
6298 /// routine will assert if passed a built-in type that isn't an integer or enum,
6299 /// or if it is not canonicalized.
getIntegerRank(const Type * T) const6300 unsigned ASTContext::getIntegerRank(const Type *T) const {
6301   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
6302 
6303   // Results in this 'losing' to any type of the same size, but winning if
6304   // larger.
6305   if (const auto *EIT = dyn_cast<ExtIntType>(T))
6306     return 0 + (EIT->getNumBits() << 3);
6307 
6308   switch (cast<BuiltinType>(T)->getKind()) {
6309   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
6310   case BuiltinType::Bool:
6311     return 1 + (getIntWidth(BoolTy) << 3);
6312   case BuiltinType::Char_S:
6313   case BuiltinType::Char_U:
6314   case BuiltinType::SChar:
6315   case BuiltinType::UChar:
6316     return 2 + (getIntWidth(CharTy) << 3);
6317   case BuiltinType::Short:
6318   case BuiltinType::UShort:
6319     return 3 + (getIntWidth(ShortTy) << 3);
6320   case BuiltinType::Int:
6321   case BuiltinType::UInt:
6322     return 4 + (getIntWidth(IntTy) << 3);
6323   case BuiltinType::Long:
6324   case BuiltinType::ULong:
6325     return 5 + (getIntWidth(LongTy) << 3);
6326   case BuiltinType::LongLong:
6327   case BuiltinType::ULongLong:
6328     return 6 + (getIntWidth(LongLongTy) << 3);
6329   case BuiltinType::Int128:
6330   case BuiltinType::UInt128:
6331     return 7 + (getIntWidth(Int128Ty) << 3);
6332   }
6333 }
6334 
6335 /// Whether this is a promotable bitfield reference according
6336 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
6337 ///
6338 /// \returns the type this bit-field will promote to, or NULL if no
6339 /// promotion occurs.
isPromotableBitField(Expr * E) const6340 QualType ASTContext::isPromotableBitField(Expr *E) const {
6341   if (E->isTypeDependent() || E->isValueDependent())
6342     return {};
6343 
6344   // C++ [conv.prom]p5:
6345   //    If the bit-field has an enumerated type, it is treated as any other
6346   //    value of that type for promotion purposes.
6347   if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
6348     return {};
6349 
6350   // FIXME: We should not do this unless E->refersToBitField() is true. This
6351   // matters in C where getSourceBitField() will find bit-fields for various
6352   // cases where the source expression is not a bit-field designator.
6353 
6354   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
6355   if (!Field)
6356     return {};
6357 
6358   QualType FT = Field->getType();
6359 
6360   uint64_t BitWidth = Field->getBitWidthValue(*this);
6361   uint64_t IntSize = getTypeSize(IntTy);
6362   // C++ [conv.prom]p5:
6363   //   A prvalue for an integral bit-field can be converted to a prvalue of type
6364   //   int if int can represent all the values of the bit-field; otherwise, it
6365   //   can be converted to unsigned int if unsigned int can represent all the
6366   //   values of the bit-field. If the bit-field is larger yet, no integral
6367   //   promotion applies to it.
6368   // C11 6.3.1.1/2:
6369   //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
6370   //   If an int can represent all values of the original type (as restricted by
6371   //   the width, for a bit-field), the value is converted to an int; otherwise,
6372   //   it is converted to an unsigned int.
6373   //
6374   // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
6375   //        We perform that promotion here to match GCC and C++.
6376   // FIXME: C does not permit promotion of an enum bit-field whose rank is
6377   //        greater than that of 'int'. We perform that promotion to match GCC.
6378   if (BitWidth < IntSize)
6379     return IntTy;
6380 
6381   if (BitWidth == IntSize)
6382     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
6383 
6384   // Bit-fields wider than int are not subject to promotions, and therefore act
6385   // like the base type. GCC has some weird bugs in this area that we
6386   // deliberately do not follow (GCC follows a pre-standard resolution to
6387   // C's DR315 which treats bit-width as being part of the type, and this leaks
6388   // into their semantics in some cases).
6389   return {};
6390 }
6391 
6392 /// getPromotedIntegerType - Returns the type that Promotable will
6393 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
6394 /// integer type.
getPromotedIntegerType(QualType Promotable) const6395 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
6396   assert(!Promotable.isNull());
6397   assert(Promotable->isPromotableIntegerType());
6398   if (const auto *ET = Promotable->getAs<EnumType>())
6399     return ET->getDecl()->getPromotionType();
6400 
6401   if (const auto *BT = Promotable->getAs<BuiltinType>()) {
6402     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
6403     // (3.9.1) can be converted to a prvalue of the first of the following
6404     // types that can represent all the values of its underlying type:
6405     // int, unsigned int, long int, unsigned long int, long long int, or
6406     // unsigned long long int [...]
6407     // FIXME: Is there some better way to compute this?
6408     if (BT->getKind() == BuiltinType::WChar_S ||
6409         BT->getKind() == BuiltinType::WChar_U ||
6410         BT->getKind() == BuiltinType::Char8 ||
6411         BT->getKind() == BuiltinType::Char16 ||
6412         BT->getKind() == BuiltinType::Char32) {
6413       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
6414       uint64_t FromSize = getTypeSize(BT);
6415       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
6416                                   LongLongTy, UnsignedLongLongTy };
6417       for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
6418         uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
6419         if (FromSize < ToSize ||
6420             (FromSize == ToSize &&
6421              FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
6422           return PromoteTypes[Idx];
6423       }
6424       llvm_unreachable("char type should fit into long long");
6425     }
6426   }
6427 
6428   // At this point, we should have a signed or unsigned integer type.
6429   if (Promotable->isSignedIntegerType())
6430     return IntTy;
6431   uint64_t PromotableSize = getIntWidth(Promotable);
6432   uint64_t IntSize = getIntWidth(IntTy);
6433   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
6434   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
6435 }
6436 
6437 /// Recurses in pointer/array types until it finds an objc retainable
6438 /// type and returns its ownership.
getInnerObjCOwnership(QualType T) const6439 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
6440   while (!T.isNull()) {
6441     if (T.getObjCLifetime() != Qualifiers::OCL_None)
6442       return T.getObjCLifetime();
6443     if (T->isArrayType())
6444       T = getBaseElementType(T);
6445     else if (const auto *PT = T->getAs<PointerType>())
6446       T = PT->getPointeeType();
6447     else if (const auto *RT = T->getAs<ReferenceType>())
6448       T = RT->getPointeeType();
6449     else
6450       break;
6451   }
6452 
6453   return Qualifiers::OCL_None;
6454 }
6455 
getIntegerTypeForEnum(const EnumType * ET)6456 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
6457   // Incomplete enum types are not treated as integer types.
6458   // FIXME: In C++, enum types are never integer types.
6459   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
6460     return ET->getDecl()->getIntegerType().getTypePtr();
6461   return nullptr;
6462 }
6463 
6464 /// getIntegerTypeOrder - Returns the highest ranked integer type:
6465 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
6466 /// LHS < RHS, return -1.
getIntegerTypeOrder(QualType LHS,QualType RHS) const6467 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
6468   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
6469   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
6470 
6471   // Unwrap enums to their underlying type.
6472   if (const auto *ET = dyn_cast<EnumType>(LHSC))
6473     LHSC = getIntegerTypeForEnum(ET);
6474   if (const auto *ET = dyn_cast<EnumType>(RHSC))
6475     RHSC = getIntegerTypeForEnum(ET);
6476 
6477   if (LHSC == RHSC) return 0;
6478 
6479   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
6480   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
6481 
6482   unsigned LHSRank = getIntegerRank(LHSC);
6483   unsigned RHSRank = getIntegerRank(RHSC);
6484 
6485   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
6486     if (LHSRank == RHSRank) return 0;
6487     return LHSRank > RHSRank ? 1 : -1;
6488   }
6489 
6490   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
6491   if (LHSUnsigned) {
6492     // If the unsigned [LHS] type is larger, return it.
6493     if (LHSRank >= RHSRank)
6494       return 1;
6495 
6496     // If the signed type can represent all values of the unsigned type, it
6497     // wins.  Because we are dealing with 2's complement and types that are
6498     // powers of two larger than each other, this is always safe.
6499     return -1;
6500   }
6501 
6502   // If the unsigned [RHS] type is larger, return it.
6503   if (RHSRank >= LHSRank)
6504     return -1;
6505 
6506   // If the signed type can represent all values of the unsigned type, it
6507   // wins.  Because we are dealing with 2's complement and types that are
6508   // powers of two larger than each other, this is always safe.
6509   return 1;
6510 }
6511 
getCFConstantStringDecl() const6512 TypedefDecl *ASTContext::getCFConstantStringDecl() const {
6513   if (CFConstantStringTypeDecl)
6514     return CFConstantStringTypeDecl;
6515 
6516   assert(!CFConstantStringTagDecl &&
6517          "tag and typedef should be initialized together");
6518   CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
6519   CFConstantStringTagDecl->startDefinition();
6520 
6521   struct {
6522     QualType Type;
6523     const char *Name;
6524   } Fields[5];
6525   unsigned Count = 0;
6526 
6527   /// Objective-C ABI
6528   ///
6529   ///    typedef struct __NSConstantString_tag {
6530   ///      const int *isa;
6531   ///      int flags;
6532   ///      const char *str;
6533   ///      long length;
6534   ///    } __NSConstantString;
6535   ///
6536   /// Swift ABI (4.1, 4.2)
6537   ///
6538   ///    typedef struct __NSConstantString_tag {
6539   ///      uintptr_t _cfisa;
6540   ///      uintptr_t _swift_rc;
6541   ///      _Atomic(uint64_t) _cfinfoa;
6542   ///      const char *_ptr;
6543   ///      uint32_t _length;
6544   ///    } __NSConstantString;
6545   ///
6546   /// Swift ABI (5.0)
6547   ///
6548   ///    typedef struct __NSConstantString_tag {
6549   ///      uintptr_t _cfisa;
6550   ///      uintptr_t _swift_rc;
6551   ///      _Atomic(uint64_t) _cfinfoa;
6552   ///      const char *_ptr;
6553   ///      uintptr_t _length;
6554   ///    } __NSConstantString;
6555 
6556   const auto CFRuntime = getLangOpts().CFRuntime;
6557   if (static_cast<unsigned>(CFRuntime) <
6558       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
6559     Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
6560     Fields[Count++] = { IntTy, "flags" };
6561     Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
6562     Fields[Count++] = { LongTy, "length" };
6563   } else {
6564     Fields[Count++] = { getUIntPtrType(), "_cfisa" };
6565     Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
6566     Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
6567     Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
6568     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6569         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6570       Fields[Count++] = { IntTy, "_ptr" };
6571     else
6572       Fields[Count++] = { getUIntPtrType(), "_ptr" };
6573   }
6574 
6575   // Create fields
6576   for (unsigned i = 0; i < Count; ++i) {
6577     FieldDecl *Field =
6578         FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
6579                           SourceLocation(), &Idents.get(Fields[i].Name),
6580                           Fields[i].Type, /*TInfo=*/nullptr,
6581                           /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
6582     Field->setAccess(AS_public);
6583     CFConstantStringTagDecl->addDecl(Field);
6584   }
6585 
6586   CFConstantStringTagDecl->completeDefinition();
6587   // This type is designed to be compatible with NSConstantString, but cannot
6588   // use the same name, since NSConstantString is an interface.
6589   auto tagType = getTagDeclType(CFConstantStringTagDecl);
6590   CFConstantStringTypeDecl =
6591       buildImplicitTypedef(tagType, "__NSConstantString");
6592 
6593   return CFConstantStringTypeDecl;
6594 }
6595 
getCFConstantStringTagDecl() const6596 RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
6597   if (!CFConstantStringTagDecl)
6598     getCFConstantStringDecl(); // Build the tag and the typedef.
6599   return CFConstantStringTagDecl;
6600 }
6601 
6602 // getCFConstantStringType - Return the type used for constant CFStrings.
getCFConstantStringType() const6603 QualType ASTContext::getCFConstantStringType() const {
6604   return getTypedefType(getCFConstantStringDecl());
6605 }
6606 
getObjCSuperType() const6607 QualType ASTContext::getObjCSuperType() const {
6608   if (ObjCSuperType.isNull()) {
6609     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
6610     TUDecl->addDecl(ObjCSuperTypeDecl);
6611     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
6612   }
6613   return ObjCSuperType;
6614 }
6615 
setCFConstantStringType(QualType T)6616 void ASTContext::setCFConstantStringType(QualType T) {
6617   const auto *TD = T->castAs<TypedefType>();
6618   CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
6619   const auto *TagType =
6620       CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
6621   CFConstantStringTagDecl = TagType->getDecl();
6622 }
6623 
getBlockDescriptorType() const6624 QualType ASTContext::getBlockDescriptorType() const {
6625   if (BlockDescriptorType)
6626     return getTagDeclType(BlockDescriptorType);
6627 
6628   RecordDecl *RD;
6629   // FIXME: Needs the FlagAppleBlock bit.
6630   RD = buildImplicitRecord("__block_descriptor");
6631   RD->startDefinition();
6632 
6633   QualType FieldTypes[] = {
6634     UnsignedLongTy,
6635     UnsignedLongTy,
6636   };
6637 
6638   static const char *const FieldNames[] = {
6639     "reserved",
6640     "Size"
6641   };
6642 
6643   for (size_t i = 0; i < 2; ++i) {
6644     FieldDecl *Field = FieldDecl::Create(
6645         *this, RD, SourceLocation(), SourceLocation(),
6646         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
6647         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
6648     Field->setAccess(AS_public);
6649     RD->addDecl(Field);
6650   }
6651 
6652   RD->completeDefinition();
6653 
6654   BlockDescriptorType = RD;
6655 
6656   return getTagDeclType(BlockDescriptorType);
6657 }
6658 
getBlockDescriptorExtendedType() const6659 QualType ASTContext::getBlockDescriptorExtendedType() const {
6660   if (BlockDescriptorExtendedType)
6661     return getTagDeclType(BlockDescriptorExtendedType);
6662 
6663   RecordDecl *RD;
6664   // FIXME: Needs the FlagAppleBlock bit.
6665   RD = buildImplicitRecord("__block_descriptor_withcopydispose");
6666   RD->startDefinition();
6667 
6668   QualType FieldTypes[] = {
6669     UnsignedLongTy,
6670     UnsignedLongTy,
6671     getPointerType(VoidPtrTy),
6672     getPointerType(VoidPtrTy)
6673   };
6674 
6675   static const char *const FieldNames[] = {
6676     "reserved",
6677     "Size",
6678     "CopyFuncPtr",
6679     "DestroyFuncPtr"
6680   };
6681 
6682   for (size_t i = 0; i < 4; ++i) {
6683     FieldDecl *Field = FieldDecl::Create(
6684         *this, RD, SourceLocation(), SourceLocation(),
6685         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
6686         /*BitWidth=*/nullptr,
6687         /*Mutable=*/false, ICIS_NoInit);
6688     Field->setAccess(AS_public);
6689     RD->addDecl(Field);
6690   }
6691 
6692   RD->completeDefinition();
6693 
6694   BlockDescriptorExtendedType = RD;
6695   return getTagDeclType(BlockDescriptorExtendedType);
6696 }
6697 
getOpenCLTypeKind(const Type * T) const6698 OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
6699   const auto *BT = dyn_cast<BuiltinType>(T);
6700 
6701   if (!BT) {
6702     if (isa<PipeType>(T))
6703       return OCLTK_Pipe;
6704 
6705     return OCLTK_Default;
6706   }
6707 
6708   switch (BT->getKind()) {
6709 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
6710   case BuiltinType::Id:                                                        \
6711     return OCLTK_Image;
6712 #include "clang/Basic/OpenCLImageTypes.def"
6713 
6714   case BuiltinType::OCLClkEvent:
6715     return OCLTK_ClkEvent;
6716 
6717   case BuiltinType::OCLEvent:
6718     return OCLTK_Event;
6719 
6720   case BuiltinType::OCLQueue:
6721     return OCLTK_Queue;
6722 
6723   case BuiltinType::OCLReserveID:
6724     return OCLTK_ReserveID;
6725 
6726   case BuiltinType::OCLSampler:
6727     return OCLTK_Sampler;
6728 
6729   default:
6730     return OCLTK_Default;
6731   }
6732 }
6733 
getOpenCLTypeAddrSpace(const Type * T) const6734 LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
6735   return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
6736 }
6737 
6738 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
6739 /// requires copy/dispose. Note that this must match the logic
6740 /// in buildByrefHelpers.
BlockRequiresCopying(QualType Ty,const VarDecl * D)6741 bool ASTContext::BlockRequiresCopying(QualType Ty,
6742                                       const VarDecl *D) {
6743   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
6744     const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
6745     if (!copyExpr && record->hasTrivialDestructor()) return false;
6746 
6747     return true;
6748   }
6749 
6750   // The block needs copy/destroy helpers if Ty is non-trivial to destructively
6751   // move or destroy.
6752   if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
6753     return true;
6754 
6755   if (!Ty->isObjCRetainableType()) return false;
6756 
6757   Qualifiers qs = Ty.getQualifiers();
6758 
6759   // If we have lifetime, that dominates.
6760   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
6761     switch (lifetime) {
6762       case Qualifiers::OCL_None: llvm_unreachable("impossible");
6763 
6764       // These are just bits as far as the runtime is concerned.
6765       case Qualifiers::OCL_ExplicitNone:
6766       case Qualifiers::OCL_Autoreleasing:
6767         return false;
6768 
6769       // These cases should have been taken care of when checking the type's
6770       // non-triviality.
6771       case Qualifiers::OCL_Weak:
6772       case Qualifiers::OCL_Strong:
6773         llvm_unreachable("impossible");
6774     }
6775     llvm_unreachable("fell out of lifetime switch!");
6776   }
6777   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
6778           Ty->isObjCObjectPointerType());
6779 }
6780 
getByrefLifetime(QualType Ty,Qualifiers::ObjCLifetime & LifeTime,bool & HasByrefExtendedLayout) const6781 bool ASTContext::getByrefLifetime(QualType Ty,
6782                               Qualifiers::ObjCLifetime &LifeTime,
6783                               bool &HasByrefExtendedLayout) const {
6784   if (!getLangOpts().ObjC ||
6785       getLangOpts().getGC() != LangOptions::NonGC)
6786     return false;
6787 
6788   HasByrefExtendedLayout = false;
6789   if (Ty->isRecordType()) {
6790     HasByrefExtendedLayout = true;
6791     LifeTime = Qualifiers::OCL_None;
6792   } else if ((LifeTime = Ty.getObjCLifetime())) {
6793     // Honor the ARC qualifiers.
6794   } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
6795     // The MRR rule.
6796     LifeTime = Qualifiers::OCL_ExplicitNone;
6797   } else {
6798     LifeTime = Qualifiers::OCL_None;
6799   }
6800   return true;
6801 }
6802 
getNSUIntegerType() const6803 CanQualType ASTContext::getNSUIntegerType() const {
6804   assert(Target && "Expected target to be initialized");
6805   const llvm::Triple &T = Target->getTriple();
6806   // Windows is LLP64 rather than LP64
6807   if (T.isOSWindows() && T.isArch64Bit())
6808     return UnsignedLongLongTy;
6809   return UnsignedLongTy;
6810 }
6811 
getNSIntegerType() const6812 CanQualType ASTContext::getNSIntegerType() const {
6813   assert(Target && "Expected target to be initialized");
6814   const llvm::Triple &T = Target->getTriple();
6815   // Windows is LLP64 rather than LP64
6816   if (T.isOSWindows() && T.isArch64Bit())
6817     return LongLongTy;
6818   return LongTy;
6819 }
6820 
getObjCInstanceTypeDecl()6821 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
6822   if (!ObjCInstanceTypeDecl)
6823     ObjCInstanceTypeDecl =
6824         buildImplicitTypedef(getObjCIdType(), "instancetype");
6825   return ObjCInstanceTypeDecl;
6826 }
6827 
6828 // This returns true if a type has been typedefed to BOOL:
6829 // typedef <type> BOOL;
isTypeTypedefedAsBOOL(QualType T)6830 static bool isTypeTypedefedAsBOOL(QualType T) {
6831   if (const auto *TT = dyn_cast<TypedefType>(T))
6832     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
6833       return II->isStr("BOOL");
6834 
6835   return false;
6836 }
6837 
6838 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
6839 /// purpose.
getObjCEncodingTypeSize(QualType type) const6840 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
6841   if (!type->isIncompleteArrayType() && type->isIncompleteType())
6842     return CharUnits::Zero();
6843 
6844   CharUnits sz = getTypeSizeInChars(type);
6845 
6846   // Make all integer and enum types at least as large as an int
6847   if (sz.isPositive() && type->isIntegralOrEnumerationType())
6848     sz = std::max(sz, getTypeSizeInChars(IntTy));
6849   // Treat arrays as pointers, since that's how they're passed in.
6850   else if (type->isArrayType())
6851     sz = getTypeSizeInChars(VoidPtrTy);
6852   return sz;
6853 }
6854 
isMSStaticDataMemberInlineDefinition(const VarDecl * VD) const6855 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
6856   return getTargetInfo().getCXXABI().isMicrosoft() &&
6857          VD->isStaticDataMember() &&
6858          VD->getType()->isIntegralOrEnumerationType() &&
6859          !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
6860 }
6861 
6862 ASTContext::InlineVariableDefinitionKind
getInlineVariableDefinitionKind(const VarDecl * VD) const6863 ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
6864   if (!VD->isInline())
6865     return InlineVariableDefinitionKind::None;
6866 
6867   // In almost all cases, it's a weak definition.
6868   auto *First = VD->getFirstDecl();
6869   if (First->isInlineSpecified() || !First->isStaticDataMember())
6870     return InlineVariableDefinitionKind::Weak;
6871 
6872   // If there's a file-context declaration in this translation unit, it's a
6873   // non-discardable definition.
6874   for (auto *D : VD->redecls())
6875     if (D->getLexicalDeclContext()->isFileContext() &&
6876         !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
6877       return InlineVariableDefinitionKind::Strong;
6878 
6879   // If we've not seen one yet, we don't know.
6880   return InlineVariableDefinitionKind::WeakUnknown;
6881 }
6882 
charUnitsToString(const CharUnits & CU)6883 static std::string charUnitsToString(const CharUnits &CU) {
6884   return llvm::itostr(CU.getQuantity());
6885 }
6886 
6887 /// getObjCEncodingForBlock - Return the encoded type for this block
6888 /// declaration.
getObjCEncodingForBlock(const BlockExpr * Expr) const6889 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
6890   std::string S;
6891 
6892   const BlockDecl *Decl = Expr->getBlockDecl();
6893   QualType BlockTy =
6894       Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
6895   QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
6896   // Encode result type.
6897   if (getLangOpts().EncodeExtendedBlockSig)
6898     getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
6899                                       true /*Extended*/);
6900   else
6901     getObjCEncodingForType(BlockReturnTy, S);
6902   // Compute size of all parameters.
6903   // Start with computing size of a pointer in number of bytes.
6904   // FIXME: There might(should) be a better way of doing this computation!
6905   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
6906   CharUnits ParmOffset = PtrSize;
6907   for (auto PI : Decl->parameters()) {
6908     QualType PType = PI->getType();
6909     CharUnits sz = getObjCEncodingTypeSize(PType);
6910     if (sz.isZero())
6911       continue;
6912     assert(sz.isPositive() && "BlockExpr - Incomplete param type");
6913     ParmOffset += sz;
6914   }
6915   // Size of the argument frame
6916   S += charUnitsToString(ParmOffset);
6917   // Block pointer and offset.
6918   S += "@?0";
6919 
6920   // Argument types.
6921   ParmOffset = PtrSize;
6922   for (auto PVDecl : Decl->parameters()) {
6923     QualType PType = PVDecl->getOriginalType();
6924     if (const auto *AT =
6925             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6926       // Use array's original type only if it has known number of
6927       // elements.
6928       if (!isa<ConstantArrayType>(AT))
6929         PType = PVDecl->getType();
6930     } else if (PType->isFunctionType())
6931       PType = PVDecl->getType();
6932     if (getLangOpts().EncodeExtendedBlockSig)
6933       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
6934                                       S, true /*Extended*/);
6935     else
6936       getObjCEncodingForType(PType, S);
6937     S += charUnitsToString(ParmOffset);
6938     ParmOffset += getObjCEncodingTypeSize(PType);
6939   }
6940 
6941   return S;
6942 }
6943 
6944 std::string
getObjCEncodingForFunctionDecl(const FunctionDecl * Decl) const6945 ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
6946   std::string S;
6947   // Encode result type.
6948   getObjCEncodingForType(Decl->getReturnType(), S);
6949   CharUnits ParmOffset;
6950   // Compute size of all parameters.
6951   for (auto PI : Decl->parameters()) {
6952     QualType PType = PI->getType();
6953     CharUnits sz = getObjCEncodingTypeSize(PType);
6954     if (sz.isZero())
6955       continue;
6956 
6957     assert(sz.isPositive() &&
6958            "getObjCEncodingForFunctionDecl - Incomplete param type");
6959     ParmOffset += sz;
6960   }
6961   S += charUnitsToString(ParmOffset);
6962   ParmOffset = CharUnits::Zero();
6963 
6964   // Argument types.
6965   for (auto PVDecl : Decl->parameters()) {
6966     QualType PType = PVDecl->getOriginalType();
6967     if (const auto *AT =
6968             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6969       // Use array's original type only if it has known number of
6970       // elements.
6971       if (!isa<ConstantArrayType>(AT))
6972         PType = PVDecl->getType();
6973     } else if (PType->isFunctionType())
6974       PType = PVDecl->getType();
6975     getObjCEncodingForType(PType, S);
6976     S += charUnitsToString(ParmOffset);
6977     ParmOffset += getObjCEncodingTypeSize(PType);
6978   }
6979 
6980   return S;
6981 }
6982 
6983 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
6984 /// method parameter or return type. If Extended, include class names and
6985 /// block object types.
getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,QualType T,std::string & S,bool Extended) const6986 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
6987                                                    QualType T, std::string& S,
6988                                                    bool Extended) const {
6989   // Encode type qualifer, 'in', 'inout', etc. for the parameter.
6990   getObjCEncodingForTypeQualifier(QT, S);
6991   // Encode parameter type.
6992   ObjCEncOptions Options = ObjCEncOptions()
6993                                .setExpandPointedToStructures()
6994                                .setExpandStructures()
6995                                .setIsOutermostType();
6996   if (Extended)
6997     Options.setEncodeBlockParameters().setEncodeClassNames();
6998   getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
6999 }
7000 
7001 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
7002 /// declaration.
getObjCEncodingForMethodDecl(const ObjCMethodDecl * Decl,bool Extended) const7003 std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
7004                                                      bool Extended) const {
7005   // FIXME: This is not very efficient.
7006   // Encode return type.
7007   std::string S;
7008   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
7009                                     Decl->getReturnType(), S, Extended);
7010   // Compute size of all parameters.
7011   // Start with computing size of a pointer in number of bytes.
7012   // FIXME: There might(should) be a better way of doing this computation!
7013   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7014   // The first two arguments (self and _cmd) are pointers; account for
7015   // their size.
7016   CharUnits ParmOffset = 2 * PtrSize;
7017   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7018        E = Decl->sel_param_end(); PI != E; ++PI) {
7019     QualType PType = (*PI)->getType();
7020     CharUnits sz = getObjCEncodingTypeSize(PType);
7021     if (sz.isZero())
7022       continue;
7023 
7024     assert(sz.isPositive() &&
7025            "getObjCEncodingForMethodDecl - Incomplete param type");
7026     ParmOffset += sz;
7027   }
7028   S += charUnitsToString(ParmOffset);
7029   S += "@0:";
7030   S += charUnitsToString(PtrSize);
7031 
7032   // Argument types.
7033   ParmOffset = 2 * PtrSize;
7034   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7035        E = Decl->sel_param_end(); PI != E; ++PI) {
7036     const ParmVarDecl *PVDecl = *PI;
7037     QualType PType = PVDecl->getOriginalType();
7038     if (const auto *AT =
7039             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7040       // Use array's original type only if it has known number of
7041       // elements.
7042       if (!isa<ConstantArrayType>(AT))
7043         PType = PVDecl->getType();
7044     } else if (PType->isFunctionType())
7045       PType = PVDecl->getType();
7046     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
7047                                       PType, S, Extended);
7048     S += charUnitsToString(ParmOffset);
7049     ParmOffset += getObjCEncodingTypeSize(PType);
7050   }
7051 
7052   return S;
7053 }
7054 
7055 ObjCPropertyImplDecl *
getObjCPropertyImplDeclForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container) const7056 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
7057                                       const ObjCPropertyDecl *PD,
7058                                       const Decl *Container) const {
7059   if (!Container)
7060     return nullptr;
7061   if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
7062     for (auto *PID : CID->property_impls())
7063       if (PID->getPropertyDecl() == PD)
7064         return PID;
7065   } else {
7066     const auto *OID = cast<ObjCImplementationDecl>(Container);
7067     for (auto *PID : OID->property_impls())
7068       if (PID->getPropertyDecl() == PD)
7069         return PID;
7070   }
7071   return nullptr;
7072 }
7073 
7074 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
7075 /// property declaration. If non-NULL, Container must be either an
7076 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
7077 /// NULL when getting encodings for protocol properties.
7078 /// Property attributes are stored as a comma-delimited C string. The simple
7079 /// attributes readonly and bycopy are encoded as single characters. The
7080 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
7081 /// encoded as single characters, followed by an identifier. Property types
7082 /// are also encoded as a parametrized attribute. The characters used to encode
7083 /// these attributes are defined by the following enumeration:
7084 /// @code
7085 /// enum PropertyAttributes {
7086 /// kPropertyReadOnly = 'R',   // property is read-only.
7087 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
7088 /// kPropertyByref = '&',  // property is a reference to the value last assigned
7089 /// kPropertyDynamic = 'D',    // property is dynamic
7090 /// kPropertyGetter = 'G',     // followed by getter selector name
7091 /// kPropertySetter = 'S',     // followed by setter selector name
7092 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
7093 /// kPropertyType = 'T'              // followed by old-style type encoding.
7094 /// kPropertyWeak = 'W'              // 'weak' property
7095 /// kPropertyStrong = 'P'            // property GC'able
7096 /// kPropertyNonAtomic = 'N'         // property non-atomic
7097 /// };
7098 /// @endcode
7099 std::string
getObjCEncodingForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container) const7100 ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
7101                                            const Decl *Container) const {
7102   // Collect information from the property implementation decl(s).
7103   bool Dynamic = false;
7104   ObjCPropertyImplDecl *SynthesizePID = nullptr;
7105 
7106   if (ObjCPropertyImplDecl *PropertyImpDecl =
7107       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
7108     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
7109       Dynamic = true;
7110     else
7111       SynthesizePID = PropertyImpDecl;
7112   }
7113 
7114   // FIXME: This is not very efficient.
7115   std::string S = "T";
7116 
7117   // Encode result type.
7118   // GCC has some special rules regarding encoding of properties which
7119   // closely resembles encoding of ivars.
7120   getObjCEncodingForPropertyType(PD->getType(), S);
7121 
7122   if (PD->isReadOnly()) {
7123     S += ",R";
7124     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy)
7125       S += ",C";
7126     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain)
7127       S += ",&";
7128     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak)
7129       S += ",W";
7130   } else {
7131     switch (PD->getSetterKind()) {
7132     case ObjCPropertyDecl::Assign: break;
7133     case ObjCPropertyDecl::Copy:   S += ",C"; break;
7134     case ObjCPropertyDecl::Retain: S += ",&"; break;
7135     case ObjCPropertyDecl::Weak:   S += ",W"; break;
7136     }
7137   }
7138 
7139   // It really isn't clear at all what this means, since properties
7140   // are "dynamic by default".
7141   if (Dynamic)
7142     S += ",D";
7143 
7144   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic)
7145     S += ",N";
7146 
7147   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) {
7148     S += ",G";
7149     S += PD->getGetterName().getAsString();
7150   }
7151 
7152   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) {
7153     S += ",S";
7154     S += PD->getSetterName().getAsString();
7155   }
7156 
7157   if (SynthesizePID) {
7158     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
7159     S += ",V";
7160     S += OID->getNameAsString();
7161   }
7162 
7163   // FIXME: OBJCGC: weak & strong
7164   return S;
7165 }
7166 
7167 /// getLegacyIntegralTypeEncoding -
7168 /// Another legacy compatibility encoding: 32-bit longs are encoded as
7169 /// 'l' or 'L' , but not always.  For typedefs, we need to use
7170 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
getLegacyIntegralTypeEncoding(QualType & PointeeTy) const7171 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
7172   if (isa<TypedefType>(PointeeTy.getTypePtr())) {
7173     if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
7174       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
7175         PointeeTy = UnsignedIntTy;
7176       else
7177         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
7178           PointeeTy = IntTy;
7179     }
7180   }
7181 }
7182 
getObjCEncodingForType(QualType T,std::string & S,const FieldDecl * Field,QualType * NotEncodedT) const7183 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
7184                                         const FieldDecl *Field,
7185                                         QualType *NotEncodedT) const {
7186   // We follow the behavior of gcc, expanding structures which are
7187   // directly pointed to, and expanding embedded structures. Note that
7188   // these rules are sufficient to prevent recursive encoding of the
7189   // same type.
7190   getObjCEncodingForTypeImpl(T, S,
7191                              ObjCEncOptions()
7192                                  .setExpandPointedToStructures()
7193                                  .setExpandStructures()
7194                                  .setIsOutermostType(),
7195                              Field, NotEncodedT);
7196 }
7197 
getObjCEncodingForPropertyType(QualType T,std::string & S) const7198 void ASTContext::getObjCEncodingForPropertyType(QualType T,
7199                                                 std::string& S) const {
7200   // Encode result type.
7201   // GCC has some special rules regarding encoding of properties which
7202   // closely resembles encoding of ivars.
7203   getObjCEncodingForTypeImpl(T, S,
7204                              ObjCEncOptions()
7205                                  .setExpandPointedToStructures()
7206                                  .setExpandStructures()
7207                                  .setIsOutermostType()
7208                                  .setEncodingProperty(),
7209                              /*Field=*/nullptr);
7210 }
7211 
getObjCEncodingForPrimitiveType(const ASTContext * C,const BuiltinType * BT)7212 static char getObjCEncodingForPrimitiveType(const ASTContext *C,
7213                                             const BuiltinType *BT) {
7214     BuiltinType::Kind kind = BT->getKind();
7215     switch (kind) {
7216     case BuiltinType::Void:       return 'v';
7217     case BuiltinType::Bool:       return 'B';
7218     case BuiltinType::Char8:
7219     case BuiltinType::Char_U:
7220     case BuiltinType::UChar:      return 'C';
7221     case BuiltinType::Char16:
7222     case BuiltinType::UShort:     return 'S';
7223     case BuiltinType::Char32:
7224     case BuiltinType::UInt:       return 'I';
7225     case BuiltinType::ULong:
7226         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
7227     case BuiltinType::UInt128:    return 'T';
7228     case BuiltinType::ULongLong:  return 'Q';
7229     case BuiltinType::Char_S:
7230     case BuiltinType::SChar:      return 'c';
7231     case BuiltinType::Short:      return 's';
7232     case BuiltinType::WChar_S:
7233     case BuiltinType::WChar_U:
7234     case BuiltinType::Int:        return 'i';
7235     case BuiltinType::Long:
7236       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
7237     case BuiltinType::LongLong:   return 'q';
7238     case BuiltinType::Int128:     return 't';
7239     case BuiltinType::Float:      return 'f';
7240     case BuiltinType::Double:     return 'd';
7241     case BuiltinType::LongDouble: return 'D';
7242     case BuiltinType::NullPtr:    return '*'; // like char*
7243 
7244     case BuiltinType::BFloat16:
7245     case BuiltinType::Float16:
7246     case BuiltinType::Float128:
7247     case BuiltinType::Half:
7248     case BuiltinType::ShortAccum:
7249     case BuiltinType::Accum:
7250     case BuiltinType::LongAccum:
7251     case BuiltinType::UShortAccum:
7252     case BuiltinType::UAccum:
7253     case BuiltinType::ULongAccum:
7254     case BuiltinType::ShortFract:
7255     case BuiltinType::Fract:
7256     case BuiltinType::LongFract:
7257     case BuiltinType::UShortFract:
7258     case BuiltinType::UFract:
7259     case BuiltinType::ULongFract:
7260     case BuiltinType::SatShortAccum:
7261     case BuiltinType::SatAccum:
7262     case BuiltinType::SatLongAccum:
7263     case BuiltinType::SatUShortAccum:
7264     case BuiltinType::SatUAccum:
7265     case BuiltinType::SatULongAccum:
7266     case BuiltinType::SatShortFract:
7267     case BuiltinType::SatFract:
7268     case BuiltinType::SatLongFract:
7269     case BuiltinType::SatUShortFract:
7270     case BuiltinType::SatUFract:
7271     case BuiltinType::SatULongFract:
7272       // FIXME: potentially need @encodes for these!
7273       return ' ';
7274 
7275 #define SVE_TYPE(Name, Id, SingletonId) \
7276     case BuiltinType::Id:
7277 #include "clang/Basic/AArch64SVEACLETypes.def"
7278 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
7279 #include "clang/Basic/RISCVVTypes.def"
7280       {
7281         DiagnosticsEngine &Diags = C->getDiagnostics();
7282         unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
7283                                                 "cannot yet @encode type %0");
7284         Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
7285         return ' ';
7286       }
7287 
7288     case BuiltinType::ObjCId:
7289     case BuiltinType::ObjCClass:
7290     case BuiltinType::ObjCSel:
7291       llvm_unreachable("@encoding ObjC primitive type");
7292 
7293     // OpenCL and placeholder types don't need @encodings.
7294 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7295     case BuiltinType::Id:
7296 #include "clang/Basic/OpenCLImageTypes.def"
7297 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
7298     case BuiltinType::Id:
7299 #include "clang/Basic/OpenCLExtensionTypes.def"
7300     case BuiltinType::OCLEvent:
7301     case BuiltinType::OCLClkEvent:
7302     case BuiltinType::OCLQueue:
7303     case BuiltinType::OCLReserveID:
7304     case BuiltinType::OCLSampler:
7305     case BuiltinType::Dependent:
7306 #define PPC_VECTOR_TYPE(Name, Id, Size) \
7307     case BuiltinType::Id:
7308 #include "clang/Basic/PPCTypes.def"
7309 #define BUILTIN_TYPE(KIND, ID)
7310 #define PLACEHOLDER_TYPE(KIND, ID) \
7311     case BuiltinType::KIND:
7312 #include "clang/AST/BuiltinTypes.def"
7313       llvm_unreachable("invalid builtin type for @encode");
7314     }
7315     llvm_unreachable("invalid BuiltinType::Kind value");
7316 }
7317 
ObjCEncodingForEnumType(const ASTContext * C,const EnumType * ET)7318 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
7319   EnumDecl *Enum = ET->getDecl();
7320 
7321   // The encoding of an non-fixed enum type is always 'i', regardless of size.
7322   if (!Enum->isFixed())
7323     return 'i';
7324 
7325   // The encoding of a fixed enum type matches its fixed underlying type.
7326   const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
7327   return getObjCEncodingForPrimitiveType(C, BT);
7328 }
7329 
EncodeBitField(const ASTContext * Ctx,std::string & S,QualType T,const FieldDecl * FD)7330 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
7331                            QualType T, const FieldDecl *FD) {
7332   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
7333   S += 'b';
7334   // The NeXT runtime encodes bit fields as b followed by the number of bits.
7335   // The GNU runtime requires more information; bitfields are encoded as b,
7336   // then the offset (in bits) of the first element, then the type of the
7337   // bitfield, then the size in bits.  For example, in this structure:
7338   //
7339   // struct
7340   // {
7341   //    int integer;
7342   //    int flags:2;
7343   // };
7344   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
7345   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
7346   // information is not especially sensible, but we're stuck with it for
7347   // compatibility with GCC, although providing it breaks anything that
7348   // actually uses runtime introspection and wants to work on both runtimes...
7349   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
7350     uint64_t Offset;
7351 
7352     if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
7353       Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
7354                                          IVD);
7355     } else {
7356       const RecordDecl *RD = FD->getParent();
7357       const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
7358       Offset = RL.getFieldOffset(FD->getFieldIndex());
7359     }
7360 
7361     S += llvm::utostr(Offset);
7362 
7363     if (const auto *ET = T->getAs<EnumType>())
7364       S += ObjCEncodingForEnumType(Ctx, ET);
7365     else {
7366       const auto *BT = T->castAs<BuiltinType>();
7367       S += getObjCEncodingForPrimitiveType(Ctx, BT);
7368     }
7369   }
7370   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
7371 }
7372 
7373 // Helper function for determining whether the encoded type string would include
7374 // a template specialization type.
hasTemplateSpecializationInEncodedString(const Type * T,bool VisitBasesAndFields)7375 static bool hasTemplateSpecializationInEncodedString(const Type *T,
7376                                                      bool VisitBasesAndFields) {
7377   T = T->getBaseElementTypeUnsafe();
7378 
7379   if (auto *PT = T->getAs<PointerType>())
7380     return hasTemplateSpecializationInEncodedString(
7381         PT->getPointeeType().getTypePtr(), false);
7382 
7383   auto *CXXRD = T->getAsCXXRecordDecl();
7384 
7385   if (!CXXRD)
7386     return false;
7387 
7388   if (isa<ClassTemplateSpecializationDecl>(CXXRD))
7389     return true;
7390 
7391   if (!CXXRD->hasDefinition() || !VisitBasesAndFields)
7392     return false;
7393 
7394   for (auto B : CXXRD->bases())
7395     if (hasTemplateSpecializationInEncodedString(B.getType().getTypePtr(),
7396                                                  true))
7397       return true;
7398 
7399   for (auto *FD : CXXRD->fields())
7400     if (hasTemplateSpecializationInEncodedString(FD->getType().getTypePtr(),
7401                                                  true))
7402       return true;
7403 
7404   return false;
7405 }
7406 
7407 // FIXME: Use SmallString for accumulating string.
getObjCEncodingForTypeImpl(QualType T,std::string & S,const ObjCEncOptions Options,const FieldDecl * FD,QualType * NotEncodedT) const7408 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
7409                                             const ObjCEncOptions Options,
7410                                             const FieldDecl *FD,
7411                                             QualType *NotEncodedT) const {
7412   CanQualType CT = getCanonicalType(T);
7413   switch (CT->getTypeClass()) {
7414   case Type::Builtin:
7415   case Type::Enum:
7416     if (FD && FD->isBitField())
7417       return EncodeBitField(this, S, T, FD);
7418     if (const auto *BT = dyn_cast<BuiltinType>(CT))
7419       S += getObjCEncodingForPrimitiveType(this, BT);
7420     else
7421       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
7422     return;
7423 
7424   case Type::Complex:
7425     S += 'j';
7426     getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
7427                                ObjCEncOptions(),
7428                                /*Field=*/nullptr);
7429     return;
7430 
7431   case Type::Atomic:
7432     S += 'A';
7433     getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
7434                                ObjCEncOptions(),
7435                                /*Field=*/nullptr);
7436     return;
7437 
7438   // encoding for pointer or reference types.
7439   case Type::Pointer:
7440   case Type::LValueReference:
7441   case Type::RValueReference: {
7442     QualType PointeeTy;
7443     if (isa<PointerType>(CT)) {
7444       const auto *PT = T->castAs<PointerType>();
7445       if (PT->isObjCSelType()) {
7446         S += ':';
7447         return;
7448       }
7449       PointeeTy = PT->getPointeeType();
7450     } else {
7451       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
7452     }
7453 
7454     bool isReadOnly = false;
7455     // For historical/compatibility reasons, the read-only qualifier of the
7456     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
7457     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
7458     // Also, do not emit the 'r' for anything but the outermost type!
7459     if (isa<TypedefType>(T.getTypePtr())) {
7460       if (Options.IsOutermostType() && T.isConstQualified()) {
7461         isReadOnly = true;
7462         S += 'r';
7463       }
7464     } else if (Options.IsOutermostType()) {
7465       QualType P = PointeeTy;
7466       while (auto PT = P->getAs<PointerType>())
7467         P = PT->getPointeeType();
7468       if (P.isConstQualified()) {
7469         isReadOnly = true;
7470         S += 'r';
7471       }
7472     }
7473     if (isReadOnly) {
7474       // Another legacy compatibility encoding. Some ObjC qualifier and type
7475       // combinations need to be rearranged.
7476       // Rewrite "in const" from "nr" to "rn"
7477       if (StringRef(S).endswith("nr"))
7478         S.replace(S.end()-2, S.end(), "rn");
7479     }
7480 
7481     if (PointeeTy->isCharType()) {
7482       // char pointer types should be encoded as '*' unless it is a
7483       // type that has been typedef'd to 'BOOL'.
7484       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
7485         S += '*';
7486         return;
7487       }
7488     } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
7489       // GCC binary compat: Need to convert "struct objc_class *" to "#".
7490       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
7491         S += '#';
7492         return;
7493       }
7494       // GCC binary compat: Need to convert "struct objc_object *" to "@".
7495       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
7496         S += '@';
7497         return;
7498       }
7499       // If the encoded string for the class includes template names, just emit
7500       // "^v" for pointers to the class.
7501       if (getLangOpts().CPlusPlus &&
7502           (!getLangOpts().EncodeCXXClassTemplateSpec &&
7503            hasTemplateSpecializationInEncodedString(
7504                RTy, Options.ExpandPointedToStructures()))) {
7505         S += "^v";
7506         return;
7507       }
7508       // fall through...
7509     }
7510     S += '^';
7511     getLegacyIntegralTypeEncoding(PointeeTy);
7512 
7513     ObjCEncOptions NewOptions;
7514     if (Options.ExpandPointedToStructures())
7515       NewOptions.setExpandStructures();
7516     getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
7517                                /*Field=*/nullptr, NotEncodedT);
7518     return;
7519   }
7520 
7521   case Type::ConstantArray:
7522   case Type::IncompleteArray:
7523   case Type::VariableArray: {
7524     const auto *AT = cast<ArrayType>(CT);
7525 
7526     if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
7527       // Incomplete arrays are encoded as a pointer to the array element.
7528       S += '^';
7529 
7530       getObjCEncodingForTypeImpl(
7531           AT->getElementType(), S,
7532           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
7533     } else {
7534       S += '[';
7535 
7536       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
7537         S += llvm::utostr(CAT->getSize().getZExtValue());
7538       else {
7539         //Variable length arrays are encoded as a regular array with 0 elements.
7540         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
7541                "Unknown array type!");
7542         S += '0';
7543       }
7544 
7545       getObjCEncodingForTypeImpl(
7546           AT->getElementType(), S,
7547           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
7548           NotEncodedT);
7549       S += ']';
7550     }
7551     return;
7552   }
7553 
7554   case Type::FunctionNoProto:
7555   case Type::FunctionProto:
7556     S += '?';
7557     return;
7558 
7559   case Type::Record: {
7560     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
7561     S += RDecl->isUnion() ? '(' : '{';
7562     // Anonymous structures print as '?'
7563     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
7564       S += II->getName();
7565       if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
7566         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
7567         llvm::raw_string_ostream OS(S);
7568         printTemplateArgumentList(OS, TemplateArgs.asArray(),
7569                                   getPrintingPolicy());
7570       }
7571     } else {
7572       S += '?';
7573     }
7574     if (Options.ExpandStructures()) {
7575       S += '=';
7576       if (!RDecl->isUnion()) {
7577         getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
7578       } else {
7579         for (const auto *Field : RDecl->fields()) {
7580           if (FD) {
7581             S += '"';
7582             S += Field->getNameAsString();
7583             S += '"';
7584           }
7585 
7586           // Special case bit-fields.
7587           if (Field->isBitField()) {
7588             getObjCEncodingForTypeImpl(Field->getType(), S,
7589                                        ObjCEncOptions().setExpandStructures(),
7590                                        Field);
7591           } else {
7592             QualType qt = Field->getType();
7593             getLegacyIntegralTypeEncoding(qt);
7594             getObjCEncodingForTypeImpl(
7595                 qt, S,
7596                 ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
7597                 NotEncodedT);
7598           }
7599         }
7600       }
7601     }
7602     S += RDecl->isUnion() ? ')' : '}';
7603     return;
7604   }
7605 
7606   case Type::BlockPointer: {
7607     const auto *BT = T->castAs<BlockPointerType>();
7608     S += "@?"; // Unlike a pointer-to-function, which is "^?".
7609     if (Options.EncodeBlockParameters()) {
7610       const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
7611 
7612       S += '<';
7613       // Block return type
7614       getObjCEncodingForTypeImpl(FT->getReturnType(), S,
7615                                  Options.forComponentType(), FD, NotEncodedT);
7616       // Block self
7617       S += "@?";
7618       // Block parameters
7619       if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
7620         for (const auto &I : FPT->param_types())
7621           getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
7622                                      NotEncodedT);
7623       }
7624       S += '>';
7625     }
7626     return;
7627   }
7628 
7629   case Type::ObjCObject: {
7630     // hack to match legacy encoding of *id and *Class
7631     QualType Ty = getObjCObjectPointerType(CT);
7632     if (Ty->isObjCIdType()) {
7633       S += "{objc_object=}";
7634       return;
7635     }
7636     else if (Ty->isObjCClassType()) {
7637       S += "{objc_class=}";
7638       return;
7639     }
7640     // TODO: Double check to make sure this intentionally falls through.
7641     LLVM_FALLTHROUGH;
7642   }
7643 
7644   case Type::ObjCInterface: {
7645     // Ignore protocol qualifiers when mangling at this level.
7646     // @encode(class_name)
7647     ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
7648     S += '{';
7649     S += OI->getObjCRuntimeNameAsString();
7650     if (Options.ExpandStructures()) {
7651       S += '=';
7652       SmallVector<const ObjCIvarDecl*, 32> Ivars;
7653       DeepCollectObjCIvars(OI, true, Ivars);
7654       for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
7655         const FieldDecl *Field = Ivars[i];
7656         if (Field->isBitField())
7657           getObjCEncodingForTypeImpl(Field->getType(), S,
7658                                      ObjCEncOptions().setExpandStructures(),
7659                                      Field);
7660         else
7661           getObjCEncodingForTypeImpl(Field->getType(), S,
7662                                      ObjCEncOptions().setExpandStructures(), FD,
7663                                      NotEncodedT);
7664       }
7665     }
7666     S += '}';
7667     return;
7668   }
7669 
7670   case Type::ObjCObjectPointer: {
7671     const auto *OPT = T->castAs<ObjCObjectPointerType>();
7672     if (OPT->isObjCIdType()) {
7673       S += '@';
7674       return;
7675     }
7676 
7677     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
7678       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
7679       // Since this is a binary compatibility issue, need to consult with
7680       // runtime folks. Fortunately, this is a *very* obscure construct.
7681       S += '#';
7682       return;
7683     }
7684 
7685     if (OPT->isObjCQualifiedIdType()) {
7686       getObjCEncodingForTypeImpl(
7687           getObjCIdType(), S,
7688           Options.keepingOnly(ObjCEncOptions()
7689                                   .setExpandPointedToStructures()
7690                                   .setExpandStructures()),
7691           FD);
7692       if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
7693         // Note that we do extended encoding of protocol qualifer list
7694         // Only when doing ivar or property encoding.
7695         S += '"';
7696         for (const auto *I : OPT->quals()) {
7697           S += '<';
7698           S += I->getObjCRuntimeNameAsString();
7699           S += '>';
7700         }
7701         S += '"';
7702       }
7703       return;
7704     }
7705 
7706     S += '@';
7707     if (OPT->getInterfaceDecl() &&
7708         (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
7709       S += '"';
7710       S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
7711       for (const auto *I : OPT->quals()) {
7712         S += '<';
7713         S += I->getObjCRuntimeNameAsString();
7714         S += '>';
7715       }
7716       S += '"';
7717     }
7718     return;
7719   }
7720 
7721   // gcc just blithely ignores member pointers.
7722   // FIXME: we should do better than that.  'M' is available.
7723   case Type::MemberPointer:
7724   // This matches gcc's encoding, even though technically it is insufficient.
7725   //FIXME. We should do a better job than gcc.
7726   case Type::Vector:
7727   case Type::ExtVector:
7728   // Until we have a coherent encoding of these three types, issue warning.
7729     if (NotEncodedT)
7730       *NotEncodedT = T;
7731     return;
7732 
7733   case Type::ConstantMatrix:
7734     if (NotEncodedT)
7735       *NotEncodedT = T;
7736     return;
7737 
7738   // We could see an undeduced auto type here during error recovery.
7739   // Just ignore it.
7740   case Type::Auto:
7741   case Type::DeducedTemplateSpecialization:
7742     return;
7743 
7744   case Type::Pipe:
7745   case Type::ExtInt:
7746 #define ABSTRACT_TYPE(KIND, BASE)
7747 #define TYPE(KIND, BASE)
7748 #define DEPENDENT_TYPE(KIND, BASE) \
7749   case Type::KIND:
7750 #define NON_CANONICAL_TYPE(KIND, BASE) \
7751   case Type::KIND:
7752 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
7753   case Type::KIND:
7754 #include "clang/AST/TypeNodes.inc"
7755     llvm_unreachable("@encode for dependent type!");
7756   }
7757   llvm_unreachable("bad type kind!");
7758 }
7759 
getObjCEncodingForStructureImpl(RecordDecl * RDecl,std::string & S,const FieldDecl * FD,bool includeVBases,QualType * NotEncodedT) const7760 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
7761                                                  std::string &S,
7762                                                  const FieldDecl *FD,
7763                                                  bool includeVBases,
7764                                                  QualType *NotEncodedT) const {
7765   assert(RDecl && "Expected non-null RecordDecl");
7766   assert(!RDecl->isUnion() && "Should not be called for unions");
7767   if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
7768     return;
7769 
7770   const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
7771   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
7772   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
7773 
7774   if (CXXRec) {
7775     for (const auto &BI : CXXRec->bases()) {
7776       if (!BI.isVirtual()) {
7777         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7778         if (base->isEmpty())
7779           continue;
7780         uint64_t offs = toBits(layout.getBaseClassOffset(base));
7781         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7782                                   std::make_pair(offs, base));
7783       }
7784     }
7785   }
7786 
7787   unsigned i = 0;
7788   for (FieldDecl *Field : RDecl->fields()) {
7789     if (!Field->isZeroLengthBitField(*this) && Field->isZeroSize(*this))
7790       continue;
7791     uint64_t offs = layout.getFieldOffset(i);
7792     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7793                               std::make_pair(offs, Field));
7794     ++i;
7795   }
7796 
7797   if (CXXRec && includeVBases) {
7798     for (const auto &BI : CXXRec->vbases()) {
7799       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7800       if (base->isEmpty())
7801         continue;
7802       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
7803       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
7804           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
7805         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
7806                                   std::make_pair(offs, base));
7807     }
7808   }
7809 
7810   CharUnits size;
7811   if (CXXRec) {
7812     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
7813   } else {
7814     size = layout.getSize();
7815   }
7816 
7817 #ifndef NDEBUG
7818   uint64_t CurOffs = 0;
7819 #endif
7820   std::multimap<uint64_t, NamedDecl *>::iterator
7821     CurLayObj = FieldOrBaseOffsets.begin();
7822 
7823   if (CXXRec && CXXRec->isDynamicClass() &&
7824       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
7825     if (FD) {
7826       S += "\"_vptr$";
7827       std::string recname = CXXRec->getNameAsString();
7828       if (recname.empty()) recname = "?";
7829       S += recname;
7830       S += '"';
7831     }
7832     S += "^^?";
7833 #ifndef NDEBUG
7834     CurOffs += getTypeSize(VoidPtrTy);
7835 #endif
7836   }
7837 
7838   if (!RDecl->hasFlexibleArrayMember()) {
7839     // Mark the end of the structure.
7840     uint64_t offs = toBits(size);
7841     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7842                               std::make_pair(offs, nullptr));
7843   }
7844 
7845   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
7846 #ifndef NDEBUG
7847     assert(CurOffs <= CurLayObj->first);
7848     if (CurOffs < CurLayObj->first) {
7849       uint64_t padding = CurLayObj->first - CurOffs;
7850       // FIXME: There doesn't seem to be a way to indicate in the encoding that
7851       // packing/alignment of members is different that normal, in which case
7852       // the encoding will be out-of-sync with the real layout.
7853       // If the runtime switches to just consider the size of types without
7854       // taking into account alignment, we could make padding explicit in the
7855       // encoding (e.g. using arrays of chars). The encoding strings would be
7856       // longer then though.
7857       CurOffs += padding;
7858     }
7859 #endif
7860 
7861     NamedDecl *dcl = CurLayObj->second;
7862     if (!dcl)
7863       break; // reached end of structure.
7864 
7865     if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
7866       // We expand the bases without their virtual bases since those are going
7867       // in the initial structure. Note that this differs from gcc which
7868       // expands virtual bases each time one is encountered in the hierarchy,
7869       // making the encoding type bigger than it really is.
7870       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
7871                                       NotEncodedT);
7872       assert(!base->isEmpty());
7873 #ifndef NDEBUG
7874       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
7875 #endif
7876     } else {
7877       const auto *field = cast<FieldDecl>(dcl);
7878       if (FD) {
7879         S += '"';
7880         S += field->getNameAsString();
7881         S += '"';
7882       }
7883 
7884       if (field->isBitField()) {
7885         EncodeBitField(this, S, field->getType(), field);
7886 #ifndef NDEBUG
7887         CurOffs += field->getBitWidthValue(*this);
7888 #endif
7889       } else {
7890         QualType qt = field->getType();
7891         getLegacyIntegralTypeEncoding(qt);
7892         getObjCEncodingForTypeImpl(
7893             qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
7894             FD, NotEncodedT);
7895 #ifndef NDEBUG
7896         CurOffs += getTypeSize(field->getType());
7897 #endif
7898       }
7899     }
7900   }
7901 }
7902 
getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,std::string & S) const7903 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
7904                                                  std::string& S) const {
7905   if (QT & Decl::OBJC_TQ_In)
7906     S += 'n';
7907   if (QT & Decl::OBJC_TQ_Inout)
7908     S += 'N';
7909   if (QT & Decl::OBJC_TQ_Out)
7910     S += 'o';
7911   if (QT & Decl::OBJC_TQ_Bycopy)
7912     S += 'O';
7913   if (QT & Decl::OBJC_TQ_Byref)
7914     S += 'R';
7915   if (QT & Decl::OBJC_TQ_Oneway)
7916     S += 'V';
7917 }
7918 
getObjCIdDecl() const7919 TypedefDecl *ASTContext::getObjCIdDecl() const {
7920   if (!ObjCIdDecl) {
7921     QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
7922     T = getObjCObjectPointerType(T);
7923     ObjCIdDecl = buildImplicitTypedef(T, "id");
7924   }
7925   return ObjCIdDecl;
7926 }
7927 
getObjCSelDecl() const7928 TypedefDecl *ASTContext::getObjCSelDecl() const {
7929   if (!ObjCSelDecl) {
7930     QualType T = getPointerType(ObjCBuiltinSelTy);
7931     ObjCSelDecl = buildImplicitTypedef(T, "SEL");
7932   }
7933   return ObjCSelDecl;
7934 }
7935 
getObjCClassDecl() const7936 TypedefDecl *ASTContext::getObjCClassDecl() const {
7937   if (!ObjCClassDecl) {
7938     QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
7939     T = getObjCObjectPointerType(T);
7940     ObjCClassDecl = buildImplicitTypedef(T, "Class");
7941   }
7942   return ObjCClassDecl;
7943 }
7944 
getObjCProtocolDecl() const7945 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
7946   if (!ObjCProtocolClassDecl) {
7947     ObjCProtocolClassDecl
7948       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
7949                                   SourceLocation(),
7950                                   &Idents.get("Protocol"),
7951                                   /*typeParamList=*/nullptr,
7952                                   /*PrevDecl=*/nullptr,
7953                                   SourceLocation(), true);
7954   }
7955 
7956   return ObjCProtocolClassDecl;
7957 }
7958 
7959 //===----------------------------------------------------------------------===//
7960 // __builtin_va_list Construction Functions
7961 //===----------------------------------------------------------------------===//
7962 
CreateCharPtrNamedVaListDecl(const ASTContext * Context,StringRef Name)7963 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
7964                                                  StringRef Name) {
7965   // typedef char* __builtin[_ms]_va_list;
7966   QualType T = Context->getPointerType(Context->CharTy);
7967   return Context->buildImplicitTypedef(T, Name);
7968 }
7969 
CreateMSVaListDecl(const ASTContext * Context)7970 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
7971   return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
7972 }
7973 
CreateCharPtrBuiltinVaListDecl(const ASTContext * Context)7974 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
7975   return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
7976 }
7977 
CreateVoidPtrBuiltinVaListDecl(const ASTContext * Context)7978 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
7979   // typedef void* __builtin_va_list;
7980   QualType T = Context->getPointerType(Context->VoidTy);
7981   return Context->buildImplicitTypedef(T, "__builtin_va_list");
7982 }
7983 
7984 static TypedefDecl *
CreateAArch64ABIBuiltinVaListDecl(const ASTContext * Context)7985 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
7986   // struct __va_list
7987   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
7988   if (Context->getLangOpts().CPlusPlus) {
7989     // namespace std { struct __va_list {
7990     NamespaceDecl *NS;
7991     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
7992                                Context->getTranslationUnitDecl(),
7993                                /*Inline*/ false, SourceLocation(),
7994                                SourceLocation(), &Context->Idents.get("std"),
7995                                /*PrevDecl*/ nullptr);
7996     NS->setImplicit();
7997     VaListTagDecl->setDeclContext(NS);
7998   }
7999 
8000   VaListTagDecl->startDefinition();
8001 
8002   const size_t NumFields = 5;
8003   QualType FieldTypes[NumFields];
8004   const char *FieldNames[NumFields];
8005 
8006   // void *__stack;
8007   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8008   FieldNames[0] = "__stack";
8009 
8010   // void *__gr_top;
8011   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8012   FieldNames[1] = "__gr_top";
8013 
8014   // void *__vr_top;
8015   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8016   FieldNames[2] = "__vr_top";
8017 
8018   // int __gr_offs;
8019   FieldTypes[3] = Context->IntTy;
8020   FieldNames[3] = "__gr_offs";
8021 
8022   // int __vr_offs;
8023   FieldTypes[4] = Context->IntTy;
8024   FieldNames[4] = "__vr_offs";
8025 
8026   // Create fields
8027   for (unsigned i = 0; i < NumFields; ++i) {
8028     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8029                                          VaListTagDecl,
8030                                          SourceLocation(),
8031                                          SourceLocation(),
8032                                          &Context->Idents.get(FieldNames[i]),
8033                                          FieldTypes[i], /*TInfo=*/nullptr,
8034                                          /*BitWidth=*/nullptr,
8035                                          /*Mutable=*/false,
8036                                          ICIS_NoInit);
8037     Field->setAccess(AS_public);
8038     VaListTagDecl->addDecl(Field);
8039   }
8040   VaListTagDecl->completeDefinition();
8041   Context->VaListTagDecl = VaListTagDecl;
8042   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8043 
8044   // } __builtin_va_list;
8045   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
8046 }
8047 
CreatePowerABIBuiltinVaListDecl(const ASTContext * Context)8048 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
8049   // typedef struct __va_list_tag {
8050   RecordDecl *VaListTagDecl;
8051 
8052   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8053   VaListTagDecl->startDefinition();
8054 
8055   const size_t NumFields = 5;
8056   QualType FieldTypes[NumFields];
8057   const char *FieldNames[NumFields];
8058 
8059   //   unsigned char gpr;
8060   FieldTypes[0] = Context->UnsignedCharTy;
8061   FieldNames[0] = "gpr";
8062 
8063   //   unsigned char fpr;
8064   FieldTypes[1] = Context->UnsignedCharTy;
8065   FieldNames[1] = "fpr";
8066 
8067   //   unsigned short reserved;
8068   FieldTypes[2] = Context->UnsignedShortTy;
8069   FieldNames[2] = "reserved";
8070 
8071   //   void* overflow_arg_area;
8072   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8073   FieldNames[3] = "overflow_arg_area";
8074 
8075   //   void* reg_save_area;
8076   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
8077   FieldNames[4] = "reg_save_area";
8078 
8079   // Create fields
8080   for (unsigned i = 0; i < NumFields; ++i) {
8081     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
8082                                          SourceLocation(),
8083                                          SourceLocation(),
8084                                          &Context->Idents.get(FieldNames[i]),
8085                                          FieldTypes[i], /*TInfo=*/nullptr,
8086                                          /*BitWidth=*/nullptr,
8087                                          /*Mutable=*/false,
8088                                          ICIS_NoInit);
8089     Field->setAccess(AS_public);
8090     VaListTagDecl->addDecl(Field);
8091   }
8092   VaListTagDecl->completeDefinition();
8093   Context->VaListTagDecl = VaListTagDecl;
8094   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8095 
8096   // } __va_list_tag;
8097   TypedefDecl *VaListTagTypedefDecl =
8098       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8099 
8100   QualType VaListTagTypedefType =
8101     Context->getTypedefType(VaListTagTypedefDecl);
8102 
8103   // typedef __va_list_tag __builtin_va_list[1];
8104   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8105   QualType VaListTagArrayType
8106     = Context->getConstantArrayType(VaListTagTypedefType,
8107                                     Size, nullptr, ArrayType::Normal, 0);
8108   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8109 }
8110 
8111 static TypedefDecl *
CreateX86_64ABIBuiltinVaListDecl(const ASTContext * Context)8112 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
8113   // struct __va_list_tag {
8114   RecordDecl *VaListTagDecl;
8115   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8116   VaListTagDecl->startDefinition();
8117 
8118   const size_t NumFields = 4;
8119   QualType FieldTypes[NumFields];
8120   const char *FieldNames[NumFields];
8121 
8122   //   unsigned gp_offset;
8123   FieldTypes[0] = Context->UnsignedIntTy;
8124   FieldNames[0] = "gp_offset";
8125 
8126   //   unsigned fp_offset;
8127   FieldTypes[1] = Context->UnsignedIntTy;
8128   FieldNames[1] = "fp_offset";
8129 
8130   //   void* overflow_arg_area;
8131   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8132   FieldNames[2] = "overflow_arg_area";
8133 
8134   //   void* reg_save_area;
8135   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8136   FieldNames[3] = "reg_save_area";
8137 
8138   // Create fields
8139   for (unsigned i = 0; i < NumFields; ++i) {
8140     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8141                                          VaListTagDecl,
8142                                          SourceLocation(),
8143                                          SourceLocation(),
8144                                          &Context->Idents.get(FieldNames[i]),
8145                                          FieldTypes[i], /*TInfo=*/nullptr,
8146                                          /*BitWidth=*/nullptr,
8147                                          /*Mutable=*/false,
8148                                          ICIS_NoInit);
8149     Field->setAccess(AS_public);
8150     VaListTagDecl->addDecl(Field);
8151   }
8152   VaListTagDecl->completeDefinition();
8153   Context->VaListTagDecl = VaListTagDecl;
8154   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8155 
8156   // };
8157 
8158   // typedef struct __va_list_tag __builtin_va_list[1];
8159   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8160   QualType VaListTagArrayType = Context->getConstantArrayType(
8161       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8162   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8163 }
8164 
CreatePNaClABIBuiltinVaListDecl(const ASTContext * Context)8165 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
8166   // typedef int __builtin_va_list[4];
8167   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
8168   QualType IntArrayType = Context->getConstantArrayType(
8169       Context->IntTy, Size, nullptr, ArrayType::Normal, 0);
8170   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
8171 }
8172 
8173 static TypedefDecl *
CreateAAPCSABIBuiltinVaListDecl(const ASTContext * Context)8174 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
8175   // struct __va_list
8176   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
8177   if (Context->getLangOpts().CPlusPlus) {
8178     // namespace std { struct __va_list {
8179     NamespaceDecl *NS;
8180     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
8181                                Context->getTranslationUnitDecl(),
8182                                /*Inline*/false, SourceLocation(),
8183                                SourceLocation(), &Context->Idents.get("std"),
8184                                /*PrevDecl*/ nullptr);
8185     NS->setImplicit();
8186     VaListDecl->setDeclContext(NS);
8187   }
8188 
8189   VaListDecl->startDefinition();
8190 
8191   // void * __ap;
8192   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8193                                        VaListDecl,
8194                                        SourceLocation(),
8195                                        SourceLocation(),
8196                                        &Context->Idents.get("__ap"),
8197                                        Context->getPointerType(Context->VoidTy),
8198                                        /*TInfo=*/nullptr,
8199                                        /*BitWidth=*/nullptr,
8200                                        /*Mutable=*/false,
8201                                        ICIS_NoInit);
8202   Field->setAccess(AS_public);
8203   VaListDecl->addDecl(Field);
8204 
8205   // };
8206   VaListDecl->completeDefinition();
8207   Context->VaListTagDecl = VaListDecl;
8208 
8209   // typedef struct __va_list __builtin_va_list;
8210   QualType T = Context->getRecordType(VaListDecl);
8211   return Context->buildImplicitTypedef(T, "__builtin_va_list");
8212 }
8213 
8214 static TypedefDecl *
CreateSystemZBuiltinVaListDecl(const ASTContext * Context)8215 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
8216   // struct __va_list_tag {
8217   RecordDecl *VaListTagDecl;
8218   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8219   VaListTagDecl->startDefinition();
8220 
8221   const size_t NumFields = 4;
8222   QualType FieldTypes[NumFields];
8223   const char *FieldNames[NumFields];
8224 
8225   //   long __gpr;
8226   FieldTypes[0] = Context->LongTy;
8227   FieldNames[0] = "__gpr";
8228 
8229   //   long __fpr;
8230   FieldTypes[1] = Context->LongTy;
8231   FieldNames[1] = "__fpr";
8232 
8233   //   void *__overflow_arg_area;
8234   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8235   FieldNames[2] = "__overflow_arg_area";
8236 
8237   //   void *__reg_save_area;
8238   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8239   FieldNames[3] = "__reg_save_area";
8240 
8241   // Create fields
8242   for (unsigned i = 0; i < NumFields; ++i) {
8243     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8244                                          VaListTagDecl,
8245                                          SourceLocation(),
8246                                          SourceLocation(),
8247                                          &Context->Idents.get(FieldNames[i]),
8248                                          FieldTypes[i], /*TInfo=*/nullptr,
8249                                          /*BitWidth=*/nullptr,
8250                                          /*Mutable=*/false,
8251                                          ICIS_NoInit);
8252     Field->setAccess(AS_public);
8253     VaListTagDecl->addDecl(Field);
8254   }
8255   VaListTagDecl->completeDefinition();
8256   Context->VaListTagDecl = VaListTagDecl;
8257   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8258 
8259   // };
8260 
8261   // typedef __va_list_tag __builtin_va_list[1];
8262   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8263   QualType VaListTagArrayType = Context->getConstantArrayType(
8264       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8265 
8266   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8267 }
8268 
CreateHexagonBuiltinVaListDecl(const ASTContext * Context)8269 static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) {
8270   // typedef struct __va_list_tag {
8271   RecordDecl *VaListTagDecl;
8272   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8273   VaListTagDecl->startDefinition();
8274 
8275   const size_t NumFields = 3;
8276   QualType FieldTypes[NumFields];
8277   const char *FieldNames[NumFields];
8278 
8279   //   void *CurrentSavedRegisterArea;
8280   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8281   FieldNames[0] = "__current_saved_reg_area_pointer";
8282 
8283   //   void *SavedRegAreaEnd;
8284   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8285   FieldNames[1] = "__saved_reg_area_end_pointer";
8286 
8287   //   void *OverflowArea;
8288   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8289   FieldNames[2] = "__overflow_area_pointer";
8290 
8291   // Create fields
8292   for (unsigned i = 0; i < NumFields; ++i) {
8293     FieldDecl *Field = FieldDecl::Create(
8294         const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(),
8295         SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i],
8296         /*TInfo=*/0,
8297         /*BitWidth=*/0,
8298         /*Mutable=*/false, ICIS_NoInit);
8299     Field->setAccess(AS_public);
8300     VaListTagDecl->addDecl(Field);
8301   }
8302   VaListTagDecl->completeDefinition();
8303   Context->VaListTagDecl = VaListTagDecl;
8304   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8305 
8306   // } __va_list_tag;
8307   TypedefDecl *VaListTagTypedefDecl =
8308       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8309 
8310   QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl);
8311 
8312   // typedef __va_list_tag __builtin_va_list[1];
8313   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8314   QualType VaListTagArrayType = Context->getConstantArrayType(
8315       VaListTagTypedefType, Size, nullptr, ArrayType::Normal, 0);
8316 
8317   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8318 }
8319 
CreateVaListDecl(const ASTContext * Context,TargetInfo::BuiltinVaListKind Kind)8320 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
8321                                      TargetInfo::BuiltinVaListKind Kind) {
8322   switch (Kind) {
8323   case TargetInfo::CharPtrBuiltinVaList:
8324     return CreateCharPtrBuiltinVaListDecl(Context);
8325   case TargetInfo::VoidPtrBuiltinVaList:
8326     return CreateVoidPtrBuiltinVaListDecl(Context);
8327   case TargetInfo::AArch64ABIBuiltinVaList:
8328     return CreateAArch64ABIBuiltinVaListDecl(Context);
8329   case TargetInfo::PowerABIBuiltinVaList:
8330     return CreatePowerABIBuiltinVaListDecl(Context);
8331   case TargetInfo::X86_64ABIBuiltinVaList:
8332     return CreateX86_64ABIBuiltinVaListDecl(Context);
8333   case TargetInfo::PNaClABIBuiltinVaList:
8334     return CreatePNaClABIBuiltinVaListDecl(Context);
8335   case TargetInfo::AAPCSABIBuiltinVaList:
8336     return CreateAAPCSABIBuiltinVaListDecl(Context);
8337   case TargetInfo::SystemZBuiltinVaList:
8338     return CreateSystemZBuiltinVaListDecl(Context);
8339   case TargetInfo::HexagonBuiltinVaList:
8340     return CreateHexagonBuiltinVaListDecl(Context);
8341   }
8342 
8343   llvm_unreachable("Unhandled __builtin_va_list type kind");
8344 }
8345 
getBuiltinVaListDecl() const8346 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
8347   if (!BuiltinVaListDecl) {
8348     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
8349     assert(BuiltinVaListDecl->isImplicit());
8350   }
8351 
8352   return BuiltinVaListDecl;
8353 }
8354 
getVaListTagDecl() const8355 Decl *ASTContext::getVaListTagDecl() const {
8356   // Force the creation of VaListTagDecl by building the __builtin_va_list
8357   // declaration.
8358   if (!VaListTagDecl)
8359     (void)getBuiltinVaListDecl();
8360 
8361   return VaListTagDecl;
8362 }
8363 
getBuiltinMSVaListDecl() const8364 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
8365   if (!BuiltinMSVaListDecl)
8366     BuiltinMSVaListDecl = CreateMSVaListDecl(this);
8367 
8368   return BuiltinMSVaListDecl;
8369 }
8370 
canBuiltinBeRedeclared(const FunctionDecl * FD) const8371 bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
8372   return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
8373 }
8374 
setObjCConstantStringInterface(ObjCInterfaceDecl * Decl)8375 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
8376   assert(ObjCConstantStringType.isNull() &&
8377          "'NSConstantString' type already set!");
8378 
8379   ObjCConstantStringType = getObjCInterfaceType(Decl);
8380 }
8381 
8382 /// Retrieve the template name that corresponds to a non-empty
8383 /// lookup.
8384 TemplateName
getOverloadedTemplateName(UnresolvedSetIterator Begin,UnresolvedSetIterator End) const8385 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
8386                                       UnresolvedSetIterator End) const {
8387   unsigned size = End - Begin;
8388   assert(size > 1 && "set is not overloaded!");
8389 
8390   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
8391                           size * sizeof(FunctionTemplateDecl*));
8392   auto *OT = new (memory) OverloadedTemplateStorage(size);
8393 
8394   NamedDecl **Storage = OT->getStorage();
8395   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
8396     NamedDecl *D = *I;
8397     assert(isa<FunctionTemplateDecl>(D) ||
8398            isa<UnresolvedUsingValueDecl>(D) ||
8399            (isa<UsingShadowDecl>(D) &&
8400             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
8401     *Storage++ = D;
8402   }
8403 
8404   return TemplateName(OT);
8405 }
8406 
8407 /// Retrieve a template name representing an unqualified-id that has been
8408 /// assumed to name a template for ADL purposes.
getAssumedTemplateName(DeclarationName Name) const8409 TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
8410   auto *OT = new (*this) AssumedTemplateStorage(Name);
8411   return TemplateName(OT);
8412 }
8413 
8414 /// Retrieve the template name that represents a qualified
8415 /// template name such as \c std::vector.
8416 TemplateName
getQualifiedTemplateName(NestedNameSpecifier * NNS,bool TemplateKeyword,TemplateDecl * Template) const8417 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
8418                                      bool TemplateKeyword,
8419                                      TemplateDecl *Template) const {
8420   assert(NNS && "Missing nested-name-specifier in qualified template name");
8421 
8422   // FIXME: Canonicalization?
8423   llvm::FoldingSetNodeID ID;
8424   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
8425 
8426   void *InsertPos = nullptr;
8427   QualifiedTemplateName *QTN =
8428     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8429   if (!QTN) {
8430     QTN = new (*this, alignof(QualifiedTemplateName))
8431         QualifiedTemplateName(NNS, TemplateKeyword, Template);
8432     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
8433   }
8434 
8435   return TemplateName(QTN);
8436 }
8437 
8438 /// Retrieve the template name that represents a dependent
8439 /// template name such as \c MetaFun::template apply.
8440 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,const IdentifierInfo * Name) const8441 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
8442                                      const IdentifierInfo *Name) const {
8443   assert((!NNS || NNS->isDependent()) &&
8444          "Nested name specifier must be dependent");
8445 
8446   llvm::FoldingSetNodeID ID;
8447   DependentTemplateName::Profile(ID, NNS, Name);
8448 
8449   void *InsertPos = nullptr;
8450   DependentTemplateName *QTN =
8451     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8452 
8453   if (QTN)
8454     return TemplateName(QTN);
8455 
8456   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
8457   if (CanonNNS == NNS) {
8458     QTN = new (*this, alignof(DependentTemplateName))
8459         DependentTemplateName(NNS, Name);
8460   } else {
8461     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
8462     QTN = new (*this, alignof(DependentTemplateName))
8463         DependentTemplateName(NNS, Name, Canon);
8464     DependentTemplateName *CheckQTN =
8465       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8466     assert(!CheckQTN && "Dependent type name canonicalization broken");
8467     (void)CheckQTN;
8468   }
8469 
8470   DependentTemplateNames.InsertNode(QTN, InsertPos);
8471   return TemplateName(QTN);
8472 }
8473 
8474 /// Retrieve the template name that represents a dependent
8475 /// template name such as \c MetaFun::template operator+.
8476 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,OverloadedOperatorKind Operator) const8477 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
8478                                      OverloadedOperatorKind Operator) const {
8479   assert((!NNS || NNS->isDependent()) &&
8480          "Nested name specifier must be dependent");
8481 
8482   llvm::FoldingSetNodeID ID;
8483   DependentTemplateName::Profile(ID, NNS, Operator);
8484 
8485   void *InsertPos = nullptr;
8486   DependentTemplateName *QTN
8487     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8488 
8489   if (QTN)
8490     return TemplateName(QTN);
8491 
8492   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
8493   if (CanonNNS == NNS) {
8494     QTN = new (*this, alignof(DependentTemplateName))
8495         DependentTemplateName(NNS, Operator);
8496   } else {
8497     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
8498     QTN = new (*this, alignof(DependentTemplateName))
8499         DependentTemplateName(NNS, Operator, Canon);
8500 
8501     DependentTemplateName *CheckQTN
8502       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8503     assert(!CheckQTN && "Dependent template name canonicalization broken");
8504     (void)CheckQTN;
8505   }
8506 
8507   DependentTemplateNames.InsertNode(QTN, InsertPos);
8508   return TemplateName(QTN);
8509 }
8510 
8511 TemplateName
getSubstTemplateTemplateParm(TemplateTemplateParmDecl * param,TemplateName replacement) const8512 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
8513                                          TemplateName replacement) const {
8514   llvm::FoldingSetNodeID ID;
8515   SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
8516 
8517   void *insertPos = nullptr;
8518   SubstTemplateTemplateParmStorage *subst
8519     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
8520 
8521   if (!subst) {
8522     subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
8523     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
8524   }
8525 
8526   return TemplateName(subst);
8527 }
8528 
8529 TemplateName
getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack) const8530 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
8531                                        const TemplateArgument &ArgPack) const {
8532   auto &Self = const_cast<ASTContext &>(*this);
8533   llvm::FoldingSetNodeID ID;
8534   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
8535 
8536   void *InsertPos = nullptr;
8537   SubstTemplateTemplateParmPackStorage *Subst
8538     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
8539 
8540   if (!Subst) {
8541     Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
8542                                                            ArgPack.pack_size(),
8543                                                          ArgPack.pack_begin());
8544     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
8545   }
8546 
8547   return TemplateName(Subst);
8548 }
8549 
8550 /// getFromTargetType - Given one of the integer types provided by
8551 /// TargetInfo, produce the corresponding type. The unsigned @p Type
8552 /// is actually a value of type @c TargetInfo::IntType.
getFromTargetType(unsigned Type) const8553 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
8554   switch (Type) {
8555   case TargetInfo::NoInt: return {};
8556   case TargetInfo::SignedChar: return SignedCharTy;
8557   case TargetInfo::UnsignedChar: return UnsignedCharTy;
8558   case TargetInfo::SignedShort: return ShortTy;
8559   case TargetInfo::UnsignedShort: return UnsignedShortTy;
8560   case TargetInfo::SignedInt: return IntTy;
8561   case TargetInfo::UnsignedInt: return UnsignedIntTy;
8562   case TargetInfo::SignedLong: return LongTy;
8563   case TargetInfo::UnsignedLong: return UnsignedLongTy;
8564   case TargetInfo::SignedLongLong: return LongLongTy;
8565   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
8566   }
8567 
8568   llvm_unreachable("Unhandled TargetInfo::IntType value");
8569 }
8570 
8571 //===----------------------------------------------------------------------===//
8572 //                        Type Predicates.
8573 //===----------------------------------------------------------------------===//
8574 
8575 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
8576 /// garbage collection attribute.
8577 ///
getObjCGCAttrKind(QualType Ty) const8578 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
8579   if (getLangOpts().getGC() == LangOptions::NonGC)
8580     return Qualifiers::GCNone;
8581 
8582   assert(getLangOpts().ObjC);
8583   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
8584 
8585   // Default behaviour under objective-C's gc is for ObjC pointers
8586   // (or pointers to them) be treated as though they were declared
8587   // as __strong.
8588   if (GCAttrs == Qualifiers::GCNone) {
8589     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
8590       return Qualifiers::Strong;
8591     else if (Ty->isPointerType())
8592       return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
8593   } else {
8594     // It's not valid to set GC attributes on anything that isn't a
8595     // pointer.
8596 #ifndef NDEBUG
8597     QualType CT = Ty->getCanonicalTypeInternal();
8598     while (const auto *AT = dyn_cast<ArrayType>(CT))
8599       CT = AT->getElementType();
8600     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
8601 #endif
8602   }
8603   return GCAttrs;
8604 }
8605 
8606 //===----------------------------------------------------------------------===//
8607 //                        Type Compatibility Testing
8608 //===----------------------------------------------------------------------===//
8609 
8610 /// areCompatVectorTypes - Return true if the two specified vector types are
8611 /// compatible.
areCompatVectorTypes(const VectorType * LHS,const VectorType * RHS)8612 static bool areCompatVectorTypes(const VectorType *LHS,
8613                                  const VectorType *RHS) {
8614   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
8615   return LHS->getElementType() == RHS->getElementType() &&
8616          LHS->getNumElements() == RHS->getNumElements();
8617 }
8618 
8619 /// areCompatMatrixTypes - Return true if the two specified matrix types are
8620 /// compatible.
areCompatMatrixTypes(const ConstantMatrixType * LHS,const ConstantMatrixType * RHS)8621 static bool areCompatMatrixTypes(const ConstantMatrixType *LHS,
8622                                  const ConstantMatrixType *RHS) {
8623   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
8624   return LHS->getElementType() == RHS->getElementType() &&
8625          LHS->getNumRows() == RHS->getNumRows() &&
8626          LHS->getNumColumns() == RHS->getNumColumns();
8627 }
8628 
areCompatibleVectorTypes(QualType FirstVec,QualType SecondVec)8629 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
8630                                           QualType SecondVec) {
8631   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
8632   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
8633 
8634   if (hasSameUnqualifiedType(FirstVec, SecondVec))
8635     return true;
8636 
8637   // Treat Neon vector types and most AltiVec vector types as if they are the
8638   // equivalent GCC vector types.
8639   const auto *First = FirstVec->castAs<VectorType>();
8640   const auto *Second = SecondVec->castAs<VectorType>();
8641   if (First->getNumElements() == Second->getNumElements() &&
8642       hasSameType(First->getElementType(), Second->getElementType()) &&
8643       First->getVectorKind() != VectorType::AltiVecPixel &&
8644       First->getVectorKind() != VectorType::AltiVecBool &&
8645       Second->getVectorKind() != VectorType::AltiVecPixel &&
8646       Second->getVectorKind() != VectorType::AltiVecBool &&
8647       First->getVectorKind() != VectorType::SveFixedLengthDataVector &&
8648       First->getVectorKind() != VectorType::SveFixedLengthPredicateVector &&
8649       Second->getVectorKind() != VectorType::SveFixedLengthDataVector &&
8650       Second->getVectorKind() != VectorType::SveFixedLengthPredicateVector)
8651     return true;
8652 
8653   return false;
8654 }
8655 
areCompatibleSveTypes(QualType FirstType,QualType SecondType)8656 bool ASTContext::areCompatibleSveTypes(QualType FirstType,
8657                                        QualType SecondType) {
8658   assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
8659           (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
8660          "Expected SVE builtin type and vector type!");
8661 
8662   auto IsValidCast = [this](QualType FirstType, QualType SecondType) {
8663     if (const auto *BT = FirstType->getAs<BuiltinType>()) {
8664       if (const auto *VT = SecondType->getAs<VectorType>()) {
8665         // Predicates have the same representation as uint8 so we also have to
8666         // check the kind to make these types incompatible.
8667         if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
8668           return BT->getKind() == BuiltinType::SveBool;
8669         else if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
8670           return VT->getElementType().getCanonicalType() ==
8671                  FirstType->getSveEltType(*this);
8672         else if (VT->getVectorKind() == VectorType::GenericVector)
8673           return getTypeSize(SecondType) == getLangOpts().ArmSveVectorBits &&
8674                  hasSameType(VT->getElementType(),
8675                              getBuiltinVectorTypeInfo(BT).ElementType);
8676       }
8677     }
8678     return false;
8679   };
8680 
8681   return IsValidCast(FirstType, SecondType) ||
8682          IsValidCast(SecondType, FirstType);
8683 }
8684 
areLaxCompatibleSveTypes(QualType FirstType,QualType SecondType)8685 bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType,
8686                                           QualType SecondType) {
8687   assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
8688           (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
8689          "Expected SVE builtin type and vector type!");
8690 
8691   auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) {
8692     if (!FirstType->getAs<BuiltinType>())
8693       return false;
8694 
8695     const auto *VecTy = SecondType->getAs<VectorType>();
8696     if (VecTy &&
8697         (VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector ||
8698          VecTy->getVectorKind() == VectorType::GenericVector)) {
8699       const LangOptions::LaxVectorConversionKind LVCKind =
8700           getLangOpts().getLaxVectorConversions();
8701 
8702       // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion.
8703       // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly
8704       // converts to VLAT and VLAT implicitly converts to GNUT."
8705       // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and
8706       // predicates.
8707       if (VecTy->getVectorKind() == VectorType::GenericVector &&
8708           getTypeSize(SecondType) != getLangOpts().ArmSveVectorBits)
8709         return false;
8710 
8711       // If -flax-vector-conversions=all is specified, the types are
8712       // certainly compatible.
8713       if (LVCKind == LangOptions::LaxVectorConversionKind::All)
8714         return true;
8715 
8716       // If -flax-vector-conversions=integer is specified, the types are
8717       // compatible if the elements are integer types.
8718       if (LVCKind == LangOptions::LaxVectorConversionKind::Integer)
8719         return VecTy->getElementType().getCanonicalType()->isIntegerType() &&
8720                FirstType->getSveEltType(*this)->isIntegerType();
8721     }
8722 
8723     return false;
8724   };
8725 
8726   return IsLaxCompatible(FirstType, SecondType) ||
8727          IsLaxCompatible(SecondType, FirstType);
8728 }
8729 
hasDirectOwnershipQualifier(QualType Ty) const8730 bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
8731   while (true) {
8732     // __strong id
8733     if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
8734       if (Attr->getAttrKind() == attr::ObjCOwnership)
8735         return true;
8736 
8737       Ty = Attr->getModifiedType();
8738 
8739     // X *__strong (...)
8740     } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
8741       Ty = Paren->getInnerType();
8742 
8743     // We do not want to look through typedefs, typeof(expr),
8744     // typeof(type), or any other way that the type is somehow
8745     // abstracted.
8746     } else {
8747       return false;
8748     }
8749   }
8750 }
8751 
8752 //===----------------------------------------------------------------------===//
8753 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
8754 //===----------------------------------------------------------------------===//
8755 
8756 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
8757 /// inheritance hierarchy of 'rProto'.
8758 bool
ProtocolCompatibleWithProtocol(ObjCProtocolDecl * lProto,ObjCProtocolDecl * rProto) const8759 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
8760                                            ObjCProtocolDecl *rProto) const {
8761   if (declaresSameEntity(lProto, rProto))
8762     return true;
8763   for (auto *PI : rProto->protocols())
8764     if (ProtocolCompatibleWithProtocol(lProto, PI))
8765       return true;
8766   return false;
8767 }
8768 
8769 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
8770 /// Class<pr1, ...>.
ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType * lhs,const ObjCObjectPointerType * rhs)8771 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
8772     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
8773   for (auto *lhsProto : lhs->quals()) {
8774     bool match = false;
8775     for (auto *rhsProto : rhs->quals()) {
8776       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
8777         match = true;
8778         break;
8779       }
8780     }
8781     if (!match)
8782       return false;
8783   }
8784   return true;
8785 }
8786 
8787 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
8788 /// ObjCQualifiedIDType.
ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType * lhs,const ObjCObjectPointerType * rhs,bool compare)8789 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
8790     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
8791     bool compare) {
8792   // Allow id<P..> and an 'id' in all cases.
8793   if (lhs->isObjCIdType() || rhs->isObjCIdType())
8794     return true;
8795 
8796   // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
8797   if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
8798       rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
8799     return false;
8800 
8801   if (lhs->isObjCQualifiedIdType()) {
8802     if (rhs->qual_empty()) {
8803       // If the RHS is a unqualified interface pointer "NSString*",
8804       // make sure we check the class hierarchy.
8805       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
8806         for (auto *I : lhs->quals()) {
8807           // when comparing an id<P> on lhs with a static type on rhs,
8808           // see if static class implements all of id's protocols, directly or
8809           // through its super class and categories.
8810           if (!rhsID->ClassImplementsProtocol(I, true))
8811             return false;
8812         }
8813       }
8814       // If there are no qualifiers and no interface, we have an 'id'.
8815       return true;
8816     }
8817     // Both the right and left sides have qualifiers.
8818     for (auto *lhsProto : lhs->quals()) {
8819       bool match = false;
8820 
8821       // when comparing an id<P> on lhs with a static type on rhs,
8822       // see if static class implements all of id's protocols, directly or
8823       // through its super class and categories.
8824       for (auto *rhsProto : rhs->quals()) {
8825         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8826             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8827           match = true;
8828           break;
8829         }
8830       }
8831       // If the RHS is a qualified interface pointer "NSString<P>*",
8832       // make sure we check the class hierarchy.
8833       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
8834         for (auto *I : lhs->quals()) {
8835           // when comparing an id<P> on lhs with a static type on rhs,
8836           // see if static class implements all of id's protocols, directly or
8837           // through its super class and categories.
8838           if (rhsID->ClassImplementsProtocol(I, true)) {
8839             match = true;
8840             break;
8841           }
8842         }
8843       }
8844       if (!match)
8845         return false;
8846     }
8847 
8848     return true;
8849   }
8850 
8851   assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");
8852 
8853   if (lhs->getInterfaceType()) {
8854     // If both the right and left sides have qualifiers.
8855     for (auto *lhsProto : lhs->quals()) {
8856       bool match = false;
8857 
8858       // when comparing an id<P> on rhs with a static type on lhs,
8859       // see if static class implements all of id's protocols, directly or
8860       // through its super class and categories.
8861       // First, lhs protocols in the qualifier list must be found, direct
8862       // or indirect in rhs's qualifier list or it is a mismatch.
8863       for (auto *rhsProto : rhs->quals()) {
8864         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8865             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8866           match = true;
8867           break;
8868         }
8869       }
8870       if (!match)
8871         return false;
8872     }
8873 
8874     // Static class's protocols, or its super class or category protocols
8875     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
8876     if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
8877       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
8878       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
8879       // This is rather dubious but matches gcc's behavior. If lhs has
8880       // no type qualifier and its class has no static protocol(s)
8881       // assume that it is mismatch.
8882       if (LHSInheritedProtocols.empty() && lhs->qual_empty())
8883         return false;
8884       for (auto *lhsProto : LHSInheritedProtocols) {
8885         bool match = false;
8886         for (auto *rhsProto : rhs->quals()) {
8887           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8888               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8889             match = true;
8890             break;
8891           }
8892         }
8893         if (!match)
8894           return false;
8895       }
8896     }
8897     return true;
8898   }
8899   return false;
8900 }
8901 
8902 /// canAssignObjCInterfaces - Return true if the two interface types are
8903 /// compatible for assignment from RHS to LHS.  This handles validation of any
8904 /// protocol qualifiers on the LHS or RHS.
canAssignObjCInterfaces(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT)8905 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
8906                                          const ObjCObjectPointerType *RHSOPT) {
8907   const ObjCObjectType* LHS = LHSOPT->getObjectType();
8908   const ObjCObjectType* RHS = RHSOPT->getObjectType();
8909 
8910   // If either type represents the built-in 'id' type, return true.
8911   if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
8912     return true;
8913 
8914   // Function object that propagates a successful result or handles
8915   // __kindof types.
8916   auto finish = [&](bool succeeded) -> bool {
8917     if (succeeded)
8918       return true;
8919 
8920     if (!RHS->isKindOfType())
8921       return false;
8922 
8923     // Strip off __kindof and protocol qualifiers, then check whether
8924     // we can assign the other way.
8925     return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
8926                                    LHSOPT->stripObjCKindOfTypeAndQuals(*this));
8927   };
8928 
8929   // Casts from or to id<P> are allowed when the other side has compatible
8930   // protocols.
8931   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
8932     return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
8933   }
8934 
8935   // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
8936   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
8937     return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
8938   }
8939 
8940   // Casts from Class to Class<Foo>, or vice-versa, are allowed.
8941   if (LHS->isObjCClass() && RHS->isObjCClass()) {
8942     return true;
8943   }
8944 
8945   // If we have 2 user-defined types, fall into that path.
8946   if (LHS->getInterface() && RHS->getInterface()) {
8947     return finish(canAssignObjCInterfaces(LHS, RHS));
8948   }
8949 
8950   return false;
8951 }
8952 
8953 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
8954 /// for providing type-safety for objective-c pointers used to pass/return
8955 /// arguments in block literals. When passed as arguments, passing 'A*' where
8956 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
8957 /// not OK. For the return type, the opposite is not OK.
canAssignObjCInterfacesInBlockPointer(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,bool BlockReturnType)8958 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
8959                                          const ObjCObjectPointerType *LHSOPT,
8960                                          const ObjCObjectPointerType *RHSOPT,
8961                                          bool BlockReturnType) {
8962 
8963   // Function object that propagates a successful result or handles
8964   // __kindof types.
8965   auto finish = [&](bool succeeded) -> bool {
8966     if (succeeded)
8967       return true;
8968 
8969     const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
8970     if (!Expected->isKindOfType())
8971       return false;
8972 
8973     // Strip off __kindof and protocol qualifiers, then check whether
8974     // we can assign the other way.
8975     return canAssignObjCInterfacesInBlockPointer(
8976              RHSOPT->stripObjCKindOfTypeAndQuals(*this),
8977              LHSOPT->stripObjCKindOfTypeAndQuals(*this),
8978              BlockReturnType);
8979   };
8980 
8981   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
8982     return true;
8983 
8984   if (LHSOPT->isObjCBuiltinType()) {
8985     return finish(RHSOPT->isObjCBuiltinType() ||
8986                   RHSOPT->isObjCQualifiedIdType());
8987   }
8988 
8989   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) {
8990     if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking)
8991       // Use for block parameters previous type checking for compatibility.
8992       return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) ||
8993                     // Or corrected type checking as in non-compat mode.
8994                     (!BlockReturnType &&
8995                      ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false)));
8996     else
8997       return finish(ObjCQualifiedIdTypesAreCompatible(
8998           (BlockReturnType ? LHSOPT : RHSOPT),
8999           (BlockReturnType ? RHSOPT : LHSOPT), false));
9000   }
9001 
9002   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
9003   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
9004   if (LHS && RHS)  { // We have 2 user-defined types.
9005     if (LHS != RHS) {
9006       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
9007         return finish(BlockReturnType);
9008       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
9009         return finish(!BlockReturnType);
9010     }
9011     else
9012       return true;
9013   }
9014   return false;
9015 }
9016 
9017 /// Comparison routine for Objective-C protocols to be used with
9018 /// llvm::array_pod_sort.
compareObjCProtocolsByName(ObjCProtocolDecl * const * lhs,ObjCProtocolDecl * const * rhs)9019 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
9020                                       ObjCProtocolDecl * const *rhs) {
9021   return (*lhs)->getName().compare((*rhs)->getName());
9022 }
9023 
9024 /// getIntersectionOfProtocols - This routine finds the intersection of set
9025 /// of protocols inherited from two distinct objective-c pointer objects with
9026 /// the given common base.
9027 /// It is used to build composite qualifier list of the composite type of
9028 /// the conditional expression involving two objective-c pointer objects.
9029 static
getIntersectionOfProtocols(ASTContext & Context,const ObjCInterfaceDecl * CommonBase,const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,SmallVectorImpl<ObjCProtocolDecl * > & IntersectionSet)9030 void getIntersectionOfProtocols(ASTContext &Context,
9031                                 const ObjCInterfaceDecl *CommonBase,
9032                                 const ObjCObjectPointerType *LHSOPT,
9033                                 const ObjCObjectPointerType *RHSOPT,
9034       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
9035 
9036   const ObjCObjectType* LHS = LHSOPT->getObjectType();
9037   const ObjCObjectType* RHS = RHSOPT->getObjectType();
9038   assert(LHS->getInterface() && "LHS must have an interface base");
9039   assert(RHS->getInterface() && "RHS must have an interface base");
9040 
9041   // Add all of the protocols for the LHS.
9042   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
9043 
9044   // Start with the protocol qualifiers.
9045   for (auto proto : LHS->quals()) {
9046     Context.CollectInheritedProtocols(proto, LHSProtocolSet);
9047   }
9048 
9049   // Also add the protocols associated with the LHS interface.
9050   Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
9051 
9052   // Add all of the protocols for the RHS.
9053   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
9054 
9055   // Start with the protocol qualifiers.
9056   for (auto proto : RHS->quals()) {
9057     Context.CollectInheritedProtocols(proto, RHSProtocolSet);
9058   }
9059 
9060   // Also add the protocols associated with the RHS interface.
9061   Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
9062 
9063   // Compute the intersection of the collected protocol sets.
9064   for (auto proto : LHSProtocolSet) {
9065     if (RHSProtocolSet.count(proto))
9066       IntersectionSet.push_back(proto);
9067   }
9068 
9069   // Compute the set of protocols that is implied by either the common type or
9070   // the protocols within the intersection.
9071   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
9072   Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
9073 
9074   // Remove any implied protocols from the list of inherited protocols.
9075   if (!ImpliedProtocols.empty()) {
9076     IntersectionSet.erase(
9077       std::remove_if(IntersectionSet.begin(),
9078                      IntersectionSet.end(),
9079                      [&](ObjCProtocolDecl *proto) -> bool {
9080                        return ImpliedProtocols.count(proto) > 0;
9081                      }),
9082       IntersectionSet.end());
9083   }
9084 
9085   // Sort the remaining protocols by name.
9086   llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
9087                        compareObjCProtocolsByName);
9088 }
9089 
9090 /// Determine whether the first type is a subtype of the second.
canAssignObjCObjectTypes(ASTContext & ctx,QualType lhs,QualType rhs)9091 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
9092                                      QualType rhs) {
9093   // Common case: two object pointers.
9094   const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
9095   const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
9096   if (lhsOPT && rhsOPT)
9097     return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
9098 
9099   // Two block pointers.
9100   const auto *lhsBlock = lhs->getAs<BlockPointerType>();
9101   const auto *rhsBlock = rhs->getAs<BlockPointerType>();
9102   if (lhsBlock && rhsBlock)
9103     return ctx.typesAreBlockPointerCompatible(lhs, rhs);
9104 
9105   // If either is an unqualified 'id' and the other is a block, it's
9106   // acceptable.
9107   if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
9108       (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
9109     return true;
9110 
9111   return false;
9112 }
9113 
9114 // Check that the given Objective-C type argument lists are equivalent.
sameObjCTypeArgs(ASTContext & ctx,const ObjCInterfaceDecl * iface,ArrayRef<QualType> lhsArgs,ArrayRef<QualType> rhsArgs,bool stripKindOf)9115 static bool sameObjCTypeArgs(ASTContext &ctx,
9116                              const ObjCInterfaceDecl *iface,
9117                              ArrayRef<QualType> lhsArgs,
9118                              ArrayRef<QualType> rhsArgs,
9119                              bool stripKindOf) {
9120   if (lhsArgs.size() != rhsArgs.size())
9121     return false;
9122 
9123   ObjCTypeParamList *typeParams = iface->getTypeParamList();
9124   for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
9125     if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
9126       continue;
9127 
9128     switch (typeParams->begin()[i]->getVariance()) {
9129     case ObjCTypeParamVariance::Invariant:
9130       if (!stripKindOf ||
9131           !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
9132                            rhsArgs[i].stripObjCKindOfType(ctx))) {
9133         return false;
9134       }
9135       break;
9136 
9137     case ObjCTypeParamVariance::Covariant:
9138       if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
9139         return false;
9140       break;
9141 
9142     case ObjCTypeParamVariance::Contravariant:
9143       if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
9144         return false;
9145       break;
9146     }
9147   }
9148 
9149   return true;
9150 }
9151 
areCommonBaseCompatible(const ObjCObjectPointerType * Lptr,const ObjCObjectPointerType * Rptr)9152 QualType ASTContext::areCommonBaseCompatible(
9153            const ObjCObjectPointerType *Lptr,
9154            const ObjCObjectPointerType *Rptr) {
9155   const ObjCObjectType *LHS = Lptr->getObjectType();
9156   const ObjCObjectType *RHS = Rptr->getObjectType();
9157   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
9158   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
9159 
9160   if (!LDecl || !RDecl)
9161     return {};
9162 
9163   // When either LHS or RHS is a kindof type, we should return a kindof type.
9164   // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
9165   // kindof(A).
9166   bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
9167 
9168   // Follow the left-hand side up the class hierarchy until we either hit a
9169   // root or find the RHS. Record the ancestors in case we don't find it.
9170   llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
9171     LHSAncestors;
9172   while (true) {
9173     // Record this ancestor. We'll need this if the common type isn't in the
9174     // path from the LHS to the root.
9175     LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
9176 
9177     if (declaresSameEntity(LHS->getInterface(), RDecl)) {
9178       // Get the type arguments.
9179       ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
9180       bool anyChanges = false;
9181       if (LHS->isSpecialized() && RHS->isSpecialized()) {
9182         // Both have type arguments, compare them.
9183         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
9184                               LHS->getTypeArgs(), RHS->getTypeArgs(),
9185                               /*stripKindOf=*/true))
9186           return {};
9187       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
9188         // If only one has type arguments, the result will not have type
9189         // arguments.
9190         LHSTypeArgs = {};
9191         anyChanges = true;
9192       }
9193 
9194       // Compute the intersection of protocols.
9195       SmallVector<ObjCProtocolDecl *, 8> Protocols;
9196       getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
9197                                  Protocols);
9198       if (!Protocols.empty())
9199         anyChanges = true;
9200 
9201       // If anything in the LHS will have changed, build a new result type.
9202       // If we need to return a kindof type but LHS is not a kindof type, we
9203       // build a new result type.
9204       if (anyChanges || LHS->isKindOfType() != anyKindOf) {
9205         QualType Result = getObjCInterfaceType(LHS->getInterface());
9206         Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
9207                                    anyKindOf || LHS->isKindOfType());
9208         return getObjCObjectPointerType(Result);
9209       }
9210 
9211       return getObjCObjectPointerType(QualType(LHS, 0));
9212     }
9213 
9214     // Find the superclass.
9215     QualType LHSSuperType = LHS->getSuperClassType();
9216     if (LHSSuperType.isNull())
9217       break;
9218 
9219     LHS = LHSSuperType->castAs<ObjCObjectType>();
9220   }
9221 
9222   // We didn't find anything by following the LHS to its root; now check
9223   // the RHS against the cached set of ancestors.
9224   while (true) {
9225     auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
9226     if (KnownLHS != LHSAncestors.end()) {
9227       LHS = KnownLHS->second;
9228 
9229       // Get the type arguments.
9230       ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
9231       bool anyChanges = false;
9232       if (LHS->isSpecialized() && RHS->isSpecialized()) {
9233         // Both have type arguments, compare them.
9234         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
9235                               LHS->getTypeArgs(), RHS->getTypeArgs(),
9236                               /*stripKindOf=*/true))
9237           return {};
9238       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
9239         // If only one has type arguments, the result will not have type
9240         // arguments.
9241         RHSTypeArgs = {};
9242         anyChanges = true;
9243       }
9244 
9245       // Compute the intersection of protocols.
9246       SmallVector<ObjCProtocolDecl *, 8> Protocols;
9247       getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
9248                                  Protocols);
9249       if (!Protocols.empty())
9250         anyChanges = true;
9251 
9252       // If we need to return a kindof type but RHS is not a kindof type, we
9253       // build a new result type.
9254       if (anyChanges || RHS->isKindOfType() != anyKindOf) {
9255         QualType Result = getObjCInterfaceType(RHS->getInterface());
9256         Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
9257                                    anyKindOf || RHS->isKindOfType());
9258         return getObjCObjectPointerType(Result);
9259       }
9260 
9261       return getObjCObjectPointerType(QualType(RHS, 0));
9262     }
9263 
9264     // Find the superclass of the RHS.
9265     QualType RHSSuperType = RHS->getSuperClassType();
9266     if (RHSSuperType.isNull())
9267       break;
9268 
9269     RHS = RHSSuperType->castAs<ObjCObjectType>();
9270   }
9271 
9272   return {};
9273 }
9274 
canAssignObjCInterfaces(const ObjCObjectType * LHS,const ObjCObjectType * RHS)9275 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
9276                                          const ObjCObjectType *RHS) {
9277   assert(LHS->getInterface() && "LHS is not an interface type");
9278   assert(RHS->getInterface() && "RHS is not an interface type");
9279 
9280   // Verify that the base decls are compatible: the RHS must be a subclass of
9281   // the LHS.
9282   ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
9283   bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
9284   if (!IsSuperClass)
9285     return false;
9286 
9287   // If the LHS has protocol qualifiers, determine whether all of them are
9288   // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
9289   // LHS).
9290   if (LHS->getNumProtocols() > 0) {
9291     // OK if conversion of LHS to SuperClass results in narrowing of types
9292     // ; i.e., SuperClass may implement at least one of the protocols
9293     // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
9294     // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
9295     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
9296     CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
9297     // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
9298     // qualifiers.
9299     for (auto *RHSPI : RHS->quals())
9300       CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
9301     // If there is no protocols associated with RHS, it is not a match.
9302     if (SuperClassInheritedProtocols.empty())
9303       return false;
9304 
9305     for (const auto *LHSProto : LHS->quals()) {
9306       bool SuperImplementsProtocol = false;
9307       for (auto *SuperClassProto : SuperClassInheritedProtocols)
9308         if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
9309           SuperImplementsProtocol = true;
9310           break;
9311         }
9312       if (!SuperImplementsProtocol)
9313         return false;
9314     }
9315   }
9316 
9317   // If the LHS is specialized, we may need to check type arguments.
9318   if (LHS->isSpecialized()) {
9319     // Follow the superclass chain until we've matched the LHS class in the
9320     // hierarchy. This substitutes type arguments through.
9321     const ObjCObjectType *RHSSuper = RHS;
9322     while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
9323       RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
9324 
9325     // If the RHS is specializd, compare type arguments.
9326     if (RHSSuper->isSpecialized() &&
9327         !sameObjCTypeArgs(*this, LHS->getInterface(),
9328                           LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
9329                           /*stripKindOf=*/true)) {
9330       return false;
9331     }
9332   }
9333 
9334   return true;
9335 }
9336 
areComparableObjCPointerTypes(QualType LHS,QualType RHS)9337 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
9338   // get the "pointed to" types
9339   const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
9340   const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
9341 
9342   if (!LHSOPT || !RHSOPT)
9343     return false;
9344 
9345   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
9346          canAssignObjCInterfaces(RHSOPT, LHSOPT);
9347 }
9348 
canBindObjCObjectType(QualType To,QualType From)9349 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
9350   return canAssignObjCInterfaces(
9351       getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(),
9352       getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>());
9353 }
9354 
9355 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
9356 /// both shall have the identically qualified version of a compatible type.
9357 /// C99 6.2.7p1: Two types have compatible types if their types are the
9358 /// same. See 6.7.[2,3,5] for additional rules.
typesAreCompatible(QualType LHS,QualType RHS,bool CompareUnqualified)9359 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
9360                                     bool CompareUnqualified) {
9361   if (getLangOpts().CPlusPlus)
9362     return hasSameType(LHS, RHS);
9363 
9364   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
9365 }
9366 
propertyTypesAreCompatible(QualType LHS,QualType RHS)9367 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
9368   return typesAreCompatible(LHS, RHS);
9369 }
9370 
typesAreBlockPointerCompatible(QualType LHS,QualType RHS)9371 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
9372   return !mergeTypes(LHS, RHS, true).isNull();
9373 }
9374 
9375 /// mergeTransparentUnionType - if T is a transparent union type and a member
9376 /// of T is compatible with SubType, return the merged type, else return
9377 /// QualType()
mergeTransparentUnionType(QualType T,QualType SubType,bool OfBlockPointer,bool Unqualified)9378 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
9379                                                bool OfBlockPointer,
9380                                                bool Unqualified) {
9381   if (const RecordType *UT = T->getAsUnionType()) {
9382     RecordDecl *UD = UT->getDecl();
9383     if (UD->hasAttr<TransparentUnionAttr>()) {
9384       for (const auto *I : UD->fields()) {
9385         QualType ET = I->getType().getUnqualifiedType();
9386         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
9387         if (!MT.isNull())
9388           return MT;
9389       }
9390     }
9391   }
9392 
9393   return {};
9394 }
9395 
9396 /// mergeFunctionParameterTypes - merge two types which appear as function
9397 /// parameter types
mergeFunctionParameterTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)9398 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
9399                                                  bool OfBlockPointer,
9400                                                  bool Unqualified) {
9401   // GNU extension: two types are compatible if they appear as a function
9402   // argument, one of the types is a transparent union type and the other
9403   // type is compatible with a union member
9404   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
9405                                               Unqualified);
9406   if (!lmerge.isNull())
9407     return lmerge;
9408 
9409   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
9410                                               Unqualified);
9411   if (!rmerge.isNull())
9412     return rmerge;
9413 
9414   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
9415 }
9416 
mergeFunctionTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified,bool AllowCXX)9417 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
9418                                         bool OfBlockPointer, bool Unqualified,
9419                                         bool AllowCXX) {
9420   const auto *lbase = lhs->castAs<FunctionType>();
9421   const auto *rbase = rhs->castAs<FunctionType>();
9422   const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
9423   const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
9424   bool allLTypes = true;
9425   bool allRTypes = true;
9426 
9427   // Check return type
9428   QualType retType;
9429   if (OfBlockPointer) {
9430     QualType RHS = rbase->getReturnType();
9431     QualType LHS = lbase->getReturnType();
9432     bool UnqualifiedResult = Unqualified;
9433     if (!UnqualifiedResult)
9434       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
9435     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
9436   }
9437   else
9438     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
9439                          Unqualified);
9440   if (retType.isNull())
9441     return {};
9442 
9443   if (Unqualified)
9444     retType = retType.getUnqualifiedType();
9445 
9446   CanQualType LRetType = getCanonicalType(lbase->getReturnType());
9447   CanQualType RRetType = getCanonicalType(rbase->getReturnType());
9448   if (Unqualified) {
9449     LRetType = LRetType.getUnqualifiedType();
9450     RRetType = RRetType.getUnqualifiedType();
9451   }
9452 
9453   if (getCanonicalType(retType) != LRetType)
9454     allLTypes = false;
9455   if (getCanonicalType(retType) != RRetType)
9456     allRTypes = false;
9457 
9458   // FIXME: double check this
9459   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
9460   //                           rbase->getRegParmAttr() != 0 &&
9461   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
9462   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
9463   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
9464 
9465   // Compatible functions must have compatible calling conventions
9466   if (lbaseInfo.getCC() != rbaseInfo.getCC())
9467     return {};
9468 
9469   // Regparm is part of the calling convention.
9470   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
9471     return {};
9472   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
9473     return {};
9474 
9475   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
9476     return {};
9477   if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
9478     return {};
9479   if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
9480     return {};
9481 
9482   // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
9483   bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
9484 
9485   if (lbaseInfo.getNoReturn() != NoReturn)
9486     allLTypes = false;
9487   if (rbaseInfo.getNoReturn() != NoReturn)
9488     allRTypes = false;
9489 
9490   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
9491 
9492   if (lproto && rproto) { // two C99 style function prototypes
9493     assert((AllowCXX ||
9494             (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) &&
9495            "C++ shouldn't be here");
9496     // Compatible functions must have the same number of parameters
9497     if (lproto->getNumParams() != rproto->getNumParams())
9498       return {};
9499 
9500     // Variadic and non-variadic functions aren't compatible
9501     if (lproto->isVariadic() != rproto->isVariadic())
9502       return {};
9503 
9504     if (lproto->getMethodQuals() != rproto->getMethodQuals())
9505       return {};
9506 
9507     SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
9508     bool canUseLeft, canUseRight;
9509     if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
9510                                newParamInfos))
9511       return {};
9512 
9513     if (!canUseLeft)
9514       allLTypes = false;
9515     if (!canUseRight)
9516       allRTypes = false;
9517 
9518     // Check parameter type compatibility
9519     SmallVector<QualType, 10> types;
9520     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
9521       QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
9522       QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
9523       QualType paramType = mergeFunctionParameterTypes(
9524           lParamType, rParamType, OfBlockPointer, Unqualified);
9525       if (paramType.isNull())
9526         return {};
9527 
9528       if (Unqualified)
9529         paramType = paramType.getUnqualifiedType();
9530 
9531       types.push_back(paramType);
9532       if (Unqualified) {
9533         lParamType = lParamType.getUnqualifiedType();
9534         rParamType = rParamType.getUnqualifiedType();
9535       }
9536 
9537       if (getCanonicalType(paramType) != getCanonicalType(lParamType))
9538         allLTypes = false;
9539       if (getCanonicalType(paramType) != getCanonicalType(rParamType))
9540         allRTypes = false;
9541     }
9542 
9543     if (allLTypes) return lhs;
9544     if (allRTypes) return rhs;
9545 
9546     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
9547     EPI.ExtInfo = einfo;
9548     EPI.ExtParameterInfos =
9549         newParamInfos.empty() ? nullptr : newParamInfos.data();
9550     return getFunctionType(retType, types, EPI);
9551   }
9552 
9553   if (lproto) allRTypes = false;
9554   if (rproto) allLTypes = false;
9555 
9556   const FunctionProtoType *proto = lproto ? lproto : rproto;
9557   if (proto) {
9558     assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here");
9559     if (proto->isVariadic())
9560       return {};
9561     // Check that the types are compatible with the types that
9562     // would result from default argument promotions (C99 6.7.5.3p15).
9563     // The only types actually affected are promotable integer
9564     // types and floats, which would be passed as a different
9565     // type depending on whether the prototype is visible.
9566     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
9567       QualType paramTy = proto->getParamType(i);
9568 
9569       // Look at the converted type of enum types, since that is the type used
9570       // to pass enum values.
9571       if (const auto *Enum = paramTy->getAs<EnumType>()) {
9572         paramTy = Enum->getDecl()->getIntegerType();
9573         if (paramTy.isNull())
9574           return {};
9575       }
9576 
9577       if (paramTy->isPromotableIntegerType() ||
9578           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
9579         return {};
9580     }
9581 
9582     if (allLTypes) return lhs;
9583     if (allRTypes) return rhs;
9584 
9585     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
9586     EPI.ExtInfo = einfo;
9587     return getFunctionType(retType, proto->getParamTypes(), EPI);
9588   }
9589 
9590   if (allLTypes) return lhs;
9591   if (allRTypes) return rhs;
9592   return getFunctionNoProtoType(retType, einfo);
9593 }
9594 
9595 /// Given that we have an enum type and a non-enum type, try to merge them.
mergeEnumWithInteger(ASTContext & Context,const EnumType * ET,QualType other,bool isBlockReturnType)9596 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
9597                                      QualType other, bool isBlockReturnType) {
9598   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
9599   // a signed integer type, or an unsigned integer type.
9600   // Compatibility is based on the underlying type, not the promotion
9601   // type.
9602   QualType underlyingType = ET->getDecl()->getIntegerType();
9603   if (underlyingType.isNull())
9604     return {};
9605   if (Context.hasSameType(underlyingType, other))
9606     return other;
9607 
9608   // In block return types, we're more permissive and accept any
9609   // integral type of the same size.
9610   if (isBlockReturnType && other->isIntegerType() &&
9611       Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
9612     return other;
9613 
9614   return {};
9615 }
9616 
mergeTypes(QualType LHS,QualType RHS,bool OfBlockPointer,bool Unqualified,bool BlockReturnType)9617 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
9618                                 bool OfBlockPointer,
9619                                 bool Unqualified, bool BlockReturnType) {
9620   // C++ [expr]: If an expression initially has the type "reference to T", the
9621   // type is adjusted to "T" prior to any further analysis, the expression
9622   // designates the object or function denoted by the reference, and the
9623   // expression is an lvalue unless the reference is an rvalue reference and
9624   // the expression is a function call (possibly inside parentheses).
9625   if (LHS->getAs<ReferenceType>() || RHS->getAs<ReferenceType>())
9626     return {};
9627 
9628   if (Unqualified) {
9629     LHS = LHS.getUnqualifiedType();
9630     RHS = RHS.getUnqualifiedType();
9631   }
9632 
9633   QualType LHSCan = getCanonicalType(LHS),
9634            RHSCan = getCanonicalType(RHS);
9635 
9636   // If two types are identical, they are compatible.
9637   if (LHSCan == RHSCan)
9638     return LHS;
9639 
9640   // If the qualifiers are different, the types aren't compatible... mostly.
9641   Qualifiers LQuals = LHSCan.getLocalQualifiers();
9642   Qualifiers RQuals = RHSCan.getLocalQualifiers();
9643   if (LQuals != RQuals) {
9644     // If any of these qualifiers are different, we have a type
9645     // mismatch.
9646     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
9647         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
9648         LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
9649         LQuals.hasUnaligned() != RQuals.hasUnaligned())
9650       return {};
9651 
9652     // Exactly one GC qualifier difference is allowed: __strong is
9653     // okay if the other type has no GC qualifier but is an Objective
9654     // C object pointer (i.e. implicitly strong by default).  We fix
9655     // this by pretending that the unqualified type was actually
9656     // qualified __strong.
9657     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
9658     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
9659     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
9660 
9661     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
9662       return {};
9663 
9664     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
9665       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
9666     }
9667     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
9668       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
9669     }
9670     return {};
9671   }
9672 
9673   // Okay, qualifiers are equal.
9674 
9675   Type::TypeClass LHSClass = LHSCan->getTypeClass();
9676   Type::TypeClass RHSClass = RHSCan->getTypeClass();
9677 
9678   // We want to consider the two function types to be the same for these
9679   // comparisons, just force one to the other.
9680   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
9681   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
9682 
9683   // Same as above for arrays
9684   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
9685     LHSClass = Type::ConstantArray;
9686   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
9687     RHSClass = Type::ConstantArray;
9688 
9689   // ObjCInterfaces are just specialized ObjCObjects.
9690   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
9691   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
9692 
9693   // Canonicalize ExtVector -> Vector.
9694   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
9695   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
9696 
9697   // If the canonical type classes don't match.
9698   if (LHSClass != RHSClass) {
9699     // Note that we only have special rules for turning block enum
9700     // returns into block int returns, not vice-versa.
9701     if (const auto *ETy = LHS->getAs<EnumType>()) {
9702       return mergeEnumWithInteger(*this, ETy, RHS, false);
9703     }
9704     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
9705       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
9706     }
9707     // allow block pointer type to match an 'id' type.
9708     if (OfBlockPointer && !BlockReturnType) {
9709        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
9710          return LHS;
9711       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
9712         return RHS;
9713     }
9714 
9715     return {};
9716   }
9717 
9718   // The canonical type classes match.
9719   switch (LHSClass) {
9720 #define TYPE(Class, Base)
9721 #define ABSTRACT_TYPE(Class, Base)
9722 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
9723 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
9724 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
9725 #include "clang/AST/TypeNodes.inc"
9726     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
9727 
9728   case Type::Auto:
9729   case Type::DeducedTemplateSpecialization:
9730   case Type::LValueReference:
9731   case Type::RValueReference:
9732   case Type::MemberPointer:
9733     llvm_unreachable("C++ should never be in mergeTypes");
9734 
9735   case Type::ObjCInterface:
9736   case Type::IncompleteArray:
9737   case Type::VariableArray:
9738   case Type::FunctionProto:
9739   case Type::ExtVector:
9740     llvm_unreachable("Types are eliminated above");
9741 
9742   case Type::Pointer:
9743   {
9744     // Merge two pointer types, while trying to preserve typedef info
9745     QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
9746     QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
9747     if (Unqualified) {
9748       LHSPointee = LHSPointee.getUnqualifiedType();
9749       RHSPointee = RHSPointee.getUnqualifiedType();
9750     }
9751     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
9752                                      Unqualified);
9753     if (ResultType.isNull())
9754       return {};
9755     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
9756       return LHS;
9757     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
9758       return RHS;
9759     return getPointerType(ResultType);
9760   }
9761   case Type::BlockPointer:
9762   {
9763     // Merge two block pointer types, while trying to preserve typedef info
9764     QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
9765     QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
9766     if (Unqualified) {
9767       LHSPointee = LHSPointee.getUnqualifiedType();
9768       RHSPointee = RHSPointee.getUnqualifiedType();
9769     }
9770     if (getLangOpts().OpenCL) {
9771       Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
9772       Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
9773       // Blocks can't be an expression in a ternary operator (OpenCL v2.0
9774       // 6.12.5) thus the following check is asymmetric.
9775       if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
9776         return {};
9777       LHSPteeQual.removeAddressSpace();
9778       RHSPteeQual.removeAddressSpace();
9779       LHSPointee =
9780           QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
9781       RHSPointee =
9782           QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
9783     }
9784     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
9785                                      Unqualified);
9786     if (ResultType.isNull())
9787       return {};
9788     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
9789       return LHS;
9790     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
9791       return RHS;
9792     return getBlockPointerType(ResultType);
9793   }
9794   case Type::Atomic:
9795   {
9796     // Merge two pointer types, while trying to preserve typedef info
9797     QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
9798     QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
9799     if (Unqualified) {
9800       LHSValue = LHSValue.getUnqualifiedType();
9801       RHSValue = RHSValue.getUnqualifiedType();
9802     }
9803     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
9804                                      Unqualified);
9805     if (ResultType.isNull())
9806       return {};
9807     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
9808       return LHS;
9809     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
9810       return RHS;
9811     return getAtomicType(ResultType);
9812   }
9813   case Type::ConstantArray:
9814   {
9815     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
9816     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
9817     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
9818       return {};
9819 
9820     QualType LHSElem = getAsArrayType(LHS)->getElementType();
9821     QualType RHSElem = getAsArrayType(RHS)->getElementType();
9822     if (Unqualified) {
9823       LHSElem = LHSElem.getUnqualifiedType();
9824       RHSElem = RHSElem.getUnqualifiedType();
9825     }
9826 
9827     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
9828     if (ResultType.isNull())
9829       return {};
9830 
9831     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
9832     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
9833 
9834     // If either side is a variable array, and both are complete, check whether
9835     // the current dimension is definite.
9836     if (LVAT || RVAT) {
9837       auto SizeFetch = [this](const VariableArrayType* VAT,
9838           const ConstantArrayType* CAT)
9839           -> std::pair<bool,llvm::APInt> {
9840         if (VAT) {
9841           Optional<llvm::APSInt> TheInt;
9842           Expr *E = VAT->getSizeExpr();
9843           if (E && (TheInt = E->getIntegerConstantExpr(*this)))
9844             return std::make_pair(true, *TheInt);
9845           return std::make_pair(false, llvm::APSInt());
9846         }
9847         if (CAT)
9848           return std::make_pair(true, CAT->getSize());
9849         return std::make_pair(false, llvm::APInt());
9850       };
9851 
9852       bool HaveLSize, HaveRSize;
9853       llvm::APInt LSize, RSize;
9854       std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
9855       std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
9856       if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
9857         return {}; // Definite, but unequal, array dimension
9858     }
9859 
9860     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
9861       return LHS;
9862     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
9863       return RHS;
9864     if (LCAT)
9865       return getConstantArrayType(ResultType, LCAT->getSize(),
9866                                   LCAT->getSizeExpr(),
9867                                   ArrayType::ArraySizeModifier(), 0);
9868     if (RCAT)
9869       return getConstantArrayType(ResultType, RCAT->getSize(),
9870                                   RCAT->getSizeExpr(),
9871                                   ArrayType::ArraySizeModifier(), 0);
9872     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
9873       return LHS;
9874     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
9875       return RHS;
9876     if (LVAT) {
9877       // FIXME: This isn't correct! But tricky to implement because
9878       // the array's size has to be the size of LHS, but the type
9879       // has to be different.
9880       return LHS;
9881     }
9882     if (RVAT) {
9883       // FIXME: This isn't correct! But tricky to implement because
9884       // the array's size has to be the size of RHS, but the type
9885       // has to be different.
9886       return RHS;
9887     }
9888     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
9889     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
9890     return getIncompleteArrayType(ResultType,
9891                                   ArrayType::ArraySizeModifier(), 0);
9892   }
9893   case Type::FunctionNoProto:
9894     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
9895   case Type::Record:
9896   case Type::Enum:
9897     return {};
9898   case Type::Builtin:
9899     // Only exactly equal builtin types are compatible, which is tested above.
9900     return {};
9901   case Type::Complex:
9902     // Distinct complex types are incompatible.
9903     return {};
9904   case Type::Vector:
9905     // FIXME: The merged type should be an ExtVector!
9906     if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
9907                              RHSCan->castAs<VectorType>()))
9908       return LHS;
9909     return {};
9910   case Type::ConstantMatrix:
9911     if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(),
9912                              RHSCan->castAs<ConstantMatrixType>()))
9913       return LHS;
9914     return {};
9915   case Type::ObjCObject: {
9916     // Check if the types are assignment compatible.
9917     // FIXME: This should be type compatibility, e.g. whether
9918     // "LHS x; RHS x;" at global scope is legal.
9919     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
9920                                 RHS->castAs<ObjCObjectType>()))
9921       return LHS;
9922     return {};
9923   }
9924   case Type::ObjCObjectPointer:
9925     if (OfBlockPointer) {
9926       if (canAssignObjCInterfacesInBlockPointer(
9927               LHS->castAs<ObjCObjectPointerType>(),
9928               RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
9929         return LHS;
9930       return {};
9931     }
9932     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
9933                                 RHS->castAs<ObjCObjectPointerType>()))
9934       return LHS;
9935     return {};
9936   case Type::Pipe:
9937     assert(LHS != RHS &&
9938            "Equivalent pipe types should have already been handled!");
9939     return {};
9940   case Type::ExtInt: {
9941     // Merge two ext-int types, while trying to preserve typedef info.
9942     bool LHSUnsigned  = LHS->castAs<ExtIntType>()->isUnsigned();
9943     bool RHSUnsigned = RHS->castAs<ExtIntType>()->isUnsigned();
9944     unsigned LHSBits = LHS->castAs<ExtIntType>()->getNumBits();
9945     unsigned RHSBits = RHS->castAs<ExtIntType>()->getNumBits();
9946 
9947     // Like unsigned/int, shouldn't have a type if they dont match.
9948     if (LHSUnsigned != RHSUnsigned)
9949       return {};
9950 
9951     if (LHSBits != RHSBits)
9952       return {};
9953     return LHS;
9954   }
9955   }
9956 
9957   llvm_unreachable("Invalid Type::Class!");
9958 }
9959 
mergeExtParameterInfo(const FunctionProtoType * FirstFnType,const FunctionProtoType * SecondFnType,bool & CanUseFirst,bool & CanUseSecond,SmallVectorImpl<FunctionProtoType::ExtParameterInfo> & NewParamInfos)9960 bool ASTContext::mergeExtParameterInfo(
9961     const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
9962     bool &CanUseFirst, bool &CanUseSecond,
9963     SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
9964   assert(NewParamInfos.empty() && "param info list not empty");
9965   CanUseFirst = CanUseSecond = true;
9966   bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
9967   bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
9968 
9969   // Fast path: if the first type doesn't have ext parameter infos,
9970   // we match if and only if the second type also doesn't have them.
9971   if (!FirstHasInfo && !SecondHasInfo)
9972     return true;
9973 
9974   bool NeedParamInfo = false;
9975   size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
9976                           : SecondFnType->getExtParameterInfos().size();
9977 
9978   for (size_t I = 0; I < E; ++I) {
9979     FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
9980     if (FirstHasInfo)
9981       FirstParam = FirstFnType->getExtParameterInfo(I);
9982     if (SecondHasInfo)
9983       SecondParam = SecondFnType->getExtParameterInfo(I);
9984 
9985     // Cannot merge unless everything except the noescape flag matches.
9986     if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
9987       return false;
9988 
9989     bool FirstNoEscape = FirstParam.isNoEscape();
9990     bool SecondNoEscape = SecondParam.isNoEscape();
9991     bool IsNoEscape = FirstNoEscape && SecondNoEscape;
9992     NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
9993     if (NewParamInfos.back().getOpaqueValue())
9994       NeedParamInfo = true;
9995     if (FirstNoEscape != IsNoEscape)
9996       CanUseFirst = false;
9997     if (SecondNoEscape != IsNoEscape)
9998       CanUseSecond = false;
9999   }
10000 
10001   if (!NeedParamInfo)
10002     NewParamInfos.clear();
10003 
10004   return true;
10005 }
10006 
ResetObjCLayout(const ObjCContainerDecl * CD)10007 void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
10008   ObjCLayouts[CD] = nullptr;
10009 }
10010 
10011 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
10012 /// 'RHS' attributes and returns the merged version; including for function
10013 /// return types.
mergeObjCGCQualifiers(QualType LHS,QualType RHS)10014 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
10015   QualType LHSCan = getCanonicalType(LHS),
10016   RHSCan = getCanonicalType(RHS);
10017   // If two types are identical, they are compatible.
10018   if (LHSCan == RHSCan)
10019     return LHS;
10020   if (RHSCan->isFunctionType()) {
10021     if (!LHSCan->isFunctionType())
10022       return {};
10023     QualType OldReturnType =
10024         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
10025     QualType NewReturnType =
10026         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
10027     QualType ResReturnType =
10028       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
10029     if (ResReturnType.isNull())
10030       return {};
10031     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
10032       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
10033       // In either case, use OldReturnType to build the new function type.
10034       const auto *F = LHS->castAs<FunctionType>();
10035       if (const auto *FPT = cast<FunctionProtoType>(F)) {
10036         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10037         EPI.ExtInfo = getFunctionExtInfo(LHS);
10038         QualType ResultType =
10039             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
10040         return ResultType;
10041       }
10042     }
10043     return {};
10044   }
10045 
10046   // If the qualifiers are different, the types can still be merged.
10047   Qualifiers LQuals = LHSCan.getLocalQualifiers();
10048   Qualifiers RQuals = RHSCan.getLocalQualifiers();
10049   if (LQuals != RQuals) {
10050     // If any of these qualifiers are different, we have a type mismatch.
10051     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
10052         LQuals.getAddressSpace() != RQuals.getAddressSpace())
10053       return {};
10054 
10055     // Exactly one GC qualifier difference is allowed: __strong is
10056     // okay if the other type has no GC qualifier but is an Objective
10057     // C object pointer (i.e. implicitly strong by default).  We fix
10058     // this by pretending that the unqualified type was actually
10059     // qualified __strong.
10060     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
10061     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
10062     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
10063 
10064     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
10065       return {};
10066 
10067     if (GC_L == Qualifiers::Strong)
10068       return LHS;
10069     if (GC_R == Qualifiers::Strong)
10070       return RHS;
10071     return {};
10072   }
10073 
10074   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
10075     QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10076     QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10077     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
10078     if (ResQT == LHSBaseQT)
10079       return LHS;
10080     if (ResQT == RHSBaseQT)
10081       return RHS;
10082   }
10083   return {};
10084 }
10085 
10086 //===----------------------------------------------------------------------===//
10087 //                         Integer Predicates
10088 //===----------------------------------------------------------------------===//
10089 
getIntWidth(QualType T) const10090 unsigned ASTContext::getIntWidth(QualType T) const {
10091   if (const auto *ET = T->getAs<EnumType>())
10092     T = ET->getDecl()->getIntegerType();
10093   if (T->isBooleanType())
10094     return 1;
10095   if(const auto *EIT = T->getAs<ExtIntType>())
10096     return EIT->getNumBits();
10097   // For builtin types, just use the standard type sizing method
10098   return (unsigned)getTypeSize(T);
10099 }
10100 
getCorrespondingUnsignedType(QualType T) const10101 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
10102   assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
10103          "Unexpected type");
10104 
10105   // Turn <4 x signed int> -> <4 x unsigned int>
10106   if (const auto *VTy = T->getAs<VectorType>())
10107     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
10108                          VTy->getNumElements(), VTy->getVectorKind());
10109 
10110   // For _ExtInt, return an unsigned _ExtInt with same width.
10111   if (const auto *EITy = T->getAs<ExtIntType>())
10112     return getExtIntType(/*IsUnsigned=*/true, EITy->getNumBits());
10113 
10114   // For enums, get the underlying integer type of the enum, and let the general
10115   // integer type signchanging code handle it.
10116   if (const auto *ETy = T->getAs<EnumType>())
10117     T = ETy->getDecl()->getIntegerType();
10118 
10119   switch (T->castAs<BuiltinType>()->getKind()) {
10120   case BuiltinType::Char_S:
10121   case BuiltinType::SChar:
10122     return UnsignedCharTy;
10123   case BuiltinType::Short:
10124     return UnsignedShortTy;
10125   case BuiltinType::Int:
10126     return UnsignedIntTy;
10127   case BuiltinType::Long:
10128     return UnsignedLongTy;
10129   case BuiltinType::LongLong:
10130     return UnsignedLongLongTy;
10131   case BuiltinType::Int128:
10132     return UnsignedInt128Ty;
10133   // wchar_t is special. It is either signed or not, but when it's signed,
10134   // there's no matching "unsigned wchar_t". Therefore we return the unsigned
10135   // version of it's underlying type instead.
10136   case BuiltinType::WChar_S:
10137     return getUnsignedWCharType();
10138 
10139   case BuiltinType::ShortAccum:
10140     return UnsignedShortAccumTy;
10141   case BuiltinType::Accum:
10142     return UnsignedAccumTy;
10143   case BuiltinType::LongAccum:
10144     return UnsignedLongAccumTy;
10145   case BuiltinType::SatShortAccum:
10146     return SatUnsignedShortAccumTy;
10147   case BuiltinType::SatAccum:
10148     return SatUnsignedAccumTy;
10149   case BuiltinType::SatLongAccum:
10150     return SatUnsignedLongAccumTy;
10151   case BuiltinType::ShortFract:
10152     return UnsignedShortFractTy;
10153   case BuiltinType::Fract:
10154     return UnsignedFractTy;
10155   case BuiltinType::LongFract:
10156     return UnsignedLongFractTy;
10157   case BuiltinType::SatShortFract:
10158     return SatUnsignedShortFractTy;
10159   case BuiltinType::SatFract:
10160     return SatUnsignedFractTy;
10161   case BuiltinType::SatLongFract:
10162     return SatUnsignedLongFractTy;
10163   default:
10164     llvm_unreachable("Unexpected signed integer or fixed point type");
10165   }
10166 }
10167 
getCorrespondingSignedType(QualType T) const10168 QualType ASTContext::getCorrespondingSignedType(QualType T) const {
10169   assert((T->hasUnsignedIntegerRepresentation() ||
10170           T->isUnsignedFixedPointType()) &&
10171          "Unexpected type");
10172 
10173   // Turn <4 x unsigned int> -> <4 x signed int>
10174   if (const auto *VTy = T->getAs<VectorType>())
10175     return getVectorType(getCorrespondingSignedType(VTy->getElementType()),
10176                          VTy->getNumElements(), VTy->getVectorKind());
10177 
10178   // For _ExtInt, return a signed _ExtInt with same width.
10179   if (const auto *EITy = T->getAs<ExtIntType>())
10180     return getExtIntType(/*IsUnsigned=*/false, EITy->getNumBits());
10181 
10182   // For enums, get the underlying integer type of the enum, and let the general
10183   // integer type signchanging code handle it.
10184   if (const auto *ETy = T->getAs<EnumType>())
10185     T = ETy->getDecl()->getIntegerType();
10186 
10187   switch (T->castAs<BuiltinType>()->getKind()) {
10188   case BuiltinType::Char_U:
10189   case BuiltinType::UChar:
10190     return SignedCharTy;
10191   case BuiltinType::UShort:
10192     return ShortTy;
10193   case BuiltinType::UInt:
10194     return IntTy;
10195   case BuiltinType::ULong:
10196     return LongTy;
10197   case BuiltinType::ULongLong:
10198     return LongLongTy;
10199   case BuiltinType::UInt128:
10200     return Int128Ty;
10201   // wchar_t is special. It is either unsigned or not, but when it's unsigned,
10202   // there's no matching "signed wchar_t". Therefore we return the signed
10203   // version of it's underlying type instead.
10204   case BuiltinType::WChar_U:
10205     return getSignedWCharType();
10206 
10207   case BuiltinType::UShortAccum:
10208     return ShortAccumTy;
10209   case BuiltinType::UAccum:
10210     return AccumTy;
10211   case BuiltinType::ULongAccum:
10212     return LongAccumTy;
10213   case BuiltinType::SatUShortAccum:
10214     return SatShortAccumTy;
10215   case BuiltinType::SatUAccum:
10216     return SatAccumTy;
10217   case BuiltinType::SatULongAccum:
10218     return SatLongAccumTy;
10219   case BuiltinType::UShortFract:
10220     return ShortFractTy;
10221   case BuiltinType::UFract:
10222     return FractTy;
10223   case BuiltinType::ULongFract:
10224     return LongFractTy;
10225   case BuiltinType::SatUShortFract:
10226     return SatShortFractTy;
10227   case BuiltinType::SatUFract:
10228     return SatFractTy;
10229   case BuiltinType::SatULongFract:
10230     return SatLongFractTy;
10231   default:
10232     llvm_unreachable("Unexpected unsigned integer or fixed point type");
10233   }
10234 }
10235 
10236 ASTMutationListener::~ASTMutationListener() = default;
10237 
DeducedReturnType(const FunctionDecl * FD,QualType ReturnType)10238 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
10239                                             QualType ReturnType) {}
10240 
10241 //===----------------------------------------------------------------------===//
10242 //                          Builtin Type Computation
10243 //===----------------------------------------------------------------------===//
10244 
10245 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
10246 /// pointer over the consumed characters.  This returns the resultant type.  If
10247 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
10248 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
10249 /// a vector of "i*".
10250 ///
10251 /// RequiresICE is filled in on return to indicate whether the value is required
10252 /// to be an Integer Constant Expression.
DecodeTypeFromStr(const char * & Str,const ASTContext & Context,ASTContext::GetBuiltinTypeError & Error,bool & RequiresICE,bool AllowTypeModifiers)10253 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
10254                                   ASTContext::GetBuiltinTypeError &Error,
10255                                   bool &RequiresICE,
10256                                   bool AllowTypeModifiers) {
10257   // Modifiers.
10258   int HowLong = 0;
10259   bool Signed = false, Unsigned = false;
10260   RequiresICE = false;
10261 
10262   // Read the prefixed modifiers first.
10263   bool Done = false;
10264   #ifndef NDEBUG
10265   bool IsSpecial = false;
10266   #endif
10267   while (!Done) {
10268     switch (*Str++) {
10269     default: Done = true; --Str; break;
10270     case 'I':
10271       RequiresICE = true;
10272       break;
10273     case 'S':
10274       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
10275       assert(!Signed && "Can't use 'S' modifier multiple times!");
10276       Signed = true;
10277       break;
10278     case 'U':
10279       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
10280       assert(!Unsigned && "Can't use 'U' modifier multiple times!");
10281       Unsigned = true;
10282       break;
10283     case 'L':
10284       assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
10285       assert(HowLong <= 2 && "Can't have LLLL modifier");
10286       ++HowLong;
10287       break;
10288     case 'N':
10289       // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
10290       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10291       assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
10292       #ifndef NDEBUG
10293       IsSpecial = true;
10294       #endif
10295       if (Context.getTargetInfo().getLongWidth() == 32)
10296         ++HowLong;
10297       break;
10298     case 'W':
10299       // This modifier represents int64 type.
10300       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10301       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
10302       #ifndef NDEBUG
10303       IsSpecial = true;
10304       #endif
10305       switch (Context.getTargetInfo().getInt64Type()) {
10306       default:
10307         llvm_unreachable("Unexpected integer type");
10308       case TargetInfo::SignedLong:
10309         HowLong = 1;
10310         break;
10311       case TargetInfo::SignedLongLong:
10312         HowLong = 2;
10313         break;
10314       }
10315       break;
10316     case 'Z':
10317       // This modifier represents int32 type.
10318       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10319       assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
10320       #ifndef NDEBUG
10321       IsSpecial = true;
10322       #endif
10323       switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
10324       default:
10325         llvm_unreachable("Unexpected integer type");
10326       case TargetInfo::SignedInt:
10327         HowLong = 0;
10328         break;
10329       case TargetInfo::SignedLong:
10330         HowLong = 1;
10331         break;
10332       case TargetInfo::SignedLongLong:
10333         HowLong = 2;
10334         break;
10335       }
10336       break;
10337     case 'O':
10338       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10339       assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
10340       #ifndef NDEBUG
10341       IsSpecial = true;
10342       #endif
10343       if (Context.getLangOpts().OpenCL)
10344         HowLong = 1;
10345       else
10346         HowLong = 2;
10347       break;
10348     }
10349   }
10350 
10351   QualType Type;
10352 
10353   // Read the base type.
10354   switch (*Str++) {
10355   default: llvm_unreachable("Unknown builtin type letter!");
10356   case 'y':
10357     assert(HowLong == 0 && !Signed && !Unsigned &&
10358            "Bad modifiers used with 'y'!");
10359     Type = Context.BFloat16Ty;
10360     break;
10361   case 'v':
10362     assert(HowLong == 0 && !Signed && !Unsigned &&
10363            "Bad modifiers used with 'v'!");
10364     Type = Context.VoidTy;
10365     break;
10366   case 'h':
10367     assert(HowLong == 0 && !Signed && !Unsigned &&
10368            "Bad modifiers used with 'h'!");
10369     Type = Context.HalfTy;
10370     break;
10371   case 'f':
10372     assert(HowLong == 0 && !Signed && !Unsigned &&
10373            "Bad modifiers used with 'f'!");
10374     Type = Context.FloatTy;
10375     break;
10376   case 'd':
10377     assert(HowLong < 3 && !Signed && !Unsigned &&
10378            "Bad modifiers used with 'd'!");
10379     if (HowLong == 1)
10380       Type = Context.LongDoubleTy;
10381     else if (HowLong == 2)
10382       Type = Context.Float128Ty;
10383     else
10384       Type = Context.DoubleTy;
10385     break;
10386   case 's':
10387     assert(HowLong == 0 && "Bad modifiers used with 's'!");
10388     if (Unsigned)
10389       Type = Context.UnsignedShortTy;
10390     else
10391       Type = Context.ShortTy;
10392     break;
10393   case 'i':
10394     if (HowLong == 3)
10395       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
10396     else if (HowLong == 2)
10397       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
10398     else if (HowLong == 1)
10399       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
10400     else
10401       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
10402     break;
10403   case 'c':
10404     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
10405     if (Signed)
10406       Type = Context.SignedCharTy;
10407     else if (Unsigned)
10408       Type = Context.UnsignedCharTy;
10409     else
10410       Type = Context.CharTy;
10411     break;
10412   case 'b': // boolean
10413     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
10414     Type = Context.BoolTy;
10415     break;
10416   case 'z':  // size_t.
10417     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
10418     Type = Context.getSizeType();
10419     break;
10420   case 'w':  // wchar_t.
10421     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
10422     Type = Context.getWideCharType();
10423     break;
10424   case 'F':
10425     Type = Context.getCFConstantStringType();
10426     break;
10427   case 'G':
10428     Type = Context.getObjCIdType();
10429     break;
10430   case 'H':
10431     Type = Context.getObjCSelType();
10432     break;
10433   case 'M':
10434     Type = Context.getObjCSuperType();
10435     break;
10436   case 'a':
10437     Type = Context.getBuiltinVaListType();
10438     assert(!Type.isNull() && "builtin va list type not initialized!");
10439     break;
10440   case 'A':
10441     // This is a "reference" to a va_list; however, what exactly
10442     // this means depends on how va_list is defined. There are two
10443     // different kinds of va_list: ones passed by value, and ones
10444     // passed by reference.  An example of a by-value va_list is
10445     // x86, where va_list is a char*. An example of by-ref va_list
10446     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
10447     // we want this argument to be a char*&; for x86-64, we want
10448     // it to be a __va_list_tag*.
10449     Type = Context.getBuiltinVaListType();
10450     assert(!Type.isNull() && "builtin va list type not initialized!");
10451     if (Type->isArrayType())
10452       Type = Context.getArrayDecayedType(Type);
10453     else
10454       Type = Context.getLValueReferenceType(Type);
10455     break;
10456   case 'q': {
10457     char *End;
10458     unsigned NumElements = strtoul(Str, &End, 10);
10459     assert(End != Str && "Missing vector size");
10460     Str = End;
10461 
10462     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
10463                                              RequiresICE, false);
10464     assert(!RequiresICE && "Can't require vector ICE");
10465 
10466     Type = Context.getScalableVectorType(ElementType, NumElements);
10467     break;
10468   }
10469   case 'V': {
10470     char *End;
10471     unsigned NumElements = strtoul(Str, &End, 10);
10472     assert(End != Str && "Missing vector size");
10473     Str = End;
10474 
10475     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
10476                                              RequiresICE, false);
10477     assert(!RequiresICE && "Can't require vector ICE");
10478 
10479     // TODO: No way to make AltiVec vectors in builtins yet.
10480     Type = Context.getVectorType(ElementType, NumElements,
10481                                  VectorType::GenericVector);
10482     break;
10483   }
10484   case 'E': {
10485     char *End;
10486 
10487     unsigned NumElements = strtoul(Str, &End, 10);
10488     assert(End != Str && "Missing vector size");
10489 
10490     Str = End;
10491 
10492     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
10493                                              false);
10494     Type = Context.getExtVectorType(ElementType, NumElements);
10495     break;
10496   }
10497   case 'X': {
10498     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
10499                                              false);
10500     assert(!RequiresICE && "Can't require complex ICE");
10501     Type = Context.getComplexType(ElementType);
10502     break;
10503   }
10504   case 'Y':
10505     Type = Context.getPointerDiffType();
10506     break;
10507   case 'P':
10508     Type = Context.getFILEType();
10509     if (Type.isNull()) {
10510       Error = ASTContext::GE_Missing_stdio;
10511       return {};
10512     }
10513     break;
10514   case 'J':
10515     if (Signed)
10516       Type = Context.getsigjmp_bufType();
10517     else
10518       Type = Context.getjmp_bufType();
10519 
10520     if (Type.isNull()) {
10521       Error = ASTContext::GE_Missing_setjmp;
10522       return {};
10523     }
10524     break;
10525   case 'K':
10526     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
10527     Type = Context.getucontext_tType();
10528 
10529     if (Type.isNull()) {
10530       Error = ASTContext::GE_Missing_ucontext;
10531       return {};
10532     }
10533     break;
10534   case 'p':
10535     Type = Context.getProcessIDType();
10536     break;
10537   }
10538 
10539   // If there are modifiers and if we're allowed to parse them, go for it.
10540   Done = !AllowTypeModifiers;
10541   while (!Done) {
10542     switch (char c = *Str++) {
10543     default: Done = true; --Str; break;
10544     case '*':
10545     case '&': {
10546       // Both pointers and references can have their pointee types
10547       // qualified with an address space.
10548       char *End;
10549       unsigned AddrSpace = strtoul(Str, &End, 10);
10550       if (End != Str) {
10551         // Note AddrSpace == 0 is not the same as an unspecified address space.
10552         Type = Context.getAddrSpaceQualType(
10553           Type,
10554           Context.getLangASForBuiltinAddressSpace(AddrSpace));
10555         Str = End;
10556       }
10557       if (c == '*')
10558         Type = Context.getPointerType(Type);
10559       else
10560         Type = Context.getLValueReferenceType(Type);
10561       break;
10562     }
10563     // FIXME: There's no way to have a built-in with an rvalue ref arg.
10564     case 'C':
10565       Type = Type.withConst();
10566       break;
10567     case 'D':
10568       Type = Context.getVolatileType(Type);
10569       break;
10570     case 'R':
10571       Type = Type.withRestrict();
10572       break;
10573     }
10574   }
10575 
10576   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
10577          "Integer constant 'I' type must be an integer");
10578 
10579   return Type;
10580 }
10581 
10582 // On some targets such as PowerPC, some of the builtins are defined with custom
10583 // type decriptors for target-dependent types. These descriptors are decoded in
10584 // other functions, but it may be useful to be able to fall back to default
10585 // descriptor decoding to define builtins mixing target-dependent and target-
10586 // independent types. This function allows decoding one type descriptor with
10587 // default decoding.
DecodeTypeStr(const char * & Str,const ASTContext & Context,GetBuiltinTypeError & Error,bool & RequireICE,bool AllowTypeModifiers) const10588 QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context,
10589                                    GetBuiltinTypeError &Error, bool &RequireICE,
10590                                    bool AllowTypeModifiers) const {
10591   return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers);
10592 }
10593 
10594 /// GetBuiltinType - Return the type for the specified builtin.
GetBuiltinType(unsigned Id,GetBuiltinTypeError & Error,unsigned * IntegerConstantArgs) const10595 QualType ASTContext::GetBuiltinType(unsigned Id,
10596                                     GetBuiltinTypeError &Error,
10597                                     unsigned *IntegerConstantArgs) const {
10598   const char *TypeStr = BuiltinInfo.getTypeString(Id);
10599   if (TypeStr[0] == '\0') {
10600     Error = GE_Missing_type;
10601     return {};
10602   }
10603 
10604   SmallVector<QualType, 8> ArgTypes;
10605 
10606   bool RequiresICE = false;
10607   Error = GE_None;
10608   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
10609                                        RequiresICE, true);
10610   if (Error != GE_None)
10611     return {};
10612 
10613   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
10614 
10615   while (TypeStr[0] && TypeStr[0] != '.') {
10616     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
10617     if (Error != GE_None)
10618       return {};
10619 
10620     // If this argument is required to be an IntegerConstantExpression and the
10621     // caller cares, fill in the bitmask we return.
10622     if (RequiresICE && IntegerConstantArgs)
10623       *IntegerConstantArgs |= 1 << ArgTypes.size();
10624 
10625     // Do array -> pointer decay.  The builtin should use the decayed type.
10626     if (Ty->isArrayType())
10627       Ty = getArrayDecayedType(Ty);
10628 
10629     ArgTypes.push_back(Ty);
10630   }
10631 
10632   if (Id == Builtin::BI__GetExceptionInfo)
10633     return {};
10634 
10635   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
10636          "'.' should only occur at end of builtin type list!");
10637 
10638   bool Variadic = (TypeStr[0] == '.');
10639 
10640   FunctionType::ExtInfo EI(getDefaultCallingConvention(
10641       Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
10642   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
10643 
10644 
10645   // We really shouldn't be making a no-proto type here.
10646   if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus)
10647     return getFunctionNoProtoType(ResType, EI);
10648 
10649   FunctionProtoType::ExtProtoInfo EPI;
10650   EPI.ExtInfo = EI;
10651   EPI.Variadic = Variadic;
10652   if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
10653     EPI.ExceptionSpec.Type =
10654         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
10655 
10656   return getFunctionType(ResType, ArgTypes, EPI);
10657 }
10658 
basicGVALinkageForFunction(const ASTContext & Context,const FunctionDecl * FD)10659 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
10660                                              const FunctionDecl *FD) {
10661   if (!FD->isExternallyVisible())
10662     return GVA_Internal;
10663 
10664   // Non-user-provided functions get emitted as weak definitions with every
10665   // use, no matter whether they've been explicitly instantiated etc.
10666   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
10667     if (!MD->isUserProvided())
10668       return GVA_DiscardableODR;
10669 
10670   GVALinkage External;
10671   switch (FD->getTemplateSpecializationKind()) {
10672   case TSK_Undeclared:
10673   case TSK_ExplicitSpecialization:
10674     External = GVA_StrongExternal;
10675     break;
10676 
10677   case TSK_ExplicitInstantiationDefinition:
10678     return GVA_StrongODR;
10679 
10680   // C++11 [temp.explicit]p10:
10681   //   [ Note: The intent is that an inline function that is the subject of
10682   //   an explicit instantiation declaration will still be implicitly
10683   //   instantiated when used so that the body can be considered for
10684   //   inlining, but that no out-of-line copy of the inline function would be
10685   //   generated in the translation unit. -- end note ]
10686   case TSK_ExplicitInstantiationDeclaration:
10687     return GVA_AvailableExternally;
10688 
10689   case TSK_ImplicitInstantiation:
10690     External = GVA_DiscardableODR;
10691     break;
10692   }
10693 
10694   if (!FD->isInlined())
10695     return External;
10696 
10697   if ((!Context.getLangOpts().CPlusPlus &&
10698        !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10699        !FD->hasAttr<DLLExportAttr>()) ||
10700       FD->hasAttr<GNUInlineAttr>()) {
10701     // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
10702 
10703     // GNU or C99 inline semantics. Determine whether this symbol should be
10704     // externally visible.
10705     if (FD->isInlineDefinitionExternallyVisible())
10706       return External;
10707 
10708     // C99 inline semantics, where the symbol is not externally visible.
10709     return GVA_AvailableExternally;
10710   }
10711 
10712   // Functions specified with extern and inline in -fms-compatibility mode
10713   // forcibly get emitted.  While the body of the function cannot be later
10714   // replaced, the function definition cannot be discarded.
10715   if (FD->isMSExternInline())
10716     return GVA_StrongODR;
10717 
10718   return GVA_DiscardableODR;
10719 }
10720 
adjustGVALinkageForAttributes(const ASTContext & Context,const Decl * D,GVALinkage L)10721 static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
10722                                                 const Decl *D, GVALinkage L) {
10723   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
10724   // dllexport/dllimport on inline functions.
10725   if (D->hasAttr<DLLImportAttr>()) {
10726     if (L == GVA_DiscardableODR || L == GVA_StrongODR)
10727       return GVA_AvailableExternally;
10728   } else if (D->hasAttr<DLLExportAttr>()) {
10729     if (L == GVA_DiscardableODR)
10730       return GVA_StrongODR;
10731   } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) {
10732     // Device-side functions with __global__ attribute must always be
10733     // visible externally so they can be launched from host.
10734     if (D->hasAttr<CUDAGlobalAttr>() &&
10735         (L == GVA_DiscardableODR || L == GVA_Internal))
10736       return GVA_StrongODR;
10737     // Single source offloading languages like CUDA/HIP need to be able to
10738     // access static device variables from host code of the same compilation
10739     // unit. This is done by externalizing the static variable with a shared
10740     // name between the host and device compilation which is the same for the
10741     // same compilation unit whereas different among different compilation
10742     // units.
10743     if (Context.shouldExternalizeStaticVar(D))
10744       return GVA_StrongExternal;
10745   }
10746   return L;
10747 }
10748 
10749 /// Adjust the GVALinkage for a declaration based on what an external AST source
10750 /// knows about whether there can be other definitions of this declaration.
10751 static GVALinkage
adjustGVALinkageForExternalDefinitionKind(const ASTContext & Ctx,const Decl * D,GVALinkage L)10752 adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
10753                                           GVALinkage L) {
10754   ExternalASTSource *Source = Ctx.getExternalSource();
10755   if (!Source)
10756     return L;
10757 
10758   switch (Source->hasExternalDefinitions(D)) {
10759   case ExternalASTSource::EK_Never:
10760     // Other translation units rely on us to provide the definition.
10761     if (L == GVA_DiscardableODR)
10762       return GVA_StrongODR;
10763     break;
10764 
10765   case ExternalASTSource::EK_Always:
10766     return GVA_AvailableExternally;
10767 
10768   case ExternalASTSource::EK_ReplyHazy:
10769     break;
10770   }
10771   return L;
10772 }
10773 
GetGVALinkageForFunction(const FunctionDecl * FD) const10774 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
10775   return adjustGVALinkageForExternalDefinitionKind(*this, FD,
10776            adjustGVALinkageForAttributes(*this, FD,
10777              basicGVALinkageForFunction(*this, FD)));
10778 }
10779 
basicGVALinkageForVariable(const ASTContext & Context,const VarDecl * VD)10780 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
10781                                              const VarDecl *VD) {
10782   if (!VD->isExternallyVisible())
10783     return GVA_Internal;
10784 
10785   if (VD->isStaticLocal()) {
10786     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
10787     while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
10788       LexicalContext = LexicalContext->getLexicalParent();
10789 
10790     // ObjC Blocks can create local variables that don't have a FunctionDecl
10791     // LexicalContext.
10792     if (!LexicalContext)
10793       return GVA_DiscardableODR;
10794 
10795     // Otherwise, let the static local variable inherit its linkage from the
10796     // nearest enclosing function.
10797     auto StaticLocalLinkage =
10798         Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
10799 
10800     // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
10801     // be emitted in any object with references to the symbol for the object it
10802     // contains, whether inline or out-of-line."
10803     // Similar behavior is observed with MSVC. An alternative ABI could use
10804     // StrongODR/AvailableExternally to match the function, but none are
10805     // known/supported currently.
10806     if (StaticLocalLinkage == GVA_StrongODR ||
10807         StaticLocalLinkage == GVA_AvailableExternally)
10808       return GVA_DiscardableODR;
10809     return StaticLocalLinkage;
10810   }
10811 
10812   // MSVC treats in-class initialized static data members as definitions.
10813   // By giving them non-strong linkage, out-of-line definitions won't
10814   // cause link errors.
10815   if (Context.isMSStaticDataMemberInlineDefinition(VD))
10816     return GVA_DiscardableODR;
10817 
10818   // Most non-template variables have strong linkage; inline variables are
10819   // linkonce_odr or (occasionally, for compatibility) weak_odr.
10820   GVALinkage StrongLinkage;
10821   switch (Context.getInlineVariableDefinitionKind(VD)) {
10822   case ASTContext::InlineVariableDefinitionKind::None:
10823     StrongLinkage = GVA_StrongExternal;
10824     break;
10825   case ASTContext::InlineVariableDefinitionKind::Weak:
10826   case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
10827     StrongLinkage = GVA_DiscardableODR;
10828     break;
10829   case ASTContext::InlineVariableDefinitionKind::Strong:
10830     StrongLinkage = GVA_StrongODR;
10831     break;
10832   }
10833 
10834   switch (VD->getTemplateSpecializationKind()) {
10835   case TSK_Undeclared:
10836     return StrongLinkage;
10837 
10838   case TSK_ExplicitSpecialization:
10839     return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10840                    VD->isStaticDataMember()
10841                ? GVA_StrongODR
10842                : StrongLinkage;
10843 
10844   case TSK_ExplicitInstantiationDefinition:
10845     return GVA_StrongODR;
10846 
10847   case TSK_ExplicitInstantiationDeclaration:
10848     return GVA_AvailableExternally;
10849 
10850   case TSK_ImplicitInstantiation:
10851     return GVA_DiscardableODR;
10852   }
10853 
10854   llvm_unreachable("Invalid Linkage!");
10855 }
10856 
GetGVALinkageForVariable(const VarDecl * VD)10857 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
10858   return adjustGVALinkageForExternalDefinitionKind(*this, VD,
10859            adjustGVALinkageForAttributes(*this, VD,
10860              basicGVALinkageForVariable(*this, VD)));
10861 }
10862 
DeclMustBeEmitted(const Decl * D)10863 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
10864   if (const auto *VD = dyn_cast<VarDecl>(D)) {
10865     if (!VD->isFileVarDecl())
10866       return false;
10867     // Global named register variables (GNU extension) are never emitted.
10868     if (VD->getStorageClass() == SC_Register)
10869       return false;
10870     if (VD->getDescribedVarTemplate() ||
10871         isa<VarTemplatePartialSpecializationDecl>(VD))
10872       return false;
10873   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
10874     // We never need to emit an uninstantiated function template.
10875     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
10876       return false;
10877   } else if (isa<PragmaCommentDecl>(D))
10878     return true;
10879   else if (isa<PragmaDetectMismatchDecl>(D))
10880     return true;
10881   else if (isa<OMPRequiresDecl>(D))
10882     return true;
10883   else if (isa<OMPThreadPrivateDecl>(D))
10884     return !D->getDeclContext()->isDependentContext();
10885   else if (isa<OMPAllocateDecl>(D))
10886     return !D->getDeclContext()->isDependentContext();
10887   else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
10888     return !D->getDeclContext()->isDependentContext();
10889   else if (isa<ImportDecl>(D))
10890     return true;
10891   else
10892     return false;
10893 
10894   // If this is a member of a class template, we do not need to emit it.
10895   if (D->getDeclContext()->isDependentContext())
10896     return false;
10897 
10898   // Weak references don't produce any output by themselves.
10899   if (D->hasAttr<WeakRefAttr>())
10900     return false;
10901 
10902   // Aliases and used decls are required.
10903   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
10904     return true;
10905 
10906   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
10907     // Forward declarations aren't required.
10908     if (!FD->doesThisDeclarationHaveABody())
10909       return FD->doesDeclarationForceExternallyVisibleDefinition();
10910 
10911     // Constructors and destructors are required.
10912     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
10913       return true;
10914 
10915     // The key function for a class is required.  This rule only comes
10916     // into play when inline functions can be key functions, though.
10917     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
10918       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
10919         const CXXRecordDecl *RD = MD->getParent();
10920         if (MD->isOutOfLine() && RD->isDynamicClass()) {
10921           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
10922           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
10923             return true;
10924         }
10925       }
10926     }
10927 
10928     GVALinkage Linkage = GetGVALinkageForFunction(FD);
10929 
10930     // static, static inline, always_inline, and extern inline functions can
10931     // always be deferred.  Normal inline functions can be deferred in C99/C++.
10932     // Implicit template instantiations can also be deferred in C++.
10933     return !isDiscardableGVALinkage(Linkage);
10934   }
10935 
10936   const auto *VD = cast<VarDecl>(D);
10937   assert(VD->isFileVarDecl() && "Expected file scoped var");
10938 
10939   // If the decl is marked as `declare target to`, it should be emitted for the
10940   // host and for the device.
10941   if (LangOpts.OpenMP &&
10942       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
10943     return true;
10944 
10945   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
10946       !isMSStaticDataMemberInlineDefinition(VD))
10947     return false;
10948 
10949   // Variables that can be needed in other TUs are required.
10950   auto Linkage = GetGVALinkageForVariable(VD);
10951   if (!isDiscardableGVALinkage(Linkage))
10952     return true;
10953 
10954   // We never need to emit a variable that is available in another TU.
10955   if (Linkage == GVA_AvailableExternally)
10956     return false;
10957 
10958   // Variables that have destruction with side-effects are required.
10959   if (VD->needsDestruction(*this))
10960     return true;
10961 
10962   // Variables that have initialization with side-effects are required.
10963   if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
10964       // We can get a value-dependent initializer during error recovery.
10965       (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
10966     return true;
10967 
10968   // Likewise, variables with tuple-like bindings are required if their
10969   // bindings have side-effects.
10970   if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
10971     for (const auto *BD : DD->bindings())
10972       if (const auto *BindingVD = BD->getHoldingVar())
10973         if (DeclMustBeEmitted(BindingVD))
10974           return true;
10975 
10976   return false;
10977 }
10978 
forEachMultiversionedFunctionVersion(const FunctionDecl * FD,llvm::function_ref<void (FunctionDecl *)> Pred) const10979 void ASTContext::forEachMultiversionedFunctionVersion(
10980     const FunctionDecl *FD,
10981     llvm::function_ref<void(FunctionDecl *)> Pred) const {
10982   assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
10983   llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
10984   FD = FD->getMostRecentDecl();
10985   // FIXME: The order of traversal here matters and depends on the order of
10986   // lookup results, which happens to be (mostly) oldest-to-newest, but we
10987   // shouldn't rely on that.
10988   for (auto *CurDecl :
10989        FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
10990     FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
10991     if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
10992         std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) {
10993       SeenDecls.insert(CurFD);
10994       Pred(CurFD);
10995     }
10996   }
10997 }
10998 
getDefaultCallingConvention(bool IsVariadic,bool IsCXXMethod,bool IsBuiltin) const10999 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
11000                                                     bool IsCXXMethod,
11001                                                     bool IsBuiltin) const {
11002   // Pass through to the C++ ABI object
11003   if (IsCXXMethod)
11004     return ABI->getDefaultMethodCallConv(IsVariadic);
11005 
11006   // Builtins ignore user-specified default calling convention and remain the
11007   // Target's default calling convention.
11008   if (!IsBuiltin) {
11009     switch (LangOpts.getDefaultCallingConv()) {
11010     case LangOptions::DCC_None:
11011       break;
11012     case LangOptions::DCC_CDecl:
11013       return CC_C;
11014     case LangOptions::DCC_FastCall:
11015       if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
11016         return CC_X86FastCall;
11017       break;
11018     case LangOptions::DCC_StdCall:
11019       if (!IsVariadic)
11020         return CC_X86StdCall;
11021       break;
11022     case LangOptions::DCC_VectorCall:
11023       // __vectorcall cannot be applied to variadic functions.
11024       if (!IsVariadic)
11025         return CC_X86VectorCall;
11026       break;
11027     case LangOptions::DCC_RegCall:
11028       // __regcall cannot be applied to variadic functions.
11029       if (!IsVariadic)
11030         return CC_X86RegCall;
11031       break;
11032     }
11033   }
11034   return Target->getDefaultCallingConv();
11035 }
11036 
isNearlyEmpty(const CXXRecordDecl * RD) const11037 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
11038   // Pass through to the C++ ABI object
11039   return ABI->isNearlyEmpty(RD);
11040 }
11041 
getVTableContext()11042 VTableContextBase *ASTContext::getVTableContext() {
11043   if (!VTContext.get()) {
11044     auto ABI = Target->getCXXABI();
11045     if (ABI.isMicrosoft())
11046       VTContext.reset(new MicrosoftVTableContext(*this));
11047     else {
11048       auto ComponentLayout = getLangOpts().RelativeCXXABIVTables
11049                                  ? ItaniumVTableContext::Relative
11050                                  : ItaniumVTableContext::Pointer;
11051       VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout));
11052     }
11053   }
11054   return VTContext.get();
11055 }
11056 
createMangleContext(const TargetInfo * T)11057 MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
11058   if (!T)
11059     T = Target;
11060   switch (T->getCXXABI().getKind()) {
11061   case TargetCXXABI::AppleARM64:
11062   case TargetCXXABI::Fuchsia:
11063   case TargetCXXABI::GenericAArch64:
11064   case TargetCXXABI::GenericItanium:
11065   case TargetCXXABI::GenericARM:
11066   case TargetCXXABI::GenericMIPS:
11067   case TargetCXXABI::iOS:
11068   case TargetCXXABI::WebAssembly:
11069   case TargetCXXABI::WatchOS:
11070   case TargetCXXABI::XL:
11071     return ItaniumMangleContext::create(*this, getDiagnostics());
11072   case TargetCXXABI::Microsoft:
11073     return MicrosoftMangleContext::create(*this, getDiagnostics());
11074   }
11075   llvm_unreachable("Unsupported ABI");
11076 }
11077 
11078 CXXABI::~CXXABI() = default;
11079 
getSideTableAllocatedMemory() const11080 size_t ASTContext::getSideTableAllocatedMemory() const {
11081   return ASTRecordLayouts.getMemorySize() +
11082          llvm::capacity_in_bytes(ObjCLayouts) +
11083          llvm::capacity_in_bytes(KeyFunctions) +
11084          llvm::capacity_in_bytes(ObjCImpls) +
11085          llvm::capacity_in_bytes(BlockVarCopyInits) +
11086          llvm::capacity_in_bytes(DeclAttrs) +
11087          llvm::capacity_in_bytes(TemplateOrInstantiation) +
11088          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
11089          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
11090          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
11091          llvm::capacity_in_bytes(OverriddenMethods) +
11092          llvm::capacity_in_bytes(Types) +
11093          llvm::capacity_in_bytes(VariableArrayTypes);
11094 }
11095 
11096 /// getIntTypeForBitwidth -
11097 /// sets integer QualTy according to specified details:
11098 /// bitwidth, signed/unsigned.
11099 /// Returns empty type if there is no appropriate target types.
getIntTypeForBitwidth(unsigned DestWidth,unsigned Signed) const11100 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
11101                                            unsigned Signed) const {
11102   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
11103   CanQualType QualTy = getFromTargetType(Ty);
11104   if (!QualTy && DestWidth == 128)
11105     return Signed ? Int128Ty : UnsignedInt128Ty;
11106   return QualTy;
11107 }
11108 
11109 /// getRealTypeForBitwidth -
11110 /// sets floating point QualTy according to specified bitwidth.
11111 /// Returns empty type if there is no appropriate target types.
getRealTypeForBitwidth(unsigned DestWidth,bool ExplicitIEEE) const11112 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth,
11113                                             bool ExplicitIEEE) const {
11114   TargetInfo::RealType Ty =
11115       getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitIEEE);
11116   switch (Ty) {
11117   case TargetInfo::Float:
11118     return FloatTy;
11119   case TargetInfo::Double:
11120     return DoubleTy;
11121   case TargetInfo::LongDouble:
11122     return LongDoubleTy;
11123   case TargetInfo::Float128:
11124     return Float128Ty;
11125   case TargetInfo::NoFloat:
11126     return {};
11127   }
11128 
11129   llvm_unreachable("Unhandled TargetInfo::RealType value");
11130 }
11131 
setManglingNumber(const NamedDecl * ND,unsigned Number)11132 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
11133   if (Number > 1)
11134     MangleNumbers[ND] = Number;
11135 }
11136 
getManglingNumber(const NamedDecl * ND) const11137 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
11138   auto I = MangleNumbers.find(ND);
11139   return I != MangleNumbers.end() ? I->second : 1;
11140 }
11141 
setStaticLocalNumber(const VarDecl * VD,unsigned Number)11142 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
11143   if (Number > 1)
11144     StaticLocalNumbers[VD] = Number;
11145 }
11146 
getStaticLocalNumber(const VarDecl * VD) const11147 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
11148   auto I = StaticLocalNumbers.find(VD);
11149   return I != StaticLocalNumbers.end() ? I->second : 1;
11150 }
11151 
11152 MangleNumberingContext &
getManglingNumberContext(const DeclContext * DC)11153 ASTContext::getManglingNumberContext(const DeclContext *DC) {
11154   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
11155   std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
11156   if (!MCtx)
11157     MCtx = createMangleNumberingContext();
11158   return *MCtx;
11159 }
11160 
11161 MangleNumberingContext &
getManglingNumberContext(NeedExtraManglingDecl_t,const Decl * D)11162 ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
11163   assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
11164   std::unique_ptr<MangleNumberingContext> &MCtx =
11165       ExtraMangleNumberingContexts[D];
11166   if (!MCtx)
11167     MCtx = createMangleNumberingContext();
11168   return *MCtx;
11169 }
11170 
11171 std::unique_ptr<MangleNumberingContext>
createMangleNumberingContext() const11172 ASTContext::createMangleNumberingContext() const {
11173   return ABI->createMangleNumberingContext();
11174 }
11175 
11176 const CXXConstructorDecl *
getCopyConstructorForExceptionObject(CXXRecordDecl * RD)11177 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
11178   return ABI->getCopyConstructorForExceptionObject(
11179       cast<CXXRecordDecl>(RD->getFirstDecl()));
11180 }
11181 
addCopyConstructorForExceptionObject(CXXRecordDecl * RD,CXXConstructorDecl * CD)11182 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
11183                                                       CXXConstructorDecl *CD) {
11184   return ABI->addCopyConstructorForExceptionObject(
11185       cast<CXXRecordDecl>(RD->getFirstDecl()),
11186       cast<CXXConstructorDecl>(CD->getFirstDecl()));
11187 }
11188 
addTypedefNameForUnnamedTagDecl(TagDecl * TD,TypedefNameDecl * DD)11189 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
11190                                                  TypedefNameDecl *DD) {
11191   return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
11192 }
11193 
11194 TypedefNameDecl *
getTypedefNameForUnnamedTagDecl(const TagDecl * TD)11195 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
11196   return ABI->getTypedefNameForUnnamedTagDecl(TD);
11197 }
11198 
addDeclaratorForUnnamedTagDecl(TagDecl * TD,DeclaratorDecl * DD)11199 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
11200                                                 DeclaratorDecl *DD) {
11201   return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
11202 }
11203 
getDeclaratorForUnnamedTagDecl(const TagDecl * TD)11204 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
11205   return ABI->getDeclaratorForUnnamedTagDecl(TD);
11206 }
11207 
setParameterIndex(const ParmVarDecl * D,unsigned int index)11208 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
11209   ParamIndices[D] = index;
11210 }
11211 
getParameterIndex(const ParmVarDecl * D) const11212 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
11213   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
11214   assert(I != ParamIndices.end() &&
11215          "ParmIndices lacks entry set by ParmVarDecl");
11216   return I->second;
11217 }
11218 
getStringLiteralArrayType(QualType EltTy,unsigned Length) const11219 QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
11220                                                unsigned Length) const {
11221   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
11222   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
11223     EltTy = EltTy.withConst();
11224 
11225   EltTy = adjustStringLiteralBaseType(EltTy);
11226 
11227   // Get an array type for the string, according to C99 6.4.5. This includes
11228   // the null terminator character.
11229   return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
11230                               ArrayType::Normal, /*IndexTypeQuals*/ 0);
11231 }
11232 
11233 StringLiteral *
getPredefinedStringLiteralFromCache(StringRef Key) const11234 ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
11235   StringLiteral *&Result = StringLiteralCache[Key];
11236   if (!Result)
11237     Result = StringLiteral::Create(
11238         *this, Key, StringLiteral::Ascii,
11239         /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
11240         SourceLocation());
11241   return Result;
11242 }
11243 
11244 MSGuidDecl *
getMSGuidDecl(MSGuidDecl::Parts Parts) const11245 ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const {
11246   assert(MSGuidTagDecl && "building MS GUID without MS extensions?");
11247 
11248   llvm::FoldingSetNodeID ID;
11249   MSGuidDecl::Profile(ID, Parts);
11250 
11251   void *InsertPos;
11252   if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos))
11253     return Existing;
11254 
11255   QualType GUIDType = getMSGuidType().withConst();
11256   MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts);
11257   MSGuidDecls.InsertNode(New, InsertPos);
11258   return New;
11259 }
11260 
11261 TemplateParamObjectDecl *
getTemplateParamObjectDecl(QualType T,const APValue & V) const11262 ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const {
11263   assert(T->isRecordType() && "template param object of unexpected type");
11264 
11265   // C++ [temp.param]p8:
11266   //   [...] a static storage duration object of type 'const T' [...]
11267   T.addConst();
11268 
11269   llvm::FoldingSetNodeID ID;
11270   TemplateParamObjectDecl::Profile(ID, T, V);
11271 
11272   void *InsertPos;
11273   if (TemplateParamObjectDecl *Existing =
11274           TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos))
11275     return Existing;
11276 
11277   TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V);
11278   TemplateParamObjectDecls.InsertNode(New, InsertPos);
11279   return New;
11280 }
11281 
AtomicUsesUnsupportedLibcall(const AtomicExpr * E) const11282 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
11283   const llvm::Triple &T = getTargetInfo().getTriple();
11284   if (!T.isOSDarwin())
11285     return false;
11286 
11287   if (!(T.isiOS() && T.isOSVersionLT(7)) &&
11288       !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
11289     return false;
11290 
11291   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
11292   CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
11293   uint64_t Size = sizeChars.getQuantity();
11294   CharUnits alignChars = getTypeAlignInChars(AtomicTy);
11295   unsigned Align = alignChars.getQuantity();
11296   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
11297   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
11298 }
11299 
11300 bool
ObjCMethodsAreEqual(const ObjCMethodDecl * MethodDecl,const ObjCMethodDecl * MethodImpl)11301 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
11302                                 const ObjCMethodDecl *MethodImpl) {
11303   // No point trying to match an unavailable/deprecated mothod.
11304   if (MethodDecl->hasAttr<UnavailableAttr>()
11305       || MethodDecl->hasAttr<DeprecatedAttr>())
11306     return false;
11307   if (MethodDecl->getObjCDeclQualifier() !=
11308       MethodImpl->getObjCDeclQualifier())
11309     return false;
11310   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
11311     return false;
11312 
11313   if (MethodDecl->param_size() != MethodImpl->param_size())
11314     return false;
11315 
11316   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
11317        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
11318        EF = MethodDecl->param_end();
11319        IM != EM && IF != EF; ++IM, ++IF) {
11320     const ParmVarDecl *DeclVar = (*IF);
11321     const ParmVarDecl *ImplVar = (*IM);
11322     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
11323       return false;
11324     if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
11325       return false;
11326   }
11327 
11328   return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
11329 }
11330 
getTargetNullPointerValue(QualType QT) const11331 uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
11332   LangAS AS;
11333   if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
11334     AS = LangAS::Default;
11335   else
11336     AS = QT->getPointeeType().getAddressSpace();
11337 
11338   return getTargetInfo().getNullPointerValue(AS);
11339 }
11340 
getTargetAddressSpace(LangAS AS) const11341 unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
11342   if (isTargetAddressSpace(AS))
11343     return toTargetAddressSpace(AS);
11344   else
11345     return (*AddrSpaceMap)[(unsigned)AS];
11346 }
11347 
getCorrespondingSaturatedType(QualType Ty) const11348 QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
11349   assert(Ty->isFixedPointType());
11350 
11351   if (Ty->isSaturatedFixedPointType()) return Ty;
11352 
11353   switch (Ty->castAs<BuiltinType>()->getKind()) {
11354     default:
11355       llvm_unreachable("Not a fixed point type!");
11356     case BuiltinType::ShortAccum:
11357       return SatShortAccumTy;
11358     case BuiltinType::Accum:
11359       return SatAccumTy;
11360     case BuiltinType::LongAccum:
11361       return SatLongAccumTy;
11362     case BuiltinType::UShortAccum:
11363       return SatUnsignedShortAccumTy;
11364     case BuiltinType::UAccum:
11365       return SatUnsignedAccumTy;
11366     case BuiltinType::ULongAccum:
11367       return SatUnsignedLongAccumTy;
11368     case BuiltinType::ShortFract:
11369       return SatShortFractTy;
11370     case BuiltinType::Fract:
11371       return SatFractTy;
11372     case BuiltinType::LongFract:
11373       return SatLongFractTy;
11374     case BuiltinType::UShortFract:
11375       return SatUnsignedShortFractTy;
11376     case BuiltinType::UFract:
11377       return SatUnsignedFractTy;
11378     case BuiltinType::ULongFract:
11379       return SatUnsignedLongFractTy;
11380   }
11381 }
11382 
getLangASForBuiltinAddressSpace(unsigned AS) const11383 LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
11384   if (LangOpts.OpenCL)
11385     return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
11386 
11387   if (LangOpts.CUDA)
11388     return getTargetInfo().getCUDABuiltinAddressSpace(AS);
11389 
11390   return getLangASFromTargetAS(AS);
11391 }
11392 
11393 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
11394 // doesn't include ASTContext.h
11395 template
11396 clang::LazyGenerationalUpdatePtr<
11397     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
11398 clang::LazyGenerationalUpdatePtr<
11399     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
11400         const clang::ASTContext &Ctx, Decl *Value);
11401 
getFixedPointScale(QualType Ty) const11402 unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
11403   assert(Ty->isFixedPointType());
11404 
11405   const TargetInfo &Target = getTargetInfo();
11406   switch (Ty->castAs<BuiltinType>()->getKind()) {
11407     default:
11408       llvm_unreachable("Not a fixed point type!");
11409     case BuiltinType::ShortAccum:
11410     case BuiltinType::SatShortAccum:
11411       return Target.getShortAccumScale();
11412     case BuiltinType::Accum:
11413     case BuiltinType::SatAccum:
11414       return Target.getAccumScale();
11415     case BuiltinType::LongAccum:
11416     case BuiltinType::SatLongAccum:
11417       return Target.getLongAccumScale();
11418     case BuiltinType::UShortAccum:
11419     case BuiltinType::SatUShortAccum:
11420       return Target.getUnsignedShortAccumScale();
11421     case BuiltinType::UAccum:
11422     case BuiltinType::SatUAccum:
11423       return Target.getUnsignedAccumScale();
11424     case BuiltinType::ULongAccum:
11425     case BuiltinType::SatULongAccum:
11426       return Target.getUnsignedLongAccumScale();
11427     case BuiltinType::ShortFract:
11428     case BuiltinType::SatShortFract:
11429       return Target.getShortFractScale();
11430     case BuiltinType::Fract:
11431     case BuiltinType::SatFract:
11432       return Target.getFractScale();
11433     case BuiltinType::LongFract:
11434     case BuiltinType::SatLongFract:
11435       return Target.getLongFractScale();
11436     case BuiltinType::UShortFract:
11437     case BuiltinType::SatUShortFract:
11438       return Target.getUnsignedShortFractScale();
11439     case BuiltinType::UFract:
11440     case BuiltinType::SatUFract:
11441       return Target.getUnsignedFractScale();
11442     case BuiltinType::ULongFract:
11443     case BuiltinType::SatULongFract:
11444       return Target.getUnsignedLongFractScale();
11445   }
11446 }
11447 
getFixedPointIBits(QualType Ty) const11448 unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
11449   assert(Ty->isFixedPointType());
11450 
11451   const TargetInfo &Target = getTargetInfo();
11452   switch (Ty->castAs<BuiltinType>()->getKind()) {
11453     default:
11454       llvm_unreachable("Not a fixed point type!");
11455     case BuiltinType::ShortAccum:
11456     case BuiltinType::SatShortAccum:
11457       return Target.getShortAccumIBits();
11458     case BuiltinType::Accum:
11459     case BuiltinType::SatAccum:
11460       return Target.getAccumIBits();
11461     case BuiltinType::LongAccum:
11462     case BuiltinType::SatLongAccum:
11463       return Target.getLongAccumIBits();
11464     case BuiltinType::UShortAccum:
11465     case BuiltinType::SatUShortAccum:
11466       return Target.getUnsignedShortAccumIBits();
11467     case BuiltinType::UAccum:
11468     case BuiltinType::SatUAccum:
11469       return Target.getUnsignedAccumIBits();
11470     case BuiltinType::ULongAccum:
11471     case BuiltinType::SatULongAccum:
11472       return Target.getUnsignedLongAccumIBits();
11473     case BuiltinType::ShortFract:
11474     case BuiltinType::SatShortFract:
11475     case BuiltinType::Fract:
11476     case BuiltinType::SatFract:
11477     case BuiltinType::LongFract:
11478     case BuiltinType::SatLongFract:
11479     case BuiltinType::UShortFract:
11480     case BuiltinType::SatUShortFract:
11481     case BuiltinType::UFract:
11482     case BuiltinType::SatUFract:
11483     case BuiltinType::ULongFract:
11484     case BuiltinType::SatULongFract:
11485       return 0;
11486   }
11487 }
11488 
11489 llvm::FixedPointSemantics
getFixedPointSemantics(QualType Ty) const11490 ASTContext::getFixedPointSemantics(QualType Ty) const {
11491   assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
11492          "Can only get the fixed point semantics for a "
11493          "fixed point or integer type.");
11494   if (Ty->isIntegerType())
11495     return llvm::FixedPointSemantics::GetIntegerSemantics(
11496         getIntWidth(Ty), Ty->isSignedIntegerType());
11497 
11498   bool isSigned = Ty->isSignedFixedPointType();
11499   return llvm::FixedPointSemantics(
11500       static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
11501       Ty->isSaturatedFixedPointType(),
11502       !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
11503 }
11504 
getFixedPointMax(QualType Ty) const11505 llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
11506   assert(Ty->isFixedPointType());
11507   return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty));
11508 }
11509 
getFixedPointMin(QualType Ty) const11510 llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
11511   assert(Ty->isFixedPointType());
11512   return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty));
11513 }
11514 
getCorrespondingSignedFixedPointType(QualType Ty) const11515 QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
11516   assert(Ty->isUnsignedFixedPointType() &&
11517          "Expected unsigned fixed point type");
11518 
11519   switch (Ty->castAs<BuiltinType>()->getKind()) {
11520   case BuiltinType::UShortAccum:
11521     return ShortAccumTy;
11522   case BuiltinType::UAccum:
11523     return AccumTy;
11524   case BuiltinType::ULongAccum:
11525     return LongAccumTy;
11526   case BuiltinType::SatUShortAccum:
11527     return SatShortAccumTy;
11528   case BuiltinType::SatUAccum:
11529     return SatAccumTy;
11530   case BuiltinType::SatULongAccum:
11531     return SatLongAccumTy;
11532   case BuiltinType::UShortFract:
11533     return ShortFractTy;
11534   case BuiltinType::UFract:
11535     return FractTy;
11536   case BuiltinType::ULongFract:
11537     return LongFractTy;
11538   case BuiltinType::SatUShortFract:
11539     return SatShortFractTy;
11540   case BuiltinType::SatUFract:
11541     return SatFractTy;
11542   case BuiltinType::SatULongFract:
11543     return SatLongFractTy;
11544   default:
11545     llvm_unreachable("Unexpected unsigned fixed point type");
11546   }
11547 }
11548 
11549 ParsedTargetAttr
filterFunctionTargetAttrs(const TargetAttr * TD) const11550 ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
11551   assert(TD != nullptr);
11552   ParsedTargetAttr ParsedAttr = TD->parse();
11553 
11554   ParsedAttr.Features.erase(
11555       llvm::remove_if(ParsedAttr.Features,
11556                       [&](const std::string &Feat) {
11557                         return !Target->isValidFeatureName(
11558                             StringRef{Feat}.substr(1));
11559                       }),
11560       ParsedAttr.Features.end());
11561   return ParsedAttr;
11562 }
11563 
getFunctionFeatureMap(llvm::StringMap<bool> & FeatureMap,const FunctionDecl * FD) const11564 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
11565                                        const FunctionDecl *FD) const {
11566   if (FD)
11567     getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
11568   else
11569     Target->initFeatureMap(FeatureMap, getDiagnostics(),
11570                            Target->getTargetOpts().CPU,
11571                            Target->getTargetOpts().Features);
11572 }
11573 
11574 // Fills in the supplied string map with the set of target features for the
11575 // passed in function.
getFunctionFeatureMap(llvm::StringMap<bool> & FeatureMap,GlobalDecl GD) const11576 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
11577                                        GlobalDecl GD) const {
11578   StringRef TargetCPU = Target->getTargetOpts().CPU;
11579   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
11580   if (const auto *TD = FD->getAttr<TargetAttr>()) {
11581     ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
11582 
11583     // Make a copy of the features as passed on the command line into the
11584     // beginning of the additional features from the function to override.
11585     ParsedAttr.Features.insert(
11586         ParsedAttr.Features.begin(),
11587         Target->getTargetOpts().FeaturesAsWritten.begin(),
11588         Target->getTargetOpts().FeaturesAsWritten.end());
11589 
11590     if (ParsedAttr.Architecture != "" &&
11591         Target->isValidCPUName(ParsedAttr.Architecture))
11592       TargetCPU = ParsedAttr.Architecture;
11593 
11594     // Now populate the feature map, first with the TargetCPU which is either
11595     // the default or a new one from the target attribute string. Then we'll use
11596     // the passed in features (FeaturesAsWritten) along with the new ones from
11597     // the attribute.
11598     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
11599                            ParsedAttr.Features);
11600   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
11601     llvm::SmallVector<StringRef, 32> FeaturesTmp;
11602     Target->getCPUSpecificCPUDispatchFeatures(
11603         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
11604     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
11605     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
11606   } else {
11607     FeatureMap = Target->getTargetOpts().FeatureMap;
11608   }
11609 }
11610 
getNewOMPTraitInfo()11611 OMPTraitInfo &ASTContext::getNewOMPTraitInfo() {
11612   OMPTraitInfoVector.emplace_back(new OMPTraitInfo());
11613   return *OMPTraitInfoVector.back();
11614 }
11615 
11616 const StreamingDiagnostic &clang::
operator <<(const StreamingDiagnostic & DB,const ASTContext::SectionInfo & Section)11617 operator<<(const StreamingDiagnostic &DB,
11618            const ASTContext::SectionInfo &Section) {
11619   if (Section.Decl)
11620     return DB << Section.Decl;
11621   return DB << "a prior #pragma section";
11622 }
11623 
mayExternalizeStaticVar(const Decl * D) const11624 bool ASTContext::mayExternalizeStaticVar(const Decl *D) const {
11625   bool IsStaticVar =
11626       isa<VarDecl>(D) && cast<VarDecl>(D)->getStorageClass() == SC_Static;
11627   bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() &&
11628                               !D->getAttr<CUDADeviceAttr>()->isImplicit()) ||
11629                              (D->hasAttr<CUDAConstantAttr>() &&
11630                               !D->getAttr<CUDAConstantAttr>()->isImplicit());
11631   // CUDA/HIP: static managed variables need to be externalized since it is
11632   // a declaration in IR, therefore cannot have internal linkage.
11633   return IsStaticVar &&
11634          (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar);
11635 }
11636 
shouldExternalizeStaticVar(const Decl * D) const11637 bool ASTContext::shouldExternalizeStaticVar(const Decl *D) const {
11638   return mayExternalizeStaticVar(D) &&
11639          (D->hasAttr<HIPManagedAttr>() ||
11640           CUDADeviceVarODRUsedByHost.count(cast<VarDecl>(D)));
11641 }
11642 
getCUIDHash() const11643 StringRef ASTContext::getCUIDHash() const {
11644   if (!CUIDHash.empty())
11645     return CUIDHash;
11646   if (LangOpts.CUID.empty())
11647     return StringRef();
11648   CUIDHash = llvm::utohexstr(llvm::MD5Hash(LangOpts.CUID), /*LowerCase=*/true);
11649   return CUIDHash;
11650 }
11651