xref: /freebsd/sys/x86/iommu/intel_dmar.h (revision 24e38af6)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2013-2015 The FreeBSD Foundation
5  *
6  * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
7  * under sponsorship from the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #ifndef __X86_IOMMU_INTEL_DMAR_H
32 #define	__X86_IOMMU_INTEL_DMAR_H
33 
34 #include <dev/iommu/iommu.h>
35 
36 struct dmar_unit;
37 
38 /*
39  * Locking annotations:
40  * (u) - Protected by iommu unit lock
41  * (d) - Protected by domain lock
42  * (c) - Immutable after initialization
43  */
44 
45 /*
46  * The domain abstraction.  Most non-constant members of the domain
47  * are protected by owning dmar unit lock, not by the domain lock.
48  * Most important, the dmar lock protects the contexts list.
49  *
50  * The domain lock protects the address map for the domain, and list
51  * of unload entries delayed.
52  *
53  * Page tables pages and pages content is protected by the vm object
54  * lock pgtbl_obj, which contains the page tables pages.
55  */
56 struct dmar_domain {
57 	struct iommu_domain iodom;
58 	int domain;			/* (c) DID, written in context entry */
59 	int mgaw;			/* (c) Real max address width */
60 	int agaw;			/* (c) Adjusted guest address width */
61 	int pglvl;			/* (c) The pagelevel */
62 	int awlvl;			/* (c) The pagelevel as the bitmask,
63 					   to set in context entry */
64 	u_int ctx_cnt;			/* (u) Number of contexts owned */
65 	u_int refs;			/* (u) Refs, including ctx */
66 	struct dmar_unit *dmar;		/* (c) */
67 	LIST_ENTRY(dmar_domain) link;	/* (u) Member in the dmar list */
68 	LIST_HEAD(, dmar_ctx) contexts;	/* (u) */
69 	vm_object_t pgtbl_obj;		/* (c) Page table pages */
70 	u_int batch_no;
71 };
72 
73 struct dmar_ctx {
74 	struct iommu_ctx context;
75 	uint64_t last_fault_rec[2];	/* Last fault reported */
76 	LIST_ENTRY(dmar_ctx) link;	/* (u) Member in the domain list */
77 	u_int refs;			/* (u) References from tags */
78 };
79 
80 #define	DMAR_DOMAIN_PGLOCK(dom)		VM_OBJECT_WLOCK((dom)->pgtbl_obj)
81 #define	DMAR_DOMAIN_PGTRYLOCK(dom)	VM_OBJECT_TRYWLOCK((dom)->pgtbl_obj)
82 #define	DMAR_DOMAIN_PGUNLOCK(dom)	VM_OBJECT_WUNLOCK((dom)->pgtbl_obj)
83 #define	DMAR_DOMAIN_ASSERT_PGLOCKED(dom) \
84 	VM_OBJECT_ASSERT_WLOCKED((dom)->pgtbl_obj)
85 
86 #define	DMAR_DOMAIN_LOCK(dom)	mtx_lock(&(dom)->iodom.lock)
87 #define	DMAR_DOMAIN_UNLOCK(dom)	mtx_unlock(&(dom)->iodom.lock)
88 #define	DMAR_DOMAIN_ASSERT_LOCKED(dom) mtx_assert(&(dom)->iodom.lock, MA_OWNED)
89 
90 #define	DMAR2IOMMU(dmar)	&((dmar)->iommu)
91 #define	IOMMU2DMAR(dmar)	\
92 	__containerof((dmar), struct dmar_unit, iommu)
93 
94 #define	DOM2IODOM(domain)	&((domain)->iodom)
95 #define	IODOM2DOM(domain)	\
96 	__containerof((domain), struct dmar_domain, iodom)
97 
98 #define	CTX2IOCTX(ctx)		&((ctx)->context)
99 #define	IOCTX2CTX(ctx)		\
100 	__containerof((ctx), struct dmar_ctx, context)
101 
102 #define	CTX2DOM(ctx)		IODOM2DOM((ctx)->context.domain)
103 #define	CTX2DMAR(ctx)		(CTX2DOM(ctx)->dmar)
104 #define	DOM2DMAR(domain)	((domain)->dmar)
105 
106 struct dmar_msi_data {
107 	int irq;
108 	int irq_rid;
109 	struct resource *irq_res;
110 	void *intr_handle;
111 	int (*handler)(void *);
112 	int msi_data_reg;
113 	int msi_addr_reg;
114 	int msi_uaddr_reg;
115 	void (*enable_intr)(struct dmar_unit *);
116 	void (*disable_intr)(struct dmar_unit *);
117 	const char *name;
118 };
119 
120 #define	DMAR_INTR_FAULT		0
121 #define	DMAR_INTR_QI		1
122 #define	DMAR_INTR_TOTAL		2
123 
124 struct dmar_unit {
125 	struct iommu_unit iommu;
126 	device_t dev;
127 	uint16_t segment;
128 	uint64_t base;
129 
130 	/* Resources */
131 	int reg_rid;
132 	struct resource *regs;
133 
134 	struct dmar_msi_data intrs[DMAR_INTR_TOTAL];
135 
136 	/* Hardware registers cache */
137 	uint32_t hw_ver;
138 	uint64_t hw_cap;
139 	uint64_t hw_ecap;
140 	uint32_t hw_gcmd;
141 
142 	/* Data for being a dmar */
143 	LIST_HEAD(, dmar_domain) domains;
144 	struct unrhdr *domids;
145 	vm_object_t ctx_obj;
146 	u_int barrier_flags;
147 
148 	/* Fault handler data */
149 	struct mtx fault_lock;
150 	uint64_t *fault_log;
151 	int fault_log_head;
152 	int fault_log_tail;
153 	int fault_log_size;
154 	struct task fault_task;
155 	struct taskqueue *fault_taskqueue;
156 
157 	/* QI */
158 	int qi_enabled;
159 	char *inv_queue;
160 	vm_size_t inv_queue_size;
161 	uint32_t inv_queue_avail;
162 	uint32_t inv_queue_tail;
163 	volatile uint32_t inv_waitd_seq_hw; /* hw writes there on wait
164 					       descr completion */
165 	uint64_t inv_waitd_seq_hw_phys;
166 	uint32_t inv_waitd_seq; /* next sequence number to use for wait descr */
167 	u_int inv_waitd_gen;	/* seq number generation AKA seq overflows */
168 	u_int inv_seq_waiters;	/* count of waiters for seq */
169 	u_int inv_queue_full;	/* informational counter */
170 
171 	/* IR */
172 	int ir_enabled;
173 	vm_paddr_t irt_phys;
174 	dmar_irte_t *irt;
175 	u_int irte_cnt;
176 	vmem_t *irtids;
177 
178 	/*
179 	 * Delayed freeing of map entries queue processing:
180 	 *
181 	 * tlb_flush_head and tlb_flush_tail are used to implement a FIFO
182 	 * queue that supports concurrent dequeues and enqueues.  However,
183 	 * there can only be a single dequeuer (accessing tlb_flush_head) and
184 	 * a single enqueuer (accessing tlb_flush_tail) at a time.  Since the
185 	 * unit's qi_task is the only dequeuer, it can access tlb_flush_head
186 	 * without any locking.  In contrast, there may be multiple enqueuers,
187 	 * so the enqueuers acquire the iommu unit lock to serialize their
188 	 * accesses to tlb_flush_tail.
189 	 *
190 	 * In this FIFO queue implementation, the key to enabling concurrent
191 	 * dequeues and enqueues is that the dequeuer never needs to access
192 	 * tlb_flush_tail and the enqueuer never needs to access
193 	 * tlb_flush_head.  In particular, tlb_flush_head and tlb_flush_tail
194 	 * are never NULL, so neither a dequeuer nor an enqueuer ever needs to
195 	 * update both.  Instead, tlb_flush_head always points to a "zombie"
196 	 * struct, which previously held the last dequeued item.  Thus, the
197 	 * zombie's next field actually points to the struct holding the first
198 	 * item in the queue.  When an item is dequeued, the current zombie is
199 	 * finally freed, and the struct that held the just dequeued item
200 	 * becomes the new zombie.  When the queue is empty, tlb_flush_tail
201 	 * also points to the zombie.
202 	 */
203 	struct iommu_map_entry *tlb_flush_head;
204 	struct iommu_map_entry *tlb_flush_tail;
205 	struct task qi_task;
206 	struct taskqueue *qi_taskqueue;
207 };
208 
209 #define	DMAR_LOCK(dmar)		mtx_lock(&(dmar)->iommu.lock)
210 #define	DMAR_UNLOCK(dmar)	mtx_unlock(&(dmar)->iommu.lock)
211 #define	DMAR_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->iommu.lock, MA_OWNED)
212 
213 #define	DMAR_FAULT_LOCK(dmar)	mtx_lock_spin(&(dmar)->fault_lock)
214 #define	DMAR_FAULT_UNLOCK(dmar)	mtx_unlock_spin(&(dmar)->fault_lock)
215 #define	DMAR_FAULT_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->fault_lock, MA_OWNED)
216 
217 #define	DMAR_IS_COHERENT(dmar)	(((dmar)->hw_ecap & DMAR_ECAP_C) != 0)
218 #define	DMAR_HAS_QI(dmar)	(((dmar)->hw_ecap & DMAR_ECAP_QI) != 0)
219 #define	DMAR_X2APIC(dmar) \
220 	(x2apic_mode && ((dmar)->hw_ecap & DMAR_ECAP_EIM) != 0)
221 
222 /* Barrier ids */
223 #define	DMAR_BARRIER_RMRR	0
224 #define	DMAR_BARRIER_USEQ	1
225 
226 struct dmar_unit *dmar_find(device_t dev, bool verbose);
227 struct dmar_unit *dmar_find_hpet(device_t dev, uint16_t *rid);
228 struct dmar_unit *dmar_find_ioapic(u_int apic_id, uint16_t *rid);
229 
230 u_int dmar_nd2mask(u_int nd);
231 bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl);
232 int domain_set_agaw(struct dmar_domain *domain, int mgaw);
233 int dmar_maxaddr2mgaw(struct dmar_unit *unit, iommu_gaddr_t maxaddr,
234     bool allow_less);
235 vm_pindex_t pglvl_max_pages(int pglvl);
236 int domain_is_sp_lvl(struct dmar_domain *domain, int lvl);
237 iommu_gaddr_t pglvl_page_size(int total_pglvl, int lvl);
238 iommu_gaddr_t domain_page_size(struct dmar_domain *domain, int lvl);
239 int calc_am(struct dmar_unit *unit, iommu_gaddr_t base, iommu_gaddr_t size,
240     iommu_gaddr_t *isizep);
241 struct vm_page *dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags);
242 void dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags);
243 void *dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
244     struct sf_buf **sf);
245 void dmar_unmap_pgtbl(struct sf_buf *sf);
246 int dmar_load_root_entry_ptr(struct dmar_unit *unit);
247 int dmar_inv_ctx_glob(struct dmar_unit *unit);
248 int dmar_inv_iotlb_glob(struct dmar_unit *unit);
249 int dmar_flush_write_bufs(struct dmar_unit *unit);
250 void dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst);
251 void dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst);
252 void dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst);
253 int dmar_disable_protected_regions(struct dmar_unit *unit);
254 int dmar_enable_translation(struct dmar_unit *unit);
255 int dmar_disable_translation(struct dmar_unit *unit);
256 int dmar_load_irt_ptr(struct dmar_unit *unit);
257 int dmar_enable_ir(struct dmar_unit *unit);
258 int dmar_disable_ir(struct dmar_unit *unit);
259 bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id);
260 void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id);
261 uint64_t dmar_get_timeout(void);
262 void dmar_update_timeout(uint64_t newval);
263 
264 int dmar_fault_intr(void *arg);
265 void dmar_enable_fault_intr(struct dmar_unit *unit);
266 void dmar_disable_fault_intr(struct dmar_unit *unit);
267 int dmar_init_fault_log(struct dmar_unit *unit);
268 void dmar_fini_fault_log(struct dmar_unit *unit);
269 
270 int dmar_qi_intr(void *arg);
271 void dmar_enable_qi_intr(struct dmar_unit *unit);
272 void dmar_disable_qi_intr(struct dmar_unit *unit);
273 int dmar_init_qi(struct dmar_unit *unit);
274 void dmar_fini_qi(struct dmar_unit *unit);
275 void dmar_qi_invalidate_locked(struct dmar_domain *domain,
276     struct iommu_map_entry *entry, bool emit_wait);
277 void dmar_qi_invalidate_sync(struct dmar_domain *domain, iommu_gaddr_t start,
278     iommu_gaddr_t size, bool cansleep);
279 void dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit);
280 void dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit);
281 void dmar_qi_invalidate_iec_glob(struct dmar_unit *unit);
282 void dmar_qi_invalidate_iec(struct dmar_unit *unit, u_int start, u_int cnt);
283 
284 vm_object_t domain_get_idmap_pgtbl(struct dmar_domain *domain,
285     iommu_gaddr_t maxaddr);
286 void put_idmap_pgtbl(vm_object_t obj);
287 void domain_flush_iotlb_sync(struct dmar_domain *domain, iommu_gaddr_t base,
288     iommu_gaddr_t size);
289 int domain_alloc_pgtbl(struct dmar_domain *domain);
290 void domain_free_pgtbl(struct dmar_domain *domain);
291 extern const struct iommu_domain_map_ops dmar_domain_map_ops;
292 
293 int dmar_dev_depth(device_t child);
294 void dmar_dev_path(device_t child, int *busno, void *path1, int depth);
295 
296 struct dmar_ctx *dmar_get_ctx_for_dev(struct dmar_unit *dmar, device_t dev,
297     uint16_t rid, bool id_mapped, bool rmrr_init);
298 struct dmar_ctx *dmar_get_ctx_for_devpath(struct dmar_unit *dmar, uint16_t rid,
299     int dev_domain, int dev_busno, const void *dev_path, int dev_path_len,
300     bool id_mapped, bool rmrr_init);
301 int dmar_move_ctx_to_domain(struct dmar_domain *domain, struct dmar_ctx *ctx);
302 void dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx);
303 void dmar_free_ctx(struct dmar_ctx *ctx);
304 struct dmar_ctx *dmar_find_ctx_locked(struct dmar_unit *dmar, uint16_t rid);
305 void dmar_domain_free_entry(struct iommu_map_entry *entry, bool free);
306 
307 void dmar_dev_parse_rmrr(struct dmar_domain *domain, int dev_domain,
308     int dev_busno, const void *dev_path, int dev_path_len,
309     struct iommu_map_entries_tailq *rmrr_entries);
310 int dmar_instantiate_rmrr_ctxs(struct iommu_unit *dmar);
311 
312 void dmar_quirks_post_ident(struct dmar_unit *dmar);
313 void dmar_quirks_pre_use(struct iommu_unit *dmar);
314 
315 int dmar_init_irt(struct dmar_unit *unit);
316 void dmar_fini_irt(struct dmar_unit *unit);
317 
318 extern iommu_haddr_t dmar_high;
319 extern int haw;
320 extern int dmar_tbl_pagecnt;
321 extern int dmar_batch_coalesce;
322 extern int dmar_rmrr_enable;
323 
324 static inline uint32_t
dmar_read4(const struct dmar_unit * unit,int reg)325 dmar_read4(const struct dmar_unit *unit, int reg)
326 {
327 
328 	return (bus_read_4(unit->regs, reg));
329 }
330 
331 static inline uint64_t
dmar_read8(const struct dmar_unit * unit,int reg)332 dmar_read8(const struct dmar_unit *unit, int reg)
333 {
334 #ifdef __i386__
335 	uint32_t high, low;
336 
337 	low = bus_read_4(unit->regs, reg);
338 	high = bus_read_4(unit->regs, reg + 4);
339 	return (low | ((uint64_t)high << 32));
340 #else
341 	return (bus_read_8(unit->regs, reg));
342 #endif
343 }
344 
345 static inline void
dmar_write4(const struct dmar_unit * unit,int reg,uint32_t val)346 dmar_write4(const struct dmar_unit *unit, int reg, uint32_t val)
347 {
348 
349 	KASSERT(reg != DMAR_GCMD_REG || (val & DMAR_GCMD_TE) ==
350 	    (unit->hw_gcmd & DMAR_GCMD_TE),
351 	    ("dmar%d clearing TE 0x%08x 0x%08x", unit->iommu.unit,
352 	    unit->hw_gcmd, val));
353 	bus_write_4(unit->regs, reg, val);
354 }
355 
356 static inline void
dmar_write8(const struct dmar_unit * unit,int reg,uint64_t val)357 dmar_write8(const struct dmar_unit *unit, int reg, uint64_t val)
358 {
359 
360 	KASSERT(reg != DMAR_GCMD_REG, ("8byte GCMD write"));
361 #ifdef __i386__
362 	uint32_t high, low;
363 
364 	low = val;
365 	high = val >> 32;
366 	bus_write_4(unit->regs, reg, low);
367 	bus_write_4(unit->regs, reg + 4, high);
368 #else
369 	bus_write_8(unit->regs, reg, val);
370 #endif
371 }
372 
373 /*
374  * dmar_pte_store and dmar_pte_clear ensure that on i386, 32bit writes
375  * are issued in the correct order.  For store, the lower word,
376  * containing the P or R and W bits, is set only after the high word
377  * is written.  For clear, the P bit is cleared first, then the high
378  * word is cleared.
379  *
380  * dmar_pte_update updates the pte.  For amd64, the update is atomic.
381  * For i386, it first disables the entry by clearing the word
382  * containing the P bit, and then defer to dmar_pte_store.  The locked
383  * cmpxchg8b is probably available on any machine having DMAR support,
384  * but interrupt translation table may be mapped uncached.
385  */
386 static inline void
dmar_pte_store1(volatile uint64_t * dst,uint64_t val)387 dmar_pte_store1(volatile uint64_t *dst, uint64_t val)
388 {
389 #ifdef __i386__
390 	volatile uint32_t *p;
391 	uint32_t hi, lo;
392 
393 	hi = val >> 32;
394 	lo = val;
395 	p = (volatile uint32_t *)dst;
396 	*(p + 1) = hi;
397 	*p = lo;
398 #else
399 	*dst = val;
400 #endif
401 }
402 
403 static inline void
dmar_pte_store(volatile uint64_t * dst,uint64_t val)404 dmar_pte_store(volatile uint64_t *dst, uint64_t val)
405 {
406 
407 	KASSERT(*dst == 0, ("used pte %p oldval %jx newval %jx",
408 	    dst, (uintmax_t)*dst, (uintmax_t)val));
409 	dmar_pte_store1(dst, val);
410 }
411 
412 static inline void
dmar_pte_update(volatile uint64_t * dst,uint64_t val)413 dmar_pte_update(volatile uint64_t *dst, uint64_t val)
414 {
415 
416 #ifdef __i386__
417 	volatile uint32_t *p;
418 
419 	p = (volatile uint32_t *)dst;
420 	*p = 0;
421 #endif
422 	dmar_pte_store1(dst, val);
423 }
424 
425 static inline void
dmar_pte_clear(volatile uint64_t * dst)426 dmar_pte_clear(volatile uint64_t *dst)
427 {
428 #ifdef __i386__
429 	volatile uint32_t *p;
430 
431 	p = (volatile uint32_t *)dst;
432 	*p = 0;
433 	*(p + 1) = 0;
434 #else
435 	*dst = 0;
436 #endif
437 }
438 
439 extern struct timespec dmar_hw_timeout;
440 
441 #define	DMAR_WAIT_UNTIL(cond)					\
442 {								\
443 	struct timespec last, curr;				\
444 	bool forever;						\
445 								\
446 	if (dmar_hw_timeout.tv_sec == 0 &&			\
447 	    dmar_hw_timeout.tv_nsec == 0) {			\
448 		forever = true;					\
449 	} else {						\
450 		forever = false;				\
451 		nanouptime(&curr);				\
452 		timespecadd(&curr, &dmar_hw_timeout, &last);	\
453 	}							\
454 	for (;;) {						\
455 		if (cond) {					\
456 			error = 0;				\
457 			break;					\
458 		}						\
459 		nanouptime(&curr);				\
460 		if (!forever && timespeccmp(&last, &curr, <)) {	\
461 			error = ETIMEDOUT;			\
462 			break;					\
463 		}						\
464 		cpu_spinwait();					\
465 	}							\
466 }
467 
468 #ifdef INVARIANTS
469 #define	TD_PREP_PINNED_ASSERT						\
470 	int old_td_pinned;						\
471 	old_td_pinned = curthread->td_pinned
472 #define	TD_PINNED_ASSERT						\
473 	KASSERT(curthread->td_pinned == old_td_pinned,			\
474 	    ("pin count leak: %d %d %s:%d", curthread->td_pinned,	\
475 	    old_td_pinned, __FILE__, __LINE__))
476 #else
477 #define	TD_PREP_PINNED_ASSERT
478 #define	TD_PINNED_ASSERT
479 #endif
480 
481 #endif
482