1 #ifndef _MOVIT_EFFECT_H
2 #define _MOVIT_EFFECT_H 1
3 
4 // Effect is the base class for every effect. It basically represents a single
5 // GLSL function, with an optional set of user-settable parameters.
6 //
7 // A note on naming: Since all effects run in the same GLSL namespace,
8 // you can't use any name you want for global variables (e.g. uniforms).
9 // The framework assigns a prefix to you which will be unique for each
10 // effect instance; use the macro PREFIX() around your identifiers to
11 // automatically prepend that prefix.
12 
13 #include <epoxy/gl.h>
14 #include <assert.h>
15 #include <stddef.h>
16 #include <map>
17 #include <string>
18 #include <vector>
19 #include <Eigen/Core>
20 
21 #include "defs.h"
22 
23 namespace movit {
24 
25 class EffectChain;
26 class Node;
27 
28 // Can alias on a float[2].
29 struct Point2D {
Point2DPoint2D30 	Point2D() {}
Point2DPoint2D31 	Point2D(float x, float y)
32 		: x(x), y(y) {}
33 
34 	float x, y;
35 };
36 
37 // Can alias on a float[3].
38 struct RGBTriplet {
RGBTripletRGBTriplet39 	RGBTriplet() {}
RGBTripletRGBTriplet40 	RGBTriplet(float r, float g, float b)
41 		: r(r), g(g), b(b) {}
42 
43 	float r, g, b;
44 };
45 
46 // Can alias on a float[4].
47 struct RGBATuple {
RGBATupleRGBATuple48 	RGBATuple() {}
RGBATupleRGBATuple49 	RGBATuple(float r, float g, float b, float a)
50 		: r(r), g(g), b(b), a(a) {}
51 
52 	float r, g, b, a;
53 };
54 
55 // Represents a registered uniform.
56 template<class T>
57 struct Uniform {
58 	std::string name;  // Without prefix.
59 	const T *value;  // Owner by the effect.
60 	size_t num_values;  // Number of elements; for arrays only. _Not_ the vector length.
61 	std::string prefix;  // Filled in only after phases have been constructed.
62 	GLint location;  // Filled in only after phases have been constructed. -1 if no location.
63 };
64 
65 class Effect {
66 public:
~Effect()67 	virtual ~Effect() {}
68 
69 	// An identifier for this type of effect, mostly used for debug output
70 	// (but some special names, like "ColorspaceConversionEffect", holds special
71 	// meaning). Same as the class name is fine.
72 	virtual std::string effect_type_id() const = 0;
73 
74 	// Whether this effects expects its input (and output) to be in
75 	// linear gamma, ie. without an applied gamma curve. Most effects
76 	// will want this, although the ones that never actually look at
77 	// the pixels, e.g. mirror, won't need to care, and can set this
78 	// to false. If so, the input gamma will be undefined.
79 	//
80 	// Also see the note on needs_texture_bounce(), below.
needs_linear_light()81 	virtual bool needs_linear_light() const { return true; }
82 
83 	// Whether this effect expects its input to be in the sRGB
84 	// color space, ie. use the sRGB/Rec. 709 RGB primaries.
85 	// (If not, it would typically come in as some slightly different
86 	// set of RGB primaries; you would currently not get YCbCr
87 	// or something similar).
88 	//
89 	// Again, most effects will want this, but you can set it to false
90 	// if you process each channel independently, equally _and_
91 	// in a linear fashion.
needs_srgb_primaries()92 	virtual bool needs_srgb_primaries() const { return true; }
93 
94 	// How this effect handles alpha, ie. what it outputs in its
95 	// alpha channel. The choices are basically blank (alpha is always 1.0),
96 	// premultiplied and postmultiplied.
97 	//
98 	// Premultiplied alpha is when the alpha value has been be multiplied
99 	// into the three color components, so e.g. 100% red at 50% alpha
100 	// would be (0.5, 0.0, 0.0, 0.5) instead of (1.0, 0.0, 0.0, 0.5)
101 	// as it is stored in most image formats (postmultiplied alpha).
102 	// The multiplication is taken to have happened in linear light.
103 	// This is the most natural format for processing, and the default in
104 	// most of Movit (just like linear light is).
105 	//
106 	// If you set INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA or
107 	// INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK, all of your inputs
108 	// (if any) are guaranteed to also be in premultiplied alpha.
109 	// Otherwise, you can get postmultiplied or premultiplied alpha;
110 	// you won't know. If you have multiple inputs, you will get the same
111 	// (pre- or postmultiplied) for all inputs, although most likely,
112 	// you will want to combine them in a premultiplied fashion anyway
113 	// in that case.
114 	enum AlphaHandling {
115 		// Always outputs blank alpha (ie. alpha=1.0). Only appropriate
116 		// for inputs that do not output an alpha channel.
117 		// Blank alpha is special in that it can be treated as both
118 		// pre- and postmultiplied.
119 		OUTPUT_BLANK_ALPHA,
120 
121 		// Always outputs postmultiplied alpha. Only appropriate for inputs.
122 		OUTPUT_POSTMULTIPLIED_ALPHA,
123 
124 		// Always outputs premultiplied alpha. As noted above,
125 		// you will then also get all inputs in premultiplied alpha.
126 		// If you set this, you should also set needs_linear_light().
127 		INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA,
128 
129 		// Like INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA, but also guarantees
130 		// that if you get blank alpha in, you also keep blank alpha out.
131 		// This is a somewhat weaker guarantee than DONT_CARE_ALPHA_TYPE,
132 		// but is still useful in many situations, and appropriate when
133 		// e.g. you don't touch alpha at all.
134 		//
135 		// Does not make sense for inputs.
136 		INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK,
137 
138 		// Keeps the type of alpha (premultiplied, postmultiplied, blank)
139 		// unchanged from input to output. Usually appropriate if you
140 		// process all color channels in a linear fashion, do not change
141 		// alpha, and do not produce any new pixels that have alpha != 1.0.
142 		//
143 		// Does not make sense for inputs.
144 		DONT_CARE_ALPHA_TYPE,
145 	};
alpha_handling()146 	virtual AlphaHandling alpha_handling() const { return INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA; }
147 
148 	// Whether this effect expects its input to come directly from
149 	// a texture. If this is true, the framework will not chain the
150 	// input from other effects, but will store the results of the
151 	// chain to a temporary (RGBA fp16) texture and let this effect
152 	// sample directly from that.
153 	//
154 	// There are two good reasons why you might want to set this:
155 	//
156 	//  1. You are sampling more than once from the input,
157 	//     in which case computing all the previous steps might
158 	//     be more expensive than going to a memory intermediate.
159 	//  2. You rely on previous effects, possibly including gamma
160 	//     expansion, to happen pre-filtering instead of post-filtering.
161 	//     (This is only relevant if you actually need the filtering; if
162 	//     you sample 1:1 between pixels and texels, it makes no difference.)
163 	//
164 	// Note that in some cases, you might get post-filtered gamma expansion
165 	// even when setting this option. More specifically, if you are the
166 	// first effect in the chain, and the GPU is doing sRGB gamma
167 	// expansion, it is undefined (from OpenGL's side) whether expansion
168 	// happens pre- or post-filtering. For most uses, however,
169 	// either will be fine.
needs_texture_bounce()170 	virtual bool needs_texture_bounce() const { return false; }
171 
172 	// Whether this effect expects mipmaps or not.
173 	enum MipmapRequirements {
174 		// If chosen, you will be sampling with bilinear filtering,
175 		// ie. the closest mipmap will be chosen, and then there will be
176 		// bilinear interpolation inside it (GL_LINEAR_MIPMAP_NEAREST).
177 		NEEDS_MIPMAPS,
178 
179 		// Whether the effect doesn't really care whether input textures
180 		// are with or without mipmaps. You could get the same effect
181 		// as NEEDS_MIPMAPS or CANNOT_ACCEPT_MIPMAPS; normally, you won't
182 		// get them, but if a different effect in the same phase needs mipmaps,
183 		// you will also get them.
184 		DOES_NOT_NEED_MIPMAPS,
185 
186 		// The opposite of NEEDS_MIPMAPS; you will always be sampling from
187 		// the most detailed mip level (GL_LINEAR). Effects with NEEDS_MIPMAPS
188 		// and CANNOT_ACCEPT_MIPMAPS can not coexist within the same phase;
189 		// such phases will be split.
190 		//
191 		// This is the only choice that makes sense for a compute shader,
192 		// given that it doesn't have screen-space derivatives and thus
193 		// always will sample the most detailed mip level.
194 		CANNOT_ACCEPT_MIPMAPS,
195 	};
needs_mipmaps()196 	virtual MipmapRequirements needs_mipmaps() const {
197 		if (is_compute_shader()) {
198 			return CANNOT_ACCEPT_MIPMAPS;
199 		} else {
200 			return DOES_NOT_NEED_MIPMAPS;
201 		}
202 	}
203 
204 	// Whether there is a direct correspondence between input and output
205 	// texels. Specifically, the effect must not:
206 	//
207 	//   1. Try to sample in the border (ie., outside the 0.0 to 1.0 area).
208 	//   2. Try to sample between texels.
209 	//   3. Sample with an x- or y-derivative different from -1 or 1.
210 	//      (This also means needs_mipmaps() and one_to_one_sampling()
211 	//      together would make no sense.)
212 	//
213 	// The most common case for this would be an effect that has an exact
214 	// 1:1-correspondence between input and output texels, e.g. SaturationEffect.
215 	// However, more creative things, like mirroring/flipping or padding,
216 	// would also be allowed.
217 	//
218 	// The primary gain from setting this is that you can sample directly
219 	// from an effect that changes output size (see changes_output_size() below),
220 	// without going through a bounce texture. It won't work for effects that
221 	// set sets_virtual_output_size(), though.
222 	//
223 	// Does not make a lot of sense together with needs_texture_bounce().
224 	// Cannot be set for compute shaders.
one_to_one_sampling()225 	virtual bool one_to_one_sampling() const { return strong_one_to_one_sampling(); }
226 
227 	// Similar in use to one_to_one_sampling(), but even stricter:
228 	// The effect must not modify texture coordinate in any way when
229 	// calling its input(s). This allows it to also be used after
230 	// a compute shader, in the same phase.
231 	//
232 	// An effect that it strong one-to-one must also be one-to-one.
strong_one_to_one_sampling()233 	virtual bool strong_one_to_one_sampling() const { return false; }
234 
235 	// Whether this effect wants to output to a different size than
236 	// its input(s) (see inform_input_size(), below). See also
237 	// sets_virtual_output_size() below.
changes_output_size()238 	virtual bool changes_output_size() const { return false; }
239 
240 	// Whether your get_output_size() function (see below) intends to ever set
241 	// virtual_width different from width, or similar for height.
242 	// It does not make sense to set this to true if changes_output_size() is false.
sets_virtual_output_size()243 	virtual bool sets_virtual_output_size() const { return changes_output_size(); }
244 
245 	// Whether this effect is effectively sampling from a a single texture.
246 	// If so, it will override needs_texture_bounce(); however, there are also
247 	// two demands it needs to fulfill:
248 	//
249 	//  1. It needs to be an Input, ie. num_inputs() == 0.
250 	//  2. It needs to allocate exactly one sampler in set_gl_state(),
251 	//     and allow dependent effects to change that sampler state.
is_single_texture()252 	virtual bool is_single_texture() const { return false; }
253 
254 	// If set, this effect should never be bounced to an output, even if a
255 	// dependent effect demands texture bounce.
256 	//
257 	// Note that setting this can invoke undefined behavior, up to and including crashing,
258 	// so you should only use it if you have deep understanding of your entire chain
259 	// and Movit's processing of it. The most likely use case is if you have an input
260 	// that's cheap to compute but not a single texture (e.g. YCbCrInput), and want
261 	// to run a ResampleEffect directly from it. Normally, this would require a bounce,
262 	// but it's faster not to. (However, also note that in this case, effective texel
263 	// subpixel precision will be too optimistic, since chroma is already subsampled.)
264 	//
265 	// Has no effect if is_single_texture() is set.
override_disable_bounce()266 	virtual bool override_disable_bounce() const { return false; }
267 
268 	// If changes_output_size() is true, you must implement this to tell
269 	// the framework what output size you want. Also, you can set a
270 	// virtual width/height, which is the size the next effect (if any)
271 	// will _think_ your data is in. This is primarily useful if you are
272 	// relying on getting OpenGL's bilinear resizing for free; otherwise,
273 	// your virtual_width/virtual_height should be the same as width/height.
274 	//
275 	// Note that it is explicitly allowed to change width and height
276 	// from frame to frame; EffectChain will reallocate textures as needed.
get_output_size(unsigned * width,unsigned * height,unsigned * virtual_width,unsigned * virtual_height)277 	virtual void get_output_size(unsigned *width, unsigned *height,
278 	                             unsigned *virtual_width, unsigned *virtual_height) const {
279 		assert(false);
280 	}
281 
282 	// Whether this effect uses a compute shader instead of a regular fragment shader.
283 	// Compute shaders are more flexible in that they can have multiple outputs
284 	// for each invocation and also communicate between instances (by using shared
285 	// memory within each group), but are not universally supported. The typical
286 	// pattern would be to check movit_compute_shaders_supported and rewrite the
287 	// graph to use a compute shader effect instead of a regular effect if it is
288 	// available, in order to get better performance. Since compute shaders can reuse
289 	// loads (again typically through shared memory), using needs_texture_bounce()
290 	// is usually not needed, although it is allowed; the best candidates for compute
291 	// shaders are typically those that sample many times from their input
292 	// but can reuse those loads across neighboring instances.
293 	//
294 	// Compute shaders commonly work with unnormalized texture coordinates
295 	// (where coordinates are integers [0..W) and [0..H)), whereas the rest
296 	// of Movit, including any inputs you may want to sample from, works
297 	// with normalized coordinates ([0..1)). Movit gives you uniforms
298 	// PREFIX(inv_output_size) and PREFIX(output_texcoord_adjust) that you
299 	// can use to transform unnormalized to normalized, as well as a macro
300 	// NORMALIZE_TEXTURE_COORDS(vec2) that does it for you.
301 	//
302 	// Since compute shaders have flexible output, it is difficult to chain other
303 	// effects after them in the same phase, and thus, they will always be last.
304 	// (This limitation may be lifted for the special case of one-to-one effects
305 	// in the future.) Furthermore, they cannot write to the framebuffer, just to
306 	// textures, so Movit may have to insert an extra phase just to do the output
307 	// from a texture to the screen in some cases. However, this is transparent
308 	// to both the effect and the user.
is_compute_shader()309 	virtual bool is_compute_shader() const { return false; }
310 
311 	// For a compute shader (see the previous member function), what dimensions
312 	// it should be invoked over. Called every frame, before uniforms are set
313 	// (so you are allowed to update uniforms based from this call).
get_compute_dimensions(unsigned output_width,unsigned output_height,unsigned * x,unsigned * y,unsigned * z)314 	virtual void get_compute_dimensions(unsigned output_width, unsigned output_height,
315 	                                    unsigned *x, unsigned *y, unsigned *z) const {
316 		*x = output_width;
317 		*y = output_height;
318 		*z = 1;
319 	}
320 
321 	// Tells the effect the resolution of each of its input.
322 	// This will be called every frame, and always before get_output_size(),
323 	// so you can change your output size based on the input if so desired.
324 	//
325 	// Note that in some cases, an input might not have a single well-defined
326 	// resolution (for instance if you fade between two inputs with
327 	// different resolutions). In this case, you will get width=0 and height=0
328 	// for that input. If you cannot handle that, you will need to set
329 	// needs_texture_bounce() to true, which will force a render to a single
330 	// given resolution before you get the input.
inform_input_size(unsigned input_num,unsigned width,unsigned height)331 	virtual void inform_input_size(unsigned input_num, unsigned width, unsigned height) {}
332 
333 	// How many inputs this effect will take (a fixed number).
334 	// If you have only one input, it will be called INPUT() in GLSL;
335 	// if you have several, they will be INPUT1(), INPUT2(), and so on.
num_inputs()336 	virtual unsigned num_inputs() const { return 1; }
337 
338 	// Inform the effect that it has been just added to the EffectChain.
339 	// The primary use for this is to store the ResourcePool uesd by
340 	// the chain; for modifications to it, rewrite_graph() below
341 	// is probably a better fit.
inform_added(EffectChain * chain)342 	virtual void inform_added(EffectChain *chain) {}
343 
344 	// Let the effect rewrite the effect chain as it sees fit.
345 	// Most effects won't need to do this, but this is very useful
346 	// if you have an effect that consists of multiple sub-effects
347 	// (for instance, two passes). The effect is given to its own
348 	// pointer, and it can add new ones (by using add_node()
349 	// and connect_node()) as it sees fit. This is called at
350 	// EffectChain::finalize() time, when the entire graph is known,
351 	// in the order that the effects were originally added.
352 	//
353 	// Note that if the effect wants to take itself entirely out
354 	// of the chain, it must set “disabled” to true and then disconnect
355 	// itself from all other effects.
rewrite_graph(EffectChain * graph,Node * self)356 	virtual void rewrite_graph(EffectChain *graph, Node *self) {}
357 
358 	// Returns the GLSL fragment shader string for this effect.
359 	virtual std::string output_fragment_shader() = 0;
360 
361 	// Set all OpenGL state that this effect needs before rendering.
362 	// The default implementation sets one uniform per registered parameter,
363 	// but no other state.
364 	//
365 	// <sampler_num> is the first free texture sampler. If you want to use
366 	// textures, you can bind a texture to GL_TEXTURE0 + <sampler_num>,
367 	// and then increment the number (so that the next effect in the chain
368 	// will use a different sampler).
369 	virtual void set_gl_state(GLuint glsl_program_num, const std::string& prefix, unsigned *sampler_num);
370 
371 	// If you set any special OpenGL state in set_gl_state(), you can clear it
372 	// after rendering here. The default implementation does nothing.
373 	virtual void clear_gl_state();
374 
375 	// Set a parameter; intended to be called from user code.
376 	// Neither of these take ownership of the pointer.
377 	virtual bool set_int(const std::string &key, int value) MUST_CHECK_RESULT;
378 	virtual bool set_ivec2(const std::string &key, const int *values) MUST_CHECK_RESULT;
379 	virtual bool set_float(const std::string &key, float value) MUST_CHECK_RESULT;
380 	virtual bool set_vec2(const std::string &key, const float *values) MUST_CHECK_RESULT;
381 	virtual bool set_vec3(const std::string &key, const float *values) MUST_CHECK_RESULT;
382 	virtual bool set_vec4(const std::string &key, const float *values) MUST_CHECK_RESULT;
383 
384 protected:
385 	// Register a parameter. Whenever set_*() is called with the same key,
386 	// it will update the value in the given pointer (typically a pointer
387 	// to some private member variable in your effect). It will also
388 	// register a uniform of the same name (plus an arbitrary prefix
389 	// which you can access using the PREFIX macro) that you can access.
390 	//
391 	// Neither of these take ownership of the pointer.
392 
393 	// These correspond directly to int/float/vec2/vec3/vec4 in GLSL.
394 	void register_int(const std::string &key, int *value);
395 	void register_ivec2(const std::string &key, int *values);
396 	void register_float(const std::string &key, float *value);
397 	void register_vec2(const std::string &key, float *values);
398 	void register_vec3(const std::string &key, float *values);
399 	void register_vec4(const std::string &key, float *values);
400 
401 	// Register uniforms, such that they will automatically be set
402 	// before the shader runs. This is more efficient than set_uniform_*
403 	// in effect_util.h, because it doesn't need to do name lookups
404 	// every time. Also, in the future, it will use uniform buffer objects
405 	// (UBOs) if available to reduce the number of calls into the driver.
406 	//
407 	// May not be called after output_fragment_shader() has returned.
408 	// The pointer must be valid for the entire lifetime of the Effect,
409 	// since the value is pulled from it each execution. The value is
410 	// guaranteed to be read after set_gl_state() for the effect has
411 	// returned, so you can safely update its value from there.
412 	//
413 	// Note that this will also declare the uniform in the shader for you,
414 	// so you should not do that yourself. (This is so it can be part of
415 	// the right uniform block.) However, it is probably a good idea to
416 	// have a commented-out declaration so that it is easier to see the
417 	// type and thus understand the shader on its own.
418 	//
419 	// Calling register_* will automatically imply register_uniform_*,
420 	// except for register_int as noted above.
421 	void register_uniform_sampler2d(const std::string &key, const int *value);
422 	void register_uniform_bool(const std::string &key, const bool *value);
423 	void register_uniform_int(const std::string &key, const int *value);
424 	void register_uniform_ivec2(const std::string &key, const int *values);
425 	void register_uniform_float(const std::string &key, const float *value);
426 	void register_uniform_vec2(const std::string &key, const float *values);
427 	void register_uniform_vec3(const std::string &key, const float *values);
428 	void register_uniform_vec4(const std::string &key, const float *values);
429 	void register_uniform_float_array(const std::string &key, const float *values, size_t num_values);
430 	void register_uniform_vec2_array(const std::string &key, const float *values, size_t num_values);
431 	void register_uniform_vec3_array(const std::string &key, const float *values, size_t num_values);
432 	void register_uniform_vec4_array(const std::string &key, const float *values, size_t num_values);
433 	void register_uniform_mat3(const std::string &key, const Eigen::Matrix3d *matrix);
434 
435 private:
436 	std::map<std::string, int *> params_int;
437 	std::map<std::string, int *> params_ivec2;
438 	std::map<std::string, float *> params_float;
439 	std::map<std::string, float *> params_vec2;
440 	std::map<std::string, float *> params_vec3;
441 	std::map<std::string, float *> params_vec4;
442 
443 	// Picked out by EffectChain during finalization.
444 	std::vector<Uniform<int>> uniforms_image2d;
445 	std::vector<Uniform<int>> uniforms_sampler2d;
446 	std::vector<Uniform<bool>> uniforms_bool;
447 	std::vector<Uniform<int>> uniforms_int;
448 	std::vector<Uniform<int>> uniforms_ivec2;
449 	std::vector<Uniform<float>> uniforms_float;
450 	std::vector<Uniform<float>> uniforms_vec2;
451 	std::vector<Uniform<float>> uniforms_vec3;
452 	std::vector<Uniform<float>> uniforms_vec4;
453 	std::vector<Uniform<float>> uniforms_float_array;
454 	std::vector<Uniform<float>> uniforms_vec2_array;
455 	std::vector<Uniform<float>> uniforms_vec3_array;
456 	std::vector<Uniform<float>> uniforms_vec4_array;
457 	std::vector<Uniform<Eigen::Matrix3d>> uniforms_mat3;
458 	friend class EffectChain;
459 };
460 
461 }  // namespace movit
462 
463 #endif // !defined(_MOVIT_EFFECT_H)
464