1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for C++ declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/ComparisonCategories.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "clang/AST/TypeOrdering.h"
27 #include "clang/Basic/AttributeCommonInfo.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/LiteralSupport.h"
31 #include "clang/Lex/Preprocessor.h"
32 #include "clang/Sema/CXXFieldCollector.h"
33 #include "clang/Sema/DeclSpec.h"
34 #include "clang/Sema/Initialization.h"
35 #include "clang/Sema/Lookup.h"
36 #include "clang/Sema/ParsedTemplate.h"
37 #include "clang/Sema/Scope.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/SemaInternal.h"
40 #include "clang/Sema/Template.h"
41 #include "llvm/ADT/ScopeExit.h"
42 #include "llvm/ADT/SmallString.h"
43 #include "llvm/ADT/STLExtras.h"
44 #include "llvm/ADT/StringExtras.h"
45 #include <map>
46 #include <set>
47 
48 using namespace clang;
49 
50 //===----------------------------------------------------------------------===//
51 // CheckDefaultArgumentVisitor
52 //===----------------------------------------------------------------------===//
53 
54 namespace {
55 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
56 /// the default argument of a parameter to determine whether it
57 /// contains any ill-formed subexpressions. For example, this will
58 /// diagnose the use of local variables or parameters within the
59 /// default argument expression.
60 class CheckDefaultArgumentVisitor
61     : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> {
62   Sema &S;
63   const Expr *DefaultArg;
64 
65 public:
CheckDefaultArgumentVisitor(Sema & S,const Expr * DefaultArg)66   CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg)
67       : S(S), DefaultArg(DefaultArg) {}
68 
69   bool VisitExpr(const Expr *Node);
70   bool VisitDeclRefExpr(const DeclRefExpr *DRE);
71   bool VisitCXXThisExpr(const CXXThisExpr *ThisE);
72   bool VisitLambdaExpr(const LambdaExpr *Lambda);
73   bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE);
74 };
75 
76 /// VisitExpr - Visit all of the children of this expression.
VisitExpr(const Expr * Node)77 bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) {
78   bool IsInvalid = false;
79   for (const Stmt *SubStmt : Node->children())
80     IsInvalid |= Visit(SubStmt);
81   return IsInvalid;
82 }
83 
84 /// VisitDeclRefExpr - Visit a reference to a declaration, to
85 /// determine whether this declaration can be used in the default
86 /// argument expression.
VisitDeclRefExpr(const DeclRefExpr * DRE)87 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) {
88   const NamedDecl *Decl = DRE->getDecl();
89   if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) {
90     // C++ [dcl.fct.default]p9:
91     //   [...] parameters of a function shall not be used in default
92     //   argument expressions, even if they are not evaluated. [...]
93     //
94     // C++17 [dcl.fct.default]p9 (by CWG 2082):
95     //   [...] A parameter shall not appear as a potentially-evaluated
96     //   expression in a default argument. [...]
97     //
98     if (DRE->isNonOdrUse() != NOUR_Unevaluated)
99       return S.Diag(DRE->getBeginLoc(),
100                     diag::err_param_default_argument_references_param)
101              << Param->getDeclName() << DefaultArg->getSourceRange();
102   } else if (const auto *VDecl = dyn_cast<VarDecl>(Decl)) {
103     // C++ [dcl.fct.default]p7:
104     //   Local variables shall not be used in default argument
105     //   expressions.
106     //
107     // C++17 [dcl.fct.default]p7 (by CWG 2082):
108     //   A local variable shall not appear as a potentially-evaluated
109     //   expression in a default argument.
110     //
111     // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346):
112     //   Note: A local variable cannot be odr-used (6.3) in a default argument.
113     //
114     if (VDecl->isLocalVarDecl() && !DRE->isNonOdrUse())
115       return S.Diag(DRE->getBeginLoc(),
116                     diag::err_param_default_argument_references_local)
117              << VDecl->getDeclName() << DefaultArg->getSourceRange();
118   }
119 
120   return false;
121 }
122 
123 /// VisitCXXThisExpr - Visit a C++ "this" expression.
VisitCXXThisExpr(const CXXThisExpr * ThisE)124 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) {
125   // C++ [dcl.fct.default]p8:
126   //   The keyword this shall not be used in a default argument of a
127   //   member function.
128   return S.Diag(ThisE->getBeginLoc(),
129                 diag::err_param_default_argument_references_this)
130          << ThisE->getSourceRange();
131 }
132 
VisitPseudoObjectExpr(const PseudoObjectExpr * POE)133 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(
134     const PseudoObjectExpr *POE) {
135   bool Invalid = false;
136   for (const Expr *E : POE->semantics()) {
137     // Look through bindings.
138     if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
139       E = OVE->getSourceExpr();
140       assert(E && "pseudo-object binding without source expression?");
141     }
142 
143     Invalid |= Visit(E);
144   }
145   return Invalid;
146 }
147 
VisitLambdaExpr(const LambdaExpr * Lambda)148 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) {
149   // C++11 [expr.lambda.prim]p13:
150   //   A lambda-expression appearing in a default argument shall not
151   //   implicitly or explicitly capture any entity.
152   if (Lambda->capture_begin() == Lambda->capture_end())
153     return false;
154 
155   return S.Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg);
156 }
157 } // namespace
158 
159 void
CalledDecl(SourceLocation CallLoc,const CXXMethodDecl * Method)160 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
161                                                  const CXXMethodDecl *Method) {
162   // If we have an MSAny spec already, don't bother.
163   if (!Method || ComputedEST == EST_MSAny)
164     return;
165 
166   const FunctionProtoType *Proto
167     = Method->getType()->getAs<FunctionProtoType>();
168   Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
169   if (!Proto)
170     return;
171 
172   ExceptionSpecificationType EST = Proto->getExceptionSpecType();
173 
174   // If we have a throw-all spec at this point, ignore the function.
175   if (ComputedEST == EST_None)
176     return;
177 
178   if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
179     EST = EST_BasicNoexcept;
180 
181   switch (EST) {
182   case EST_Unparsed:
183   case EST_Uninstantiated:
184   case EST_Unevaluated:
185     llvm_unreachable("should not see unresolved exception specs here");
186 
187   // If this function can throw any exceptions, make a note of that.
188   case EST_MSAny:
189   case EST_None:
190     // FIXME: Whichever we see last of MSAny and None determines our result.
191     // We should make a consistent, order-independent choice here.
192     ClearExceptions();
193     ComputedEST = EST;
194     return;
195   case EST_NoexceptFalse:
196     ClearExceptions();
197     ComputedEST = EST_None;
198     return;
199   // FIXME: If the call to this decl is using any of its default arguments, we
200   // need to search them for potentially-throwing calls.
201   // If this function has a basic noexcept, it doesn't affect the outcome.
202   case EST_BasicNoexcept:
203   case EST_NoexceptTrue:
204   case EST_NoThrow:
205     return;
206   // If we're still at noexcept(true) and there's a throw() callee,
207   // change to that specification.
208   case EST_DynamicNone:
209     if (ComputedEST == EST_BasicNoexcept)
210       ComputedEST = EST_DynamicNone;
211     return;
212   case EST_DependentNoexcept:
213     llvm_unreachable(
214         "should not generate implicit declarations for dependent cases");
215   case EST_Dynamic:
216     break;
217   }
218   assert(EST == EST_Dynamic && "EST case not considered earlier.");
219   assert(ComputedEST != EST_None &&
220          "Shouldn't collect exceptions when throw-all is guaranteed.");
221   ComputedEST = EST_Dynamic;
222   // Record the exceptions in this function's exception specification.
223   for (const auto &E : Proto->exceptions())
224     if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
225       Exceptions.push_back(E);
226 }
227 
CalledStmt(Stmt * S)228 void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) {
229   if (!S || ComputedEST == EST_MSAny)
230     return;
231 
232   // FIXME:
233   //
234   // C++0x [except.spec]p14:
235   //   [An] implicit exception-specification specifies the type-id T if and
236   // only if T is allowed by the exception-specification of a function directly
237   // invoked by f's implicit definition; f shall allow all exceptions if any
238   // function it directly invokes allows all exceptions, and f shall allow no
239   // exceptions if every function it directly invokes allows no exceptions.
240   //
241   // Note in particular that if an implicit exception-specification is generated
242   // for a function containing a throw-expression, that specification can still
243   // be noexcept(true).
244   //
245   // Note also that 'directly invoked' is not defined in the standard, and there
246   // is no indication that we should only consider potentially-evaluated calls.
247   //
248   // Ultimately we should implement the intent of the standard: the exception
249   // specification should be the set of exceptions which can be thrown by the
250   // implicit definition. For now, we assume that any non-nothrow expression can
251   // throw any exception.
252 
253   if (Self->canThrow(S))
254     ComputedEST = EST_None;
255 }
256 
ConvertParamDefaultArgument(ParmVarDecl * Param,Expr * Arg,SourceLocation EqualLoc)257 ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
258                                              SourceLocation EqualLoc) {
259   if (RequireCompleteType(Param->getLocation(), Param->getType(),
260                           diag::err_typecheck_decl_incomplete_type))
261     return true;
262 
263   // C++ [dcl.fct.default]p5
264   //   A default argument expression is implicitly converted (clause
265   //   4) to the parameter type. The default argument expression has
266   //   the same semantic constraints as the initializer expression in
267   //   a declaration of a variable of the parameter type, using the
268   //   copy-initialization semantics (8.5).
269   InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
270                                                                     Param);
271   InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
272                                                            EqualLoc);
273   InitializationSequence InitSeq(*this, Entity, Kind, Arg);
274   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
275   if (Result.isInvalid())
276     return true;
277   Arg = Result.getAs<Expr>();
278 
279   CheckCompletedExpr(Arg, EqualLoc);
280   Arg = MaybeCreateExprWithCleanups(Arg);
281 
282   return Arg;
283 }
284 
SetParamDefaultArgument(ParmVarDecl * Param,Expr * Arg,SourceLocation EqualLoc)285 void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
286                                    SourceLocation EqualLoc) {
287   // Add the default argument to the parameter
288   Param->setDefaultArg(Arg);
289 
290   // We have already instantiated this parameter; provide each of the
291   // instantiations with the uninstantiated default argument.
292   UnparsedDefaultArgInstantiationsMap::iterator InstPos
293     = UnparsedDefaultArgInstantiations.find(Param);
294   if (InstPos != UnparsedDefaultArgInstantiations.end()) {
295     for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
296       InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
297 
298     // We're done tracking this parameter's instantiations.
299     UnparsedDefaultArgInstantiations.erase(InstPos);
300   }
301 }
302 
303 /// ActOnParamDefaultArgument - Check whether the default argument
304 /// provided for a function parameter is well-formed. If so, attach it
305 /// to the parameter declaration.
306 void
ActOnParamDefaultArgument(Decl * param,SourceLocation EqualLoc,Expr * DefaultArg)307 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
308                                 Expr *DefaultArg) {
309   if (!param || !DefaultArg)
310     return;
311 
312   ParmVarDecl *Param = cast<ParmVarDecl>(param);
313   UnparsedDefaultArgLocs.erase(Param);
314 
315   auto Fail = [&] {
316     Param->setInvalidDecl();
317     Param->setDefaultArg(new (Context) OpaqueValueExpr(
318         EqualLoc, Param->getType().getNonReferenceType(), VK_RValue));
319   };
320 
321   // Default arguments are only permitted in C++
322   if (!getLangOpts().CPlusPlus) {
323     Diag(EqualLoc, diag::err_param_default_argument)
324       << DefaultArg->getSourceRange();
325     return Fail();
326   }
327 
328   // Check for unexpanded parameter packs.
329   if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
330     return Fail();
331   }
332 
333   // C++11 [dcl.fct.default]p3
334   //   A default argument expression [...] shall not be specified for a
335   //   parameter pack.
336   if (Param->isParameterPack()) {
337     Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
338         << DefaultArg->getSourceRange();
339     // Recover by discarding the default argument.
340     Param->setDefaultArg(nullptr);
341     return;
342   }
343 
344   ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc);
345   if (Result.isInvalid())
346     return Fail();
347 
348   DefaultArg = Result.getAs<Expr>();
349 
350   // Check that the default argument is well-formed
351   CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg);
352   if (DefaultArgChecker.Visit(DefaultArg))
353     return Fail();
354 
355   SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
356 }
357 
358 /// ActOnParamUnparsedDefaultArgument - We've seen a default
359 /// argument for a function parameter, but we can't parse it yet
360 /// because we're inside a class definition. Note that this default
361 /// argument will be parsed later.
ActOnParamUnparsedDefaultArgument(Decl * param,SourceLocation EqualLoc,SourceLocation ArgLoc)362 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
363                                              SourceLocation EqualLoc,
364                                              SourceLocation ArgLoc) {
365   if (!param)
366     return;
367 
368   ParmVarDecl *Param = cast<ParmVarDecl>(param);
369   Param->setUnparsedDefaultArg();
370   UnparsedDefaultArgLocs[Param] = ArgLoc;
371 }
372 
373 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
374 /// the default argument for the parameter param failed.
ActOnParamDefaultArgumentError(Decl * param,SourceLocation EqualLoc)375 void Sema::ActOnParamDefaultArgumentError(Decl *param,
376                                           SourceLocation EqualLoc) {
377   if (!param)
378     return;
379 
380   ParmVarDecl *Param = cast<ParmVarDecl>(param);
381   Param->setInvalidDecl();
382   UnparsedDefaultArgLocs.erase(Param);
383   Param->setDefaultArg(new(Context)
384                        OpaqueValueExpr(EqualLoc,
385                                        Param->getType().getNonReferenceType(),
386                                        VK_RValue));
387 }
388 
389 /// CheckExtraCXXDefaultArguments - Check for any extra default
390 /// arguments in the declarator, which is not a function declaration
391 /// or definition and therefore is not permitted to have default
392 /// arguments. This routine should be invoked for every declarator
393 /// that is not a function declaration or definition.
CheckExtraCXXDefaultArguments(Declarator & D)394 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
395   // C++ [dcl.fct.default]p3
396   //   A default argument expression shall be specified only in the
397   //   parameter-declaration-clause of a function declaration or in a
398   //   template-parameter (14.1). It shall not be specified for a
399   //   parameter pack. If it is specified in a
400   //   parameter-declaration-clause, it shall not occur within a
401   //   declarator or abstract-declarator of a parameter-declaration.
402   bool MightBeFunction = D.isFunctionDeclarationContext();
403   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
404     DeclaratorChunk &chunk = D.getTypeObject(i);
405     if (chunk.Kind == DeclaratorChunk::Function) {
406       if (MightBeFunction) {
407         // This is a function declaration. It can have default arguments, but
408         // keep looking in case its return type is a function type with default
409         // arguments.
410         MightBeFunction = false;
411         continue;
412       }
413       for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
414            ++argIdx) {
415         ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
416         if (Param->hasUnparsedDefaultArg()) {
417           std::unique_ptr<CachedTokens> Toks =
418               std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
419           SourceRange SR;
420           if (Toks->size() > 1)
421             SR = SourceRange((*Toks)[1].getLocation(),
422                              Toks->back().getLocation());
423           else
424             SR = UnparsedDefaultArgLocs[Param];
425           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
426             << SR;
427         } else if (Param->getDefaultArg()) {
428           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
429             << Param->getDefaultArg()->getSourceRange();
430           Param->setDefaultArg(nullptr);
431         }
432       }
433     } else if (chunk.Kind != DeclaratorChunk::Paren) {
434       MightBeFunction = false;
435     }
436   }
437 }
438 
functionDeclHasDefaultArgument(const FunctionDecl * FD)439 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
440   return std::any_of(FD->param_begin(), FD->param_end(), [](ParmVarDecl *P) {
441     return P->hasDefaultArg() && !P->hasInheritedDefaultArg();
442   });
443 }
444 
445 /// MergeCXXFunctionDecl - Merge two declarations of the same C++
446 /// function, once we already know that they have the same
447 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an
448 /// error, false otherwise.
MergeCXXFunctionDecl(FunctionDecl * New,FunctionDecl * Old,Scope * S)449 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
450                                 Scope *S) {
451   bool Invalid = false;
452 
453   // The declaration context corresponding to the scope is the semantic
454   // parent, unless this is a local function declaration, in which case
455   // it is that surrounding function.
456   DeclContext *ScopeDC = New->isLocalExternDecl()
457                              ? New->getLexicalDeclContext()
458                              : New->getDeclContext();
459 
460   // Find the previous declaration for the purpose of default arguments.
461   FunctionDecl *PrevForDefaultArgs = Old;
462   for (/**/; PrevForDefaultArgs;
463        // Don't bother looking back past the latest decl if this is a local
464        // extern declaration; nothing else could work.
465        PrevForDefaultArgs = New->isLocalExternDecl()
466                                 ? nullptr
467                                 : PrevForDefaultArgs->getPreviousDecl()) {
468     // Ignore hidden declarations.
469     if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
470       continue;
471 
472     if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
473         !New->isCXXClassMember()) {
474       // Ignore default arguments of old decl if they are not in
475       // the same scope and this is not an out-of-line definition of
476       // a member function.
477       continue;
478     }
479 
480     if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
481       // If only one of these is a local function declaration, then they are
482       // declared in different scopes, even though isDeclInScope may think
483       // they're in the same scope. (If both are local, the scope check is
484       // sufficient, and if neither is local, then they are in the same scope.)
485       continue;
486     }
487 
488     // We found the right previous declaration.
489     break;
490   }
491 
492   // C++ [dcl.fct.default]p4:
493   //   For non-template functions, default arguments can be added in
494   //   later declarations of a function in the same
495   //   scope. Declarations in different scopes have completely
496   //   distinct sets of default arguments. That is, declarations in
497   //   inner scopes do not acquire default arguments from
498   //   declarations in outer scopes, and vice versa. In a given
499   //   function declaration, all parameters subsequent to a
500   //   parameter with a default argument shall have default
501   //   arguments supplied in this or previous declarations. A
502   //   default argument shall not be redefined by a later
503   //   declaration (not even to the same value).
504   //
505   // C++ [dcl.fct.default]p6:
506   //   Except for member functions of class templates, the default arguments
507   //   in a member function definition that appears outside of the class
508   //   definition are added to the set of default arguments provided by the
509   //   member function declaration in the class definition.
510   for (unsigned p = 0, NumParams = PrevForDefaultArgs
511                                        ? PrevForDefaultArgs->getNumParams()
512                                        : 0;
513        p < NumParams; ++p) {
514     ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
515     ParmVarDecl *NewParam = New->getParamDecl(p);
516 
517     bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
518     bool NewParamHasDfl = NewParam->hasDefaultArg();
519 
520     if (OldParamHasDfl && NewParamHasDfl) {
521       unsigned DiagDefaultParamID =
522         diag::err_param_default_argument_redefinition;
523 
524       // MSVC accepts that default parameters be redefined for member functions
525       // of template class. The new default parameter's value is ignored.
526       Invalid = true;
527       if (getLangOpts().MicrosoftExt) {
528         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
529         if (MD && MD->getParent()->getDescribedClassTemplate()) {
530           // Merge the old default argument into the new parameter.
531           NewParam->setHasInheritedDefaultArg();
532           if (OldParam->hasUninstantiatedDefaultArg())
533             NewParam->setUninstantiatedDefaultArg(
534                                       OldParam->getUninstantiatedDefaultArg());
535           else
536             NewParam->setDefaultArg(OldParam->getInit());
537           DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
538           Invalid = false;
539         }
540       }
541 
542       // FIXME: If we knew where the '=' was, we could easily provide a fix-it
543       // hint here. Alternatively, we could walk the type-source information
544       // for NewParam to find the last source location in the type... but it
545       // isn't worth the effort right now. This is the kind of test case that
546       // is hard to get right:
547       //   int f(int);
548       //   void g(int (*fp)(int) = f);
549       //   void g(int (*fp)(int) = &f);
550       Diag(NewParam->getLocation(), DiagDefaultParamID)
551         << NewParam->getDefaultArgRange();
552 
553       // Look for the function declaration where the default argument was
554       // actually written, which may be a declaration prior to Old.
555       for (auto Older = PrevForDefaultArgs;
556            OldParam->hasInheritedDefaultArg(); /**/) {
557         Older = Older->getPreviousDecl();
558         OldParam = Older->getParamDecl(p);
559       }
560 
561       Diag(OldParam->getLocation(), diag::note_previous_definition)
562         << OldParam->getDefaultArgRange();
563     } else if (OldParamHasDfl) {
564       // Merge the old default argument into the new parameter unless the new
565       // function is a friend declaration in a template class. In the latter
566       // case the default arguments will be inherited when the friend
567       // declaration will be instantiated.
568       if (New->getFriendObjectKind() == Decl::FOK_None ||
569           !New->getLexicalDeclContext()->isDependentContext()) {
570         // It's important to use getInit() here;  getDefaultArg()
571         // strips off any top-level ExprWithCleanups.
572         NewParam->setHasInheritedDefaultArg();
573         if (OldParam->hasUnparsedDefaultArg())
574           NewParam->setUnparsedDefaultArg();
575         else if (OldParam->hasUninstantiatedDefaultArg())
576           NewParam->setUninstantiatedDefaultArg(
577                                        OldParam->getUninstantiatedDefaultArg());
578         else
579           NewParam->setDefaultArg(OldParam->getInit());
580       }
581     } else if (NewParamHasDfl) {
582       if (New->getDescribedFunctionTemplate()) {
583         // Paragraph 4, quoted above, only applies to non-template functions.
584         Diag(NewParam->getLocation(),
585              diag::err_param_default_argument_template_redecl)
586           << NewParam->getDefaultArgRange();
587         Diag(PrevForDefaultArgs->getLocation(),
588              diag::note_template_prev_declaration)
589             << false;
590       } else if (New->getTemplateSpecializationKind()
591                    != TSK_ImplicitInstantiation &&
592                  New->getTemplateSpecializationKind() != TSK_Undeclared) {
593         // C++ [temp.expr.spec]p21:
594         //   Default function arguments shall not be specified in a declaration
595         //   or a definition for one of the following explicit specializations:
596         //     - the explicit specialization of a function template;
597         //     - the explicit specialization of a member function template;
598         //     - the explicit specialization of a member function of a class
599         //       template where the class template specialization to which the
600         //       member function specialization belongs is implicitly
601         //       instantiated.
602         Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
603           << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
604           << New->getDeclName()
605           << NewParam->getDefaultArgRange();
606       } else if (New->getDeclContext()->isDependentContext()) {
607         // C++ [dcl.fct.default]p6 (DR217):
608         //   Default arguments for a member function of a class template shall
609         //   be specified on the initial declaration of the member function
610         //   within the class template.
611         //
612         // Reading the tea leaves a bit in DR217 and its reference to DR205
613         // leads me to the conclusion that one cannot add default function
614         // arguments for an out-of-line definition of a member function of a
615         // dependent type.
616         int WhichKind = 2;
617         if (CXXRecordDecl *Record
618               = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
619           if (Record->getDescribedClassTemplate())
620             WhichKind = 0;
621           else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
622             WhichKind = 1;
623           else
624             WhichKind = 2;
625         }
626 
627         Diag(NewParam->getLocation(),
628              diag::err_param_default_argument_member_template_redecl)
629           << WhichKind
630           << NewParam->getDefaultArgRange();
631       }
632     }
633   }
634 
635   // DR1344: If a default argument is added outside a class definition and that
636   // default argument makes the function a special member function, the program
637   // is ill-formed. This can only happen for constructors.
638   if (isa<CXXConstructorDecl>(New) &&
639       New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
640     CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
641                      OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
642     if (NewSM != OldSM) {
643       ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
644       assert(NewParam->hasDefaultArg());
645       Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
646         << NewParam->getDefaultArgRange() << NewSM;
647       Diag(Old->getLocation(), diag::note_previous_declaration);
648     }
649   }
650 
651   const FunctionDecl *Def;
652   // C++11 [dcl.constexpr]p1: If any declaration of a function or function
653   // template has a constexpr specifier then all its declarations shall
654   // contain the constexpr specifier.
655   if (New->getConstexprKind() != Old->getConstexprKind()) {
656     Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
657         << New << static_cast<int>(New->getConstexprKind())
658         << static_cast<int>(Old->getConstexprKind());
659     Diag(Old->getLocation(), diag::note_previous_declaration);
660     Invalid = true;
661   } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
662              Old->isDefined(Def) &&
663              // If a friend function is inlined but does not have 'inline'
664              // specifier, it is a definition. Do not report attribute conflict
665              // in this case, redefinition will be diagnosed later.
666              (New->isInlineSpecified() ||
667               New->getFriendObjectKind() == Decl::FOK_None)) {
668     // C++11 [dcl.fcn.spec]p4:
669     //   If the definition of a function appears in a translation unit before its
670     //   first declaration as inline, the program is ill-formed.
671     Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
672     Diag(Def->getLocation(), diag::note_previous_definition);
673     Invalid = true;
674   }
675 
676   // C++17 [temp.deduct.guide]p3:
677   //   Two deduction guide declarations in the same translation unit
678   //   for the same class template shall not have equivalent
679   //   parameter-declaration-clauses.
680   if (isa<CXXDeductionGuideDecl>(New) &&
681       !New->isFunctionTemplateSpecialization() && isVisible(Old)) {
682     Diag(New->getLocation(), diag::err_deduction_guide_redeclared);
683     Diag(Old->getLocation(), diag::note_previous_declaration);
684   }
685 
686   // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
687   // argument expression, that declaration shall be a definition and shall be
688   // the only declaration of the function or function template in the
689   // translation unit.
690   if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
691       functionDeclHasDefaultArgument(Old)) {
692     Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
693     Diag(Old->getLocation(), diag::note_previous_declaration);
694     Invalid = true;
695   }
696 
697   // C++11 [temp.friend]p4 (DR329):
698   //   When a function is defined in a friend function declaration in a class
699   //   template, the function is instantiated when the function is odr-used.
700   //   The same restrictions on multiple declarations and definitions that
701   //   apply to non-template function declarations and definitions also apply
702   //   to these implicit definitions.
703   const FunctionDecl *OldDefinition = nullptr;
704   if (New->isThisDeclarationInstantiatedFromAFriendDefinition() &&
705       Old->isDefined(OldDefinition, true))
706     CheckForFunctionRedefinition(New, OldDefinition);
707 
708   return Invalid;
709 }
710 
711 NamedDecl *
ActOnDecompositionDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists)712 Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
713                                    MultiTemplateParamsArg TemplateParamLists) {
714   assert(D.isDecompositionDeclarator());
715   const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
716 
717   // The syntax only allows a decomposition declarator as a simple-declaration,
718   // a for-range-declaration, or a condition in Clang, but we parse it in more
719   // cases than that.
720   if (!D.mayHaveDecompositionDeclarator()) {
721     Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
722       << Decomp.getSourceRange();
723     return nullptr;
724   }
725 
726   if (!TemplateParamLists.empty()) {
727     // FIXME: There's no rule against this, but there are also no rules that
728     // would actually make it usable, so we reject it for now.
729     Diag(TemplateParamLists.front()->getTemplateLoc(),
730          diag::err_decomp_decl_template);
731     return nullptr;
732   }
733 
734   Diag(Decomp.getLSquareLoc(),
735        !getLangOpts().CPlusPlus17
736            ? diag::ext_decomp_decl
737            : D.getContext() == DeclaratorContext::Condition
738                  ? diag::ext_decomp_decl_cond
739                  : diag::warn_cxx14_compat_decomp_decl)
740       << Decomp.getSourceRange();
741 
742   // The semantic context is always just the current context.
743   DeclContext *const DC = CurContext;
744 
745   // C++17 [dcl.dcl]/8:
746   //   The decl-specifier-seq shall contain only the type-specifier auto
747   //   and cv-qualifiers.
748   // C++2a [dcl.dcl]/8:
749   //   If decl-specifier-seq contains any decl-specifier other than static,
750   //   thread_local, auto, or cv-qualifiers, the program is ill-formed.
751   auto &DS = D.getDeclSpec();
752   {
753     SmallVector<StringRef, 8> BadSpecifiers;
754     SmallVector<SourceLocation, 8> BadSpecifierLocs;
755     SmallVector<StringRef, 8> CPlusPlus20Specifiers;
756     SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs;
757     if (auto SCS = DS.getStorageClassSpec()) {
758       if (SCS == DeclSpec::SCS_static) {
759         CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS));
760         CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc());
761       } else {
762         BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
763         BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
764       }
765     }
766     if (auto TSCS = DS.getThreadStorageClassSpec()) {
767       CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS));
768       CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
769     }
770     if (DS.hasConstexprSpecifier()) {
771       BadSpecifiers.push_back(
772           DeclSpec::getSpecifierName(DS.getConstexprSpecifier()));
773       BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
774     }
775     if (DS.isInlineSpecified()) {
776       BadSpecifiers.push_back("inline");
777       BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
778     }
779     if (!BadSpecifiers.empty()) {
780       auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
781       Err << (int)BadSpecifiers.size()
782           << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
783       // Don't add FixItHints to remove the specifiers; we do still respect
784       // them when building the underlying variable.
785       for (auto Loc : BadSpecifierLocs)
786         Err << SourceRange(Loc, Loc);
787     } else if (!CPlusPlus20Specifiers.empty()) {
788       auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(),
789                          getLangOpts().CPlusPlus20
790                              ? diag::warn_cxx17_compat_decomp_decl_spec
791                              : diag::ext_decomp_decl_spec);
792       Warn << (int)CPlusPlus20Specifiers.size()
793            << llvm::join(CPlusPlus20Specifiers.begin(),
794                          CPlusPlus20Specifiers.end(), " ");
795       for (auto Loc : CPlusPlus20SpecifierLocs)
796         Warn << SourceRange(Loc, Loc);
797     }
798     // We can't recover from it being declared as a typedef.
799     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
800       return nullptr;
801   }
802 
803   // C++2a [dcl.struct.bind]p1:
804   //   A cv that includes volatile is deprecated
805   if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) &&
806       getLangOpts().CPlusPlus20)
807     Diag(DS.getVolatileSpecLoc(),
808          diag::warn_deprecated_volatile_structured_binding);
809 
810   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
811   QualType R = TInfo->getType();
812 
813   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
814                                       UPPC_DeclarationType))
815     D.setInvalidType();
816 
817   // The syntax only allows a single ref-qualifier prior to the decomposition
818   // declarator. No other declarator chunks are permitted. Also check the type
819   // specifier here.
820   if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
821       D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
822       (D.getNumTypeObjects() == 1 &&
823        D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
824     Diag(Decomp.getLSquareLoc(),
825          (D.hasGroupingParens() ||
826           (D.getNumTypeObjects() &&
827            D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
828              ? diag::err_decomp_decl_parens
829              : diag::err_decomp_decl_type)
830         << R;
831 
832     // In most cases, there's no actual problem with an explicitly-specified
833     // type, but a function type won't work here, and ActOnVariableDeclarator
834     // shouldn't be called for such a type.
835     if (R->isFunctionType())
836       D.setInvalidType();
837   }
838 
839   // Build the BindingDecls.
840   SmallVector<BindingDecl*, 8> Bindings;
841 
842   // Build the BindingDecls.
843   for (auto &B : D.getDecompositionDeclarator().bindings()) {
844     // Check for name conflicts.
845     DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
846     LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
847                           ForVisibleRedeclaration);
848     LookupName(Previous, S,
849                /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
850 
851     // It's not permitted to shadow a template parameter name.
852     if (Previous.isSingleResult() &&
853         Previous.getFoundDecl()->isTemplateParameter()) {
854       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
855                                       Previous.getFoundDecl());
856       Previous.clear();
857     }
858 
859     auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
860 
861     // Find the shadowed declaration before filtering for scope.
862     NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
863                                   ? getShadowedDeclaration(BD, Previous)
864                                   : nullptr;
865 
866     bool ConsiderLinkage = DC->isFunctionOrMethod() &&
867                            DS.getStorageClassSpec() == DeclSpec::SCS_extern;
868     FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
869                          /*AllowInlineNamespace*/false);
870 
871     if (!Previous.empty()) {
872       auto *Old = Previous.getRepresentativeDecl();
873       Diag(B.NameLoc, diag::err_redefinition) << B.Name;
874       Diag(Old->getLocation(), diag::note_previous_definition);
875     } else if (ShadowedDecl && !D.isRedeclaration()) {
876       CheckShadow(BD, ShadowedDecl, Previous);
877     }
878     PushOnScopeChains(BD, S, true);
879     Bindings.push_back(BD);
880     ParsingInitForAutoVars.insert(BD);
881   }
882 
883   // There are no prior lookup results for the variable itself, because it
884   // is unnamed.
885   DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
886                                Decomp.getLSquareLoc());
887   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
888                         ForVisibleRedeclaration);
889 
890   // Build the variable that holds the non-decomposed object.
891   bool AddToScope = true;
892   NamedDecl *New =
893       ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
894                               MultiTemplateParamsArg(), AddToScope, Bindings);
895   if (AddToScope) {
896     S->AddDecl(New);
897     CurContext->addHiddenDecl(New);
898   }
899 
900   if (isInOpenMPDeclareTargetContext())
901     checkDeclIsAllowedInOpenMPTarget(nullptr, New);
902 
903   return New;
904 }
905 
checkSimpleDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,ValueDecl * Src,QualType DecompType,const llvm::APSInt & NumElems,QualType ElemType,llvm::function_ref<ExprResult (SourceLocation,Expr *,unsigned)> GetInit)906 static bool checkSimpleDecomposition(
907     Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
908     QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
909     llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
910   if ((int64_t)Bindings.size() != NumElems) {
911     S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
912         << DecompType << (unsigned)Bindings.size()
913         << (unsigned)NumElems.getLimitedValue(UINT_MAX) << NumElems.toString(10)
914         << (NumElems < Bindings.size());
915     return true;
916   }
917 
918   unsigned I = 0;
919   for (auto *B : Bindings) {
920     SourceLocation Loc = B->getLocation();
921     ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
922     if (E.isInvalid())
923       return true;
924     E = GetInit(Loc, E.get(), I++);
925     if (E.isInvalid())
926       return true;
927     B->setBinding(ElemType, E.get());
928   }
929 
930   return false;
931 }
932 
checkArrayLikeDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,ValueDecl * Src,QualType DecompType,const llvm::APSInt & NumElems,QualType ElemType)933 static bool checkArrayLikeDecomposition(Sema &S,
934                                         ArrayRef<BindingDecl *> Bindings,
935                                         ValueDecl *Src, QualType DecompType,
936                                         const llvm::APSInt &NumElems,
937                                         QualType ElemType) {
938   return checkSimpleDecomposition(
939       S, Bindings, Src, DecompType, NumElems, ElemType,
940       [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
941         ExprResult E = S.ActOnIntegerConstant(Loc, I);
942         if (E.isInvalid())
943           return ExprError();
944         return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
945       });
946 }
947 
checkArrayDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,ValueDecl * Src,QualType DecompType,const ConstantArrayType * CAT)948 static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
949                                     ValueDecl *Src, QualType DecompType,
950                                     const ConstantArrayType *CAT) {
951   return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
952                                      llvm::APSInt(CAT->getSize()),
953                                      CAT->getElementType());
954 }
955 
checkVectorDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,ValueDecl * Src,QualType DecompType,const VectorType * VT)956 static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
957                                      ValueDecl *Src, QualType DecompType,
958                                      const VectorType *VT) {
959   return checkArrayLikeDecomposition(
960       S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
961       S.Context.getQualifiedType(VT->getElementType(),
962                                  DecompType.getQualifiers()));
963 }
964 
checkComplexDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,ValueDecl * Src,QualType DecompType,const ComplexType * CT)965 static bool checkComplexDecomposition(Sema &S,
966                                       ArrayRef<BindingDecl *> Bindings,
967                                       ValueDecl *Src, QualType DecompType,
968                                       const ComplexType *CT) {
969   return checkSimpleDecomposition(
970       S, Bindings, Src, DecompType, llvm::APSInt::get(2),
971       S.Context.getQualifiedType(CT->getElementType(),
972                                  DecompType.getQualifiers()),
973       [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
974         return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
975       });
976 }
977 
printTemplateArgs(const PrintingPolicy & PrintingPolicy,TemplateArgumentListInfo & Args,const TemplateParameterList * Params)978 static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
979                                      TemplateArgumentListInfo &Args,
980                                      const TemplateParameterList *Params) {
981   SmallString<128> SS;
982   llvm::raw_svector_ostream OS(SS);
983   bool First = true;
984   unsigned I = 0;
985   for (auto &Arg : Args.arguments()) {
986     if (!First)
987       OS << ", ";
988     Arg.getArgument().print(
989         PrintingPolicy, OS,
990         TemplateParameterList::shouldIncludeTypeForArgument(Params, I));
991     First = false;
992     I++;
993   }
994   return std::string(OS.str());
995 }
996 
lookupStdTypeTraitMember(Sema & S,LookupResult & TraitMemberLookup,SourceLocation Loc,StringRef Trait,TemplateArgumentListInfo & Args,unsigned DiagID)997 static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
998                                      SourceLocation Loc, StringRef Trait,
999                                      TemplateArgumentListInfo &Args,
1000                                      unsigned DiagID) {
1001   auto DiagnoseMissing = [&] {
1002     if (DiagID)
1003       S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
1004                                                Args, /*Params*/ nullptr);
1005     return true;
1006   };
1007 
1008   // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
1009   NamespaceDecl *Std = S.getStdNamespace();
1010   if (!Std)
1011     return DiagnoseMissing();
1012 
1013   // Look up the trait itself, within namespace std. We can diagnose various
1014   // problems with this lookup even if we've been asked to not diagnose a
1015   // missing specialization, because this can only fail if the user has been
1016   // declaring their own names in namespace std or we don't support the
1017   // standard library implementation in use.
1018   LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
1019                       Loc, Sema::LookupOrdinaryName);
1020   if (!S.LookupQualifiedName(Result, Std))
1021     return DiagnoseMissing();
1022   if (Result.isAmbiguous())
1023     return true;
1024 
1025   ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
1026   if (!TraitTD) {
1027     Result.suppressDiagnostics();
1028     NamedDecl *Found = *Result.begin();
1029     S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
1030     S.Diag(Found->getLocation(), diag::note_declared_at);
1031     return true;
1032   }
1033 
1034   // Build the template-id.
1035   QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
1036   if (TraitTy.isNull())
1037     return true;
1038   if (!S.isCompleteType(Loc, TraitTy)) {
1039     if (DiagID)
1040       S.RequireCompleteType(
1041           Loc, TraitTy, DiagID,
1042           printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1043                             TraitTD->getTemplateParameters()));
1044     return true;
1045   }
1046 
1047   CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
1048   assert(RD && "specialization of class template is not a class?");
1049 
1050   // Look up the member of the trait type.
1051   S.LookupQualifiedName(TraitMemberLookup, RD);
1052   return TraitMemberLookup.isAmbiguous();
1053 }
1054 
1055 static TemplateArgumentLoc
getTrivialIntegralTemplateArgument(Sema & S,SourceLocation Loc,QualType T,uint64_t I)1056 getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
1057                                    uint64_t I) {
1058   TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
1059   return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
1060 }
1061 
1062 static TemplateArgumentLoc
getTrivialTypeTemplateArgument(Sema & S,SourceLocation Loc,QualType T)1063 getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
1064   return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
1065 }
1066 
1067 namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
1068 
isTupleLike(Sema & S,SourceLocation Loc,QualType T,llvm::APSInt & Size)1069 static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
1070                                llvm::APSInt &Size) {
1071   EnterExpressionEvaluationContext ContextRAII(
1072       S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1073 
1074   DeclarationName Value = S.PP.getIdentifierInfo("value");
1075   LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1076 
1077   // Form template argument list for tuple_size<T>.
1078   TemplateArgumentListInfo Args(Loc, Loc);
1079   Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1080 
1081   // If there's no tuple_size specialization or the lookup of 'value' is empty,
1082   // it's not tuple-like.
1083   if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) ||
1084       R.empty())
1085     return IsTupleLike::NotTupleLike;
1086 
1087   // If we get this far, we've committed to the tuple interpretation, but
1088   // we can still fail if there actually isn't a usable ::value.
1089 
1090   struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1091     LookupResult &R;
1092     TemplateArgumentListInfo &Args;
1093     ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1094         : R(R), Args(Args) {}
1095     Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
1096                                                SourceLocation Loc) override {
1097       return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1098              << printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1099                                   /*Params*/ nullptr);
1100     }
1101   } Diagnoser(R, Args);
1102 
1103   ExprResult E =
1104       S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1105   if (E.isInvalid())
1106     return IsTupleLike::Error;
1107 
1108   E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser);
1109   if (E.isInvalid())
1110     return IsTupleLike::Error;
1111 
1112   return IsTupleLike::TupleLike;
1113 }
1114 
1115 /// \return std::tuple_element<I, T>::type.
getTupleLikeElementType(Sema & S,SourceLocation Loc,unsigned I,QualType T)1116 static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1117                                         unsigned I, QualType T) {
1118   // Form template argument list for tuple_element<I, T>.
1119   TemplateArgumentListInfo Args(Loc, Loc);
1120   Args.addArgument(
1121       getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1122   Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1123 
1124   DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1125   LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1126   if (lookupStdTypeTraitMember(
1127           S, R, Loc, "tuple_element", Args,
1128           diag::err_decomp_decl_std_tuple_element_not_specialized))
1129     return QualType();
1130 
1131   auto *TD = R.getAsSingle<TypeDecl>();
1132   if (!TD) {
1133     R.suppressDiagnostics();
1134     S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1135         << printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1136                              /*Params*/ nullptr);
1137     if (!R.empty())
1138       S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1139     return QualType();
1140   }
1141 
1142   return S.Context.getTypeDeclType(TD);
1143 }
1144 
1145 namespace {
1146 struct InitializingBinding {
1147   Sema &S;
InitializingBinding__anonb2a824810811::InitializingBinding1148   InitializingBinding(Sema &S, BindingDecl *BD) : S(S) {
1149     Sema::CodeSynthesisContext Ctx;
1150     Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding;
1151     Ctx.PointOfInstantiation = BD->getLocation();
1152     Ctx.Entity = BD;
1153     S.pushCodeSynthesisContext(Ctx);
1154   }
~InitializingBinding__anonb2a824810811::InitializingBinding1155   ~InitializingBinding() {
1156     S.popCodeSynthesisContext();
1157   }
1158 };
1159 }
1160 
checkTupleLikeDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,VarDecl * Src,QualType DecompType,const llvm::APSInt & TupleSize)1161 static bool checkTupleLikeDecomposition(Sema &S,
1162                                         ArrayRef<BindingDecl *> Bindings,
1163                                         VarDecl *Src, QualType DecompType,
1164                                         const llvm::APSInt &TupleSize) {
1165   if ((int64_t)Bindings.size() != TupleSize) {
1166     S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1167         << DecompType << (unsigned)Bindings.size()
1168         << (unsigned)TupleSize.getLimitedValue(UINT_MAX)
1169         << TupleSize.toString(10) << (TupleSize < Bindings.size());
1170     return true;
1171   }
1172 
1173   if (Bindings.empty())
1174     return false;
1175 
1176   DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1177 
1178   // [dcl.decomp]p3:
1179   //   The unqualified-id get is looked up in the scope of E by class member
1180   //   access lookup ...
1181   LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1182   bool UseMemberGet = false;
1183   if (S.isCompleteType(Src->getLocation(), DecompType)) {
1184     if (auto *RD = DecompType->getAsCXXRecordDecl())
1185       S.LookupQualifiedName(MemberGet, RD);
1186     if (MemberGet.isAmbiguous())
1187       return true;
1188     //   ... and if that finds at least one declaration that is a function
1189     //   template whose first template parameter is a non-type parameter ...
1190     for (NamedDecl *D : MemberGet) {
1191       if (FunctionTemplateDecl *FTD =
1192               dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) {
1193         TemplateParameterList *TPL = FTD->getTemplateParameters();
1194         if (TPL->size() != 0 &&
1195             isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) {
1196           //   ... the initializer is e.get<i>().
1197           UseMemberGet = true;
1198           break;
1199         }
1200       }
1201     }
1202   }
1203 
1204   unsigned I = 0;
1205   for (auto *B : Bindings) {
1206     InitializingBinding InitContext(S, B);
1207     SourceLocation Loc = B->getLocation();
1208 
1209     ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1210     if (E.isInvalid())
1211       return true;
1212 
1213     //   e is an lvalue if the type of the entity is an lvalue reference and
1214     //   an xvalue otherwise
1215     if (!Src->getType()->isLValueReferenceType())
1216       E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1217                                    E.get(), nullptr, VK_XValue,
1218                                    FPOptionsOverride());
1219 
1220     TemplateArgumentListInfo Args(Loc, Loc);
1221     Args.addArgument(
1222         getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1223 
1224     if (UseMemberGet) {
1225       //   if [lookup of member get] finds at least one declaration, the
1226       //   initializer is e.get<i-1>().
1227       E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1228                                      CXXScopeSpec(), SourceLocation(), nullptr,
1229                                      MemberGet, &Args, nullptr);
1230       if (E.isInvalid())
1231         return true;
1232 
1233       E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc);
1234     } else {
1235       //   Otherwise, the initializer is get<i-1>(e), where get is looked up
1236       //   in the associated namespaces.
1237       Expr *Get = UnresolvedLookupExpr::Create(
1238           S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1239           DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1240           UnresolvedSetIterator(), UnresolvedSetIterator());
1241 
1242       Expr *Arg = E.get();
1243       E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc);
1244     }
1245     if (E.isInvalid())
1246       return true;
1247     Expr *Init = E.get();
1248 
1249     //   Given the type T designated by std::tuple_element<i - 1, E>::type,
1250     QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1251     if (T.isNull())
1252       return true;
1253 
1254     //   each vi is a variable of type "reference to T" initialized with the
1255     //   initializer, where the reference is an lvalue reference if the
1256     //   initializer is an lvalue and an rvalue reference otherwise
1257     QualType RefType =
1258         S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1259     if (RefType.isNull())
1260       return true;
1261     auto *RefVD = VarDecl::Create(
1262         S.Context, Src->getDeclContext(), Loc, Loc,
1263         B->getDeclName().getAsIdentifierInfo(), RefType,
1264         S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1265     RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1266     RefVD->setTSCSpec(Src->getTSCSpec());
1267     RefVD->setImplicit();
1268     if (Src->isInlineSpecified())
1269       RefVD->setInlineSpecified();
1270     RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1271 
1272     InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1273     InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1274     InitializationSequence Seq(S, Entity, Kind, Init);
1275     E = Seq.Perform(S, Entity, Kind, Init);
1276     if (E.isInvalid())
1277       return true;
1278     E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false);
1279     if (E.isInvalid())
1280       return true;
1281     RefVD->setInit(E.get());
1282     S.CheckCompleteVariableDeclaration(RefVD);
1283 
1284     E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1285                                    DeclarationNameInfo(B->getDeclName(), Loc),
1286                                    RefVD);
1287     if (E.isInvalid())
1288       return true;
1289 
1290     B->setBinding(T, E.get());
1291     I++;
1292   }
1293 
1294   return false;
1295 }
1296 
1297 /// Find the base class to decompose in a built-in decomposition of a class type.
1298 /// This base class search is, unfortunately, not quite like any other that we
1299 /// perform anywhere else in C++.
findDecomposableBaseClass(Sema & S,SourceLocation Loc,const CXXRecordDecl * RD,CXXCastPath & BasePath)1300 static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc,
1301                                                 const CXXRecordDecl *RD,
1302                                                 CXXCastPath &BasePath) {
1303   auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1304                           CXXBasePath &Path) {
1305     return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1306   };
1307 
1308   const CXXRecordDecl *ClassWithFields = nullptr;
1309   AccessSpecifier AS = AS_public;
1310   if (RD->hasDirectFields())
1311     // [dcl.decomp]p4:
1312     //   Otherwise, all of E's non-static data members shall be public direct
1313     //   members of E ...
1314     ClassWithFields = RD;
1315   else {
1316     //   ... or of ...
1317     CXXBasePaths Paths;
1318     Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1319     if (!RD->lookupInBases(BaseHasFields, Paths)) {
1320       // If no classes have fields, just decompose RD itself. (This will work
1321       // if and only if zero bindings were provided.)
1322       return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public);
1323     }
1324 
1325     CXXBasePath *BestPath = nullptr;
1326     for (auto &P : Paths) {
1327       if (!BestPath)
1328         BestPath = &P;
1329       else if (!S.Context.hasSameType(P.back().Base->getType(),
1330                                       BestPath->back().Base->getType())) {
1331         //   ... the same ...
1332         S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1333           << false << RD << BestPath->back().Base->getType()
1334           << P.back().Base->getType();
1335         return DeclAccessPair();
1336       } else if (P.Access < BestPath->Access) {
1337         BestPath = &P;
1338       }
1339     }
1340 
1341     //   ... unambiguous ...
1342     QualType BaseType = BestPath->back().Base->getType();
1343     if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1344       S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1345         << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1346       return DeclAccessPair();
1347     }
1348 
1349     //   ... [accessible, implied by other rules] base class of E.
1350     S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD),
1351                            *BestPath, diag::err_decomp_decl_inaccessible_base);
1352     AS = BestPath->Access;
1353 
1354     ClassWithFields = BaseType->getAsCXXRecordDecl();
1355     S.BuildBasePathArray(Paths, BasePath);
1356   }
1357 
1358   // The above search did not check whether the selected class itself has base
1359   // classes with fields, so check that now.
1360   CXXBasePaths Paths;
1361   if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1362     S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1363       << (ClassWithFields == RD) << RD << ClassWithFields
1364       << Paths.front().back().Base->getType();
1365     return DeclAccessPair();
1366   }
1367 
1368   return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS);
1369 }
1370 
checkMemberDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,ValueDecl * Src,QualType DecompType,const CXXRecordDecl * OrigRD)1371 static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1372                                      ValueDecl *Src, QualType DecompType,
1373                                      const CXXRecordDecl *OrigRD) {
1374   if (S.RequireCompleteType(Src->getLocation(), DecompType,
1375                             diag::err_incomplete_type))
1376     return true;
1377 
1378   CXXCastPath BasePath;
1379   DeclAccessPair BasePair =
1380       findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath);
1381   const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl());
1382   if (!RD)
1383     return true;
1384   QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1385                                                  DecompType.getQualifiers());
1386 
1387   auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1388     unsigned NumFields =
1389         std::count_if(RD->field_begin(), RD->field_end(),
1390                       [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1391     assert(Bindings.size() != NumFields);
1392     S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1393         << DecompType << (unsigned)Bindings.size() << NumFields << NumFields
1394         << (NumFields < Bindings.size());
1395     return true;
1396   };
1397 
1398   //   all of E's non-static data members shall be [...] well-formed
1399   //   when named as e.name in the context of the structured binding,
1400   //   E shall not have an anonymous union member, ...
1401   unsigned I = 0;
1402   for (auto *FD : RD->fields()) {
1403     if (FD->isUnnamedBitfield())
1404       continue;
1405 
1406     // All the non-static data members are required to be nameable, so they
1407     // must all have names.
1408     if (!FD->getDeclName()) {
1409       if (RD->isLambda()) {
1410         S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda);
1411         S.Diag(RD->getLocation(), diag::note_lambda_decl);
1412         return true;
1413       }
1414 
1415       if (FD->isAnonymousStructOrUnion()) {
1416         S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1417           << DecompType << FD->getType()->isUnionType();
1418         S.Diag(FD->getLocation(), diag::note_declared_at);
1419         return true;
1420       }
1421 
1422       // FIXME: Are there any other ways we could have an anonymous member?
1423     }
1424 
1425     // We have a real field to bind.
1426     if (I >= Bindings.size())
1427       return DiagnoseBadNumberOfBindings();
1428     auto *B = Bindings[I++];
1429     SourceLocation Loc = B->getLocation();
1430 
1431     // The field must be accessible in the context of the structured binding.
1432     // We already checked that the base class is accessible.
1433     // FIXME: Add 'const' to AccessedEntity's classes so we can remove the
1434     // const_cast here.
1435     S.CheckStructuredBindingMemberAccess(
1436         Loc, const_cast<CXXRecordDecl *>(OrigRD),
1437         DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess(
1438                                      BasePair.getAccess(), FD->getAccess())));
1439 
1440     // Initialize the binding to Src.FD.
1441     ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1442     if (E.isInvalid())
1443       return true;
1444     E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1445                             VK_LValue, &BasePath);
1446     if (E.isInvalid())
1447       return true;
1448     E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1449                                   CXXScopeSpec(), FD,
1450                                   DeclAccessPair::make(FD, FD->getAccess()),
1451                                   DeclarationNameInfo(FD->getDeclName(), Loc));
1452     if (E.isInvalid())
1453       return true;
1454 
1455     // If the type of the member is T, the referenced type is cv T, where cv is
1456     // the cv-qualification of the decomposition expression.
1457     //
1458     // FIXME: We resolve a defect here: if the field is mutable, we do not add
1459     // 'const' to the type of the field.
1460     Qualifiers Q = DecompType.getQualifiers();
1461     if (FD->isMutable())
1462       Q.removeConst();
1463     B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1464   }
1465 
1466   if (I != Bindings.size())
1467     return DiagnoseBadNumberOfBindings();
1468 
1469   return false;
1470 }
1471 
CheckCompleteDecompositionDeclaration(DecompositionDecl * DD)1472 void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1473   QualType DecompType = DD->getType();
1474 
1475   // If the type of the decomposition is dependent, then so is the type of
1476   // each binding.
1477   if (DecompType->isDependentType()) {
1478     for (auto *B : DD->bindings())
1479       B->setType(Context.DependentTy);
1480     return;
1481   }
1482 
1483   DecompType = DecompType.getNonReferenceType();
1484   ArrayRef<BindingDecl*> Bindings = DD->bindings();
1485 
1486   // C++1z [dcl.decomp]/2:
1487   //   If E is an array type [...]
1488   // As an extension, we also support decomposition of built-in complex and
1489   // vector types.
1490   if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1491     if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1492       DD->setInvalidDecl();
1493     return;
1494   }
1495   if (auto *VT = DecompType->getAs<VectorType>()) {
1496     if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1497       DD->setInvalidDecl();
1498     return;
1499   }
1500   if (auto *CT = DecompType->getAs<ComplexType>()) {
1501     if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1502       DD->setInvalidDecl();
1503     return;
1504   }
1505 
1506   // C++1z [dcl.decomp]/3:
1507   //   if the expression std::tuple_size<E>::value is a well-formed integral
1508   //   constant expression, [...]
1509   llvm::APSInt TupleSize(32);
1510   switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1511   case IsTupleLike::Error:
1512     DD->setInvalidDecl();
1513     return;
1514 
1515   case IsTupleLike::TupleLike:
1516     if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1517       DD->setInvalidDecl();
1518     return;
1519 
1520   case IsTupleLike::NotTupleLike:
1521     break;
1522   }
1523 
1524   // C++1z [dcl.dcl]/8:
1525   //   [E shall be of array or non-union class type]
1526   CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1527   if (!RD || RD->isUnion()) {
1528     Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1529         << DD << !RD << DecompType;
1530     DD->setInvalidDecl();
1531     return;
1532   }
1533 
1534   // C++1z [dcl.decomp]/4:
1535   //   all of E's non-static data members shall be [...] direct members of
1536   //   E or of the same unambiguous public base class of E, ...
1537   if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1538     DD->setInvalidDecl();
1539 }
1540 
1541 /// Merge the exception specifications of two variable declarations.
1542 ///
1543 /// This is called when there's a redeclaration of a VarDecl. The function
1544 /// checks if the redeclaration might have an exception specification and
1545 /// validates compatibility and merges the specs if necessary.
MergeVarDeclExceptionSpecs(VarDecl * New,VarDecl * Old)1546 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1547   // Shortcut if exceptions are disabled.
1548   if (!getLangOpts().CXXExceptions)
1549     return;
1550 
1551   assert(Context.hasSameType(New->getType(), Old->getType()) &&
1552          "Should only be called if types are otherwise the same.");
1553 
1554   QualType NewType = New->getType();
1555   QualType OldType = Old->getType();
1556 
1557   // We're only interested in pointers and references to functions, as well
1558   // as pointers to member functions.
1559   if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1560     NewType = R->getPointeeType();
1561     OldType = OldType->castAs<ReferenceType>()->getPointeeType();
1562   } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1563     NewType = P->getPointeeType();
1564     OldType = OldType->castAs<PointerType>()->getPointeeType();
1565   } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1566     NewType = M->getPointeeType();
1567     OldType = OldType->castAs<MemberPointerType>()->getPointeeType();
1568   }
1569 
1570   if (!NewType->isFunctionProtoType())
1571     return;
1572 
1573   // There's lots of special cases for functions. For function pointers, system
1574   // libraries are hopefully not as broken so that we don't need these
1575   // workarounds.
1576   if (CheckEquivalentExceptionSpec(
1577         OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1578         NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1579     New->setInvalidDecl();
1580   }
1581 }
1582 
1583 /// CheckCXXDefaultArguments - Verify that the default arguments for a
1584 /// function declaration are well-formed according to C++
1585 /// [dcl.fct.default].
CheckCXXDefaultArguments(FunctionDecl * FD)1586 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1587   unsigned NumParams = FD->getNumParams();
1588   unsigned ParamIdx = 0;
1589 
1590   // This checking doesn't make sense for explicit specializations; their
1591   // default arguments are determined by the declaration we're specializing,
1592   // not by FD.
1593   if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
1594     return;
1595   if (auto *FTD = FD->getDescribedFunctionTemplate())
1596     if (FTD->isMemberSpecialization())
1597       return;
1598 
1599   // Find first parameter with a default argument
1600   for (; ParamIdx < NumParams; ++ParamIdx) {
1601     ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1602     if (Param->hasDefaultArg())
1603       break;
1604   }
1605 
1606   // C++20 [dcl.fct.default]p4:
1607   //   In a given function declaration, each parameter subsequent to a parameter
1608   //   with a default argument shall have a default argument supplied in this or
1609   //   a previous declaration, unless the parameter was expanded from a
1610   //   parameter pack, or shall be a function parameter pack.
1611   for (; ParamIdx < NumParams; ++ParamIdx) {
1612     ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1613     if (!Param->hasDefaultArg() && !Param->isParameterPack() &&
1614         !(CurrentInstantiationScope &&
1615           CurrentInstantiationScope->isLocalPackExpansion(Param))) {
1616       if (Param->isInvalidDecl())
1617         /* We already complained about this parameter. */;
1618       else if (Param->getIdentifier())
1619         Diag(Param->getLocation(),
1620              diag::err_param_default_argument_missing_name)
1621           << Param->getIdentifier();
1622       else
1623         Diag(Param->getLocation(),
1624              diag::err_param_default_argument_missing);
1625     }
1626   }
1627 }
1628 
1629 /// Check that the given type is a literal type. Issue a diagnostic if not,
1630 /// if Kind is Diagnose.
1631 /// \return \c true if a problem has been found (and optionally diagnosed).
1632 template <typename... Ts>
CheckLiteralType(Sema & SemaRef,Sema::CheckConstexprKind Kind,SourceLocation Loc,QualType T,unsigned DiagID,Ts &&...DiagArgs)1633 static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind,
1634                              SourceLocation Loc, QualType T, unsigned DiagID,
1635                              Ts &&...DiagArgs) {
1636   if (T->isDependentType())
1637     return false;
1638 
1639   switch (Kind) {
1640   case Sema::CheckConstexprKind::Diagnose:
1641     return SemaRef.RequireLiteralType(Loc, T, DiagID,
1642                                       std::forward<Ts>(DiagArgs)...);
1643 
1644   case Sema::CheckConstexprKind::CheckValid:
1645     return !T->isLiteralType(SemaRef.Context);
1646   }
1647 
1648   llvm_unreachable("unknown CheckConstexprKind");
1649 }
1650 
1651 /// Determine whether a destructor cannot be constexpr due to
CheckConstexprDestructorSubobjects(Sema & SemaRef,const CXXDestructorDecl * DD,Sema::CheckConstexprKind Kind)1652 static bool CheckConstexprDestructorSubobjects(Sema &SemaRef,
1653                                                const CXXDestructorDecl *DD,
1654                                                Sema::CheckConstexprKind Kind) {
1655   auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) {
1656     const CXXRecordDecl *RD =
1657         T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1658     if (!RD || RD->hasConstexprDestructor())
1659       return true;
1660 
1661     if (Kind == Sema::CheckConstexprKind::Diagnose) {
1662       SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject)
1663           << static_cast<int>(DD->getConstexprKind()) << !FD
1664           << (FD ? FD->getDeclName() : DeclarationName()) << T;
1665       SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject)
1666           << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T;
1667     }
1668     return false;
1669   };
1670 
1671   const CXXRecordDecl *RD = DD->getParent();
1672   for (const CXXBaseSpecifier &B : RD->bases())
1673     if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr))
1674       return false;
1675   for (const FieldDecl *FD : RD->fields())
1676     if (!Check(FD->getLocation(), FD->getType(), FD))
1677       return false;
1678   return true;
1679 }
1680 
1681 /// Check whether a function's parameter types are all literal types. If so,
1682 /// return true. If not, produce a suitable diagnostic and return false.
CheckConstexprParameterTypes(Sema & SemaRef,const FunctionDecl * FD,Sema::CheckConstexprKind Kind)1683 static bool CheckConstexprParameterTypes(Sema &SemaRef,
1684                                          const FunctionDecl *FD,
1685                                          Sema::CheckConstexprKind Kind) {
1686   unsigned ArgIndex = 0;
1687   const auto *FT = FD->getType()->castAs<FunctionProtoType>();
1688   for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1689                                               e = FT->param_type_end();
1690        i != e; ++i, ++ArgIndex) {
1691     const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1692     SourceLocation ParamLoc = PD->getLocation();
1693     if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i,
1694                          diag::err_constexpr_non_literal_param, ArgIndex + 1,
1695                          PD->getSourceRange(), isa<CXXConstructorDecl>(FD),
1696                          FD->isConsteval()))
1697       return false;
1698   }
1699   return true;
1700 }
1701 
1702 /// Check whether a function's return type is a literal type. If so, return
1703 /// true. If not, produce a suitable diagnostic and return false.
CheckConstexprReturnType(Sema & SemaRef,const FunctionDecl * FD,Sema::CheckConstexprKind Kind)1704 static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD,
1705                                      Sema::CheckConstexprKind Kind) {
1706   if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(),
1707                        diag::err_constexpr_non_literal_return,
1708                        FD->isConsteval()))
1709     return false;
1710   return true;
1711 }
1712 
1713 /// Get diagnostic %select index for tag kind for
1714 /// record diagnostic message.
1715 /// WARNING: Indexes apply to particular diagnostics only!
1716 ///
1717 /// \returns diagnostic %select index.
getRecordDiagFromTagKind(TagTypeKind Tag)1718 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1719   switch (Tag) {
1720   case TTK_Struct: return 0;
1721   case TTK_Interface: return 1;
1722   case TTK_Class:  return 2;
1723   default: llvm_unreachable("Invalid tag kind for record diagnostic!");
1724   }
1725 }
1726 
1727 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
1728                                        Stmt *Body,
1729                                        Sema::CheckConstexprKind Kind);
1730 
1731 // Check whether a function declaration satisfies the requirements of a
1732 // constexpr function definition or a constexpr constructor definition. If so,
1733 // return true. If not, produce appropriate diagnostics (unless asked not to by
1734 // Kind) and return false.
1735 //
1736 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
CheckConstexprFunctionDefinition(const FunctionDecl * NewFD,CheckConstexprKind Kind)1737 bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD,
1738                                             CheckConstexprKind Kind) {
1739   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1740   if (MD && MD->isInstance()) {
1741     // C++11 [dcl.constexpr]p4:
1742     //  The definition of a constexpr constructor shall satisfy the following
1743     //  constraints:
1744     //  - the class shall not have any virtual base classes;
1745     //
1746     // FIXME: This only applies to constructors and destructors, not arbitrary
1747     // member functions.
1748     const CXXRecordDecl *RD = MD->getParent();
1749     if (RD->getNumVBases()) {
1750       if (Kind == CheckConstexprKind::CheckValid)
1751         return false;
1752 
1753       Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1754         << isa<CXXConstructorDecl>(NewFD)
1755         << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1756       for (const auto &I : RD->vbases())
1757         Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
1758             << I.getSourceRange();
1759       return false;
1760     }
1761   }
1762 
1763   if (!isa<CXXConstructorDecl>(NewFD)) {
1764     // C++11 [dcl.constexpr]p3:
1765     //  The definition of a constexpr function shall satisfy the following
1766     //  constraints:
1767     // - it shall not be virtual; (removed in C++20)
1768     const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1769     if (Method && Method->isVirtual()) {
1770       if (getLangOpts().CPlusPlus20) {
1771         if (Kind == CheckConstexprKind::Diagnose)
1772           Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual);
1773       } else {
1774         if (Kind == CheckConstexprKind::CheckValid)
1775           return false;
1776 
1777         Method = Method->getCanonicalDecl();
1778         Diag(Method->getLocation(), diag::err_constexpr_virtual);
1779 
1780         // If it's not obvious why this function is virtual, find an overridden
1781         // function which uses the 'virtual' keyword.
1782         const CXXMethodDecl *WrittenVirtual = Method;
1783         while (!WrittenVirtual->isVirtualAsWritten())
1784           WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1785         if (WrittenVirtual != Method)
1786           Diag(WrittenVirtual->getLocation(),
1787                diag::note_overridden_virtual_function);
1788         return false;
1789       }
1790     }
1791 
1792     // - its return type shall be a literal type;
1793     if (!CheckConstexprReturnType(*this, NewFD, Kind))
1794       return false;
1795   }
1796 
1797   if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) {
1798     // A destructor can be constexpr only if the defaulted destructor could be;
1799     // we don't need to check the members and bases if we already know they all
1800     // have constexpr destructors.
1801     if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) {
1802       if (Kind == CheckConstexprKind::CheckValid)
1803         return false;
1804       if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind))
1805         return false;
1806     }
1807   }
1808 
1809   // - each of its parameter types shall be a literal type;
1810   if (!CheckConstexprParameterTypes(*this, NewFD, Kind))
1811     return false;
1812 
1813   Stmt *Body = NewFD->getBody();
1814   assert(Body &&
1815          "CheckConstexprFunctionDefinition called on function with no body");
1816   return CheckConstexprFunctionBody(*this, NewFD, Body, Kind);
1817 }
1818 
1819 /// Check the given declaration statement is legal within a constexpr function
1820 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1821 ///
1822 /// \return true if the body is OK (maybe only as an extension), false if we
1823 ///         have diagnosed a problem.
CheckConstexprDeclStmt(Sema & SemaRef,const FunctionDecl * Dcl,DeclStmt * DS,SourceLocation & Cxx1yLoc,Sema::CheckConstexprKind Kind)1824 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1825                                    DeclStmt *DS, SourceLocation &Cxx1yLoc,
1826                                    Sema::CheckConstexprKind Kind) {
1827   // C++11 [dcl.constexpr]p3 and p4:
1828   //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
1829   //  contain only
1830   for (const auto *DclIt : DS->decls()) {
1831     switch (DclIt->getKind()) {
1832     case Decl::StaticAssert:
1833     case Decl::Using:
1834     case Decl::UsingShadow:
1835     case Decl::UsingDirective:
1836     case Decl::UnresolvedUsingTypename:
1837     case Decl::UnresolvedUsingValue:
1838       //   - static_assert-declarations
1839       //   - using-declarations,
1840       //   - using-directives,
1841       continue;
1842 
1843     case Decl::Typedef:
1844     case Decl::TypeAlias: {
1845       //   - typedef declarations and alias-declarations that do not define
1846       //     classes or enumerations,
1847       const auto *TN = cast<TypedefNameDecl>(DclIt);
1848       if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1849         // Don't allow variably-modified types in constexpr functions.
1850         if (Kind == Sema::CheckConstexprKind::Diagnose) {
1851           TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1852           SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1853             << TL.getSourceRange() << TL.getType()
1854             << isa<CXXConstructorDecl>(Dcl);
1855         }
1856         return false;
1857       }
1858       continue;
1859     }
1860 
1861     case Decl::Enum:
1862     case Decl::CXXRecord:
1863       // C++1y allows types to be defined, not just declared.
1864       if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) {
1865         if (Kind == Sema::CheckConstexprKind::Diagnose) {
1866           SemaRef.Diag(DS->getBeginLoc(),
1867                        SemaRef.getLangOpts().CPlusPlus14
1868                            ? diag::warn_cxx11_compat_constexpr_type_definition
1869                            : diag::ext_constexpr_type_definition)
1870               << isa<CXXConstructorDecl>(Dcl);
1871         } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1872           return false;
1873         }
1874       }
1875       continue;
1876 
1877     case Decl::EnumConstant:
1878     case Decl::IndirectField:
1879     case Decl::ParmVar:
1880       // These can only appear with other declarations which are banned in
1881       // C++11 and permitted in C++1y, so ignore them.
1882       continue;
1883 
1884     case Decl::Var:
1885     case Decl::Decomposition: {
1886       // C++1y [dcl.constexpr]p3 allows anything except:
1887       //   a definition of a variable of non-literal type or of static or
1888       //   thread storage duration or [before C++2a] for which no
1889       //   initialization is performed.
1890       const auto *VD = cast<VarDecl>(DclIt);
1891       if (VD->isThisDeclarationADefinition()) {
1892         if (VD->isStaticLocal()) {
1893           if (Kind == Sema::CheckConstexprKind::Diagnose) {
1894             SemaRef.Diag(VD->getLocation(),
1895                          diag::err_constexpr_local_var_static)
1896               << isa<CXXConstructorDecl>(Dcl)
1897               << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1898           }
1899           return false;
1900         }
1901         if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(),
1902                              diag::err_constexpr_local_var_non_literal_type,
1903                              isa<CXXConstructorDecl>(Dcl)))
1904           return false;
1905         if (!VD->getType()->isDependentType() &&
1906             !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1907           if (Kind == Sema::CheckConstexprKind::Diagnose) {
1908             SemaRef.Diag(
1909                 VD->getLocation(),
1910                 SemaRef.getLangOpts().CPlusPlus20
1911                     ? diag::warn_cxx17_compat_constexpr_local_var_no_init
1912                     : diag::ext_constexpr_local_var_no_init)
1913                 << isa<CXXConstructorDecl>(Dcl);
1914           } else if (!SemaRef.getLangOpts().CPlusPlus20) {
1915             return false;
1916           }
1917           continue;
1918         }
1919       }
1920       if (Kind == Sema::CheckConstexprKind::Diagnose) {
1921         SemaRef.Diag(VD->getLocation(),
1922                      SemaRef.getLangOpts().CPlusPlus14
1923                       ? diag::warn_cxx11_compat_constexpr_local_var
1924                       : diag::ext_constexpr_local_var)
1925           << isa<CXXConstructorDecl>(Dcl);
1926       } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1927         return false;
1928       }
1929       continue;
1930     }
1931 
1932     case Decl::NamespaceAlias:
1933     case Decl::Function:
1934       // These are disallowed in C++11 and permitted in C++1y. Allow them
1935       // everywhere as an extension.
1936       if (!Cxx1yLoc.isValid())
1937         Cxx1yLoc = DS->getBeginLoc();
1938       continue;
1939 
1940     default:
1941       if (Kind == Sema::CheckConstexprKind::Diagnose) {
1942         SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
1943             << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
1944       }
1945       return false;
1946     }
1947   }
1948 
1949   return true;
1950 }
1951 
1952 /// Check that the given field is initialized within a constexpr constructor.
1953 ///
1954 /// \param Dcl The constexpr constructor being checked.
1955 /// \param Field The field being checked. This may be a member of an anonymous
1956 ///        struct or union nested within the class being checked.
1957 /// \param Inits All declarations, including anonymous struct/union members and
1958 ///        indirect members, for which any initialization was provided.
1959 /// \param Diagnosed Whether we've emitted the error message yet. Used to attach
1960 ///        multiple notes for different members to the same error.
1961 /// \param Kind Whether we're diagnosing a constructor as written or determining
1962 ///        whether the formal requirements are satisfied.
1963 /// \return \c false if we're checking for validity and the constructor does
1964 ///         not satisfy the requirements on a constexpr constructor.
CheckConstexprCtorInitializer(Sema & SemaRef,const FunctionDecl * Dcl,FieldDecl * Field,llvm::SmallSet<Decl *,16> & Inits,bool & Diagnosed,Sema::CheckConstexprKind Kind)1965 static bool CheckConstexprCtorInitializer(Sema &SemaRef,
1966                                           const FunctionDecl *Dcl,
1967                                           FieldDecl *Field,
1968                                           llvm::SmallSet<Decl*, 16> &Inits,
1969                                           bool &Diagnosed,
1970                                           Sema::CheckConstexprKind Kind) {
1971   // In C++20 onwards, there's nothing to check for validity.
1972   if (Kind == Sema::CheckConstexprKind::CheckValid &&
1973       SemaRef.getLangOpts().CPlusPlus20)
1974     return true;
1975 
1976   if (Field->isInvalidDecl())
1977     return true;
1978 
1979   if (Field->isUnnamedBitfield())
1980     return true;
1981 
1982   // Anonymous unions with no variant members and empty anonymous structs do not
1983   // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1984   // indirect fields don't need initializing.
1985   if (Field->isAnonymousStructOrUnion() &&
1986       (Field->getType()->isUnionType()
1987            ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1988            : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1989     return true;
1990 
1991   if (!Inits.count(Field)) {
1992     if (Kind == Sema::CheckConstexprKind::Diagnose) {
1993       if (!Diagnosed) {
1994         SemaRef.Diag(Dcl->getLocation(),
1995                      SemaRef.getLangOpts().CPlusPlus20
1996                          ? diag::warn_cxx17_compat_constexpr_ctor_missing_init
1997                          : diag::ext_constexpr_ctor_missing_init);
1998         Diagnosed = true;
1999       }
2000       SemaRef.Diag(Field->getLocation(),
2001                    diag::note_constexpr_ctor_missing_init);
2002     } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2003       return false;
2004     }
2005   } else if (Field->isAnonymousStructOrUnion()) {
2006     const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
2007     for (auto *I : RD->fields())
2008       // If an anonymous union contains an anonymous struct of which any member
2009       // is initialized, all members must be initialized.
2010       if (!RD->isUnion() || Inits.count(I))
2011         if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2012                                            Kind))
2013           return false;
2014   }
2015   return true;
2016 }
2017 
2018 /// Check the provided statement is allowed in a constexpr function
2019 /// definition.
2020 static bool
CheckConstexprFunctionStmt(Sema & SemaRef,const FunctionDecl * Dcl,Stmt * S,SmallVectorImpl<SourceLocation> & ReturnStmts,SourceLocation & Cxx1yLoc,SourceLocation & Cxx2aLoc,Sema::CheckConstexprKind Kind)2021 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
2022                            SmallVectorImpl<SourceLocation> &ReturnStmts,
2023                            SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc,
2024                            Sema::CheckConstexprKind Kind) {
2025   // - its function-body shall be [...] a compound-statement that contains only
2026   switch (S->getStmtClass()) {
2027   case Stmt::NullStmtClass:
2028     //   - null statements,
2029     return true;
2030 
2031   case Stmt::DeclStmtClass:
2032     //   - static_assert-declarations
2033     //   - using-declarations,
2034     //   - using-directives,
2035     //   - typedef declarations and alias-declarations that do not define
2036     //     classes or enumerations,
2037     if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind))
2038       return false;
2039     return true;
2040 
2041   case Stmt::ReturnStmtClass:
2042     //   - and exactly one return statement;
2043     if (isa<CXXConstructorDecl>(Dcl)) {
2044       // C++1y allows return statements in constexpr constructors.
2045       if (!Cxx1yLoc.isValid())
2046         Cxx1yLoc = S->getBeginLoc();
2047       return true;
2048     }
2049 
2050     ReturnStmts.push_back(S->getBeginLoc());
2051     return true;
2052 
2053   case Stmt::CompoundStmtClass: {
2054     // C++1y allows compound-statements.
2055     if (!Cxx1yLoc.isValid())
2056       Cxx1yLoc = S->getBeginLoc();
2057 
2058     CompoundStmt *CompStmt = cast<CompoundStmt>(S);
2059     for (auto *BodyIt : CompStmt->body()) {
2060       if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
2061                                       Cxx1yLoc, Cxx2aLoc, Kind))
2062         return false;
2063     }
2064     return true;
2065   }
2066 
2067   case Stmt::AttributedStmtClass:
2068     if (!Cxx1yLoc.isValid())
2069       Cxx1yLoc = S->getBeginLoc();
2070     return true;
2071 
2072   case Stmt::IfStmtClass: {
2073     // C++1y allows if-statements.
2074     if (!Cxx1yLoc.isValid())
2075       Cxx1yLoc = S->getBeginLoc();
2076 
2077     IfStmt *If = cast<IfStmt>(S);
2078     if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
2079                                     Cxx1yLoc, Cxx2aLoc, Kind))
2080       return false;
2081     if (If->getElse() &&
2082         !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
2083                                     Cxx1yLoc, Cxx2aLoc, Kind))
2084       return false;
2085     return true;
2086   }
2087 
2088   case Stmt::WhileStmtClass:
2089   case Stmt::DoStmtClass:
2090   case Stmt::ForStmtClass:
2091   case Stmt::CXXForRangeStmtClass:
2092   case Stmt::ContinueStmtClass:
2093     // C++1y allows all of these. We don't allow them as extensions in C++11,
2094     // because they don't make sense without variable mutation.
2095     if (!SemaRef.getLangOpts().CPlusPlus14)
2096       break;
2097     if (!Cxx1yLoc.isValid())
2098       Cxx1yLoc = S->getBeginLoc();
2099     for (Stmt *SubStmt : S->children())
2100       if (SubStmt &&
2101           !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2102                                       Cxx1yLoc, Cxx2aLoc, Kind))
2103         return false;
2104     return true;
2105 
2106   case Stmt::SwitchStmtClass:
2107   case Stmt::CaseStmtClass:
2108   case Stmt::DefaultStmtClass:
2109   case Stmt::BreakStmtClass:
2110     // C++1y allows switch-statements, and since they don't need variable
2111     // mutation, we can reasonably allow them in C++11 as an extension.
2112     if (!Cxx1yLoc.isValid())
2113       Cxx1yLoc = S->getBeginLoc();
2114     for (Stmt *SubStmt : S->children())
2115       if (SubStmt &&
2116           !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2117                                       Cxx1yLoc, Cxx2aLoc, Kind))
2118         return false;
2119     return true;
2120 
2121   case Stmt::GCCAsmStmtClass:
2122   case Stmt::MSAsmStmtClass:
2123     // C++2a allows inline assembly statements.
2124   case Stmt::CXXTryStmtClass:
2125     if (Cxx2aLoc.isInvalid())
2126       Cxx2aLoc = S->getBeginLoc();
2127     for (Stmt *SubStmt : S->children()) {
2128       if (SubStmt &&
2129           !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2130                                       Cxx1yLoc, Cxx2aLoc, Kind))
2131         return false;
2132     }
2133     return true;
2134 
2135   case Stmt::CXXCatchStmtClass:
2136     // Do not bother checking the language mode (already covered by the
2137     // try block check).
2138     if (!CheckConstexprFunctionStmt(SemaRef, Dcl,
2139                                     cast<CXXCatchStmt>(S)->getHandlerBlock(),
2140                                     ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind))
2141       return false;
2142     return true;
2143 
2144   default:
2145     if (!isa<Expr>(S))
2146       break;
2147 
2148     // C++1y allows expression-statements.
2149     if (!Cxx1yLoc.isValid())
2150       Cxx1yLoc = S->getBeginLoc();
2151     return true;
2152   }
2153 
2154   if (Kind == Sema::CheckConstexprKind::Diagnose) {
2155     SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
2156         << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2157   }
2158   return false;
2159 }
2160 
2161 /// Check the body for the given constexpr function declaration only contains
2162 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
2163 ///
2164 /// \return true if the body is OK, false if we have found or diagnosed a
2165 /// problem.
CheckConstexprFunctionBody(Sema & SemaRef,const FunctionDecl * Dcl,Stmt * Body,Sema::CheckConstexprKind Kind)2166 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
2167                                        Stmt *Body,
2168                                        Sema::CheckConstexprKind Kind) {
2169   SmallVector<SourceLocation, 4> ReturnStmts;
2170 
2171   if (isa<CXXTryStmt>(Body)) {
2172     // C++11 [dcl.constexpr]p3:
2173     //  The definition of a constexpr function shall satisfy the following
2174     //  constraints: [...]
2175     // - its function-body shall be = delete, = default, or a
2176     //   compound-statement
2177     //
2178     // C++11 [dcl.constexpr]p4:
2179     //  In the definition of a constexpr constructor, [...]
2180     // - its function-body shall not be a function-try-block;
2181     //
2182     // This restriction is lifted in C++2a, as long as inner statements also
2183     // apply the general constexpr rules.
2184     switch (Kind) {
2185     case Sema::CheckConstexprKind::CheckValid:
2186       if (!SemaRef.getLangOpts().CPlusPlus20)
2187         return false;
2188       break;
2189 
2190     case Sema::CheckConstexprKind::Diagnose:
2191       SemaRef.Diag(Body->getBeginLoc(),
2192            !SemaRef.getLangOpts().CPlusPlus20
2193                ? diag::ext_constexpr_function_try_block_cxx20
2194                : diag::warn_cxx17_compat_constexpr_function_try_block)
2195           << isa<CXXConstructorDecl>(Dcl);
2196       break;
2197     }
2198   }
2199 
2200   // - its function-body shall be [...] a compound-statement that contains only
2201   //   [... list of cases ...]
2202   //
2203   // Note that walking the children here is enough to properly check for
2204   // CompoundStmt and CXXTryStmt body.
2205   SourceLocation Cxx1yLoc, Cxx2aLoc;
2206   for (Stmt *SubStmt : Body->children()) {
2207     if (SubStmt &&
2208         !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2209                                     Cxx1yLoc, Cxx2aLoc, Kind))
2210       return false;
2211   }
2212 
2213   if (Kind == Sema::CheckConstexprKind::CheckValid) {
2214     // If this is only valid as an extension, report that we don't satisfy the
2215     // constraints of the current language.
2216     if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) ||
2217         (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17))
2218       return false;
2219   } else if (Cxx2aLoc.isValid()) {
2220     SemaRef.Diag(Cxx2aLoc,
2221          SemaRef.getLangOpts().CPlusPlus20
2222            ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt
2223            : diag::ext_constexpr_body_invalid_stmt_cxx20)
2224       << isa<CXXConstructorDecl>(Dcl);
2225   } else if (Cxx1yLoc.isValid()) {
2226     SemaRef.Diag(Cxx1yLoc,
2227          SemaRef.getLangOpts().CPlusPlus14
2228            ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
2229            : diag::ext_constexpr_body_invalid_stmt)
2230       << isa<CXXConstructorDecl>(Dcl);
2231   }
2232 
2233   if (const CXXConstructorDecl *Constructor
2234         = dyn_cast<CXXConstructorDecl>(Dcl)) {
2235     const CXXRecordDecl *RD = Constructor->getParent();
2236     // DR1359:
2237     // - every non-variant non-static data member and base class sub-object
2238     //   shall be initialized;
2239     // DR1460:
2240     // - if the class is a union having variant members, exactly one of them
2241     //   shall be initialized;
2242     if (RD->isUnion()) {
2243       if (Constructor->getNumCtorInitializers() == 0 &&
2244           RD->hasVariantMembers()) {
2245         if (Kind == Sema::CheckConstexprKind::Diagnose) {
2246           SemaRef.Diag(
2247               Dcl->getLocation(),
2248               SemaRef.getLangOpts().CPlusPlus20
2249                   ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init
2250                   : diag::ext_constexpr_union_ctor_no_init);
2251         } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2252           return false;
2253         }
2254       }
2255     } else if (!Constructor->isDependentContext() &&
2256                !Constructor->isDelegatingConstructor()) {
2257       assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
2258 
2259       // Skip detailed checking if we have enough initializers, and we would
2260       // allow at most one initializer per member.
2261       bool AnyAnonStructUnionMembers = false;
2262       unsigned Fields = 0;
2263       for (CXXRecordDecl::field_iterator I = RD->field_begin(),
2264            E = RD->field_end(); I != E; ++I, ++Fields) {
2265         if (I->isAnonymousStructOrUnion()) {
2266           AnyAnonStructUnionMembers = true;
2267           break;
2268         }
2269       }
2270       // DR1460:
2271       // - if the class is a union-like class, but is not a union, for each of
2272       //   its anonymous union members having variant members, exactly one of
2273       //   them shall be initialized;
2274       if (AnyAnonStructUnionMembers ||
2275           Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
2276         // Check initialization of non-static data members. Base classes are
2277         // always initialized so do not need to be checked. Dependent bases
2278         // might not have initializers in the member initializer list.
2279         llvm::SmallSet<Decl*, 16> Inits;
2280         for (const auto *I: Constructor->inits()) {
2281           if (FieldDecl *FD = I->getMember())
2282             Inits.insert(FD);
2283           else if (IndirectFieldDecl *ID = I->getIndirectMember())
2284             Inits.insert(ID->chain_begin(), ID->chain_end());
2285         }
2286 
2287         bool Diagnosed = false;
2288         for (auto *I : RD->fields())
2289           if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2290                                              Kind))
2291             return false;
2292       }
2293     }
2294   } else {
2295     if (ReturnStmts.empty()) {
2296       // C++1y doesn't require constexpr functions to contain a 'return'
2297       // statement. We still do, unless the return type might be void, because
2298       // otherwise if there's no return statement, the function cannot
2299       // be used in a core constant expression.
2300       bool OK = SemaRef.getLangOpts().CPlusPlus14 &&
2301                 (Dcl->getReturnType()->isVoidType() ||
2302                  Dcl->getReturnType()->isDependentType());
2303       switch (Kind) {
2304       case Sema::CheckConstexprKind::Diagnose:
2305         SemaRef.Diag(Dcl->getLocation(),
2306                      OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2307                         : diag::err_constexpr_body_no_return)
2308             << Dcl->isConsteval();
2309         if (!OK)
2310           return false;
2311         break;
2312 
2313       case Sema::CheckConstexprKind::CheckValid:
2314         // The formal requirements don't include this rule in C++14, even
2315         // though the "must be able to produce a constant expression" rules
2316         // still imply it in some cases.
2317         if (!SemaRef.getLangOpts().CPlusPlus14)
2318           return false;
2319         break;
2320       }
2321     } else if (ReturnStmts.size() > 1) {
2322       switch (Kind) {
2323       case Sema::CheckConstexprKind::Diagnose:
2324         SemaRef.Diag(
2325             ReturnStmts.back(),
2326             SemaRef.getLangOpts().CPlusPlus14
2327                 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2328                 : diag::ext_constexpr_body_multiple_return);
2329         for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2330           SemaRef.Diag(ReturnStmts[I],
2331                        diag::note_constexpr_body_previous_return);
2332         break;
2333 
2334       case Sema::CheckConstexprKind::CheckValid:
2335         if (!SemaRef.getLangOpts().CPlusPlus14)
2336           return false;
2337         break;
2338       }
2339     }
2340   }
2341 
2342   // C++11 [dcl.constexpr]p5:
2343   //   if no function argument values exist such that the function invocation
2344   //   substitution would produce a constant expression, the program is
2345   //   ill-formed; no diagnostic required.
2346   // C++11 [dcl.constexpr]p3:
2347   //   - every constructor call and implicit conversion used in initializing the
2348   //     return value shall be one of those allowed in a constant expression.
2349   // C++11 [dcl.constexpr]p4:
2350   //   - every constructor involved in initializing non-static data members and
2351   //     base class sub-objects shall be a constexpr constructor.
2352   //
2353   // Note that this rule is distinct from the "requirements for a constexpr
2354   // function", so is not checked in CheckValid mode.
2355   SmallVector<PartialDiagnosticAt, 8> Diags;
2356   if (Kind == Sema::CheckConstexprKind::Diagnose &&
2357       !Expr::isPotentialConstantExpr(Dcl, Diags)) {
2358     SemaRef.Diag(Dcl->getLocation(),
2359                  diag::ext_constexpr_function_never_constant_expr)
2360         << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2361     for (size_t I = 0, N = Diags.size(); I != N; ++I)
2362       SemaRef.Diag(Diags[I].first, Diags[I].second);
2363     // Don't return false here: we allow this for compatibility in
2364     // system headers.
2365   }
2366 
2367   return true;
2368 }
2369 
2370 /// Get the class that is directly named by the current context. This is the
2371 /// class for which an unqualified-id in this scope could name a constructor
2372 /// or destructor.
2373 ///
2374 /// If the scope specifier denotes a class, this will be that class.
2375 /// If the scope specifier is empty, this will be the class whose
2376 /// member-specification we are currently within. Otherwise, there
2377 /// is no such class.
getCurrentClass(Scope *,const CXXScopeSpec * SS)2378 CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) {
2379   assert(getLangOpts().CPlusPlus && "No class names in C!");
2380 
2381   if (SS && SS->isInvalid())
2382     return nullptr;
2383 
2384   if (SS && SS->isNotEmpty()) {
2385     DeclContext *DC = computeDeclContext(*SS, true);
2386     return dyn_cast_or_null<CXXRecordDecl>(DC);
2387   }
2388 
2389   return dyn_cast_or_null<CXXRecordDecl>(CurContext);
2390 }
2391 
2392 /// isCurrentClassName - Determine whether the identifier II is the
2393 /// name of the class type currently being defined. In the case of
2394 /// nested classes, this will only return true if II is the name of
2395 /// the innermost class.
isCurrentClassName(const IdentifierInfo & II,Scope * S,const CXXScopeSpec * SS)2396 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S,
2397                               const CXXScopeSpec *SS) {
2398   CXXRecordDecl *CurDecl = getCurrentClass(S, SS);
2399   return CurDecl && &II == CurDecl->getIdentifier();
2400 }
2401 
2402 /// Determine whether the identifier II is a typo for the name of
2403 /// the class type currently being defined. If so, update it to the identifier
2404 /// that should have been used.
isCurrentClassNameTypo(IdentifierInfo * & II,const CXXScopeSpec * SS)2405 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2406   assert(getLangOpts().CPlusPlus && "No class names in C!");
2407 
2408   if (!getLangOpts().SpellChecking)
2409     return false;
2410 
2411   CXXRecordDecl *CurDecl;
2412   if (SS && SS->isSet() && !SS->isInvalid()) {
2413     DeclContext *DC = computeDeclContext(*SS, true);
2414     CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2415   } else
2416     CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2417 
2418   if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2419       3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2420           < II->getLength()) {
2421     II = CurDecl->getIdentifier();
2422     return true;
2423   }
2424 
2425   return false;
2426 }
2427 
2428 /// Determine whether the given class is a base class of the given
2429 /// class, including looking at dependent bases.
findCircularInheritance(const CXXRecordDecl * Class,const CXXRecordDecl * Current)2430 static bool findCircularInheritance(const CXXRecordDecl *Class,
2431                                     const CXXRecordDecl *Current) {
2432   SmallVector<const CXXRecordDecl*, 8> Queue;
2433 
2434   Class = Class->getCanonicalDecl();
2435   while (true) {
2436     for (const auto &I : Current->bases()) {
2437       CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2438       if (!Base)
2439         continue;
2440 
2441       Base = Base->getDefinition();
2442       if (!Base)
2443         continue;
2444 
2445       if (Base->getCanonicalDecl() == Class)
2446         return true;
2447 
2448       Queue.push_back(Base);
2449     }
2450 
2451     if (Queue.empty())
2452       return false;
2453 
2454     Current = Queue.pop_back_val();
2455   }
2456 
2457   return false;
2458 }
2459 
2460 /// Check the validity of a C++ base class specifier.
2461 ///
2462 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2463 /// and returns NULL otherwise.
2464 CXXBaseSpecifier *
CheckBaseSpecifier(CXXRecordDecl * Class,SourceRange SpecifierRange,bool Virtual,AccessSpecifier Access,TypeSourceInfo * TInfo,SourceLocation EllipsisLoc)2465 Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2466                          SourceRange SpecifierRange,
2467                          bool Virtual, AccessSpecifier Access,
2468                          TypeSourceInfo *TInfo,
2469                          SourceLocation EllipsisLoc) {
2470   QualType BaseType = TInfo->getType();
2471   if (BaseType->containsErrors()) {
2472     // Already emitted a diagnostic when parsing the error type.
2473     return nullptr;
2474   }
2475   // C++ [class.union]p1:
2476   //   A union shall not have base classes.
2477   if (Class->isUnion()) {
2478     Diag(Class->getLocation(), diag::err_base_clause_on_union)
2479       << SpecifierRange;
2480     return nullptr;
2481   }
2482 
2483   if (EllipsisLoc.isValid() &&
2484       !TInfo->getType()->containsUnexpandedParameterPack()) {
2485     Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2486       << TInfo->getTypeLoc().getSourceRange();
2487     EllipsisLoc = SourceLocation();
2488   }
2489 
2490   SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2491 
2492   if (BaseType->isDependentType()) {
2493     // Make sure that we don't have circular inheritance among our dependent
2494     // bases. For non-dependent bases, the check for completeness below handles
2495     // this.
2496     if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2497       if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2498           ((BaseDecl = BaseDecl->getDefinition()) &&
2499            findCircularInheritance(Class, BaseDecl))) {
2500         Diag(BaseLoc, diag::err_circular_inheritance)
2501           << BaseType << Context.getTypeDeclType(Class);
2502 
2503         if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2504           Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2505             << BaseType;
2506 
2507         return nullptr;
2508       }
2509     }
2510 
2511     // Make sure that we don't make an ill-formed AST where the type of the
2512     // Class is non-dependent and its attached base class specifier is an
2513     // dependent type, which violates invariants in many clang code paths (e.g.
2514     // constexpr evaluator). If this case happens (in errory-recovery mode), we
2515     // explicitly mark the Class decl invalid. The diagnostic was already
2516     // emitted.
2517     if (!Class->getTypeForDecl()->isDependentType())
2518       Class->setInvalidDecl();
2519     return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2520                                           Class->getTagKind() == TTK_Class,
2521                                           Access, TInfo, EllipsisLoc);
2522   }
2523 
2524   // Base specifiers must be record types.
2525   if (!BaseType->isRecordType()) {
2526     Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2527     return nullptr;
2528   }
2529 
2530   // C++ [class.union]p1:
2531   //   A union shall not be used as a base class.
2532   if (BaseType->isUnionType()) {
2533     Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2534     return nullptr;
2535   }
2536 
2537   // For the MS ABI, propagate DLL attributes to base class templates.
2538   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2539     if (Attr *ClassAttr = getDLLAttr(Class)) {
2540       if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2541               BaseType->getAsCXXRecordDecl())) {
2542         propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2543                                             BaseLoc);
2544       }
2545     }
2546   }
2547 
2548   // C++ [class.derived]p2:
2549   //   The class-name in a base-specifier shall not be an incompletely
2550   //   defined class.
2551   if (RequireCompleteType(BaseLoc, BaseType,
2552                           diag::err_incomplete_base_class, SpecifierRange)) {
2553     Class->setInvalidDecl();
2554     return nullptr;
2555   }
2556 
2557   // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2558   RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl();
2559   assert(BaseDecl && "Record type has no declaration");
2560   BaseDecl = BaseDecl->getDefinition();
2561   assert(BaseDecl && "Base type is not incomplete, but has no definition");
2562   CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2563   assert(CXXBaseDecl && "Base type is not a C++ type");
2564 
2565   // Microsoft docs say:
2566   // "If a base-class has a code_seg attribute, derived classes must have the
2567   // same attribute."
2568   const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>();
2569   const auto *DerivedCSA = Class->getAttr<CodeSegAttr>();
2570   if ((DerivedCSA || BaseCSA) &&
2571       (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) {
2572     Diag(Class->getLocation(), diag::err_mismatched_code_seg_base);
2573     Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here)
2574       << CXXBaseDecl;
2575     return nullptr;
2576   }
2577 
2578   // A class which contains a flexible array member is not suitable for use as a
2579   // base class:
2580   //   - If the layout determines that a base comes before another base,
2581   //     the flexible array member would index into the subsequent base.
2582   //   - If the layout determines that base comes before the derived class,
2583   //     the flexible array member would index into the derived class.
2584   if (CXXBaseDecl->hasFlexibleArrayMember()) {
2585     Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2586       << CXXBaseDecl->getDeclName();
2587     return nullptr;
2588   }
2589 
2590   // C++ [class]p3:
2591   //   If a class is marked final and it appears as a base-type-specifier in
2592   //   base-clause, the program is ill-formed.
2593   if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2594     Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2595       << CXXBaseDecl->getDeclName()
2596       << FA->isSpelledAsSealed();
2597     Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2598         << CXXBaseDecl->getDeclName() << FA->getRange();
2599     return nullptr;
2600   }
2601 
2602   if (BaseDecl->isInvalidDecl())
2603     Class->setInvalidDecl();
2604 
2605   // Create the base specifier.
2606   return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2607                                         Class->getTagKind() == TTK_Class,
2608                                         Access, TInfo, EllipsisLoc);
2609 }
2610 
2611 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2612 /// one entry in the base class list of a class specifier, for
2613 /// example:
2614 ///    class foo : public bar, virtual private baz {
2615 /// 'public bar' and 'virtual private baz' are each base-specifiers.
2616 BaseResult
ActOnBaseSpecifier(Decl * classdecl,SourceRange SpecifierRange,ParsedAttributes & Attributes,bool Virtual,AccessSpecifier Access,ParsedType basetype,SourceLocation BaseLoc,SourceLocation EllipsisLoc)2617 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2618                          ParsedAttributes &Attributes,
2619                          bool Virtual, AccessSpecifier Access,
2620                          ParsedType basetype, SourceLocation BaseLoc,
2621                          SourceLocation EllipsisLoc) {
2622   if (!classdecl)
2623     return true;
2624 
2625   AdjustDeclIfTemplate(classdecl);
2626   CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2627   if (!Class)
2628     return true;
2629 
2630   // We haven't yet attached the base specifiers.
2631   Class->setIsParsingBaseSpecifiers();
2632 
2633   // We do not support any C++11 attributes on base-specifiers yet.
2634   // Diagnose any attributes we see.
2635   for (const ParsedAttr &AL : Attributes) {
2636     if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
2637       continue;
2638     Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute
2639                           ? (unsigned)diag::warn_unknown_attribute_ignored
2640                           : (unsigned)diag::err_base_specifier_attribute)
2641         << AL << AL.getRange();
2642   }
2643 
2644   TypeSourceInfo *TInfo = nullptr;
2645   GetTypeFromParser(basetype, &TInfo);
2646 
2647   if (EllipsisLoc.isInvalid() &&
2648       DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2649                                       UPPC_BaseType))
2650     return true;
2651 
2652   if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2653                                                       Virtual, Access, TInfo,
2654                                                       EllipsisLoc))
2655     return BaseSpec;
2656   else
2657     Class->setInvalidDecl();
2658 
2659   return true;
2660 }
2661 
2662 /// Use small set to collect indirect bases.  As this is only used
2663 /// locally, there's no need to abstract the small size parameter.
2664 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2665 
2666 /// Recursively add the bases of Type.  Don't add Type itself.
2667 static void
NoteIndirectBases(ASTContext & Context,IndirectBaseSet & Set,const QualType & Type)2668 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2669                   const QualType &Type)
2670 {
2671   // Even though the incoming type is a base, it might not be
2672   // a class -- it could be a template parm, for instance.
2673   if (auto Rec = Type->getAs<RecordType>()) {
2674     auto Decl = Rec->getAsCXXRecordDecl();
2675 
2676     // Iterate over its bases.
2677     for (const auto &BaseSpec : Decl->bases()) {
2678       QualType Base = Context.getCanonicalType(BaseSpec.getType())
2679         .getUnqualifiedType();
2680       if (Set.insert(Base).second)
2681         // If we've not already seen it, recurse.
2682         NoteIndirectBases(Context, Set, Base);
2683     }
2684   }
2685 }
2686 
2687 /// Performs the actual work of attaching the given base class
2688 /// specifiers to a C++ class.
AttachBaseSpecifiers(CXXRecordDecl * Class,MutableArrayRef<CXXBaseSpecifier * > Bases)2689 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2690                                 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2691  if (Bases.empty())
2692     return false;
2693 
2694   // Used to keep track of which base types we have already seen, so
2695   // that we can properly diagnose redundant direct base types. Note
2696   // that the key is always the unqualified canonical type of the base
2697   // class.
2698   std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2699 
2700   // Used to track indirect bases so we can see if a direct base is
2701   // ambiguous.
2702   IndirectBaseSet IndirectBaseTypes;
2703 
2704   // Copy non-redundant base specifiers into permanent storage.
2705   unsigned NumGoodBases = 0;
2706   bool Invalid = false;
2707   for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2708     QualType NewBaseType
2709       = Context.getCanonicalType(Bases[idx]->getType());
2710     NewBaseType = NewBaseType.getLocalUnqualifiedType();
2711 
2712     CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2713     if (KnownBase) {
2714       // C++ [class.mi]p3:
2715       //   A class shall not be specified as a direct base class of a
2716       //   derived class more than once.
2717       Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class)
2718           << KnownBase->getType() << Bases[idx]->getSourceRange();
2719 
2720       // Delete the duplicate base class specifier; we're going to
2721       // overwrite its pointer later.
2722       Context.Deallocate(Bases[idx]);
2723 
2724       Invalid = true;
2725     } else {
2726       // Okay, add this new base class.
2727       KnownBase = Bases[idx];
2728       Bases[NumGoodBases++] = Bases[idx];
2729 
2730       // Note this base's direct & indirect bases, if there could be ambiguity.
2731       if (Bases.size() > 1)
2732         NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2733 
2734       if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2735         const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2736         if (Class->isInterface() &&
2737               (!RD->isInterfaceLike() ||
2738                KnownBase->getAccessSpecifier() != AS_public)) {
2739           // The Microsoft extension __interface does not permit bases that
2740           // are not themselves public interfaces.
2741           Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface)
2742               << getRecordDiagFromTagKind(RD->getTagKind()) << RD
2743               << RD->getSourceRange();
2744           Invalid = true;
2745         }
2746         if (RD->hasAttr<WeakAttr>())
2747           Class->addAttr(WeakAttr::CreateImplicit(Context));
2748       }
2749     }
2750   }
2751 
2752   // Attach the remaining base class specifiers to the derived class.
2753   Class->setBases(Bases.data(), NumGoodBases);
2754 
2755   // Check that the only base classes that are duplicate are virtual.
2756   for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2757     // Check whether this direct base is inaccessible due to ambiguity.
2758     QualType BaseType = Bases[idx]->getType();
2759 
2760     // Skip all dependent types in templates being used as base specifiers.
2761     // Checks below assume that the base specifier is a CXXRecord.
2762     if (BaseType->isDependentType())
2763       continue;
2764 
2765     CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2766       .getUnqualifiedType();
2767 
2768     if (IndirectBaseTypes.count(CanonicalBase)) {
2769       CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2770                          /*DetectVirtual=*/true);
2771       bool found
2772         = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2773       assert(found);
2774       (void)found;
2775 
2776       if (Paths.isAmbiguous(CanonicalBase))
2777         Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class)
2778             << BaseType << getAmbiguousPathsDisplayString(Paths)
2779             << Bases[idx]->getSourceRange();
2780       else
2781         assert(Bases[idx]->isVirtual());
2782     }
2783 
2784     // Delete the base class specifier, since its data has been copied
2785     // into the CXXRecordDecl.
2786     Context.Deallocate(Bases[idx]);
2787   }
2788 
2789   return Invalid;
2790 }
2791 
2792 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
2793 /// class, after checking whether there are any duplicate base
2794 /// classes.
ActOnBaseSpecifiers(Decl * ClassDecl,MutableArrayRef<CXXBaseSpecifier * > Bases)2795 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2796                                MutableArrayRef<CXXBaseSpecifier *> Bases) {
2797   if (!ClassDecl || Bases.empty())
2798     return;
2799 
2800   AdjustDeclIfTemplate(ClassDecl);
2801   AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2802 }
2803 
2804 /// Determine whether the type \p Derived is a C++ class that is
2805 /// derived from the type \p Base.
IsDerivedFrom(SourceLocation Loc,QualType Derived,QualType Base)2806 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2807   if (!getLangOpts().CPlusPlus)
2808     return false;
2809 
2810   CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2811   if (!DerivedRD)
2812     return false;
2813 
2814   CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2815   if (!BaseRD)
2816     return false;
2817 
2818   // If either the base or the derived type is invalid, don't try to
2819   // check whether one is derived from the other.
2820   if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2821     return false;
2822 
2823   // FIXME: In a modules build, do we need the entire path to be visible for us
2824   // to be able to use the inheritance relationship?
2825   if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2826     return false;
2827 
2828   return DerivedRD->isDerivedFrom(BaseRD);
2829 }
2830 
2831 /// Determine whether the type \p Derived is a C++ class that is
2832 /// derived from the type \p Base.
IsDerivedFrom(SourceLocation Loc,QualType Derived,QualType Base,CXXBasePaths & Paths)2833 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2834                          CXXBasePaths &Paths) {
2835   if (!getLangOpts().CPlusPlus)
2836     return false;
2837 
2838   CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2839   if (!DerivedRD)
2840     return false;
2841 
2842   CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2843   if (!BaseRD)
2844     return false;
2845 
2846   if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2847     return false;
2848 
2849   return DerivedRD->isDerivedFrom(BaseRD, Paths);
2850 }
2851 
BuildBasePathArray(const CXXBasePath & Path,CXXCastPath & BasePathArray)2852 static void BuildBasePathArray(const CXXBasePath &Path,
2853                                CXXCastPath &BasePathArray) {
2854   // We first go backward and check if we have a virtual base.
2855   // FIXME: It would be better if CXXBasePath had the base specifier for
2856   // the nearest virtual base.
2857   unsigned Start = 0;
2858   for (unsigned I = Path.size(); I != 0; --I) {
2859     if (Path[I - 1].Base->isVirtual()) {
2860       Start = I - 1;
2861       break;
2862     }
2863   }
2864 
2865   // Now add all bases.
2866   for (unsigned I = Start, E = Path.size(); I != E; ++I)
2867     BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2868 }
2869 
2870 
BuildBasePathArray(const CXXBasePaths & Paths,CXXCastPath & BasePathArray)2871 void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2872                               CXXCastPath &BasePathArray) {
2873   assert(BasePathArray.empty() && "Base path array must be empty!");
2874   assert(Paths.isRecordingPaths() && "Must record paths!");
2875   return ::BuildBasePathArray(Paths.front(), BasePathArray);
2876 }
2877 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2878 /// conversion (where Derived and Base are class types) is
2879 /// well-formed, meaning that the conversion is unambiguous (and
2880 /// that all of the base classes are accessible). Returns true
2881 /// and emits a diagnostic if the code is ill-formed, returns false
2882 /// otherwise. Loc is the location where this routine should point to
2883 /// if there is an error, and Range is the source range to highlight
2884 /// if there is an error.
2885 ///
2886 /// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the
2887 /// diagnostic for the respective type of error will be suppressed, but the
2888 /// check for ill-formed code will still be performed.
2889 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,unsigned InaccessibleBaseID,unsigned AmbiguousBaseConvID,SourceLocation Loc,SourceRange Range,DeclarationName Name,CXXCastPath * BasePath,bool IgnoreAccess)2890 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2891                                    unsigned InaccessibleBaseID,
2892                                    unsigned AmbiguousBaseConvID,
2893                                    SourceLocation Loc, SourceRange Range,
2894                                    DeclarationName Name,
2895                                    CXXCastPath *BasePath,
2896                                    bool IgnoreAccess) {
2897   // First, determine whether the path from Derived to Base is
2898   // ambiguous. This is slightly more expensive than checking whether
2899   // the Derived to Base conversion exists, because here we need to
2900   // explore multiple paths to determine if there is an ambiguity.
2901   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2902                      /*DetectVirtual=*/false);
2903   bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2904   if (!DerivationOkay)
2905     return true;
2906 
2907   const CXXBasePath *Path = nullptr;
2908   if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType()))
2909     Path = &Paths.front();
2910 
2911   // For MSVC compatibility, check if Derived directly inherits from Base. Clang
2912   // warns about this hierarchy under -Winaccessible-base, but MSVC allows the
2913   // user to access such bases.
2914   if (!Path && getLangOpts().MSVCCompat) {
2915     for (const CXXBasePath &PossiblePath : Paths) {
2916       if (PossiblePath.size() == 1) {
2917         Path = &PossiblePath;
2918         if (AmbiguousBaseConvID)
2919           Diag(Loc, diag::ext_ms_ambiguous_direct_base)
2920               << Base << Derived << Range;
2921         break;
2922       }
2923     }
2924   }
2925 
2926   if (Path) {
2927     if (!IgnoreAccess) {
2928       // Check that the base class can be accessed.
2929       switch (
2930           CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) {
2931       case AR_inaccessible:
2932         return true;
2933       case AR_accessible:
2934       case AR_dependent:
2935       case AR_delayed:
2936         break;
2937       }
2938     }
2939 
2940     // Build a base path if necessary.
2941     if (BasePath)
2942       ::BuildBasePathArray(*Path, *BasePath);
2943     return false;
2944   }
2945 
2946   if (AmbiguousBaseConvID) {
2947     // We know that the derived-to-base conversion is ambiguous, and
2948     // we're going to produce a diagnostic. Perform the derived-to-base
2949     // search just one more time to compute all of the possible paths so
2950     // that we can print them out. This is more expensive than any of
2951     // the previous derived-to-base checks we've done, but at this point
2952     // performance isn't as much of an issue.
2953     Paths.clear();
2954     Paths.setRecordingPaths(true);
2955     bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2956     assert(StillOkay && "Can only be used with a derived-to-base conversion");
2957     (void)StillOkay;
2958 
2959     // Build up a textual representation of the ambiguous paths, e.g.,
2960     // D -> B -> A, that will be used to illustrate the ambiguous
2961     // conversions in the diagnostic. We only print one of the paths
2962     // to each base class subobject.
2963     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2964 
2965     Diag(Loc, AmbiguousBaseConvID)
2966     << Derived << Base << PathDisplayStr << Range << Name;
2967   }
2968   return true;
2969 }
2970 
2971 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,SourceLocation Loc,SourceRange Range,CXXCastPath * BasePath,bool IgnoreAccess)2972 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2973                                    SourceLocation Loc, SourceRange Range,
2974                                    CXXCastPath *BasePath,
2975                                    bool IgnoreAccess) {
2976   return CheckDerivedToBaseConversion(
2977       Derived, Base, diag::err_upcast_to_inaccessible_base,
2978       diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
2979       BasePath, IgnoreAccess);
2980 }
2981 
2982 
2983 /// Builds a string representing ambiguous paths from a
2984 /// specific derived class to different subobjects of the same base
2985 /// class.
2986 ///
2987 /// This function builds a string that can be used in error messages
2988 /// to show the different paths that one can take through the
2989 /// inheritance hierarchy to go from the derived class to different
2990 /// subobjects of a base class. The result looks something like this:
2991 /// @code
2992 /// struct D -> struct B -> struct A
2993 /// struct D -> struct C -> struct A
2994 /// @endcode
getAmbiguousPathsDisplayString(CXXBasePaths & Paths)2995 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
2996   std::string PathDisplayStr;
2997   std::set<unsigned> DisplayedPaths;
2998   for (CXXBasePaths::paths_iterator Path = Paths.begin();
2999        Path != Paths.end(); ++Path) {
3000     if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
3001       // We haven't displayed a path to this particular base
3002       // class subobject yet.
3003       PathDisplayStr += "\n    ";
3004       PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
3005       for (CXXBasePath::const_iterator Element = Path->begin();
3006            Element != Path->end(); ++Element)
3007         PathDisplayStr += " -> " + Element->Base->getType().getAsString();
3008     }
3009   }
3010 
3011   return PathDisplayStr;
3012 }
3013 
3014 //===----------------------------------------------------------------------===//
3015 // C++ class member Handling
3016 //===----------------------------------------------------------------------===//
3017 
3018 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
ActOnAccessSpecifier(AccessSpecifier Access,SourceLocation ASLoc,SourceLocation ColonLoc,const ParsedAttributesView & Attrs)3019 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
3020                                 SourceLocation ColonLoc,
3021                                 const ParsedAttributesView &Attrs) {
3022   assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
3023   AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
3024                                                   ASLoc, ColonLoc);
3025   CurContext->addHiddenDecl(ASDecl);
3026   return ProcessAccessDeclAttributeList(ASDecl, Attrs);
3027 }
3028 
3029 /// CheckOverrideControl - Check C++11 override control semantics.
CheckOverrideControl(NamedDecl * D)3030 void Sema::CheckOverrideControl(NamedDecl *D) {
3031   if (D->isInvalidDecl())
3032     return;
3033 
3034   // We only care about "override" and "final" declarations.
3035   if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
3036     return;
3037 
3038   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3039 
3040   // We can't check dependent instance methods.
3041   if (MD && MD->isInstance() &&
3042       (MD->getParent()->hasAnyDependentBases() ||
3043        MD->getType()->isDependentType()))
3044     return;
3045 
3046   if (MD && !MD->isVirtual()) {
3047     // If we have a non-virtual method, check if if hides a virtual method.
3048     // (In that case, it's most likely the method has the wrong type.)
3049     SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3050     FindHiddenVirtualMethods(MD, OverloadedMethods);
3051 
3052     if (!OverloadedMethods.empty()) {
3053       if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3054         Diag(OA->getLocation(),
3055              diag::override_keyword_hides_virtual_member_function)
3056           << "override" << (OverloadedMethods.size() > 1);
3057       } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3058         Diag(FA->getLocation(),
3059              diag::override_keyword_hides_virtual_member_function)
3060           << (FA->isSpelledAsSealed() ? "sealed" : "final")
3061           << (OverloadedMethods.size() > 1);
3062       }
3063       NoteHiddenVirtualMethods(MD, OverloadedMethods);
3064       MD->setInvalidDecl();
3065       return;
3066     }
3067     // Fall through into the general case diagnostic.
3068     // FIXME: We might want to attempt typo correction here.
3069   }
3070 
3071   if (!MD || !MD->isVirtual()) {
3072     if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3073       Diag(OA->getLocation(),
3074            diag::override_keyword_only_allowed_on_virtual_member_functions)
3075         << "override" << FixItHint::CreateRemoval(OA->getLocation());
3076       D->dropAttr<OverrideAttr>();
3077     }
3078     if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3079       Diag(FA->getLocation(),
3080            diag::override_keyword_only_allowed_on_virtual_member_functions)
3081         << (FA->isSpelledAsSealed() ? "sealed" : "final")
3082         << FixItHint::CreateRemoval(FA->getLocation());
3083       D->dropAttr<FinalAttr>();
3084     }
3085     return;
3086   }
3087 
3088   // C++11 [class.virtual]p5:
3089   //   If a function is marked with the virt-specifier override and
3090   //   does not override a member function of a base class, the program is
3091   //   ill-formed.
3092   bool HasOverriddenMethods = MD->size_overridden_methods() != 0;
3093   if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
3094     Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
3095       << MD->getDeclName();
3096 }
3097 
DiagnoseAbsenceOfOverrideControl(NamedDecl * D,bool Inconsistent)3098 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) {
3099   if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
3100     return;
3101   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3102   if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
3103     return;
3104 
3105   SourceLocation Loc = MD->getLocation();
3106   SourceLocation SpellingLoc = Loc;
3107   if (getSourceManager().isMacroArgExpansion(Loc))
3108     SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin();
3109   SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
3110   if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
3111       return;
3112 
3113   if (MD->size_overridden_methods() > 0) {
3114     auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) {
3115       unsigned DiagID =
3116           Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation())
3117               ? DiagInconsistent
3118               : DiagSuggest;
3119       Diag(MD->getLocation(), DiagID) << MD->getDeclName();
3120       const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
3121       Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
3122     };
3123     if (isa<CXXDestructorDecl>(MD))
3124       EmitDiag(
3125           diag::warn_inconsistent_destructor_marked_not_override_overriding,
3126           diag::warn_suggest_destructor_marked_not_override_overriding);
3127     else
3128       EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding,
3129                diag::warn_suggest_function_marked_not_override_overriding);
3130   }
3131 }
3132 
3133 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
3134 /// function overrides a virtual member function marked 'final', according to
3135 /// C++11 [class.virtual]p4.
CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl * New,const CXXMethodDecl * Old)3136 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
3137                                                   const CXXMethodDecl *Old) {
3138   FinalAttr *FA = Old->getAttr<FinalAttr>();
3139   if (!FA)
3140     return false;
3141 
3142   Diag(New->getLocation(), diag::err_final_function_overridden)
3143     << New->getDeclName()
3144     << FA->isSpelledAsSealed();
3145   Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3146   return true;
3147 }
3148 
InitializationHasSideEffects(const FieldDecl & FD)3149 static bool InitializationHasSideEffects(const FieldDecl &FD) {
3150   const Type *T = FD.getType()->getBaseElementTypeUnsafe();
3151   // FIXME: Destruction of ObjC lifetime types has side-effects.
3152   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3153     return !RD->isCompleteDefinition() ||
3154            !RD->hasTrivialDefaultConstructor() ||
3155            !RD->hasTrivialDestructor();
3156   return false;
3157 }
3158 
getMSPropertyAttr(const ParsedAttributesView & list)3159 static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) {
3160   ParsedAttributesView::const_iterator Itr =
3161       llvm::find_if(list, [](const ParsedAttr &AL) {
3162         return AL.isDeclspecPropertyAttribute();
3163       });
3164   if (Itr != list.end())
3165     return &*Itr;
3166   return nullptr;
3167 }
3168 
3169 // Check if there is a field shadowing.
CheckShadowInheritedFields(const SourceLocation & Loc,DeclarationName FieldName,const CXXRecordDecl * RD,bool DeclIsField)3170 void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
3171                                       DeclarationName FieldName,
3172                                       const CXXRecordDecl *RD,
3173                                       bool DeclIsField) {
3174   if (Diags.isIgnored(diag::warn_shadow_field, Loc))
3175     return;
3176 
3177   // To record a shadowed field in a base
3178   std::map<CXXRecordDecl*, NamedDecl*> Bases;
3179   auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
3180                            CXXBasePath &Path) {
3181     const auto Base = Specifier->getType()->getAsCXXRecordDecl();
3182     // Record an ambiguous path directly
3183     if (Bases.find(Base) != Bases.end())
3184       return true;
3185     for (const auto Field : Base->lookup(FieldName)) {
3186       if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
3187           Field->getAccess() != AS_private) {
3188         assert(Field->getAccess() != AS_none);
3189         assert(Bases.find(Base) == Bases.end());
3190         Bases[Base] = Field;
3191         return true;
3192       }
3193     }
3194     return false;
3195   };
3196 
3197   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3198                      /*DetectVirtual=*/true);
3199   if (!RD->lookupInBases(FieldShadowed, Paths))
3200     return;
3201 
3202   for (const auto &P : Paths) {
3203     auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
3204     auto It = Bases.find(Base);
3205     // Skip duplicated bases
3206     if (It == Bases.end())
3207       continue;
3208     auto BaseField = It->second;
3209     assert(BaseField->getAccess() != AS_private);
3210     if (AS_none !=
3211         CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
3212       Diag(Loc, diag::warn_shadow_field)
3213         << FieldName << RD << Base << DeclIsField;
3214       Diag(BaseField->getLocation(), diag::note_shadow_field);
3215       Bases.erase(It);
3216     }
3217   }
3218 }
3219 
3220 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
3221 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
3222 /// bitfield width if there is one, 'InitExpr' specifies the initializer if
3223 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is
3224 /// present (but parsing it has been deferred).
3225 NamedDecl *
ActOnCXXMemberDeclarator(Scope * S,AccessSpecifier AS,Declarator & D,MultiTemplateParamsArg TemplateParameterLists,Expr * BW,const VirtSpecifiers & VS,InClassInitStyle InitStyle)3226 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
3227                                MultiTemplateParamsArg TemplateParameterLists,
3228                                Expr *BW, const VirtSpecifiers &VS,
3229                                InClassInitStyle InitStyle) {
3230   const DeclSpec &DS = D.getDeclSpec();
3231   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3232   DeclarationName Name = NameInfo.getName();
3233   SourceLocation Loc = NameInfo.getLoc();
3234 
3235   // For anonymous bitfields, the location should point to the type.
3236   if (Loc.isInvalid())
3237     Loc = D.getBeginLoc();
3238 
3239   Expr *BitWidth = static_cast<Expr*>(BW);
3240 
3241   assert(isa<CXXRecordDecl>(CurContext));
3242   assert(!DS.isFriendSpecified());
3243 
3244   bool isFunc = D.isDeclarationOfFunction();
3245   const ParsedAttr *MSPropertyAttr =
3246       getMSPropertyAttr(D.getDeclSpec().getAttributes());
3247 
3248   if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
3249     // The Microsoft extension __interface only permits public member functions
3250     // and prohibits constructors, destructors, operators, non-public member
3251     // functions, static methods and data members.
3252     unsigned InvalidDecl;
3253     bool ShowDeclName = true;
3254     if (!isFunc &&
3255         (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
3256       InvalidDecl = 0;
3257     else if (!isFunc)
3258       InvalidDecl = 1;
3259     else if (AS != AS_public)
3260       InvalidDecl = 2;
3261     else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
3262       InvalidDecl = 3;
3263     else switch (Name.getNameKind()) {
3264       case DeclarationName::CXXConstructorName:
3265         InvalidDecl = 4;
3266         ShowDeclName = false;
3267         break;
3268 
3269       case DeclarationName::CXXDestructorName:
3270         InvalidDecl = 5;
3271         ShowDeclName = false;
3272         break;
3273 
3274       case DeclarationName::CXXOperatorName:
3275       case DeclarationName::CXXConversionFunctionName:
3276         InvalidDecl = 6;
3277         break;
3278 
3279       default:
3280         InvalidDecl = 0;
3281         break;
3282     }
3283 
3284     if (InvalidDecl) {
3285       if (ShowDeclName)
3286         Diag(Loc, diag::err_invalid_member_in_interface)
3287           << (InvalidDecl-1) << Name;
3288       else
3289         Diag(Loc, diag::err_invalid_member_in_interface)
3290           << (InvalidDecl-1) << "";
3291       return nullptr;
3292     }
3293   }
3294 
3295   // C++ 9.2p6: A member shall not be declared to have automatic storage
3296   // duration (auto, register) or with the extern storage-class-specifier.
3297   // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
3298   // data members and cannot be applied to names declared const or static,
3299   // and cannot be applied to reference members.
3300   switch (DS.getStorageClassSpec()) {
3301   case DeclSpec::SCS_unspecified:
3302   case DeclSpec::SCS_typedef:
3303   case DeclSpec::SCS_static:
3304     break;
3305   case DeclSpec::SCS_mutable:
3306     if (isFunc) {
3307       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
3308 
3309       // FIXME: It would be nicer if the keyword was ignored only for this
3310       // declarator. Otherwise we could get follow-up errors.
3311       D.getMutableDeclSpec().ClearStorageClassSpecs();
3312     }
3313     break;
3314   default:
3315     Diag(DS.getStorageClassSpecLoc(),
3316          diag::err_storageclass_invalid_for_member);
3317     D.getMutableDeclSpec().ClearStorageClassSpecs();
3318     break;
3319   }
3320 
3321   bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
3322                        DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
3323                       !isFunc);
3324 
3325   if (DS.hasConstexprSpecifier() && isInstField) {
3326     SemaDiagnosticBuilder B =
3327         Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
3328     SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
3329     if (InitStyle == ICIS_NoInit) {
3330       B << 0 << 0;
3331       if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
3332         B << FixItHint::CreateRemoval(ConstexprLoc);
3333       else {
3334         B << FixItHint::CreateReplacement(ConstexprLoc, "const");
3335         D.getMutableDeclSpec().ClearConstexprSpec();
3336         const char *PrevSpec;
3337         unsigned DiagID;
3338         bool Failed = D.getMutableDeclSpec().SetTypeQual(
3339             DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
3340         (void)Failed;
3341         assert(!Failed && "Making a constexpr member const shouldn't fail");
3342       }
3343     } else {
3344       B << 1;
3345       const char *PrevSpec;
3346       unsigned DiagID;
3347       if (D.getMutableDeclSpec().SetStorageClassSpec(
3348           *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
3349           Context.getPrintingPolicy())) {
3350         assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
3351                "This is the only DeclSpec that should fail to be applied");
3352         B << 1;
3353       } else {
3354         B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
3355         isInstField = false;
3356       }
3357     }
3358   }
3359 
3360   NamedDecl *Member;
3361   if (isInstField) {
3362     CXXScopeSpec &SS = D.getCXXScopeSpec();
3363 
3364     // Data members must have identifiers for names.
3365     if (!Name.isIdentifier()) {
3366       Diag(Loc, diag::err_bad_variable_name)
3367         << Name;
3368       return nullptr;
3369     }
3370 
3371     IdentifierInfo *II = Name.getAsIdentifierInfo();
3372 
3373     // Member field could not be with "template" keyword.
3374     // So TemplateParameterLists should be empty in this case.
3375     if (TemplateParameterLists.size()) {
3376       TemplateParameterList* TemplateParams = TemplateParameterLists[0];
3377       if (TemplateParams->size()) {
3378         // There is no such thing as a member field template.
3379         Diag(D.getIdentifierLoc(), diag::err_template_member)
3380             << II
3381             << SourceRange(TemplateParams->getTemplateLoc(),
3382                 TemplateParams->getRAngleLoc());
3383       } else {
3384         // There is an extraneous 'template<>' for this member.
3385         Diag(TemplateParams->getTemplateLoc(),
3386             diag::err_template_member_noparams)
3387             << II
3388             << SourceRange(TemplateParams->getTemplateLoc(),
3389                 TemplateParams->getRAngleLoc());
3390       }
3391       return nullptr;
3392     }
3393 
3394     if (SS.isSet() && !SS.isInvalid()) {
3395       // The user provided a superfluous scope specifier inside a class
3396       // definition:
3397       //
3398       // class X {
3399       //   int X::member;
3400       // };
3401       if (DeclContext *DC = computeDeclContext(SS, false))
3402         diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(),
3403                                      D.getName().getKind() ==
3404                                          UnqualifiedIdKind::IK_TemplateId);
3405       else
3406         Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3407           << Name << SS.getRange();
3408 
3409       SS.clear();
3410     }
3411 
3412     if (MSPropertyAttr) {
3413       Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3414                                 BitWidth, InitStyle, AS, *MSPropertyAttr);
3415       if (!Member)
3416         return nullptr;
3417       isInstField = false;
3418     } else {
3419       Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3420                                 BitWidth, InitStyle, AS);
3421       if (!Member)
3422         return nullptr;
3423     }
3424 
3425     CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3426   } else {
3427     Member = HandleDeclarator(S, D, TemplateParameterLists);
3428     if (!Member)
3429       return nullptr;
3430 
3431     // Non-instance-fields can't have a bitfield.
3432     if (BitWidth) {
3433       if (Member->isInvalidDecl()) {
3434         // don't emit another diagnostic.
3435       } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3436         // C++ 9.6p3: A bit-field shall not be a static member.
3437         // "static member 'A' cannot be a bit-field"
3438         Diag(Loc, diag::err_static_not_bitfield)
3439           << Name << BitWidth->getSourceRange();
3440       } else if (isa<TypedefDecl>(Member)) {
3441         // "typedef member 'x' cannot be a bit-field"
3442         Diag(Loc, diag::err_typedef_not_bitfield)
3443           << Name << BitWidth->getSourceRange();
3444       } else {
3445         // A function typedef ("typedef int f(); f a;").
3446         // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3447         Diag(Loc, diag::err_not_integral_type_bitfield)
3448           << Name << cast<ValueDecl>(Member)->getType()
3449           << BitWidth->getSourceRange();
3450       }
3451 
3452       BitWidth = nullptr;
3453       Member->setInvalidDecl();
3454     }
3455 
3456     NamedDecl *NonTemplateMember = Member;
3457     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3458       NonTemplateMember = FunTmpl->getTemplatedDecl();
3459     else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3460       NonTemplateMember = VarTmpl->getTemplatedDecl();
3461 
3462     Member->setAccess(AS);
3463 
3464     // If we have declared a member function template or static data member
3465     // template, set the access of the templated declaration as well.
3466     if (NonTemplateMember != Member)
3467       NonTemplateMember->setAccess(AS);
3468 
3469     // C++ [temp.deduct.guide]p3:
3470     //   A deduction guide [...] for a member class template [shall be
3471     //   declared] with the same access [as the template].
3472     if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) {
3473       auto *TD = DG->getDeducedTemplate();
3474       // Access specifiers are only meaningful if both the template and the
3475       // deduction guide are from the same scope.
3476       if (AS != TD->getAccess() &&
3477           TD->getDeclContext()->getRedeclContext()->Equals(
3478               DG->getDeclContext()->getRedeclContext())) {
3479         Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access);
3480         Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access)
3481             << TD->getAccess();
3482         const AccessSpecDecl *LastAccessSpec = nullptr;
3483         for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) {
3484           if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D))
3485             LastAccessSpec = AccessSpec;
3486         }
3487         assert(LastAccessSpec && "differing access with no access specifier");
3488         Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access)
3489             << AS;
3490       }
3491     }
3492   }
3493 
3494   if (VS.isOverrideSpecified())
3495     Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(),
3496                                          AttributeCommonInfo::AS_Keyword));
3497   if (VS.isFinalSpecified())
3498     Member->addAttr(FinalAttr::Create(
3499         Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword,
3500         static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed())));
3501 
3502   if (VS.getLastLocation().isValid()) {
3503     // Update the end location of a method that has a virt-specifiers.
3504     if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3505       MD->setRangeEnd(VS.getLastLocation());
3506   }
3507 
3508   CheckOverrideControl(Member);
3509 
3510   assert((Name || isInstField) && "No identifier for non-field ?");
3511 
3512   if (isInstField) {
3513     FieldDecl *FD = cast<FieldDecl>(Member);
3514     FieldCollector->Add(FD);
3515 
3516     if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3517       // Remember all explicit private FieldDecls that have a name, no side
3518       // effects and are not part of a dependent type declaration.
3519       if (!FD->isImplicit() && FD->getDeclName() &&
3520           FD->getAccess() == AS_private &&
3521           !FD->hasAttr<UnusedAttr>() &&
3522           !FD->getParent()->isDependentContext() &&
3523           !InitializationHasSideEffects(*FD))
3524         UnusedPrivateFields.insert(FD);
3525     }
3526   }
3527 
3528   return Member;
3529 }
3530 
3531 namespace {
3532   class UninitializedFieldVisitor
3533       : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3534     Sema &S;
3535     // List of Decls to generate a warning on.  Also remove Decls that become
3536     // initialized.
3537     llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3538     // List of base classes of the record.  Classes are removed after their
3539     // initializers.
3540     llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3541     // Vector of decls to be removed from the Decl set prior to visiting the
3542     // nodes.  These Decls may have been initialized in the prior initializer.
3543     llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3544     // If non-null, add a note to the warning pointing back to the constructor.
3545     const CXXConstructorDecl *Constructor;
3546     // Variables to hold state when processing an initializer list.  When
3547     // InitList is true, special case initialization of FieldDecls matching
3548     // InitListFieldDecl.
3549     bool InitList;
3550     FieldDecl *InitListFieldDecl;
3551     llvm::SmallVector<unsigned, 4> InitFieldIndex;
3552 
3553   public:
3554     typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
UninitializedFieldVisitor(Sema & S,llvm::SmallPtrSetImpl<ValueDecl * > & Decls,llvm::SmallPtrSetImpl<QualType> & BaseClasses)3555     UninitializedFieldVisitor(Sema &S,
3556                               llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3557                               llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3558       : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3559         Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3560 
3561     // Returns true if the use of ME is not an uninitialized use.
IsInitListMemberExprInitialized(MemberExpr * ME,bool CheckReferenceOnly)3562     bool IsInitListMemberExprInitialized(MemberExpr *ME,
3563                                          bool CheckReferenceOnly) {
3564       llvm::SmallVector<FieldDecl*, 4> Fields;
3565       bool ReferenceField = false;
3566       while (ME) {
3567         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3568         if (!FD)
3569           return false;
3570         Fields.push_back(FD);
3571         if (FD->getType()->isReferenceType())
3572           ReferenceField = true;
3573         ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3574       }
3575 
3576       // Binding a reference to an uninitialized field is not an
3577       // uninitialized use.
3578       if (CheckReferenceOnly && !ReferenceField)
3579         return true;
3580 
3581       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3582       // Discard the first field since it is the field decl that is being
3583       // initialized.
3584       for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
3585         UsedFieldIndex.push_back((*I)->getFieldIndex());
3586       }
3587 
3588       for (auto UsedIter = UsedFieldIndex.begin(),
3589                 UsedEnd = UsedFieldIndex.end(),
3590                 OrigIter = InitFieldIndex.begin(),
3591                 OrigEnd = InitFieldIndex.end();
3592            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3593         if (*UsedIter < *OrigIter)
3594           return true;
3595         if (*UsedIter > *OrigIter)
3596           break;
3597       }
3598 
3599       return false;
3600     }
3601 
HandleMemberExpr(MemberExpr * ME,bool CheckReferenceOnly,bool AddressOf)3602     void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3603                           bool AddressOf) {
3604       if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3605         return;
3606 
3607       // FieldME is the inner-most MemberExpr that is not an anonymous struct
3608       // or union.
3609       MemberExpr *FieldME = ME;
3610 
3611       bool AllPODFields = FieldME->getType().isPODType(S.Context);
3612 
3613       Expr *Base = ME;
3614       while (MemberExpr *SubME =
3615                  dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3616 
3617         if (isa<VarDecl>(SubME->getMemberDecl()))
3618           return;
3619 
3620         if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3621           if (!FD->isAnonymousStructOrUnion())
3622             FieldME = SubME;
3623 
3624         if (!FieldME->getType().isPODType(S.Context))
3625           AllPODFields = false;
3626 
3627         Base = SubME->getBase();
3628       }
3629 
3630       if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) {
3631         Visit(Base);
3632         return;
3633       }
3634 
3635       if (AddressOf && AllPODFields)
3636         return;
3637 
3638       ValueDecl* FoundVD = FieldME->getMemberDecl();
3639 
3640       if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3641         while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3642           BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3643         }
3644 
3645         if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3646           QualType T = BaseCast->getType();
3647           if (T->isPointerType() &&
3648               BaseClasses.count(T->getPointeeType())) {
3649             S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3650                 << T->getPointeeType() << FoundVD;
3651           }
3652         }
3653       }
3654 
3655       if (!Decls.count(FoundVD))
3656         return;
3657 
3658       const bool IsReference = FoundVD->getType()->isReferenceType();
3659 
3660       if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3661         // Special checking for initializer lists.
3662         if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3663           return;
3664         }
3665       } else {
3666         // Prevent double warnings on use of unbounded references.
3667         if (CheckReferenceOnly && !IsReference)
3668           return;
3669       }
3670 
3671       unsigned diag = IsReference
3672           ? diag::warn_reference_field_is_uninit
3673           : diag::warn_field_is_uninit;
3674       S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3675       if (Constructor)
3676         S.Diag(Constructor->getLocation(),
3677                diag::note_uninit_in_this_constructor)
3678           << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3679 
3680     }
3681 
HandleValue(Expr * E,bool AddressOf)3682     void HandleValue(Expr *E, bool AddressOf) {
3683       E = E->IgnoreParens();
3684 
3685       if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3686         HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3687                          AddressOf /*AddressOf*/);
3688         return;
3689       }
3690 
3691       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3692         Visit(CO->getCond());
3693         HandleValue(CO->getTrueExpr(), AddressOf);
3694         HandleValue(CO->getFalseExpr(), AddressOf);
3695         return;
3696       }
3697 
3698       if (BinaryConditionalOperator *BCO =
3699               dyn_cast<BinaryConditionalOperator>(E)) {
3700         Visit(BCO->getCond());
3701         HandleValue(BCO->getFalseExpr(), AddressOf);
3702         return;
3703       }
3704 
3705       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3706         HandleValue(OVE->getSourceExpr(), AddressOf);
3707         return;
3708       }
3709 
3710       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3711         switch (BO->getOpcode()) {
3712         default:
3713           break;
3714         case(BO_PtrMemD):
3715         case(BO_PtrMemI):
3716           HandleValue(BO->getLHS(), AddressOf);
3717           Visit(BO->getRHS());
3718           return;
3719         case(BO_Comma):
3720           Visit(BO->getLHS());
3721           HandleValue(BO->getRHS(), AddressOf);
3722           return;
3723         }
3724       }
3725 
3726       Visit(E);
3727     }
3728 
CheckInitListExpr(InitListExpr * ILE)3729     void CheckInitListExpr(InitListExpr *ILE) {
3730       InitFieldIndex.push_back(0);
3731       for (auto Child : ILE->children()) {
3732         if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3733           CheckInitListExpr(SubList);
3734         } else {
3735           Visit(Child);
3736         }
3737         ++InitFieldIndex.back();
3738       }
3739       InitFieldIndex.pop_back();
3740     }
3741 
CheckInitializer(Expr * E,const CXXConstructorDecl * FieldConstructor,FieldDecl * Field,const Type * BaseClass)3742     void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3743                           FieldDecl *Field, const Type *BaseClass) {
3744       // Remove Decls that may have been initialized in the previous
3745       // initializer.
3746       for (ValueDecl* VD : DeclsToRemove)
3747         Decls.erase(VD);
3748       DeclsToRemove.clear();
3749 
3750       Constructor = FieldConstructor;
3751       InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3752 
3753       if (ILE && Field) {
3754         InitList = true;
3755         InitListFieldDecl = Field;
3756         InitFieldIndex.clear();
3757         CheckInitListExpr(ILE);
3758       } else {
3759         InitList = false;
3760         Visit(E);
3761       }
3762 
3763       if (Field)
3764         Decls.erase(Field);
3765       if (BaseClass)
3766         BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3767     }
3768 
VisitMemberExpr(MemberExpr * ME)3769     void VisitMemberExpr(MemberExpr *ME) {
3770       // All uses of unbounded reference fields will warn.
3771       HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3772     }
3773 
VisitImplicitCastExpr(ImplicitCastExpr * E)3774     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3775       if (E->getCastKind() == CK_LValueToRValue) {
3776         HandleValue(E->getSubExpr(), false /*AddressOf*/);
3777         return;
3778       }
3779 
3780       Inherited::VisitImplicitCastExpr(E);
3781     }
3782 
VisitCXXConstructExpr(CXXConstructExpr * E)3783     void VisitCXXConstructExpr(CXXConstructExpr *E) {
3784       if (E->getConstructor()->isCopyConstructor()) {
3785         Expr *ArgExpr = E->getArg(0);
3786         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3787           if (ILE->getNumInits() == 1)
3788             ArgExpr = ILE->getInit(0);
3789         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3790           if (ICE->getCastKind() == CK_NoOp)
3791             ArgExpr = ICE->getSubExpr();
3792         HandleValue(ArgExpr, false /*AddressOf*/);
3793         return;
3794       }
3795       Inherited::VisitCXXConstructExpr(E);
3796     }
3797 
VisitCXXMemberCallExpr(CXXMemberCallExpr * E)3798     void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3799       Expr *Callee = E->getCallee();
3800       if (isa<MemberExpr>(Callee)) {
3801         HandleValue(Callee, false /*AddressOf*/);
3802         for (auto Arg : E->arguments())
3803           Visit(Arg);
3804         return;
3805       }
3806 
3807       Inherited::VisitCXXMemberCallExpr(E);
3808     }
3809 
VisitCallExpr(CallExpr * E)3810     void VisitCallExpr(CallExpr *E) {
3811       // Treat std::move as a use.
3812       if (E->isCallToStdMove()) {
3813         HandleValue(E->getArg(0), /*AddressOf=*/false);
3814         return;
3815       }
3816 
3817       Inherited::VisitCallExpr(E);
3818     }
3819 
VisitCXXOperatorCallExpr(CXXOperatorCallExpr * E)3820     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3821       Expr *Callee = E->getCallee();
3822 
3823       if (isa<UnresolvedLookupExpr>(Callee))
3824         return Inherited::VisitCXXOperatorCallExpr(E);
3825 
3826       Visit(Callee);
3827       for (auto Arg : E->arguments())
3828         HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3829     }
3830 
VisitBinaryOperator(BinaryOperator * E)3831     void VisitBinaryOperator(BinaryOperator *E) {
3832       // If a field assignment is detected, remove the field from the
3833       // uninitiailized field set.
3834       if (E->getOpcode() == BO_Assign)
3835         if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3836           if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3837             if (!FD->getType()->isReferenceType())
3838               DeclsToRemove.push_back(FD);
3839 
3840       if (E->isCompoundAssignmentOp()) {
3841         HandleValue(E->getLHS(), false /*AddressOf*/);
3842         Visit(E->getRHS());
3843         return;
3844       }
3845 
3846       Inherited::VisitBinaryOperator(E);
3847     }
3848 
VisitUnaryOperator(UnaryOperator * E)3849     void VisitUnaryOperator(UnaryOperator *E) {
3850       if (E->isIncrementDecrementOp()) {
3851         HandleValue(E->getSubExpr(), false /*AddressOf*/);
3852         return;
3853       }
3854       if (E->getOpcode() == UO_AddrOf) {
3855         if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3856           HandleValue(ME->getBase(), true /*AddressOf*/);
3857           return;
3858         }
3859       }
3860 
3861       Inherited::VisitUnaryOperator(E);
3862     }
3863   };
3864 
3865   // Diagnose value-uses of fields to initialize themselves, e.g.
3866   //   foo(foo)
3867   // where foo is not also a parameter to the constructor.
3868   // Also diagnose across field uninitialized use such as
3869   //   x(y), y(x)
3870   // TODO: implement -Wuninitialized and fold this into that framework.
DiagnoseUninitializedFields(Sema & SemaRef,const CXXConstructorDecl * Constructor)3871   static void DiagnoseUninitializedFields(
3872       Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3873 
3874     if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3875                                            Constructor->getLocation())) {
3876       return;
3877     }
3878 
3879     if (Constructor->isInvalidDecl())
3880       return;
3881 
3882     const CXXRecordDecl *RD = Constructor->getParent();
3883 
3884     if (RD->isDependentContext())
3885       return;
3886 
3887     // Holds fields that are uninitialized.
3888     llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3889 
3890     // At the beginning, all fields are uninitialized.
3891     for (auto *I : RD->decls()) {
3892       if (auto *FD = dyn_cast<FieldDecl>(I)) {
3893         UninitializedFields.insert(FD);
3894       } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3895         UninitializedFields.insert(IFD->getAnonField());
3896       }
3897     }
3898 
3899     llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3900     for (auto I : RD->bases())
3901       UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3902 
3903     if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3904       return;
3905 
3906     UninitializedFieldVisitor UninitializedChecker(SemaRef,
3907                                                    UninitializedFields,
3908                                                    UninitializedBaseClasses);
3909 
3910     for (const auto *FieldInit : Constructor->inits()) {
3911       if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3912         break;
3913 
3914       Expr *InitExpr = FieldInit->getInit();
3915       if (!InitExpr)
3916         continue;
3917 
3918       if (CXXDefaultInitExpr *Default =
3919               dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3920         InitExpr = Default->getExpr();
3921         if (!InitExpr)
3922           continue;
3923         // In class initializers will point to the constructor.
3924         UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3925                                               FieldInit->getAnyMember(),
3926                                               FieldInit->getBaseClass());
3927       } else {
3928         UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3929                                               FieldInit->getAnyMember(),
3930                                               FieldInit->getBaseClass());
3931       }
3932     }
3933   }
3934 } // namespace
3935 
3936 /// Enter a new C++ default initializer scope. After calling this, the
3937 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3938 /// parsing or instantiating the initializer failed.
ActOnStartCXXInClassMemberInitializer()3939 void Sema::ActOnStartCXXInClassMemberInitializer() {
3940   // Create a synthetic function scope to represent the call to the constructor
3941   // that notionally surrounds a use of this initializer.
3942   PushFunctionScope();
3943 }
3944 
ActOnStartTrailingRequiresClause(Scope * S,Declarator & D)3945 void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) {
3946   if (!D.isFunctionDeclarator())
3947     return;
3948   auto &FTI = D.getFunctionTypeInfo();
3949   if (!FTI.Params)
3950     return;
3951   for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params,
3952                                                           FTI.NumParams)) {
3953     auto *ParamDecl = cast<NamedDecl>(Param.Param);
3954     if (ParamDecl->getDeclName())
3955       PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false);
3956   }
3957 }
3958 
ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr)3959 ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) {
3960   return ActOnRequiresClause(ConstraintExpr);
3961 }
3962 
ActOnRequiresClause(ExprResult ConstraintExpr)3963 ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) {
3964   if (ConstraintExpr.isInvalid())
3965     return ExprError();
3966 
3967   ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr);
3968   if (ConstraintExpr.isInvalid())
3969     return ExprError();
3970 
3971   if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(),
3972                                       UPPC_RequiresClause))
3973     return ExprError();
3974 
3975   return ConstraintExpr;
3976 }
3977 
3978 /// This is invoked after parsing an in-class initializer for a
3979 /// non-static C++ class member, and after instantiating an in-class initializer
3980 /// in a class template. Such actions are deferred until the class is complete.
ActOnFinishCXXInClassMemberInitializer(Decl * D,SourceLocation InitLoc,Expr * InitExpr)3981 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
3982                                                   SourceLocation InitLoc,
3983                                                   Expr *InitExpr) {
3984   // Pop the notional constructor scope we created earlier.
3985   PopFunctionScopeInfo(nullptr, D);
3986 
3987   FieldDecl *FD = dyn_cast<FieldDecl>(D);
3988   assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&
3989          "must set init style when field is created");
3990 
3991   if (!InitExpr) {
3992     D->setInvalidDecl();
3993     if (FD)
3994       FD->removeInClassInitializer();
3995     return;
3996   }
3997 
3998   if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
3999     FD->setInvalidDecl();
4000     FD->removeInClassInitializer();
4001     return;
4002   }
4003 
4004   ExprResult Init = InitExpr;
4005   if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
4006     InitializedEntity Entity =
4007         InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD);
4008     InitializationKind Kind =
4009         FD->getInClassInitStyle() == ICIS_ListInit
4010             ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(),
4011                                                    InitExpr->getBeginLoc(),
4012                                                    InitExpr->getEndLoc())
4013             : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc);
4014     InitializationSequence Seq(*this, Entity, Kind, InitExpr);
4015     Init = Seq.Perform(*this, Entity, Kind, InitExpr);
4016     if (Init.isInvalid()) {
4017       FD->setInvalidDecl();
4018       return;
4019     }
4020   }
4021 
4022   // C++11 [class.base.init]p7:
4023   //   The initialization of each base and member constitutes a
4024   //   full-expression.
4025   Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false);
4026   if (Init.isInvalid()) {
4027     FD->setInvalidDecl();
4028     return;
4029   }
4030 
4031   InitExpr = Init.get();
4032 
4033   FD->setInClassInitializer(InitExpr);
4034 }
4035 
4036 /// Find the direct and/or virtual base specifiers that
4037 /// correspond to the given base type, for use in base initialization
4038 /// within a constructor.
FindBaseInitializer(Sema & SemaRef,CXXRecordDecl * ClassDecl,QualType BaseType,const CXXBaseSpecifier * & DirectBaseSpec,const CXXBaseSpecifier * & VirtualBaseSpec)4039 static bool FindBaseInitializer(Sema &SemaRef,
4040                                 CXXRecordDecl *ClassDecl,
4041                                 QualType BaseType,
4042                                 const CXXBaseSpecifier *&DirectBaseSpec,
4043                                 const CXXBaseSpecifier *&VirtualBaseSpec) {
4044   // First, check for a direct base class.
4045   DirectBaseSpec = nullptr;
4046   for (const auto &Base : ClassDecl->bases()) {
4047     if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
4048       // We found a direct base of this type. That's what we're
4049       // initializing.
4050       DirectBaseSpec = &Base;
4051       break;
4052     }
4053   }
4054 
4055   // Check for a virtual base class.
4056   // FIXME: We might be able to short-circuit this if we know in advance that
4057   // there are no virtual bases.
4058   VirtualBaseSpec = nullptr;
4059   if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
4060     // We haven't found a base yet; search the class hierarchy for a
4061     // virtual base class.
4062     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
4063                        /*DetectVirtual=*/false);
4064     if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
4065                               SemaRef.Context.getTypeDeclType(ClassDecl),
4066                               BaseType, Paths)) {
4067       for (CXXBasePaths::paths_iterator Path = Paths.begin();
4068            Path != Paths.end(); ++Path) {
4069         if (Path->back().Base->isVirtual()) {
4070           VirtualBaseSpec = Path->back().Base;
4071           break;
4072         }
4073       }
4074     }
4075   }
4076 
4077   return DirectBaseSpec || VirtualBaseSpec;
4078 }
4079 
4080 /// Handle a C++ member initializer using braced-init-list syntax.
4081 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * InitList,SourceLocation EllipsisLoc)4082 Sema::ActOnMemInitializer(Decl *ConstructorD,
4083                           Scope *S,
4084                           CXXScopeSpec &SS,
4085                           IdentifierInfo *MemberOrBase,
4086                           ParsedType TemplateTypeTy,
4087                           const DeclSpec &DS,
4088                           SourceLocation IdLoc,
4089                           Expr *InitList,
4090                           SourceLocation EllipsisLoc) {
4091   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4092                              DS, IdLoc, InitList,
4093                              EllipsisLoc);
4094 }
4095 
4096 /// Handle a C++ member initializer using parentheses syntax.
4097 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,SourceLocation LParenLoc,ArrayRef<Expr * > Args,SourceLocation RParenLoc,SourceLocation EllipsisLoc)4098 Sema::ActOnMemInitializer(Decl *ConstructorD,
4099                           Scope *S,
4100                           CXXScopeSpec &SS,
4101                           IdentifierInfo *MemberOrBase,
4102                           ParsedType TemplateTypeTy,
4103                           const DeclSpec &DS,
4104                           SourceLocation IdLoc,
4105                           SourceLocation LParenLoc,
4106                           ArrayRef<Expr *> Args,
4107                           SourceLocation RParenLoc,
4108                           SourceLocation EllipsisLoc) {
4109   Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc);
4110   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4111                              DS, IdLoc, List, EllipsisLoc);
4112 }
4113 
4114 namespace {
4115 
4116 // Callback to only accept typo corrections that can be a valid C++ member
4117 // intializer: either a non-static field member or a base class.
4118 class MemInitializerValidatorCCC final : public CorrectionCandidateCallback {
4119 public:
MemInitializerValidatorCCC(CXXRecordDecl * ClassDecl)4120   explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
4121       : ClassDecl(ClassDecl) {}
4122 
ValidateCandidate(const TypoCorrection & candidate)4123   bool ValidateCandidate(const TypoCorrection &candidate) override {
4124     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
4125       if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
4126         return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
4127       return isa<TypeDecl>(ND);
4128     }
4129     return false;
4130   }
4131 
clone()4132   std::unique_ptr<CorrectionCandidateCallback> clone() override {
4133     return std::make_unique<MemInitializerValidatorCCC>(*this);
4134   }
4135 
4136 private:
4137   CXXRecordDecl *ClassDecl;
4138 };
4139 
4140 }
4141 
tryLookupCtorInitMemberDecl(CXXRecordDecl * ClassDecl,CXXScopeSpec & SS,ParsedType TemplateTypeTy,IdentifierInfo * MemberOrBase)4142 ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
4143                                              CXXScopeSpec &SS,
4144                                              ParsedType TemplateTypeTy,
4145                                              IdentifierInfo *MemberOrBase) {
4146   if (SS.getScopeRep() || TemplateTypeTy)
4147     return nullptr;
4148   for (auto *D : ClassDecl->lookup(MemberOrBase))
4149     if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D))
4150       return cast<ValueDecl>(D);
4151   return nullptr;
4152 }
4153 
4154 /// Handle a C++ member initializer.
4155 MemInitResult
BuildMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * Init,SourceLocation EllipsisLoc)4156 Sema::BuildMemInitializer(Decl *ConstructorD,
4157                           Scope *S,
4158                           CXXScopeSpec &SS,
4159                           IdentifierInfo *MemberOrBase,
4160                           ParsedType TemplateTypeTy,
4161                           const DeclSpec &DS,
4162                           SourceLocation IdLoc,
4163                           Expr *Init,
4164                           SourceLocation EllipsisLoc) {
4165   ExprResult Res = CorrectDelayedTyposInExpr(Init);
4166   if (!Res.isUsable())
4167     return true;
4168   Init = Res.get();
4169 
4170   if (!ConstructorD)
4171     return true;
4172 
4173   AdjustDeclIfTemplate(ConstructorD);
4174 
4175   CXXConstructorDecl *Constructor
4176     = dyn_cast<CXXConstructorDecl>(ConstructorD);
4177   if (!Constructor) {
4178     // The user wrote a constructor initializer on a function that is
4179     // not a C++ constructor. Ignore the error for now, because we may
4180     // have more member initializers coming; we'll diagnose it just
4181     // once in ActOnMemInitializers.
4182     return true;
4183   }
4184 
4185   CXXRecordDecl *ClassDecl = Constructor->getParent();
4186 
4187   // C++ [class.base.init]p2:
4188   //   Names in a mem-initializer-id are looked up in the scope of the
4189   //   constructor's class and, if not found in that scope, are looked
4190   //   up in the scope containing the constructor's definition.
4191   //   [Note: if the constructor's class contains a member with the
4192   //   same name as a direct or virtual base class of the class, a
4193   //   mem-initializer-id naming the member or base class and composed
4194   //   of a single identifier refers to the class member. A
4195   //   mem-initializer-id for the hidden base class may be specified
4196   //   using a qualified name. ]
4197 
4198   // Look for a member, first.
4199   if (ValueDecl *Member = tryLookupCtorInitMemberDecl(
4200           ClassDecl, SS, TemplateTypeTy, MemberOrBase)) {
4201     if (EllipsisLoc.isValid())
4202       Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
4203           << MemberOrBase
4204           << SourceRange(IdLoc, Init->getSourceRange().getEnd());
4205 
4206     return BuildMemberInitializer(Member, Init, IdLoc);
4207   }
4208   // It didn't name a member, so see if it names a class.
4209   QualType BaseType;
4210   TypeSourceInfo *TInfo = nullptr;
4211 
4212   if (TemplateTypeTy) {
4213     BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
4214     if (BaseType.isNull())
4215       return true;
4216   } else if (DS.getTypeSpecType() == TST_decltype) {
4217     BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
4218   } else if (DS.getTypeSpecType() == TST_decltype_auto) {
4219     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
4220     return true;
4221   } else {
4222     LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
4223     LookupParsedName(R, S, &SS);
4224 
4225     TypeDecl *TyD = R.getAsSingle<TypeDecl>();
4226     if (!TyD) {
4227       if (R.isAmbiguous()) return true;
4228 
4229       // We don't want access-control diagnostics here.
4230       R.suppressDiagnostics();
4231 
4232       if (SS.isSet() && isDependentScopeSpecifier(SS)) {
4233         bool NotUnknownSpecialization = false;
4234         DeclContext *DC = computeDeclContext(SS, false);
4235         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
4236           NotUnknownSpecialization = !Record->hasAnyDependentBases();
4237 
4238         if (!NotUnknownSpecialization) {
4239           // When the scope specifier can refer to a member of an unknown
4240           // specialization, we take it as a type name.
4241           BaseType = CheckTypenameType(ETK_None, SourceLocation(),
4242                                        SS.getWithLocInContext(Context),
4243                                        *MemberOrBase, IdLoc);
4244           if (BaseType.isNull())
4245             return true;
4246 
4247           TInfo = Context.CreateTypeSourceInfo(BaseType);
4248           DependentNameTypeLoc TL =
4249               TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
4250           if (!TL.isNull()) {
4251             TL.setNameLoc(IdLoc);
4252             TL.setElaboratedKeywordLoc(SourceLocation());
4253             TL.setQualifierLoc(SS.getWithLocInContext(Context));
4254           }
4255 
4256           R.clear();
4257           R.setLookupName(MemberOrBase);
4258         }
4259       }
4260 
4261       // If no results were found, try to correct typos.
4262       TypoCorrection Corr;
4263       MemInitializerValidatorCCC CCC(ClassDecl);
4264       if (R.empty() && BaseType.isNull() &&
4265           (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
4266                               CCC, CTK_ErrorRecovery, ClassDecl))) {
4267         if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
4268           // We have found a non-static data member with a similar
4269           // name to what was typed; complain and initialize that
4270           // member.
4271           diagnoseTypo(Corr,
4272                        PDiag(diag::err_mem_init_not_member_or_class_suggest)
4273                          << MemberOrBase << true);
4274           return BuildMemberInitializer(Member, Init, IdLoc);
4275         } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
4276           const CXXBaseSpecifier *DirectBaseSpec;
4277           const CXXBaseSpecifier *VirtualBaseSpec;
4278           if (FindBaseInitializer(*this, ClassDecl,
4279                                   Context.getTypeDeclType(Type),
4280                                   DirectBaseSpec, VirtualBaseSpec)) {
4281             // We have found a direct or virtual base class with a
4282             // similar name to what was typed; complain and initialize
4283             // that base class.
4284             diagnoseTypo(Corr,
4285                          PDiag(diag::err_mem_init_not_member_or_class_suggest)
4286                            << MemberOrBase << false,
4287                          PDiag() /*Suppress note, we provide our own.*/);
4288 
4289             const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
4290                                                               : VirtualBaseSpec;
4291             Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here)
4292                 << BaseSpec->getType() << BaseSpec->getSourceRange();
4293 
4294             TyD = Type;
4295           }
4296         }
4297       }
4298 
4299       if (!TyD && BaseType.isNull()) {
4300         Diag(IdLoc, diag::err_mem_init_not_member_or_class)
4301           << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
4302         return true;
4303       }
4304     }
4305 
4306     if (BaseType.isNull()) {
4307       BaseType = Context.getTypeDeclType(TyD);
4308       MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
4309       if (SS.isSet()) {
4310         BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
4311                                              BaseType);
4312         TInfo = Context.CreateTypeSourceInfo(BaseType);
4313         ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
4314         TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
4315         TL.setElaboratedKeywordLoc(SourceLocation());
4316         TL.setQualifierLoc(SS.getWithLocInContext(Context));
4317       }
4318     }
4319   }
4320 
4321   if (!TInfo)
4322     TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
4323 
4324   return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
4325 }
4326 
4327 MemInitResult
BuildMemberInitializer(ValueDecl * Member,Expr * Init,SourceLocation IdLoc)4328 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
4329                              SourceLocation IdLoc) {
4330   FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
4331   IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
4332   assert((DirectMember || IndirectMember) &&
4333          "Member must be a FieldDecl or IndirectFieldDecl");
4334 
4335   if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4336     return true;
4337 
4338   if (Member->isInvalidDecl())
4339     return true;
4340 
4341   MultiExprArg Args;
4342   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4343     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4344   } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
4345     Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
4346   } else {
4347     // Template instantiation doesn't reconstruct ParenListExprs for us.
4348     Args = Init;
4349   }
4350 
4351   SourceRange InitRange = Init->getSourceRange();
4352 
4353   if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
4354     // Can't check initialization for a member of dependent type or when
4355     // any of the arguments are type-dependent expressions.
4356     DiscardCleanupsInEvaluationContext();
4357   } else {
4358     bool InitList = false;
4359     if (isa<InitListExpr>(Init)) {
4360       InitList = true;
4361       Args = Init;
4362     }
4363 
4364     // Initialize the member.
4365     InitializedEntity MemberEntity =
4366       DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
4367                    : InitializedEntity::InitializeMember(IndirectMember,
4368                                                          nullptr);
4369     InitializationKind Kind =
4370         InitList ? InitializationKind::CreateDirectList(
4371                        IdLoc, Init->getBeginLoc(), Init->getEndLoc())
4372                  : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
4373                                                     InitRange.getEnd());
4374 
4375     InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
4376     ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
4377                                             nullptr);
4378     if (MemberInit.isInvalid())
4379       return true;
4380 
4381     // C++11 [class.base.init]p7:
4382     //   The initialization of each base and member constitutes a
4383     //   full-expression.
4384     MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(),
4385                                      /*DiscardedValue*/ false);
4386     if (MemberInit.isInvalid())
4387       return true;
4388 
4389     Init = MemberInit.get();
4390   }
4391 
4392   if (DirectMember) {
4393     return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
4394                                             InitRange.getBegin(), Init,
4395                                             InitRange.getEnd());
4396   } else {
4397     return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
4398                                             InitRange.getBegin(), Init,
4399                                             InitRange.getEnd());
4400   }
4401 }
4402 
4403 MemInitResult
BuildDelegatingInitializer(TypeSourceInfo * TInfo,Expr * Init,CXXRecordDecl * ClassDecl)4404 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
4405                                  CXXRecordDecl *ClassDecl) {
4406   SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
4407   if (!LangOpts.CPlusPlus11)
4408     return Diag(NameLoc, diag::err_delegating_ctor)
4409       << TInfo->getTypeLoc().getLocalSourceRange();
4410   Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
4411 
4412   bool InitList = true;
4413   MultiExprArg Args = Init;
4414   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4415     InitList = false;
4416     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4417   }
4418 
4419   SourceRange InitRange = Init->getSourceRange();
4420   // Initialize the object.
4421   InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4422                                      QualType(ClassDecl->getTypeForDecl(), 0));
4423   InitializationKind Kind =
4424       InitList ? InitializationKind::CreateDirectList(
4425                      NameLoc, Init->getBeginLoc(), Init->getEndLoc())
4426                : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
4427                                                   InitRange.getEnd());
4428   InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4429   ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
4430                                               Args, nullptr);
4431   if (DelegationInit.isInvalid())
4432     return true;
4433 
4434   assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
4435          "Delegating constructor with no target?");
4436 
4437   // C++11 [class.base.init]p7:
4438   //   The initialization of each base and member constitutes a
4439   //   full-expression.
4440   DelegationInit = ActOnFinishFullExpr(
4441       DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false);
4442   if (DelegationInit.isInvalid())
4443     return true;
4444 
4445   // If we are in a dependent context, template instantiation will
4446   // perform this type-checking again. Just save the arguments that we
4447   // received in a ParenListExpr.
4448   // FIXME: This isn't quite ideal, since our ASTs don't capture all
4449   // of the information that we have about the base
4450   // initializer. However, deconstructing the ASTs is a dicey process,
4451   // and this approach is far more likely to get the corner cases right.
4452   if (CurContext->isDependentContext())
4453     DelegationInit = Init;
4454 
4455   return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4456                                           DelegationInit.getAs<Expr>(),
4457                                           InitRange.getEnd());
4458 }
4459 
4460 MemInitResult
BuildBaseInitializer(QualType BaseType,TypeSourceInfo * BaseTInfo,Expr * Init,CXXRecordDecl * ClassDecl,SourceLocation EllipsisLoc)4461 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4462                            Expr *Init, CXXRecordDecl *ClassDecl,
4463                            SourceLocation EllipsisLoc) {
4464   SourceLocation BaseLoc
4465     = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4466 
4467   if (!BaseType->isDependentType() && !BaseType->isRecordType())
4468     return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4469              << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4470 
4471   // C++ [class.base.init]p2:
4472   //   [...] Unless the mem-initializer-id names a nonstatic data
4473   //   member of the constructor's class or a direct or virtual base
4474   //   of that class, the mem-initializer is ill-formed. A
4475   //   mem-initializer-list can initialize a base class using any
4476   //   name that denotes that base class type.
4477   bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
4478 
4479   SourceRange InitRange = Init->getSourceRange();
4480   if (EllipsisLoc.isValid()) {
4481     // This is a pack expansion.
4482     if (!BaseType->containsUnexpandedParameterPack())  {
4483       Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4484         << SourceRange(BaseLoc, InitRange.getEnd());
4485 
4486       EllipsisLoc = SourceLocation();
4487     }
4488   } else {
4489     // Check for any unexpanded parameter packs.
4490     if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4491       return true;
4492 
4493     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4494       return true;
4495   }
4496 
4497   // Check for direct and virtual base classes.
4498   const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4499   const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4500   if (!Dependent) {
4501     if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4502                                        BaseType))
4503       return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4504 
4505     FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4506                         VirtualBaseSpec);
4507 
4508     // C++ [base.class.init]p2:
4509     // Unless the mem-initializer-id names a nonstatic data member of the
4510     // constructor's class or a direct or virtual base of that class, the
4511     // mem-initializer is ill-formed.
4512     if (!DirectBaseSpec && !VirtualBaseSpec) {
4513       // If the class has any dependent bases, then it's possible that
4514       // one of those types will resolve to the same type as
4515       // BaseType. Therefore, just treat this as a dependent base
4516       // class initialization.  FIXME: Should we try to check the
4517       // initialization anyway? It seems odd.
4518       if (ClassDecl->hasAnyDependentBases())
4519         Dependent = true;
4520       else
4521         return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4522           << BaseType << Context.getTypeDeclType(ClassDecl)
4523           << BaseTInfo->getTypeLoc().getLocalSourceRange();
4524     }
4525   }
4526 
4527   if (Dependent) {
4528     DiscardCleanupsInEvaluationContext();
4529 
4530     return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4531                                             /*IsVirtual=*/false,
4532                                             InitRange.getBegin(), Init,
4533                                             InitRange.getEnd(), EllipsisLoc);
4534   }
4535 
4536   // C++ [base.class.init]p2:
4537   //   If a mem-initializer-id is ambiguous because it designates both
4538   //   a direct non-virtual base class and an inherited virtual base
4539   //   class, the mem-initializer is ill-formed.
4540   if (DirectBaseSpec && VirtualBaseSpec)
4541     return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4542       << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4543 
4544   const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4545   if (!BaseSpec)
4546     BaseSpec = VirtualBaseSpec;
4547 
4548   // Initialize the base.
4549   bool InitList = true;
4550   MultiExprArg Args = Init;
4551   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4552     InitList = false;
4553     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4554   }
4555 
4556   InitializedEntity BaseEntity =
4557     InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4558   InitializationKind Kind =
4559       InitList ? InitializationKind::CreateDirectList(BaseLoc)
4560                : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4561                                                   InitRange.getEnd());
4562   InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4563   ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4564   if (BaseInit.isInvalid())
4565     return true;
4566 
4567   // C++11 [class.base.init]p7:
4568   //   The initialization of each base and member constitutes a
4569   //   full-expression.
4570   BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(),
4571                                  /*DiscardedValue*/ false);
4572   if (BaseInit.isInvalid())
4573     return true;
4574 
4575   // If we are in a dependent context, template instantiation will
4576   // perform this type-checking again. Just save the arguments that we
4577   // received in a ParenListExpr.
4578   // FIXME: This isn't quite ideal, since our ASTs don't capture all
4579   // of the information that we have about the base
4580   // initializer. However, deconstructing the ASTs is a dicey process,
4581   // and this approach is far more likely to get the corner cases right.
4582   if (CurContext->isDependentContext())
4583     BaseInit = Init;
4584 
4585   return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4586                                           BaseSpec->isVirtual(),
4587                                           InitRange.getBegin(),
4588                                           BaseInit.getAs<Expr>(),
4589                                           InitRange.getEnd(), EllipsisLoc);
4590 }
4591 
4592 // Create a static_cast\<T&&>(expr).
CastForMoving(Sema & SemaRef,Expr * E,QualType T=QualType ())4593 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4594   if (T.isNull()) T = E->getType();
4595   QualType TargetType = SemaRef.BuildReferenceType(
4596       T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4597   SourceLocation ExprLoc = E->getBeginLoc();
4598   TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4599       TargetType, ExprLoc);
4600 
4601   return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4602                                    SourceRange(ExprLoc, ExprLoc),
4603                                    E->getSourceRange()).get();
4604 }
4605 
4606 /// ImplicitInitializerKind - How an implicit base or member initializer should
4607 /// initialize its base or member.
4608 enum ImplicitInitializerKind {
4609   IIK_Default,
4610   IIK_Copy,
4611   IIK_Move,
4612   IIK_Inherit
4613 };
4614 
4615 static bool
BuildImplicitBaseInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,CXXBaseSpecifier * BaseSpec,bool IsInheritedVirtualBase,CXXCtorInitializer * & CXXBaseInit)4616 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4617                              ImplicitInitializerKind ImplicitInitKind,
4618                              CXXBaseSpecifier *BaseSpec,
4619                              bool IsInheritedVirtualBase,
4620                              CXXCtorInitializer *&CXXBaseInit) {
4621   InitializedEntity InitEntity
4622     = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4623                                         IsInheritedVirtualBase);
4624 
4625   ExprResult BaseInit;
4626 
4627   switch (ImplicitInitKind) {
4628   case IIK_Inherit:
4629   case IIK_Default: {
4630     InitializationKind InitKind
4631       = InitializationKind::CreateDefault(Constructor->getLocation());
4632     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4633     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4634     break;
4635   }
4636 
4637   case IIK_Move:
4638   case IIK_Copy: {
4639     bool Moving = ImplicitInitKind == IIK_Move;
4640     ParmVarDecl *Param = Constructor->getParamDecl(0);
4641     QualType ParamType = Param->getType().getNonReferenceType();
4642 
4643     Expr *CopyCtorArg =
4644       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4645                           SourceLocation(), Param, false,
4646                           Constructor->getLocation(), ParamType,
4647                           VK_LValue, nullptr);
4648 
4649     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4650 
4651     // Cast to the base class to avoid ambiguities.
4652     QualType ArgTy =
4653       SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4654                                        ParamType.getQualifiers());
4655 
4656     if (Moving) {
4657       CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4658     }
4659 
4660     CXXCastPath BasePath;
4661     BasePath.push_back(BaseSpec);
4662     CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4663                                             CK_UncheckedDerivedToBase,
4664                                             Moving ? VK_XValue : VK_LValue,
4665                                             &BasePath).get();
4666 
4667     InitializationKind InitKind
4668       = InitializationKind::CreateDirect(Constructor->getLocation(),
4669                                          SourceLocation(), SourceLocation());
4670     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4671     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4672     break;
4673   }
4674   }
4675 
4676   BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4677   if (BaseInit.isInvalid())
4678     return true;
4679 
4680   CXXBaseInit =
4681     new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4682                SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4683                                                         SourceLocation()),
4684                                              BaseSpec->isVirtual(),
4685                                              SourceLocation(),
4686                                              BaseInit.getAs<Expr>(),
4687                                              SourceLocation(),
4688                                              SourceLocation());
4689 
4690   return false;
4691 }
4692 
RefersToRValueRef(Expr * MemRef)4693 static bool RefersToRValueRef(Expr *MemRef) {
4694   ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4695   return Referenced->getType()->isRValueReferenceType();
4696 }
4697 
4698 static bool
BuildImplicitMemberInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,FieldDecl * Field,IndirectFieldDecl * Indirect,CXXCtorInitializer * & CXXMemberInit)4699 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4700                                ImplicitInitializerKind ImplicitInitKind,
4701                                FieldDecl *Field, IndirectFieldDecl *Indirect,
4702                                CXXCtorInitializer *&CXXMemberInit) {
4703   if (Field->isInvalidDecl())
4704     return true;
4705 
4706   SourceLocation Loc = Constructor->getLocation();
4707 
4708   if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4709     bool Moving = ImplicitInitKind == IIK_Move;
4710     ParmVarDecl *Param = Constructor->getParamDecl(0);
4711     QualType ParamType = Param->getType().getNonReferenceType();
4712 
4713     // Suppress copying zero-width bitfields.
4714     if (Field->isZeroLengthBitField(SemaRef.Context))
4715       return false;
4716 
4717     Expr *MemberExprBase =
4718       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4719                           SourceLocation(), Param, false,
4720                           Loc, ParamType, VK_LValue, nullptr);
4721 
4722     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4723 
4724     if (Moving) {
4725       MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4726     }
4727 
4728     // Build a reference to this field within the parameter.
4729     CXXScopeSpec SS;
4730     LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4731                               Sema::LookupMemberName);
4732     MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4733                                   : cast<ValueDecl>(Field), AS_public);
4734     MemberLookup.resolveKind();
4735     ExprResult CtorArg
4736       = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4737                                          ParamType, Loc,
4738                                          /*IsArrow=*/false,
4739                                          SS,
4740                                          /*TemplateKWLoc=*/SourceLocation(),
4741                                          /*FirstQualifierInScope=*/nullptr,
4742                                          MemberLookup,
4743                                          /*TemplateArgs=*/nullptr,
4744                                          /*S*/nullptr);
4745     if (CtorArg.isInvalid())
4746       return true;
4747 
4748     // C++11 [class.copy]p15:
4749     //   - if a member m has rvalue reference type T&&, it is direct-initialized
4750     //     with static_cast<T&&>(x.m);
4751     if (RefersToRValueRef(CtorArg.get())) {
4752       CtorArg = CastForMoving(SemaRef, CtorArg.get());
4753     }
4754 
4755     InitializedEntity Entity =
4756         Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4757                                                        /*Implicit*/ true)
4758                  : InitializedEntity::InitializeMember(Field, nullptr,
4759                                                        /*Implicit*/ true);
4760 
4761     // Direct-initialize to use the copy constructor.
4762     InitializationKind InitKind =
4763       InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4764 
4765     Expr *CtorArgE = CtorArg.getAs<Expr>();
4766     InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4767     ExprResult MemberInit =
4768         InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4769     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4770     if (MemberInit.isInvalid())
4771       return true;
4772 
4773     if (Indirect)
4774       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4775           SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4776     else
4777       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4778           SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4779     return false;
4780   }
4781 
4782   assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
4783          "Unhandled implicit init kind!");
4784 
4785   QualType FieldBaseElementType =
4786     SemaRef.Context.getBaseElementType(Field->getType());
4787 
4788   if (FieldBaseElementType->isRecordType()) {
4789     InitializedEntity InitEntity =
4790         Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4791                                                        /*Implicit*/ true)
4792                  : InitializedEntity::InitializeMember(Field, nullptr,
4793                                                        /*Implicit*/ true);
4794     InitializationKind InitKind =
4795       InitializationKind::CreateDefault(Loc);
4796 
4797     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4798     ExprResult MemberInit =
4799       InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4800 
4801     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4802     if (MemberInit.isInvalid())
4803       return true;
4804 
4805     if (Indirect)
4806       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4807                                                                Indirect, Loc,
4808                                                                Loc,
4809                                                                MemberInit.get(),
4810                                                                Loc);
4811     else
4812       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4813                                                                Field, Loc, Loc,
4814                                                                MemberInit.get(),
4815                                                                Loc);
4816     return false;
4817   }
4818 
4819   if (!Field->getParent()->isUnion()) {
4820     if (FieldBaseElementType->isReferenceType()) {
4821       SemaRef.Diag(Constructor->getLocation(),
4822                    diag::err_uninitialized_member_in_ctor)
4823       << (int)Constructor->isImplicit()
4824       << SemaRef.Context.getTagDeclType(Constructor->getParent())
4825       << 0 << Field->getDeclName();
4826       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4827       return true;
4828     }
4829 
4830     if (FieldBaseElementType.isConstQualified()) {
4831       SemaRef.Diag(Constructor->getLocation(),
4832                    diag::err_uninitialized_member_in_ctor)
4833       << (int)Constructor->isImplicit()
4834       << SemaRef.Context.getTagDeclType(Constructor->getParent())
4835       << 1 << Field->getDeclName();
4836       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4837       return true;
4838     }
4839   }
4840 
4841   if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
4842     // ARC and Weak:
4843     //   Default-initialize Objective-C pointers to NULL.
4844     CXXMemberInit
4845       = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4846                                                  Loc, Loc,
4847                  new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4848                                                  Loc);
4849     return false;
4850   }
4851 
4852   // Nothing to initialize.
4853   CXXMemberInit = nullptr;
4854   return false;
4855 }
4856 
4857 namespace {
4858 struct BaseAndFieldInfo {
4859   Sema &S;
4860   CXXConstructorDecl *Ctor;
4861   bool AnyErrorsInInits;
4862   ImplicitInitializerKind IIK;
4863   llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4864   SmallVector<CXXCtorInitializer*, 8> AllToInit;
4865   llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4866 
BaseAndFieldInfo__anonb2a824811211::BaseAndFieldInfo4867   BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4868     : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4869     bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4870     if (Ctor->getInheritedConstructor())
4871       IIK = IIK_Inherit;
4872     else if (Generated && Ctor->isCopyConstructor())
4873       IIK = IIK_Copy;
4874     else if (Generated && Ctor->isMoveConstructor())
4875       IIK = IIK_Move;
4876     else
4877       IIK = IIK_Default;
4878   }
4879 
isImplicitCopyOrMove__anonb2a824811211::BaseAndFieldInfo4880   bool isImplicitCopyOrMove() const {
4881     switch (IIK) {
4882     case IIK_Copy:
4883     case IIK_Move:
4884       return true;
4885 
4886     case IIK_Default:
4887     case IIK_Inherit:
4888       return false;
4889     }
4890 
4891     llvm_unreachable("Invalid ImplicitInitializerKind!");
4892   }
4893 
addFieldInitializer__anonb2a824811211::BaseAndFieldInfo4894   bool addFieldInitializer(CXXCtorInitializer *Init) {
4895     AllToInit.push_back(Init);
4896 
4897     // Check whether this initializer makes the field "used".
4898     if (Init->getInit()->HasSideEffects(S.Context))
4899       S.UnusedPrivateFields.remove(Init->getAnyMember());
4900 
4901     return false;
4902   }
4903 
isInactiveUnionMember__anonb2a824811211::BaseAndFieldInfo4904   bool isInactiveUnionMember(FieldDecl *Field) {
4905     RecordDecl *Record = Field->getParent();
4906     if (!Record->isUnion())
4907       return false;
4908 
4909     if (FieldDecl *Active =
4910             ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4911       return Active != Field->getCanonicalDecl();
4912 
4913     // In an implicit copy or move constructor, ignore any in-class initializer.
4914     if (isImplicitCopyOrMove())
4915       return true;
4916 
4917     // If there's no explicit initialization, the field is active only if it
4918     // has an in-class initializer...
4919     if (Field->hasInClassInitializer())
4920       return false;
4921     // ... or it's an anonymous struct or union whose class has an in-class
4922     // initializer.
4923     if (!Field->isAnonymousStructOrUnion())
4924       return true;
4925     CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
4926     return !FieldRD->hasInClassInitializer();
4927   }
4928 
4929   /// Determine whether the given field is, or is within, a union member
4930   /// that is inactive (because there was an initializer given for a different
4931   /// member of the union, or because the union was not initialized at all).
isWithinInactiveUnionMember__anonb2a824811211::BaseAndFieldInfo4932   bool isWithinInactiveUnionMember(FieldDecl *Field,
4933                                    IndirectFieldDecl *Indirect) {
4934     if (!Indirect)
4935       return isInactiveUnionMember(Field);
4936 
4937     for (auto *C : Indirect->chain()) {
4938       FieldDecl *Field = dyn_cast<FieldDecl>(C);
4939       if (Field && isInactiveUnionMember(Field))
4940         return true;
4941     }
4942     return false;
4943   }
4944 };
4945 }
4946 
4947 /// Determine whether the given type is an incomplete or zero-lenfgth
4948 /// array type.
isIncompleteOrZeroLengthArrayType(ASTContext & Context,QualType T)4949 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
4950   if (T->isIncompleteArrayType())
4951     return true;
4952 
4953   while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
4954     if (!ArrayT->getSize())
4955       return true;
4956 
4957     T = ArrayT->getElementType();
4958   }
4959 
4960   return false;
4961 }
4962 
CollectFieldInitializer(Sema & SemaRef,BaseAndFieldInfo & Info,FieldDecl * Field,IndirectFieldDecl * Indirect=nullptr)4963 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
4964                                     FieldDecl *Field,
4965                                     IndirectFieldDecl *Indirect = nullptr) {
4966   if (Field->isInvalidDecl())
4967     return false;
4968 
4969   // Overwhelmingly common case: we have a direct initializer for this field.
4970   if (CXXCtorInitializer *Init =
4971           Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
4972     return Info.addFieldInitializer(Init);
4973 
4974   // C++11 [class.base.init]p8:
4975   //   if the entity is a non-static data member that has a
4976   //   brace-or-equal-initializer and either
4977   //   -- the constructor's class is a union and no other variant member of that
4978   //      union is designated by a mem-initializer-id or
4979   //   -- the constructor's class is not a union, and, if the entity is a member
4980   //      of an anonymous union, no other member of that union is designated by
4981   //      a mem-initializer-id,
4982   //   the entity is initialized as specified in [dcl.init].
4983   //
4984   // We also apply the same rules to handle anonymous structs within anonymous
4985   // unions.
4986   if (Info.isWithinInactiveUnionMember(Field, Indirect))
4987     return false;
4988 
4989   if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
4990     ExprResult DIE =
4991         SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
4992     if (DIE.isInvalid())
4993       return true;
4994 
4995     auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true);
4996     SemaRef.checkInitializerLifetime(Entity, DIE.get());
4997 
4998     CXXCtorInitializer *Init;
4999     if (Indirect)
5000       Init = new (SemaRef.Context)
5001           CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
5002                              SourceLocation(), DIE.get(), SourceLocation());
5003     else
5004       Init = new (SemaRef.Context)
5005           CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
5006                              SourceLocation(), DIE.get(), SourceLocation());
5007     return Info.addFieldInitializer(Init);
5008   }
5009 
5010   // Don't initialize incomplete or zero-length arrays.
5011   if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
5012     return false;
5013 
5014   // Don't try to build an implicit initializer if there were semantic
5015   // errors in any of the initializers (and therefore we might be
5016   // missing some that the user actually wrote).
5017   if (Info.AnyErrorsInInits)
5018     return false;
5019 
5020   CXXCtorInitializer *Init = nullptr;
5021   if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
5022                                      Indirect, Init))
5023     return true;
5024 
5025   if (!Init)
5026     return false;
5027 
5028   return Info.addFieldInitializer(Init);
5029 }
5030 
5031 bool
SetDelegatingInitializer(CXXConstructorDecl * Constructor,CXXCtorInitializer * Initializer)5032 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
5033                                CXXCtorInitializer *Initializer) {
5034   assert(Initializer->isDelegatingInitializer());
5035   Constructor->setNumCtorInitializers(1);
5036   CXXCtorInitializer **initializer =
5037     new (Context) CXXCtorInitializer*[1];
5038   memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
5039   Constructor->setCtorInitializers(initializer);
5040 
5041   if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
5042     MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
5043     DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
5044   }
5045 
5046   DelegatingCtorDecls.push_back(Constructor);
5047 
5048   DiagnoseUninitializedFields(*this, Constructor);
5049 
5050   return false;
5051 }
5052 
SetCtorInitializers(CXXConstructorDecl * Constructor,bool AnyErrors,ArrayRef<CXXCtorInitializer * > Initializers)5053 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
5054                                ArrayRef<CXXCtorInitializer *> Initializers) {
5055   if (Constructor->isDependentContext()) {
5056     // Just store the initializers as written, they will be checked during
5057     // instantiation.
5058     if (!Initializers.empty()) {
5059       Constructor->setNumCtorInitializers(Initializers.size());
5060       CXXCtorInitializer **baseOrMemberInitializers =
5061         new (Context) CXXCtorInitializer*[Initializers.size()];
5062       memcpy(baseOrMemberInitializers, Initializers.data(),
5063              Initializers.size() * sizeof(CXXCtorInitializer*));
5064       Constructor->setCtorInitializers(baseOrMemberInitializers);
5065     }
5066 
5067     // Let template instantiation know whether we had errors.
5068     if (AnyErrors)
5069       Constructor->setInvalidDecl();
5070 
5071     return false;
5072   }
5073 
5074   BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
5075 
5076   // We need to build the initializer AST according to order of construction
5077   // and not what user specified in the Initializers list.
5078   CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
5079   if (!ClassDecl)
5080     return true;
5081 
5082   bool HadError = false;
5083 
5084   for (unsigned i = 0; i < Initializers.size(); i++) {
5085     CXXCtorInitializer *Member = Initializers[i];
5086 
5087     if (Member->isBaseInitializer())
5088       Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
5089     else {
5090       Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
5091 
5092       if (IndirectFieldDecl *F = Member->getIndirectMember()) {
5093         for (auto *C : F->chain()) {
5094           FieldDecl *FD = dyn_cast<FieldDecl>(C);
5095           if (FD && FD->getParent()->isUnion())
5096             Info.ActiveUnionMember.insert(std::make_pair(
5097                 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5098         }
5099       } else if (FieldDecl *FD = Member->getMember()) {
5100         if (FD->getParent()->isUnion())
5101           Info.ActiveUnionMember.insert(std::make_pair(
5102               FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5103       }
5104     }
5105   }
5106 
5107   // Keep track of the direct virtual bases.
5108   llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
5109   for (auto &I : ClassDecl->bases()) {
5110     if (I.isVirtual())
5111       DirectVBases.insert(&I);
5112   }
5113 
5114   // Push virtual bases before others.
5115   for (auto &VBase : ClassDecl->vbases()) {
5116     if (CXXCtorInitializer *Value
5117         = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
5118       // [class.base.init]p7, per DR257:
5119       //   A mem-initializer where the mem-initializer-id names a virtual base
5120       //   class is ignored during execution of a constructor of any class that
5121       //   is not the most derived class.
5122       if (ClassDecl->isAbstract()) {
5123         // FIXME: Provide a fixit to remove the base specifier. This requires
5124         // tracking the location of the associated comma for a base specifier.
5125         Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
5126           << VBase.getType() << ClassDecl;
5127         DiagnoseAbstractType(ClassDecl);
5128       }
5129 
5130       Info.AllToInit.push_back(Value);
5131     } else if (!AnyErrors && !ClassDecl->isAbstract()) {
5132       // [class.base.init]p8, per DR257:
5133       //   If a given [...] base class is not named by a mem-initializer-id
5134       //   [...] and the entity is not a virtual base class of an abstract
5135       //   class, then [...] the entity is default-initialized.
5136       bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
5137       CXXCtorInitializer *CXXBaseInit;
5138       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5139                                        &VBase, IsInheritedVirtualBase,
5140                                        CXXBaseInit)) {
5141         HadError = true;
5142         continue;
5143       }
5144 
5145       Info.AllToInit.push_back(CXXBaseInit);
5146     }
5147   }
5148 
5149   // Non-virtual bases.
5150   for (auto &Base : ClassDecl->bases()) {
5151     // Virtuals are in the virtual base list and already constructed.
5152     if (Base.isVirtual())
5153       continue;
5154 
5155     if (CXXCtorInitializer *Value
5156           = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
5157       Info.AllToInit.push_back(Value);
5158     } else if (!AnyErrors) {
5159       CXXCtorInitializer *CXXBaseInit;
5160       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5161                                        &Base, /*IsInheritedVirtualBase=*/false,
5162                                        CXXBaseInit)) {
5163         HadError = true;
5164         continue;
5165       }
5166 
5167       Info.AllToInit.push_back(CXXBaseInit);
5168     }
5169   }
5170 
5171   // Fields.
5172   for (auto *Mem : ClassDecl->decls()) {
5173     if (auto *F = dyn_cast<FieldDecl>(Mem)) {
5174       // C++ [class.bit]p2:
5175       //   A declaration for a bit-field that omits the identifier declares an
5176       //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
5177       //   initialized.
5178       if (F->isUnnamedBitfield())
5179         continue;
5180 
5181       // If we're not generating the implicit copy/move constructor, then we'll
5182       // handle anonymous struct/union fields based on their individual
5183       // indirect fields.
5184       if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
5185         continue;
5186 
5187       if (CollectFieldInitializer(*this, Info, F))
5188         HadError = true;
5189       continue;
5190     }
5191 
5192     // Beyond this point, we only consider default initialization.
5193     if (Info.isImplicitCopyOrMove())
5194       continue;
5195 
5196     if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
5197       if (F->getType()->isIncompleteArrayType()) {
5198         assert(ClassDecl->hasFlexibleArrayMember() &&
5199                "Incomplete array type is not valid");
5200         continue;
5201       }
5202 
5203       // Initialize each field of an anonymous struct individually.
5204       if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
5205         HadError = true;
5206 
5207       continue;
5208     }
5209   }
5210 
5211   unsigned NumInitializers = Info.AllToInit.size();
5212   if (NumInitializers > 0) {
5213     Constructor->setNumCtorInitializers(NumInitializers);
5214     CXXCtorInitializer **baseOrMemberInitializers =
5215       new (Context) CXXCtorInitializer*[NumInitializers];
5216     memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
5217            NumInitializers * sizeof(CXXCtorInitializer*));
5218     Constructor->setCtorInitializers(baseOrMemberInitializers);
5219 
5220     // Constructors implicitly reference the base and member
5221     // destructors.
5222     MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
5223                                            Constructor->getParent());
5224   }
5225 
5226   return HadError;
5227 }
5228 
PopulateKeysForFields(FieldDecl * Field,SmallVectorImpl<const void * > & IdealInits)5229 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
5230   if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
5231     const RecordDecl *RD = RT->getDecl();
5232     if (RD->isAnonymousStructOrUnion()) {
5233       for (auto *Field : RD->fields())
5234         PopulateKeysForFields(Field, IdealInits);
5235       return;
5236     }
5237   }
5238   IdealInits.push_back(Field->getCanonicalDecl());
5239 }
5240 
GetKeyForBase(ASTContext & Context,QualType BaseType)5241 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
5242   return Context.getCanonicalType(BaseType).getTypePtr();
5243 }
5244 
GetKeyForMember(ASTContext & Context,CXXCtorInitializer * Member)5245 static const void *GetKeyForMember(ASTContext &Context,
5246                                    CXXCtorInitializer *Member) {
5247   if (!Member->isAnyMemberInitializer())
5248     return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
5249 
5250   return Member->getAnyMember()->getCanonicalDecl();
5251 }
5252 
AddInitializerToDiag(const Sema::SemaDiagnosticBuilder & Diag,const CXXCtorInitializer * Previous,const CXXCtorInitializer * Current)5253 static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag,
5254                                  const CXXCtorInitializer *Previous,
5255                                  const CXXCtorInitializer *Current) {
5256   if (Previous->isAnyMemberInitializer())
5257     Diag << 0 << Previous->getAnyMember();
5258   else
5259     Diag << 1 << Previous->getTypeSourceInfo()->getType();
5260 
5261   if (Current->isAnyMemberInitializer())
5262     Diag << 0 << Current->getAnyMember();
5263   else
5264     Diag << 1 << Current->getTypeSourceInfo()->getType();
5265 }
5266 
DiagnoseBaseOrMemInitializerOrder(Sema & SemaRef,const CXXConstructorDecl * Constructor,ArrayRef<CXXCtorInitializer * > Inits)5267 static void DiagnoseBaseOrMemInitializerOrder(
5268     Sema &SemaRef, const CXXConstructorDecl *Constructor,
5269     ArrayRef<CXXCtorInitializer *> Inits) {
5270   if (Constructor->getDeclContext()->isDependentContext())
5271     return;
5272 
5273   // Don't check initializers order unless the warning is enabled at the
5274   // location of at least one initializer.
5275   bool ShouldCheckOrder = false;
5276   for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5277     CXXCtorInitializer *Init = Inits[InitIndex];
5278     if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
5279                                  Init->getSourceLocation())) {
5280       ShouldCheckOrder = true;
5281       break;
5282     }
5283   }
5284   if (!ShouldCheckOrder)
5285     return;
5286 
5287   // Build the list of bases and members in the order that they'll
5288   // actually be initialized.  The explicit initializers should be in
5289   // this same order but may be missing things.
5290   SmallVector<const void*, 32> IdealInitKeys;
5291 
5292   const CXXRecordDecl *ClassDecl = Constructor->getParent();
5293 
5294   // 1. Virtual bases.
5295   for (const auto &VBase : ClassDecl->vbases())
5296     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
5297 
5298   // 2. Non-virtual bases.
5299   for (const auto &Base : ClassDecl->bases()) {
5300     if (Base.isVirtual())
5301       continue;
5302     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
5303   }
5304 
5305   // 3. Direct fields.
5306   for (auto *Field : ClassDecl->fields()) {
5307     if (Field->isUnnamedBitfield())
5308       continue;
5309 
5310     PopulateKeysForFields(Field, IdealInitKeys);
5311   }
5312 
5313   unsigned NumIdealInits = IdealInitKeys.size();
5314   unsigned IdealIndex = 0;
5315 
5316   // Track initializers that are in an incorrect order for either a warning or
5317   // note if multiple ones occur.
5318   SmallVector<unsigned> WarnIndexes;
5319   // Correlates the index of an initializer in the init-list to the index of
5320   // the field/base in the class.
5321   SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder;
5322 
5323   for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5324     const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]);
5325 
5326     // Scan forward to try to find this initializer in the idealized
5327     // initializers list.
5328     for (; IdealIndex != NumIdealInits; ++IdealIndex)
5329       if (InitKey == IdealInitKeys[IdealIndex])
5330         break;
5331 
5332     // If we didn't find this initializer, it must be because we
5333     // scanned past it on a previous iteration.  That can only
5334     // happen if we're out of order;  emit a warning.
5335     if (IdealIndex == NumIdealInits && InitIndex) {
5336       WarnIndexes.push_back(InitIndex);
5337 
5338       // Move back to the initializer's location in the ideal list.
5339       for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
5340         if (InitKey == IdealInitKeys[IdealIndex])
5341           break;
5342 
5343       assert(IdealIndex < NumIdealInits &&
5344              "initializer not found in initializer list");
5345     }
5346     CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex);
5347   }
5348 
5349   if (WarnIndexes.empty())
5350     return;
5351 
5352   // Sort based on the ideal order, first in the pair.
5353   llvm::sort(CorrelatedInitOrder,
5354              [](auto &LHS, auto &RHS) { return LHS.first < RHS.first; });
5355 
5356   // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to
5357   // emit the diagnostic before we can try adding notes.
5358   {
5359     Sema::SemaDiagnosticBuilder D = SemaRef.Diag(
5360         Inits[WarnIndexes.front() - 1]->getSourceLocation(),
5361         WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order
5362                                 : diag::warn_some_initializers_out_of_order);
5363 
5364     for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) {
5365       if (CorrelatedInitOrder[I].second == I)
5366         continue;
5367       // Ideally we would be using InsertFromRange here, but clang doesn't
5368       // appear to handle InsertFromRange correctly when the source range is
5369       // modified by another fix-it.
5370       D << FixItHint::CreateReplacement(
5371           Inits[I]->getSourceRange(),
5372           Lexer::getSourceText(
5373               CharSourceRange::getTokenRange(
5374                   Inits[CorrelatedInitOrder[I].second]->getSourceRange()),
5375               SemaRef.getSourceManager(), SemaRef.getLangOpts()));
5376     }
5377 
5378     // If there is only 1 item out of order, the warning expects the name and
5379     // type of each being added to it.
5380     if (WarnIndexes.size() == 1) {
5381       AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1],
5382                            Inits[WarnIndexes.front()]);
5383       return;
5384     }
5385   }
5386   // More than 1 item to warn, create notes letting the user know which ones
5387   // are bad.
5388   for (unsigned WarnIndex : WarnIndexes) {
5389     const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1];
5390     auto D = SemaRef.Diag(PrevInit->getSourceLocation(),
5391                           diag::note_initializer_out_of_order);
5392     AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]);
5393     D << PrevInit->getSourceRange();
5394   }
5395 }
5396 
5397 namespace {
CheckRedundantInit(Sema & S,CXXCtorInitializer * Init,CXXCtorInitializer * & PrevInit)5398 bool CheckRedundantInit(Sema &S,
5399                         CXXCtorInitializer *Init,
5400                         CXXCtorInitializer *&PrevInit) {
5401   if (!PrevInit) {
5402     PrevInit = Init;
5403     return false;
5404   }
5405 
5406   if (FieldDecl *Field = Init->getAnyMember())
5407     S.Diag(Init->getSourceLocation(),
5408            diag::err_multiple_mem_initialization)
5409       << Field->getDeclName()
5410       << Init->getSourceRange();
5411   else {
5412     const Type *BaseClass = Init->getBaseClass();
5413     assert(BaseClass && "neither field nor base");
5414     S.Diag(Init->getSourceLocation(),
5415            diag::err_multiple_base_initialization)
5416       << QualType(BaseClass, 0)
5417       << Init->getSourceRange();
5418   }
5419   S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
5420     << 0 << PrevInit->getSourceRange();
5421 
5422   return true;
5423 }
5424 
5425 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
5426 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
5427 
CheckRedundantUnionInit(Sema & S,CXXCtorInitializer * Init,RedundantUnionMap & Unions)5428 bool CheckRedundantUnionInit(Sema &S,
5429                              CXXCtorInitializer *Init,
5430                              RedundantUnionMap &Unions) {
5431   FieldDecl *Field = Init->getAnyMember();
5432   RecordDecl *Parent = Field->getParent();
5433   NamedDecl *Child = Field;
5434 
5435   while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
5436     if (Parent->isUnion()) {
5437       UnionEntry &En = Unions[Parent];
5438       if (En.first && En.first != Child) {
5439         S.Diag(Init->getSourceLocation(),
5440                diag::err_multiple_mem_union_initialization)
5441           << Field->getDeclName()
5442           << Init->getSourceRange();
5443         S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
5444           << 0 << En.second->getSourceRange();
5445         return true;
5446       }
5447       if (!En.first) {
5448         En.first = Child;
5449         En.second = Init;
5450       }
5451       if (!Parent->isAnonymousStructOrUnion())
5452         return false;
5453     }
5454 
5455     Child = Parent;
5456     Parent = cast<RecordDecl>(Parent->getDeclContext());
5457   }
5458 
5459   return false;
5460 }
5461 } // namespace
5462 
5463 /// ActOnMemInitializers - Handle the member initializers for a constructor.
ActOnMemInitializers(Decl * ConstructorDecl,SourceLocation ColonLoc,ArrayRef<CXXCtorInitializer * > MemInits,bool AnyErrors)5464 void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
5465                                 SourceLocation ColonLoc,
5466                                 ArrayRef<CXXCtorInitializer*> MemInits,
5467                                 bool AnyErrors) {
5468   if (!ConstructorDecl)
5469     return;
5470 
5471   AdjustDeclIfTemplate(ConstructorDecl);
5472 
5473   CXXConstructorDecl *Constructor
5474     = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
5475 
5476   if (!Constructor) {
5477     Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5478     return;
5479   }
5480 
5481   // Mapping for the duplicate initializers check.
5482   // For member initializers, this is keyed with a FieldDecl*.
5483   // For base initializers, this is keyed with a Type*.
5484   llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5485 
5486   // Mapping for the inconsistent anonymous-union initializers check.
5487   RedundantUnionMap MemberUnions;
5488 
5489   bool HadError = false;
5490   for (unsigned i = 0; i < MemInits.size(); i++) {
5491     CXXCtorInitializer *Init = MemInits[i];
5492 
5493     // Set the source order index.
5494     Init->setSourceOrder(i);
5495 
5496     if (Init->isAnyMemberInitializer()) {
5497       const void *Key = GetKeyForMember(Context, Init);
5498       if (CheckRedundantInit(*this, Init, Members[Key]) ||
5499           CheckRedundantUnionInit(*this, Init, MemberUnions))
5500         HadError = true;
5501     } else if (Init->isBaseInitializer()) {
5502       const void *Key = GetKeyForMember(Context, Init);
5503       if (CheckRedundantInit(*this, Init, Members[Key]))
5504         HadError = true;
5505     } else {
5506       assert(Init->isDelegatingInitializer());
5507       // This must be the only initializer
5508       if (MemInits.size() != 1) {
5509         Diag(Init->getSourceLocation(),
5510              diag::err_delegating_initializer_alone)
5511           << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5512         // We will treat this as being the only initializer.
5513       }
5514       SetDelegatingInitializer(Constructor, MemInits[i]);
5515       // Return immediately as the initializer is set.
5516       return;
5517     }
5518   }
5519 
5520   if (HadError)
5521     return;
5522 
5523   DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5524 
5525   SetCtorInitializers(Constructor, AnyErrors, MemInits);
5526 
5527   DiagnoseUninitializedFields(*this, Constructor);
5528 }
5529 
5530 void
MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,CXXRecordDecl * ClassDecl)5531 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5532                                              CXXRecordDecl *ClassDecl) {
5533   // Ignore dependent contexts. Also ignore unions, since their members never
5534   // have destructors implicitly called.
5535   if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5536     return;
5537 
5538   // FIXME: all the access-control diagnostics are positioned on the
5539   // field/base declaration.  That's probably good; that said, the
5540   // user might reasonably want to know why the destructor is being
5541   // emitted, and we currently don't say.
5542 
5543   // Non-static data members.
5544   for (auto *Field : ClassDecl->fields()) {
5545     if (Field->isInvalidDecl())
5546       continue;
5547 
5548     // Don't destroy incomplete or zero-length arrays.
5549     if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5550       continue;
5551 
5552     QualType FieldType = Context.getBaseElementType(Field->getType());
5553 
5554     const RecordType* RT = FieldType->getAs<RecordType>();
5555     if (!RT)
5556       continue;
5557 
5558     CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5559     if (FieldClassDecl->isInvalidDecl())
5560       continue;
5561     if (FieldClassDecl->hasIrrelevantDestructor())
5562       continue;
5563     // The destructor for an implicit anonymous union member is never invoked.
5564     if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5565       continue;
5566 
5567     CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5568     assert(Dtor && "No dtor found for FieldClassDecl!");
5569     CheckDestructorAccess(Field->getLocation(), Dtor,
5570                           PDiag(diag::err_access_dtor_field)
5571                             << Field->getDeclName()
5572                             << FieldType);
5573 
5574     MarkFunctionReferenced(Location, Dtor);
5575     DiagnoseUseOfDecl(Dtor, Location);
5576   }
5577 
5578   // We only potentially invoke the destructors of potentially constructed
5579   // subobjects.
5580   bool VisitVirtualBases = !ClassDecl->isAbstract();
5581 
5582   // If the destructor exists and has already been marked used in the MS ABI,
5583   // then virtual base destructors have already been checked and marked used.
5584   // Skip checking them again to avoid duplicate diagnostics.
5585   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5586     CXXDestructorDecl *Dtor = ClassDecl->getDestructor();
5587     if (Dtor && Dtor->isUsed())
5588       VisitVirtualBases = false;
5589   }
5590 
5591   llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5592 
5593   // Bases.
5594   for (const auto &Base : ClassDecl->bases()) {
5595     const RecordType *RT = Base.getType()->getAs<RecordType>();
5596     if (!RT)
5597       continue;
5598 
5599     // Remember direct virtual bases.
5600     if (Base.isVirtual()) {
5601       if (!VisitVirtualBases)
5602         continue;
5603       DirectVirtualBases.insert(RT);
5604     }
5605 
5606     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5607     // If our base class is invalid, we probably can't get its dtor anyway.
5608     if (BaseClassDecl->isInvalidDecl())
5609       continue;
5610     if (BaseClassDecl->hasIrrelevantDestructor())
5611       continue;
5612 
5613     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5614     assert(Dtor && "No dtor found for BaseClassDecl!");
5615 
5616     // FIXME: caret should be on the start of the class name
5617     CheckDestructorAccess(Base.getBeginLoc(), Dtor,
5618                           PDiag(diag::err_access_dtor_base)
5619                               << Base.getType() << Base.getSourceRange(),
5620                           Context.getTypeDeclType(ClassDecl));
5621 
5622     MarkFunctionReferenced(Location, Dtor);
5623     DiagnoseUseOfDecl(Dtor, Location);
5624   }
5625 
5626   if (VisitVirtualBases)
5627     MarkVirtualBaseDestructorsReferenced(Location, ClassDecl,
5628                                          &DirectVirtualBases);
5629 }
5630 
MarkVirtualBaseDestructorsReferenced(SourceLocation Location,CXXRecordDecl * ClassDecl,llvm::SmallPtrSetImpl<const RecordType * > * DirectVirtualBases)5631 void Sema::MarkVirtualBaseDestructorsReferenced(
5632     SourceLocation Location, CXXRecordDecl *ClassDecl,
5633     llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) {
5634   // Virtual bases.
5635   for (const auto &VBase : ClassDecl->vbases()) {
5636     // Bases are always records in a well-formed non-dependent class.
5637     const RecordType *RT = VBase.getType()->castAs<RecordType>();
5638 
5639     // Ignore already visited direct virtual bases.
5640     if (DirectVirtualBases && DirectVirtualBases->count(RT))
5641       continue;
5642 
5643     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5644     // If our base class is invalid, we probably can't get its dtor anyway.
5645     if (BaseClassDecl->isInvalidDecl())
5646       continue;
5647     if (BaseClassDecl->hasIrrelevantDestructor())
5648       continue;
5649 
5650     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5651     assert(Dtor && "No dtor found for BaseClassDecl!");
5652     if (CheckDestructorAccess(
5653             ClassDecl->getLocation(), Dtor,
5654             PDiag(diag::err_access_dtor_vbase)
5655                 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5656             Context.getTypeDeclType(ClassDecl)) ==
5657         AR_accessible) {
5658       CheckDerivedToBaseConversion(
5659           Context.getTypeDeclType(ClassDecl), VBase.getType(),
5660           diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5661           SourceRange(), DeclarationName(), nullptr);
5662     }
5663 
5664     MarkFunctionReferenced(Location, Dtor);
5665     DiagnoseUseOfDecl(Dtor, Location);
5666   }
5667 }
5668 
ActOnDefaultCtorInitializers(Decl * CDtorDecl)5669 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5670   if (!CDtorDecl)
5671     return;
5672 
5673   if (CXXConstructorDecl *Constructor
5674       = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5675     SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5676     DiagnoseUninitializedFields(*this, Constructor);
5677   }
5678 }
5679 
isAbstractType(SourceLocation Loc,QualType T)5680 bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5681   if (!getLangOpts().CPlusPlus)
5682     return false;
5683 
5684   const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
5685   if (!RD)
5686     return false;
5687 
5688   // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
5689   // class template specialization here, but doing so breaks a lot of code.
5690 
5691   // We can't answer whether something is abstract until it has a
5692   // definition. If it's currently being defined, we'll walk back
5693   // over all the declarations when we have a full definition.
5694   const CXXRecordDecl *Def = RD->getDefinition();
5695   if (!Def || Def->isBeingDefined())
5696     return false;
5697 
5698   return RD->isAbstract();
5699 }
5700 
RequireNonAbstractType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)5701 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
5702                                   TypeDiagnoser &Diagnoser) {
5703   if (!isAbstractType(Loc, T))
5704     return false;
5705 
5706   T = Context.getBaseElementType(T);
5707   Diagnoser.diagnose(*this, Loc, T);
5708   DiagnoseAbstractType(T->getAsCXXRecordDecl());
5709   return true;
5710 }
5711 
DiagnoseAbstractType(const CXXRecordDecl * RD)5712 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
5713   // Check if we've already emitted the list of pure virtual functions
5714   // for this class.
5715   if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
5716     return;
5717 
5718   // If the diagnostic is suppressed, don't emit the notes. We're only
5719   // going to emit them once, so try to attach them to a diagnostic we're
5720   // actually going to show.
5721   if (Diags.isLastDiagnosticIgnored())
5722     return;
5723 
5724   CXXFinalOverriderMap FinalOverriders;
5725   RD->getFinalOverriders(FinalOverriders);
5726 
5727   // Keep a set of seen pure methods so we won't diagnose the same method
5728   // more than once.
5729   llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
5730 
5731   for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
5732                                    MEnd = FinalOverriders.end();
5733        M != MEnd;
5734        ++M) {
5735     for (OverridingMethods::iterator SO = M->second.begin(),
5736                                   SOEnd = M->second.end();
5737          SO != SOEnd; ++SO) {
5738       // C++ [class.abstract]p4:
5739       //   A class is abstract if it contains or inherits at least one
5740       //   pure virtual function for which the final overrider is pure
5741       //   virtual.
5742 
5743       //
5744       if (SO->second.size() != 1)
5745         continue;
5746 
5747       if (!SO->second.front().Method->isPure())
5748         continue;
5749 
5750       if (!SeenPureMethods.insert(SO->second.front().Method).second)
5751         continue;
5752 
5753       Diag(SO->second.front().Method->getLocation(),
5754            diag::note_pure_virtual_function)
5755         << SO->second.front().Method->getDeclName() << RD->getDeclName();
5756     }
5757   }
5758 
5759   if (!PureVirtualClassDiagSet)
5760     PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
5761   PureVirtualClassDiagSet->insert(RD);
5762 }
5763 
5764 namespace {
5765 struct AbstractUsageInfo {
5766   Sema &S;
5767   CXXRecordDecl *Record;
5768   CanQualType AbstractType;
5769   bool Invalid;
5770 
AbstractUsageInfo__anonb2a824811511::AbstractUsageInfo5771   AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
5772     : S(S), Record(Record),
5773       AbstractType(S.Context.getCanonicalType(
5774                    S.Context.getTypeDeclType(Record))),
5775       Invalid(false) {}
5776 
DiagnoseAbstractType__anonb2a824811511::AbstractUsageInfo5777   void DiagnoseAbstractType() {
5778     if (Invalid) return;
5779     S.DiagnoseAbstractType(Record);
5780     Invalid = true;
5781   }
5782 
5783   void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
5784 };
5785 
5786 struct CheckAbstractUsage {
5787   AbstractUsageInfo &Info;
5788   const NamedDecl *Ctx;
5789 
CheckAbstractUsage__anonb2a824811511::CheckAbstractUsage5790   CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
5791     : Info(Info), Ctx(Ctx) {}
5792 
Visit__anonb2a824811511::CheckAbstractUsage5793   void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5794     switch (TL.getTypeLocClass()) {
5795 #define ABSTRACT_TYPELOC(CLASS, PARENT)
5796 #define TYPELOC(CLASS, PARENT) \
5797     case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
5798 #include "clang/AST/TypeLocNodes.def"
5799     }
5800   }
5801 
Check__anonb2a824811511::CheckAbstractUsage5802   void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5803     Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
5804     for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
5805       if (!TL.getParam(I))
5806         continue;
5807 
5808       TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
5809       if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
5810     }
5811   }
5812 
Check__anonb2a824811511::CheckAbstractUsage5813   void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5814     Visit(TL.getElementLoc(), Sema::AbstractArrayType);
5815   }
5816 
Check__anonb2a824811511::CheckAbstractUsage5817   void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5818     // Visit the type parameters from a permissive context.
5819     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
5820       TemplateArgumentLoc TAL = TL.getArgLoc(I);
5821       if (TAL.getArgument().getKind() == TemplateArgument::Type)
5822         if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
5823           Visit(TSI->getTypeLoc(), Sema::AbstractNone);
5824       // TODO: other template argument types?
5825     }
5826   }
5827 
5828   // Visit pointee types from a permissive context.
5829 #define CheckPolymorphic(Type) \
5830   void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
5831     Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
5832   }
5833   CheckPolymorphic(PointerTypeLoc)
CheckPolymorphic__anonb2a824811511::CheckAbstractUsage5834   CheckPolymorphic(ReferenceTypeLoc)
5835   CheckPolymorphic(MemberPointerTypeLoc)
5836   CheckPolymorphic(BlockPointerTypeLoc)
5837   CheckPolymorphic(AtomicTypeLoc)
5838 
5839   /// Handle all the types we haven't given a more specific
5840   /// implementation for above.
5841   void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5842     // Every other kind of type that we haven't called out already
5843     // that has an inner type is either (1) sugar or (2) contains that
5844     // inner type in some way as a subobject.
5845     if (TypeLoc Next = TL.getNextTypeLoc())
5846       return Visit(Next, Sel);
5847 
5848     // If there's no inner type and we're in a permissive context,
5849     // don't diagnose.
5850     if (Sel == Sema::AbstractNone) return;
5851 
5852     // Check whether the type matches the abstract type.
5853     QualType T = TL.getType();
5854     if (T->isArrayType()) {
5855       Sel = Sema::AbstractArrayType;
5856       T = Info.S.Context.getBaseElementType(T);
5857     }
5858     CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
5859     if (CT != Info.AbstractType) return;
5860 
5861     // It matched; do some magic.
5862     if (Sel == Sema::AbstractArrayType) {
5863       Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
5864         << T << TL.getSourceRange();
5865     } else {
5866       Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
5867         << Sel << T << TL.getSourceRange();
5868     }
5869     Info.DiagnoseAbstractType();
5870   }
5871 };
5872 
CheckType(const NamedDecl * D,TypeLoc TL,Sema::AbstractDiagSelID Sel)5873 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
5874                                   Sema::AbstractDiagSelID Sel) {
5875   CheckAbstractUsage(*this, D).Visit(TL, Sel);
5876 }
5877 
5878 }
5879 
5880 /// Check for invalid uses of an abstract type in a method declaration.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXMethodDecl * MD)5881 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5882                                     CXXMethodDecl *MD) {
5883   // No need to do the check on definitions, which require that
5884   // the return/param types be complete.
5885   if (MD->doesThisDeclarationHaveABody())
5886     return;
5887 
5888   // For safety's sake, just ignore it if we don't have type source
5889   // information.  This should never happen for non-implicit methods,
5890   // but...
5891   if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
5892     Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
5893 }
5894 
5895 /// Check for invalid uses of an abstract type within a class definition.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXRecordDecl * RD)5896 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5897                                     CXXRecordDecl *RD) {
5898   for (auto *D : RD->decls()) {
5899     if (D->isImplicit()) continue;
5900 
5901     // Methods and method templates.
5902     if (isa<CXXMethodDecl>(D)) {
5903       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
5904     } else if (isa<FunctionTemplateDecl>(D)) {
5905       FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
5906       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
5907 
5908     // Fields and static variables.
5909     } else if (isa<FieldDecl>(D)) {
5910       FieldDecl *FD = cast<FieldDecl>(D);
5911       if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5912         Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
5913     } else if (isa<VarDecl>(D)) {
5914       VarDecl *VD = cast<VarDecl>(D);
5915       if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
5916         Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
5917 
5918     // Nested classes and class templates.
5919     } else if (isa<CXXRecordDecl>(D)) {
5920       CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
5921     } else if (isa<ClassTemplateDecl>(D)) {
5922       CheckAbstractClassUsage(Info,
5923                              cast<ClassTemplateDecl>(D)->getTemplatedDecl());
5924     }
5925   }
5926 }
5927 
ReferenceDllExportedMembers(Sema & S,CXXRecordDecl * Class)5928 static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) {
5929   Attr *ClassAttr = getDLLAttr(Class);
5930   if (!ClassAttr)
5931     return;
5932 
5933   assert(ClassAttr->getKind() == attr::DLLExport);
5934 
5935   TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5936 
5937   if (TSK == TSK_ExplicitInstantiationDeclaration)
5938     // Don't go any further if this is just an explicit instantiation
5939     // declaration.
5940     return;
5941 
5942   // Add a context note to explain how we got to any diagnostics produced below.
5943   struct MarkingClassDllexported {
5944     Sema &S;
5945     MarkingClassDllexported(Sema &S, CXXRecordDecl *Class,
5946                             SourceLocation AttrLoc)
5947         : S(S) {
5948       Sema::CodeSynthesisContext Ctx;
5949       Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported;
5950       Ctx.PointOfInstantiation = AttrLoc;
5951       Ctx.Entity = Class;
5952       S.pushCodeSynthesisContext(Ctx);
5953     }
5954     ~MarkingClassDllexported() {
5955       S.popCodeSynthesisContext();
5956     }
5957   } MarkingDllexportedContext(S, Class, ClassAttr->getLocation());
5958 
5959   if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
5960     S.MarkVTableUsed(Class->getLocation(), Class, true);
5961 
5962   for (Decl *Member : Class->decls()) {
5963     // Defined static variables that are members of an exported base
5964     // class must be marked export too.
5965     auto *VD = dyn_cast<VarDecl>(Member);
5966     if (VD && Member->getAttr<DLLExportAttr>() &&
5967         VD->getStorageClass() == SC_Static &&
5968         TSK == TSK_ImplicitInstantiation)
5969       S.MarkVariableReferenced(VD->getLocation(), VD);
5970 
5971     auto *MD = dyn_cast<CXXMethodDecl>(Member);
5972     if (!MD)
5973       continue;
5974 
5975     if (Member->getAttr<DLLExportAttr>()) {
5976       if (MD->isUserProvided()) {
5977         // Instantiate non-default class member functions ...
5978 
5979         // .. except for certain kinds of template specializations.
5980         if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
5981           continue;
5982 
5983         S.MarkFunctionReferenced(Class->getLocation(), MD);
5984 
5985         // The function will be passed to the consumer when its definition is
5986         // encountered.
5987       } else if (MD->isExplicitlyDefaulted()) {
5988         // Synthesize and instantiate explicitly defaulted methods.
5989         S.MarkFunctionReferenced(Class->getLocation(), MD);
5990 
5991         if (TSK != TSK_ExplicitInstantiationDefinition) {
5992           // Except for explicit instantiation defs, we will not see the
5993           // definition again later, so pass it to the consumer now.
5994           S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
5995         }
5996       } else if (!MD->isTrivial() ||
5997                  MD->isCopyAssignmentOperator() ||
5998                  MD->isMoveAssignmentOperator()) {
5999         // Synthesize and instantiate non-trivial implicit methods, and the copy
6000         // and move assignment operators. The latter are exported even if they
6001         // are trivial, because the address of an operator can be taken and
6002         // should compare equal across libraries.
6003         S.MarkFunctionReferenced(Class->getLocation(), MD);
6004 
6005         // There is no later point when we will see the definition of this
6006         // function, so pass it to the consumer now.
6007         S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
6008       }
6009     }
6010   }
6011 }
6012 
checkForMultipleExportedDefaultConstructors(Sema & S,CXXRecordDecl * Class)6013 static void checkForMultipleExportedDefaultConstructors(Sema &S,
6014                                                         CXXRecordDecl *Class) {
6015   // Only the MS ABI has default constructor closures, so we don't need to do
6016   // this semantic checking anywhere else.
6017   if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
6018     return;
6019 
6020   CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
6021   for (Decl *Member : Class->decls()) {
6022     // Look for exported default constructors.
6023     auto *CD = dyn_cast<CXXConstructorDecl>(Member);
6024     if (!CD || !CD->isDefaultConstructor())
6025       continue;
6026     auto *Attr = CD->getAttr<DLLExportAttr>();
6027     if (!Attr)
6028       continue;
6029 
6030     // If the class is non-dependent, mark the default arguments as ODR-used so
6031     // that we can properly codegen the constructor closure.
6032     if (!Class->isDependentContext()) {
6033       for (ParmVarDecl *PD : CD->parameters()) {
6034         (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
6035         S.DiscardCleanupsInEvaluationContext();
6036       }
6037     }
6038 
6039     if (LastExportedDefaultCtor) {
6040       S.Diag(LastExportedDefaultCtor->getLocation(),
6041              diag::err_attribute_dll_ambiguous_default_ctor)
6042           << Class;
6043       S.Diag(CD->getLocation(), diag::note_entity_declared_at)
6044           << CD->getDeclName();
6045       return;
6046     }
6047     LastExportedDefaultCtor = CD;
6048   }
6049 }
6050 
checkCUDADeviceBuiltinSurfaceClassTemplate(Sema & S,CXXRecordDecl * Class)6051 static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S,
6052                                                        CXXRecordDecl *Class) {
6053   bool ErrorReported = false;
6054   auto reportIllegalClassTemplate = [&ErrorReported](Sema &S,
6055                                                      ClassTemplateDecl *TD) {
6056     if (ErrorReported)
6057       return;
6058     S.Diag(TD->getLocation(),
6059            diag::err_cuda_device_builtin_surftex_cls_template)
6060         << /*surface*/ 0 << TD;
6061     ErrorReported = true;
6062   };
6063 
6064   ClassTemplateDecl *TD = Class->getDescribedClassTemplate();
6065   if (!TD) {
6066     auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class);
6067     if (!SD) {
6068       S.Diag(Class->getLocation(),
6069              diag::err_cuda_device_builtin_surftex_ref_decl)
6070           << /*surface*/ 0 << Class;
6071       S.Diag(Class->getLocation(),
6072              diag::note_cuda_device_builtin_surftex_should_be_template_class)
6073           << Class;
6074       return;
6075     }
6076     TD = SD->getSpecializedTemplate();
6077   }
6078 
6079   TemplateParameterList *Params = TD->getTemplateParameters();
6080   unsigned N = Params->size();
6081 
6082   if (N != 2) {
6083     reportIllegalClassTemplate(S, TD);
6084     S.Diag(TD->getLocation(),
6085            diag::note_cuda_device_builtin_surftex_cls_should_have_n_args)
6086         << TD << 2;
6087   }
6088   if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6089     reportIllegalClassTemplate(S, TD);
6090     S.Diag(TD->getLocation(),
6091            diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6092         << TD << /*1st*/ 0 << /*type*/ 0;
6093   }
6094   if (N > 1) {
6095     auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
6096     if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6097       reportIllegalClassTemplate(S, TD);
6098       S.Diag(TD->getLocation(),
6099              diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6100           << TD << /*2nd*/ 1 << /*integer*/ 1;
6101     }
6102   }
6103 }
6104 
checkCUDADeviceBuiltinTextureClassTemplate(Sema & S,CXXRecordDecl * Class)6105 static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S,
6106                                                        CXXRecordDecl *Class) {
6107   bool ErrorReported = false;
6108   auto reportIllegalClassTemplate = [&ErrorReported](Sema &S,
6109                                                      ClassTemplateDecl *TD) {
6110     if (ErrorReported)
6111       return;
6112     S.Diag(TD->getLocation(),
6113            diag::err_cuda_device_builtin_surftex_cls_template)
6114         << /*texture*/ 1 << TD;
6115     ErrorReported = true;
6116   };
6117 
6118   ClassTemplateDecl *TD = Class->getDescribedClassTemplate();
6119   if (!TD) {
6120     auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class);
6121     if (!SD) {
6122       S.Diag(Class->getLocation(),
6123              diag::err_cuda_device_builtin_surftex_ref_decl)
6124           << /*texture*/ 1 << Class;
6125       S.Diag(Class->getLocation(),
6126              diag::note_cuda_device_builtin_surftex_should_be_template_class)
6127           << Class;
6128       return;
6129     }
6130     TD = SD->getSpecializedTemplate();
6131   }
6132 
6133   TemplateParameterList *Params = TD->getTemplateParameters();
6134   unsigned N = Params->size();
6135 
6136   if (N != 3) {
6137     reportIllegalClassTemplate(S, TD);
6138     S.Diag(TD->getLocation(),
6139            diag::note_cuda_device_builtin_surftex_cls_should_have_n_args)
6140         << TD << 3;
6141   }
6142   if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6143     reportIllegalClassTemplate(S, TD);
6144     S.Diag(TD->getLocation(),
6145            diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6146         << TD << /*1st*/ 0 << /*type*/ 0;
6147   }
6148   if (N > 1) {
6149     auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
6150     if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6151       reportIllegalClassTemplate(S, TD);
6152       S.Diag(TD->getLocation(),
6153              diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6154           << TD << /*2nd*/ 1 << /*integer*/ 1;
6155     }
6156   }
6157   if (N > 2) {
6158     auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2));
6159     if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6160       reportIllegalClassTemplate(S, TD);
6161       S.Diag(TD->getLocation(),
6162              diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6163           << TD << /*3rd*/ 2 << /*integer*/ 1;
6164     }
6165   }
6166 }
6167 
checkClassLevelCodeSegAttribute(CXXRecordDecl * Class)6168 void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) {
6169   // Mark any compiler-generated routines with the implicit code_seg attribute.
6170   for (auto *Method : Class->methods()) {
6171     if (Method->isUserProvided())
6172       continue;
6173     if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
6174       Method->addAttr(A);
6175   }
6176 }
6177 
6178 /// Check class-level dllimport/dllexport attribute.
checkClassLevelDLLAttribute(CXXRecordDecl * Class)6179 void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
6180   Attr *ClassAttr = getDLLAttr(Class);
6181 
6182   // MSVC inherits DLL attributes to partial class template specializations.
6183   if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) {
6184     if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
6185       if (Attr *TemplateAttr =
6186               getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
6187         auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
6188         A->setInherited(true);
6189         ClassAttr = A;
6190       }
6191     }
6192   }
6193 
6194   if (!ClassAttr)
6195     return;
6196 
6197   if (!Class->isExternallyVisible()) {
6198     Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
6199         << Class << ClassAttr;
6200     return;
6201   }
6202 
6203   if (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
6204       !ClassAttr->isInherited()) {
6205     // Diagnose dll attributes on members of class with dll attribute.
6206     for (Decl *Member : Class->decls()) {
6207       if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
6208         continue;
6209       InheritableAttr *MemberAttr = getDLLAttr(Member);
6210       if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
6211         continue;
6212 
6213       Diag(MemberAttr->getLocation(),
6214              diag::err_attribute_dll_member_of_dll_class)
6215           << MemberAttr << ClassAttr;
6216       Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
6217       Member->setInvalidDecl();
6218     }
6219   }
6220 
6221   if (Class->getDescribedClassTemplate())
6222     // Don't inherit dll attribute until the template is instantiated.
6223     return;
6224 
6225   // The class is either imported or exported.
6226   const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
6227 
6228   // Check if this was a dllimport attribute propagated from a derived class to
6229   // a base class template specialization. We don't apply these attributes to
6230   // static data members.
6231   const bool PropagatedImport =
6232       !ClassExported &&
6233       cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate();
6234 
6235   TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
6236 
6237   // Ignore explicit dllexport on explicit class template instantiation
6238   // declarations, except in MinGW mode.
6239   if (ClassExported && !ClassAttr->isInherited() &&
6240       TSK == TSK_ExplicitInstantiationDeclaration &&
6241       !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
6242     Class->dropAttr<DLLExportAttr>();
6243     return;
6244   }
6245 
6246   // Force declaration of implicit members so they can inherit the attribute.
6247   ForceDeclarationOfImplicitMembers(Class);
6248 
6249   // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
6250   // seem to be true in practice?
6251 
6252   for (Decl *Member : Class->decls()) {
6253     VarDecl *VD = dyn_cast<VarDecl>(Member);
6254     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
6255 
6256     // Only methods and static fields inherit the attributes.
6257     if (!VD && !MD)
6258       continue;
6259 
6260     if (MD) {
6261       // Don't process deleted methods.
6262       if (MD->isDeleted())
6263         continue;
6264 
6265       if (MD->isInlined()) {
6266         // MinGW does not import or export inline methods. But do it for
6267         // template instantiations.
6268         if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
6269             TSK != TSK_ExplicitInstantiationDeclaration &&
6270             TSK != TSK_ExplicitInstantiationDefinition)
6271           continue;
6272 
6273         // MSVC versions before 2015 don't export the move assignment operators
6274         // and move constructor, so don't attempt to import/export them if
6275         // we have a definition.
6276         auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
6277         if ((MD->isMoveAssignmentOperator() ||
6278              (Ctor && Ctor->isMoveConstructor())) &&
6279             !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
6280           continue;
6281 
6282         // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
6283         // operator is exported anyway.
6284         if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6285             (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
6286           continue;
6287       }
6288     }
6289 
6290     // Don't apply dllimport attributes to static data members of class template
6291     // instantiations when the attribute is propagated from a derived class.
6292     if (VD && PropagatedImport)
6293       continue;
6294 
6295     if (!cast<NamedDecl>(Member)->isExternallyVisible())
6296       continue;
6297 
6298     if (!getDLLAttr(Member)) {
6299       InheritableAttr *NewAttr = nullptr;
6300 
6301       // Do not export/import inline function when -fno-dllexport-inlines is
6302       // passed. But add attribute for later local static var check.
6303       if (!getLangOpts().DllExportInlines && MD && MD->isInlined() &&
6304           TSK != TSK_ExplicitInstantiationDeclaration &&
6305           TSK != TSK_ExplicitInstantiationDefinition) {
6306         if (ClassExported) {
6307           NewAttr = ::new (getASTContext())
6308               DLLExportStaticLocalAttr(getASTContext(), *ClassAttr);
6309         } else {
6310           NewAttr = ::new (getASTContext())
6311               DLLImportStaticLocalAttr(getASTContext(), *ClassAttr);
6312         }
6313       } else {
6314         NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6315       }
6316 
6317       NewAttr->setInherited(true);
6318       Member->addAttr(NewAttr);
6319 
6320       if (MD) {
6321         // Propagate DLLAttr to friend re-declarations of MD that have already
6322         // been constructed.
6323         for (FunctionDecl *FD = MD->getMostRecentDecl(); FD;
6324              FD = FD->getPreviousDecl()) {
6325           if (FD->getFriendObjectKind() == Decl::FOK_None)
6326             continue;
6327           assert(!getDLLAttr(FD) &&
6328                  "friend re-decl should not already have a DLLAttr");
6329           NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6330           NewAttr->setInherited(true);
6331           FD->addAttr(NewAttr);
6332         }
6333       }
6334     }
6335   }
6336 
6337   if (ClassExported)
6338     DelayedDllExportClasses.push_back(Class);
6339 }
6340 
6341 /// Perform propagation of DLL attributes from a derived class to a
6342 /// templated base class for MS compatibility.
propagateDLLAttrToBaseClassTemplate(CXXRecordDecl * Class,Attr * ClassAttr,ClassTemplateSpecializationDecl * BaseTemplateSpec,SourceLocation BaseLoc)6343 void Sema::propagateDLLAttrToBaseClassTemplate(
6344     CXXRecordDecl *Class, Attr *ClassAttr,
6345     ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
6346   if (getDLLAttr(
6347           BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
6348     // If the base class template has a DLL attribute, don't try to change it.
6349     return;
6350   }
6351 
6352   auto TSK = BaseTemplateSpec->getSpecializationKind();
6353   if (!getDLLAttr(BaseTemplateSpec) &&
6354       (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
6355        TSK == TSK_ImplicitInstantiation)) {
6356     // The template hasn't been instantiated yet (or it has, but only as an
6357     // explicit instantiation declaration or implicit instantiation, which means
6358     // we haven't codegenned any members yet), so propagate the attribute.
6359     auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6360     NewAttr->setInherited(true);
6361     BaseTemplateSpec->addAttr(NewAttr);
6362 
6363     // If this was an import, mark that we propagated it from a derived class to
6364     // a base class template specialization.
6365     if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr))
6366       ImportAttr->setPropagatedToBaseTemplate();
6367 
6368     // If the template is already instantiated, checkDLLAttributeRedeclaration()
6369     // needs to be run again to work see the new attribute. Otherwise this will
6370     // get run whenever the template is instantiated.
6371     if (TSK != TSK_Undeclared)
6372       checkClassLevelDLLAttribute(BaseTemplateSpec);
6373 
6374     return;
6375   }
6376 
6377   if (getDLLAttr(BaseTemplateSpec)) {
6378     // The template has already been specialized or instantiated with an
6379     // attribute, explicitly or through propagation. We should not try to change
6380     // it.
6381     return;
6382   }
6383 
6384   // The template was previously instantiated or explicitly specialized without
6385   // a dll attribute, It's too late for us to add an attribute, so warn that
6386   // this is unsupported.
6387   Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
6388       << BaseTemplateSpec->isExplicitSpecialization();
6389   Diag(ClassAttr->getLocation(), diag::note_attribute);
6390   if (BaseTemplateSpec->isExplicitSpecialization()) {
6391     Diag(BaseTemplateSpec->getLocation(),
6392            diag::note_template_class_explicit_specialization_was_here)
6393         << BaseTemplateSpec;
6394   } else {
6395     Diag(BaseTemplateSpec->getPointOfInstantiation(),
6396            diag::note_template_class_instantiation_was_here)
6397         << BaseTemplateSpec;
6398   }
6399 }
6400 
6401 /// Determine the kind of defaulting that would be done for a given function.
6402 ///
6403 /// If the function is both a default constructor and a copy / move constructor
6404 /// (due to having a default argument for the first parameter), this picks
6405 /// CXXDefaultConstructor.
6406 ///
6407 /// FIXME: Check that case is properly handled by all callers.
6408 Sema::DefaultedFunctionKind
getDefaultedFunctionKind(const FunctionDecl * FD)6409 Sema::getDefaultedFunctionKind(const FunctionDecl *FD) {
6410   if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
6411     if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
6412       if (Ctor->isDefaultConstructor())
6413         return Sema::CXXDefaultConstructor;
6414 
6415       if (Ctor->isCopyConstructor())
6416         return Sema::CXXCopyConstructor;
6417 
6418       if (Ctor->isMoveConstructor())
6419         return Sema::CXXMoveConstructor;
6420     }
6421 
6422     if (MD->isCopyAssignmentOperator())
6423       return Sema::CXXCopyAssignment;
6424 
6425     if (MD->isMoveAssignmentOperator())
6426       return Sema::CXXMoveAssignment;
6427 
6428     if (isa<CXXDestructorDecl>(FD))
6429       return Sema::CXXDestructor;
6430   }
6431 
6432   switch (FD->getDeclName().getCXXOverloadedOperator()) {
6433   case OO_EqualEqual:
6434     return DefaultedComparisonKind::Equal;
6435 
6436   case OO_ExclaimEqual:
6437     return DefaultedComparisonKind::NotEqual;
6438 
6439   case OO_Spaceship:
6440     // No point allowing this if <=> doesn't exist in the current language mode.
6441     if (!getLangOpts().CPlusPlus20)
6442       break;
6443     return DefaultedComparisonKind::ThreeWay;
6444 
6445   case OO_Less:
6446   case OO_LessEqual:
6447   case OO_Greater:
6448   case OO_GreaterEqual:
6449     // No point allowing this if <=> doesn't exist in the current language mode.
6450     if (!getLangOpts().CPlusPlus20)
6451       break;
6452     return DefaultedComparisonKind::Relational;
6453 
6454   default:
6455     break;
6456   }
6457 
6458   // Not defaultable.
6459   return DefaultedFunctionKind();
6460 }
6461 
DefineDefaultedFunction(Sema & S,FunctionDecl * FD,SourceLocation DefaultLoc)6462 static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD,
6463                                     SourceLocation DefaultLoc) {
6464   Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD);
6465   if (DFK.isComparison())
6466     return S.DefineDefaultedComparison(DefaultLoc, FD, DFK.asComparison());
6467 
6468   switch (DFK.asSpecialMember()) {
6469   case Sema::CXXDefaultConstructor:
6470     S.DefineImplicitDefaultConstructor(DefaultLoc,
6471                                        cast<CXXConstructorDecl>(FD));
6472     break;
6473   case Sema::CXXCopyConstructor:
6474     S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD));
6475     break;
6476   case Sema::CXXCopyAssignment:
6477     S.DefineImplicitCopyAssignment(DefaultLoc, cast<CXXMethodDecl>(FD));
6478     break;
6479   case Sema::CXXDestructor:
6480     S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(FD));
6481     break;
6482   case Sema::CXXMoveConstructor:
6483     S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD));
6484     break;
6485   case Sema::CXXMoveAssignment:
6486     S.DefineImplicitMoveAssignment(DefaultLoc, cast<CXXMethodDecl>(FD));
6487     break;
6488   case Sema::CXXInvalid:
6489     llvm_unreachable("Invalid special member.");
6490   }
6491 }
6492 
6493 /// Determine whether a type is permitted to be passed or returned in
6494 /// registers, per C++ [class.temporary]p3.
canPassInRegisters(Sema & S,CXXRecordDecl * D,TargetInfo::CallingConvKind CCK)6495 static bool canPassInRegisters(Sema &S, CXXRecordDecl *D,
6496                                TargetInfo::CallingConvKind CCK) {
6497   if (D->isDependentType() || D->isInvalidDecl())
6498     return false;
6499 
6500   // Clang <= 4 used the pre-C++11 rule, which ignores move operations.
6501   // The PS4 platform ABI follows the behavior of Clang 3.2.
6502   if (CCK == TargetInfo::CCK_ClangABI4OrPS4)
6503     return !D->hasNonTrivialDestructorForCall() &&
6504            !D->hasNonTrivialCopyConstructorForCall();
6505 
6506   if (CCK == TargetInfo::CCK_MicrosoftWin64) {
6507     bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false;
6508     bool DtorIsTrivialForCall = false;
6509 
6510     // If a class has at least one non-deleted, trivial copy constructor, it
6511     // is passed according to the C ABI. Otherwise, it is passed indirectly.
6512     //
6513     // Note: This permits classes with non-trivial copy or move ctors to be
6514     // passed in registers, so long as they *also* have a trivial copy ctor,
6515     // which is non-conforming.
6516     if (D->needsImplicitCopyConstructor()) {
6517       if (!D->defaultedCopyConstructorIsDeleted()) {
6518         if (D->hasTrivialCopyConstructor())
6519           CopyCtorIsTrivial = true;
6520         if (D->hasTrivialCopyConstructorForCall())
6521           CopyCtorIsTrivialForCall = true;
6522       }
6523     } else {
6524       for (const CXXConstructorDecl *CD : D->ctors()) {
6525         if (CD->isCopyConstructor() && !CD->isDeleted()) {
6526           if (CD->isTrivial())
6527             CopyCtorIsTrivial = true;
6528           if (CD->isTrivialForCall())
6529             CopyCtorIsTrivialForCall = true;
6530         }
6531       }
6532     }
6533 
6534     if (D->needsImplicitDestructor()) {
6535       if (!D->defaultedDestructorIsDeleted() &&
6536           D->hasTrivialDestructorForCall())
6537         DtorIsTrivialForCall = true;
6538     } else if (const auto *DD = D->getDestructor()) {
6539       if (!DD->isDeleted() && DD->isTrivialForCall())
6540         DtorIsTrivialForCall = true;
6541     }
6542 
6543     // If the copy ctor and dtor are both trivial-for-calls, pass direct.
6544     if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall)
6545       return true;
6546 
6547     // If a class has a destructor, we'd really like to pass it indirectly
6548     // because it allows us to elide copies.  Unfortunately, MSVC makes that
6549     // impossible for small types, which it will pass in a single register or
6550     // stack slot. Most objects with dtors are large-ish, so handle that early.
6551     // We can't call out all large objects as being indirect because there are
6552     // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
6553     // how we pass large POD types.
6554 
6555     // Note: This permits small classes with nontrivial destructors to be
6556     // passed in registers, which is non-conforming.
6557     bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
6558     uint64_t TypeSize = isAArch64 ? 128 : 64;
6559 
6560     if (CopyCtorIsTrivial &&
6561         S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize)
6562       return true;
6563     return false;
6564   }
6565 
6566   // Per C++ [class.temporary]p3, the relevant condition is:
6567   //   each copy constructor, move constructor, and destructor of X is
6568   //   either trivial or deleted, and X has at least one non-deleted copy
6569   //   or move constructor
6570   bool HasNonDeletedCopyOrMove = false;
6571 
6572   if (D->needsImplicitCopyConstructor() &&
6573       !D->defaultedCopyConstructorIsDeleted()) {
6574     if (!D->hasTrivialCopyConstructorForCall())
6575       return false;
6576     HasNonDeletedCopyOrMove = true;
6577   }
6578 
6579   if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() &&
6580       !D->defaultedMoveConstructorIsDeleted()) {
6581     if (!D->hasTrivialMoveConstructorForCall())
6582       return false;
6583     HasNonDeletedCopyOrMove = true;
6584   }
6585 
6586   if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() &&
6587       !D->hasTrivialDestructorForCall())
6588     return false;
6589 
6590   for (const CXXMethodDecl *MD : D->methods()) {
6591     if (MD->isDeleted())
6592       continue;
6593 
6594     auto *CD = dyn_cast<CXXConstructorDecl>(MD);
6595     if (CD && CD->isCopyOrMoveConstructor())
6596       HasNonDeletedCopyOrMove = true;
6597     else if (!isa<CXXDestructorDecl>(MD))
6598       continue;
6599 
6600     if (!MD->isTrivialForCall())
6601       return false;
6602   }
6603 
6604   return HasNonDeletedCopyOrMove;
6605 }
6606 
6607 /// Report an error regarding overriding, along with any relevant
6608 /// overridden methods.
6609 ///
6610 /// \param DiagID the primary error to report.
6611 /// \param MD the overriding method.
6612 static bool
ReportOverrides(Sema & S,unsigned DiagID,const CXXMethodDecl * MD,llvm::function_ref<bool (const CXXMethodDecl *)> Report)6613 ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD,
6614                 llvm::function_ref<bool(const CXXMethodDecl *)> Report) {
6615   bool IssuedDiagnostic = false;
6616   for (const CXXMethodDecl *O : MD->overridden_methods()) {
6617     if (Report(O)) {
6618       if (!IssuedDiagnostic) {
6619         S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
6620         IssuedDiagnostic = true;
6621       }
6622       S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
6623     }
6624   }
6625   return IssuedDiagnostic;
6626 }
6627 
6628 /// Perform semantic checks on a class definition that has been
6629 /// completing, introducing implicitly-declared members, checking for
6630 /// abstract types, etc.
6631 ///
6632 /// \param S The scope in which the class was parsed. Null if we didn't just
6633 ///        parse a class definition.
6634 /// \param Record The completed class.
CheckCompletedCXXClass(Scope * S,CXXRecordDecl * Record)6635 void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
6636   if (!Record)
6637     return;
6638 
6639   if (Record->isAbstract() && !Record->isInvalidDecl()) {
6640     AbstractUsageInfo Info(*this, Record);
6641     CheckAbstractClassUsage(Info, Record);
6642   }
6643 
6644   // If this is not an aggregate type and has no user-declared constructor,
6645   // complain about any non-static data members of reference or const scalar
6646   // type, since they will never get initializers.
6647   if (!Record->isInvalidDecl() && !Record->isDependentType() &&
6648       !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
6649       !Record->isLambda()) {
6650     bool Complained = false;
6651     for (const auto *F : Record->fields()) {
6652       if (F->hasInClassInitializer() || F->isUnnamedBitfield())
6653         continue;
6654 
6655       if (F->getType()->isReferenceType() ||
6656           (F->getType().isConstQualified() && F->getType()->isScalarType())) {
6657         if (!Complained) {
6658           Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
6659             << Record->getTagKind() << Record;
6660           Complained = true;
6661         }
6662 
6663         Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
6664           << F->getType()->isReferenceType()
6665           << F->getDeclName();
6666       }
6667     }
6668   }
6669 
6670   if (Record->getIdentifier()) {
6671     // C++ [class.mem]p13:
6672     //   If T is the name of a class, then each of the following shall have a
6673     //   name different from T:
6674     //     - every member of every anonymous union that is a member of class T.
6675     //
6676     // C++ [class.mem]p14:
6677     //   In addition, if class T has a user-declared constructor (12.1), every
6678     //   non-static data member of class T shall have a name different from T.
6679     DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
6680     for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6681          ++I) {
6682       NamedDecl *D = (*I)->getUnderlyingDecl();
6683       if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) &&
6684            Record->hasUserDeclaredConstructor()) ||
6685           isa<IndirectFieldDecl>(D)) {
6686         Diag((*I)->getLocation(), diag::err_member_name_of_class)
6687           << D->getDeclName();
6688         break;
6689       }
6690     }
6691   }
6692 
6693   // Warn if the class has virtual methods but non-virtual public destructor.
6694   if (Record->isPolymorphic() && !Record->isDependentType()) {
6695     CXXDestructorDecl *dtor = Record->getDestructor();
6696     if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
6697         !Record->hasAttr<FinalAttr>())
6698       Diag(dtor ? dtor->getLocation() : Record->getLocation(),
6699            diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
6700   }
6701 
6702   if (Record->isAbstract()) {
6703     if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
6704       Diag(Record->getLocation(), diag::warn_abstract_final_class)
6705         << FA->isSpelledAsSealed();
6706       DiagnoseAbstractType(Record);
6707     }
6708   }
6709 
6710   // Warn if the class has a final destructor but is not itself marked final.
6711   if (!Record->hasAttr<FinalAttr>()) {
6712     if (const CXXDestructorDecl *dtor = Record->getDestructor()) {
6713       if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) {
6714         Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class)
6715             << FA->isSpelledAsSealed()
6716             << FixItHint::CreateInsertion(
6717                    getLocForEndOfToken(Record->getLocation()),
6718                    (FA->isSpelledAsSealed() ? " sealed" : " final"));
6719         Diag(Record->getLocation(),
6720              diag::note_final_dtor_non_final_class_silence)
6721             << Context.getRecordType(Record) << FA->isSpelledAsSealed();
6722       }
6723     }
6724   }
6725 
6726   // See if trivial_abi has to be dropped.
6727   if (Record->hasAttr<TrivialABIAttr>())
6728     checkIllFormedTrivialABIStruct(*Record);
6729 
6730   // Set HasTrivialSpecialMemberForCall if the record has attribute
6731   // "trivial_abi".
6732   bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>();
6733 
6734   if (HasTrivialABI)
6735     Record->setHasTrivialSpecialMemberForCall();
6736 
6737   // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=).
6738   // We check these last because they can depend on the properties of the
6739   // primary comparison functions (==, <=>).
6740   llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons;
6741 
6742   // Perform checks that can't be done until we know all the properties of a
6743   // member function (whether it's defaulted, deleted, virtual, overriding,
6744   // ...).
6745   auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) {
6746     // A static function cannot override anything.
6747     if (MD->getStorageClass() == SC_Static) {
6748       if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD,
6749                           [](const CXXMethodDecl *) { return true; }))
6750         return;
6751     }
6752 
6753     // A deleted function cannot override a non-deleted function and vice
6754     // versa.
6755     if (ReportOverrides(*this,
6756                         MD->isDeleted() ? diag::err_deleted_override
6757                                         : diag::err_non_deleted_override,
6758                         MD, [&](const CXXMethodDecl *V) {
6759                           return MD->isDeleted() != V->isDeleted();
6760                         })) {
6761       if (MD->isDefaulted() && MD->isDeleted())
6762         // Explain why this defaulted function was deleted.
6763         DiagnoseDeletedDefaultedFunction(MD);
6764       return;
6765     }
6766 
6767     // A consteval function cannot override a non-consteval function and vice
6768     // versa.
6769     if (ReportOverrides(*this,
6770                         MD->isConsteval() ? diag::err_consteval_override
6771                                           : diag::err_non_consteval_override,
6772                         MD, [&](const CXXMethodDecl *V) {
6773                           return MD->isConsteval() != V->isConsteval();
6774                         })) {
6775       if (MD->isDefaulted() && MD->isDeleted())
6776         // Explain why this defaulted function was deleted.
6777         DiagnoseDeletedDefaultedFunction(MD);
6778       return;
6779     }
6780   };
6781 
6782   auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool {
6783     if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted())
6784       return false;
6785 
6786     DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
6787     if (DFK.asComparison() == DefaultedComparisonKind::NotEqual ||
6788         DFK.asComparison() == DefaultedComparisonKind::Relational) {
6789       DefaultedSecondaryComparisons.push_back(FD);
6790       return true;
6791     }
6792 
6793     CheckExplicitlyDefaultedFunction(S, FD);
6794     return false;
6795   };
6796 
6797   auto CompleteMemberFunction = [&](CXXMethodDecl *M) {
6798     // Check whether the explicitly-defaulted members are valid.
6799     bool Incomplete = CheckForDefaultedFunction(M);
6800 
6801     // Skip the rest of the checks for a member of a dependent class.
6802     if (Record->isDependentType())
6803       return;
6804 
6805     // For an explicitly defaulted or deleted special member, we defer
6806     // determining triviality until the class is complete. That time is now!
6807     CXXSpecialMember CSM = getSpecialMember(M);
6808     if (!M->isImplicit() && !M->isUserProvided()) {
6809       if (CSM != CXXInvalid) {
6810         M->setTrivial(SpecialMemberIsTrivial(M, CSM));
6811         // Inform the class that we've finished declaring this member.
6812         Record->finishedDefaultedOrDeletedMember(M);
6813         M->setTrivialForCall(
6814             HasTrivialABI ||
6815             SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI));
6816         Record->setTrivialForCallFlags(M);
6817       }
6818     }
6819 
6820     // Set triviality for the purpose of calls if this is a user-provided
6821     // copy/move constructor or destructor.
6822     if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor ||
6823          CSM == CXXDestructor) && M->isUserProvided()) {
6824       M->setTrivialForCall(HasTrivialABI);
6825       Record->setTrivialForCallFlags(M);
6826     }
6827 
6828     if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
6829         M->hasAttr<DLLExportAttr>()) {
6830       if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6831           M->isTrivial() &&
6832           (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
6833            CSM == CXXDestructor))
6834         M->dropAttr<DLLExportAttr>();
6835 
6836       if (M->hasAttr<DLLExportAttr>()) {
6837         // Define after any fields with in-class initializers have been parsed.
6838         DelayedDllExportMemberFunctions.push_back(M);
6839       }
6840     }
6841 
6842     // Define defaulted constexpr virtual functions that override a base class
6843     // function right away.
6844     // FIXME: We can defer doing this until the vtable is marked as used.
6845     if (M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods())
6846       DefineDefaultedFunction(*this, M, M->getLocation());
6847 
6848     if (!Incomplete)
6849       CheckCompletedMemberFunction(M);
6850   };
6851 
6852   // Check the destructor before any other member function. We need to
6853   // determine whether it's trivial in order to determine whether the claas
6854   // type is a literal type, which is a prerequisite for determining whether
6855   // other special member functions are valid and whether they're implicitly
6856   // 'constexpr'.
6857   if (CXXDestructorDecl *Dtor = Record->getDestructor())
6858     CompleteMemberFunction(Dtor);
6859 
6860   bool HasMethodWithOverrideControl = false,
6861        HasOverridingMethodWithoutOverrideControl = false;
6862   for (auto *D : Record->decls()) {
6863     if (auto *M = dyn_cast<CXXMethodDecl>(D)) {
6864       // FIXME: We could do this check for dependent types with non-dependent
6865       // bases.
6866       if (!Record->isDependentType()) {
6867         // See if a method overloads virtual methods in a base
6868         // class without overriding any.
6869         if (!M->isStatic())
6870           DiagnoseHiddenVirtualMethods(M);
6871         if (M->hasAttr<OverrideAttr>())
6872           HasMethodWithOverrideControl = true;
6873         else if (M->size_overridden_methods() > 0)
6874           HasOverridingMethodWithoutOverrideControl = true;
6875       }
6876 
6877       if (!isa<CXXDestructorDecl>(M))
6878         CompleteMemberFunction(M);
6879     } else if (auto *F = dyn_cast<FriendDecl>(D)) {
6880       CheckForDefaultedFunction(
6881           dyn_cast_or_null<FunctionDecl>(F->getFriendDecl()));
6882     }
6883   }
6884 
6885   if (HasOverridingMethodWithoutOverrideControl) {
6886     bool HasInconsistentOverrideControl = HasMethodWithOverrideControl;
6887     for (auto *M : Record->methods())
6888       DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl);
6889   }
6890 
6891   // Check the defaulted secondary comparisons after any other member functions.
6892   for (FunctionDecl *FD : DefaultedSecondaryComparisons) {
6893     CheckExplicitlyDefaultedFunction(S, FD);
6894 
6895     // If this is a member function, we deferred checking it until now.
6896     if (auto *MD = dyn_cast<CXXMethodDecl>(FD))
6897       CheckCompletedMemberFunction(MD);
6898   }
6899 
6900   // ms_struct is a request to use the same ABI rules as MSVC.  Check
6901   // whether this class uses any C++ features that are implemented
6902   // completely differently in MSVC, and if so, emit a diagnostic.
6903   // That diagnostic defaults to an error, but we allow projects to
6904   // map it down to a warning (or ignore it).  It's a fairly common
6905   // practice among users of the ms_struct pragma to mass-annotate
6906   // headers, sweeping up a bunch of types that the project doesn't
6907   // really rely on MSVC-compatible layout for.  We must therefore
6908   // support "ms_struct except for C++ stuff" as a secondary ABI.
6909   // Don't emit this diagnostic if the feature was enabled as a
6910   // language option (as opposed to via a pragma or attribute), as
6911   // the option -mms-bitfields otherwise essentially makes it impossible
6912   // to build C++ code, unless this diagnostic is turned off.
6913   if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields &&
6914       (Record->isPolymorphic() || Record->getNumBases())) {
6915     Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
6916   }
6917 
6918   checkClassLevelDLLAttribute(Record);
6919   checkClassLevelCodeSegAttribute(Record);
6920 
6921   bool ClangABICompat4 =
6922       Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4;
6923   TargetInfo::CallingConvKind CCK =
6924       Context.getTargetInfo().getCallingConvKind(ClangABICompat4);
6925   bool CanPass = canPassInRegisters(*this, Record, CCK);
6926 
6927   // Do not change ArgPassingRestrictions if it has already been set to
6928   // APK_CanNeverPassInRegs.
6929   if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs)
6930     Record->setArgPassingRestrictions(CanPass
6931                                           ? RecordDecl::APK_CanPassInRegs
6932                                           : RecordDecl::APK_CannotPassInRegs);
6933 
6934   // If canPassInRegisters returns true despite the record having a non-trivial
6935   // destructor, the record is destructed in the callee. This happens only when
6936   // the record or one of its subobjects has a field annotated with trivial_abi
6937   // or a field qualified with ObjC __strong/__weak.
6938   if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee())
6939     Record->setParamDestroyedInCallee(true);
6940   else if (Record->hasNonTrivialDestructor())
6941     Record->setParamDestroyedInCallee(CanPass);
6942 
6943   if (getLangOpts().ForceEmitVTables) {
6944     // If we want to emit all the vtables, we need to mark it as used.  This
6945     // is especially required for cases like vtable assumption loads.
6946     MarkVTableUsed(Record->getInnerLocStart(), Record);
6947   }
6948 
6949   if (getLangOpts().CUDA) {
6950     if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>())
6951       checkCUDADeviceBuiltinSurfaceClassTemplate(*this, Record);
6952     else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>())
6953       checkCUDADeviceBuiltinTextureClassTemplate(*this, Record);
6954   }
6955 }
6956 
6957 /// Look up the special member function that would be called by a special
6958 /// member function for a subobject of class type.
6959 ///
6960 /// \param Class The class type of the subobject.
6961 /// \param CSM The kind of special member function.
6962 /// \param FieldQuals If the subobject is a field, its cv-qualifiers.
6963 /// \param ConstRHS True if this is a copy operation with a const object
6964 ///        on its RHS, that is, if the argument to the outer special member
6965 ///        function is 'const' and this is not a field marked 'mutable'.
lookupCallFromSpecialMember(Sema & S,CXXRecordDecl * Class,Sema::CXXSpecialMember CSM,unsigned FieldQuals,bool ConstRHS)6966 static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(
6967     Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
6968     unsigned FieldQuals, bool ConstRHS) {
6969   unsigned LHSQuals = 0;
6970   if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
6971     LHSQuals = FieldQuals;
6972 
6973   unsigned RHSQuals = FieldQuals;
6974   if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
6975     RHSQuals = 0;
6976   else if (ConstRHS)
6977     RHSQuals |= Qualifiers::Const;
6978 
6979   return S.LookupSpecialMember(Class, CSM,
6980                                RHSQuals & Qualifiers::Const,
6981                                RHSQuals & Qualifiers::Volatile,
6982                                false,
6983                                LHSQuals & Qualifiers::Const,
6984                                LHSQuals & Qualifiers::Volatile);
6985 }
6986 
6987 class Sema::InheritedConstructorInfo {
6988   Sema &S;
6989   SourceLocation UseLoc;
6990 
6991   /// A mapping from the base classes through which the constructor was
6992   /// inherited to the using shadow declaration in that base class (or a null
6993   /// pointer if the constructor was declared in that base class).
6994   llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
6995       InheritedFromBases;
6996 
6997 public:
InheritedConstructorInfo(Sema & S,SourceLocation UseLoc,ConstructorUsingShadowDecl * Shadow)6998   InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
6999                            ConstructorUsingShadowDecl *Shadow)
7000       : S(S), UseLoc(UseLoc) {
7001     bool DiagnosedMultipleConstructedBases = false;
7002     CXXRecordDecl *ConstructedBase = nullptr;
7003     UsingDecl *ConstructedBaseUsing = nullptr;
7004 
7005     // Find the set of such base class subobjects and check that there's a
7006     // unique constructed subobject.
7007     for (auto *D : Shadow->redecls()) {
7008       auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
7009       auto *DNominatedBase = DShadow->getNominatedBaseClass();
7010       auto *DConstructedBase = DShadow->getConstructedBaseClass();
7011 
7012       InheritedFromBases.insert(
7013           std::make_pair(DNominatedBase->getCanonicalDecl(),
7014                          DShadow->getNominatedBaseClassShadowDecl()));
7015       if (DShadow->constructsVirtualBase())
7016         InheritedFromBases.insert(
7017             std::make_pair(DConstructedBase->getCanonicalDecl(),
7018                            DShadow->getConstructedBaseClassShadowDecl()));
7019       else
7020         assert(DNominatedBase == DConstructedBase);
7021 
7022       // [class.inhctor.init]p2:
7023       //   If the constructor was inherited from multiple base class subobjects
7024       //   of type B, the program is ill-formed.
7025       if (!ConstructedBase) {
7026         ConstructedBase = DConstructedBase;
7027         ConstructedBaseUsing = D->getUsingDecl();
7028       } else if (ConstructedBase != DConstructedBase &&
7029                  !Shadow->isInvalidDecl()) {
7030         if (!DiagnosedMultipleConstructedBases) {
7031           S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
7032               << Shadow->getTargetDecl();
7033           S.Diag(ConstructedBaseUsing->getLocation(),
7034                diag::note_ambiguous_inherited_constructor_using)
7035               << ConstructedBase;
7036           DiagnosedMultipleConstructedBases = true;
7037         }
7038         S.Diag(D->getUsingDecl()->getLocation(),
7039                diag::note_ambiguous_inherited_constructor_using)
7040             << DConstructedBase;
7041       }
7042     }
7043 
7044     if (DiagnosedMultipleConstructedBases)
7045       Shadow->setInvalidDecl();
7046   }
7047 
7048   /// Find the constructor to use for inherited construction of a base class,
7049   /// and whether that base class constructor inherits the constructor from a
7050   /// virtual base class (in which case it won't actually invoke it).
7051   std::pair<CXXConstructorDecl *, bool>
findConstructorForBase(CXXRecordDecl * Base,CXXConstructorDecl * Ctor) const7052   findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
7053     auto It = InheritedFromBases.find(Base->getCanonicalDecl());
7054     if (It == InheritedFromBases.end())
7055       return std::make_pair(nullptr, false);
7056 
7057     // This is an intermediary class.
7058     if (It->second)
7059       return std::make_pair(
7060           S.findInheritingConstructor(UseLoc, Ctor, It->second),
7061           It->second->constructsVirtualBase());
7062 
7063     // This is the base class from which the constructor was inherited.
7064     return std::make_pair(Ctor, false);
7065   }
7066 };
7067 
7068 /// Is the special member function which would be selected to perform the
7069 /// specified operation on the specified class type a constexpr constructor?
7070 static bool
specialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,unsigned Quals,bool ConstRHS,CXXConstructorDecl * InheritedCtor=nullptr,Sema::InheritedConstructorInfo * Inherited=nullptr)7071 specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
7072                          Sema::CXXSpecialMember CSM, unsigned Quals,
7073                          bool ConstRHS,
7074                          CXXConstructorDecl *InheritedCtor = nullptr,
7075                          Sema::InheritedConstructorInfo *Inherited = nullptr) {
7076   // If we're inheriting a constructor, see if we need to call it for this base
7077   // class.
7078   if (InheritedCtor) {
7079     assert(CSM == Sema::CXXDefaultConstructor);
7080     auto BaseCtor =
7081         Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first;
7082     if (BaseCtor)
7083       return BaseCtor->isConstexpr();
7084   }
7085 
7086   if (CSM == Sema::CXXDefaultConstructor)
7087     return ClassDecl->hasConstexprDefaultConstructor();
7088   if (CSM == Sema::CXXDestructor)
7089     return ClassDecl->hasConstexprDestructor();
7090 
7091   Sema::SpecialMemberOverloadResult SMOR =
7092       lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
7093   if (!SMOR.getMethod())
7094     // A constructor we wouldn't select can't be "involved in initializing"
7095     // anything.
7096     return true;
7097   return SMOR.getMethod()->isConstexpr();
7098 }
7099 
7100 /// Determine whether the specified special member function would be constexpr
7101 /// if it were implicitly defined.
defaultedSpecialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,bool ConstArg,CXXConstructorDecl * InheritedCtor=nullptr,Sema::InheritedConstructorInfo * Inherited=nullptr)7102 static bool defaultedSpecialMemberIsConstexpr(
7103     Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM,
7104     bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr,
7105     Sema::InheritedConstructorInfo *Inherited = nullptr) {
7106   if (!S.getLangOpts().CPlusPlus11)
7107     return false;
7108 
7109   // C++11 [dcl.constexpr]p4:
7110   // In the definition of a constexpr constructor [...]
7111   bool Ctor = true;
7112   switch (CSM) {
7113   case Sema::CXXDefaultConstructor:
7114     if (Inherited)
7115       break;
7116     // Since default constructor lookup is essentially trivial (and cannot
7117     // involve, for instance, template instantiation), we compute whether a
7118     // defaulted default constructor is constexpr directly within CXXRecordDecl.
7119     //
7120     // This is important for performance; we need to know whether the default
7121     // constructor is constexpr to determine whether the type is a literal type.
7122     return ClassDecl->defaultedDefaultConstructorIsConstexpr();
7123 
7124   case Sema::CXXCopyConstructor:
7125   case Sema::CXXMoveConstructor:
7126     // For copy or move constructors, we need to perform overload resolution.
7127     break;
7128 
7129   case Sema::CXXCopyAssignment:
7130   case Sema::CXXMoveAssignment:
7131     if (!S.getLangOpts().CPlusPlus14)
7132       return false;
7133     // In C++1y, we need to perform overload resolution.
7134     Ctor = false;
7135     break;
7136 
7137   case Sema::CXXDestructor:
7138     return ClassDecl->defaultedDestructorIsConstexpr();
7139 
7140   case Sema::CXXInvalid:
7141     return false;
7142   }
7143 
7144   //   -- if the class is a non-empty union, or for each non-empty anonymous
7145   //      union member of a non-union class, exactly one non-static data member
7146   //      shall be initialized; [DR1359]
7147   //
7148   // If we squint, this is guaranteed, since exactly one non-static data member
7149   // will be initialized (if the constructor isn't deleted), we just don't know
7150   // which one.
7151   if (Ctor && ClassDecl->isUnion())
7152     return CSM == Sema::CXXDefaultConstructor
7153                ? ClassDecl->hasInClassInitializer() ||
7154                      !ClassDecl->hasVariantMembers()
7155                : true;
7156 
7157   //   -- the class shall not have any virtual base classes;
7158   if (Ctor && ClassDecl->getNumVBases())
7159     return false;
7160 
7161   // C++1y [class.copy]p26:
7162   //   -- [the class] is a literal type, and
7163   if (!Ctor && !ClassDecl->isLiteral())
7164     return false;
7165 
7166   //   -- every constructor involved in initializing [...] base class
7167   //      sub-objects shall be a constexpr constructor;
7168   //   -- the assignment operator selected to copy/move each direct base
7169   //      class is a constexpr function, and
7170   for (const auto &B : ClassDecl->bases()) {
7171     const RecordType *BaseType = B.getType()->getAs<RecordType>();
7172     if (!BaseType) continue;
7173 
7174     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7175     if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg,
7176                                   InheritedCtor, Inherited))
7177       return false;
7178   }
7179 
7180   //   -- every constructor involved in initializing non-static data members
7181   //      [...] shall be a constexpr constructor;
7182   //   -- every non-static data member and base class sub-object shall be
7183   //      initialized
7184   //   -- for each non-static data member of X that is of class type (or array
7185   //      thereof), the assignment operator selected to copy/move that member is
7186   //      a constexpr function
7187   for (const auto *F : ClassDecl->fields()) {
7188     if (F->isInvalidDecl())
7189       continue;
7190     if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer())
7191       continue;
7192     QualType BaseType = S.Context.getBaseElementType(F->getType());
7193     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
7194       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7195       if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
7196                                     BaseType.getCVRQualifiers(),
7197                                     ConstArg && !F->isMutable()))
7198         return false;
7199     } else if (CSM == Sema::CXXDefaultConstructor) {
7200       return false;
7201     }
7202   }
7203 
7204   // All OK, it's constexpr!
7205   return true;
7206 }
7207 
7208 namespace {
7209 /// RAII object to register a defaulted function as having its exception
7210 /// specification computed.
7211 struct ComputingExceptionSpec {
7212   Sema &S;
7213 
ComputingExceptionSpec__anonb2a824811e11::ComputingExceptionSpec7214   ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc)
7215       : S(S) {
7216     Sema::CodeSynthesisContext Ctx;
7217     Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation;
7218     Ctx.PointOfInstantiation = Loc;
7219     Ctx.Entity = FD;
7220     S.pushCodeSynthesisContext(Ctx);
7221   }
~ComputingExceptionSpec__anonb2a824811e11::ComputingExceptionSpec7222   ~ComputingExceptionSpec() {
7223     S.popCodeSynthesisContext();
7224   }
7225 };
7226 }
7227 
7228 static Sema::ImplicitExceptionSpecification
7229 ComputeDefaultedSpecialMemberExceptionSpec(
7230     Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
7231     Sema::InheritedConstructorInfo *ICI);
7232 
7233 static Sema::ImplicitExceptionSpecification
7234 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
7235                                         FunctionDecl *FD,
7236                                         Sema::DefaultedComparisonKind DCK);
7237 
7238 static Sema::ImplicitExceptionSpecification
computeImplicitExceptionSpec(Sema & S,SourceLocation Loc,FunctionDecl * FD)7239 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) {
7240   auto DFK = S.getDefaultedFunctionKind(FD);
7241   if (DFK.isSpecialMember())
7242     return ComputeDefaultedSpecialMemberExceptionSpec(
7243         S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr);
7244   if (DFK.isComparison())
7245     return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD,
7246                                                    DFK.asComparison());
7247 
7248   auto *CD = cast<CXXConstructorDecl>(FD);
7249   assert(CD->getInheritedConstructor() &&
7250          "only defaulted functions and inherited constructors have implicit "
7251          "exception specs");
7252   Sema::InheritedConstructorInfo ICI(
7253       S, Loc, CD->getInheritedConstructor().getShadowDecl());
7254   return ComputeDefaultedSpecialMemberExceptionSpec(
7255       S, Loc, CD, Sema::CXXDefaultConstructor, &ICI);
7256 }
7257 
getImplicitMethodEPI(Sema & S,CXXMethodDecl * MD)7258 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
7259                                                             CXXMethodDecl *MD) {
7260   FunctionProtoType::ExtProtoInfo EPI;
7261 
7262   // Build an exception specification pointing back at this member.
7263   EPI.ExceptionSpec.Type = EST_Unevaluated;
7264   EPI.ExceptionSpec.SourceDecl = MD;
7265 
7266   // Set the calling convention to the default for C++ instance methods.
7267   EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
7268       S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
7269                                             /*IsCXXMethod=*/true));
7270   return EPI;
7271 }
7272 
EvaluateImplicitExceptionSpec(SourceLocation Loc,FunctionDecl * FD)7273 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) {
7274   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
7275   if (FPT->getExceptionSpecType() != EST_Unevaluated)
7276     return;
7277 
7278   // Evaluate the exception specification.
7279   auto IES = computeImplicitExceptionSpec(*this, Loc, FD);
7280   auto ESI = IES.getExceptionSpec();
7281 
7282   // Update the type of the special member to use it.
7283   UpdateExceptionSpec(FD, ESI);
7284 }
7285 
CheckExplicitlyDefaultedFunction(Scope * S,FunctionDecl * FD)7286 void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) {
7287   assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted");
7288 
7289   DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
7290   if (!DefKind) {
7291     assert(FD->getDeclContext()->isDependentContext());
7292     return;
7293   }
7294 
7295   if (DefKind.isSpecialMember()
7296           ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD),
7297                                                   DefKind.asSpecialMember())
7298           : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison()))
7299     FD->setInvalidDecl();
7300 }
7301 
CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl * MD,CXXSpecialMember CSM)7302 bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
7303                                                  CXXSpecialMember CSM) {
7304   CXXRecordDecl *RD = MD->getParent();
7305 
7306   assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
7307          "not an explicitly-defaulted special member");
7308 
7309   // Defer all checking for special members of a dependent type.
7310   if (RD->isDependentType())
7311     return false;
7312 
7313   // Whether this was the first-declared instance of the constructor.
7314   // This affects whether we implicitly add an exception spec and constexpr.
7315   bool First = MD == MD->getCanonicalDecl();
7316 
7317   bool HadError = false;
7318 
7319   // C++11 [dcl.fct.def.default]p1:
7320   //   A function that is explicitly defaulted shall
7321   //     -- be a special member function [...] (checked elsewhere),
7322   //     -- have the same type (except for ref-qualifiers, and except that a
7323   //        copy operation can take a non-const reference) as an implicit
7324   //        declaration, and
7325   //     -- not have default arguments.
7326   // C++2a changes the second bullet to instead delete the function if it's
7327   // defaulted on its first declaration, unless it's "an assignment operator,
7328   // and its return type differs or its parameter type is not a reference".
7329   bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First;
7330   bool ShouldDeleteForTypeMismatch = false;
7331   unsigned ExpectedParams = 1;
7332   if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
7333     ExpectedParams = 0;
7334   if (MD->getNumParams() != ExpectedParams) {
7335     // This checks for default arguments: a copy or move constructor with a
7336     // default argument is classified as a default constructor, and assignment
7337     // operations and destructors can't have default arguments.
7338     Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
7339       << CSM << MD->getSourceRange();
7340     HadError = true;
7341   } else if (MD->isVariadic()) {
7342     if (DeleteOnTypeMismatch)
7343       ShouldDeleteForTypeMismatch = true;
7344     else {
7345       Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
7346         << CSM << MD->getSourceRange();
7347       HadError = true;
7348     }
7349   }
7350 
7351   const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
7352 
7353   bool CanHaveConstParam = false;
7354   if (CSM == CXXCopyConstructor)
7355     CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
7356   else if (CSM == CXXCopyAssignment)
7357     CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
7358 
7359   QualType ReturnType = Context.VoidTy;
7360   if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
7361     // Check for return type matching.
7362     ReturnType = Type->getReturnType();
7363 
7364     QualType DeclType = Context.getTypeDeclType(RD);
7365     DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace());
7366     QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType);
7367 
7368     if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
7369       Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
7370         << (CSM == CXXMoveAssignment) << ExpectedReturnType;
7371       HadError = true;
7372     }
7373 
7374     // A defaulted special member cannot have cv-qualifiers.
7375     if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) {
7376       if (DeleteOnTypeMismatch)
7377         ShouldDeleteForTypeMismatch = true;
7378       else {
7379         Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
7380           << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
7381         HadError = true;
7382       }
7383     }
7384   }
7385 
7386   // Check for parameter type matching.
7387   QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
7388   bool HasConstParam = false;
7389   if (ExpectedParams && ArgType->isReferenceType()) {
7390     // Argument must be reference to possibly-const T.
7391     QualType ReferentType = ArgType->getPointeeType();
7392     HasConstParam = ReferentType.isConstQualified();
7393 
7394     if (ReferentType.isVolatileQualified()) {
7395       if (DeleteOnTypeMismatch)
7396         ShouldDeleteForTypeMismatch = true;
7397       else {
7398         Diag(MD->getLocation(),
7399              diag::err_defaulted_special_member_volatile_param) << CSM;
7400         HadError = true;
7401       }
7402     }
7403 
7404     if (HasConstParam && !CanHaveConstParam) {
7405       if (DeleteOnTypeMismatch)
7406         ShouldDeleteForTypeMismatch = true;
7407       else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
7408         Diag(MD->getLocation(),
7409              diag::err_defaulted_special_member_copy_const_param)
7410           << (CSM == CXXCopyAssignment);
7411         // FIXME: Explain why this special member can't be const.
7412         HadError = true;
7413       } else {
7414         Diag(MD->getLocation(),
7415              diag::err_defaulted_special_member_move_const_param)
7416           << (CSM == CXXMoveAssignment);
7417         HadError = true;
7418       }
7419     }
7420   } else if (ExpectedParams) {
7421     // A copy assignment operator can take its argument by value, but a
7422     // defaulted one cannot.
7423     assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
7424     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
7425     HadError = true;
7426   }
7427 
7428   // C++11 [dcl.fct.def.default]p2:
7429   //   An explicitly-defaulted function may be declared constexpr only if it
7430   //   would have been implicitly declared as constexpr,
7431   // Do not apply this rule to members of class templates, since core issue 1358
7432   // makes such functions always instantiate to constexpr functions. For
7433   // functions which cannot be constexpr (for non-constructors in C++11 and for
7434   // destructors in C++14 and C++17), this is checked elsewhere.
7435   //
7436   // FIXME: This should not apply if the member is deleted.
7437   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
7438                                                      HasConstParam);
7439   if ((getLangOpts().CPlusPlus20 ||
7440        (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
7441                                   : isa<CXXConstructorDecl>(MD))) &&
7442       MD->isConstexpr() && !Constexpr &&
7443       MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
7444     Diag(MD->getBeginLoc(), MD->isConsteval()
7445                                 ? diag::err_incorrect_defaulted_consteval
7446                                 : diag::err_incorrect_defaulted_constexpr)
7447         << CSM;
7448     // FIXME: Explain why the special member can't be constexpr.
7449     HadError = true;
7450   }
7451 
7452   if (First) {
7453     // C++2a [dcl.fct.def.default]p3:
7454     //   If a function is explicitly defaulted on its first declaration, it is
7455     //   implicitly considered to be constexpr if the implicit declaration
7456     //   would be.
7457     MD->setConstexprKind(Constexpr ? (MD->isConsteval()
7458                                           ? ConstexprSpecKind::Consteval
7459                                           : ConstexprSpecKind::Constexpr)
7460                                    : ConstexprSpecKind::Unspecified);
7461 
7462     if (!Type->hasExceptionSpec()) {
7463       // C++2a [except.spec]p3:
7464       //   If a declaration of a function does not have a noexcept-specifier
7465       //   [and] is defaulted on its first declaration, [...] the exception
7466       //   specification is as specified below
7467       FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
7468       EPI.ExceptionSpec.Type = EST_Unevaluated;
7469       EPI.ExceptionSpec.SourceDecl = MD;
7470       MD->setType(Context.getFunctionType(ReturnType,
7471                                           llvm::makeArrayRef(&ArgType,
7472                                                              ExpectedParams),
7473                                           EPI));
7474     }
7475   }
7476 
7477   if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) {
7478     if (First) {
7479       SetDeclDeleted(MD, MD->getLocation());
7480       if (!inTemplateInstantiation() && !HadError) {
7481         Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM;
7482         if (ShouldDeleteForTypeMismatch) {
7483           Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM;
7484         } else {
7485           ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
7486         }
7487       }
7488       if (ShouldDeleteForTypeMismatch && !HadError) {
7489         Diag(MD->getLocation(),
7490              diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM;
7491       }
7492     } else {
7493       // C++11 [dcl.fct.def.default]p4:
7494       //   [For a] user-provided explicitly-defaulted function [...] if such a
7495       //   function is implicitly defined as deleted, the program is ill-formed.
7496       Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
7497       assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl");
7498       ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
7499       HadError = true;
7500     }
7501   }
7502 
7503   return HadError;
7504 }
7505 
7506 namespace {
7507 /// Helper class for building and checking a defaulted comparison.
7508 ///
7509 /// Defaulted functions are built in two phases:
7510 ///
7511 ///  * First, the set of operations that the function will perform are
7512 ///    identified, and some of them are checked. If any of the checked
7513 ///    operations is invalid in certain ways, the comparison function is
7514 ///    defined as deleted and no body is built.
7515 ///  * Then, if the function is not defined as deleted, the body is built.
7516 ///
7517 /// This is accomplished by performing two visitation steps over the eventual
7518 /// body of the function.
7519 template<typename Derived, typename ResultList, typename Result,
7520          typename Subobject>
7521 class DefaultedComparisonVisitor {
7522 public:
7523   using DefaultedComparisonKind = Sema::DefaultedComparisonKind;
7524 
DefaultedComparisonVisitor(Sema & S,CXXRecordDecl * RD,FunctionDecl * FD,DefaultedComparisonKind DCK)7525   DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7526                              DefaultedComparisonKind DCK)
7527       : S(S), RD(RD), FD(FD), DCK(DCK) {
7528     if (auto *Info = FD->getDefaultedFunctionInfo()) {
7529       // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an
7530       // UnresolvedSet to avoid this copy.
7531       Fns.assign(Info->getUnqualifiedLookups().begin(),
7532                  Info->getUnqualifiedLookups().end());
7533     }
7534   }
7535 
visit()7536   ResultList visit() {
7537     // The type of an lvalue naming a parameter of this function.
7538     QualType ParamLvalType =
7539         FD->getParamDecl(0)->getType().getNonReferenceType();
7540 
7541     ResultList Results;
7542 
7543     switch (DCK) {
7544     case DefaultedComparisonKind::None:
7545       llvm_unreachable("not a defaulted comparison");
7546 
7547     case DefaultedComparisonKind::Equal:
7548     case DefaultedComparisonKind::ThreeWay:
7549       getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers());
7550       return Results;
7551 
7552     case DefaultedComparisonKind::NotEqual:
7553     case DefaultedComparisonKind::Relational:
7554       Results.add(getDerived().visitExpandedSubobject(
7555           ParamLvalType, getDerived().getCompleteObject()));
7556       return Results;
7557     }
7558     llvm_unreachable("");
7559   }
7560 
7561 protected:
getDerived()7562   Derived &getDerived() { return static_cast<Derived&>(*this); }
7563 
7564   /// Visit the expanded list of subobjects of the given type, as specified in
7565   /// C++2a [class.compare.default].
7566   ///
7567   /// \return \c true if the ResultList object said we're done, \c false if not.
visitSubobjects(ResultList & Results,CXXRecordDecl * Record,Qualifiers Quals)7568   bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record,
7569                        Qualifiers Quals) {
7570     // C++2a [class.compare.default]p4:
7571     //   The direct base class subobjects of C
7572     for (CXXBaseSpecifier &Base : Record->bases())
7573       if (Results.add(getDerived().visitSubobject(
7574               S.Context.getQualifiedType(Base.getType(), Quals),
7575               getDerived().getBase(&Base))))
7576         return true;
7577 
7578     //   followed by the non-static data members of C
7579     for (FieldDecl *Field : Record->fields()) {
7580       // Recursively expand anonymous structs.
7581       if (Field->isAnonymousStructOrUnion()) {
7582         if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(),
7583                             Quals))
7584           return true;
7585         continue;
7586       }
7587 
7588       // Figure out the type of an lvalue denoting this field.
7589       Qualifiers FieldQuals = Quals;
7590       if (Field->isMutable())
7591         FieldQuals.removeConst();
7592       QualType FieldType =
7593           S.Context.getQualifiedType(Field->getType(), FieldQuals);
7594 
7595       if (Results.add(getDerived().visitSubobject(
7596               FieldType, getDerived().getField(Field))))
7597         return true;
7598     }
7599 
7600     //   form a list of subobjects.
7601     return false;
7602   }
7603 
visitSubobject(QualType Type,Subobject Subobj)7604   Result visitSubobject(QualType Type, Subobject Subobj) {
7605     //   In that list, any subobject of array type is recursively expanded
7606     const ArrayType *AT = S.Context.getAsArrayType(Type);
7607     if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT))
7608       return getDerived().visitSubobjectArray(CAT->getElementType(),
7609                                               CAT->getSize(), Subobj);
7610     return getDerived().visitExpandedSubobject(Type, Subobj);
7611   }
7612 
visitSubobjectArray(QualType Type,const llvm::APInt & Size,Subobject Subobj)7613   Result visitSubobjectArray(QualType Type, const llvm::APInt &Size,
7614                              Subobject Subobj) {
7615     return getDerived().visitSubobject(Type, Subobj);
7616   }
7617 
7618 protected:
7619   Sema &S;
7620   CXXRecordDecl *RD;
7621   FunctionDecl *FD;
7622   DefaultedComparisonKind DCK;
7623   UnresolvedSet<16> Fns;
7624 };
7625 
7626 /// Information about a defaulted comparison, as determined by
7627 /// DefaultedComparisonAnalyzer.
7628 struct DefaultedComparisonInfo {
7629   bool Deleted = false;
7630   bool Constexpr = true;
7631   ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering;
7632 
deleted__anonb2a824811f11::DefaultedComparisonInfo7633   static DefaultedComparisonInfo deleted() {
7634     DefaultedComparisonInfo Deleted;
7635     Deleted.Deleted = true;
7636     return Deleted;
7637   }
7638 
add__anonb2a824811f11::DefaultedComparisonInfo7639   bool add(const DefaultedComparisonInfo &R) {
7640     Deleted |= R.Deleted;
7641     Constexpr &= R.Constexpr;
7642     Category = commonComparisonType(Category, R.Category);
7643     return Deleted;
7644   }
7645 };
7646 
7647 /// An element in the expanded list of subobjects of a defaulted comparison, as
7648 /// specified in C++2a [class.compare.default]p4.
7649 struct DefaultedComparisonSubobject {
7650   enum { CompleteObject, Member, Base } Kind;
7651   NamedDecl *Decl;
7652   SourceLocation Loc;
7653 };
7654 
7655 /// A visitor over the notional body of a defaulted comparison that determines
7656 /// whether that body would be deleted or constexpr.
7657 class DefaultedComparisonAnalyzer
7658     : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer,
7659                                         DefaultedComparisonInfo,
7660                                         DefaultedComparisonInfo,
7661                                         DefaultedComparisonSubobject> {
7662 public:
7663   enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr };
7664 
7665 private:
7666   DiagnosticKind Diagnose;
7667 
7668 public:
7669   using Base = DefaultedComparisonVisitor;
7670   using Result = DefaultedComparisonInfo;
7671   using Subobject = DefaultedComparisonSubobject;
7672 
7673   friend Base;
7674 
DefaultedComparisonAnalyzer(Sema & S,CXXRecordDecl * RD,FunctionDecl * FD,DefaultedComparisonKind DCK,DiagnosticKind Diagnose=NoDiagnostics)7675   DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7676                               DefaultedComparisonKind DCK,
7677                               DiagnosticKind Diagnose = NoDiagnostics)
7678       : Base(S, RD, FD, DCK), Diagnose(Diagnose) {}
7679 
visit()7680   Result visit() {
7681     if ((DCK == DefaultedComparisonKind::Equal ||
7682          DCK == DefaultedComparisonKind::ThreeWay) &&
7683         RD->hasVariantMembers()) {
7684       // C++2a [class.compare.default]p2 [P2002R0]:
7685       //   A defaulted comparison operator function for class C is defined as
7686       //   deleted if [...] C has variant members.
7687       if (Diagnose == ExplainDeleted) {
7688         S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union)
7689           << FD << RD->isUnion() << RD;
7690       }
7691       return Result::deleted();
7692     }
7693 
7694     return Base::visit();
7695   }
7696 
7697 private:
getCompleteObject()7698   Subobject getCompleteObject() {
7699     return Subobject{Subobject::CompleteObject, RD, FD->getLocation()};
7700   }
7701 
getBase(CXXBaseSpecifier * Base)7702   Subobject getBase(CXXBaseSpecifier *Base) {
7703     return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(),
7704                      Base->getBaseTypeLoc()};
7705   }
7706 
getField(FieldDecl * Field)7707   Subobject getField(FieldDecl *Field) {
7708     return Subobject{Subobject::Member, Field, Field->getLocation()};
7709   }
7710 
visitExpandedSubobject(QualType Type,Subobject Subobj)7711   Result visitExpandedSubobject(QualType Type, Subobject Subobj) {
7712     // C++2a [class.compare.default]p2 [P2002R0]:
7713     //   A defaulted <=> or == operator function for class C is defined as
7714     //   deleted if any non-static data member of C is of reference type
7715     if (Type->isReferenceType()) {
7716       if (Diagnose == ExplainDeleted) {
7717         S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member)
7718             << FD << RD;
7719       }
7720       return Result::deleted();
7721     }
7722 
7723     // [...] Let xi be an lvalue denoting the ith element [...]
7724     OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue);
7725     Expr *Args[] = {&Xi, &Xi};
7726 
7727     // All operators start by trying to apply that same operator recursively.
7728     OverloadedOperatorKind OO = FD->getOverloadedOperator();
7729     assert(OO != OO_None && "not an overloaded operator!");
7730     return visitBinaryOperator(OO, Args, Subobj);
7731   }
7732 
7733   Result
visitBinaryOperator(OverloadedOperatorKind OO,ArrayRef<Expr * > Args,Subobject Subobj,OverloadCandidateSet * SpaceshipCandidates=nullptr)7734   visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args,
7735                       Subobject Subobj,
7736                       OverloadCandidateSet *SpaceshipCandidates = nullptr) {
7737     // Note that there is no need to consider rewritten candidates here if
7738     // we've already found there is no viable 'operator<=>' candidate (and are
7739     // considering synthesizing a '<=>' from '==' and '<').
7740     OverloadCandidateSet CandidateSet(
7741         FD->getLocation(), OverloadCandidateSet::CSK_Operator,
7742         OverloadCandidateSet::OperatorRewriteInfo(
7743             OO, /*AllowRewrittenCandidates=*/!SpaceshipCandidates));
7744 
7745     /// C++2a [class.compare.default]p1 [P2002R0]:
7746     ///   [...] the defaulted function itself is never a candidate for overload
7747     ///   resolution [...]
7748     CandidateSet.exclude(FD);
7749 
7750     if (Args[0]->getType()->isOverloadableType())
7751       S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args);
7752     else if (OO == OO_EqualEqual ||
7753              !Args[0]->getType()->isFunctionPointerType()) {
7754       // FIXME: We determine whether this is a valid expression by checking to
7755       // see if there's a viable builtin operator candidate for it. That isn't
7756       // really what the rules ask us to do, but should give the right results.
7757       //
7758       // Note that the builtin operator for relational comparisons on function
7759       // pointers is the only known case which cannot be used.
7760       S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet);
7761     }
7762 
7763     Result R;
7764 
7765     OverloadCandidateSet::iterator Best;
7766     switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) {
7767     case OR_Success: {
7768       // C++2a [class.compare.secondary]p2 [P2002R0]:
7769       //   The operator function [...] is defined as deleted if [...] the
7770       //   candidate selected by overload resolution is not a rewritten
7771       //   candidate.
7772       if ((DCK == DefaultedComparisonKind::NotEqual ||
7773            DCK == DefaultedComparisonKind::Relational) &&
7774           !Best->RewriteKind) {
7775         if (Diagnose == ExplainDeleted) {
7776           S.Diag(Best->Function->getLocation(),
7777                  diag::note_defaulted_comparison_not_rewritten_callee)
7778               << FD;
7779         }
7780         return Result::deleted();
7781       }
7782 
7783       // Throughout C++2a [class.compare]: if overload resolution does not
7784       // result in a usable function, the candidate function is defined as
7785       // deleted. This requires that we selected an accessible function.
7786       //
7787       // Note that this only considers the access of the function when named
7788       // within the type of the subobject, and not the access path for any
7789       // derived-to-base conversion.
7790       CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl();
7791       if (ArgClass && Best->FoundDecl.getDecl() &&
7792           Best->FoundDecl.getDecl()->isCXXClassMember()) {
7793         QualType ObjectType = Subobj.Kind == Subobject::Member
7794                                   ? Args[0]->getType()
7795                                   : S.Context.getRecordType(RD);
7796         if (!S.isMemberAccessibleForDeletion(
7797                 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc,
7798                 Diagnose == ExplainDeleted
7799                     ? S.PDiag(diag::note_defaulted_comparison_inaccessible)
7800                           << FD << Subobj.Kind << Subobj.Decl
7801                     : S.PDiag()))
7802           return Result::deleted();
7803       }
7804 
7805       // C++2a [class.compare.default]p3 [P2002R0]:
7806       //   A defaulted comparison function is constexpr-compatible if [...]
7807       //   no overlod resolution performed [...] results in a non-constexpr
7808       //   function.
7809       if (FunctionDecl *BestFD = Best->Function) {
7810         assert(!BestFD->isDeleted() && "wrong overload resolution result");
7811         // If it's not constexpr, explain why not.
7812         if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) {
7813           if (Subobj.Kind != Subobject::CompleteObject)
7814             S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr)
7815               << Subobj.Kind << Subobj.Decl;
7816           S.Diag(BestFD->getLocation(),
7817                  diag::note_defaulted_comparison_not_constexpr_here);
7818           // Bail out after explaining; we don't want any more notes.
7819           return Result::deleted();
7820         }
7821         R.Constexpr &= BestFD->isConstexpr();
7822       }
7823 
7824       if (OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType()) {
7825         if (auto *BestFD = Best->Function) {
7826           // If any callee has an undeduced return type, deduce it now.
7827           // FIXME: It's not clear how a failure here should be handled. For
7828           // now, we produce an eager diagnostic, because that is forward
7829           // compatible with most (all?) other reasonable options.
7830           if (BestFD->getReturnType()->isUndeducedType() &&
7831               S.DeduceReturnType(BestFD, FD->getLocation(),
7832                                  /*Diagnose=*/false)) {
7833             // Don't produce a duplicate error when asked to explain why the
7834             // comparison is deleted: we diagnosed that when initially checking
7835             // the defaulted operator.
7836             if (Diagnose == NoDiagnostics) {
7837               S.Diag(
7838                   FD->getLocation(),
7839                   diag::err_defaulted_comparison_cannot_deduce_undeduced_auto)
7840                   << Subobj.Kind << Subobj.Decl;
7841               S.Diag(
7842                   Subobj.Loc,
7843                   diag::note_defaulted_comparison_cannot_deduce_undeduced_auto)
7844                   << Subobj.Kind << Subobj.Decl;
7845               S.Diag(BestFD->getLocation(),
7846                      diag::note_defaulted_comparison_cannot_deduce_callee)
7847                   << Subobj.Kind << Subobj.Decl;
7848             }
7849             return Result::deleted();
7850           }
7851           if (auto *Info = S.Context.CompCategories.lookupInfoForType(
7852               BestFD->getCallResultType())) {
7853             R.Category = Info->Kind;
7854           } else {
7855             if (Diagnose == ExplainDeleted) {
7856               S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce)
7857                   << Subobj.Kind << Subobj.Decl
7858                   << BestFD->getCallResultType().withoutLocalFastQualifiers();
7859               S.Diag(BestFD->getLocation(),
7860                      diag::note_defaulted_comparison_cannot_deduce_callee)
7861                   << Subobj.Kind << Subobj.Decl;
7862             }
7863             return Result::deleted();
7864           }
7865         } else {
7866           Optional<ComparisonCategoryType> Cat =
7867               getComparisonCategoryForBuiltinCmp(Args[0]->getType());
7868           assert(Cat && "no category for builtin comparison?");
7869           R.Category = *Cat;
7870         }
7871       }
7872 
7873       // Note that we might be rewriting to a different operator. That call is
7874       // not considered until we come to actually build the comparison function.
7875       break;
7876     }
7877 
7878     case OR_Ambiguous:
7879       if (Diagnose == ExplainDeleted) {
7880         unsigned Kind = 0;
7881         if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship)
7882           Kind = OO == OO_EqualEqual ? 1 : 2;
7883         CandidateSet.NoteCandidates(
7884             PartialDiagnosticAt(
7885                 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous)
7886                                 << FD << Kind << Subobj.Kind << Subobj.Decl),
7887             S, OCD_AmbiguousCandidates, Args);
7888       }
7889       R = Result::deleted();
7890       break;
7891 
7892     case OR_Deleted:
7893       if (Diagnose == ExplainDeleted) {
7894         if ((DCK == DefaultedComparisonKind::NotEqual ||
7895              DCK == DefaultedComparisonKind::Relational) &&
7896             !Best->RewriteKind) {
7897           S.Diag(Best->Function->getLocation(),
7898                  diag::note_defaulted_comparison_not_rewritten_callee)
7899               << FD;
7900         } else {
7901           S.Diag(Subobj.Loc,
7902                  diag::note_defaulted_comparison_calls_deleted)
7903               << FD << Subobj.Kind << Subobj.Decl;
7904           S.NoteDeletedFunction(Best->Function);
7905         }
7906       }
7907       R = Result::deleted();
7908       break;
7909 
7910     case OR_No_Viable_Function:
7911       // If there's no usable candidate, we're done unless we can rewrite a
7912       // '<=>' in terms of '==' and '<'.
7913       if (OO == OO_Spaceship &&
7914           S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) {
7915         // For any kind of comparison category return type, we need a usable
7916         // '==' and a usable '<'.
7917         if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj,
7918                                        &CandidateSet)))
7919           R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet));
7920         break;
7921       }
7922 
7923       if (Diagnose == ExplainDeleted) {
7924         S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function)
7925             << FD << Subobj.Kind << Subobj.Decl;
7926 
7927         // For a three-way comparison, list both the candidates for the
7928         // original operator and the candidates for the synthesized operator.
7929         if (SpaceshipCandidates) {
7930           SpaceshipCandidates->NoteCandidates(
7931               S, Args,
7932               SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates,
7933                                                       Args, FD->getLocation()));
7934           S.Diag(Subobj.Loc,
7935                  diag::note_defaulted_comparison_no_viable_function_synthesized)
7936               << (OO == OO_EqualEqual ? 0 : 1);
7937         }
7938 
7939         CandidateSet.NoteCandidates(
7940             S, Args,
7941             CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args,
7942                                             FD->getLocation()));
7943       }
7944       R = Result::deleted();
7945       break;
7946     }
7947 
7948     return R;
7949   }
7950 };
7951 
7952 /// A list of statements.
7953 struct StmtListResult {
7954   bool IsInvalid = false;
7955   llvm::SmallVector<Stmt*, 16> Stmts;
7956 
add__anonb2a824811f11::StmtListResult7957   bool add(const StmtResult &S) {
7958     IsInvalid |= S.isInvalid();
7959     if (IsInvalid)
7960       return true;
7961     Stmts.push_back(S.get());
7962     return false;
7963   }
7964 };
7965 
7966 /// A visitor over the notional body of a defaulted comparison that synthesizes
7967 /// the actual body.
7968 class DefaultedComparisonSynthesizer
7969     : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer,
7970                                         StmtListResult, StmtResult,
7971                                         std::pair<ExprResult, ExprResult>> {
7972   SourceLocation Loc;
7973   unsigned ArrayDepth = 0;
7974 
7975 public:
7976   using Base = DefaultedComparisonVisitor;
7977   using ExprPair = std::pair<ExprResult, ExprResult>;
7978 
7979   friend Base;
7980 
DefaultedComparisonSynthesizer(Sema & S,CXXRecordDecl * RD,FunctionDecl * FD,DefaultedComparisonKind DCK,SourceLocation BodyLoc)7981   DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7982                                  DefaultedComparisonKind DCK,
7983                                  SourceLocation BodyLoc)
7984       : Base(S, RD, FD, DCK), Loc(BodyLoc) {}
7985 
7986   /// Build a suitable function body for this defaulted comparison operator.
build()7987   StmtResult build() {
7988     Sema::CompoundScopeRAII CompoundScope(S);
7989 
7990     StmtListResult Stmts = visit();
7991     if (Stmts.IsInvalid)
7992       return StmtError();
7993 
7994     ExprResult RetVal;
7995     switch (DCK) {
7996     case DefaultedComparisonKind::None:
7997       llvm_unreachable("not a defaulted comparison");
7998 
7999     case DefaultedComparisonKind::Equal: {
8000       // C++2a [class.eq]p3:
8001       //   [...] compar[e] the corresponding elements [...] until the first
8002       //   index i where xi == yi yields [...] false. If no such index exists,
8003       //   V is true. Otherwise, V is false.
8004       //
8005       // Join the comparisons with '&&'s and return the result. Use a right
8006       // fold (traversing the conditions right-to-left), because that
8007       // short-circuits more naturally.
8008       auto OldStmts = std::move(Stmts.Stmts);
8009       Stmts.Stmts.clear();
8010       ExprResult CmpSoFar;
8011       // Finish a particular comparison chain.
8012       auto FinishCmp = [&] {
8013         if (Expr *Prior = CmpSoFar.get()) {
8014           // Convert the last expression to 'return ...;'
8015           if (RetVal.isUnset() && Stmts.Stmts.empty())
8016             RetVal = CmpSoFar;
8017           // Convert any prior comparison to 'if (!(...)) return false;'
8018           else if (Stmts.add(buildIfNotCondReturnFalse(Prior)))
8019             return true;
8020           CmpSoFar = ExprResult();
8021         }
8022         return false;
8023       };
8024       for (Stmt *EAsStmt : llvm::reverse(OldStmts)) {
8025         Expr *E = dyn_cast<Expr>(EAsStmt);
8026         if (!E) {
8027           // Found an array comparison.
8028           if (FinishCmp() || Stmts.add(EAsStmt))
8029             return StmtError();
8030           continue;
8031         }
8032 
8033         if (CmpSoFar.isUnset()) {
8034           CmpSoFar = E;
8035           continue;
8036         }
8037         CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get());
8038         if (CmpSoFar.isInvalid())
8039           return StmtError();
8040       }
8041       if (FinishCmp())
8042         return StmtError();
8043       std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end());
8044       //   If no such index exists, V is true.
8045       if (RetVal.isUnset())
8046         RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true);
8047       break;
8048     }
8049 
8050     case DefaultedComparisonKind::ThreeWay: {
8051       // Per C++2a [class.spaceship]p3, as a fallback add:
8052       // return static_cast<R>(std::strong_ordering::equal);
8053       QualType StrongOrdering = S.CheckComparisonCategoryType(
8054           ComparisonCategoryType::StrongOrdering, Loc,
8055           Sema::ComparisonCategoryUsage::DefaultedOperator);
8056       if (StrongOrdering.isNull())
8057         return StmtError();
8058       VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering)
8059                              .getValueInfo(ComparisonCategoryResult::Equal)
8060                              ->VD;
8061       RetVal = getDecl(EqualVD);
8062       if (RetVal.isInvalid())
8063         return StmtError();
8064       RetVal = buildStaticCastToR(RetVal.get());
8065       break;
8066     }
8067 
8068     case DefaultedComparisonKind::NotEqual:
8069     case DefaultedComparisonKind::Relational:
8070       RetVal = cast<Expr>(Stmts.Stmts.pop_back_val());
8071       break;
8072     }
8073 
8074     // Build the final return statement.
8075     if (RetVal.isInvalid())
8076       return StmtError();
8077     StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get());
8078     if (ReturnStmt.isInvalid())
8079       return StmtError();
8080     Stmts.Stmts.push_back(ReturnStmt.get());
8081 
8082     return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false);
8083   }
8084 
8085 private:
getDecl(ValueDecl * VD)8086   ExprResult getDecl(ValueDecl *VD) {
8087     return S.BuildDeclarationNameExpr(
8088         CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD);
8089   }
8090 
getParam(unsigned I)8091   ExprResult getParam(unsigned I) {
8092     ParmVarDecl *PD = FD->getParamDecl(I);
8093     return getDecl(PD);
8094   }
8095 
getCompleteObject()8096   ExprPair getCompleteObject() {
8097     unsigned Param = 0;
8098     ExprResult LHS;
8099     if (isa<CXXMethodDecl>(FD)) {
8100       // LHS is '*this'.
8101       LHS = S.ActOnCXXThis(Loc);
8102       if (!LHS.isInvalid())
8103         LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get());
8104     } else {
8105       LHS = getParam(Param++);
8106     }
8107     ExprResult RHS = getParam(Param++);
8108     assert(Param == FD->getNumParams());
8109     return {LHS, RHS};
8110   }
8111 
getBase(CXXBaseSpecifier * Base)8112   ExprPair getBase(CXXBaseSpecifier *Base) {
8113     ExprPair Obj = getCompleteObject();
8114     if (Obj.first.isInvalid() || Obj.second.isInvalid())
8115       return {ExprError(), ExprError()};
8116     CXXCastPath Path = {Base};
8117     return {S.ImpCastExprToType(Obj.first.get(), Base->getType(),
8118                                 CK_DerivedToBase, VK_LValue, &Path),
8119             S.ImpCastExprToType(Obj.second.get(), Base->getType(),
8120                                 CK_DerivedToBase, VK_LValue, &Path)};
8121   }
8122 
getField(FieldDecl * Field)8123   ExprPair getField(FieldDecl *Field) {
8124     ExprPair Obj = getCompleteObject();
8125     if (Obj.first.isInvalid() || Obj.second.isInvalid())
8126       return {ExprError(), ExprError()};
8127 
8128     DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess());
8129     DeclarationNameInfo NameInfo(Field->getDeclName(), Loc);
8130     return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc,
8131                                       CXXScopeSpec(), Field, Found, NameInfo),
8132             S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc,
8133                                       CXXScopeSpec(), Field, Found, NameInfo)};
8134   }
8135 
8136   // FIXME: When expanding a subobject, register a note in the code synthesis
8137   // stack to say which subobject we're comparing.
8138 
buildIfNotCondReturnFalse(ExprResult Cond)8139   StmtResult buildIfNotCondReturnFalse(ExprResult Cond) {
8140     if (Cond.isInvalid())
8141       return StmtError();
8142 
8143     ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get());
8144     if (NotCond.isInvalid())
8145       return StmtError();
8146 
8147     ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false);
8148     assert(!False.isInvalid() && "should never fail");
8149     StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get());
8150     if (ReturnFalse.isInvalid())
8151       return StmtError();
8152 
8153     return S.ActOnIfStmt(Loc, false, Loc, nullptr,
8154                          S.ActOnCondition(nullptr, Loc, NotCond.get(),
8155                                           Sema::ConditionKind::Boolean),
8156                          Loc, ReturnFalse.get(), SourceLocation(), nullptr);
8157   }
8158 
visitSubobjectArray(QualType Type,llvm::APInt Size,ExprPair Subobj)8159   StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size,
8160                                  ExprPair Subobj) {
8161     QualType SizeType = S.Context.getSizeType();
8162     Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType));
8163 
8164     // Build 'size_t i$n = 0'.
8165     IdentifierInfo *IterationVarName = nullptr;
8166     {
8167       SmallString<8> Str;
8168       llvm::raw_svector_ostream OS(Str);
8169       OS << "i" << ArrayDepth;
8170       IterationVarName = &S.Context.Idents.get(OS.str());
8171     }
8172     VarDecl *IterationVar = VarDecl::Create(
8173         S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType,
8174         S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None);
8175     llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8176     IterationVar->setInit(
8177         IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8178     Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc);
8179 
8180     auto IterRef = [&] {
8181       ExprResult Ref = S.BuildDeclarationNameExpr(
8182           CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc),
8183           IterationVar);
8184       assert(!Ref.isInvalid() && "can't reference our own variable?");
8185       return Ref.get();
8186     };
8187 
8188     // Build 'i$n != Size'.
8189     ExprResult Cond = S.CreateBuiltinBinOp(
8190         Loc, BO_NE, IterRef(),
8191         IntegerLiteral::Create(S.Context, Size, SizeType, Loc));
8192     assert(!Cond.isInvalid() && "should never fail");
8193 
8194     // Build '++i$n'.
8195     ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef());
8196     assert(!Inc.isInvalid() && "should never fail");
8197 
8198     // Build 'a[i$n]' and 'b[i$n]'.
8199     auto Index = [&](ExprResult E) {
8200       if (E.isInvalid())
8201         return ExprError();
8202       return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc);
8203     };
8204     Subobj.first = Index(Subobj.first);
8205     Subobj.second = Index(Subobj.second);
8206 
8207     // Compare the array elements.
8208     ++ArrayDepth;
8209     StmtResult Substmt = visitSubobject(Type, Subobj);
8210     --ArrayDepth;
8211 
8212     if (Substmt.isInvalid())
8213       return StmtError();
8214 
8215     // For the inner level of an 'operator==', build 'if (!cmp) return false;'.
8216     // For outer levels or for an 'operator<=>' we already have a suitable
8217     // statement that returns as necessary.
8218     if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) {
8219       assert(DCK == DefaultedComparisonKind::Equal &&
8220              "should have non-expression statement");
8221       Substmt = buildIfNotCondReturnFalse(ElemCmp);
8222       if (Substmt.isInvalid())
8223         return StmtError();
8224     }
8225 
8226     // Build 'for (...) ...'
8227     return S.ActOnForStmt(Loc, Loc, Init,
8228                           S.ActOnCondition(nullptr, Loc, Cond.get(),
8229                                            Sema::ConditionKind::Boolean),
8230                           S.MakeFullDiscardedValueExpr(Inc.get()), Loc,
8231                           Substmt.get());
8232   }
8233 
visitExpandedSubobject(QualType Type,ExprPair Obj)8234   StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) {
8235     if (Obj.first.isInvalid() || Obj.second.isInvalid())
8236       return StmtError();
8237 
8238     OverloadedOperatorKind OO = FD->getOverloadedOperator();
8239     BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO);
8240     ExprResult Op;
8241     if (Type->isOverloadableType())
8242       Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(),
8243                                    Obj.second.get(), /*PerformADL=*/true,
8244                                    /*AllowRewrittenCandidates=*/true, FD);
8245     else
8246       Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get());
8247     if (Op.isInvalid())
8248       return StmtError();
8249 
8250     switch (DCK) {
8251     case DefaultedComparisonKind::None:
8252       llvm_unreachable("not a defaulted comparison");
8253 
8254     case DefaultedComparisonKind::Equal:
8255       // Per C++2a [class.eq]p2, each comparison is individually contextually
8256       // converted to bool.
8257       Op = S.PerformContextuallyConvertToBool(Op.get());
8258       if (Op.isInvalid())
8259         return StmtError();
8260       return Op.get();
8261 
8262     case DefaultedComparisonKind::ThreeWay: {
8263       // Per C++2a [class.spaceship]p3, form:
8264       //   if (R cmp = static_cast<R>(op); cmp != 0)
8265       //     return cmp;
8266       QualType R = FD->getReturnType();
8267       Op = buildStaticCastToR(Op.get());
8268       if (Op.isInvalid())
8269         return StmtError();
8270 
8271       // R cmp = ...;
8272       IdentifierInfo *Name = &S.Context.Idents.get("cmp");
8273       VarDecl *VD =
8274           VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R,
8275                           S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None);
8276       S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false);
8277       Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc);
8278 
8279       // cmp != 0
8280       ExprResult VDRef = getDecl(VD);
8281       if (VDRef.isInvalid())
8282         return StmtError();
8283       llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0);
8284       Expr *Zero =
8285           IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc);
8286       ExprResult Comp;
8287       if (VDRef.get()->getType()->isOverloadableType())
8288         Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true,
8289                                        true, FD);
8290       else
8291         Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero);
8292       if (Comp.isInvalid())
8293         return StmtError();
8294       Sema::ConditionResult Cond = S.ActOnCondition(
8295           nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean);
8296       if (Cond.isInvalid())
8297         return StmtError();
8298 
8299       // return cmp;
8300       VDRef = getDecl(VD);
8301       if (VDRef.isInvalid())
8302         return StmtError();
8303       StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get());
8304       if (ReturnStmt.isInvalid())
8305         return StmtError();
8306 
8307       // if (...)
8308       return S.ActOnIfStmt(Loc, /*IsConstexpr=*/false, Loc, InitStmt, Cond, Loc,
8309                            ReturnStmt.get(),
8310                            /*ElseLoc=*/SourceLocation(), /*Else=*/nullptr);
8311     }
8312 
8313     case DefaultedComparisonKind::NotEqual:
8314     case DefaultedComparisonKind::Relational:
8315       // C++2a [class.compare.secondary]p2:
8316       //   Otherwise, the operator function yields x @ y.
8317       return Op.get();
8318     }
8319     llvm_unreachable("");
8320   }
8321 
8322   /// Build "static_cast<R>(E)".
buildStaticCastToR(Expr * E)8323   ExprResult buildStaticCastToR(Expr *E) {
8324     QualType R = FD->getReturnType();
8325     assert(!R->isUndeducedType() && "type should have been deduced already");
8326 
8327     // Don't bother forming a no-op cast in the common case.
8328     if (E->isRValue() && S.Context.hasSameType(E->getType(), R))
8329       return E;
8330     return S.BuildCXXNamedCast(Loc, tok::kw_static_cast,
8331                                S.Context.getTrivialTypeSourceInfo(R, Loc), E,
8332                                SourceRange(Loc, Loc), SourceRange(Loc, Loc));
8333   }
8334 };
8335 }
8336 
8337 /// Perform the unqualified lookups that might be needed to form a defaulted
8338 /// comparison function for the given operator.
lookupOperatorsForDefaultedComparison(Sema & Self,Scope * S,UnresolvedSetImpl & Operators,OverloadedOperatorKind Op)8339 static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S,
8340                                                   UnresolvedSetImpl &Operators,
8341                                                   OverloadedOperatorKind Op) {
8342   auto Lookup = [&](OverloadedOperatorKind OO) {
8343     Self.LookupOverloadedOperatorName(OO, S, Operators);
8344   };
8345 
8346   // Every defaulted operator looks up itself.
8347   Lookup(Op);
8348   // ... and the rewritten form of itself, if any.
8349   if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op))
8350     Lookup(ExtraOp);
8351 
8352   // For 'operator<=>', we also form a 'cmp != 0' expression, and might
8353   // synthesize a three-way comparison from '<' and '=='. In a dependent
8354   // context, we also need to look up '==' in case we implicitly declare a
8355   // defaulted 'operator=='.
8356   if (Op == OO_Spaceship) {
8357     Lookup(OO_ExclaimEqual);
8358     Lookup(OO_Less);
8359     Lookup(OO_EqualEqual);
8360   }
8361 }
8362 
CheckExplicitlyDefaultedComparison(Scope * S,FunctionDecl * FD,DefaultedComparisonKind DCK)8363 bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD,
8364                                               DefaultedComparisonKind DCK) {
8365   assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison");
8366 
8367   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext());
8368   assert(RD && "defaulted comparison is not defaulted in a class");
8369 
8370   // Perform any unqualified lookups we're going to need to default this
8371   // function.
8372   if (S) {
8373     UnresolvedSet<32> Operators;
8374     lookupOperatorsForDefaultedComparison(*this, S, Operators,
8375                                           FD->getOverloadedOperator());
8376     FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create(
8377         Context, Operators.pairs()));
8378   }
8379 
8380   // C++2a [class.compare.default]p1:
8381   //   A defaulted comparison operator function for some class C shall be a
8382   //   non-template function declared in the member-specification of C that is
8383   //    -- a non-static const member of C having one parameter of type
8384   //       const C&, or
8385   //    -- a friend of C having two parameters of type const C& or two
8386   //       parameters of type C.
8387   QualType ExpectedParmType1 = Context.getRecordType(RD);
8388   QualType ExpectedParmType2 =
8389       Context.getLValueReferenceType(ExpectedParmType1.withConst());
8390   if (isa<CXXMethodDecl>(FD))
8391     ExpectedParmType1 = ExpectedParmType2;
8392   for (const ParmVarDecl *Param : FD->parameters()) {
8393     if (!Param->getType()->isDependentType() &&
8394         !Context.hasSameType(Param->getType(), ExpectedParmType1) &&
8395         !Context.hasSameType(Param->getType(), ExpectedParmType2)) {
8396       // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8397       // corresponding defaulted 'operator<=>' already.
8398       if (!FD->isImplicit()) {
8399         Diag(FD->getLocation(), diag::err_defaulted_comparison_param)
8400             << (int)DCK << Param->getType() << ExpectedParmType1
8401             << !isa<CXXMethodDecl>(FD)
8402             << ExpectedParmType2 << Param->getSourceRange();
8403       }
8404       return true;
8405     }
8406   }
8407   if (FD->getNumParams() == 2 &&
8408       !Context.hasSameType(FD->getParamDecl(0)->getType(),
8409                            FD->getParamDecl(1)->getType())) {
8410     if (!FD->isImplicit()) {
8411       Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch)
8412           << (int)DCK
8413           << FD->getParamDecl(0)->getType()
8414           << FD->getParamDecl(0)->getSourceRange()
8415           << FD->getParamDecl(1)->getType()
8416           << FD->getParamDecl(1)->getSourceRange();
8417     }
8418     return true;
8419   }
8420 
8421   // ... non-static const member ...
8422   if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
8423     assert(!MD->isStatic() && "comparison function cannot be a static member");
8424     if (!MD->isConst()) {
8425       SourceLocation InsertLoc;
8426       if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc())
8427         InsertLoc = getLocForEndOfToken(Loc.getRParenLoc());
8428       // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8429       // corresponding defaulted 'operator<=>' already.
8430       if (!MD->isImplicit()) {
8431         Diag(MD->getLocation(), diag::err_defaulted_comparison_non_const)
8432           << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const");
8433       }
8434 
8435       // Add the 'const' to the type to recover.
8436       const auto *FPT = MD->getType()->castAs<FunctionProtoType>();
8437       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8438       EPI.TypeQuals.addConst();
8439       MD->setType(Context.getFunctionType(FPT->getReturnType(),
8440                                           FPT->getParamTypes(), EPI));
8441     }
8442   } else {
8443     // A non-member function declared in a class must be a friend.
8444     assert(FD->getFriendObjectKind() && "expected a friend declaration");
8445   }
8446 
8447   // C++2a [class.eq]p1, [class.rel]p1:
8448   //   A [defaulted comparison other than <=>] shall have a declared return
8449   //   type bool.
8450   if (DCK != DefaultedComparisonKind::ThreeWay &&
8451       !FD->getDeclaredReturnType()->isDependentType() &&
8452       !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) {
8453     Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool)
8454         << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy
8455         << FD->getReturnTypeSourceRange();
8456     return true;
8457   }
8458   // C++2a [class.spaceship]p2 [P2002R0]:
8459   //   Let R be the declared return type [...]. If R is auto, [...]. Otherwise,
8460   //   R shall not contain a placeholder type.
8461   if (DCK == DefaultedComparisonKind::ThreeWay &&
8462       FD->getDeclaredReturnType()->getContainedDeducedType() &&
8463       !Context.hasSameType(FD->getDeclaredReturnType(),
8464                            Context.getAutoDeductType())) {
8465     Diag(FD->getLocation(),
8466          diag::err_defaulted_comparison_deduced_return_type_not_auto)
8467         << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy
8468         << FD->getReturnTypeSourceRange();
8469     return true;
8470   }
8471 
8472   // For a defaulted function in a dependent class, defer all remaining checks
8473   // until instantiation.
8474   if (RD->isDependentType())
8475     return false;
8476 
8477   // Determine whether the function should be defined as deleted.
8478   DefaultedComparisonInfo Info =
8479       DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit();
8480 
8481   bool First = FD == FD->getCanonicalDecl();
8482 
8483   // If we want to delete the function, then do so; there's nothing else to
8484   // check in that case.
8485   if (Info.Deleted) {
8486     if (!First) {
8487       // C++11 [dcl.fct.def.default]p4:
8488       //   [For a] user-provided explicitly-defaulted function [...] if such a
8489       //   function is implicitly defined as deleted, the program is ill-formed.
8490       //
8491       // This is really just a consequence of the general rule that you can
8492       // only delete a function on its first declaration.
8493       Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes)
8494           << FD->isImplicit() << (int)DCK;
8495       DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8496                                   DefaultedComparisonAnalyzer::ExplainDeleted)
8497           .visit();
8498       return true;
8499     }
8500 
8501     SetDeclDeleted(FD, FD->getLocation());
8502     if (!inTemplateInstantiation() && !FD->isImplicit()) {
8503       Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted)
8504           << (int)DCK;
8505       DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8506                                   DefaultedComparisonAnalyzer::ExplainDeleted)
8507           .visit();
8508     }
8509     return false;
8510   }
8511 
8512   // C++2a [class.spaceship]p2:
8513   //   The return type is deduced as the common comparison type of R0, R1, ...
8514   if (DCK == DefaultedComparisonKind::ThreeWay &&
8515       FD->getDeclaredReturnType()->isUndeducedAutoType()) {
8516     SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin();
8517     if (RetLoc.isInvalid())
8518       RetLoc = FD->getBeginLoc();
8519     // FIXME: Should we really care whether we have the complete type and the
8520     // 'enumerator' constants here? A forward declaration seems sufficient.
8521     QualType Cat = CheckComparisonCategoryType(
8522         Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator);
8523     if (Cat.isNull())
8524       return true;
8525     Context.adjustDeducedFunctionResultType(
8526         FD, SubstAutoType(FD->getDeclaredReturnType(), Cat));
8527   }
8528 
8529   // C++2a [dcl.fct.def.default]p3 [P2002R0]:
8530   //   An explicitly-defaulted function that is not defined as deleted may be
8531   //   declared constexpr or consteval only if it is constexpr-compatible.
8532   // C++2a [class.compare.default]p3 [P2002R0]:
8533   //   A defaulted comparison function is constexpr-compatible if it satisfies
8534   //   the requirements for a constexpr function [...]
8535   // The only relevant requirements are that the parameter and return types are
8536   // literal types. The remaining conditions are checked by the analyzer.
8537   if (FD->isConstexpr()) {
8538     if (CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) &&
8539         CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) &&
8540         !Info.Constexpr) {
8541       Diag(FD->getBeginLoc(),
8542            diag::err_incorrect_defaulted_comparison_constexpr)
8543           << FD->isImplicit() << (int)DCK << FD->isConsteval();
8544       DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8545                                   DefaultedComparisonAnalyzer::ExplainConstexpr)
8546           .visit();
8547     }
8548   }
8549 
8550   // C++2a [dcl.fct.def.default]p3 [P2002R0]:
8551   //   If a constexpr-compatible function is explicitly defaulted on its first
8552   //   declaration, it is implicitly considered to be constexpr.
8553   // FIXME: Only applying this to the first declaration seems problematic, as
8554   // simple reorderings can affect the meaning of the program.
8555   if (First && !FD->isConstexpr() && Info.Constexpr)
8556     FD->setConstexprKind(ConstexprSpecKind::Constexpr);
8557 
8558   // C++2a [except.spec]p3:
8559   //   If a declaration of a function does not have a noexcept-specifier
8560   //   [and] is defaulted on its first declaration, [...] the exception
8561   //   specification is as specified below
8562   if (FD->getExceptionSpecType() == EST_None) {
8563     auto *FPT = FD->getType()->castAs<FunctionProtoType>();
8564     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8565     EPI.ExceptionSpec.Type = EST_Unevaluated;
8566     EPI.ExceptionSpec.SourceDecl = FD;
8567     FD->setType(Context.getFunctionType(FPT->getReturnType(),
8568                                         FPT->getParamTypes(), EPI));
8569   }
8570 
8571   return false;
8572 }
8573 
DeclareImplicitEqualityComparison(CXXRecordDecl * RD,FunctionDecl * Spaceship)8574 void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
8575                                              FunctionDecl *Spaceship) {
8576   Sema::CodeSynthesisContext Ctx;
8577   Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison;
8578   Ctx.PointOfInstantiation = Spaceship->getEndLoc();
8579   Ctx.Entity = Spaceship;
8580   pushCodeSynthesisContext(Ctx);
8581 
8582   if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship))
8583     EqualEqual->setImplicit();
8584 
8585   popCodeSynthesisContext();
8586 }
8587 
DefineDefaultedComparison(SourceLocation UseLoc,FunctionDecl * FD,DefaultedComparisonKind DCK)8588 void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD,
8589                                      DefaultedComparisonKind DCK) {
8590   assert(FD->isDefaulted() && !FD->isDeleted() &&
8591          !FD->doesThisDeclarationHaveABody());
8592   if (FD->willHaveBody() || FD->isInvalidDecl())
8593     return;
8594 
8595   SynthesizedFunctionScope Scope(*this, FD);
8596 
8597   // Add a context note for diagnostics produced after this point.
8598   Scope.addContextNote(UseLoc);
8599 
8600   {
8601     // Build and set up the function body.
8602     CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent());
8603     SourceLocation BodyLoc =
8604         FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
8605     StmtResult Body =
8606         DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build();
8607     if (Body.isInvalid()) {
8608       FD->setInvalidDecl();
8609       return;
8610     }
8611     FD->setBody(Body.get());
8612     FD->markUsed(Context);
8613   }
8614 
8615   // The exception specification is needed because we are defining the
8616   // function. Note that this will reuse the body we just built.
8617   ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>());
8618 
8619   if (ASTMutationListener *L = getASTMutationListener())
8620     L->CompletedImplicitDefinition(FD);
8621 }
8622 
8623 static Sema::ImplicitExceptionSpecification
ComputeDefaultedComparisonExceptionSpec(Sema & S,SourceLocation Loc,FunctionDecl * FD,Sema::DefaultedComparisonKind DCK)8624 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
8625                                         FunctionDecl *FD,
8626                                         Sema::DefaultedComparisonKind DCK) {
8627   ComputingExceptionSpec CES(S, FD, Loc);
8628   Sema::ImplicitExceptionSpecification ExceptSpec(S);
8629 
8630   if (FD->isInvalidDecl())
8631     return ExceptSpec;
8632 
8633   // The common case is that we just defined the comparison function. In that
8634   // case, just look at whether the body can throw.
8635   if (FD->hasBody()) {
8636     ExceptSpec.CalledStmt(FD->getBody());
8637   } else {
8638     // Otherwise, build a body so we can check it. This should ideally only
8639     // happen when we're not actually marking the function referenced. (This is
8640     // only really important for efficiency: we don't want to build and throw
8641     // away bodies for comparison functions more than we strictly need to.)
8642 
8643     // Pretend to synthesize the function body in an unevaluated context.
8644     // Note that we can't actually just go ahead and define the function here:
8645     // we are not permitted to mark its callees as referenced.
8646     Sema::SynthesizedFunctionScope Scope(S, FD);
8647     EnterExpressionEvaluationContext Context(
8648         S, Sema::ExpressionEvaluationContext::Unevaluated);
8649 
8650     CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent());
8651     SourceLocation BodyLoc =
8652         FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
8653     StmtResult Body =
8654         DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build();
8655     if (!Body.isInvalid())
8656       ExceptSpec.CalledStmt(Body.get());
8657 
8658     // FIXME: Can we hold onto this body and just transform it to potentially
8659     // evaluated when we're asked to define the function rather than rebuilding
8660     // it? Either that, or we should only build the bits of the body that we
8661     // need (the expressions, not the statements).
8662   }
8663 
8664   return ExceptSpec;
8665 }
8666 
CheckDelayedMemberExceptionSpecs()8667 void Sema::CheckDelayedMemberExceptionSpecs() {
8668   decltype(DelayedOverridingExceptionSpecChecks) Overriding;
8669   decltype(DelayedEquivalentExceptionSpecChecks) Equivalent;
8670 
8671   std::swap(Overriding, DelayedOverridingExceptionSpecChecks);
8672   std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks);
8673 
8674   // Perform any deferred checking of exception specifications for virtual
8675   // destructors.
8676   for (auto &Check : Overriding)
8677     CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
8678 
8679   // Perform any deferred checking of exception specifications for befriended
8680   // special members.
8681   for (auto &Check : Equivalent)
8682     CheckEquivalentExceptionSpec(Check.second, Check.first);
8683 }
8684 
8685 namespace {
8686 /// CRTP base class for visiting operations performed by a special member
8687 /// function (or inherited constructor).
8688 template<typename Derived>
8689 struct SpecialMemberVisitor {
8690   Sema &S;
8691   CXXMethodDecl *MD;
8692   Sema::CXXSpecialMember CSM;
8693   Sema::InheritedConstructorInfo *ICI;
8694 
8695   // Properties of the special member, computed for convenience.
8696   bool IsConstructor = false, IsAssignment = false, ConstArg = false;
8697 
SpecialMemberVisitor__anonb2a824812511::SpecialMemberVisitor8698   SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
8699                        Sema::InheritedConstructorInfo *ICI)
8700       : S(S), MD(MD), CSM(CSM), ICI(ICI) {
8701     switch (CSM) {
8702     case Sema::CXXDefaultConstructor:
8703     case Sema::CXXCopyConstructor:
8704     case Sema::CXXMoveConstructor:
8705       IsConstructor = true;
8706       break;
8707     case Sema::CXXCopyAssignment:
8708     case Sema::CXXMoveAssignment:
8709       IsAssignment = true;
8710       break;
8711     case Sema::CXXDestructor:
8712       break;
8713     case Sema::CXXInvalid:
8714       llvm_unreachable("invalid special member kind");
8715     }
8716 
8717     if (MD->getNumParams()) {
8718       if (const ReferenceType *RT =
8719               MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
8720         ConstArg = RT->getPointeeType().isConstQualified();
8721     }
8722   }
8723 
getDerived__anonb2a824812511::SpecialMemberVisitor8724   Derived &getDerived() { return static_cast<Derived&>(*this); }
8725 
8726   /// Is this a "move" special member?
isMove__anonb2a824812511::SpecialMemberVisitor8727   bool isMove() const {
8728     return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment;
8729   }
8730 
8731   /// Look up the corresponding special member in the given class.
lookupIn__anonb2a824812511::SpecialMemberVisitor8732   Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class,
8733                                              unsigned Quals, bool IsMutable) {
8734     return lookupCallFromSpecialMember(S, Class, CSM, Quals,
8735                                        ConstArg && !IsMutable);
8736   }
8737 
8738   /// Look up the constructor for the specified base class to see if it's
8739   /// overridden due to this being an inherited constructor.
lookupInheritedCtor__anonb2a824812511::SpecialMemberVisitor8740   Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) {
8741     if (!ICI)
8742       return {};
8743     assert(CSM == Sema::CXXDefaultConstructor);
8744     auto *BaseCtor =
8745       cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor();
8746     if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first)
8747       return MD;
8748     return {};
8749   }
8750 
8751   /// A base or member subobject.
8752   typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
8753 
8754   /// Get the location to use for a subobject in diagnostics.
getSubobjectLoc__anonb2a824812511::SpecialMemberVisitor8755   static SourceLocation getSubobjectLoc(Subobject Subobj) {
8756     // FIXME: For an indirect virtual base, the direct base leading to
8757     // the indirect virtual base would be a more useful choice.
8758     if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>())
8759       return B->getBaseTypeLoc();
8760     else
8761       return Subobj.get<FieldDecl*>()->getLocation();
8762   }
8763 
8764   enum BasesToVisit {
8765     /// Visit all non-virtual (direct) bases.
8766     VisitNonVirtualBases,
8767     /// Visit all direct bases, virtual or not.
8768     VisitDirectBases,
8769     /// Visit all non-virtual bases, and all virtual bases if the class
8770     /// is not abstract.
8771     VisitPotentiallyConstructedBases,
8772     /// Visit all direct or virtual bases.
8773     VisitAllBases
8774   };
8775 
8776   // Visit the bases and members of the class.
visit__anonb2a824812511::SpecialMemberVisitor8777   bool visit(BasesToVisit Bases) {
8778     CXXRecordDecl *RD = MD->getParent();
8779 
8780     if (Bases == VisitPotentiallyConstructedBases)
8781       Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases;
8782 
8783     for (auto &B : RD->bases())
8784       if ((Bases == VisitDirectBases || !B.isVirtual()) &&
8785           getDerived().visitBase(&B))
8786         return true;
8787 
8788     if (Bases == VisitAllBases)
8789       for (auto &B : RD->vbases())
8790         if (getDerived().visitBase(&B))
8791           return true;
8792 
8793     for (auto *F : RD->fields())
8794       if (!F->isInvalidDecl() && !F->isUnnamedBitfield() &&
8795           getDerived().visitField(F))
8796         return true;
8797 
8798     return false;
8799   }
8800 };
8801 }
8802 
8803 namespace {
8804 struct SpecialMemberDeletionInfo
8805     : SpecialMemberVisitor<SpecialMemberDeletionInfo> {
8806   bool Diagnose;
8807 
8808   SourceLocation Loc;
8809 
8810   bool AllFieldsAreConst;
8811 
SpecialMemberDeletionInfo__anonb2a824812611::SpecialMemberDeletionInfo8812   SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
8813                             Sema::CXXSpecialMember CSM,
8814                             Sema::InheritedConstructorInfo *ICI, bool Diagnose)
8815       : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose),
8816         Loc(MD->getLocation()), AllFieldsAreConst(true) {}
8817 
inUnion__anonb2a824812611::SpecialMemberDeletionInfo8818   bool inUnion() const { return MD->getParent()->isUnion(); }
8819 
getEffectiveCSM__anonb2a824812611::SpecialMemberDeletionInfo8820   Sema::CXXSpecialMember getEffectiveCSM() {
8821     return ICI ? Sema::CXXInvalid : CSM;
8822   }
8823 
8824   bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType);
8825 
visitBase__anonb2a824812611::SpecialMemberDeletionInfo8826   bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); }
visitField__anonb2a824812611::SpecialMemberDeletionInfo8827   bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); }
8828 
8829   bool shouldDeleteForBase(CXXBaseSpecifier *Base);
8830   bool shouldDeleteForField(FieldDecl *FD);
8831   bool shouldDeleteForAllConstMembers();
8832 
8833   bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
8834                                      unsigned Quals);
8835   bool shouldDeleteForSubobjectCall(Subobject Subobj,
8836                                     Sema::SpecialMemberOverloadResult SMOR,
8837                                     bool IsDtorCallInCtor);
8838 
8839   bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
8840 };
8841 }
8842 
8843 /// Is the given special member inaccessible when used on the given
8844 /// sub-object.
isAccessible(Subobject Subobj,CXXMethodDecl * target)8845 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
8846                                              CXXMethodDecl *target) {
8847   /// If we're operating on a base class, the object type is the
8848   /// type of this special member.
8849   QualType objectTy;
8850   AccessSpecifier access = target->getAccess();
8851   if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
8852     objectTy = S.Context.getTypeDeclType(MD->getParent());
8853     access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
8854 
8855   // If we're operating on a field, the object type is the type of the field.
8856   } else {
8857     objectTy = S.Context.getTypeDeclType(target->getParent());
8858   }
8859 
8860   return S.isMemberAccessibleForDeletion(
8861       target->getParent(), DeclAccessPair::make(target, access), objectTy);
8862 }
8863 
8864 /// Check whether we should delete a special member due to the implicit
8865 /// definition containing a call to a special member of a subobject.
shouldDeleteForSubobjectCall(Subobject Subobj,Sema::SpecialMemberOverloadResult SMOR,bool IsDtorCallInCtor)8866 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
8867     Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR,
8868     bool IsDtorCallInCtor) {
8869   CXXMethodDecl *Decl = SMOR.getMethod();
8870   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
8871 
8872   int DiagKind = -1;
8873 
8874   if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
8875     DiagKind = !Decl ? 0 : 1;
8876   else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
8877     DiagKind = 2;
8878   else if (!isAccessible(Subobj, Decl))
8879     DiagKind = 3;
8880   else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
8881            !Decl->isTrivial()) {
8882     // A member of a union must have a trivial corresponding special member.
8883     // As a weird special case, a destructor call from a union's constructor
8884     // must be accessible and non-deleted, but need not be trivial. Such a
8885     // destructor is never actually called, but is semantically checked as
8886     // if it were.
8887     DiagKind = 4;
8888   }
8889 
8890   if (DiagKind == -1)
8891     return false;
8892 
8893   if (Diagnose) {
8894     if (Field) {
8895       S.Diag(Field->getLocation(),
8896              diag::note_deleted_special_member_class_subobject)
8897         << getEffectiveCSM() << MD->getParent() << /*IsField*/true
8898         << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false;
8899     } else {
8900       CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
8901       S.Diag(Base->getBeginLoc(),
8902              diag::note_deleted_special_member_class_subobject)
8903           << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
8904           << Base->getType() << DiagKind << IsDtorCallInCtor
8905           << /*IsObjCPtr*/false;
8906     }
8907 
8908     if (DiagKind == 1)
8909       S.NoteDeletedFunction(Decl);
8910     // FIXME: Explain inaccessibility if DiagKind == 3.
8911   }
8912 
8913   return true;
8914 }
8915 
8916 /// Check whether we should delete a special member function due to having a
8917 /// direct or virtual base class or non-static data member of class type M.
shouldDeleteForClassSubobject(CXXRecordDecl * Class,Subobject Subobj,unsigned Quals)8918 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
8919     CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
8920   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
8921   bool IsMutable = Field && Field->isMutable();
8922 
8923   // C++11 [class.ctor]p5:
8924   // -- any direct or virtual base class, or non-static data member with no
8925   //    brace-or-equal-initializer, has class type M (or array thereof) and
8926   //    either M has no default constructor or overload resolution as applied
8927   //    to M's default constructor results in an ambiguity or in a function
8928   //    that is deleted or inaccessible
8929   // C++11 [class.copy]p11, C++11 [class.copy]p23:
8930   // -- a direct or virtual base class B that cannot be copied/moved because
8931   //    overload resolution, as applied to B's corresponding special member,
8932   //    results in an ambiguity or a function that is deleted or inaccessible
8933   //    from the defaulted special member
8934   // C++11 [class.dtor]p5:
8935   // -- any direct or virtual base class [...] has a type with a destructor
8936   //    that is deleted or inaccessible
8937   if (!(CSM == Sema::CXXDefaultConstructor &&
8938         Field && Field->hasInClassInitializer()) &&
8939       shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
8940                                    false))
8941     return true;
8942 
8943   // C++11 [class.ctor]p5, C++11 [class.copy]p11:
8944   // -- any direct or virtual base class or non-static data member has a
8945   //    type with a destructor that is deleted or inaccessible
8946   if (IsConstructor) {
8947     Sema::SpecialMemberOverloadResult SMOR =
8948         S.LookupSpecialMember(Class, Sema::CXXDestructor,
8949                               false, false, false, false, false);
8950     if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
8951       return true;
8952   }
8953 
8954   return false;
8955 }
8956 
shouldDeleteForVariantObjCPtrMember(FieldDecl * FD,QualType FieldType)8957 bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember(
8958     FieldDecl *FD, QualType FieldType) {
8959   // The defaulted special functions are defined as deleted if this is a variant
8960   // member with a non-trivial ownership type, e.g., ObjC __strong or __weak
8961   // type under ARC.
8962   if (!FieldType.hasNonTrivialObjCLifetime())
8963     return false;
8964 
8965   // Don't make the defaulted default constructor defined as deleted if the
8966   // member has an in-class initializer.
8967   if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer())
8968     return false;
8969 
8970   if (Diagnose) {
8971     auto *ParentClass = cast<CXXRecordDecl>(FD->getParent());
8972     S.Diag(FD->getLocation(),
8973            diag::note_deleted_special_member_class_subobject)
8974         << getEffectiveCSM() << ParentClass << /*IsField*/true
8975         << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true;
8976   }
8977 
8978   return true;
8979 }
8980 
8981 /// Check whether we should delete a special member function due to the class
8982 /// having a particular direct or virtual base class.
shouldDeleteForBase(CXXBaseSpecifier * Base)8983 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
8984   CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
8985   // If program is correct, BaseClass cannot be null, but if it is, the error
8986   // must be reported elsewhere.
8987   if (!BaseClass)
8988     return false;
8989   // If we have an inheriting constructor, check whether we're calling an
8990   // inherited constructor instead of a default constructor.
8991   Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
8992   if (auto *BaseCtor = SMOR.getMethod()) {
8993     // Note that we do not check access along this path; other than that,
8994     // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false);
8995     // FIXME: Check that the base has a usable destructor! Sink this into
8996     // shouldDeleteForClassSubobject.
8997     if (BaseCtor->isDeleted() && Diagnose) {
8998       S.Diag(Base->getBeginLoc(),
8999              diag::note_deleted_special_member_class_subobject)
9000           << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
9001           << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false
9002           << /*IsObjCPtr*/false;
9003       S.NoteDeletedFunction(BaseCtor);
9004     }
9005     return BaseCtor->isDeleted();
9006   }
9007   return shouldDeleteForClassSubobject(BaseClass, Base, 0);
9008 }
9009 
9010 /// Check whether we should delete a special member function due to the class
9011 /// having a particular non-static data member.
shouldDeleteForField(FieldDecl * FD)9012 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
9013   QualType FieldType = S.Context.getBaseElementType(FD->getType());
9014   CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
9015 
9016   if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType))
9017     return true;
9018 
9019   if (CSM == Sema::CXXDefaultConstructor) {
9020     // For a default constructor, all references must be initialized in-class
9021     // and, if a union, it must have a non-const member.
9022     if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
9023       if (Diagnose)
9024         S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
9025           << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
9026       return true;
9027     }
9028     // C++11 [class.ctor]p5: any non-variant non-static data member of
9029     // const-qualified type (or array thereof) with no
9030     // brace-or-equal-initializer does not have a user-provided default
9031     // constructor.
9032     if (!inUnion() && FieldType.isConstQualified() &&
9033         !FD->hasInClassInitializer() &&
9034         (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
9035       if (Diagnose)
9036         S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
9037           << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
9038       return true;
9039     }
9040 
9041     if (inUnion() && !FieldType.isConstQualified())
9042       AllFieldsAreConst = false;
9043   } else if (CSM == Sema::CXXCopyConstructor) {
9044     // For a copy constructor, data members must not be of rvalue reference
9045     // type.
9046     if (FieldType->isRValueReferenceType()) {
9047       if (Diagnose)
9048         S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
9049           << MD->getParent() << FD << FieldType;
9050       return true;
9051     }
9052   } else if (IsAssignment) {
9053     // For an assignment operator, data members must not be of reference type.
9054     if (FieldType->isReferenceType()) {
9055       if (Diagnose)
9056         S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
9057           << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0;
9058       return true;
9059     }
9060     if (!FieldRecord && FieldType.isConstQualified()) {
9061       // C++11 [class.copy]p23:
9062       // -- a non-static data member of const non-class type (or array thereof)
9063       if (Diagnose)
9064         S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
9065           << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1;
9066       return true;
9067     }
9068   }
9069 
9070   if (FieldRecord) {
9071     // Some additional restrictions exist on the variant members.
9072     if (!inUnion() && FieldRecord->isUnion() &&
9073         FieldRecord->isAnonymousStructOrUnion()) {
9074       bool AllVariantFieldsAreConst = true;
9075 
9076       // FIXME: Handle anonymous unions declared within anonymous unions.
9077       for (auto *UI : FieldRecord->fields()) {
9078         QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
9079 
9080         if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType))
9081           return true;
9082 
9083         if (!UnionFieldType.isConstQualified())
9084           AllVariantFieldsAreConst = false;
9085 
9086         CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
9087         if (UnionFieldRecord &&
9088             shouldDeleteForClassSubobject(UnionFieldRecord, UI,
9089                                           UnionFieldType.getCVRQualifiers()))
9090           return true;
9091       }
9092 
9093       // At least one member in each anonymous union must be non-const
9094       if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
9095           !FieldRecord->field_empty()) {
9096         if (Diagnose)
9097           S.Diag(FieldRecord->getLocation(),
9098                  diag::note_deleted_default_ctor_all_const)
9099             << !!ICI << MD->getParent() << /*anonymous union*/1;
9100         return true;
9101       }
9102 
9103       // Don't check the implicit member of the anonymous union type.
9104       // This is technically non-conformant, but sanity demands it.
9105       return false;
9106     }
9107 
9108     if (shouldDeleteForClassSubobject(FieldRecord, FD,
9109                                       FieldType.getCVRQualifiers()))
9110       return true;
9111   }
9112 
9113   return false;
9114 }
9115 
9116 /// C++11 [class.ctor] p5:
9117 ///   A defaulted default constructor for a class X is defined as deleted if
9118 /// X is a union and all of its variant members are of const-qualified type.
shouldDeleteForAllConstMembers()9119 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
9120   // This is a silly definition, because it gives an empty union a deleted
9121   // default constructor. Don't do that.
9122   if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) {
9123     bool AnyFields = false;
9124     for (auto *F : MD->getParent()->fields())
9125       if ((AnyFields = !F->isUnnamedBitfield()))
9126         break;
9127     if (!AnyFields)
9128       return false;
9129     if (Diagnose)
9130       S.Diag(MD->getParent()->getLocation(),
9131              diag::note_deleted_default_ctor_all_const)
9132         << !!ICI << MD->getParent() << /*not anonymous union*/0;
9133     return true;
9134   }
9135   return false;
9136 }
9137 
9138 /// Determine whether a defaulted special member function should be defined as
9139 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
9140 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
ShouldDeleteSpecialMember(CXXMethodDecl * MD,CXXSpecialMember CSM,InheritedConstructorInfo * ICI,bool Diagnose)9141 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
9142                                      InheritedConstructorInfo *ICI,
9143                                      bool Diagnose) {
9144   if (MD->isInvalidDecl())
9145     return false;
9146   CXXRecordDecl *RD = MD->getParent();
9147   assert(!RD->isDependentType() && "do deletion after instantiation");
9148   if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
9149     return false;
9150 
9151   // C++11 [expr.lambda.prim]p19:
9152   //   The closure type associated with a lambda-expression has a
9153   //   deleted (8.4.3) default constructor and a deleted copy
9154   //   assignment operator.
9155   // C++2a adds back these operators if the lambda has no lambda-capture.
9156   if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() &&
9157       (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
9158     if (Diagnose)
9159       Diag(RD->getLocation(), diag::note_lambda_decl);
9160     return true;
9161   }
9162 
9163   // For an anonymous struct or union, the copy and assignment special members
9164   // will never be used, so skip the check. For an anonymous union declared at
9165   // namespace scope, the constructor and destructor are used.
9166   if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
9167       RD->isAnonymousStructOrUnion())
9168     return false;
9169 
9170   // C++11 [class.copy]p7, p18:
9171   //   If the class definition declares a move constructor or move assignment
9172   //   operator, an implicitly declared copy constructor or copy assignment
9173   //   operator is defined as deleted.
9174   if (MD->isImplicit() &&
9175       (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
9176     CXXMethodDecl *UserDeclaredMove = nullptr;
9177 
9178     // In Microsoft mode up to MSVC 2013, a user-declared move only causes the
9179     // deletion of the corresponding copy operation, not both copy operations.
9180     // MSVC 2015 has adopted the standards conforming behavior.
9181     bool DeletesOnlyMatchingCopy =
9182         getLangOpts().MSVCCompat &&
9183         !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
9184 
9185     if (RD->hasUserDeclaredMoveConstructor() &&
9186         (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) {
9187       if (!Diagnose) return true;
9188 
9189       // Find any user-declared move constructor.
9190       for (auto *I : RD->ctors()) {
9191         if (I->isMoveConstructor()) {
9192           UserDeclaredMove = I;
9193           break;
9194         }
9195       }
9196       assert(UserDeclaredMove);
9197     } else if (RD->hasUserDeclaredMoveAssignment() &&
9198                (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) {
9199       if (!Diagnose) return true;
9200 
9201       // Find any user-declared move assignment operator.
9202       for (auto *I : RD->methods()) {
9203         if (I->isMoveAssignmentOperator()) {
9204           UserDeclaredMove = I;
9205           break;
9206         }
9207       }
9208       assert(UserDeclaredMove);
9209     }
9210 
9211     if (UserDeclaredMove) {
9212       Diag(UserDeclaredMove->getLocation(),
9213            diag::note_deleted_copy_user_declared_move)
9214         << (CSM == CXXCopyAssignment) << RD
9215         << UserDeclaredMove->isMoveAssignmentOperator();
9216       return true;
9217     }
9218   }
9219 
9220   // Do access control from the special member function
9221   ContextRAII MethodContext(*this, MD);
9222 
9223   // C++11 [class.dtor]p5:
9224   // -- for a virtual destructor, lookup of the non-array deallocation function
9225   //    results in an ambiguity or in a function that is deleted or inaccessible
9226   if (CSM == CXXDestructor && MD->isVirtual()) {
9227     FunctionDecl *OperatorDelete = nullptr;
9228     DeclarationName Name =
9229       Context.DeclarationNames.getCXXOperatorName(OO_Delete);
9230     if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
9231                                  OperatorDelete, /*Diagnose*/false)) {
9232       if (Diagnose)
9233         Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
9234       return true;
9235     }
9236   }
9237 
9238   SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
9239 
9240   // Per DR1611, do not consider virtual bases of constructors of abstract
9241   // classes, since we are not going to construct them.
9242   // Per DR1658, do not consider virtual bases of destructors of abstract
9243   // classes either.
9244   // Per DR2180, for assignment operators we only assign (and thus only
9245   // consider) direct bases.
9246   if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases
9247                                  : SMI.VisitPotentiallyConstructedBases))
9248     return true;
9249 
9250   if (SMI.shouldDeleteForAllConstMembers())
9251     return true;
9252 
9253   if (getLangOpts().CUDA) {
9254     // We should delete the special member in CUDA mode if target inference
9255     // failed.
9256     // For inherited constructors (non-null ICI), CSM may be passed so that MD
9257     // is treated as certain special member, which may not reflect what special
9258     // member MD really is. However inferCUDATargetForImplicitSpecialMember
9259     // expects CSM to match MD, therefore recalculate CSM.
9260     assert(ICI || CSM == getSpecialMember(MD));
9261     auto RealCSM = CSM;
9262     if (ICI)
9263       RealCSM = getSpecialMember(MD);
9264 
9265     return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD,
9266                                                    SMI.ConstArg, Diagnose);
9267   }
9268 
9269   return false;
9270 }
9271 
DiagnoseDeletedDefaultedFunction(FunctionDecl * FD)9272 void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) {
9273   DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
9274   assert(DFK && "not a defaultable function");
9275   assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted");
9276 
9277   if (DFK.isSpecialMember()) {
9278     ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(),
9279                               nullptr, /*Diagnose=*/true);
9280   } else {
9281     DefaultedComparisonAnalyzer(
9282         *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD,
9283         DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted)
9284         .visit();
9285   }
9286 }
9287 
9288 /// Perform lookup for a special member of the specified kind, and determine
9289 /// whether it is trivial. If the triviality can be determined without the
9290 /// lookup, skip it. This is intended for use when determining whether a
9291 /// special member of a containing object is trivial, and thus does not ever
9292 /// perform overload resolution for default constructors.
9293 ///
9294 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the
9295 /// member that was most likely to be intended to be trivial, if any.
9296 ///
9297 /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to
9298 /// determine whether the special member is trivial.
findTrivialSpecialMember(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,unsigned Quals,bool ConstRHS,Sema::TrivialABIHandling TAH,CXXMethodDecl ** Selected)9299 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
9300                                      Sema::CXXSpecialMember CSM, unsigned Quals,
9301                                      bool ConstRHS,
9302                                      Sema::TrivialABIHandling TAH,
9303                                      CXXMethodDecl **Selected) {
9304   if (Selected)
9305     *Selected = nullptr;
9306 
9307   switch (CSM) {
9308   case Sema::CXXInvalid:
9309     llvm_unreachable("not a special member");
9310 
9311   case Sema::CXXDefaultConstructor:
9312     // C++11 [class.ctor]p5:
9313     //   A default constructor is trivial if:
9314     //    - all the [direct subobjects] have trivial default constructors
9315     //
9316     // Note, no overload resolution is performed in this case.
9317     if (RD->hasTrivialDefaultConstructor())
9318       return true;
9319 
9320     if (Selected) {
9321       // If there's a default constructor which could have been trivial, dig it
9322       // out. Otherwise, if there's any user-provided default constructor, point
9323       // to that as an example of why there's not a trivial one.
9324       CXXConstructorDecl *DefCtor = nullptr;
9325       if (RD->needsImplicitDefaultConstructor())
9326         S.DeclareImplicitDefaultConstructor(RD);
9327       for (auto *CI : RD->ctors()) {
9328         if (!CI->isDefaultConstructor())
9329           continue;
9330         DefCtor = CI;
9331         if (!DefCtor->isUserProvided())
9332           break;
9333       }
9334 
9335       *Selected = DefCtor;
9336     }
9337 
9338     return false;
9339 
9340   case Sema::CXXDestructor:
9341     // C++11 [class.dtor]p5:
9342     //   A destructor is trivial if:
9343     //    - all the direct [subobjects] have trivial destructors
9344     if (RD->hasTrivialDestructor() ||
9345         (TAH == Sema::TAH_ConsiderTrivialABI &&
9346          RD->hasTrivialDestructorForCall()))
9347       return true;
9348 
9349     if (Selected) {
9350       if (RD->needsImplicitDestructor())
9351         S.DeclareImplicitDestructor(RD);
9352       *Selected = RD->getDestructor();
9353     }
9354 
9355     return false;
9356 
9357   case Sema::CXXCopyConstructor:
9358     // C++11 [class.copy]p12:
9359     //   A copy constructor is trivial if:
9360     //    - the constructor selected to copy each direct [subobject] is trivial
9361     if (RD->hasTrivialCopyConstructor() ||
9362         (TAH == Sema::TAH_ConsiderTrivialABI &&
9363          RD->hasTrivialCopyConstructorForCall())) {
9364       if (Quals == Qualifiers::Const)
9365         // We must either select the trivial copy constructor or reach an
9366         // ambiguity; no need to actually perform overload resolution.
9367         return true;
9368     } else if (!Selected) {
9369       return false;
9370     }
9371     // In C++98, we are not supposed to perform overload resolution here, but we
9372     // treat that as a language defect, as suggested on cxx-abi-dev, to treat
9373     // cases like B as having a non-trivial copy constructor:
9374     //   struct A { template<typename T> A(T&); };
9375     //   struct B { mutable A a; };
9376     goto NeedOverloadResolution;
9377 
9378   case Sema::CXXCopyAssignment:
9379     // C++11 [class.copy]p25:
9380     //   A copy assignment operator is trivial if:
9381     //    - the assignment operator selected to copy each direct [subobject] is
9382     //      trivial
9383     if (RD->hasTrivialCopyAssignment()) {
9384       if (Quals == Qualifiers::Const)
9385         return true;
9386     } else if (!Selected) {
9387       return false;
9388     }
9389     // In C++98, we are not supposed to perform overload resolution here, but we
9390     // treat that as a language defect.
9391     goto NeedOverloadResolution;
9392 
9393   case Sema::CXXMoveConstructor:
9394   case Sema::CXXMoveAssignment:
9395   NeedOverloadResolution:
9396     Sema::SpecialMemberOverloadResult SMOR =
9397         lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
9398 
9399     // The standard doesn't describe how to behave if the lookup is ambiguous.
9400     // We treat it as not making the member non-trivial, just like the standard
9401     // mandates for the default constructor. This should rarely matter, because
9402     // the member will also be deleted.
9403     if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
9404       return true;
9405 
9406     if (!SMOR.getMethod()) {
9407       assert(SMOR.getKind() ==
9408              Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
9409       return false;
9410     }
9411 
9412     // We deliberately don't check if we found a deleted special member. We're
9413     // not supposed to!
9414     if (Selected)
9415       *Selected = SMOR.getMethod();
9416 
9417     if (TAH == Sema::TAH_ConsiderTrivialABI &&
9418         (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor))
9419       return SMOR.getMethod()->isTrivialForCall();
9420     return SMOR.getMethod()->isTrivial();
9421   }
9422 
9423   llvm_unreachable("unknown special method kind");
9424 }
9425 
findUserDeclaredCtor(CXXRecordDecl * RD)9426 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
9427   for (auto *CI : RD->ctors())
9428     if (!CI->isImplicit())
9429       return CI;
9430 
9431   // Look for constructor templates.
9432   typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
9433   for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
9434     if (CXXConstructorDecl *CD =
9435           dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
9436       return CD;
9437   }
9438 
9439   return nullptr;
9440 }
9441 
9442 /// The kind of subobject we are checking for triviality. The values of this
9443 /// enumeration are used in diagnostics.
9444 enum TrivialSubobjectKind {
9445   /// The subobject is a base class.
9446   TSK_BaseClass,
9447   /// The subobject is a non-static data member.
9448   TSK_Field,
9449   /// The object is actually the complete object.
9450   TSK_CompleteObject
9451 };
9452 
9453 /// Check whether the special member selected for a given type would be trivial.
checkTrivialSubobjectCall(Sema & S,SourceLocation SubobjLoc,QualType SubType,bool ConstRHS,Sema::CXXSpecialMember CSM,TrivialSubobjectKind Kind,Sema::TrivialABIHandling TAH,bool Diagnose)9454 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
9455                                       QualType SubType, bool ConstRHS,
9456                                       Sema::CXXSpecialMember CSM,
9457                                       TrivialSubobjectKind Kind,
9458                                       Sema::TrivialABIHandling TAH, bool Diagnose) {
9459   CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
9460   if (!SubRD)
9461     return true;
9462 
9463   CXXMethodDecl *Selected;
9464   if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
9465                                ConstRHS, TAH, Diagnose ? &Selected : nullptr))
9466     return true;
9467 
9468   if (Diagnose) {
9469     if (ConstRHS)
9470       SubType.addConst();
9471 
9472     if (!Selected && CSM == Sema::CXXDefaultConstructor) {
9473       S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
9474         << Kind << SubType.getUnqualifiedType();
9475       if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
9476         S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
9477     } else if (!Selected)
9478       S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
9479         << Kind << SubType.getUnqualifiedType() << CSM << SubType;
9480     else if (Selected->isUserProvided()) {
9481       if (Kind == TSK_CompleteObject)
9482         S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
9483           << Kind << SubType.getUnqualifiedType() << CSM;
9484       else {
9485         S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
9486           << Kind << SubType.getUnqualifiedType() << CSM;
9487         S.Diag(Selected->getLocation(), diag::note_declared_at);
9488       }
9489     } else {
9490       if (Kind != TSK_CompleteObject)
9491         S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
9492           << Kind << SubType.getUnqualifiedType() << CSM;
9493 
9494       // Explain why the defaulted or deleted special member isn't trivial.
9495       S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI,
9496                                Diagnose);
9497     }
9498   }
9499 
9500   return false;
9501 }
9502 
9503 /// Check whether the members of a class type allow a special member to be
9504 /// trivial.
checkTrivialClassMembers(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,bool ConstArg,Sema::TrivialABIHandling TAH,bool Diagnose)9505 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
9506                                      Sema::CXXSpecialMember CSM,
9507                                      bool ConstArg,
9508                                      Sema::TrivialABIHandling TAH,
9509                                      bool Diagnose) {
9510   for (const auto *FI : RD->fields()) {
9511     if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
9512       continue;
9513 
9514     QualType FieldType = S.Context.getBaseElementType(FI->getType());
9515 
9516     // Pretend anonymous struct or union members are members of this class.
9517     if (FI->isAnonymousStructOrUnion()) {
9518       if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
9519                                     CSM, ConstArg, TAH, Diagnose))
9520         return false;
9521       continue;
9522     }
9523 
9524     // C++11 [class.ctor]p5:
9525     //   A default constructor is trivial if [...]
9526     //    -- no non-static data member of its class has a
9527     //       brace-or-equal-initializer
9528     if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
9529       if (Diagnose)
9530         S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init)
9531             << FI;
9532       return false;
9533     }
9534 
9535     // Objective C ARC 4.3.5:
9536     //   [...] nontrivally ownership-qualified types are [...] not trivially
9537     //   default constructible, copy constructible, move constructible, copy
9538     //   assignable, move assignable, or destructible [...]
9539     if (FieldType.hasNonTrivialObjCLifetime()) {
9540       if (Diagnose)
9541         S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
9542           << RD << FieldType.getObjCLifetime();
9543       return false;
9544     }
9545 
9546     bool ConstRHS = ConstArg && !FI->isMutable();
9547     if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
9548                                    CSM, TSK_Field, TAH, Diagnose))
9549       return false;
9550   }
9551 
9552   return true;
9553 }
9554 
9555 /// Diagnose why the specified class does not have a trivial special member of
9556 /// the given kind.
DiagnoseNontrivial(const CXXRecordDecl * RD,CXXSpecialMember CSM)9557 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
9558   QualType Ty = Context.getRecordType(RD);
9559 
9560   bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
9561   checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
9562                             TSK_CompleteObject, TAH_IgnoreTrivialABI,
9563                             /*Diagnose*/true);
9564 }
9565 
9566 /// Determine whether a defaulted or deleted special member function is trivial,
9567 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
9568 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
SpecialMemberIsTrivial(CXXMethodDecl * MD,CXXSpecialMember CSM,TrivialABIHandling TAH,bool Diagnose)9569 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
9570                                   TrivialABIHandling TAH, bool Diagnose) {
9571   assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
9572 
9573   CXXRecordDecl *RD = MD->getParent();
9574 
9575   bool ConstArg = false;
9576 
9577   // C++11 [class.copy]p12, p25: [DR1593]
9578   //   A [special member] is trivial if [...] its parameter-type-list is
9579   //   equivalent to the parameter-type-list of an implicit declaration [...]
9580   switch (CSM) {
9581   case CXXDefaultConstructor:
9582   case CXXDestructor:
9583     // Trivial default constructors and destructors cannot have parameters.
9584     break;
9585 
9586   case CXXCopyConstructor:
9587   case CXXCopyAssignment: {
9588     // Trivial copy operations always have const, non-volatile parameter types.
9589     ConstArg = true;
9590     const ParmVarDecl *Param0 = MD->getParamDecl(0);
9591     const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
9592     if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
9593       if (Diagnose)
9594         Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
9595           << Param0->getSourceRange() << Param0->getType()
9596           << Context.getLValueReferenceType(
9597                Context.getRecordType(RD).withConst());
9598       return false;
9599     }
9600     break;
9601   }
9602 
9603   case CXXMoveConstructor:
9604   case CXXMoveAssignment: {
9605     // Trivial move operations always have non-cv-qualified parameters.
9606     const ParmVarDecl *Param0 = MD->getParamDecl(0);
9607     const RValueReferenceType *RT =
9608       Param0->getType()->getAs<RValueReferenceType>();
9609     if (!RT || RT->getPointeeType().getCVRQualifiers()) {
9610       if (Diagnose)
9611         Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
9612           << Param0->getSourceRange() << Param0->getType()
9613           << Context.getRValueReferenceType(Context.getRecordType(RD));
9614       return false;
9615     }
9616     break;
9617   }
9618 
9619   case CXXInvalid:
9620     llvm_unreachable("not a special member");
9621   }
9622 
9623   if (MD->getMinRequiredArguments() < MD->getNumParams()) {
9624     if (Diagnose)
9625       Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
9626            diag::note_nontrivial_default_arg)
9627         << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
9628     return false;
9629   }
9630   if (MD->isVariadic()) {
9631     if (Diagnose)
9632       Diag(MD->getLocation(), diag::note_nontrivial_variadic);
9633     return false;
9634   }
9635 
9636   // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
9637   //   A copy/move [constructor or assignment operator] is trivial if
9638   //    -- the [member] selected to copy/move each direct base class subobject
9639   //       is trivial
9640   //
9641   // C++11 [class.copy]p12, C++11 [class.copy]p25:
9642   //   A [default constructor or destructor] is trivial if
9643   //    -- all the direct base classes have trivial [default constructors or
9644   //       destructors]
9645   for (const auto &BI : RD->bases())
9646     if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(),
9647                                    ConstArg, CSM, TSK_BaseClass, TAH, Diagnose))
9648       return false;
9649 
9650   // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
9651   //   A copy/move [constructor or assignment operator] for a class X is
9652   //   trivial if
9653   //    -- for each non-static data member of X that is of class type (or array
9654   //       thereof), the constructor selected to copy/move that member is
9655   //       trivial
9656   //
9657   // C++11 [class.copy]p12, C++11 [class.copy]p25:
9658   //   A [default constructor or destructor] is trivial if
9659   //    -- for all of the non-static data members of its class that are of class
9660   //       type (or array thereof), each such class has a trivial [default
9661   //       constructor or destructor]
9662   if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose))
9663     return false;
9664 
9665   // C++11 [class.dtor]p5:
9666   //   A destructor is trivial if [...]
9667   //    -- the destructor is not virtual
9668   if (CSM == CXXDestructor && MD->isVirtual()) {
9669     if (Diagnose)
9670       Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
9671     return false;
9672   }
9673 
9674   // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
9675   //   A [special member] for class X is trivial if [...]
9676   //    -- class X has no virtual functions and no virtual base classes
9677   if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
9678     if (!Diagnose)
9679       return false;
9680 
9681     if (RD->getNumVBases()) {
9682       // Check for virtual bases. We already know that the corresponding
9683       // member in all bases is trivial, so vbases must all be direct.
9684       CXXBaseSpecifier &BS = *RD->vbases_begin();
9685       assert(BS.isVirtual());
9686       Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1;
9687       return false;
9688     }
9689 
9690     // Must have a virtual method.
9691     for (const auto *MI : RD->methods()) {
9692       if (MI->isVirtual()) {
9693         SourceLocation MLoc = MI->getBeginLoc();
9694         Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
9695         return false;
9696       }
9697     }
9698 
9699     llvm_unreachable("dynamic class with no vbases and no virtual functions");
9700   }
9701 
9702   // Looks like it's trivial!
9703   return true;
9704 }
9705 
9706 namespace {
9707 struct FindHiddenVirtualMethod {
9708   Sema *S;
9709   CXXMethodDecl *Method;
9710   llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
9711   SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
9712 
9713 private:
9714   /// Check whether any most overridden method from MD in Methods
CheckMostOverridenMethods__anonb2a824812711::FindHiddenVirtualMethod9715   static bool CheckMostOverridenMethods(
9716       const CXXMethodDecl *MD,
9717       const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
9718     if (MD->size_overridden_methods() == 0)
9719       return Methods.count(MD->getCanonicalDecl());
9720     for (const CXXMethodDecl *O : MD->overridden_methods())
9721       if (CheckMostOverridenMethods(O, Methods))
9722         return true;
9723     return false;
9724   }
9725 
9726 public:
9727   /// Member lookup function that determines whether a given C++
9728   /// method overloads virtual methods in a base class without overriding any,
9729   /// to be used with CXXRecordDecl::lookupInBases().
operator ()__anonb2a824812711::FindHiddenVirtualMethod9730   bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
9731     RecordDecl *BaseRecord =
9732         Specifier->getType()->castAs<RecordType>()->getDecl();
9733 
9734     DeclarationName Name = Method->getDeclName();
9735     assert(Name.getNameKind() == DeclarationName::Identifier);
9736 
9737     bool foundSameNameMethod = false;
9738     SmallVector<CXXMethodDecl *, 8> overloadedMethods;
9739     for (Path.Decls = BaseRecord->lookup(Name).begin();
9740          Path.Decls != DeclContext::lookup_iterator(); ++Path.Decls) {
9741       NamedDecl *D = *Path.Decls;
9742       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
9743         MD = MD->getCanonicalDecl();
9744         foundSameNameMethod = true;
9745         // Interested only in hidden virtual methods.
9746         if (!MD->isVirtual())
9747           continue;
9748         // If the method we are checking overrides a method from its base
9749         // don't warn about the other overloaded methods. Clang deviates from
9750         // GCC by only diagnosing overloads of inherited virtual functions that
9751         // do not override any other virtual functions in the base. GCC's
9752         // -Woverloaded-virtual diagnoses any derived function hiding a virtual
9753         // function from a base class. These cases may be better served by a
9754         // warning (not specific to virtual functions) on call sites when the
9755         // call would select a different function from the base class, were it
9756         // visible.
9757         // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
9758         if (!S->IsOverload(Method, MD, false))
9759           return true;
9760         // Collect the overload only if its hidden.
9761         if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
9762           overloadedMethods.push_back(MD);
9763       }
9764     }
9765 
9766     if (foundSameNameMethod)
9767       OverloadedMethods.append(overloadedMethods.begin(),
9768                                overloadedMethods.end());
9769     return foundSameNameMethod;
9770   }
9771 };
9772 } // end anonymous namespace
9773 
9774 /// Add the most overriden methods from MD to Methods
AddMostOverridenMethods(const CXXMethodDecl * MD,llvm::SmallPtrSetImpl<const CXXMethodDecl * > & Methods)9775 static void AddMostOverridenMethods(const CXXMethodDecl *MD,
9776                         llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
9777   if (MD->size_overridden_methods() == 0)
9778     Methods.insert(MD->getCanonicalDecl());
9779   else
9780     for (const CXXMethodDecl *O : MD->overridden_methods())
9781       AddMostOverridenMethods(O, Methods);
9782 }
9783 
9784 /// Check if a method overloads virtual methods in a base class without
9785 /// overriding any.
FindHiddenVirtualMethods(CXXMethodDecl * MD,SmallVectorImpl<CXXMethodDecl * > & OverloadedMethods)9786 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
9787                           SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
9788   if (!MD->getDeclName().isIdentifier())
9789     return;
9790 
9791   CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
9792                      /*bool RecordPaths=*/false,
9793                      /*bool DetectVirtual=*/false);
9794   FindHiddenVirtualMethod FHVM;
9795   FHVM.Method = MD;
9796   FHVM.S = this;
9797 
9798   // Keep the base methods that were overridden or introduced in the subclass
9799   // by 'using' in a set. A base method not in this set is hidden.
9800   CXXRecordDecl *DC = MD->getParent();
9801   DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
9802   for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
9803     NamedDecl *ND = *I;
9804     if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
9805       ND = shad->getTargetDecl();
9806     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
9807       AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
9808   }
9809 
9810   if (DC->lookupInBases(FHVM, Paths))
9811     OverloadedMethods = FHVM.OverloadedMethods;
9812 }
9813 
NoteHiddenVirtualMethods(CXXMethodDecl * MD,SmallVectorImpl<CXXMethodDecl * > & OverloadedMethods)9814 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
9815                           SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
9816   for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
9817     CXXMethodDecl *overloadedMD = OverloadedMethods[i];
9818     PartialDiagnostic PD = PDiag(
9819          diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
9820     HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
9821     Diag(overloadedMD->getLocation(), PD);
9822   }
9823 }
9824 
9825 /// Diagnose methods which overload virtual methods in a base class
9826 /// without overriding any.
DiagnoseHiddenVirtualMethods(CXXMethodDecl * MD)9827 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
9828   if (MD->isInvalidDecl())
9829     return;
9830 
9831   if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
9832     return;
9833 
9834   SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
9835   FindHiddenVirtualMethods(MD, OverloadedMethods);
9836   if (!OverloadedMethods.empty()) {
9837     Diag(MD->getLocation(), diag::warn_overloaded_virtual)
9838       << MD << (OverloadedMethods.size() > 1);
9839 
9840     NoteHiddenVirtualMethods(MD, OverloadedMethods);
9841   }
9842 }
9843 
checkIllFormedTrivialABIStruct(CXXRecordDecl & RD)9844 void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) {
9845   auto PrintDiagAndRemoveAttr = [&](unsigned N) {
9846     // No diagnostics if this is a template instantiation.
9847     if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) {
9848       Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
9849            diag::ext_cannot_use_trivial_abi) << &RD;
9850       Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
9851            diag::note_cannot_use_trivial_abi_reason) << &RD << N;
9852     }
9853     RD.dropAttr<TrivialABIAttr>();
9854   };
9855 
9856   // Ill-formed if the copy and move constructors are deleted.
9857   auto HasNonDeletedCopyOrMoveConstructor = [&]() {
9858     // If the type is dependent, then assume it might have
9859     // implicit copy or move ctor because we won't know yet at this point.
9860     if (RD.isDependentType())
9861       return true;
9862     if (RD.needsImplicitCopyConstructor() &&
9863         !RD.defaultedCopyConstructorIsDeleted())
9864       return true;
9865     if (RD.needsImplicitMoveConstructor() &&
9866         !RD.defaultedMoveConstructorIsDeleted())
9867       return true;
9868     for (const CXXConstructorDecl *CD : RD.ctors())
9869       if (CD->isCopyOrMoveConstructor() && !CD->isDeleted())
9870         return true;
9871     return false;
9872   };
9873 
9874   if (!HasNonDeletedCopyOrMoveConstructor()) {
9875     PrintDiagAndRemoveAttr(0);
9876     return;
9877   }
9878 
9879   // Ill-formed if the struct has virtual functions.
9880   if (RD.isPolymorphic()) {
9881     PrintDiagAndRemoveAttr(1);
9882     return;
9883   }
9884 
9885   for (const auto &B : RD.bases()) {
9886     // Ill-formed if the base class is non-trivial for the purpose of calls or a
9887     // virtual base.
9888     if (!B.getType()->isDependentType() &&
9889         !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) {
9890       PrintDiagAndRemoveAttr(2);
9891       return;
9892     }
9893 
9894     if (B.isVirtual()) {
9895       PrintDiagAndRemoveAttr(3);
9896       return;
9897     }
9898   }
9899 
9900   for (const auto *FD : RD.fields()) {
9901     // Ill-formed if the field is an ObjectiveC pointer or of a type that is
9902     // non-trivial for the purpose of calls.
9903     QualType FT = FD->getType();
9904     if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) {
9905       PrintDiagAndRemoveAttr(4);
9906       return;
9907     }
9908 
9909     if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>())
9910       if (!RT->isDependentType() &&
9911           !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) {
9912         PrintDiagAndRemoveAttr(5);
9913         return;
9914       }
9915   }
9916 }
9917 
ActOnFinishCXXMemberSpecification(Scope * S,SourceLocation RLoc,Decl * TagDecl,SourceLocation LBrac,SourceLocation RBrac,const ParsedAttributesView & AttrList)9918 void Sema::ActOnFinishCXXMemberSpecification(
9919     Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac,
9920     SourceLocation RBrac, const ParsedAttributesView &AttrList) {
9921   if (!TagDecl)
9922     return;
9923 
9924   AdjustDeclIfTemplate(TagDecl);
9925 
9926   for (const ParsedAttr &AL : AttrList) {
9927     if (AL.getKind() != ParsedAttr::AT_Visibility)
9928       continue;
9929     AL.setInvalid();
9930     Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL;
9931   }
9932 
9933   ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
9934               // strict aliasing violation!
9935               reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
9936               FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
9937 
9938   CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl));
9939 }
9940 
9941 /// Find the equality comparison functions that should be implicitly declared
9942 /// in a given class definition, per C++2a [class.compare.default]p3.
findImplicitlyDeclaredEqualityComparisons(ASTContext & Ctx,CXXRecordDecl * RD,llvm::SmallVectorImpl<FunctionDecl * > & Spaceships)9943 static void findImplicitlyDeclaredEqualityComparisons(
9944     ASTContext &Ctx, CXXRecordDecl *RD,
9945     llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) {
9946   DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual);
9947   if (!RD->lookup(EqEq).empty())
9948     // Member operator== explicitly declared: no implicit operator==s.
9949     return;
9950 
9951   // Traverse friends looking for an '==' or a '<=>'.
9952   for (FriendDecl *Friend : RD->friends()) {
9953     FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl());
9954     if (!FD) continue;
9955 
9956     if (FD->getOverloadedOperator() == OO_EqualEqual) {
9957       // Friend operator== explicitly declared: no implicit operator==s.
9958       Spaceships.clear();
9959       return;
9960     }
9961 
9962     if (FD->getOverloadedOperator() == OO_Spaceship &&
9963         FD->isExplicitlyDefaulted())
9964       Spaceships.push_back(FD);
9965   }
9966 
9967   // Look for members named 'operator<=>'.
9968   DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship);
9969   for (NamedDecl *ND : RD->lookup(Cmp)) {
9970     // Note that we could find a non-function here (either a function template
9971     // or a using-declaration). Neither case results in an implicit
9972     // 'operator=='.
9973     if (auto *FD = dyn_cast<FunctionDecl>(ND))
9974       if (FD->isExplicitlyDefaulted())
9975         Spaceships.push_back(FD);
9976   }
9977 }
9978 
9979 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
9980 /// special functions, such as the default constructor, copy
9981 /// constructor, or destructor, to the given C++ class (C++
9982 /// [special]p1).  This routine can only be executed just before the
9983 /// definition of the class is complete.
AddImplicitlyDeclaredMembersToClass(CXXRecordDecl * ClassDecl)9984 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
9985   // Don't add implicit special members to templated classes.
9986   // FIXME: This means unqualified lookups for 'operator=' within a class
9987   // template don't work properly.
9988   if (!ClassDecl->isDependentType()) {
9989     if (ClassDecl->needsImplicitDefaultConstructor()) {
9990       ++getASTContext().NumImplicitDefaultConstructors;
9991 
9992       if (ClassDecl->hasInheritedConstructor())
9993         DeclareImplicitDefaultConstructor(ClassDecl);
9994     }
9995 
9996     if (ClassDecl->needsImplicitCopyConstructor()) {
9997       ++getASTContext().NumImplicitCopyConstructors;
9998 
9999       // If the properties or semantics of the copy constructor couldn't be
10000       // determined while the class was being declared, force a declaration
10001       // of it now.
10002       if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
10003           ClassDecl->hasInheritedConstructor())
10004         DeclareImplicitCopyConstructor(ClassDecl);
10005       // For the MS ABI we need to know whether the copy ctor is deleted. A
10006       // prerequisite for deleting the implicit copy ctor is that the class has
10007       // a move ctor or move assignment that is either user-declared or whose
10008       // semantics are inherited from a subobject. FIXME: We should provide a
10009       // more direct way for CodeGen to ask whether the constructor was deleted.
10010       else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10011                (ClassDecl->hasUserDeclaredMoveConstructor() ||
10012                 ClassDecl->needsOverloadResolutionForMoveConstructor() ||
10013                 ClassDecl->hasUserDeclaredMoveAssignment() ||
10014                 ClassDecl->needsOverloadResolutionForMoveAssignment()))
10015         DeclareImplicitCopyConstructor(ClassDecl);
10016     }
10017 
10018     if (getLangOpts().CPlusPlus11 &&
10019         ClassDecl->needsImplicitMoveConstructor()) {
10020       ++getASTContext().NumImplicitMoveConstructors;
10021 
10022       if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
10023           ClassDecl->hasInheritedConstructor())
10024         DeclareImplicitMoveConstructor(ClassDecl);
10025     }
10026 
10027     if (ClassDecl->needsImplicitCopyAssignment()) {
10028       ++getASTContext().NumImplicitCopyAssignmentOperators;
10029 
10030       // If we have a dynamic class, then the copy assignment operator may be
10031       // virtual, so we have to declare it immediately. This ensures that, e.g.,
10032       // it shows up in the right place in the vtable and that we diagnose
10033       // problems with the implicit exception specification.
10034       if (ClassDecl->isDynamicClass() ||
10035           ClassDecl->needsOverloadResolutionForCopyAssignment() ||
10036           ClassDecl->hasInheritedAssignment())
10037         DeclareImplicitCopyAssignment(ClassDecl);
10038     }
10039 
10040     if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
10041       ++getASTContext().NumImplicitMoveAssignmentOperators;
10042 
10043       // Likewise for the move assignment operator.
10044       if (ClassDecl->isDynamicClass() ||
10045           ClassDecl->needsOverloadResolutionForMoveAssignment() ||
10046           ClassDecl->hasInheritedAssignment())
10047         DeclareImplicitMoveAssignment(ClassDecl);
10048     }
10049 
10050     if (ClassDecl->needsImplicitDestructor()) {
10051       ++getASTContext().NumImplicitDestructors;
10052 
10053       // If we have a dynamic class, then the destructor may be virtual, so we
10054       // have to declare the destructor immediately. This ensures that, e.g., it
10055       // shows up in the right place in the vtable and that we diagnose problems
10056       // with the implicit exception specification.
10057       if (ClassDecl->isDynamicClass() ||
10058           ClassDecl->needsOverloadResolutionForDestructor())
10059         DeclareImplicitDestructor(ClassDecl);
10060     }
10061   }
10062 
10063   // C++2a [class.compare.default]p3:
10064   //   If the member-specification does not explicitly declare any member or
10065   //   friend named operator==, an == operator function is declared implicitly
10066   //   for each defaulted three-way comparison operator function defined in
10067   //   the member-specification
10068   // FIXME: Consider doing this lazily.
10069   // We do this during the initial parse for a class template, not during
10070   // instantiation, so that we can handle unqualified lookups for 'operator=='
10071   // when parsing the template.
10072   if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) {
10073     llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships;
10074     findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl,
10075                                               DefaultedSpaceships);
10076     for (auto *FD : DefaultedSpaceships)
10077       DeclareImplicitEqualityComparison(ClassDecl, FD);
10078   }
10079 }
10080 
10081 unsigned
ActOnReenterTemplateScope(Decl * D,llvm::function_ref<Scope * ()> EnterScope)10082 Sema::ActOnReenterTemplateScope(Decl *D,
10083                                 llvm::function_ref<Scope *()> EnterScope) {
10084   if (!D)
10085     return 0;
10086   AdjustDeclIfTemplate(D);
10087 
10088   // In order to get name lookup right, reenter template scopes in order from
10089   // outermost to innermost.
10090   SmallVector<TemplateParameterList *, 4> ParameterLists;
10091   DeclContext *LookupDC = dyn_cast<DeclContext>(D);
10092 
10093   if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
10094     for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
10095       ParameterLists.push_back(DD->getTemplateParameterList(i));
10096 
10097     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10098       if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
10099         ParameterLists.push_back(FTD->getTemplateParameters());
10100     } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
10101       LookupDC = VD->getDeclContext();
10102 
10103       if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate())
10104         ParameterLists.push_back(VTD->getTemplateParameters());
10105       else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(D))
10106         ParameterLists.push_back(PSD->getTemplateParameters());
10107     }
10108   } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
10109     for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
10110       ParameterLists.push_back(TD->getTemplateParameterList(i));
10111 
10112     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
10113       if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
10114         ParameterLists.push_back(CTD->getTemplateParameters());
10115       else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
10116         ParameterLists.push_back(PSD->getTemplateParameters());
10117     }
10118   }
10119   // FIXME: Alias declarations and concepts.
10120 
10121   unsigned Count = 0;
10122   Scope *InnermostTemplateScope = nullptr;
10123   for (TemplateParameterList *Params : ParameterLists) {
10124     // Ignore explicit specializations; they don't contribute to the template
10125     // depth.
10126     if (Params->size() == 0)
10127       continue;
10128 
10129     InnermostTemplateScope = EnterScope();
10130     for (NamedDecl *Param : *Params) {
10131       if (Param->getDeclName()) {
10132         InnermostTemplateScope->AddDecl(Param);
10133         IdResolver.AddDecl(Param);
10134       }
10135     }
10136     ++Count;
10137   }
10138 
10139   // Associate the new template scopes with the corresponding entities.
10140   if (InnermostTemplateScope) {
10141     assert(LookupDC && "no enclosing DeclContext for template lookup");
10142     EnterTemplatedContext(InnermostTemplateScope, LookupDC);
10143   }
10144 
10145   return Count;
10146 }
10147 
ActOnStartDelayedMemberDeclarations(Scope * S,Decl * RecordD)10148 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
10149   if (!RecordD) return;
10150   AdjustDeclIfTemplate(RecordD);
10151   CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
10152   PushDeclContext(S, Record);
10153 }
10154 
ActOnFinishDelayedMemberDeclarations(Scope * S,Decl * RecordD)10155 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
10156   if (!RecordD) return;
10157   PopDeclContext();
10158 }
10159 
10160 /// This is used to implement the constant expression evaluation part of the
10161 /// attribute enable_if extension. There is nothing in standard C++ which would
10162 /// require reentering parameters.
ActOnReenterCXXMethodParameter(Scope * S,ParmVarDecl * Param)10163 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
10164   if (!Param)
10165     return;
10166 
10167   S->AddDecl(Param);
10168   if (Param->getDeclName())
10169     IdResolver.AddDecl(Param);
10170 }
10171 
10172 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
10173 /// parsing a top-level (non-nested) C++ class, and we are now
10174 /// parsing those parts of the given Method declaration that could
10175 /// not be parsed earlier (C++ [class.mem]p2), such as default
10176 /// arguments. This action should enter the scope of the given
10177 /// Method declaration as if we had just parsed the qualified method
10178 /// name. However, it should not bring the parameters into scope;
10179 /// that will be performed by ActOnDelayedCXXMethodParameter.
ActOnStartDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)10180 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
10181 }
10182 
10183 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
10184 /// C++ method declaration. We're (re-)introducing the given
10185 /// function parameter into scope for use in parsing later parts of
10186 /// the method declaration. For example, we could see an
10187 /// ActOnParamDefaultArgument event for this parameter.
ActOnDelayedCXXMethodParameter(Scope * S,Decl * ParamD)10188 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
10189   if (!ParamD)
10190     return;
10191 
10192   ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
10193 
10194   S->AddDecl(Param);
10195   if (Param->getDeclName())
10196     IdResolver.AddDecl(Param);
10197 }
10198 
10199 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
10200 /// processing the delayed method declaration for Method. The method
10201 /// declaration is now considered finished. There may be a separate
10202 /// ActOnStartOfFunctionDef action later (not necessarily
10203 /// immediately!) for this method, if it was also defined inside the
10204 /// class body.
ActOnFinishDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)10205 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
10206   if (!MethodD)
10207     return;
10208 
10209   AdjustDeclIfTemplate(MethodD);
10210 
10211   FunctionDecl *Method = cast<FunctionDecl>(MethodD);
10212 
10213   // Now that we have our default arguments, check the constructor
10214   // again. It could produce additional diagnostics or affect whether
10215   // the class has implicitly-declared destructors, among other
10216   // things.
10217   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
10218     CheckConstructor(Constructor);
10219 
10220   // Check the default arguments, which we may have added.
10221   if (!Method->isInvalidDecl())
10222     CheckCXXDefaultArguments(Method);
10223 }
10224 
10225 // Emit the given diagnostic for each non-address-space qualifier.
10226 // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator.
checkMethodTypeQualifiers(Sema & S,Declarator & D,unsigned DiagID)10227 static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) {
10228   const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10229   if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) {
10230     bool DiagOccured = false;
10231     FTI.MethodQualifiers->forEachQualifier(
10232         [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName,
10233                                    SourceLocation SL) {
10234           // This diagnostic should be emitted on any qualifier except an addr
10235           // space qualifier. However, forEachQualifier currently doesn't visit
10236           // addr space qualifiers, so there's no way to write this condition
10237           // right now; we just diagnose on everything.
10238           S.Diag(SL, DiagID) << QualName << SourceRange(SL);
10239           DiagOccured = true;
10240         });
10241     if (DiagOccured)
10242       D.setInvalidType();
10243   }
10244 }
10245 
10246 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
10247 /// the well-formedness of the constructor declarator @p D with type @p
10248 /// R. If there are any errors in the declarator, this routine will
10249 /// emit diagnostics and set the invalid bit to true.  In any case, the type
10250 /// will be updated to reflect a well-formed type for the constructor and
10251 /// returned.
CheckConstructorDeclarator(Declarator & D,QualType R,StorageClass & SC)10252 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
10253                                           StorageClass &SC) {
10254   bool isVirtual = D.getDeclSpec().isVirtualSpecified();
10255 
10256   // C++ [class.ctor]p3:
10257   //   A constructor shall not be virtual (10.3) or static (9.4). A
10258   //   constructor can be invoked for a const, volatile or const
10259   //   volatile object. A constructor shall not be declared const,
10260   //   volatile, or const volatile (9.3.2).
10261   if (isVirtual) {
10262     if (!D.isInvalidType())
10263       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
10264         << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
10265         << SourceRange(D.getIdentifierLoc());
10266     D.setInvalidType();
10267   }
10268   if (SC == SC_Static) {
10269     if (!D.isInvalidType())
10270       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
10271         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10272         << SourceRange(D.getIdentifierLoc());
10273     D.setInvalidType();
10274     SC = SC_None;
10275   }
10276 
10277   if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
10278     diagnoseIgnoredQualifiers(
10279         diag::err_constructor_return_type, TypeQuals, SourceLocation(),
10280         D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
10281         D.getDeclSpec().getRestrictSpecLoc(),
10282         D.getDeclSpec().getAtomicSpecLoc());
10283     D.setInvalidType();
10284   }
10285 
10286   checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor);
10287 
10288   // C++0x [class.ctor]p4:
10289   //   A constructor shall not be declared with a ref-qualifier.
10290   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10291   if (FTI.hasRefQualifier()) {
10292     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
10293       << FTI.RefQualifierIsLValueRef
10294       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
10295     D.setInvalidType();
10296   }
10297 
10298   // Rebuild the function type "R" without any type qualifiers (in
10299   // case any of the errors above fired) and with "void" as the
10300   // return type, since constructors don't have return types.
10301   const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
10302   if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
10303     return R;
10304 
10305   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
10306   EPI.TypeQuals = Qualifiers();
10307   EPI.RefQualifier = RQ_None;
10308 
10309   return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
10310 }
10311 
10312 /// CheckConstructor - Checks a fully-formed constructor for
10313 /// well-formedness, issuing any diagnostics required. Returns true if
10314 /// the constructor declarator is invalid.
CheckConstructor(CXXConstructorDecl * Constructor)10315 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
10316   CXXRecordDecl *ClassDecl
10317     = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
10318   if (!ClassDecl)
10319     return Constructor->setInvalidDecl();
10320 
10321   // C++ [class.copy]p3:
10322   //   A declaration of a constructor for a class X is ill-formed if
10323   //   its first parameter is of type (optionally cv-qualified) X and
10324   //   either there are no other parameters or else all other
10325   //   parameters have default arguments.
10326   if (!Constructor->isInvalidDecl() &&
10327       Constructor->hasOneParamOrDefaultArgs() &&
10328       Constructor->getTemplateSpecializationKind() !=
10329           TSK_ImplicitInstantiation) {
10330     QualType ParamType = Constructor->getParamDecl(0)->getType();
10331     QualType ClassTy = Context.getTagDeclType(ClassDecl);
10332     if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
10333       SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
10334       const char *ConstRef
10335         = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
10336                                                         : " const &";
10337       Diag(ParamLoc, diag::err_constructor_byvalue_arg)
10338         << FixItHint::CreateInsertion(ParamLoc, ConstRef);
10339 
10340       // FIXME: Rather that making the constructor invalid, we should endeavor
10341       // to fix the type.
10342       Constructor->setInvalidDecl();
10343     }
10344   }
10345 }
10346 
10347 /// CheckDestructor - Checks a fully-formed destructor definition for
10348 /// well-formedness, issuing any diagnostics required.  Returns true
10349 /// on error.
CheckDestructor(CXXDestructorDecl * Destructor)10350 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
10351   CXXRecordDecl *RD = Destructor->getParent();
10352 
10353   if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
10354     SourceLocation Loc;
10355 
10356     if (!Destructor->isImplicit())
10357       Loc = Destructor->getLocation();
10358     else
10359       Loc = RD->getLocation();
10360 
10361     // If we have a virtual destructor, look up the deallocation function
10362     if (FunctionDecl *OperatorDelete =
10363             FindDeallocationFunctionForDestructor(Loc, RD)) {
10364       Expr *ThisArg = nullptr;
10365 
10366       // If the notional 'delete this' expression requires a non-trivial
10367       // conversion from 'this' to the type of a destroying operator delete's
10368       // first parameter, perform that conversion now.
10369       if (OperatorDelete->isDestroyingOperatorDelete()) {
10370         QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
10371         if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) {
10372           // C++ [class.dtor]p13:
10373           //   ... as if for the expression 'delete this' appearing in a
10374           //   non-virtual destructor of the destructor's class.
10375           ContextRAII SwitchContext(*this, Destructor);
10376           ExprResult This =
10377               ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation());
10378           assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?");
10379           This = PerformImplicitConversion(This.get(), ParamType, AA_Passing);
10380           if (This.isInvalid()) {
10381             // FIXME: Register this as a context note so that it comes out
10382             // in the right order.
10383             Diag(Loc, diag::note_implicit_delete_this_in_destructor_here);
10384             return true;
10385           }
10386           ThisArg = This.get();
10387         }
10388       }
10389 
10390       DiagnoseUseOfDecl(OperatorDelete, Loc);
10391       MarkFunctionReferenced(Loc, OperatorDelete);
10392       Destructor->setOperatorDelete(OperatorDelete, ThisArg);
10393     }
10394   }
10395 
10396   return false;
10397 }
10398 
10399 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
10400 /// the well-formednes of the destructor declarator @p D with type @p
10401 /// R. If there are any errors in the declarator, this routine will
10402 /// emit diagnostics and set the declarator to invalid.  Even if this happens,
10403 /// will be updated to reflect a well-formed type for the destructor and
10404 /// returned.
CheckDestructorDeclarator(Declarator & D,QualType R,StorageClass & SC)10405 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
10406                                          StorageClass& SC) {
10407   // C++ [class.dtor]p1:
10408   //   [...] A typedef-name that names a class is a class-name
10409   //   (7.1.3); however, a typedef-name that names a class shall not
10410   //   be used as the identifier in the declarator for a destructor
10411   //   declaration.
10412   QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
10413   if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
10414     Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
10415       << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
10416   else if (const TemplateSpecializationType *TST =
10417              DeclaratorType->getAs<TemplateSpecializationType>())
10418     if (TST->isTypeAlias())
10419       Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
10420         << DeclaratorType << 1;
10421 
10422   // C++ [class.dtor]p2:
10423   //   A destructor is used to destroy objects of its class type. A
10424   //   destructor takes no parameters, and no return type can be
10425   //   specified for it (not even void). The address of a destructor
10426   //   shall not be taken. A destructor shall not be static. A
10427   //   destructor can be invoked for a const, volatile or const
10428   //   volatile object. A destructor shall not be declared const,
10429   //   volatile or const volatile (9.3.2).
10430   if (SC == SC_Static) {
10431     if (!D.isInvalidType())
10432       Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
10433         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10434         << SourceRange(D.getIdentifierLoc())
10435         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10436 
10437     SC = SC_None;
10438   }
10439   if (!D.isInvalidType()) {
10440     // Destructors don't have return types, but the parser will
10441     // happily parse something like:
10442     //
10443     //   class X {
10444     //     float ~X();
10445     //   };
10446     //
10447     // The return type will be eliminated later.
10448     if (D.getDeclSpec().hasTypeSpecifier())
10449       Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
10450         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
10451         << SourceRange(D.getIdentifierLoc());
10452     else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
10453       diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
10454                                 SourceLocation(),
10455                                 D.getDeclSpec().getConstSpecLoc(),
10456                                 D.getDeclSpec().getVolatileSpecLoc(),
10457                                 D.getDeclSpec().getRestrictSpecLoc(),
10458                                 D.getDeclSpec().getAtomicSpecLoc());
10459       D.setInvalidType();
10460     }
10461   }
10462 
10463   checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor);
10464 
10465   // C++0x [class.dtor]p2:
10466   //   A destructor shall not be declared with a ref-qualifier.
10467   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10468   if (FTI.hasRefQualifier()) {
10469     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
10470       << FTI.RefQualifierIsLValueRef
10471       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
10472     D.setInvalidType();
10473   }
10474 
10475   // Make sure we don't have any parameters.
10476   if (FTIHasNonVoidParameters(FTI)) {
10477     Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
10478 
10479     // Delete the parameters.
10480     FTI.freeParams();
10481     D.setInvalidType();
10482   }
10483 
10484   // Make sure the destructor isn't variadic.
10485   if (FTI.isVariadic) {
10486     Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
10487     D.setInvalidType();
10488   }
10489 
10490   // Rebuild the function type "R" without any type qualifiers or
10491   // parameters (in case any of the errors above fired) and with
10492   // "void" as the return type, since destructors don't have return
10493   // types.
10494   if (!D.isInvalidType())
10495     return R;
10496 
10497   const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
10498   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
10499   EPI.Variadic = false;
10500   EPI.TypeQuals = Qualifiers();
10501   EPI.RefQualifier = RQ_None;
10502   return Context.getFunctionType(Context.VoidTy, None, EPI);
10503 }
10504 
extendLeft(SourceRange & R,SourceRange Before)10505 static void extendLeft(SourceRange &R, SourceRange Before) {
10506   if (Before.isInvalid())
10507     return;
10508   R.setBegin(Before.getBegin());
10509   if (R.getEnd().isInvalid())
10510     R.setEnd(Before.getEnd());
10511 }
10512 
extendRight(SourceRange & R,SourceRange After)10513 static void extendRight(SourceRange &R, SourceRange After) {
10514   if (After.isInvalid())
10515     return;
10516   if (R.getBegin().isInvalid())
10517     R.setBegin(After.getBegin());
10518   R.setEnd(After.getEnd());
10519 }
10520 
10521 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
10522 /// well-formednes of the conversion function declarator @p D with
10523 /// type @p R. If there are any errors in the declarator, this routine
10524 /// will emit diagnostics and return true. Otherwise, it will return
10525 /// false. Either way, the type @p R will be updated to reflect a
10526 /// well-formed type for the conversion operator.
CheckConversionDeclarator(Declarator & D,QualType & R,StorageClass & SC)10527 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
10528                                      StorageClass& SC) {
10529   // C++ [class.conv.fct]p1:
10530   //   Neither parameter types nor return type can be specified. The
10531   //   type of a conversion function (8.3.5) is "function taking no
10532   //   parameter returning conversion-type-id."
10533   if (SC == SC_Static) {
10534     if (!D.isInvalidType())
10535       Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
10536         << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10537         << D.getName().getSourceRange();
10538     D.setInvalidType();
10539     SC = SC_None;
10540   }
10541 
10542   TypeSourceInfo *ConvTSI = nullptr;
10543   QualType ConvType =
10544       GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
10545 
10546   const DeclSpec &DS = D.getDeclSpec();
10547   if (DS.hasTypeSpecifier() && !D.isInvalidType()) {
10548     // Conversion functions don't have return types, but the parser will
10549     // happily parse something like:
10550     //
10551     //   class X {
10552     //     float operator bool();
10553     //   };
10554     //
10555     // The return type will be changed later anyway.
10556     Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
10557       << SourceRange(DS.getTypeSpecTypeLoc())
10558       << SourceRange(D.getIdentifierLoc());
10559     D.setInvalidType();
10560   } else if (DS.getTypeQualifiers() && !D.isInvalidType()) {
10561     // It's also plausible that the user writes type qualifiers in the wrong
10562     // place, such as:
10563     //   struct S { const operator int(); };
10564     // FIXME: we could provide a fixit to move the qualifiers onto the
10565     // conversion type.
10566     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
10567         << SourceRange(D.getIdentifierLoc()) << 0;
10568     D.setInvalidType();
10569   }
10570 
10571   const auto *Proto = R->castAs<FunctionProtoType>();
10572 
10573   // Make sure we don't have any parameters.
10574   if (Proto->getNumParams() > 0) {
10575     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
10576 
10577     // Delete the parameters.
10578     D.getFunctionTypeInfo().freeParams();
10579     D.setInvalidType();
10580   } else if (Proto->isVariadic()) {
10581     Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
10582     D.setInvalidType();
10583   }
10584 
10585   // Diagnose "&operator bool()" and other such nonsense.  This
10586   // is actually a gcc extension which we don't support.
10587   if (Proto->getReturnType() != ConvType) {
10588     bool NeedsTypedef = false;
10589     SourceRange Before, After;
10590 
10591     // Walk the chunks and extract information on them for our diagnostic.
10592     bool PastFunctionChunk = false;
10593     for (auto &Chunk : D.type_objects()) {
10594       switch (Chunk.Kind) {
10595       case DeclaratorChunk::Function:
10596         if (!PastFunctionChunk) {
10597           if (Chunk.Fun.HasTrailingReturnType) {
10598             TypeSourceInfo *TRT = nullptr;
10599             GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
10600             if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
10601           }
10602           PastFunctionChunk = true;
10603           break;
10604         }
10605         LLVM_FALLTHROUGH;
10606       case DeclaratorChunk::Array:
10607         NeedsTypedef = true;
10608         extendRight(After, Chunk.getSourceRange());
10609         break;
10610 
10611       case DeclaratorChunk::Pointer:
10612       case DeclaratorChunk::BlockPointer:
10613       case DeclaratorChunk::Reference:
10614       case DeclaratorChunk::MemberPointer:
10615       case DeclaratorChunk::Pipe:
10616         extendLeft(Before, Chunk.getSourceRange());
10617         break;
10618 
10619       case DeclaratorChunk::Paren:
10620         extendLeft(Before, Chunk.Loc);
10621         extendRight(After, Chunk.EndLoc);
10622         break;
10623       }
10624     }
10625 
10626     SourceLocation Loc = Before.isValid() ? Before.getBegin() :
10627                          After.isValid()  ? After.getBegin() :
10628                                             D.getIdentifierLoc();
10629     auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
10630     DB << Before << After;
10631 
10632     if (!NeedsTypedef) {
10633       DB << /*don't need a typedef*/0;
10634 
10635       // If we can provide a correct fix-it hint, do so.
10636       if (After.isInvalid() && ConvTSI) {
10637         SourceLocation InsertLoc =
10638             getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc());
10639         DB << FixItHint::CreateInsertion(InsertLoc, " ")
10640            << FixItHint::CreateInsertionFromRange(
10641                   InsertLoc, CharSourceRange::getTokenRange(Before))
10642            << FixItHint::CreateRemoval(Before);
10643       }
10644     } else if (!Proto->getReturnType()->isDependentType()) {
10645       DB << /*typedef*/1 << Proto->getReturnType();
10646     } else if (getLangOpts().CPlusPlus11) {
10647       DB << /*alias template*/2 << Proto->getReturnType();
10648     } else {
10649       DB << /*might not be fixable*/3;
10650     }
10651 
10652     // Recover by incorporating the other type chunks into the result type.
10653     // Note, this does *not* change the name of the function. This is compatible
10654     // with the GCC extension:
10655     //   struct S { &operator int(); } s;
10656     //   int &r = s.operator int(); // ok in GCC
10657     //   S::operator int&() {} // error in GCC, function name is 'operator int'.
10658     ConvType = Proto->getReturnType();
10659   }
10660 
10661   // C++ [class.conv.fct]p4:
10662   //   The conversion-type-id shall not represent a function type nor
10663   //   an array type.
10664   if (ConvType->isArrayType()) {
10665     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
10666     ConvType = Context.getPointerType(ConvType);
10667     D.setInvalidType();
10668   } else if (ConvType->isFunctionType()) {
10669     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
10670     ConvType = Context.getPointerType(ConvType);
10671     D.setInvalidType();
10672   }
10673 
10674   // Rebuild the function type "R" without any parameters (in case any
10675   // of the errors above fired) and with the conversion type as the
10676   // return type.
10677   if (D.isInvalidType())
10678     R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
10679 
10680   // C++0x explicit conversion operators.
10681   if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20)
10682     Diag(DS.getExplicitSpecLoc(),
10683          getLangOpts().CPlusPlus11
10684              ? diag::warn_cxx98_compat_explicit_conversion_functions
10685              : diag::ext_explicit_conversion_functions)
10686         << SourceRange(DS.getExplicitSpecRange());
10687 }
10688 
10689 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
10690 /// the declaration of the given C++ conversion function. This routine
10691 /// is responsible for recording the conversion function in the C++
10692 /// class, if possible.
ActOnConversionDeclarator(CXXConversionDecl * Conversion)10693 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
10694   assert(Conversion && "Expected to receive a conversion function declaration");
10695 
10696   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
10697 
10698   // Make sure we aren't redeclaring the conversion function.
10699   QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
10700   // C++ [class.conv.fct]p1:
10701   //   [...] A conversion function is never used to convert a
10702   //   (possibly cv-qualified) object to the (possibly cv-qualified)
10703   //   same object type (or a reference to it), to a (possibly
10704   //   cv-qualified) base class of that type (or a reference to it),
10705   //   or to (possibly cv-qualified) void.
10706   QualType ClassType
10707     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
10708   if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
10709     ConvType = ConvTypeRef->getPointeeType();
10710   if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
10711       Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
10712     /* Suppress diagnostics for instantiations. */;
10713   else if (Conversion->size_overridden_methods() != 0)
10714     /* Suppress diagnostics for overriding virtual function in a base class. */;
10715   else if (ConvType->isRecordType()) {
10716     ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
10717     if (ConvType == ClassType)
10718       Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
10719         << ClassType;
10720     else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType))
10721       Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
10722         <<  ClassType << ConvType;
10723   } else if (ConvType->isVoidType()) {
10724     Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
10725       << ClassType << ConvType;
10726   }
10727 
10728   if (FunctionTemplateDecl *ConversionTemplate
10729                                 = Conversion->getDescribedFunctionTemplate())
10730     return ConversionTemplate;
10731 
10732   return Conversion;
10733 }
10734 
10735 namespace {
10736 /// Utility class to accumulate and print a diagnostic listing the invalid
10737 /// specifier(s) on a declaration.
10738 struct BadSpecifierDiagnoser {
BadSpecifierDiagnoser__anonb2a824812b11::BadSpecifierDiagnoser10739   BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID)
10740       : S(S), Diagnostic(S.Diag(Loc, DiagID)) {}
~BadSpecifierDiagnoser__anonb2a824812b11::BadSpecifierDiagnoser10741   ~BadSpecifierDiagnoser() {
10742     Diagnostic << Specifiers;
10743   }
10744 
check__anonb2a824812b11::BadSpecifierDiagnoser10745   template<typename T> void check(SourceLocation SpecLoc, T Spec) {
10746     return check(SpecLoc, DeclSpec::getSpecifierName(Spec));
10747   }
check__anonb2a824812b11::BadSpecifierDiagnoser10748   void check(SourceLocation SpecLoc, DeclSpec::TST Spec) {
10749     return check(SpecLoc,
10750                  DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy()));
10751   }
check__anonb2a824812b11::BadSpecifierDiagnoser10752   void check(SourceLocation SpecLoc, const char *Spec) {
10753     if (SpecLoc.isInvalid()) return;
10754     Diagnostic << SourceRange(SpecLoc, SpecLoc);
10755     if (!Specifiers.empty()) Specifiers += " ";
10756     Specifiers += Spec;
10757   }
10758 
10759   Sema &S;
10760   Sema::SemaDiagnosticBuilder Diagnostic;
10761   std::string Specifiers;
10762 };
10763 }
10764 
10765 /// Check the validity of a declarator that we parsed for a deduction-guide.
10766 /// These aren't actually declarators in the grammar, so we need to check that
10767 /// the user didn't specify any pieces that are not part of the deduction-guide
10768 /// grammar.
CheckDeductionGuideDeclarator(Declarator & D,QualType & R,StorageClass & SC)10769 void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
10770                                          StorageClass &SC) {
10771   TemplateName GuidedTemplate = D.getName().TemplateName.get().get();
10772   TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl();
10773   assert(GuidedTemplateDecl && "missing template decl for deduction guide");
10774 
10775   // C++ [temp.deduct.guide]p3:
10776   //   A deduction-gide shall be declared in the same scope as the
10777   //   corresponding class template.
10778   if (!CurContext->getRedeclContext()->Equals(
10779           GuidedTemplateDecl->getDeclContext()->getRedeclContext())) {
10780     Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope)
10781       << GuidedTemplateDecl;
10782     Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here);
10783   }
10784 
10785   auto &DS = D.getMutableDeclSpec();
10786   // We leave 'friend' and 'virtual' to be rejected in the normal way.
10787   if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() ||
10788       DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() ||
10789       DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) {
10790     BadSpecifierDiagnoser Diagnoser(
10791         *this, D.getIdentifierLoc(),
10792         diag::err_deduction_guide_invalid_specifier);
10793 
10794     Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec());
10795     DS.ClearStorageClassSpecs();
10796     SC = SC_None;
10797 
10798     // 'explicit' is permitted.
10799     Diagnoser.check(DS.getInlineSpecLoc(), "inline");
10800     Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn");
10801     Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr");
10802     DS.ClearConstexprSpec();
10803 
10804     Diagnoser.check(DS.getConstSpecLoc(), "const");
10805     Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict");
10806     Diagnoser.check(DS.getVolatileSpecLoc(), "volatile");
10807     Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic");
10808     Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned");
10809     DS.ClearTypeQualifiers();
10810 
10811     Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex());
10812     Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign());
10813     Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth());
10814     Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType());
10815     DS.ClearTypeSpecType();
10816   }
10817 
10818   if (D.isInvalidType())
10819     return;
10820 
10821   // Check the declarator is simple enough.
10822   bool FoundFunction = false;
10823   for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) {
10824     if (Chunk.Kind == DeclaratorChunk::Paren)
10825       continue;
10826     if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) {
10827       Diag(D.getDeclSpec().getBeginLoc(),
10828            diag::err_deduction_guide_with_complex_decl)
10829           << D.getSourceRange();
10830       break;
10831     }
10832     if (!Chunk.Fun.hasTrailingReturnType()) {
10833       Diag(D.getName().getBeginLoc(),
10834            diag::err_deduction_guide_no_trailing_return_type);
10835       break;
10836     }
10837 
10838     // Check that the return type is written as a specialization of
10839     // the template specified as the deduction-guide's name.
10840     ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType();
10841     TypeSourceInfo *TSI = nullptr;
10842     QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI);
10843     assert(TSI && "deduction guide has valid type but invalid return type?");
10844     bool AcceptableReturnType = false;
10845     bool MightInstantiateToSpecialization = false;
10846     if (auto RetTST =
10847             TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) {
10848       TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName();
10849       bool TemplateMatches =
10850           Context.hasSameTemplateName(SpecifiedName, GuidedTemplate);
10851       if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches)
10852         AcceptableReturnType = true;
10853       else {
10854         // This could still instantiate to the right type, unless we know it
10855         // names the wrong class template.
10856         auto *TD = SpecifiedName.getAsTemplateDecl();
10857         MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) &&
10858                                              !TemplateMatches);
10859       }
10860     } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) {
10861       MightInstantiateToSpecialization = true;
10862     }
10863 
10864     if (!AcceptableReturnType) {
10865       Diag(TSI->getTypeLoc().getBeginLoc(),
10866            diag::err_deduction_guide_bad_trailing_return_type)
10867           << GuidedTemplate << TSI->getType()
10868           << MightInstantiateToSpecialization
10869           << TSI->getTypeLoc().getSourceRange();
10870     }
10871 
10872     // Keep going to check that we don't have any inner declarator pieces (we
10873     // could still have a function returning a pointer to a function).
10874     FoundFunction = true;
10875   }
10876 
10877   if (D.isFunctionDefinition())
10878     Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function);
10879 }
10880 
10881 //===----------------------------------------------------------------------===//
10882 // Namespace Handling
10883 //===----------------------------------------------------------------------===//
10884 
10885 /// Diagnose a mismatch in 'inline' qualifiers when a namespace is
10886 /// reopened.
DiagnoseNamespaceInlineMismatch(Sema & S,SourceLocation KeywordLoc,SourceLocation Loc,IdentifierInfo * II,bool * IsInline,NamespaceDecl * PrevNS)10887 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
10888                                             SourceLocation Loc,
10889                                             IdentifierInfo *II, bool *IsInline,
10890                                             NamespaceDecl *PrevNS) {
10891   assert(*IsInline != PrevNS->isInline());
10892 
10893   if (PrevNS->isInline())
10894     // The user probably just forgot the 'inline', so suggest that it
10895     // be added back.
10896     S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
10897       << FixItHint::CreateInsertion(KeywordLoc, "inline ");
10898   else
10899     S.Diag(Loc, diag::err_inline_namespace_mismatch);
10900 
10901   S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
10902   *IsInline = PrevNS->isInline();
10903 }
10904 
10905 /// ActOnStartNamespaceDef - This is called at the start of a namespace
10906 /// definition.
ActOnStartNamespaceDef(Scope * NamespcScope,SourceLocation InlineLoc,SourceLocation NamespaceLoc,SourceLocation IdentLoc,IdentifierInfo * II,SourceLocation LBrace,const ParsedAttributesView & AttrList,UsingDirectiveDecl * & UD)10907 Decl *Sema::ActOnStartNamespaceDef(
10908     Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc,
10909     SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace,
10910     const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD) {
10911   SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
10912   // For anonymous namespace, take the location of the left brace.
10913   SourceLocation Loc = II ? IdentLoc : LBrace;
10914   bool IsInline = InlineLoc.isValid();
10915   bool IsInvalid = false;
10916   bool IsStd = false;
10917   bool AddToKnown = false;
10918   Scope *DeclRegionScope = NamespcScope->getParent();
10919 
10920   NamespaceDecl *PrevNS = nullptr;
10921   if (II) {
10922     // C++ [namespace.def]p2:
10923     //   The identifier in an original-namespace-definition shall not
10924     //   have been previously defined in the declarative region in
10925     //   which the original-namespace-definition appears. The
10926     //   identifier in an original-namespace-definition is the name of
10927     //   the namespace. Subsequently in that declarative region, it is
10928     //   treated as an original-namespace-name.
10929     //
10930     // Since namespace names are unique in their scope, and we don't
10931     // look through using directives, just look for any ordinary names
10932     // as if by qualified name lookup.
10933     LookupResult R(*this, II, IdentLoc, LookupOrdinaryName,
10934                    ForExternalRedeclaration);
10935     LookupQualifiedName(R, CurContext->getRedeclContext());
10936     NamedDecl *PrevDecl =
10937         R.isSingleResult() ? R.getRepresentativeDecl() : nullptr;
10938     PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
10939 
10940     if (PrevNS) {
10941       // This is an extended namespace definition.
10942       if (IsInline != PrevNS->isInline())
10943         DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
10944                                         &IsInline, PrevNS);
10945     } else if (PrevDecl) {
10946       // This is an invalid name redefinition.
10947       Diag(Loc, diag::err_redefinition_different_kind)
10948         << II;
10949       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10950       IsInvalid = true;
10951       // Continue on to push Namespc as current DeclContext and return it.
10952     } else if (II->isStr("std") &&
10953                CurContext->getRedeclContext()->isTranslationUnit()) {
10954       // This is the first "real" definition of the namespace "std", so update
10955       // our cache of the "std" namespace to point at this definition.
10956       PrevNS = getStdNamespace();
10957       IsStd = true;
10958       AddToKnown = !IsInline;
10959     } else {
10960       // We've seen this namespace for the first time.
10961       AddToKnown = !IsInline;
10962     }
10963   } else {
10964     // Anonymous namespaces.
10965 
10966     // Determine whether the parent already has an anonymous namespace.
10967     DeclContext *Parent = CurContext->getRedeclContext();
10968     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
10969       PrevNS = TU->getAnonymousNamespace();
10970     } else {
10971       NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
10972       PrevNS = ND->getAnonymousNamespace();
10973     }
10974 
10975     if (PrevNS && IsInline != PrevNS->isInline())
10976       DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
10977                                       &IsInline, PrevNS);
10978   }
10979 
10980   NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
10981                                                  StartLoc, Loc, II, PrevNS);
10982   if (IsInvalid)
10983     Namespc->setInvalidDecl();
10984 
10985   ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
10986   AddPragmaAttributes(DeclRegionScope, Namespc);
10987 
10988   // FIXME: Should we be merging attributes?
10989   if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
10990     PushNamespaceVisibilityAttr(Attr, Loc);
10991 
10992   if (IsStd)
10993     StdNamespace = Namespc;
10994   if (AddToKnown)
10995     KnownNamespaces[Namespc] = false;
10996 
10997   if (II) {
10998     PushOnScopeChains(Namespc, DeclRegionScope);
10999   } else {
11000     // Link the anonymous namespace into its parent.
11001     DeclContext *Parent = CurContext->getRedeclContext();
11002     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
11003       TU->setAnonymousNamespace(Namespc);
11004     } else {
11005       cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
11006     }
11007 
11008     CurContext->addDecl(Namespc);
11009 
11010     // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
11011     //   behaves as if it were replaced by
11012     //     namespace unique { /* empty body */ }
11013     //     using namespace unique;
11014     //     namespace unique { namespace-body }
11015     //   where all occurrences of 'unique' in a translation unit are
11016     //   replaced by the same identifier and this identifier differs
11017     //   from all other identifiers in the entire program.
11018 
11019     // We just create the namespace with an empty name and then add an
11020     // implicit using declaration, just like the standard suggests.
11021     //
11022     // CodeGen enforces the "universally unique" aspect by giving all
11023     // declarations semantically contained within an anonymous
11024     // namespace internal linkage.
11025 
11026     if (!PrevNS) {
11027       UD = UsingDirectiveDecl::Create(Context, Parent,
11028                                       /* 'using' */ LBrace,
11029                                       /* 'namespace' */ SourceLocation(),
11030                                       /* qualifier */ NestedNameSpecifierLoc(),
11031                                       /* identifier */ SourceLocation(),
11032                                       Namespc,
11033                                       /* Ancestor */ Parent);
11034       UD->setImplicit();
11035       Parent->addDecl(UD);
11036     }
11037   }
11038 
11039   ActOnDocumentableDecl(Namespc);
11040 
11041   // Although we could have an invalid decl (i.e. the namespace name is a
11042   // redefinition), push it as current DeclContext and try to continue parsing.
11043   // FIXME: We should be able to push Namespc here, so that the each DeclContext
11044   // for the namespace has the declarations that showed up in that particular
11045   // namespace definition.
11046   PushDeclContext(NamespcScope, Namespc);
11047   return Namespc;
11048 }
11049 
11050 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
11051 /// is a namespace alias, returns the namespace it points to.
getNamespaceDecl(NamedDecl * D)11052 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
11053   if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
11054     return AD->getNamespace();
11055   return dyn_cast_or_null<NamespaceDecl>(D);
11056 }
11057 
11058 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
11059 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
ActOnFinishNamespaceDef(Decl * Dcl,SourceLocation RBrace)11060 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
11061   NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
11062   assert(Namespc && "Invalid parameter, expected NamespaceDecl");
11063   Namespc->setRBraceLoc(RBrace);
11064   PopDeclContext();
11065   if (Namespc->hasAttr<VisibilityAttr>())
11066     PopPragmaVisibility(true, RBrace);
11067   // If this namespace contains an export-declaration, export it now.
11068   if (DeferredExportedNamespaces.erase(Namespc))
11069     Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
11070 }
11071 
getStdBadAlloc() const11072 CXXRecordDecl *Sema::getStdBadAlloc() const {
11073   return cast_or_null<CXXRecordDecl>(
11074                                   StdBadAlloc.get(Context.getExternalSource()));
11075 }
11076 
getStdAlignValT() const11077 EnumDecl *Sema::getStdAlignValT() const {
11078   return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource()));
11079 }
11080 
getStdNamespace() const11081 NamespaceDecl *Sema::getStdNamespace() const {
11082   return cast_or_null<NamespaceDecl>(
11083                                  StdNamespace.get(Context.getExternalSource()));
11084 }
11085 
lookupStdExperimentalNamespace()11086 NamespaceDecl *Sema::lookupStdExperimentalNamespace() {
11087   if (!StdExperimentalNamespaceCache) {
11088     if (auto Std = getStdNamespace()) {
11089       LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"),
11090                           SourceLocation(), LookupNamespaceName);
11091       if (!LookupQualifiedName(Result, Std) ||
11092           !(StdExperimentalNamespaceCache =
11093                 Result.getAsSingle<NamespaceDecl>()))
11094         Result.suppressDiagnostics();
11095     }
11096   }
11097   return StdExperimentalNamespaceCache;
11098 }
11099 
11100 namespace {
11101 
11102 enum UnsupportedSTLSelect {
11103   USS_InvalidMember,
11104   USS_MissingMember,
11105   USS_NonTrivial,
11106   USS_Other
11107 };
11108 
11109 struct InvalidSTLDiagnoser {
11110   Sema &S;
11111   SourceLocation Loc;
11112   QualType TyForDiags;
11113 
operator ()__anonb2a824812c11::InvalidSTLDiagnoser11114   QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "",
11115                       const VarDecl *VD = nullptr) {
11116     {
11117       auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported)
11118                << TyForDiags << ((int)Sel);
11119       if (Sel == USS_InvalidMember || Sel == USS_MissingMember) {
11120         assert(!Name.empty());
11121         D << Name;
11122       }
11123     }
11124     if (Sel == USS_InvalidMember) {
11125       S.Diag(VD->getLocation(), diag::note_var_declared_here)
11126           << VD << VD->getSourceRange();
11127     }
11128     return QualType();
11129   }
11130 };
11131 } // namespace
11132 
CheckComparisonCategoryType(ComparisonCategoryType Kind,SourceLocation Loc,ComparisonCategoryUsage Usage)11133 QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind,
11134                                            SourceLocation Loc,
11135                                            ComparisonCategoryUsage Usage) {
11136   assert(getLangOpts().CPlusPlus &&
11137          "Looking for comparison category type outside of C++.");
11138 
11139   // Use an elaborated type for diagnostics which has a name containing the
11140   // prepended 'std' namespace but not any inline namespace names.
11141   auto TyForDiags = [&](ComparisonCategoryInfo *Info) {
11142     auto *NNS =
11143         NestedNameSpecifier::Create(Context, nullptr, getStdNamespace());
11144     return Context.getElaboratedType(ETK_None, NNS, Info->getType());
11145   };
11146 
11147   // Check if we've already successfully checked the comparison category type
11148   // before. If so, skip checking it again.
11149   ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind);
11150   if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) {
11151     // The only thing we need to check is that the type has a reachable
11152     // definition in the current context.
11153     if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
11154       return QualType();
11155 
11156     return Info->getType();
11157   }
11158 
11159   // If lookup failed
11160   if (!Info) {
11161     std::string NameForDiags = "std::";
11162     NameForDiags += ComparisonCategories::getCategoryString(Kind);
11163     Diag(Loc, diag::err_implied_comparison_category_type_not_found)
11164         << NameForDiags << (int)Usage;
11165     return QualType();
11166   }
11167 
11168   assert(Info->Kind == Kind);
11169   assert(Info->Record);
11170 
11171   // Update the Record decl in case we encountered a forward declaration on our
11172   // first pass. FIXME: This is a bit of a hack.
11173   if (Info->Record->hasDefinition())
11174     Info->Record = Info->Record->getDefinition();
11175 
11176   if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
11177     return QualType();
11178 
11179   InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)};
11180 
11181   if (!Info->Record->isTriviallyCopyable())
11182     return UnsupportedSTLError(USS_NonTrivial);
11183 
11184   for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) {
11185     CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl();
11186     // Tolerate empty base classes.
11187     if (Base->isEmpty())
11188       continue;
11189     // Reject STL implementations which have at least one non-empty base.
11190     return UnsupportedSTLError();
11191   }
11192 
11193   // Check that the STL has implemented the types using a single integer field.
11194   // This expectation allows better codegen for builtin operators. We require:
11195   //   (1) The class has exactly one field.
11196   //   (2) The field is an integral or enumeration type.
11197   auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end();
11198   if (std::distance(FIt, FEnd) != 1 ||
11199       !FIt->getType()->isIntegralOrEnumerationType()) {
11200     return UnsupportedSTLError();
11201   }
11202 
11203   // Build each of the require values and store them in Info.
11204   for (ComparisonCategoryResult CCR :
11205        ComparisonCategories::getPossibleResultsForType(Kind)) {
11206     StringRef MemName = ComparisonCategories::getResultString(CCR);
11207     ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR);
11208 
11209     if (!ValInfo)
11210       return UnsupportedSTLError(USS_MissingMember, MemName);
11211 
11212     VarDecl *VD = ValInfo->VD;
11213     assert(VD && "should not be null!");
11214 
11215     // Attempt to diagnose reasons why the STL definition of this type
11216     // might be foobar, including it failing to be a constant expression.
11217     // TODO Handle more ways the lookup or result can be invalid.
11218     if (!VD->isStaticDataMember() ||
11219         !VD->isUsableInConstantExpressions(Context))
11220       return UnsupportedSTLError(USS_InvalidMember, MemName, VD);
11221 
11222     // Attempt to evaluate the var decl as a constant expression and extract
11223     // the value of its first field as a ICE. If this fails, the STL
11224     // implementation is not supported.
11225     if (!ValInfo->hasValidIntValue())
11226       return UnsupportedSTLError();
11227 
11228     MarkVariableReferenced(Loc, VD);
11229   }
11230 
11231   // We've successfully built the required types and expressions. Update
11232   // the cache and return the newly cached value.
11233   FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true;
11234   return Info->getType();
11235 }
11236 
11237 /// Retrieve the special "std" namespace, which may require us to
11238 /// implicitly define the namespace.
getOrCreateStdNamespace()11239 NamespaceDecl *Sema::getOrCreateStdNamespace() {
11240   if (!StdNamespace) {
11241     // The "std" namespace has not yet been defined, so build one implicitly.
11242     StdNamespace = NamespaceDecl::Create(Context,
11243                                          Context.getTranslationUnitDecl(),
11244                                          /*Inline=*/false,
11245                                          SourceLocation(), SourceLocation(),
11246                                          &PP.getIdentifierTable().get("std"),
11247                                          /*PrevDecl=*/nullptr);
11248     getStdNamespace()->setImplicit(true);
11249   }
11250 
11251   return getStdNamespace();
11252 }
11253 
isStdInitializerList(QualType Ty,QualType * Element)11254 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
11255   assert(getLangOpts().CPlusPlus &&
11256          "Looking for std::initializer_list outside of C++.");
11257 
11258   // We're looking for implicit instantiations of
11259   // template <typename E> class std::initializer_list.
11260 
11261   if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
11262     return false;
11263 
11264   ClassTemplateDecl *Template = nullptr;
11265   const TemplateArgument *Arguments = nullptr;
11266 
11267   if (const RecordType *RT = Ty->getAs<RecordType>()) {
11268 
11269     ClassTemplateSpecializationDecl *Specialization =
11270         dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
11271     if (!Specialization)
11272       return false;
11273 
11274     Template = Specialization->getSpecializedTemplate();
11275     Arguments = Specialization->getTemplateArgs().data();
11276   } else if (const TemplateSpecializationType *TST =
11277                  Ty->getAs<TemplateSpecializationType>()) {
11278     Template = dyn_cast_or_null<ClassTemplateDecl>(
11279         TST->getTemplateName().getAsTemplateDecl());
11280     Arguments = TST->getArgs();
11281   }
11282   if (!Template)
11283     return false;
11284 
11285   if (!StdInitializerList) {
11286     // Haven't recognized std::initializer_list yet, maybe this is it.
11287     CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
11288     if (TemplateClass->getIdentifier() !=
11289             &PP.getIdentifierTable().get("initializer_list") ||
11290         !getStdNamespace()->InEnclosingNamespaceSetOf(
11291             TemplateClass->getDeclContext()))
11292       return false;
11293     // This is a template called std::initializer_list, but is it the right
11294     // template?
11295     TemplateParameterList *Params = Template->getTemplateParameters();
11296     if (Params->getMinRequiredArguments() != 1)
11297       return false;
11298     if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
11299       return false;
11300 
11301     // It's the right template.
11302     StdInitializerList = Template;
11303   }
11304 
11305   if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
11306     return false;
11307 
11308   // This is an instance of std::initializer_list. Find the argument type.
11309   if (Element)
11310     *Element = Arguments[0].getAsType();
11311   return true;
11312 }
11313 
LookupStdInitializerList(Sema & S,SourceLocation Loc)11314 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
11315   NamespaceDecl *Std = S.getStdNamespace();
11316   if (!Std) {
11317     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
11318     return nullptr;
11319   }
11320 
11321   LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
11322                       Loc, Sema::LookupOrdinaryName);
11323   if (!S.LookupQualifiedName(Result, Std)) {
11324     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
11325     return nullptr;
11326   }
11327   ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
11328   if (!Template) {
11329     Result.suppressDiagnostics();
11330     // We found something weird. Complain about the first thing we found.
11331     NamedDecl *Found = *Result.begin();
11332     S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
11333     return nullptr;
11334   }
11335 
11336   // We found some template called std::initializer_list. Now verify that it's
11337   // correct.
11338   TemplateParameterList *Params = Template->getTemplateParameters();
11339   if (Params->getMinRequiredArguments() != 1 ||
11340       !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
11341     S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
11342     return nullptr;
11343   }
11344 
11345   return Template;
11346 }
11347 
BuildStdInitializerList(QualType Element,SourceLocation Loc)11348 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
11349   if (!StdInitializerList) {
11350     StdInitializerList = LookupStdInitializerList(*this, Loc);
11351     if (!StdInitializerList)
11352       return QualType();
11353   }
11354 
11355   TemplateArgumentListInfo Args(Loc, Loc);
11356   Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
11357                                        Context.getTrivialTypeSourceInfo(Element,
11358                                                                         Loc)));
11359   return Context.getCanonicalType(
11360       CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
11361 }
11362 
isInitListConstructor(const FunctionDecl * Ctor)11363 bool Sema::isInitListConstructor(const FunctionDecl *Ctor) {
11364   // C++ [dcl.init.list]p2:
11365   //   A constructor is an initializer-list constructor if its first parameter
11366   //   is of type std::initializer_list<E> or reference to possibly cv-qualified
11367   //   std::initializer_list<E> for some type E, and either there are no other
11368   //   parameters or else all other parameters have default arguments.
11369   if (!Ctor->hasOneParamOrDefaultArgs())
11370     return false;
11371 
11372   QualType ArgType = Ctor->getParamDecl(0)->getType();
11373   if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
11374     ArgType = RT->getPointeeType().getUnqualifiedType();
11375 
11376   return isStdInitializerList(ArgType, nullptr);
11377 }
11378 
11379 /// Determine whether a using statement is in a context where it will be
11380 /// apply in all contexts.
IsUsingDirectiveInToplevelContext(DeclContext * CurContext)11381 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
11382   switch (CurContext->getDeclKind()) {
11383     case Decl::TranslationUnit:
11384       return true;
11385     case Decl::LinkageSpec:
11386       return IsUsingDirectiveInToplevelContext(CurContext->getParent());
11387     default:
11388       return false;
11389   }
11390 }
11391 
11392 namespace {
11393 
11394 // Callback to only accept typo corrections that are namespaces.
11395 class NamespaceValidatorCCC final : public CorrectionCandidateCallback {
11396 public:
ValidateCandidate(const TypoCorrection & candidate)11397   bool ValidateCandidate(const TypoCorrection &candidate) override {
11398     if (NamedDecl *ND = candidate.getCorrectionDecl())
11399       return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
11400     return false;
11401   }
11402 
clone()11403   std::unique_ptr<CorrectionCandidateCallback> clone() override {
11404     return std::make_unique<NamespaceValidatorCCC>(*this);
11405   }
11406 };
11407 
11408 }
11409 
TryNamespaceTypoCorrection(Sema & S,LookupResult & R,Scope * Sc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)11410 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
11411                                        CXXScopeSpec &SS,
11412                                        SourceLocation IdentLoc,
11413                                        IdentifierInfo *Ident) {
11414   R.clear();
11415   NamespaceValidatorCCC CCC{};
11416   if (TypoCorrection Corrected =
11417           S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC,
11418                         Sema::CTK_ErrorRecovery)) {
11419     if (DeclContext *DC = S.computeDeclContext(SS, false)) {
11420       std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
11421       bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
11422                               Ident->getName().equals(CorrectedStr);
11423       S.diagnoseTypo(Corrected,
11424                      S.PDiag(diag::err_using_directive_member_suggest)
11425                        << Ident << DC << DroppedSpecifier << SS.getRange(),
11426                      S.PDiag(diag::note_namespace_defined_here));
11427     } else {
11428       S.diagnoseTypo(Corrected,
11429                      S.PDiag(diag::err_using_directive_suggest) << Ident,
11430                      S.PDiag(diag::note_namespace_defined_here));
11431     }
11432     R.addDecl(Corrected.getFoundDecl());
11433     return true;
11434   }
11435   return false;
11436 }
11437 
ActOnUsingDirective(Scope * S,SourceLocation UsingLoc,SourceLocation NamespcLoc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * NamespcName,const ParsedAttributesView & AttrList)11438 Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc,
11439                                 SourceLocation NamespcLoc, CXXScopeSpec &SS,
11440                                 SourceLocation IdentLoc,
11441                                 IdentifierInfo *NamespcName,
11442                                 const ParsedAttributesView &AttrList) {
11443   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
11444   assert(NamespcName && "Invalid NamespcName.");
11445   assert(IdentLoc.isValid() && "Invalid NamespceName location.");
11446 
11447   // This can only happen along a recovery path.
11448   while (S->isTemplateParamScope())
11449     S = S->getParent();
11450   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
11451 
11452   UsingDirectiveDecl *UDir = nullptr;
11453   NestedNameSpecifier *Qualifier = nullptr;
11454   if (SS.isSet())
11455     Qualifier = SS.getScopeRep();
11456 
11457   // Lookup namespace name.
11458   LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
11459   LookupParsedName(R, S, &SS);
11460   if (R.isAmbiguous())
11461     return nullptr;
11462 
11463   if (R.empty()) {
11464     R.clear();
11465     // Allow "using namespace std;" or "using namespace ::std;" even if
11466     // "std" hasn't been defined yet, for GCC compatibility.
11467     if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
11468         NamespcName->isStr("std")) {
11469       Diag(IdentLoc, diag::ext_using_undefined_std);
11470       R.addDecl(getOrCreateStdNamespace());
11471       R.resolveKind();
11472     }
11473     // Otherwise, attempt typo correction.
11474     else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
11475   }
11476 
11477   if (!R.empty()) {
11478     NamedDecl *Named = R.getRepresentativeDecl();
11479     NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>();
11480     assert(NS && "expected namespace decl");
11481 
11482     // The use of a nested name specifier may trigger deprecation warnings.
11483     DiagnoseUseOfDecl(Named, IdentLoc);
11484 
11485     // C++ [namespace.udir]p1:
11486     //   A using-directive specifies that the names in the nominated
11487     //   namespace can be used in the scope in which the
11488     //   using-directive appears after the using-directive. During
11489     //   unqualified name lookup (3.4.1), the names appear as if they
11490     //   were declared in the nearest enclosing namespace which
11491     //   contains both the using-directive and the nominated
11492     //   namespace. [Note: in this context, "contains" means "contains
11493     //   directly or indirectly". ]
11494 
11495     // Find enclosing context containing both using-directive and
11496     // nominated namespace.
11497     DeclContext *CommonAncestor = NS;
11498     while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
11499       CommonAncestor = CommonAncestor->getParent();
11500 
11501     UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
11502                                       SS.getWithLocInContext(Context),
11503                                       IdentLoc, Named, CommonAncestor);
11504 
11505     if (IsUsingDirectiveInToplevelContext(CurContext) &&
11506         !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
11507       Diag(IdentLoc, diag::warn_using_directive_in_header);
11508     }
11509 
11510     PushUsingDirective(S, UDir);
11511   } else {
11512     Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
11513   }
11514 
11515   if (UDir)
11516     ProcessDeclAttributeList(S, UDir, AttrList);
11517 
11518   return UDir;
11519 }
11520 
PushUsingDirective(Scope * S,UsingDirectiveDecl * UDir)11521 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
11522   // If the scope has an associated entity and the using directive is at
11523   // namespace or translation unit scope, add the UsingDirectiveDecl into
11524   // its lookup structure so qualified name lookup can find it.
11525   DeclContext *Ctx = S->getEntity();
11526   if (Ctx && !Ctx->isFunctionOrMethod())
11527     Ctx->addDecl(UDir);
11528   else
11529     // Otherwise, it is at block scope. The using-directives will affect lookup
11530     // only to the end of the scope.
11531     S->PushUsingDirective(UDir);
11532 }
11533 
ActOnUsingDeclaration(Scope * S,AccessSpecifier AS,SourceLocation UsingLoc,SourceLocation TypenameLoc,CXXScopeSpec & SS,UnqualifiedId & Name,SourceLocation EllipsisLoc,const ParsedAttributesView & AttrList)11534 Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS,
11535                                   SourceLocation UsingLoc,
11536                                   SourceLocation TypenameLoc, CXXScopeSpec &SS,
11537                                   UnqualifiedId &Name,
11538                                   SourceLocation EllipsisLoc,
11539                                   const ParsedAttributesView &AttrList) {
11540   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
11541 
11542   if (SS.isEmpty()) {
11543     Diag(Name.getBeginLoc(), diag::err_using_requires_qualname);
11544     return nullptr;
11545   }
11546 
11547   switch (Name.getKind()) {
11548   case UnqualifiedIdKind::IK_ImplicitSelfParam:
11549   case UnqualifiedIdKind::IK_Identifier:
11550   case UnqualifiedIdKind::IK_OperatorFunctionId:
11551   case UnqualifiedIdKind::IK_LiteralOperatorId:
11552   case UnqualifiedIdKind::IK_ConversionFunctionId:
11553     break;
11554 
11555   case UnqualifiedIdKind::IK_ConstructorName:
11556   case UnqualifiedIdKind::IK_ConstructorTemplateId:
11557     // C++11 inheriting constructors.
11558     Diag(Name.getBeginLoc(),
11559          getLangOpts().CPlusPlus11
11560              ? diag::warn_cxx98_compat_using_decl_constructor
11561              : diag::err_using_decl_constructor)
11562         << SS.getRange();
11563 
11564     if (getLangOpts().CPlusPlus11) break;
11565 
11566     return nullptr;
11567 
11568   case UnqualifiedIdKind::IK_DestructorName:
11569     Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange();
11570     return nullptr;
11571 
11572   case UnqualifiedIdKind::IK_TemplateId:
11573     Diag(Name.getBeginLoc(), diag::err_using_decl_template_id)
11574         << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
11575     return nullptr;
11576 
11577   case UnqualifiedIdKind::IK_DeductionGuideName:
11578     llvm_unreachable("cannot parse qualified deduction guide name");
11579   }
11580 
11581   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
11582   DeclarationName TargetName = TargetNameInfo.getName();
11583   if (!TargetName)
11584     return nullptr;
11585 
11586   // Warn about access declarations.
11587   if (UsingLoc.isInvalid()) {
11588     Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11
11589                                  ? diag::err_access_decl
11590                                  : diag::warn_access_decl_deprecated)
11591         << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
11592   }
11593 
11594   if (EllipsisLoc.isInvalid()) {
11595     if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
11596         DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
11597       return nullptr;
11598   } else {
11599     if (!SS.getScopeRep()->containsUnexpandedParameterPack() &&
11600         !TargetNameInfo.containsUnexpandedParameterPack()) {
11601       Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
11602         << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc());
11603       EllipsisLoc = SourceLocation();
11604     }
11605   }
11606 
11607   NamedDecl *UD =
11608       BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc,
11609                             SS, TargetNameInfo, EllipsisLoc, AttrList,
11610                             /*IsInstantiation*/false);
11611   if (UD)
11612     PushOnScopeChains(UD, S, /*AddToContext*/ false);
11613 
11614   return UD;
11615 }
11616 
11617 /// Determine whether a using declaration considers the given
11618 /// declarations as "equivalent", e.g., if they are redeclarations of
11619 /// the same entity or are both typedefs of the same type.
11620 static bool
IsEquivalentForUsingDecl(ASTContext & Context,NamedDecl * D1,NamedDecl * D2)11621 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
11622   if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
11623     return true;
11624 
11625   if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
11626     if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
11627       return Context.hasSameType(TD1->getUnderlyingType(),
11628                                  TD2->getUnderlyingType());
11629 
11630   return false;
11631 }
11632 
11633 
11634 /// Determines whether to create a using shadow decl for a particular
11635 /// decl, given the set of decls existing prior to this using lookup.
CheckUsingShadowDecl(UsingDecl * Using,NamedDecl * Orig,const LookupResult & Previous,UsingShadowDecl * & PrevShadow)11636 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
11637                                 const LookupResult &Previous,
11638                                 UsingShadowDecl *&PrevShadow) {
11639   // Diagnose finding a decl which is not from a base class of the
11640   // current class.  We do this now because there are cases where this
11641   // function will silently decide not to build a shadow decl, which
11642   // will pre-empt further diagnostics.
11643   //
11644   // We don't need to do this in C++11 because we do the check once on
11645   // the qualifier.
11646   //
11647   // FIXME: diagnose the following if we care enough:
11648   //   struct A { int foo; };
11649   //   struct B : A { using A::foo; };
11650   //   template <class T> struct C : A {};
11651   //   template <class T> struct D : C<T> { using B::foo; } // <---
11652   // This is invalid (during instantiation) in C++03 because B::foo
11653   // resolves to the using decl in B, which is not a base class of D<T>.
11654   // We can't diagnose it immediately because C<T> is an unknown
11655   // specialization.  The UsingShadowDecl in D<T> then points directly
11656   // to A::foo, which will look well-formed when we instantiate.
11657   // The right solution is to not collapse the shadow-decl chain.
11658   if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
11659     DeclContext *OrigDC = Orig->getDeclContext();
11660 
11661     // Handle enums and anonymous structs.
11662     if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
11663     CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
11664     while (OrigRec->isAnonymousStructOrUnion())
11665       OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
11666 
11667     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
11668       if (OrigDC == CurContext) {
11669         Diag(Using->getLocation(),
11670              diag::err_using_decl_nested_name_specifier_is_current_class)
11671           << Using->getQualifierLoc().getSourceRange();
11672         Diag(Orig->getLocation(), diag::note_using_decl_target);
11673         Using->setInvalidDecl();
11674         return true;
11675       }
11676 
11677       Diag(Using->getQualifierLoc().getBeginLoc(),
11678            diag::err_using_decl_nested_name_specifier_is_not_base_class)
11679         << Using->getQualifier()
11680         << cast<CXXRecordDecl>(CurContext)
11681         << Using->getQualifierLoc().getSourceRange();
11682       Diag(Orig->getLocation(), diag::note_using_decl_target);
11683       Using->setInvalidDecl();
11684       return true;
11685     }
11686   }
11687 
11688   if (Previous.empty()) return false;
11689 
11690   NamedDecl *Target = Orig;
11691   if (isa<UsingShadowDecl>(Target))
11692     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
11693 
11694   // If the target happens to be one of the previous declarations, we
11695   // don't have a conflict.
11696   //
11697   // FIXME: but we might be increasing its access, in which case we
11698   // should redeclare it.
11699   NamedDecl *NonTag = nullptr, *Tag = nullptr;
11700   bool FoundEquivalentDecl = false;
11701   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
11702          I != E; ++I) {
11703     NamedDecl *D = (*I)->getUnderlyingDecl();
11704     // We can have UsingDecls in our Previous results because we use the same
11705     // LookupResult for checking whether the UsingDecl itself is a valid
11706     // redeclaration.
11707     if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D))
11708       continue;
11709 
11710     if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
11711       // C++ [class.mem]p19:
11712       //   If T is the name of a class, then [every named member other than
11713       //   a non-static data member] shall have a name different from T
11714       if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) &&
11715           !isa<IndirectFieldDecl>(Target) &&
11716           !isa<UnresolvedUsingValueDecl>(Target) &&
11717           DiagnoseClassNameShadow(
11718               CurContext,
11719               DeclarationNameInfo(Using->getDeclName(), Using->getLocation())))
11720         return true;
11721     }
11722 
11723     if (IsEquivalentForUsingDecl(Context, D, Target)) {
11724       if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
11725         PrevShadow = Shadow;
11726       FoundEquivalentDecl = true;
11727     } else if (isEquivalentInternalLinkageDeclaration(D, Target)) {
11728       // We don't conflict with an existing using shadow decl of an equivalent
11729       // declaration, but we're not a redeclaration of it.
11730       FoundEquivalentDecl = true;
11731     }
11732 
11733     if (isVisible(D))
11734       (isa<TagDecl>(D) ? Tag : NonTag) = D;
11735   }
11736 
11737   if (FoundEquivalentDecl)
11738     return false;
11739 
11740   if (FunctionDecl *FD = Target->getAsFunction()) {
11741     NamedDecl *OldDecl = nullptr;
11742     switch (CheckOverload(nullptr, FD, Previous, OldDecl,
11743                           /*IsForUsingDecl*/ true)) {
11744     case Ovl_Overload:
11745       return false;
11746 
11747     case Ovl_NonFunction:
11748       Diag(Using->getLocation(), diag::err_using_decl_conflict);
11749       break;
11750 
11751     // We found a decl with the exact signature.
11752     case Ovl_Match:
11753       // If we're in a record, we want to hide the target, so we
11754       // return true (without a diagnostic) to tell the caller not to
11755       // build a shadow decl.
11756       if (CurContext->isRecord())
11757         return true;
11758 
11759       // If we're not in a record, this is an error.
11760       Diag(Using->getLocation(), diag::err_using_decl_conflict);
11761       break;
11762     }
11763 
11764     Diag(Target->getLocation(), diag::note_using_decl_target);
11765     Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
11766     Using->setInvalidDecl();
11767     return true;
11768   }
11769 
11770   // Target is not a function.
11771 
11772   if (isa<TagDecl>(Target)) {
11773     // No conflict between a tag and a non-tag.
11774     if (!Tag) return false;
11775 
11776     Diag(Using->getLocation(), diag::err_using_decl_conflict);
11777     Diag(Target->getLocation(), diag::note_using_decl_target);
11778     Diag(Tag->getLocation(), diag::note_using_decl_conflict);
11779     Using->setInvalidDecl();
11780     return true;
11781   }
11782 
11783   // No conflict between a tag and a non-tag.
11784   if (!NonTag) return false;
11785 
11786   Diag(Using->getLocation(), diag::err_using_decl_conflict);
11787   Diag(Target->getLocation(), diag::note_using_decl_target);
11788   Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
11789   Using->setInvalidDecl();
11790   return true;
11791 }
11792 
11793 /// Determine whether a direct base class is a virtual base class.
isVirtualDirectBase(CXXRecordDecl * Derived,CXXRecordDecl * Base)11794 static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) {
11795   if (!Derived->getNumVBases())
11796     return false;
11797   for (auto &B : Derived->bases())
11798     if (B.getType()->getAsCXXRecordDecl() == Base)
11799       return B.isVirtual();
11800   llvm_unreachable("not a direct base class");
11801 }
11802 
11803 /// Builds a shadow declaration corresponding to a 'using' declaration.
BuildUsingShadowDecl(Scope * S,UsingDecl * UD,NamedDecl * Orig,UsingShadowDecl * PrevDecl)11804 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
11805                                             UsingDecl *UD,
11806                                             NamedDecl *Orig,
11807                                             UsingShadowDecl *PrevDecl) {
11808   // If we resolved to another shadow declaration, just coalesce them.
11809   NamedDecl *Target = Orig;
11810   if (isa<UsingShadowDecl>(Target)) {
11811     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
11812     assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
11813   }
11814 
11815   NamedDecl *NonTemplateTarget = Target;
11816   if (auto *TargetTD = dyn_cast<TemplateDecl>(Target))
11817     NonTemplateTarget = TargetTD->getTemplatedDecl();
11818 
11819   UsingShadowDecl *Shadow;
11820   if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) {
11821     bool IsVirtualBase =
11822         isVirtualDirectBase(cast<CXXRecordDecl>(CurContext),
11823                             UD->getQualifier()->getAsRecordDecl());
11824     Shadow = ConstructorUsingShadowDecl::Create(
11825         Context, CurContext, UD->getLocation(), UD, Orig, IsVirtualBase);
11826   } else {
11827     Shadow = UsingShadowDecl::Create(Context, CurContext, UD->getLocation(), UD,
11828                                      Target);
11829   }
11830   UD->addShadowDecl(Shadow);
11831 
11832   Shadow->setAccess(UD->getAccess());
11833   if (Orig->isInvalidDecl() || UD->isInvalidDecl())
11834     Shadow->setInvalidDecl();
11835 
11836   Shadow->setPreviousDecl(PrevDecl);
11837 
11838   if (S)
11839     PushOnScopeChains(Shadow, S);
11840   else
11841     CurContext->addDecl(Shadow);
11842 
11843 
11844   return Shadow;
11845 }
11846 
11847 /// Hides a using shadow declaration.  This is required by the current
11848 /// using-decl implementation when a resolvable using declaration in a
11849 /// class is followed by a declaration which would hide or override
11850 /// one or more of the using decl's targets; for example:
11851 ///
11852 ///   struct Base { void foo(int); };
11853 ///   struct Derived : Base {
11854 ///     using Base::foo;
11855 ///     void foo(int);
11856 ///   };
11857 ///
11858 /// The governing language is C++03 [namespace.udecl]p12:
11859 ///
11860 ///   When a using-declaration brings names from a base class into a
11861 ///   derived class scope, member functions in the derived class
11862 ///   override and/or hide member functions with the same name and
11863 ///   parameter types in a base class (rather than conflicting).
11864 ///
11865 /// There are two ways to implement this:
11866 ///   (1) optimistically create shadow decls when they're not hidden
11867 ///       by existing declarations, or
11868 ///   (2) don't create any shadow decls (or at least don't make them
11869 ///       visible) until we've fully parsed/instantiated the class.
11870 /// The problem with (1) is that we might have to retroactively remove
11871 /// a shadow decl, which requires several O(n) operations because the
11872 /// decl structures are (very reasonably) not designed for removal.
11873 /// (2) avoids this but is very fiddly and phase-dependent.
HideUsingShadowDecl(Scope * S,UsingShadowDecl * Shadow)11874 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
11875   if (Shadow->getDeclName().getNameKind() ==
11876         DeclarationName::CXXConversionFunctionName)
11877     cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
11878 
11879   // Remove it from the DeclContext...
11880   Shadow->getDeclContext()->removeDecl(Shadow);
11881 
11882   // ...and the scope, if applicable...
11883   if (S) {
11884     S->RemoveDecl(Shadow);
11885     IdResolver.RemoveDecl(Shadow);
11886   }
11887 
11888   // ...and the using decl.
11889   Shadow->getUsingDecl()->removeShadowDecl(Shadow);
11890 
11891   // TODO: complain somehow if Shadow was used.  It shouldn't
11892   // be possible for this to happen, because...?
11893 }
11894 
11895 /// Find the base specifier for a base class with the given type.
findDirectBaseWithType(CXXRecordDecl * Derived,QualType DesiredBase,bool & AnyDependentBases)11896 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
11897                                                 QualType DesiredBase,
11898                                                 bool &AnyDependentBases) {
11899   // Check whether the named type is a direct base class.
11900   CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified()
11901     .getUnqualifiedType();
11902   for (auto &Base : Derived->bases()) {
11903     CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
11904     if (CanonicalDesiredBase == BaseType)
11905       return &Base;
11906     if (BaseType->isDependentType())
11907       AnyDependentBases = true;
11908   }
11909   return nullptr;
11910 }
11911 
11912 namespace {
11913 class UsingValidatorCCC final : public CorrectionCandidateCallback {
11914 public:
UsingValidatorCCC(bool HasTypenameKeyword,bool IsInstantiation,NestedNameSpecifier * NNS,CXXRecordDecl * RequireMemberOf)11915   UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
11916                     NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
11917       : HasTypenameKeyword(HasTypenameKeyword),
11918         IsInstantiation(IsInstantiation), OldNNS(NNS),
11919         RequireMemberOf(RequireMemberOf) {}
11920 
ValidateCandidate(const TypoCorrection & Candidate)11921   bool ValidateCandidate(const TypoCorrection &Candidate) override {
11922     NamedDecl *ND = Candidate.getCorrectionDecl();
11923 
11924     // Keywords are not valid here.
11925     if (!ND || isa<NamespaceDecl>(ND))
11926       return false;
11927 
11928     // Completely unqualified names are invalid for a 'using' declaration.
11929     if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
11930       return false;
11931 
11932     // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would
11933     // reject.
11934 
11935     if (RequireMemberOf) {
11936       auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
11937       if (FoundRecord && FoundRecord->isInjectedClassName()) {
11938         // No-one ever wants a using-declaration to name an injected-class-name
11939         // of a base class, unless they're declaring an inheriting constructor.
11940         ASTContext &Ctx = ND->getASTContext();
11941         if (!Ctx.getLangOpts().CPlusPlus11)
11942           return false;
11943         QualType FoundType = Ctx.getRecordType(FoundRecord);
11944 
11945         // Check that the injected-class-name is named as a member of its own
11946         // type; we don't want to suggest 'using Derived::Base;', since that
11947         // means something else.
11948         NestedNameSpecifier *Specifier =
11949             Candidate.WillReplaceSpecifier()
11950                 ? Candidate.getCorrectionSpecifier()
11951                 : OldNNS;
11952         if (!Specifier->getAsType() ||
11953             !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
11954           return false;
11955 
11956         // Check that this inheriting constructor declaration actually names a
11957         // direct base class of the current class.
11958         bool AnyDependentBases = false;
11959         if (!findDirectBaseWithType(RequireMemberOf,
11960                                     Ctx.getRecordType(FoundRecord),
11961                                     AnyDependentBases) &&
11962             !AnyDependentBases)
11963           return false;
11964       } else {
11965         auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
11966         if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
11967           return false;
11968 
11969         // FIXME: Check that the base class member is accessible?
11970       }
11971     } else {
11972       auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
11973       if (FoundRecord && FoundRecord->isInjectedClassName())
11974         return false;
11975     }
11976 
11977     if (isa<TypeDecl>(ND))
11978       return HasTypenameKeyword || !IsInstantiation;
11979 
11980     return !HasTypenameKeyword;
11981   }
11982 
clone()11983   std::unique_ptr<CorrectionCandidateCallback> clone() override {
11984     return std::make_unique<UsingValidatorCCC>(*this);
11985   }
11986 
11987 private:
11988   bool HasTypenameKeyword;
11989   bool IsInstantiation;
11990   NestedNameSpecifier *OldNNS;
11991   CXXRecordDecl *RequireMemberOf;
11992 };
11993 } // end anonymous namespace
11994 
11995 /// Builds a using declaration.
11996 ///
11997 /// \param IsInstantiation - Whether this call arises from an
11998 ///   instantiation of an unresolved using declaration.  We treat
11999 ///   the lookup differently for these declarations.
BuildUsingDeclaration(Scope * S,AccessSpecifier AS,SourceLocation UsingLoc,bool HasTypenameKeyword,SourceLocation TypenameLoc,CXXScopeSpec & SS,DeclarationNameInfo NameInfo,SourceLocation EllipsisLoc,const ParsedAttributesView & AttrList,bool IsInstantiation)12000 NamedDecl *Sema::BuildUsingDeclaration(
12001     Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
12002     bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
12003     DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
12004     const ParsedAttributesView &AttrList, bool IsInstantiation) {
12005   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
12006   SourceLocation IdentLoc = NameInfo.getLoc();
12007   assert(IdentLoc.isValid() && "Invalid TargetName location.");
12008 
12009   // FIXME: We ignore attributes for now.
12010 
12011   // For an inheriting constructor declaration, the name of the using
12012   // declaration is the name of a constructor in this class, not in the
12013   // base class.
12014   DeclarationNameInfo UsingName = NameInfo;
12015   if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName)
12016     if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext))
12017       UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
12018           Context.getCanonicalType(Context.getRecordType(RD))));
12019 
12020   // Do the redeclaration lookup in the current scope.
12021   LookupResult Previous(*this, UsingName, LookupUsingDeclName,
12022                         ForVisibleRedeclaration);
12023   Previous.setHideTags(false);
12024   if (S) {
12025     LookupName(Previous, S);
12026 
12027     // It is really dumb that we have to do this.
12028     LookupResult::Filter F = Previous.makeFilter();
12029     while (F.hasNext()) {
12030       NamedDecl *D = F.next();
12031       if (!isDeclInScope(D, CurContext, S))
12032         F.erase();
12033       // If we found a local extern declaration that's not ordinarily visible,
12034       // and this declaration is being added to a non-block scope, ignore it.
12035       // We're only checking for scope conflicts here, not also for violations
12036       // of the linkage rules.
12037       else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
12038                !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
12039         F.erase();
12040     }
12041     F.done();
12042   } else {
12043     assert(IsInstantiation && "no scope in non-instantiation");
12044     if (CurContext->isRecord())
12045       LookupQualifiedName(Previous, CurContext);
12046     else {
12047       // No redeclaration check is needed here; in non-member contexts we
12048       // diagnosed all possible conflicts with other using-declarations when
12049       // building the template:
12050       //
12051       // For a dependent non-type using declaration, the only valid case is
12052       // if we instantiate to a single enumerator. We check for conflicts
12053       // between shadow declarations we introduce, and we check in the template
12054       // definition for conflicts between a non-type using declaration and any
12055       // other declaration, which together covers all cases.
12056       //
12057       // A dependent typename using declaration will never successfully
12058       // instantiate, since it will always name a class member, so we reject
12059       // that in the template definition.
12060     }
12061   }
12062 
12063   // Check for invalid redeclarations.
12064   if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
12065                                   SS, IdentLoc, Previous))
12066     return nullptr;
12067 
12068   // Check for bad qualifiers.
12069   if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo,
12070                               IdentLoc))
12071     return nullptr;
12072 
12073   DeclContext *LookupContext = computeDeclContext(SS);
12074   NamedDecl *D;
12075   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
12076   if (!LookupContext || EllipsisLoc.isValid()) {
12077     if (HasTypenameKeyword) {
12078       // FIXME: not all declaration name kinds are legal here
12079       D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
12080                                               UsingLoc, TypenameLoc,
12081                                               QualifierLoc,
12082                                               IdentLoc, NameInfo.getName(),
12083                                               EllipsisLoc);
12084     } else {
12085       D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
12086                                            QualifierLoc, NameInfo, EllipsisLoc);
12087     }
12088     D->setAccess(AS);
12089     CurContext->addDecl(D);
12090     return D;
12091   }
12092 
12093   auto Build = [&](bool Invalid) {
12094     UsingDecl *UD =
12095         UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
12096                           UsingName, HasTypenameKeyword);
12097     UD->setAccess(AS);
12098     CurContext->addDecl(UD);
12099     UD->setInvalidDecl(Invalid);
12100     return UD;
12101   };
12102   auto BuildInvalid = [&]{ return Build(true); };
12103   auto BuildValid = [&]{ return Build(false); };
12104 
12105   if (RequireCompleteDeclContext(SS, LookupContext))
12106     return BuildInvalid();
12107 
12108   // Look up the target name.
12109   LookupResult R(*this, NameInfo, LookupOrdinaryName);
12110 
12111   // Unlike most lookups, we don't always want to hide tag
12112   // declarations: tag names are visible through the using declaration
12113   // even if hidden by ordinary names, *except* in a dependent context
12114   // where it's important for the sanity of two-phase lookup.
12115   if (!IsInstantiation)
12116     R.setHideTags(false);
12117 
12118   // For the purposes of this lookup, we have a base object type
12119   // equal to that of the current context.
12120   if (CurContext->isRecord()) {
12121     R.setBaseObjectType(
12122                    Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
12123   }
12124 
12125   LookupQualifiedName(R, LookupContext);
12126 
12127   // Try to correct typos if possible. If constructor name lookup finds no
12128   // results, that means the named class has no explicit constructors, and we
12129   // suppressed declaring implicit ones (probably because it's dependent or
12130   // invalid).
12131   if (R.empty() &&
12132       NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
12133     // HACK 2017-01-08: Work around an issue with libstdc++'s detection of
12134     // ::gets. Sometimes it believes that glibc provides a ::gets in cases where
12135     // it does not. The issue was fixed in libstdc++ 6.3 (2016-12-21) and later.
12136     auto *II = NameInfo.getName().getAsIdentifierInfo();
12137     if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") &&
12138         CurContext->isStdNamespace() &&
12139         isa<TranslationUnitDecl>(LookupContext) &&
12140         getSourceManager().isInSystemHeader(UsingLoc))
12141       return nullptr;
12142     UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
12143                           dyn_cast<CXXRecordDecl>(CurContext));
12144     if (TypoCorrection Corrected =
12145             CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
12146                         CTK_ErrorRecovery)) {
12147       // We reject candidates where DroppedSpecifier == true, hence the
12148       // literal '0' below.
12149       diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
12150                                 << NameInfo.getName() << LookupContext << 0
12151                                 << SS.getRange());
12152 
12153       // If we picked a correction with no attached Decl we can't do anything
12154       // useful with it, bail out.
12155       NamedDecl *ND = Corrected.getCorrectionDecl();
12156       if (!ND)
12157         return BuildInvalid();
12158 
12159       // If we corrected to an inheriting constructor, handle it as one.
12160       auto *RD = dyn_cast<CXXRecordDecl>(ND);
12161       if (RD && RD->isInjectedClassName()) {
12162         // The parent of the injected class name is the class itself.
12163         RD = cast<CXXRecordDecl>(RD->getParent());
12164 
12165         // Fix up the information we'll use to build the using declaration.
12166         if (Corrected.WillReplaceSpecifier()) {
12167           NestedNameSpecifierLocBuilder Builder;
12168           Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
12169                               QualifierLoc.getSourceRange());
12170           QualifierLoc = Builder.getWithLocInContext(Context);
12171         }
12172 
12173         // In this case, the name we introduce is the name of a derived class
12174         // constructor.
12175         auto *CurClass = cast<CXXRecordDecl>(CurContext);
12176         UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
12177             Context.getCanonicalType(Context.getRecordType(CurClass))));
12178         UsingName.setNamedTypeInfo(nullptr);
12179         for (auto *Ctor : LookupConstructors(RD))
12180           R.addDecl(Ctor);
12181         R.resolveKind();
12182       } else {
12183         // FIXME: Pick up all the declarations if we found an overloaded
12184         // function.
12185         UsingName.setName(ND->getDeclName());
12186         R.addDecl(ND);
12187       }
12188     } else {
12189       Diag(IdentLoc, diag::err_no_member)
12190         << NameInfo.getName() << LookupContext << SS.getRange();
12191       return BuildInvalid();
12192     }
12193   }
12194 
12195   if (R.isAmbiguous())
12196     return BuildInvalid();
12197 
12198   if (HasTypenameKeyword) {
12199     // If we asked for a typename and got a non-type decl, error out.
12200     if (!R.getAsSingle<TypeDecl>()) {
12201       Diag(IdentLoc, diag::err_using_typename_non_type);
12202       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
12203         Diag((*I)->getUnderlyingDecl()->getLocation(),
12204              diag::note_using_decl_target);
12205       return BuildInvalid();
12206     }
12207   } else {
12208     // If we asked for a non-typename and we got a type, error out,
12209     // but only if this is an instantiation of an unresolved using
12210     // decl.  Otherwise just silently find the type name.
12211     if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
12212       Diag(IdentLoc, diag::err_using_dependent_value_is_type);
12213       Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
12214       return BuildInvalid();
12215     }
12216   }
12217 
12218   // C++14 [namespace.udecl]p6:
12219   // A using-declaration shall not name a namespace.
12220   if (R.getAsSingle<NamespaceDecl>()) {
12221     Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
12222       << SS.getRange();
12223     return BuildInvalid();
12224   }
12225 
12226   // C++14 [namespace.udecl]p7:
12227   // A using-declaration shall not name a scoped enumerator.
12228   if (auto *ED = R.getAsSingle<EnumConstantDecl>()) {
12229     if (cast<EnumDecl>(ED->getDeclContext())->isScoped()) {
12230       Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_scoped_enum)
12231         << SS.getRange();
12232       return BuildInvalid();
12233     }
12234   }
12235 
12236   UsingDecl *UD = BuildValid();
12237 
12238   // Some additional rules apply to inheriting constructors.
12239   if (UsingName.getName().getNameKind() ==
12240         DeclarationName::CXXConstructorName) {
12241     // Suppress access diagnostics; the access check is instead performed at the
12242     // point of use for an inheriting constructor.
12243     R.suppressDiagnostics();
12244     if (CheckInheritingConstructorUsingDecl(UD))
12245       return UD;
12246   }
12247 
12248   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
12249     UsingShadowDecl *PrevDecl = nullptr;
12250     if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
12251       BuildUsingShadowDecl(S, UD, *I, PrevDecl);
12252   }
12253 
12254   return UD;
12255 }
12256 
BuildUsingPackDecl(NamedDecl * InstantiatedFrom,ArrayRef<NamedDecl * > Expansions)12257 NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
12258                                     ArrayRef<NamedDecl *> Expansions) {
12259   assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) ||
12260          isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) ||
12261          isa<UsingPackDecl>(InstantiatedFrom));
12262 
12263   auto *UPD =
12264       UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions);
12265   UPD->setAccess(InstantiatedFrom->getAccess());
12266   CurContext->addDecl(UPD);
12267   return UPD;
12268 }
12269 
12270 /// Additional checks for a using declaration referring to a constructor name.
CheckInheritingConstructorUsingDecl(UsingDecl * UD)12271 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
12272   assert(!UD->hasTypename() && "expecting a constructor name");
12273 
12274   const Type *SourceType = UD->getQualifier()->getAsType();
12275   assert(SourceType &&
12276          "Using decl naming constructor doesn't have type in scope spec.");
12277   CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
12278 
12279   // Check whether the named type is a direct base class.
12280   bool AnyDependentBases = false;
12281   auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
12282                                       AnyDependentBases);
12283   if (!Base && !AnyDependentBases) {
12284     Diag(UD->getUsingLoc(),
12285          diag::err_using_decl_constructor_not_in_direct_base)
12286       << UD->getNameInfo().getSourceRange()
12287       << QualType(SourceType, 0) << TargetClass;
12288     UD->setInvalidDecl();
12289     return true;
12290   }
12291 
12292   if (Base)
12293     Base->setInheritConstructors();
12294 
12295   return false;
12296 }
12297 
12298 /// Checks that the given using declaration is not an invalid
12299 /// redeclaration.  Note that this is checking only for the using decl
12300 /// itself, not for any ill-formedness among the UsingShadowDecls.
CheckUsingDeclRedeclaration(SourceLocation UsingLoc,bool HasTypenameKeyword,const CXXScopeSpec & SS,SourceLocation NameLoc,const LookupResult & Prev)12301 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
12302                                        bool HasTypenameKeyword,
12303                                        const CXXScopeSpec &SS,
12304                                        SourceLocation NameLoc,
12305                                        const LookupResult &Prev) {
12306   NestedNameSpecifier *Qual = SS.getScopeRep();
12307 
12308   // C++03 [namespace.udecl]p8:
12309   // C++0x [namespace.udecl]p10:
12310   //   A using-declaration is a declaration and can therefore be used
12311   //   repeatedly where (and only where) multiple declarations are
12312   //   allowed.
12313   //
12314   // That's in non-member contexts.
12315   if (!CurContext->getRedeclContext()->isRecord()) {
12316     // A dependent qualifier outside a class can only ever resolve to an
12317     // enumeration type. Therefore it conflicts with any other non-type
12318     // declaration in the same scope.
12319     // FIXME: How should we check for dependent type-type conflicts at block
12320     // scope?
12321     if (Qual->isDependent() && !HasTypenameKeyword) {
12322       for (auto *D : Prev) {
12323         if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) {
12324           bool OldCouldBeEnumerator =
12325               isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D);
12326           Diag(NameLoc,
12327                OldCouldBeEnumerator ? diag::err_redefinition
12328                                     : diag::err_redefinition_different_kind)
12329               << Prev.getLookupName();
12330           Diag(D->getLocation(), diag::note_previous_definition);
12331           return true;
12332         }
12333       }
12334     }
12335     return false;
12336   }
12337 
12338   for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
12339     NamedDecl *D = *I;
12340 
12341     bool DTypename;
12342     NestedNameSpecifier *DQual;
12343     if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
12344       DTypename = UD->hasTypename();
12345       DQual = UD->getQualifier();
12346     } else if (UnresolvedUsingValueDecl *UD
12347                  = dyn_cast<UnresolvedUsingValueDecl>(D)) {
12348       DTypename = false;
12349       DQual = UD->getQualifier();
12350     } else if (UnresolvedUsingTypenameDecl *UD
12351                  = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
12352       DTypename = true;
12353       DQual = UD->getQualifier();
12354     } else continue;
12355 
12356     // using decls differ if one says 'typename' and the other doesn't.
12357     // FIXME: non-dependent using decls?
12358     if (HasTypenameKeyword != DTypename) continue;
12359 
12360     // using decls differ if they name different scopes (but note that
12361     // template instantiation can cause this check to trigger when it
12362     // didn't before instantiation).
12363     if (Context.getCanonicalNestedNameSpecifier(Qual) !=
12364         Context.getCanonicalNestedNameSpecifier(DQual))
12365       continue;
12366 
12367     Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
12368     Diag(D->getLocation(), diag::note_using_decl) << 1;
12369     return true;
12370   }
12371 
12372   return false;
12373 }
12374 
12375 
12376 /// Checks that the given nested-name qualifier used in a using decl
12377 /// in the current context is appropriately related to the current
12378 /// scope.  If an error is found, diagnoses it and returns true.
CheckUsingDeclQualifier(SourceLocation UsingLoc,bool HasTypename,const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,SourceLocation NameLoc)12379 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
12380                                    bool HasTypename,
12381                                    const CXXScopeSpec &SS,
12382                                    const DeclarationNameInfo &NameInfo,
12383                                    SourceLocation NameLoc) {
12384   DeclContext *NamedContext = computeDeclContext(SS);
12385 
12386   if (!CurContext->isRecord()) {
12387     // C++03 [namespace.udecl]p3:
12388     // C++0x [namespace.udecl]p8:
12389     //   A using-declaration for a class member shall be a member-declaration.
12390 
12391     // If we weren't able to compute a valid scope, it might validly be a
12392     // dependent class scope or a dependent enumeration unscoped scope. If
12393     // we have a 'typename' keyword, the scope must resolve to a class type.
12394     if ((HasTypename && !NamedContext) ||
12395         (NamedContext && NamedContext->getRedeclContext()->isRecord())) {
12396       auto *RD = NamedContext
12397                      ? cast<CXXRecordDecl>(NamedContext->getRedeclContext())
12398                      : nullptr;
12399       if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD))
12400         RD = nullptr;
12401 
12402       Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
12403         << SS.getRange();
12404 
12405       // If we have a complete, non-dependent source type, try to suggest a
12406       // way to get the same effect.
12407       if (!RD)
12408         return true;
12409 
12410       // Find what this using-declaration was referring to.
12411       LookupResult R(*this, NameInfo, LookupOrdinaryName);
12412       R.setHideTags(false);
12413       R.suppressDiagnostics();
12414       LookupQualifiedName(R, RD);
12415 
12416       if (R.getAsSingle<TypeDecl>()) {
12417         if (getLangOpts().CPlusPlus11) {
12418           // Convert 'using X::Y;' to 'using Y = X::Y;'.
12419           Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
12420             << 0 // alias declaration
12421             << FixItHint::CreateInsertion(SS.getBeginLoc(),
12422                                           NameInfo.getName().getAsString() +
12423                                               " = ");
12424         } else {
12425           // Convert 'using X::Y;' to 'typedef X::Y Y;'.
12426           SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc());
12427           Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
12428             << 1 // typedef declaration
12429             << FixItHint::CreateReplacement(UsingLoc, "typedef")
12430             << FixItHint::CreateInsertion(
12431                    InsertLoc, " " + NameInfo.getName().getAsString());
12432         }
12433       } else if (R.getAsSingle<VarDecl>()) {
12434         // Don't provide a fixit outside C++11 mode; we don't want to suggest
12435         // repeating the type of the static data member here.
12436         FixItHint FixIt;
12437         if (getLangOpts().CPlusPlus11) {
12438           // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
12439           FixIt = FixItHint::CreateReplacement(
12440               UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
12441         }
12442 
12443         Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
12444           << 2 // reference declaration
12445           << FixIt;
12446       } else if (R.getAsSingle<EnumConstantDecl>()) {
12447         // Don't provide a fixit outside C++11 mode; we don't want to suggest
12448         // repeating the type of the enumeration here, and we can't do so if
12449         // the type is anonymous.
12450         FixItHint FixIt;
12451         if (getLangOpts().CPlusPlus11) {
12452           // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
12453           FixIt = FixItHint::CreateReplacement(
12454               UsingLoc,
12455               "constexpr auto " + NameInfo.getName().getAsString() + " = ");
12456         }
12457 
12458         Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
12459           << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable
12460           << FixIt;
12461       }
12462       return true;
12463     }
12464 
12465     // Otherwise, this might be valid.
12466     return false;
12467   }
12468 
12469   // The current scope is a record.
12470 
12471   // If the named context is dependent, we can't decide much.
12472   if (!NamedContext) {
12473     // FIXME: in C++0x, we can diagnose if we can prove that the
12474     // nested-name-specifier does not refer to a base class, which is
12475     // still possible in some cases.
12476 
12477     // Otherwise we have to conservatively report that things might be
12478     // okay.
12479     return false;
12480   }
12481 
12482   if (!NamedContext->isRecord()) {
12483     // Ideally this would point at the last name in the specifier,
12484     // but we don't have that level of source info.
12485     Diag(SS.getRange().getBegin(),
12486          diag::err_using_decl_nested_name_specifier_is_not_class)
12487       << SS.getScopeRep() << SS.getRange();
12488     return true;
12489   }
12490 
12491   if (!NamedContext->isDependentContext() &&
12492       RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
12493     return true;
12494 
12495   if (getLangOpts().CPlusPlus11) {
12496     // C++11 [namespace.udecl]p3:
12497     //   In a using-declaration used as a member-declaration, the
12498     //   nested-name-specifier shall name a base class of the class
12499     //   being defined.
12500 
12501     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
12502                                  cast<CXXRecordDecl>(NamedContext))) {
12503       if (CurContext == NamedContext) {
12504         Diag(NameLoc,
12505              diag::err_using_decl_nested_name_specifier_is_current_class)
12506           << SS.getRange();
12507         return true;
12508       }
12509 
12510       if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) {
12511         Diag(SS.getRange().getBegin(),
12512              diag::err_using_decl_nested_name_specifier_is_not_base_class)
12513           << SS.getScopeRep()
12514           << cast<CXXRecordDecl>(CurContext)
12515           << SS.getRange();
12516       }
12517       return true;
12518     }
12519 
12520     return false;
12521   }
12522 
12523   // C++03 [namespace.udecl]p4:
12524   //   A using-declaration used as a member-declaration shall refer
12525   //   to a member of a base class of the class being defined [etc.].
12526 
12527   // Salient point: SS doesn't have to name a base class as long as
12528   // lookup only finds members from base classes.  Therefore we can
12529   // diagnose here only if we can prove that that can't happen,
12530   // i.e. if the class hierarchies provably don't intersect.
12531 
12532   // TODO: it would be nice if "definitely valid" results were cached
12533   // in the UsingDecl and UsingShadowDecl so that these checks didn't
12534   // need to be repeated.
12535 
12536   llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases;
12537   auto Collect = [&Bases](const CXXRecordDecl *Base) {
12538     Bases.insert(Base);
12539     return true;
12540   };
12541 
12542   // Collect all bases. Return false if we find a dependent base.
12543   if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect))
12544     return false;
12545 
12546   // Returns true if the base is dependent or is one of the accumulated base
12547   // classes.
12548   auto IsNotBase = [&Bases](const CXXRecordDecl *Base) {
12549     return !Bases.count(Base);
12550   };
12551 
12552   // Return false if the class has a dependent base or if it or one
12553   // of its bases is present in the base set of the current context.
12554   if (Bases.count(cast<CXXRecordDecl>(NamedContext)) ||
12555       !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase))
12556     return false;
12557 
12558   Diag(SS.getRange().getBegin(),
12559        diag::err_using_decl_nested_name_specifier_is_not_base_class)
12560     << SS.getScopeRep()
12561     << cast<CXXRecordDecl>(CurContext)
12562     << SS.getRange();
12563 
12564   return true;
12565 }
12566 
ActOnAliasDeclaration(Scope * S,AccessSpecifier AS,MultiTemplateParamsArg TemplateParamLists,SourceLocation UsingLoc,UnqualifiedId & Name,const ParsedAttributesView & AttrList,TypeResult Type,Decl * DeclFromDeclSpec)12567 Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS,
12568                                   MultiTemplateParamsArg TemplateParamLists,
12569                                   SourceLocation UsingLoc, UnqualifiedId &Name,
12570                                   const ParsedAttributesView &AttrList,
12571                                   TypeResult Type, Decl *DeclFromDeclSpec) {
12572   // Skip up to the relevant declaration scope.
12573   while (S->isTemplateParamScope())
12574     S = S->getParent();
12575   assert((S->getFlags() & Scope::DeclScope) &&
12576          "got alias-declaration outside of declaration scope");
12577 
12578   if (Type.isInvalid())
12579     return nullptr;
12580 
12581   bool Invalid = false;
12582   DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
12583   TypeSourceInfo *TInfo = nullptr;
12584   GetTypeFromParser(Type.get(), &TInfo);
12585 
12586   if (DiagnoseClassNameShadow(CurContext, NameInfo))
12587     return nullptr;
12588 
12589   if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
12590                                       UPPC_DeclarationType)) {
12591     Invalid = true;
12592     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
12593                                              TInfo->getTypeLoc().getBeginLoc());
12594   }
12595 
12596   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
12597                         TemplateParamLists.size()
12598                             ? forRedeclarationInCurContext()
12599                             : ForVisibleRedeclaration);
12600   LookupName(Previous, S);
12601 
12602   // Warn about shadowing the name of a template parameter.
12603   if (Previous.isSingleResult() &&
12604       Previous.getFoundDecl()->isTemplateParameter()) {
12605     DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
12606     Previous.clear();
12607   }
12608 
12609   assert(Name.Kind == UnqualifiedIdKind::IK_Identifier &&
12610          "name in alias declaration must be an identifier");
12611   TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
12612                                                Name.StartLocation,
12613                                                Name.Identifier, TInfo);
12614 
12615   NewTD->setAccess(AS);
12616 
12617   if (Invalid)
12618     NewTD->setInvalidDecl();
12619 
12620   ProcessDeclAttributeList(S, NewTD, AttrList);
12621   AddPragmaAttributes(S, NewTD);
12622 
12623   CheckTypedefForVariablyModifiedType(S, NewTD);
12624   Invalid |= NewTD->isInvalidDecl();
12625 
12626   bool Redeclaration = false;
12627 
12628   NamedDecl *NewND;
12629   if (TemplateParamLists.size()) {
12630     TypeAliasTemplateDecl *OldDecl = nullptr;
12631     TemplateParameterList *OldTemplateParams = nullptr;
12632 
12633     if (TemplateParamLists.size() != 1) {
12634       Diag(UsingLoc, diag::err_alias_template_extra_headers)
12635         << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
12636          TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
12637     }
12638     TemplateParameterList *TemplateParams = TemplateParamLists[0];
12639 
12640     // Check that we can declare a template here.
12641     if (CheckTemplateDeclScope(S, TemplateParams))
12642       return nullptr;
12643 
12644     // Only consider previous declarations in the same scope.
12645     FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
12646                          /*ExplicitInstantiationOrSpecialization*/false);
12647     if (!Previous.empty()) {
12648       Redeclaration = true;
12649 
12650       OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
12651       if (!OldDecl && !Invalid) {
12652         Diag(UsingLoc, diag::err_redefinition_different_kind)
12653           << Name.Identifier;
12654 
12655         NamedDecl *OldD = Previous.getRepresentativeDecl();
12656         if (OldD->getLocation().isValid())
12657           Diag(OldD->getLocation(), diag::note_previous_definition);
12658 
12659         Invalid = true;
12660       }
12661 
12662       if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
12663         if (TemplateParameterListsAreEqual(TemplateParams,
12664                                            OldDecl->getTemplateParameters(),
12665                                            /*Complain=*/true,
12666                                            TPL_TemplateMatch))
12667           OldTemplateParams =
12668               OldDecl->getMostRecentDecl()->getTemplateParameters();
12669         else
12670           Invalid = true;
12671 
12672         TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
12673         if (!Invalid &&
12674             !Context.hasSameType(OldTD->getUnderlyingType(),
12675                                  NewTD->getUnderlyingType())) {
12676           // FIXME: The C++0x standard does not clearly say this is ill-formed,
12677           // but we can't reasonably accept it.
12678           Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
12679             << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
12680           if (OldTD->getLocation().isValid())
12681             Diag(OldTD->getLocation(), diag::note_previous_definition);
12682           Invalid = true;
12683         }
12684       }
12685     }
12686 
12687     // Merge any previous default template arguments into our parameters,
12688     // and check the parameter list.
12689     if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
12690                                    TPC_TypeAliasTemplate))
12691       return nullptr;
12692 
12693     TypeAliasTemplateDecl *NewDecl =
12694       TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
12695                                     Name.Identifier, TemplateParams,
12696                                     NewTD);
12697     NewTD->setDescribedAliasTemplate(NewDecl);
12698 
12699     NewDecl->setAccess(AS);
12700 
12701     if (Invalid)
12702       NewDecl->setInvalidDecl();
12703     else if (OldDecl) {
12704       NewDecl->setPreviousDecl(OldDecl);
12705       CheckRedeclarationModuleOwnership(NewDecl, OldDecl);
12706     }
12707 
12708     NewND = NewDecl;
12709   } else {
12710     if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) {
12711       setTagNameForLinkagePurposes(TD, NewTD);
12712       handleTagNumbering(TD, S);
12713     }
12714     ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
12715     NewND = NewTD;
12716   }
12717 
12718   PushOnScopeChains(NewND, S);
12719   ActOnDocumentableDecl(NewND);
12720   return NewND;
12721 }
12722 
ActOnNamespaceAliasDef(Scope * S,SourceLocation NamespaceLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)12723 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
12724                                    SourceLocation AliasLoc,
12725                                    IdentifierInfo *Alias, CXXScopeSpec &SS,
12726                                    SourceLocation IdentLoc,
12727                                    IdentifierInfo *Ident) {
12728 
12729   // Lookup the namespace name.
12730   LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
12731   LookupParsedName(R, S, &SS);
12732 
12733   if (R.isAmbiguous())
12734     return nullptr;
12735 
12736   if (R.empty()) {
12737     if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
12738       Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
12739       return nullptr;
12740     }
12741   }
12742   assert(!R.isAmbiguous() && !R.empty());
12743   NamedDecl *ND = R.getRepresentativeDecl();
12744 
12745   // Check if we have a previous declaration with the same name.
12746   LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName,
12747                      ForVisibleRedeclaration);
12748   LookupName(PrevR, S);
12749 
12750   // Check we're not shadowing a template parameter.
12751   if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) {
12752     DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl());
12753     PrevR.clear();
12754   }
12755 
12756   // Filter out any other lookup result from an enclosing scope.
12757   FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false,
12758                        /*AllowInlineNamespace*/false);
12759 
12760   // Find the previous declaration and check that we can redeclare it.
12761   NamespaceAliasDecl *Prev = nullptr;
12762   if (PrevR.isSingleResult()) {
12763     NamedDecl *PrevDecl = PrevR.getRepresentativeDecl();
12764     if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
12765       // We already have an alias with the same name that points to the same
12766       // namespace; check that it matches.
12767       if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) {
12768         Prev = AD;
12769       } else if (isVisible(PrevDecl)) {
12770         Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
12771           << Alias;
12772         Diag(AD->getLocation(), diag::note_previous_namespace_alias)
12773           << AD->getNamespace();
12774         return nullptr;
12775       }
12776     } else if (isVisible(PrevDecl)) {
12777       unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl())
12778                             ? diag::err_redefinition
12779                             : diag::err_redefinition_different_kind;
12780       Diag(AliasLoc, DiagID) << Alias;
12781       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12782       return nullptr;
12783     }
12784   }
12785 
12786   // The use of a nested name specifier may trigger deprecation warnings.
12787   DiagnoseUseOfDecl(ND, IdentLoc);
12788 
12789   NamespaceAliasDecl *AliasDecl =
12790     NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
12791                                Alias, SS.getWithLocInContext(Context),
12792                                IdentLoc, ND);
12793   if (Prev)
12794     AliasDecl->setPreviousDecl(Prev);
12795 
12796   PushOnScopeChains(AliasDecl, S);
12797   return AliasDecl;
12798 }
12799 
12800 namespace {
12801 struct SpecialMemberExceptionSpecInfo
12802     : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> {
12803   SourceLocation Loc;
12804   Sema::ImplicitExceptionSpecification ExceptSpec;
12805 
SpecialMemberExceptionSpecInfo__anonb2a824813511::SpecialMemberExceptionSpecInfo12806   SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD,
12807                                  Sema::CXXSpecialMember CSM,
12808                                  Sema::InheritedConstructorInfo *ICI,
12809                                  SourceLocation Loc)
12810       : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {}
12811 
12812   bool visitBase(CXXBaseSpecifier *Base);
12813   bool visitField(FieldDecl *FD);
12814 
12815   void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
12816                            unsigned Quals);
12817 
12818   void visitSubobjectCall(Subobject Subobj,
12819                           Sema::SpecialMemberOverloadResult SMOR);
12820 };
12821 }
12822 
visitBase(CXXBaseSpecifier * Base)12823 bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) {
12824   auto *RT = Base->getType()->getAs<RecordType>();
12825   if (!RT)
12826     return false;
12827 
12828   auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl());
12829   Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
12830   if (auto *BaseCtor = SMOR.getMethod()) {
12831     visitSubobjectCall(Base, BaseCtor);
12832     return false;
12833   }
12834 
12835   visitClassSubobject(BaseClass, Base, 0);
12836   return false;
12837 }
12838 
visitField(FieldDecl * FD)12839 bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) {
12840   if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) {
12841     Expr *E = FD->getInClassInitializer();
12842     if (!E)
12843       // FIXME: It's a little wasteful to build and throw away a
12844       // CXXDefaultInitExpr here.
12845       // FIXME: We should have a single context note pointing at Loc, and
12846       // this location should be MD->getLocation() instead, since that's
12847       // the location where we actually use the default init expression.
12848       E = S.BuildCXXDefaultInitExpr(Loc, FD).get();
12849     if (E)
12850       ExceptSpec.CalledExpr(E);
12851   } else if (auto *RT = S.Context.getBaseElementType(FD->getType())
12852                             ->getAs<RecordType>()) {
12853     visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD,
12854                         FD->getType().getCVRQualifiers());
12855   }
12856   return false;
12857 }
12858 
visitClassSubobject(CXXRecordDecl * Class,Subobject Subobj,unsigned Quals)12859 void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class,
12860                                                          Subobject Subobj,
12861                                                          unsigned Quals) {
12862   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
12863   bool IsMutable = Field && Field->isMutable();
12864   visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable));
12865 }
12866 
visitSubobjectCall(Subobject Subobj,Sema::SpecialMemberOverloadResult SMOR)12867 void SpecialMemberExceptionSpecInfo::visitSubobjectCall(
12868     Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) {
12869   // Note, if lookup fails, it doesn't matter what exception specification we
12870   // choose because the special member will be deleted.
12871   if (CXXMethodDecl *MD = SMOR.getMethod())
12872     ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD);
12873 }
12874 
tryResolveExplicitSpecifier(ExplicitSpecifier & ExplicitSpec)12875 bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) {
12876   llvm::APSInt Result;
12877   ExprResult Converted = CheckConvertedConstantExpression(
12878       ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool);
12879   ExplicitSpec.setExpr(Converted.get());
12880   if (Converted.isUsable() && !Converted.get()->isValueDependent()) {
12881     ExplicitSpec.setKind(Result.getBoolValue()
12882                              ? ExplicitSpecKind::ResolvedTrue
12883                              : ExplicitSpecKind::ResolvedFalse);
12884     return true;
12885   }
12886   ExplicitSpec.setKind(ExplicitSpecKind::Unresolved);
12887   return false;
12888 }
12889 
ActOnExplicitBoolSpecifier(Expr * ExplicitExpr)12890 ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) {
12891   ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved);
12892   if (!ExplicitExpr->isTypeDependent())
12893     tryResolveExplicitSpecifier(ES);
12894   return ES;
12895 }
12896 
12897 static Sema::ImplicitExceptionSpecification
ComputeDefaultedSpecialMemberExceptionSpec(Sema & S,SourceLocation Loc,CXXMethodDecl * MD,Sema::CXXSpecialMember CSM,Sema::InheritedConstructorInfo * ICI)12898 ComputeDefaultedSpecialMemberExceptionSpec(
12899     Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
12900     Sema::InheritedConstructorInfo *ICI) {
12901   ComputingExceptionSpec CES(S, MD, Loc);
12902 
12903   CXXRecordDecl *ClassDecl = MD->getParent();
12904 
12905   // C++ [except.spec]p14:
12906   //   An implicitly declared special member function (Clause 12) shall have an
12907   //   exception-specification. [...]
12908   SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation());
12909   if (ClassDecl->isInvalidDecl())
12910     return Info.ExceptSpec;
12911 
12912   // FIXME: If this diagnostic fires, we're probably missing a check for
12913   // attempting to resolve an exception specification before it's known
12914   // at a higher level.
12915   if (S.RequireCompleteType(MD->getLocation(),
12916                             S.Context.getRecordType(ClassDecl),
12917                             diag::err_exception_spec_incomplete_type))
12918     return Info.ExceptSpec;
12919 
12920   // C++1z [except.spec]p7:
12921   //   [Look for exceptions thrown by] a constructor selected [...] to
12922   //   initialize a potentially constructed subobject,
12923   // C++1z [except.spec]p8:
12924   //   The exception specification for an implicitly-declared destructor, or a
12925   //   destructor without a noexcept-specifier, is potentially-throwing if and
12926   //   only if any of the destructors for any of its potentially constructed
12927   //   subojects is potentially throwing.
12928   // FIXME: We respect the first rule but ignore the "potentially constructed"
12929   // in the second rule to resolve a core issue (no number yet) that would have
12930   // us reject:
12931   //   struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; };
12932   //   struct B : A {};
12933   //   struct C : B { void f(); };
12934   // ... due to giving B::~B() a non-throwing exception specification.
12935   Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases
12936                                 : Info.VisitAllBases);
12937 
12938   return Info.ExceptSpec;
12939 }
12940 
12941 namespace {
12942 /// RAII object to register a special member as being currently declared.
12943 struct DeclaringSpecialMember {
12944   Sema &S;
12945   Sema::SpecialMemberDecl D;
12946   Sema::ContextRAII SavedContext;
12947   bool WasAlreadyBeingDeclared;
12948 
DeclaringSpecialMember__anonb2a824813611::DeclaringSpecialMember12949   DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
12950       : S(S), D(RD, CSM), SavedContext(S, RD) {
12951     WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second;
12952     if (WasAlreadyBeingDeclared)
12953       // This almost never happens, but if it does, ensure that our cache
12954       // doesn't contain a stale result.
12955       S.SpecialMemberCache.clear();
12956     else {
12957       // Register a note to be produced if we encounter an error while
12958       // declaring the special member.
12959       Sema::CodeSynthesisContext Ctx;
12960       Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember;
12961       // FIXME: We don't have a location to use here. Using the class's
12962       // location maintains the fiction that we declare all special members
12963       // with the class, but (1) it's not clear that lying about that helps our
12964       // users understand what's going on, and (2) there may be outer contexts
12965       // on the stack (some of which are relevant) and printing them exposes
12966       // our lies.
12967       Ctx.PointOfInstantiation = RD->getLocation();
12968       Ctx.Entity = RD;
12969       Ctx.SpecialMember = CSM;
12970       S.pushCodeSynthesisContext(Ctx);
12971     }
12972   }
~DeclaringSpecialMember__anonb2a824813611::DeclaringSpecialMember12973   ~DeclaringSpecialMember() {
12974     if (!WasAlreadyBeingDeclared) {
12975       S.SpecialMembersBeingDeclared.erase(D);
12976       S.popCodeSynthesisContext();
12977     }
12978   }
12979 
12980   /// Are we already trying to declare this special member?
isAlreadyBeingDeclared__anonb2a824813611::DeclaringSpecialMember12981   bool isAlreadyBeingDeclared() const {
12982     return WasAlreadyBeingDeclared;
12983   }
12984 };
12985 }
12986 
CheckImplicitSpecialMemberDeclaration(Scope * S,FunctionDecl * FD)12987 void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) {
12988   // Look up any existing declarations, but don't trigger declaration of all
12989   // implicit special members with this name.
12990   DeclarationName Name = FD->getDeclName();
12991   LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName,
12992                  ForExternalRedeclaration);
12993   for (auto *D : FD->getParent()->lookup(Name))
12994     if (auto *Acceptable = R.getAcceptableDecl(D))
12995       R.addDecl(Acceptable);
12996   R.resolveKind();
12997   R.suppressDiagnostics();
12998 
12999   CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/false);
13000 }
13001 
setupImplicitSpecialMemberType(CXXMethodDecl * SpecialMem,QualType ResultTy,ArrayRef<QualType> Args)13002 void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
13003                                           QualType ResultTy,
13004                                           ArrayRef<QualType> Args) {
13005   // Build an exception specification pointing back at this constructor.
13006   FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem);
13007 
13008   LangAS AS = getDefaultCXXMethodAddrSpace();
13009   if (AS != LangAS::Default) {
13010     EPI.TypeQuals.addAddressSpace(AS);
13011   }
13012 
13013   auto QT = Context.getFunctionType(ResultTy, Args, EPI);
13014   SpecialMem->setType(QT);
13015 }
13016 
DeclareImplicitDefaultConstructor(CXXRecordDecl * ClassDecl)13017 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
13018                                                      CXXRecordDecl *ClassDecl) {
13019   // C++ [class.ctor]p5:
13020   //   A default constructor for a class X is a constructor of class X
13021   //   that can be called without an argument. If there is no
13022   //   user-declared constructor for class X, a default constructor is
13023   //   implicitly declared. An implicitly-declared default constructor
13024   //   is an inline public member of its class.
13025   assert(ClassDecl->needsImplicitDefaultConstructor() &&
13026          "Should not build implicit default constructor!");
13027 
13028   DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
13029   if (DSM.isAlreadyBeingDeclared())
13030     return nullptr;
13031 
13032   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13033                                                      CXXDefaultConstructor,
13034                                                      false);
13035 
13036   // Create the actual constructor declaration.
13037   CanQualType ClassType
13038     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
13039   SourceLocation ClassLoc = ClassDecl->getLocation();
13040   DeclarationName Name
13041     = Context.DeclarationNames.getCXXConstructorName(ClassType);
13042   DeclarationNameInfo NameInfo(Name, ClassLoc);
13043   CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
13044       Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(),
13045       /*TInfo=*/nullptr, ExplicitSpecifier(),
13046       /*isInline=*/true, /*isImplicitlyDeclared=*/true,
13047       Constexpr ? ConstexprSpecKind::Constexpr
13048                 : ConstexprSpecKind::Unspecified);
13049   DefaultCon->setAccess(AS_public);
13050   DefaultCon->setDefaulted();
13051 
13052   if (getLangOpts().CUDA) {
13053     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor,
13054                                             DefaultCon,
13055                                             /* ConstRHS */ false,
13056                                             /* Diagnose */ false);
13057   }
13058 
13059   setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, None);
13060 
13061   // We don't need to use SpecialMemberIsTrivial here; triviality for default
13062   // constructors is easy to compute.
13063   DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
13064 
13065   // Note that we have declared this constructor.
13066   ++getASTContext().NumImplicitDefaultConstructorsDeclared;
13067 
13068   Scope *S = getScopeForContext(ClassDecl);
13069   CheckImplicitSpecialMemberDeclaration(S, DefaultCon);
13070 
13071   if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
13072     SetDeclDeleted(DefaultCon, ClassLoc);
13073 
13074   if (S)
13075     PushOnScopeChains(DefaultCon, S, false);
13076   ClassDecl->addDecl(DefaultCon);
13077 
13078   return DefaultCon;
13079 }
13080 
DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)13081 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
13082                                             CXXConstructorDecl *Constructor) {
13083   assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
13084           !Constructor->doesThisDeclarationHaveABody() &&
13085           !Constructor->isDeleted()) &&
13086     "DefineImplicitDefaultConstructor - call it for implicit default ctor");
13087   if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
13088     return;
13089 
13090   CXXRecordDecl *ClassDecl = Constructor->getParent();
13091   assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
13092 
13093   SynthesizedFunctionScope Scope(*this, Constructor);
13094 
13095   // The exception specification is needed because we are defining the
13096   // function.
13097   ResolveExceptionSpec(CurrentLocation,
13098                        Constructor->getType()->castAs<FunctionProtoType>());
13099   MarkVTableUsed(CurrentLocation, ClassDecl);
13100 
13101   // Add a context note for diagnostics produced after this point.
13102   Scope.addContextNote(CurrentLocation);
13103 
13104   if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) {
13105     Constructor->setInvalidDecl();
13106     return;
13107   }
13108 
13109   SourceLocation Loc = Constructor->getEndLoc().isValid()
13110                            ? Constructor->getEndLoc()
13111                            : Constructor->getLocation();
13112   Constructor->setBody(new (Context) CompoundStmt(Loc));
13113   Constructor->markUsed(Context);
13114 
13115   if (ASTMutationListener *L = getASTMutationListener()) {
13116     L->CompletedImplicitDefinition(Constructor);
13117   }
13118 
13119   DiagnoseUninitializedFields(*this, Constructor);
13120 }
13121 
ActOnFinishDelayedMemberInitializers(Decl * D)13122 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
13123   // Perform any delayed checks on exception specifications.
13124   CheckDelayedMemberExceptionSpecs();
13125 }
13126 
13127 /// Find or create the fake constructor we synthesize to model constructing an
13128 /// object of a derived class via a constructor of a base class.
13129 CXXConstructorDecl *
findInheritingConstructor(SourceLocation Loc,CXXConstructorDecl * BaseCtor,ConstructorUsingShadowDecl * Shadow)13130 Sema::findInheritingConstructor(SourceLocation Loc,
13131                                 CXXConstructorDecl *BaseCtor,
13132                                 ConstructorUsingShadowDecl *Shadow) {
13133   CXXRecordDecl *Derived = Shadow->getParent();
13134   SourceLocation UsingLoc = Shadow->getLocation();
13135 
13136   // FIXME: Add a new kind of DeclarationName for an inherited constructor.
13137   // For now we use the name of the base class constructor as a member of the
13138   // derived class to indicate a (fake) inherited constructor name.
13139   DeclarationName Name = BaseCtor->getDeclName();
13140 
13141   // Check to see if we already have a fake constructor for this inherited
13142   // constructor call.
13143   for (NamedDecl *Ctor : Derived->lookup(Name))
13144     if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor)
13145                                ->getInheritedConstructor()
13146                                .getConstructor(),
13147                            BaseCtor))
13148       return cast<CXXConstructorDecl>(Ctor);
13149 
13150   DeclarationNameInfo NameInfo(Name, UsingLoc);
13151   TypeSourceInfo *TInfo =
13152       Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc);
13153   FunctionProtoTypeLoc ProtoLoc =
13154       TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
13155 
13156   // Check the inherited constructor is valid and find the list of base classes
13157   // from which it was inherited.
13158   InheritedConstructorInfo ICI(*this, Loc, Shadow);
13159 
13160   bool Constexpr =
13161       BaseCtor->isConstexpr() &&
13162       defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor,
13163                                         false, BaseCtor, &ICI);
13164 
13165   CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
13166       Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo,
13167       BaseCtor->getExplicitSpecifier(), /*isInline=*/true,
13168       /*isImplicitlyDeclared=*/true,
13169       Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified,
13170       InheritedConstructor(Shadow, BaseCtor),
13171       BaseCtor->getTrailingRequiresClause());
13172   if (Shadow->isInvalidDecl())
13173     DerivedCtor->setInvalidDecl();
13174 
13175   // Build an unevaluated exception specification for this fake constructor.
13176   const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>();
13177   FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
13178   EPI.ExceptionSpec.Type = EST_Unevaluated;
13179   EPI.ExceptionSpec.SourceDecl = DerivedCtor;
13180   DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
13181                                                FPT->getParamTypes(), EPI));
13182 
13183   // Build the parameter declarations.
13184   SmallVector<ParmVarDecl *, 16> ParamDecls;
13185   for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
13186     TypeSourceInfo *TInfo =
13187         Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
13188     ParmVarDecl *PD = ParmVarDecl::Create(
13189         Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
13190         FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr);
13191     PD->setScopeInfo(0, I);
13192     PD->setImplicit();
13193     // Ensure attributes are propagated onto parameters (this matters for
13194     // format, pass_object_size, ...).
13195     mergeDeclAttributes(PD, BaseCtor->getParamDecl(I));
13196     ParamDecls.push_back(PD);
13197     ProtoLoc.setParam(I, PD);
13198   }
13199 
13200   // Set up the new constructor.
13201   assert(!BaseCtor->isDeleted() && "should not use deleted constructor");
13202   DerivedCtor->setAccess(BaseCtor->getAccess());
13203   DerivedCtor->setParams(ParamDecls);
13204   Derived->addDecl(DerivedCtor);
13205 
13206   if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI))
13207     SetDeclDeleted(DerivedCtor, UsingLoc);
13208 
13209   return DerivedCtor;
13210 }
13211 
NoteDeletedInheritingConstructor(CXXConstructorDecl * Ctor)13212 void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) {
13213   InheritedConstructorInfo ICI(*this, Ctor->getLocation(),
13214                                Ctor->getInheritedConstructor().getShadowDecl());
13215   ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI,
13216                             /*Diagnose*/true);
13217 }
13218 
DefineInheritingConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)13219 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
13220                                        CXXConstructorDecl *Constructor) {
13221   CXXRecordDecl *ClassDecl = Constructor->getParent();
13222   assert(Constructor->getInheritedConstructor() &&
13223          !Constructor->doesThisDeclarationHaveABody() &&
13224          !Constructor->isDeleted());
13225   if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
13226     return;
13227 
13228   // Initializations are performed "as if by a defaulted default constructor",
13229   // so enter the appropriate scope.
13230   SynthesizedFunctionScope Scope(*this, Constructor);
13231 
13232   // The exception specification is needed because we are defining the
13233   // function.
13234   ResolveExceptionSpec(CurrentLocation,
13235                        Constructor->getType()->castAs<FunctionProtoType>());
13236   MarkVTableUsed(CurrentLocation, ClassDecl);
13237 
13238   // Add a context note for diagnostics produced after this point.
13239   Scope.addContextNote(CurrentLocation);
13240 
13241   ConstructorUsingShadowDecl *Shadow =
13242       Constructor->getInheritedConstructor().getShadowDecl();
13243   CXXConstructorDecl *InheritedCtor =
13244       Constructor->getInheritedConstructor().getConstructor();
13245 
13246   // [class.inhctor.init]p1:
13247   //   initialization proceeds as if a defaulted default constructor is used to
13248   //   initialize the D object and each base class subobject from which the
13249   //   constructor was inherited
13250 
13251   InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow);
13252   CXXRecordDecl *RD = Shadow->getParent();
13253   SourceLocation InitLoc = Shadow->getLocation();
13254 
13255   // Build explicit initializers for all base classes from which the
13256   // constructor was inherited.
13257   SmallVector<CXXCtorInitializer*, 8> Inits;
13258   for (bool VBase : {false, true}) {
13259     for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) {
13260       if (B.isVirtual() != VBase)
13261         continue;
13262 
13263       auto *BaseRD = B.getType()->getAsCXXRecordDecl();
13264       if (!BaseRD)
13265         continue;
13266 
13267       auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor);
13268       if (!BaseCtor.first)
13269         continue;
13270 
13271       MarkFunctionReferenced(CurrentLocation, BaseCtor.first);
13272       ExprResult Init = new (Context) CXXInheritedCtorInitExpr(
13273           InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second);
13274 
13275       auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc);
13276       Inits.push_back(new (Context) CXXCtorInitializer(
13277           Context, TInfo, VBase, InitLoc, Init.get(), InitLoc,
13278           SourceLocation()));
13279     }
13280   }
13281 
13282   // We now proceed as if for a defaulted default constructor, with the relevant
13283   // initializers replaced.
13284 
13285   if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) {
13286     Constructor->setInvalidDecl();
13287     return;
13288   }
13289 
13290   Constructor->setBody(new (Context) CompoundStmt(InitLoc));
13291   Constructor->markUsed(Context);
13292 
13293   if (ASTMutationListener *L = getASTMutationListener()) {
13294     L->CompletedImplicitDefinition(Constructor);
13295   }
13296 
13297   DiagnoseUninitializedFields(*this, Constructor);
13298 }
13299 
DeclareImplicitDestructor(CXXRecordDecl * ClassDecl)13300 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
13301   // C++ [class.dtor]p2:
13302   //   If a class has no user-declared destructor, a destructor is
13303   //   declared implicitly. An implicitly-declared destructor is an
13304   //   inline public member of its class.
13305   assert(ClassDecl->needsImplicitDestructor());
13306 
13307   DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
13308   if (DSM.isAlreadyBeingDeclared())
13309     return nullptr;
13310 
13311   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13312                                                      CXXDestructor,
13313                                                      false);
13314 
13315   // Create the actual destructor declaration.
13316   CanQualType ClassType
13317     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
13318   SourceLocation ClassLoc = ClassDecl->getLocation();
13319   DeclarationName Name
13320     = Context.DeclarationNames.getCXXDestructorName(ClassType);
13321   DeclarationNameInfo NameInfo(Name, ClassLoc);
13322   CXXDestructorDecl *Destructor =
13323       CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
13324                                 QualType(), nullptr, /*isInline=*/true,
13325                                 /*isImplicitlyDeclared=*/true,
13326                                 Constexpr ? ConstexprSpecKind::Constexpr
13327                                           : ConstexprSpecKind::Unspecified);
13328   Destructor->setAccess(AS_public);
13329   Destructor->setDefaulted();
13330 
13331   if (getLangOpts().CUDA) {
13332     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor,
13333                                             Destructor,
13334                                             /* ConstRHS */ false,
13335                                             /* Diagnose */ false);
13336   }
13337 
13338   setupImplicitSpecialMemberType(Destructor, Context.VoidTy, None);
13339 
13340   // We don't need to use SpecialMemberIsTrivial here; triviality for
13341   // destructors is easy to compute.
13342   Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
13343   Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() ||
13344                                 ClassDecl->hasTrivialDestructorForCall());
13345 
13346   // Note that we have declared this destructor.
13347   ++getASTContext().NumImplicitDestructorsDeclared;
13348 
13349   Scope *S = getScopeForContext(ClassDecl);
13350   CheckImplicitSpecialMemberDeclaration(S, Destructor);
13351 
13352   // We can't check whether an implicit destructor is deleted before we complete
13353   // the definition of the class, because its validity depends on the alignment
13354   // of the class. We'll check this from ActOnFields once the class is complete.
13355   if (ClassDecl->isCompleteDefinition() &&
13356       ShouldDeleteSpecialMember(Destructor, CXXDestructor))
13357     SetDeclDeleted(Destructor, ClassLoc);
13358 
13359   // Introduce this destructor into its scope.
13360   if (S)
13361     PushOnScopeChains(Destructor, S, false);
13362   ClassDecl->addDecl(Destructor);
13363 
13364   return Destructor;
13365 }
13366 
DefineImplicitDestructor(SourceLocation CurrentLocation,CXXDestructorDecl * Destructor)13367 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
13368                                     CXXDestructorDecl *Destructor) {
13369   assert((Destructor->isDefaulted() &&
13370           !Destructor->doesThisDeclarationHaveABody() &&
13371           !Destructor->isDeleted()) &&
13372          "DefineImplicitDestructor - call it for implicit default dtor");
13373   if (Destructor->willHaveBody() || Destructor->isInvalidDecl())
13374     return;
13375 
13376   CXXRecordDecl *ClassDecl = Destructor->getParent();
13377   assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
13378 
13379   SynthesizedFunctionScope Scope(*this, Destructor);
13380 
13381   // The exception specification is needed because we are defining the
13382   // function.
13383   ResolveExceptionSpec(CurrentLocation,
13384                        Destructor->getType()->castAs<FunctionProtoType>());
13385   MarkVTableUsed(CurrentLocation, ClassDecl);
13386 
13387   // Add a context note for diagnostics produced after this point.
13388   Scope.addContextNote(CurrentLocation);
13389 
13390   MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
13391                                          Destructor->getParent());
13392 
13393   if (CheckDestructor(Destructor)) {
13394     Destructor->setInvalidDecl();
13395     return;
13396   }
13397 
13398   SourceLocation Loc = Destructor->getEndLoc().isValid()
13399                            ? Destructor->getEndLoc()
13400                            : Destructor->getLocation();
13401   Destructor->setBody(new (Context) CompoundStmt(Loc));
13402   Destructor->markUsed(Context);
13403 
13404   if (ASTMutationListener *L = getASTMutationListener()) {
13405     L->CompletedImplicitDefinition(Destructor);
13406   }
13407 }
13408 
CheckCompleteDestructorVariant(SourceLocation CurrentLocation,CXXDestructorDecl * Destructor)13409 void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation,
13410                                           CXXDestructorDecl *Destructor) {
13411   if (Destructor->isInvalidDecl())
13412     return;
13413 
13414   CXXRecordDecl *ClassDecl = Destructor->getParent();
13415   assert(Context.getTargetInfo().getCXXABI().isMicrosoft() &&
13416          "implicit complete dtors unneeded outside MS ABI");
13417   assert(ClassDecl->getNumVBases() > 0 &&
13418          "complete dtor only exists for classes with vbases");
13419 
13420   SynthesizedFunctionScope Scope(*this, Destructor);
13421 
13422   // Add a context note for diagnostics produced after this point.
13423   Scope.addContextNote(CurrentLocation);
13424 
13425   MarkVirtualBaseDestructorsReferenced(Destructor->getLocation(), ClassDecl);
13426 }
13427 
13428 /// Perform any semantic analysis which needs to be delayed until all
13429 /// pending class member declarations have been parsed.
ActOnFinishCXXMemberDecls()13430 void Sema::ActOnFinishCXXMemberDecls() {
13431   // If the context is an invalid C++ class, just suppress these checks.
13432   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
13433     if (Record->isInvalidDecl()) {
13434       DelayedOverridingExceptionSpecChecks.clear();
13435       DelayedEquivalentExceptionSpecChecks.clear();
13436       return;
13437     }
13438     checkForMultipleExportedDefaultConstructors(*this, Record);
13439   }
13440 }
13441 
ActOnFinishCXXNonNestedClass()13442 void Sema::ActOnFinishCXXNonNestedClass() {
13443   referenceDLLExportedClassMethods();
13444 
13445   if (!DelayedDllExportMemberFunctions.empty()) {
13446     SmallVector<CXXMethodDecl*, 4> WorkList;
13447     std::swap(DelayedDllExportMemberFunctions, WorkList);
13448     for (CXXMethodDecl *M : WorkList) {
13449       DefineDefaultedFunction(*this, M, M->getLocation());
13450 
13451       // Pass the method to the consumer to get emitted. This is not necessary
13452       // for explicit instantiation definitions, as they will get emitted
13453       // anyway.
13454       if (M->getParent()->getTemplateSpecializationKind() !=
13455           TSK_ExplicitInstantiationDefinition)
13456         ActOnFinishInlineFunctionDef(M);
13457     }
13458   }
13459 }
13460 
referenceDLLExportedClassMethods()13461 void Sema::referenceDLLExportedClassMethods() {
13462   if (!DelayedDllExportClasses.empty()) {
13463     // Calling ReferenceDllExportedMembers might cause the current function to
13464     // be called again, so use a local copy of DelayedDllExportClasses.
13465     SmallVector<CXXRecordDecl *, 4> WorkList;
13466     std::swap(DelayedDllExportClasses, WorkList);
13467     for (CXXRecordDecl *Class : WorkList)
13468       ReferenceDllExportedMembers(*this, Class);
13469   }
13470 }
13471 
AdjustDestructorExceptionSpec(CXXDestructorDecl * Destructor)13472 void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) {
13473   assert(getLangOpts().CPlusPlus11 &&
13474          "adjusting dtor exception specs was introduced in c++11");
13475 
13476   if (Destructor->isDependentContext())
13477     return;
13478 
13479   // C++11 [class.dtor]p3:
13480   //   A declaration of a destructor that does not have an exception-
13481   //   specification is implicitly considered to have the same exception-
13482   //   specification as an implicit declaration.
13483   const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>();
13484   if (DtorType->hasExceptionSpec())
13485     return;
13486 
13487   // Replace the destructor's type, building off the existing one. Fortunately,
13488   // the only thing of interest in the destructor type is its extended info.
13489   // The return and arguments are fixed.
13490   FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
13491   EPI.ExceptionSpec.Type = EST_Unevaluated;
13492   EPI.ExceptionSpec.SourceDecl = Destructor;
13493   Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
13494 
13495   // FIXME: If the destructor has a body that could throw, and the newly created
13496   // spec doesn't allow exceptions, we should emit a warning, because this
13497   // change in behavior can break conforming C++03 programs at runtime.
13498   // However, we don't have a body or an exception specification yet, so it
13499   // needs to be done somewhere else.
13500 }
13501 
13502 namespace {
13503 /// An abstract base class for all helper classes used in building the
13504 //  copy/move operators. These classes serve as factory functions and help us
13505 //  avoid using the same Expr* in the AST twice.
13506 class ExprBuilder {
13507   ExprBuilder(const ExprBuilder&) = delete;
13508   ExprBuilder &operator=(const ExprBuilder&) = delete;
13509 
13510 protected:
assertNotNull(Expr * E)13511   static Expr *assertNotNull(Expr *E) {
13512     assert(E && "Expression construction must not fail.");
13513     return E;
13514   }
13515 
13516 public:
ExprBuilder()13517   ExprBuilder() {}
~ExprBuilder()13518   virtual ~ExprBuilder() {}
13519 
13520   virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
13521 };
13522 
13523 class RefBuilder: public ExprBuilder {
13524   VarDecl *Var;
13525   QualType VarType;
13526 
13527 public:
build(Sema & S,SourceLocation Loc) const13528   Expr *build(Sema &S, SourceLocation Loc) const override {
13529     return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc));
13530   }
13531 
RefBuilder(VarDecl * Var,QualType VarType)13532   RefBuilder(VarDecl *Var, QualType VarType)
13533       : Var(Var), VarType(VarType) {}
13534 };
13535 
13536 class ThisBuilder: public ExprBuilder {
13537 public:
build(Sema & S,SourceLocation Loc) const13538   Expr *build(Sema &S, SourceLocation Loc) const override {
13539     return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
13540   }
13541 };
13542 
13543 class CastBuilder: public ExprBuilder {
13544   const ExprBuilder &Builder;
13545   QualType Type;
13546   ExprValueKind Kind;
13547   const CXXCastPath &Path;
13548 
13549 public:
build(Sema & S,SourceLocation Loc) const13550   Expr *build(Sema &S, SourceLocation Loc) const override {
13551     return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
13552                                              CK_UncheckedDerivedToBase, Kind,
13553                                              &Path).get());
13554   }
13555 
CastBuilder(const ExprBuilder & Builder,QualType Type,ExprValueKind Kind,const CXXCastPath & Path)13556   CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
13557               const CXXCastPath &Path)
13558       : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
13559 };
13560 
13561 class DerefBuilder: public ExprBuilder {
13562   const ExprBuilder &Builder;
13563 
13564 public:
build(Sema & S,SourceLocation Loc) const13565   Expr *build(Sema &S, SourceLocation Loc) const override {
13566     return assertNotNull(
13567         S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
13568   }
13569 
DerefBuilder(const ExprBuilder & Builder)13570   DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13571 };
13572 
13573 class MemberBuilder: public ExprBuilder {
13574   const ExprBuilder &Builder;
13575   QualType Type;
13576   CXXScopeSpec SS;
13577   bool IsArrow;
13578   LookupResult &MemberLookup;
13579 
13580 public:
build(Sema & S,SourceLocation Loc) const13581   Expr *build(Sema &S, SourceLocation Loc) const override {
13582     return assertNotNull(S.BuildMemberReferenceExpr(
13583         Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
13584         nullptr, MemberLookup, nullptr, nullptr).get());
13585   }
13586 
MemberBuilder(const ExprBuilder & Builder,QualType Type,bool IsArrow,LookupResult & MemberLookup)13587   MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
13588                 LookupResult &MemberLookup)
13589       : Builder(Builder), Type(Type), IsArrow(IsArrow),
13590         MemberLookup(MemberLookup) {}
13591 };
13592 
13593 class MoveCastBuilder: public ExprBuilder {
13594   const ExprBuilder &Builder;
13595 
13596 public:
build(Sema & S,SourceLocation Loc) const13597   Expr *build(Sema &S, SourceLocation Loc) const override {
13598     return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
13599   }
13600 
MoveCastBuilder(const ExprBuilder & Builder)13601   MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13602 };
13603 
13604 class LvalueConvBuilder: public ExprBuilder {
13605   const ExprBuilder &Builder;
13606 
13607 public:
build(Sema & S,SourceLocation Loc) const13608   Expr *build(Sema &S, SourceLocation Loc) const override {
13609     return assertNotNull(
13610         S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
13611   }
13612 
LvalueConvBuilder(const ExprBuilder & Builder)13613   LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13614 };
13615 
13616 class SubscriptBuilder: public ExprBuilder {
13617   const ExprBuilder &Base;
13618   const ExprBuilder &Index;
13619 
13620 public:
build(Sema & S,SourceLocation Loc) const13621   Expr *build(Sema &S, SourceLocation Loc) const override {
13622     return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
13623         Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
13624   }
13625 
SubscriptBuilder(const ExprBuilder & Base,const ExprBuilder & Index)13626   SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
13627       : Base(Base), Index(Index) {}
13628 };
13629 
13630 } // end anonymous namespace
13631 
13632 /// When generating a defaulted copy or move assignment operator, if a field
13633 /// should be copied with __builtin_memcpy rather than via explicit assignments,
13634 /// do so. This optimization only applies for arrays of scalars, and for arrays
13635 /// of class type where the selected copy/move-assignment operator is trivial.
13636 static StmtResult
buildMemcpyForAssignmentOp(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & ToB,const ExprBuilder & FromB)13637 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
13638                            const ExprBuilder &ToB, const ExprBuilder &FromB) {
13639   // Compute the size of the memory buffer to be copied.
13640   QualType SizeType = S.Context.getSizeType();
13641   llvm::APInt Size(S.Context.getTypeSize(SizeType),
13642                    S.Context.getTypeSizeInChars(T).getQuantity());
13643 
13644   // Take the address of the field references for "from" and "to". We
13645   // directly construct UnaryOperators here because semantic analysis
13646   // does not permit us to take the address of an xvalue.
13647   Expr *From = FromB.build(S, Loc);
13648   From = UnaryOperator::Create(
13649       S.Context, From, UO_AddrOf, S.Context.getPointerType(From->getType()),
13650       VK_RValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides());
13651   Expr *To = ToB.build(S, Loc);
13652   To = UnaryOperator::Create(
13653       S.Context, To, UO_AddrOf, S.Context.getPointerType(To->getType()),
13654       VK_RValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides());
13655 
13656   const Type *E = T->getBaseElementTypeUnsafe();
13657   bool NeedsCollectableMemCpy =
13658       E->isRecordType() &&
13659       E->castAs<RecordType>()->getDecl()->hasObjectMember();
13660 
13661   // Create a reference to the __builtin_objc_memmove_collectable function
13662   StringRef MemCpyName = NeedsCollectableMemCpy ?
13663     "__builtin_objc_memmove_collectable" :
13664     "__builtin_memcpy";
13665   LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
13666                  Sema::LookupOrdinaryName);
13667   S.LookupName(R, S.TUScope, true);
13668 
13669   FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
13670   if (!MemCpy)
13671     // Something went horribly wrong earlier, and we will have complained
13672     // about it.
13673     return StmtError();
13674 
13675   ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
13676                                             VK_RValue, Loc, nullptr);
13677   assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
13678 
13679   Expr *CallArgs[] = {
13680     To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
13681   };
13682   ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
13683                                     Loc, CallArgs, Loc);
13684 
13685   assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
13686   return Call.getAs<Stmt>();
13687 }
13688 
13689 /// Builds a statement that copies/moves the given entity from \p From to
13690 /// \c To.
13691 ///
13692 /// This routine is used to copy/move the members of a class with an
13693 /// implicitly-declared copy/move assignment operator. When the entities being
13694 /// copied are arrays, this routine builds for loops to copy them.
13695 ///
13696 /// \param S The Sema object used for type-checking.
13697 ///
13698 /// \param Loc The location where the implicit copy/move is being generated.
13699 ///
13700 /// \param T The type of the expressions being copied/moved. Both expressions
13701 /// must have this type.
13702 ///
13703 /// \param To The expression we are copying/moving to.
13704 ///
13705 /// \param From The expression we are copying/moving from.
13706 ///
13707 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
13708 /// Otherwise, it's a non-static member subobject.
13709 ///
13710 /// \param Copying Whether we're copying or moving.
13711 ///
13712 /// \param Depth Internal parameter recording the depth of the recursion.
13713 ///
13714 /// \returns A statement or a loop that copies the expressions, or StmtResult(0)
13715 /// if a memcpy should be used instead.
13716 static StmtResult
buildSingleCopyAssignRecursively(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & To,const ExprBuilder & From,bool CopyingBaseSubobject,bool Copying,unsigned Depth=0)13717 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
13718                                  const ExprBuilder &To, const ExprBuilder &From,
13719                                  bool CopyingBaseSubobject, bool Copying,
13720                                  unsigned Depth = 0) {
13721   // C++11 [class.copy]p28:
13722   //   Each subobject is assigned in the manner appropriate to its type:
13723   //
13724   //     - if the subobject is of class type, as if by a call to operator= with
13725   //       the subobject as the object expression and the corresponding
13726   //       subobject of x as a single function argument (as if by explicit
13727   //       qualification; that is, ignoring any possible virtual overriding
13728   //       functions in more derived classes);
13729   //
13730   // C++03 [class.copy]p13:
13731   //     - if the subobject is of class type, the copy assignment operator for
13732   //       the class is used (as if by explicit qualification; that is,
13733   //       ignoring any possible virtual overriding functions in more derived
13734   //       classes);
13735   if (const RecordType *RecordTy = T->getAs<RecordType>()) {
13736     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
13737 
13738     // Look for operator=.
13739     DeclarationName Name
13740       = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
13741     LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
13742     S.LookupQualifiedName(OpLookup, ClassDecl, false);
13743 
13744     // Prior to C++11, filter out any result that isn't a copy/move-assignment
13745     // operator.
13746     if (!S.getLangOpts().CPlusPlus11) {
13747       LookupResult::Filter F = OpLookup.makeFilter();
13748       while (F.hasNext()) {
13749         NamedDecl *D = F.next();
13750         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
13751           if (Method->isCopyAssignmentOperator() ||
13752               (!Copying && Method->isMoveAssignmentOperator()))
13753             continue;
13754 
13755         F.erase();
13756       }
13757       F.done();
13758     }
13759 
13760     // Suppress the protected check (C++ [class.protected]) for each of the
13761     // assignment operators we found. This strange dance is required when
13762     // we're assigning via a base classes's copy-assignment operator. To
13763     // ensure that we're getting the right base class subobject (without
13764     // ambiguities), we need to cast "this" to that subobject type; to
13765     // ensure that we don't go through the virtual call mechanism, we need
13766     // to qualify the operator= name with the base class (see below). However,
13767     // this means that if the base class has a protected copy assignment
13768     // operator, the protected member access check will fail. So, we
13769     // rewrite "protected" access to "public" access in this case, since we
13770     // know by construction that we're calling from a derived class.
13771     if (CopyingBaseSubobject) {
13772       for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
13773            L != LEnd; ++L) {
13774         if (L.getAccess() == AS_protected)
13775           L.setAccess(AS_public);
13776       }
13777     }
13778 
13779     // Create the nested-name-specifier that will be used to qualify the
13780     // reference to operator=; this is required to suppress the virtual
13781     // call mechanism.
13782     CXXScopeSpec SS;
13783     const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
13784     SS.MakeTrivial(S.Context,
13785                    NestedNameSpecifier::Create(S.Context, nullptr, false,
13786                                                CanonicalT),
13787                    Loc);
13788 
13789     // Create the reference to operator=.
13790     ExprResult OpEqualRef
13791       = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false,
13792                                    SS, /*TemplateKWLoc=*/SourceLocation(),
13793                                    /*FirstQualifierInScope=*/nullptr,
13794                                    OpLookup,
13795                                    /*TemplateArgs=*/nullptr, /*S*/nullptr,
13796                                    /*SuppressQualifierCheck=*/true);
13797     if (OpEqualRef.isInvalid())
13798       return StmtError();
13799 
13800     // Build the call to the assignment operator.
13801 
13802     Expr *FromInst = From.build(S, Loc);
13803     ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
13804                                                   OpEqualRef.getAs<Expr>(),
13805                                                   Loc, FromInst, Loc);
13806     if (Call.isInvalid())
13807       return StmtError();
13808 
13809     // If we built a call to a trivial 'operator=' while copying an array,
13810     // bail out. We'll replace the whole shebang with a memcpy.
13811     CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
13812     if (CE && CE->getMethodDecl()->isTrivial() && Depth)
13813       return StmtResult((Stmt*)nullptr);
13814 
13815     // Convert to an expression-statement, and clean up any produced
13816     // temporaries.
13817     return S.ActOnExprStmt(Call);
13818   }
13819 
13820   //     - if the subobject is of scalar type, the built-in assignment
13821   //       operator is used.
13822   const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
13823   if (!ArrayTy) {
13824     ExprResult Assignment = S.CreateBuiltinBinOp(
13825         Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
13826     if (Assignment.isInvalid())
13827       return StmtError();
13828     return S.ActOnExprStmt(Assignment);
13829   }
13830 
13831   //     - if the subobject is an array, each element is assigned, in the
13832   //       manner appropriate to the element type;
13833 
13834   // Construct a loop over the array bounds, e.g.,
13835   //
13836   //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
13837   //
13838   // that will copy each of the array elements.
13839   QualType SizeType = S.Context.getSizeType();
13840 
13841   // Create the iteration variable.
13842   IdentifierInfo *IterationVarName = nullptr;
13843   {
13844     SmallString<8> Str;
13845     llvm::raw_svector_ostream OS(Str);
13846     OS << "__i" << Depth;
13847     IterationVarName = &S.Context.Idents.get(OS.str());
13848   }
13849   VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
13850                                           IterationVarName, SizeType,
13851                             S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
13852                                           SC_None);
13853 
13854   // Initialize the iteration variable to zero.
13855   llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
13856   IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
13857 
13858   // Creates a reference to the iteration variable.
13859   RefBuilder IterationVarRef(IterationVar, SizeType);
13860   LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
13861 
13862   // Create the DeclStmt that holds the iteration variable.
13863   Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
13864 
13865   // Subscript the "from" and "to" expressions with the iteration variable.
13866   SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
13867   MoveCastBuilder FromIndexMove(FromIndexCopy);
13868   const ExprBuilder *FromIndex;
13869   if (Copying)
13870     FromIndex = &FromIndexCopy;
13871   else
13872     FromIndex = &FromIndexMove;
13873 
13874   SubscriptBuilder ToIndex(To, IterationVarRefRVal);
13875 
13876   // Build the copy/move for an individual element of the array.
13877   StmtResult Copy =
13878     buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
13879                                      ToIndex, *FromIndex, CopyingBaseSubobject,
13880                                      Copying, Depth + 1);
13881   // Bail out if copying fails or if we determined that we should use memcpy.
13882   if (Copy.isInvalid() || !Copy.get())
13883     return Copy;
13884 
13885   // Create the comparison against the array bound.
13886   llvm::APInt Upper
13887     = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
13888   Expr *Comparison = BinaryOperator::Create(
13889       S.Context, IterationVarRefRVal.build(S, Loc),
13890       IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE,
13891       S.Context.BoolTy, VK_RValue, OK_Ordinary, Loc, S.CurFPFeatureOverrides());
13892 
13893   // Create the pre-increment of the iteration variable. We can determine
13894   // whether the increment will overflow based on the value of the array
13895   // bound.
13896   Expr *Increment = UnaryOperator::Create(
13897       S.Context, IterationVarRef.build(S, Loc), UO_PreInc, SizeType, VK_LValue,
13898       OK_Ordinary, Loc, Upper.isMaxValue(), S.CurFPFeatureOverrides());
13899 
13900   // Construct the loop that copies all elements of this array.
13901   return S.ActOnForStmt(
13902       Loc, Loc, InitStmt,
13903       S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean),
13904       S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get());
13905 }
13906 
13907 static StmtResult
buildSingleCopyAssign(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & To,const ExprBuilder & From,bool CopyingBaseSubobject,bool Copying)13908 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
13909                       const ExprBuilder &To, const ExprBuilder &From,
13910                       bool CopyingBaseSubobject, bool Copying) {
13911   // Maybe we should use a memcpy?
13912   if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
13913       T.isTriviallyCopyableType(S.Context))
13914     return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
13915 
13916   StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
13917                                                      CopyingBaseSubobject,
13918                                                      Copying, 0));
13919 
13920   // If we ended up picking a trivial assignment operator for an array of a
13921   // non-trivially-copyable class type, just emit a memcpy.
13922   if (!Result.isInvalid() && !Result.get())
13923     return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
13924 
13925   return Result;
13926 }
13927 
DeclareImplicitCopyAssignment(CXXRecordDecl * ClassDecl)13928 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
13929   // Note: The following rules are largely analoguous to the copy
13930   // constructor rules. Note that virtual bases are not taken into account
13931   // for determining the argument type of the operator. Note also that
13932   // operators taking an object instead of a reference are allowed.
13933   assert(ClassDecl->needsImplicitCopyAssignment());
13934 
13935   DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
13936   if (DSM.isAlreadyBeingDeclared())
13937     return nullptr;
13938 
13939   QualType ArgType = Context.getTypeDeclType(ClassDecl);
13940   LangAS AS = getDefaultCXXMethodAddrSpace();
13941   if (AS != LangAS::Default)
13942     ArgType = Context.getAddrSpaceQualType(ArgType, AS);
13943   QualType RetType = Context.getLValueReferenceType(ArgType);
13944   bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
13945   if (Const)
13946     ArgType = ArgType.withConst();
13947 
13948   ArgType = Context.getLValueReferenceType(ArgType);
13949 
13950   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13951                                                      CXXCopyAssignment,
13952                                                      Const);
13953 
13954   //   An implicitly-declared copy assignment operator is an inline public
13955   //   member of its class.
13956   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
13957   SourceLocation ClassLoc = ClassDecl->getLocation();
13958   DeclarationNameInfo NameInfo(Name, ClassLoc);
13959   CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create(
13960       Context, ClassDecl, ClassLoc, NameInfo, QualType(),
13961       /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
13962       /*isInline=*/true,
13963       Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified,
13964       SourceLocation());
13965   CopyAssignment->setAccess(AS_public);
13966   CopyAssignment->setDefaulted();
13967   CopyAssignment->setImplicit();
13968 
13969   if (getLangOpts().CUDA) {
13970     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment,
13971                                             CopyAssignment,
13972                                             /* ConstRHS */ Const,
13973                                             /* Diagnose */ false);
13974   }
13975 
13976   setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType);
13977 
13978   // Add the parameter to the operator.
13979   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
13980                                                ClassLoc, ClassLoc,
13981                                                /*Id=*/nullptr, ArgType,
13982                                                /*TInfo=*/nullptr, SC_None,
13983                                                nullptr);
13984   CopyAssignment->setParams(FromParam);
13985 
13986   CopyAssignment->setTrivial(
13987     ClassDecl->needsOverloadResolutionForCopyAssignment()
13988       ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
13989       : ClassDecl->hasTrivialCopyAssignment());
13990 
13991   // Note that we have added this copy-assignment operator.
13992   ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared;
13993 
13994   Scope *S = getScopeForContext(ClassDecl);
13995   CheckImplicitSpecialMemberDeclaration(S, CopyAssignment);
13996 
13997   if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) {
13998     ClassDecl->setImplicitCopyAssignmentIsDeleted();
13999     SetDeclDeleted(CopyAssignment, ClassLoc);
14000   }
14001 
14002   if (S)
14003     PushOnScopeChains(CopyAssignment, S, false);
14004   ClassDecl->addDecl(CopyAssignment);
14005 
14006   return CopyAssignment;
14007 }
14008 
14009 /// Diagnose an implicit copy operation for a class which is odr-used, but
14010 /// which is deprecated because the class has a user-declared copy constructor,
14011 /// copy assignment operator, or destructor.
diagnoseDeprecatedCopyOperation(Sema & S,CXXMethodDecl * CopyOp)14012 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) {
14013   assert(CopyOp->isImplicit());
14014 
14015   CXXRecordDecl *RD = CopyOp->getParent();
14016   CXXMethodDecl *UserDeclaredOperation = nullptr;
14017 
14018   // In Microsoft mode, assignment operations don't affect constructors and
14019   // vice versa.
14020   if (RD->hasUserDeclaredDestructor()) {
14021     UserDeclaredOperation = RD->getDestructor();
14022   } else if (!isa<CXXConstructorDecl>(CopyOp) &&
14023              RD->hasUserDeclaredCopyConstructor() &&
14024              !S.getLangOpts().MSVCCompat) {
14025     // Find any user-declared copy constructor.
14026     for (auto *I : RD->ctors()) {
14027       if (I->isCopyConstructor()) {
14028         UserDeclaredOperation = I;
14029         break;
14030       }
14031     }
14032     assert(UserDeclaredOperation);
14033   } else if (isa<CXXConstructorDecl>(CopyOp) &&
14034              RD->hasUserDeclaredCopyAssignment() &&
14035              !S.getLangOpts().MSVCCompat) {
14036     // Find any user-declared move assignment operator.
14037     for (auto *I : RD->methods()) {
14038       if (I->isCopyAssignmentOperator()) {
14039         UserDeclaredOperation = I;
14040         break;
14041       }
14042     }
14043     assert(UserDeclaredOperation);
14044   }
14045 
14046   if (UserDeclaredOperation) {
14047     bool UDOIsUserProvided = UserDeclaredOperation->isUserProvided();
14048     bool UDOIsDestructor = isa<CXXDestructorDecl>(UserDeclaredOperation);
14049     bool IsCopyAssignment = !isa<CXXConstructorDecl>(CopyOp);
14050     unsigned DiagID =
14051         (UDOIsUserProvided && UDOIsDestructor)
14052             ? diag::warn_deprecated_copy_with_user_provided_dtor
14053         : (UDOIsUserProvided && !UDOIsDestructor)
14054             ? diag::warn_deprecated_copy_with_user_provided_copy
14055         : (!UDOIsUserProvided && UDOIsDestructor)
14056             ? diag::warn_deprecated_copy_with_dtor
14057             : diag::warn_deprecated_copy;
14058     S.Diag(UserDeclaredOperation->getLocation(), DiagID)
14059         << RD << IsCopyAssignment;
14060   }
14061 }
14062 
DefineImplicitCopyAssignment(SourceLocation CurrentLocation,CXXMethodDecl * CopyAssignOperator)14063 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
14064                                         CXXMethodDecl *CopyAssignOperator) {
14065   assert((CopyAssignOperator->isDefaulted() &&
14066           CopyAssignOperator->isOverloadedOperator() &&
14067           CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
14068           !CopyAssignOperator->doesThisDeclarationHaveABody() &&
14069           !CopyAssignOperator->isDeleted()) &&
14070          "DefineImplicitCopyAssignment called for wrong function");
14071   if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl())
14072     return;
14073 
14074   CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
14075   if (ClassDecl->isInvalidDecl()) {
14076     CopyAssignOperator->setInvalidDecl();
14077     return;
14078   }
14079 
14080   SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
14081 
14082   // The exception specification is needed because we are defining the
14083   // function.
14084   ResolveExceptionSpec(CurrentLocation,
14085                        CopyAssignOperator->getType()->castAs<FunctionProtoType>());
14086 
14087   // Add a context note for diagnostics produced after this point.
14088   Scope.addContextNote(CurrentLocation);
14089 
14090   // C++11 [class.copy]p18:
14091   //   The [definition of an implicitly declared copy assignment operator] is
14092   //   deprecated if the class has a user-declared copy constructor or a
14093   //   user-declared destructor.
14094   if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
14095     diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator);
14096 
14097   // C++0x [class.copy]p30:
14098   //   The implicitly-defined or explicitly-defaulted copy assignment operator
14099   //   for a non-union class X performs memberwise copy assignment of its
14100   //   subobjects. The direct base classes of X are assigned first, in the
14101   //   order of their declaration in the base-specifier-list, and then the
14102   //   immediate non-static data members of X are assigned, in the order in
14103   //   which they were declared in the class definition.
14104 
14105   // The statements that form the synthesized function body.
14106   SmallVector<Stmt*, 8> Statements;
14107 
14108   // The parameter for the "other" object, which we are copying from.
14109   ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
14110   Qualifiers OtherQuals = Other->getType().getQualifiers();
14111   QualType OtherRefType = Other->getType();
14112   if (const LValueReferenceType *OtherRef
14113                                 = OtherRefType->getAs<LValueReferenceType>()) {
14114     OtherRefType = OtherRef->getPointeeType();
14115     OtherQuals = OtherRefType.getQualifiers();
14116   }
14117 
14118   // Our location for everything implicitly-generated.
14119   SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid()
14120                            ? CopyAssignOperator->getEndLoc()
14121                            : CopyAssignOperator->getLocation();
14122 
14123   // Builds a DeclRefExpr for the "other" object.
14124   RefBuilder OtherRef(Other, OtherRefType);
14125 
14126   // Builds the "this" pointer.
14127   ThisBuilder This;
14128 
14129   // Assign base classes.
14130   bool Invalid = false;
14131   for (auto &Base : ClassDecl->bases()) {
14132     // Form the assignment:
14133     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
14134     QualType BaseType = Base.getType().getUnqualifiedType();
14135     if (!BaseType->isRecordType()) {
14136       Invalid = true;
14137       continue;
14138     }
14139 
14140     CXXCastPath BasePath;
14141     BasePath.push_back(&Base);
14142 
14143     // Construct the "from" expression, which is an implicit cast to the
14144     // appropriately-qualified base type.
14145     CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
14146                      VK_LValue, BasePath);
14147 
14148     // Dereference "this".
14149     DerefBuilder DerefThis(This);
14150     CastBuilder To(DerefThis,
14151                    Context.getQualifiedType(
14152                        BaseType, CopyAssignOperator->getMethodQualifiers()),
14153                    VK_LValue, BasePath);
14154 
14155     // Build the copy.
14156     StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
14157                                             To, From,
14158                                             /*CopyingBaseSubobject=*/true,
14159                                             /*Copying=*/true);
14160     if (Copy.isInvalid()) {
14161       CopyAssignOperator->setInvalidDecl();
14162       return;
14163     }
14164 
14165     // Success! Record the copy.
14166     Statements.push_back(Copy.getAs<Expr>());
14167   }
14168 
14169   // Assign non-static members.
14170   for (auto *Field : ClassDecl->fields()) {
14171     // FIXME: We should form some kind of AST representation for the implied
14172     // memcpy in a union copy operation.
14173     if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
14174       continue;
14175 
14176     if (Field->isInvalidDecl()) {
14177       Invalid = true;
14178       continue;
14179     }
14180 
14181     // Check for members of reference type; we can't copy those.
14182     if (Field->getType()->isReferenceType()) {
14183       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14184         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
14185       Diag(Field->getLocation(), diag::note_declared_at);
14186       Invalid = true;
14187       continue;
14188     }
14189 
14190     // Check for members of const-qualified, non-class type.
14191     QualType BaseType = Context.getBaseElementType(Field->getType());
14192     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
14193       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14194         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
14195       Diag(Field->getLocation(), diag::note_declared_at);
14196       Invalid = true;
14197       continue;
14198     }
14199 
14200     // Suppress assigning zero-width bitfields.
14201     if (Field->isZeroLengthBitField(Context))
14202       continue;
14203 
14204     QualType FieldType = Field->getType().getNonReferenceType();
14205     if (FieldType->isIncompleteArrayType()) {
14206       assert(ClassDecl->hasFlexibleArrayMember() &&
14207              "Incomplete array type is not valid");
14208       continue;
14209     }
14210 
14211     // Build references to the field in the object we're copying from and to.
14212     CXXScopeSpec SS; // Intentionally empty
14213     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
14214                               LookupMemberName);
14215     MemberLookup.addDecl(Field);
14216     MemberLookup.resolveKind();
14217 
14218     MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
14219 
14220     MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
14221 
14222     // Build the copy of this field.
14223     StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
14224                                             To, From,
14225                                             /*CopyingBaseSubobject=*/false,
14226                                             /*Copying=*/true);
14227     if (Copy.isInvalid()) {
14228       CopyAssignOperator->setInvalidDecl();
14229       return;
14230     }
14231 
14232     // Success! Record the copy.
14233     Statements.push_back(Copy.getAs<Stmt>());
14234   }
14235 
14236   if (!Invalid) {
14237     // Add a "return *this;"
14238     ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
14239 
14240     StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
14241     if (Return.isInvalid())
14242       Invalid = true;
14243     else
14244       Statements.push_back(Return.getAs<Stmt>());
14245   }
14246 
14247   if (Invalid) {
14248     CopyAssignOperator->setInvalidDecl();
14249     return;
14250   }
14251 
14252   StmtResult Body;
14253   {
14254     CompoundScopeRAII CompoundScope(*this);
14255     Body = ActOnCompoundStmt(Loc, Loc, Statements,
14256                              /*isStmtExpr=*/false);
14257     assert(!Body.isInvalid() && "Compound statement creation cannot fail");
14258   }
14259   CopyAssignOperator->setBody(Body.getAs<Stmt>());
14260   CopyAssignOperator->markUsed(Context);
14261 
14262   if (ASTMutationListener *L = getASTMutationListener()) {
14263     L->CompletedImplicitDefinition(CopyAssignOperator);
14264   }
14265 }
14266 
DeclareImplicitMoveAssignment(CXXRecordDecl * ClassDecl)14267 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
14268   assert(ClassDecl->needsImplicitMoveAssignment());
14269 
14270   DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
14271   if (DSM.isAlreadyBeingDeclared())
14272     return nullptr;
14273 
14274   // Note: The following rules are largely analoguous to the move
14275   // constructor rules.
14276 
14277   QualType ArgType = Context.getTypeDeclType(ClassDecl);
14278   LangAS AS = getDefaultCXXMethodAddrSpace();
14279   if (AS != LangAS::Default)
14280     ArgType = Context.getAddrSpaceQualType(ArgType, AS);
14281   QualType RetType = Context.getLValueReferenceType(ArgType);
14282   ArgType = Context.getRValueReferenceType(ArgType);
14283 
14284   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14285                                                      CXXMoveAssignment,
14286                                                      false);
14287 
14288   //   An implicitly-declared move assignment operator is an inline public
14289   //   member of its class.
14290   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
14291   SourceLocation ClassLoc = ClassDecl->getLocation();
14292   DeclarationNameInfo NameInfo(Name, ClassLoc);
14293   CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create(
14294       Context, ClassDecl, ClassLoc, NameInfo, QualType(),
14295       /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
14296       /*isInline=*/true,
14297       Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified,
14298       SourceLocation());
14299   MoveAssignment->setAccess(AS_public);
14300   MoveAssignment->setDefaulted();
14301   MoveAssignment->setImplicit();
14302 
14303   if (getLangOpts().CUDA) {
14304     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment,
14305                                             MoveAssignment,
14306                                             /* ConstRHS */ false,
14307                                             /* Diagnose */ false);
14308   }
14309 
14310   // Build an exception specification pointing back at this member.
14311   FunctionProtoType::ExtProtoInfo EPI =
14312       getImplicitMethodEPI(*this, MoveAssignment);
14313   MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
14314 
14315   // Add the parameter to the operator.
14316   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
14317                                                ClassLoc, ClassLoc,
14318                                                /*Id=*/nullptr, ArgType,
14319                                                /*TInfo=*/nullptr, SC_None,
14320                                                nullptr);
14321   MoveAssignment->setParams(FromParam);
14322 
14323   MoveAssignment->setTrivial(
14324     ClassDecl->needsOverloadResolutionForMoveAssignment()
14325       ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
14326       : ClassDecl->hasTrivialMoveAssignment());
14327 
14328   // Note that we have added this copy-assignment operator.
14329   ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared;
14330 
14331   Scope *S = getScopeForContext(ClassDecl);
14332   CheckImplicitSpecialMemberDeclaration(S, MoveAssignment);
14333 
14334   if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
14335     ClassDecl->setImplicitMoveAssignmentIsDeleted();
14336     SetDeclDeleted(MoveAssignment, ClassLoc);
14337   }
14338 
14339   if (S)
14340     PushOnScopeChains(MoveAssignment, S, false);
14341   ClassDecl->addDecl(MoveAssignment);
14342 
14343   return MoveAssignment;
14344 }
14345 
14346 /// Check if we're implicitly defining a move assignment operator for a class
14347 /// with virtual bases. Such a move assignment might move-assign the virtual
14348 /// base multiple times.
checkMoveAssignmentForRepeatedMove(Sema & S,CXXRecordDecl * Class,SourceLocation CurrentLocation)14349 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
14350                                                SourceLocation CurrentLocation) {
14351   assert(!Class->isDependentContext() && "should not define dependent move");
14352 
14353   // Only a virtual base could get implicitly move-assigned multiple times.
14354   // Only a non-trivial move assignment can observe this. We only want to
14355   // diagnose if we implicitly define an assignment operator that assigns
14356   // two base classes, both of which move-assign the same virtual base.
14357   if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
14358       Class->getNumBases() < 2)
14359     return;
14360 
14361   llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
14362   typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
14363   VBaseMap VBases;
14364 
14365   for (auto &BI : Class->bases()) {
14366     Worklist.push_back(&BI);
14367     while (!Worklist.empty()) {
14368       CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
14369       CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
14370 
14371       // If the base has no non-trivial move assignment operators,
14372       // we don't care about moves from it.
14373       if (!Base->hasNonTrivialMoveAssignment())
14374         continue;
14375 
14376       // If there's nothing virtual here, skip it.
14377       if (!BaseSpec->isVirtual() && !Base->getNumVBases())
14378         continue;
14379 
14380       // If we're not actually going to call a move assignment for this base,
14381       // or the selected move assignment is trivial, skip it.
14382       Sema::SpecialMemberOverloadResult SMOR =
14383         S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
14384                               /*ConstArg*/false, /*VolatileArg*/false,
14385                               /*RValueThis*/true, /*ConstThis*/false,
14386                               /*VolatileThis*/false);
14387       if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() ||
14388           !SMOR.getMethod()->isMoveAssignmentOperator())
14389         continue;
14390 
14391       if (BaseSpec->isVirtual()) {
14392         // We're going to move-assign this virtual base, and its move
14393         // assignment operator is not trivial. If this can happen for
14394         // multiple distinct direct bases of Class, diagnose it. (If it
14395         // only happens in one base, we'll diagnose it when synthesizing
14396         // that base class's move assignment operator.)
14397         CXXBaseSpecifier *&Existing =
14398             VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
14399                 .first->second;
14400         if (Existing && Existing != &BI) {
14401           S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
14402             << Class << Base;
14403           S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here)
14404               << (Base->getCanonicalDecl() ==
14405                   Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
14406               << Base << Existing->getType() << Existing->getSourceRange();
14407           S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here)
14408               << (Base->getCanonicalDecl() ==
14409                   BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
14410               << Base << BI.getType() << BaseSpec->getSourceRange();
14411 
14412           // Only diagnose each vbase once.
14413           Existing = nullptr;
14414         }
14415       } else {
14416         // Only walk over bases that have defaulted move assignment operators.
14417         // We assume that any user-provided move assignment operator handles
14418         // the multiple-moves-of-vbase case itself somehow.
14419         if (!SMOR.getMethod()->isDefaulted())
14420           continue;
14421 
14422         // We're going to move the base classes of Base. Add them to the list.
14423         for (auto &BI : Base->bases())
14424           Worklist.push_back(&BI);
14425       }
14426     }
14427   }
14428 }
14429 
DefineImplicitMoveAssignment(SourceLocation CurrentLocation,CXXMethodDecl * MoveAssignOperator)14430 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
14431                                         CXXMethodDecl *MoveAssignOperator) {
14432   assert((MoveAssignOperator->isDefaulted() &&
14433           MoveAssignOperator->isOverloadedOperator() &&
14434           MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
14435           !MoveAssignOperator->doesThisDeclarationHaveABody() &&
14436           !MoveAssignOperator->isDeleted()) &&
14437          "DefineImplicitMoveAssignment called for wrong function");
14438   if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl())
14439     return;
14440 
14441   CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
14442   if (ClassDecl->isInvalidDecl()) {
14443     MoveAssignOperator->setInvalidDecl();
14444     return;
14445   }
14446 
14447   // C++0x [class.copy]p28:
14448   //   The implicitly-defined or move assignment operator for a non-union class
14449   //   X performs memberwise move assignment of its subobjects. The direct base
14450   //   classes of X are assigned first, in the order of their declaration in the
14451   //   base-specifier-list, and then the immediate non-static data members of X
14452   //   are assigned, in the order in which they were declared in the class
14453   //   definition.
14454 
14455   // Issue a warning if our implicit move assignment operator will move
14456   // from a virtual base more than once.
14457   checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
14458 
14459   SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
14460 
14461   // The exception specification is needed because we are defining the
14462   // function.
14463   ResolveExceptionSpec(CurrentLocation,
14464                        MoveAssignOperator->getType()->castAs<FunctionProtoType>());
14465 
14466   // Add a context note for diagnostics produced after this point.
14467   Scope.addContextNote(CurrentLocation);
14468 
14469   // The statements that form the synthesized function body.
14470   SmallVector<Stmt*, 8> Statements;
14471 
14472   // The parameter for the "other" object, which we are move from.
14473   ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
14474   QualType OtherRefType =
14475       Other->getType()->castAs<RValueReferenceType>()->getPointeeType();
14476 
14477   // Our location for everything implicitly-generated.
14478   SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid()
14479                            ? MoveAssignOperator->getEndLoc()
14480                            : MoveAssignOperator->getLocation();
14481 
14482   // Builds a reference to the "other" object.
14483   RefBuilder OtherRef(Other, OtherRefType);
14484   // Cast to rvalue.
14485   MoveCastBuilder MoveOther(OtherRef);
14486 
14487   // Builds the "this" pointer.
14488   ThisBuilder This;
14489 
14490   // Assign base classes.
14491   bool Invalid = false;
14492   for (auto &Base : ClassDecl->bases()) {
14493     // C++11 [class.copy]p28:
14494     //   It is unspecified whether subobjects representing virtual base classes
14495     //   are assigned more than once by the implicitly-defined copy assignment
14496     //   operator.
14497     // FIXME: Do not assign to a vbase that will be assigned by some other base
14498     // class. For a move-assignment, this can result in the vbase being moved
14499     // multiple times.
14500 
14501     // Form the assignment:
14502     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
14503     QualType BaseType = Base.getType().getUnqualifiedType();
14504     if (!BaseType->isRecordType()) {
14505       Invalid = true;
14506       continue;
14507     }
14508 
14509     CXXCastPath BasePath;
14510     BasePath.push_back(&Base);
14511 
14512     // Construct the "from" expression, which is an implicit cast to the
14513     // appropriately-qualified base type.
14514     CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
14515 
14516     // Dereference "this".
14517     DerefBuilder DerefThis(This);
14518 
14519     // Implicitly cast "this" to the appropriately-qualified base type.
14520     CastBuilder To(DerefThis,
14521                    Context.getQualifiedType(
14522                        BaseType, MoveAssignOperator->getMethodQualifiers()),
14523                    VK_LValue, BasePath);
14524 
14525     // Build the move.
14526     StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
14527                                             To, From,
14528                                             /*CopyingBaseSubobject=*/true,
14529                                             /*Copying=*/false);
14530     if (Move.isInvalid()) {
14531       MoveAssignOperator->setInvalidDecl();
14532       return;
14533     }
14534 
14535     // Success! Record the move.
14536     Statements.push_back(Move.getAs<Expr>());
14537   }
14538 
14539   // Assign non-static members.
14540   for (auto *Field : ClassDecl->fields()) {
14541     // FIXME: We should form some kind of AST representation for the implied
14542     // memcpy in a union copy operation.
14543     if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
14544       continue;
14545 
14546     if (Field->isInvalidDecl()) {
14547       Invalid = true;
14548       continue;
14549     }
14550 
14551     // Check for members of reference type; we can't move those.
14552     if (Field->getType()->isReferenceType()) {
14553       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14554         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
14555       Diag(Field->getLocation(), diag::note_declared_at);
14556       Invalid = true;
14557       continue;
14558     }
14559 
14560     // Check for members of const-qualified, non-class type.
14561     QualType BaseType = Context.getBaseElementType(Field->getType());
14562     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
14563       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14564         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
14565       Diag(Field->getLocation(), diag::note_declared_at);
14566       Invalid = true;
14567       continue;
14568     }
14569 
14570     // Suppress assigning zero-width bitfields.
14571     if (Field->isZeroLengthBitField(Context))
14572       continue;
14573 
14574     QualType FieldType = Field->getType().getNonReferenceType();
14575     if (FieldType->isIncompleteArrayType()) {
14576       assert(ClassDecl->hasFlexibleArrayMember() &&
14577              "Incomplete array type is not valid");
14578       continue;
14579     }
14580 
14581     // Build references to the field in the object we're copying from and to.
14582     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
14583                               LookupMemberName);
14584     MemberLookup.addDecl(Field);
14585     MemberLookup.resolveKind();
14586     MemberBuilder From(MoveOther, OtherRefType,
14587                        /*IsArrow=*/false, MemberLookup);
14588     MemberBuilder To(This, getCurrentThisType(),
14589                      /*IsArrow=*/true, MemberLookup);
14590 
14591     assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
14592         "Member reference with rvalue base must be rvalue except for reference "
14593         "members, which aren't allowed for move assignment.");
14594 
14595     // Build the move of this field.
14596     StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
14597                                             To, From,
14598                                             /*CopyingBaseSubobject=*/false,
14599                                             /*Copying=*/false);
14600     if (Move.isInvalid()) {
14601       MoveAssignOperator->setInvalidDecl();
14602       return;
14603     }
14604 
14605     // Success! Record the copy.
14606     Statements.push_back(Move.getAs<Stmt>());
14607   }
14608 
14609   if (!Invalid) {
14610     // Add a "return *this;"
14611     ExprResult ThisObj =
14612         CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
14613 
14614     StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
14615     if (Return.isInvalid())
14616       Invalid = true;
14617     else
14618       Statements.push_back(Return.getAs<Stmt>());
14619   }
14620 
14621   if (Invalid) {
14622     MoveAssignOperator->setInvalidDecl();
14623     return;
14624   }
14625 
14626   StmtResult Body;
14627   {
14628     CompoundScopeRAII CompoundScope(*this);
14629     Body = ActOnCompoundStmt(Loc, Loc, Statements,
14630                              /*isStmtExpr=*/false);
14631     assert(!Body.isInvalid() && "Compound statement creation cannot fail");
14632   }
14633   MoveAssignOperator->setBody(Body.getAs<Stmt>());
14634   MoveAssignOperator->markUsed(Context);
14635 
14636   if (ASTMutationListener *L = getASTMutationListener()) {
14637     L->CompletedImplicitDefinition(MoveAssignOperator);
14638   }
14639 }
14640 
DeclareImplicitCopyConstructor(CXXRecordDecl * ClassDecl)14641 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
14642                                                     CXXRecordDecl *ClassDecl) {
14643   // C++ [class.copy]p4:
14644   //   If the class definition does not explicitly declare a copy
14645   //   constructor, one is declared implicitly.
14646   assert(ClassDecl->needsImplicitCopyConstructor());
14647 
14648   DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
14649   if (DSM.isAlreadyBeingDeclared())
14650     return nullptr;
14651 
14652   QualType ClassType = Context.getTypeDeclType(ClassDecl);
14653   QualType ArgType = ClassType;
14654   bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
14655   if (Const)
14656     ArgType = ArgType.withConst();
14657 
14658   LangAS AS = getDefaultCXXMethodAddrSpace();
14659   if (AS != LangAS::Default)
14660     ArgType = Context.getAddrSpaceQualType(ArgType, AS);
14661 
14662   ArgType = Context.getLValueReferenceType(ArgType);
14663 
14664   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14665                                                      CXXCopyConstructor,
14666                                                      Const);
14667 
14668   DeclarationName Name
14669     = Context.DeclarationNames.getCXXConstructorName(
14670                                            Context.getCanonicalType(ClassType));
14671   SourceLocation ClassLoc = ClassDecl->getLocation();
14672   DeclarationNameInfo NameInfo(Name, ClassLoc);
14673 
14674   //   An implicitly-declared copy constructor is an inline public
14675   //   member of its class.
14676   CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
14677       Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
14678       ExplicitSpecifier(),
14679       /*isInline=*/true,
14680       /*isImplicitlyDeclared=*/true,
14681       Constexpr ? ConstexprSpecKind::Constexpr
14682                 : ConstexprSpecKind::Unspecified);
14683   CopyConstructor->setAccess(AS_public);
14684   CopyConstructor->setDefaulted();
14685 
14686   if (getLangOpts().CUDA) {
14687     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor,
14688                                             CopyConstructor,
14689                                             /* ConstRHS */ Const,
14690                                             /* Diagnose */ false);
14691   }
14692 
14693   setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType);
14694 
14695   // Add the parameter to the constructor.
14696   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
14697                                                ClassLoc, ClassLoc,
14698                                                /*IdentifierInfo=*/nullptr,
14699                                                ArgType, /*TInfo=*/nullptr,
14700                                                SC_None, nullptr);
14701   CopyConstructor->setParams(FromParam);
14702 
14703   CopyConstructor->setTrivial(
14704       ClassDecl->needsOverloadResolutionForCopyConstructor()
14705           ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
14706           : ClassDecl->hasTrivialCopyConstructor());
14707 
14708   CopyConstructor->setTrivialForCall(
14709       ClassDecl->hasAttr<TrivialABIAttr>() ||
14710       (ClassDecl->needsOverloadResolutionForCopyConstructor()
14711            ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor,
14712              TAH_ConsiderTrivialABI)
14713            : ClassDecl->hasTrivialCopyConstructorForCall()));
14714 
14715   // Note that we have declared this constructor.
14716   ++getASTContext().NumImplicitCopyConstructorsDeclared;
14717 
14718   Scope *S = getScopeForContext(ClassDecl);
14719   CheckImplicitSpecialMemberDeclaration(S, CopyConstructor);
14720 
14721   if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) {
14722     ClassDecl->setImplicitCopyConstructorIsDeleted();
14723     SetDeclDeleted(CopyConstructor, ClassLoc);
14724   }
14725 
14726   if (S)
14727     PushOnScopeChains(CopyConstructor, S, false);
14728   ClassDecl->addDecl(CopyConstructor);
14729 
14730   return CopyConstructor;
14731 }
14732 
DefineImplicitCopyConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * CopyConstructor)14733 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
14734                                          CXXConstructorDecl *CopyConstructor) {
14735   assert((CopyConstructor->isDefaulted() &&
14736           CopyConstructor->isCopyConstructor() &&
14737           !CopyConstructor->doesThisDeclarationHaveABody() &&
14738           !CopyConstructor->isDeleted()) &&
14739          "DefineImplicitCopyConstructor - call it for implicit copy ctor");
14740   if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl())
14741     return;
14742 
14743   CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
14744   assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
14745 
14746   SynthesizedFunctionScope Scope(*this, CopyConstructor);
14747 
14748   // The exception specification is needed because we are defining the
14749   // function.
14750   ResolveExceptionSpec(CurrentLocation,
14751                        CopyConstructor->getType()->castAs<FunctionProtoType>());
14752   MarkVTableUsed(CurrentLocation, ClassDecl);
14753 
14754   // Add a context note for diagnostics produced after this point.
14755   Scope.addContextNote(CurrentLocation);
14756 
14757   // C++11 [class.copy]p7:
14758   //   The [definition of an implicitly declared copy constructor] is
14759   //   deprecated if the class has a user-declared copy assignment operator
14760   //   or a user-declared destructor.
14761   if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
14762     diagnoseDeprecatedCopyOperation(*this, CopyConstructor);
14763 
14764   if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) {
14765     CopyConstructor->setInvalidDecl();
14766   }  else {
14767     SourceLocation Loc = CopyConstructor->getEndLoc().isValid()
14768                              ? CopyConstructor->getEndLoc()
14769                              : CopyConstructor->getLocation();
14770     Sema::CompoundScopeRAII CompoundScope(*this);
14771     CopyConstructor->setBody(
14772         ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>());
14773     CopyConstructor->markUsed(Context);
14774   }
14775 
14776   if (ASTMutationListener *L = getASTMutationListener()) {
14777     L->CompletedImplicitDefinition(CopyConstructor);
14778   }
14779 }
14780 
DeclareImplicitMoveConstructor(CXXRecordDecl * ClassDecl)14781 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
14782                                                     CXXRecordDecl *ClassDecl) {
14783   assert(ClassDecl->needsImplicitMoveConstructor());
14784 
14785   DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
14786   if (DSM.isAlreadyBeingDeclared())
14787     return nullptr;
14788 
14789   QualType ClassType = Context.getTypeDeclType(ClassDecl);
14790 
14791   QualType ArgType = ClassType;
14792   LangAS AS = getDefaultCXXMethodAddrSpace();
14793   if (AS != LangAS::Default)
14794     ArgType = Context.getAddrSpaceQualType(ClassType, AS);
14795   ArgType = Context.getRValueReferenceType(ArgType);
14796 
14797   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14798                                                      CXXMoveConstructor,
14799                                                      false);
14800 
14801   DeclarationName Name
14802     = Context.DeclarationNames.getCXXConstructorName(
14803                                            Context.getCanonicalType(ClassType));
14804   SourceLocation ClassLoc = ClassDecl->getLocation();
14805   DeclarationNameInfo NameInfo(Name, ClassLoc);
14806 
14807   // C++11 [class.copy]p11:
14808   //   An implicitly-declared copy/move constructor is an inline public
14809   //   member of its class.
14810   CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
14811       Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
14812       ExplicitSpecifier(),
14813       /*isInline=*/true,
14814       /*isImplicitlyDeclared=*/true,
14815       Constexpr ? ConstexprSpecKind::Constexpr
14816                 : ConstexprSpecKind::Unspecified);
14817   MoveConstructor->setAccess(AS_public);
14818   MoveConstructor->setDefaulted();
14819 
14820   if (getLangOpts().CUDA) {
14821     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor,
14822                                             MoveConstructor,
14823                                             /* ConstRHS */ false,
14824                                             /* Diagnose */ false);
14825   }
14826 
14827   setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType);
14828 
14829   // Add the parameter to the constructor.
14830   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
14831                                                ClassLoc, ClassLoc,
14832                                                /*IdentifierInfo=*/nullptr,
14833                                                ArgType, /*TInfo=*/nullptr,
14834                                                SC_None, nullptr);
14835   MoveConstructor->setParams(FromParam);
14836 
14837   MoveConstructor->setTrivial(
14838       ClassDecl->needsOverloadResolutionForMoveConstructor()
14839           ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
14840           : ClassDecl->hasTrivialMoveConstructor());
14841 
14842   MoveConstructor->setTrivialForCall(
14843       ClassDecl->hasAttr<TrivialABIAttr>() ||
14844       (ClassDecl->needsOverloadResolutionForMoveConstructor()
14845            ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor,
14846                                     TAH_ConsiderTrivialABI)
14847            : ClassDecl->hasTrivialMoveConstructorForCall()));
14848 
14849   // Note that we have declared this constructor.
14850   ++getASTContext().NumImplicitMoveConstructorsDeclared;
14851 
14852   Scope *S = getScopeForContext(ClassDecl);
14853   CheckImplicitSpecialMemberDeclaration(S, MoveConstructor);
14854 
14855   if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
14856     ClassDecl->setImplicitMoveConstructorIsDeleted();
14857     SetDeclDeleted(MoveConstructor, ClassLoc);
14858   }
14859 
14860   if (S)
14861     PushOnScopeChains(MoveConstructor, S, false);
14862   ClassDecl->addDecl(MoveConstructor);
14863 
14864   return MoveConstructor;
14865 }
14866 
DefineImplicitMoveConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * MoveConstructor)14867 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
14868                                          CXXConstructorDecl *MoveConstructor) {
14869   assert((MoveConstructor->isDefaulted() &&
14870           MoveConstructor->isMoveConstructor() &&
14871           !MoveConstructor->doesThisDeclarationHaveABody() &&
14872           !MoveConstructor->isDeleted()) &&
14873          "DefineImplicitMoveConstructor - call it for implicit move ctor");
14874   if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl())
14875     return;
14876 
14877   CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
14878   assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
14879 
14880   SynthesizedFunctionScope Scope(*this, MoveConstructor);
14881 
14882   // The exception specification is needed because we are defining the
14883   // function.
14884   ResolveExceptionSpec(CurrentLocation,
14885                        MoveConstructor->getType()->castAs<FunctionProtoType>());
14886   MarkVTableUsed(CurrentLocation, ClassDecl);
14887 
14888   // Add a context note for diagnostics produced after this point.
14889   Scope.addContextNote(CurrentLocation);
14890 
14891   if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) {
14892     MoveConstructor->setInvalidDecl();
14893   } else {
14894     SourceLocation Loc = MoveConstructor->getEndLoc().isValid()
14895                              ? MoveConstructor->getEndLoc()
14896                              : MoveConstructor->getLocation();
14897     Sema::CompoundScopeRAII CompoundScope(*this);
14898     MoveConstructor->setBody(ActOnCompoundStmt(
14899         Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>());
14900     MoveConstructor->markUsed(Context);
14901   }
14902 
14903   if (ASTMutationListener *L = getASTMutationListener()) {
14904     L->CompletedImplicitDefinition(MoveConstructor);
14905   }
14906 }
14907 
isImplicitlyDeleted(FunctionDecl * FD)14908 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
14909   return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
14910 }
14911 
DefineImplicitLambdaToFunctionPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)14912 void Sema::DefineImplicitLambdaToFunctionPointerConversion(
14913                             SourceLocation CurrentLocation,
14914                             CXXConversionDecl *Conv) {
14915   SynthesizedFunctionScope Scope(*this, Conv);
14916   assert(!Conv->getReturnType()->isUndeducedType());
14917 
14918   QualType ConvRT = Conv->getType()->castAs<FunctionType>()->getReturnType();
14919   CallingConv CC =
14920       ConvRT->getPointeeType()->castAs<FunctionType>()->getCallConv();
14921 
14922   CXXRecordDecl *Lambda = Conv->getParent();
14923   FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
14924   FunctionDecl *Invoker = Lambda->getLambdaStaticInvoker(CC);
14925 
14926   if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) {
14927     CallOp = InstantiateFunctionDeclaration(
14928         CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
14929     if (!CallOp)
14930       return;
14931 
14932     Invoker = InstantiateFunctionDeclaration(
14933         Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
14934     if (!Invoker)
14935       return;
14936   }
14937 
14938   if (CallOp->isInvalidDecl())
14939     return;
14940 
14941   // Mark the call operator referenced (and add to pending instantiations
14942   // if necessary).
14943   // For both the conversion and static-invoker template specializations
14944   // we construct their body's in this function, so no need to add them
14945   // to the PendingInstantiations.
14946   MarkFunctionReferenced(CurrentLocation, CallOp);
14947 
14948   // Fill in the __invoke function with a dummy implementation. IR generation
14949   // will fill in the actual details. Update its type in case it contained
14950   // an 'auto'.
14951   Invoker->markUsed(Context);
14952   Invoker->setReferenced();
14953   Invoker->setType(Conv->getReturnType()->getPointeeType());
14954   Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
14955 
14956   // Construct the body of the conversion function { return __invoke; }.
14957   Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
14958                                        VK_LValue, Conv->getLocation());
14959   assert(FunctionRef && "Can't refer to __invoke function?");
14960   Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
14961   Conv->setBody(CompoundStmt::Create(Context, Return, Conv->getLocation(),
14962                                      Conv->getLocation()));
14963   Conv->markUsed(Context);
14964   Conv->setReferenced();
14965 
14966   if (ASTMutationListener *L = getASTMutationListener()) {
14967     L->CompletedImplicitDefinition(Conv);
14968     L->CompletedImplicitDefinition(Invoker);
14969   }
14970 }
14971 
14972 
14973 
DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)14974 void Sema::DefineImplicitLambdaToBlockPointerConversion(
14975        SourceLocation CurrentLocation,
14976        CXXConversionDecl *Conv)
14977 {
14978   assert(!Conv->getParent()->isGenericLambda());
14979 
14980   SynthesizedFunctionScope Scope(*this, Conv);
14981 
14982   // Copy-initialize the lambda object as needed to capture it.
14983   Expr *This = ActOnCXXThis(CurrentLocation).get();
14984   Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
14985 
14986   ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
14987                                                         Conv->getLocation(),
14988                                                         Conv, DerefThis);
14989 
14990   // If we're not under ARC, make sure we still get the _Block_copy/autorelease
14991   // behavior.  Note that only the general conversion function does this
14992   // (since it's unusable otherwise); in the case where we inline the
14993   // block literal, it has block literal lifetime semantics.
14994   if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
14995     BuildBlock = ImplicitCastExpr::Create(
14996         Context, BuildBlock.get()->getType(), CK_CopyAndAutoreleaseBlockObject,
14997         BuildBlock.get(), nullptr, VK_RValue, FPOptionsOverride());
14998 
14999   if (BuildBlock.isInvalid()) {
15000     Diag(CurrentLocation, diag::note_lambda_to_block_conv);
15001     Conv->setInvalidDecl();
15002     return;
15003   }
15004 
15005   // Create the return statement that returns the block from the conversion
15006   // function.
15007   StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
15008   if (Return.isInvalid()) {
15009     Diag(CurrentLocation, diag::note_lambda_to_block_conv);
15010     Conv->setInvalidDecl();
15011     return;
15012   }
15013 
15014   // Set the body of the conversion function.
15015   Stmt *ReturnS = Return.get();
15016   Conv->setBody(CompoundStmt::Create(Context, ReturnS, Conv->getLocation(),
15017                                      Conv->getLocation()));
15018   Conv->markUsed(Context);
15019 
15020   // We're done; notify the mutation listener, if any.
15021   if (ASTMutationListener *L = getASTMutationListener()) {
15022     L->CompletedImplicitDefinition(Conv);
15023   }
15024 }
15025 
15026 /// Determine whether the given list arguments contains exactly one
15027 /// "real" (non-default) argument.
hasOneRealArgument(MultiExprArg Args)15028 static bool hasOneRealArgument(MultiExprArg Args) {
15029   switch (Args.size()) {
15030   case 0:
15031     return false;
15032 
15033   default:
15034     if (!Args[1]->isDefaultArgument())
15035       return false;
15036 
15037     LLVM_FALLTHROUGH;
15038   case 1:
15039     return !Args[0]->isDefaultArgument();
15040   }
15041 
15042   return false;
15043 }
15044 
15045 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,NamedDecl * FoundDecl,CXXConstructorDecl * Constructor,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool IsStdInitListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)15046 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15047                             NamedDecl *FoundDecl,
15048                             CXXConstructorDecl *Constructor,
15049                             MultiExprArg ExprArgs,
15050                             bool HadMultipleCandidates,
15051                             bool IsListInitialization,
15052                             bool IsStdInitListInitialization,
15053                             bool RequiresZeroInit,
15054                             unsigned ConstructKind,
15055                             SourceRange ParenRange) {
15056   bool Elidable = false;
15057 
15058   // C++0x [class.copy]p34:
15059   //   When certain criteria are met, an implementation is allowed to
15060   //   omit the copy/move construction of a class object, even if the
15061   //   copy/move constructor and/or destructor for the object have
15062   //   side effects. [...]
15063   //     - when a temporary class object that has not been bound to a
15064   //       reference (12.2) would be copied/moved to a class object
15065   //       with the same cv-unqualified type, the copy/move operation
15066   //       can be omitted by constructing the temporary object
15067   //       directly into the target of the omitted copy/move
15068   if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor &&
15069       Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
15070     Expr *SubExpr = ExprArgs[0];
15071     Elidable = SubExpr->isTemporaryObject(
15072         Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
15073   }
15074 
15075   return BuildCXXConstructExpr(ConstructLoc, DeclInitType,
15076                                FoundDecl, Constructor,
15077                                Elidable, ExprArgs, HadMultipleCandidates,
15078                                IsListInitialization,
15079                                IsStdInitListInitialization, RequiresZeroInit,
15080                                ConstructKind, ParenRange);
15081 }
15082 
15083 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,NamedDecl * FoundDecl,CXXConstructorDecl * Constructor,bool Elidable,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool IsStdInitListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)15084 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15085                             NamedDecl *FoundDecl,
15086                             CXXConstructorDecl *Constructor,
15087                             bool Elidable,
15088                             MultiExprArg ExprArgs,
15089                             bool HadMultipleCandidates,
15090                             bool IsListInitialization,
15091                             bool IsStdInitListInitialization,
15092                             bool RequiresZeroInit,
15093                             unsigned ConstructKind,
15094                             SourceRange ParenRange) {
15095   if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) {
15096     Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow);
15097     if (DiagnoseUseOfDecl(Constructor, ConstructLoc))
15098       return ExprError();
15099   }
15100 
15101   return BuildCXXConstructExpr(
15102       ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs,
15103       HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
15104       RequiresZeroInit, ConstructKind, ParenRange);
15105 }
15106 
15107 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
15108 /// including handling of its default argument expressions.
15109 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,bool Elidable,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool IsStdInitListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)15110 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15111                             CXXConstructorDecl *Constructor,
15112                             bool Elidable,
15113                             MultiExprArg ExprArgs,
15114                             bool HadMultipleCandidates,
15115                             bool IsListInitialization,
15116                             bool IsStdInitListInitialization,
15117                             bool RequiresZeroInit,
15118                             unsigned ConstructKind,
15119                             SourceRange ParenRange) {
15120   assert(declaresSameEntity(
15121              Constructor->getParent(),
15122              DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
15123          "given constructor for wrong type");
15124   MarkFunctionReferenced(ConstructLoc, Constructor);
15125   if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor))
15126     return ExprError();
15127   if (getLangOpts().SYCLIsDevice &&
15128       !checkSYCLDeviceFunction(ConstructLoc, Constructor))
15129     return ExprError();
15130 
15131   return CheckForImmediateInvocation(
15132       CXXConstructExpr::Create(
15133           Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs,
15134           HadMultipleCandidates, IsListInitialization,
15135           IsStdInitListInitialization, RequiresZeroInit,
15136           static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
15137           ParenRange),
15138       Constructor);
15139 }
15140 
BuildCXXDefaultInitExpr(SourceLocation Loc,FieldDecl * Field)15141 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
15142   assert(Field->hasInClassInitializer());
15143 
15144   // If we already have the in-class initializer nothing needs to be done.
15145   if (Field->getInClassInitializer())
15146     return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext);
15147 
15148   // If we might have already tried and failed to instantiate, don't try again.
15149   if (Field->isInvalidDecl())
15150     return ExprError();
15151 
15152   // Maybe we haven't instantiated the in-class initializer. Go check the
15153   // pattern FieldDecl to see if it has one.
15154   CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent());
15155 
15156   if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
15157     CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
15158     DeclContext::lookup_result Lookup =
15159         ClassPattern->lookup(Field->getDeclName());
15160 
15161     FieldDecl *Pattern = nullptr;
15162     for (auto L : Lookup) {
15163       if (isa<FieldDecl>(L)) {
15164         Pattern = cast<FieldDecl>(L);
15165         break;
15166       }
15167     }
15168     assert(Pattern && "We must have set the Pattern!");
15169 
15170     if (!Pattern->hasInClassInitializer() ||
15171         InstantiateInClassInitializer(Loc, Field, Pattern,
15172                                       getTemplateInstantiationArgs(Field))) {
15173       // Don't diagnose this again.
15174       Field->setInvalidDecl();
15175       return ExprError();
15176     }
15177     return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext);
15178   }
15179 
15180   // DR1351:
15181   //   If the brace-or-equal-initializer of a non-static data member
15182   //   invokes a defaulted default constructor of its class or of an
15183   //   enclosing class in a potentially evaluated subexpression, the
15184   //   program is ill-formed.
15185   //
15186   // This resolution is unworkable: the exception specification of the
15187   // default constructor can be needed in an unevaluated context, in
15188   // particular, in the operand of a noexcept-expression, and we can be
15189   // unable to compute an exception specification for an enclosed class.
15190   //
15191   // Any attempt to resolve the exception specification of a defaulted default
15192   // constructor before the initializer is lexically complete will ultimately
15193   // come here at which point we can diagnose it.
15194   RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
15195   Diag(Loc, diag::err_default_member_initializer_not_yet_parsed)
15196       << OutermostClass << Field;
15197   Diag(Field->getEndLoc(),
15198        diag::note_default_member_initializer_not_yet_parsed);
15199   // Recover by marking the field invalid, unless we're in a SFINAE context.
15200   if (!isSFINAEContext())
15201     Field->setInvalidDecl();
15202   return ExprError();
15203 }
15204 
FinalizeVarWithDestructor(VarDecl * VD,const RecordType * Record)15205 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
15206   if (VD->isInvalidDecl()) return;
15207   // If initializing the variable failed, don't also diagnose problems with
15208   // the desctructor, they're likely related.
15209   if (VD->getInit() && VD->getInit()->containsErrors())
15210     return;
15211 
15212   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
15213   if (ClassDecl->isInvalidDecl()) return;
15214   if (ClassDecl->hasIrrelevantDestructor()) return;
15215   if (ClassDecl->isDependentContext()) return;
15216 
15217   if (VD->isNoDestroy(getASTContext()))
15218     return;
15219 
15220   CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
15221 
15222   // If this is an array, we'll require the destructor during initialization, so
15223   // we can skip over this. We still want to emit exit-time destructor warnings
15224   // though.
15225   if (!VD->getType()->isArrayType()) {
15226     MarkFunctionReferenced(VD->getLocation(), Destructor);
15227     CheckDestructorAccess(VD->getLocation(), Destructor,
15228                           PDiag(diag::err_access_dtor_var)
15229                               << VD->getDeclName() << VD->getType());
15230     DiagnoseUseOfDecl(Destructor, VD->getLocation());
15231   }
15232 
15233   if (Destructor->isTrivial()) return;
15234 
15235   // If the destructor is constexpr, check whether the variable has constant
15236   // destruction now.
15237   if (Destructor->isConstexpr()) {
15238     bool HasConstantInit = false;
15239     if (VD->getInit() && !VD->getInit()->isValueDependent())
15240       HasConstantInit = VD->evaluateValue();
15241     SmallVector<PartialDiagnosticAt, 8> Notes;
15242     if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() &&
15243         HasConstantInit) {
15244       Diag(VD->getLocation(),
15245            diag::err_constexpr_var_requires_const_destruction) << VD;
15246       for (unsigned I = 0, N = Notes.size(); I != N; ++I)
15247         Diag(Notes[I].first, Notes[I].second);
15248     }
15249   }
15250 
15251   if (!VD->hasGlobalStorage()) return;
15252 
15253   // Emit warning for non-trivial dtor in global scope (a real global,
15254   // class-static, function-static).
15255   Diag(VD->getLocation(), diag::warn_exit_time_destructor);
15256 
15257   // TODO: this should be re-enabled for static locals by !CXAAtExit
15258   if (!VD->isStaticLocal())
15259     Diag(VD->getLocation(), diag::warn_global_destructor);
15260 }
15261 
15262 /// Given a constructor and the set of arguments provided for the
15263 /// constructor, convert the arguments and add any required default arguments
15264 /// to form a proper call to this constructor.
15265 ///
15266 /// \returns true if an error occurred, false otherwise.
CompleteConstructorCall(CXXConstructorDecl * Constructor,QualType DeclInitType,MultiExprArg ArgsPtr,SourceLocation Loc,SmallVectorImpl<Expr * > & ConvertedArgs,bool AllowExplicit,bool IsListInitialization)15267 bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
15268                                    QualType DeclInitType, MultiExprArg ArgsPtr,
15269                                    SourceLocation Loc,
15270                                    SmallVectorImpl<Expr *> &ConvertedArgs,
15271                                    bool AllowExplicit,
15272                                    bool IsListInitialization) {
15273   // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
15274   unsigned NumArgs = ArgsPtr.size();
15275   Expr **Args = ArgsPtr.data();
15276 
15277   const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>();
15278   unsigned NumParams = Proto->getNumParams();
15279 
15280   // If too few arguments are available, we'll fill in the rest with defaults.
15281   if (NumArgs < NumParams)
15282     ConvertedArgs.reserve(NumParams);
15283   else
15284     ConvertedArgs.reserve(NumArgs);
15285 
15286   VariadicCallType CallType =
15287     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
15288   SmallVector<Expr *, 8> AllArgs;
15289   bool Invalid = GatherArgumentsForCall(Loc, Constructor,
15290                                         Proto, 0,
15291                                         llvm::makeArrayRef(Args, NumArgs),
15292                                         AllArgs,
15293                                         CallType, AllowExplicit,
15294                                         IsListInitialization);
15295   ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
15296 
15297   DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
15298 
15299   CheckConstructorCall(Constructor, DeclInitType,
15300                        llvm::makeArrayRef(AllArgs.data(), AllArgs.size()),
15301                        Proto, Loc);
15302 
15303   return Invalid;
15304 }
15305 
15306 static inline bool
CheckOperatorNewDeleteDeclarationScope(Sema & SemaRef,const FunctionDecl * FnDecl)15307 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
15308                                        const FunctionDecl *FnDecl) {
15309   const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
15310   if (isa<NamespaceDecl>(DC)) {
15311     return SemaRef.Diag(FnDecl->getLocation(),
15312                         diag::err_operator_new_delete_declared_in_namespace)
15313       << FnDecl->getDeclName();
15314   }
15315 
15316   if (isa<TranslationUnitDecl>(DC) &&
15317       FnDecl->getStorageClass() == SC_Static) {
15318     return SemaRef.Diag(FnDecl->getLocation(),
15319                         diag::err_operator_new_delete_declared_static)
15320       << FnDecl->getDeclName();
15321   }
15322 
15323   return false;
15324 }
15325 
RemoveAddressSpaceFromPtr(Sema & SemaRef,const PointerType * PtrTy)15326 static CanQualType RemoveAddressSpaceFromPtr(Sema &SemaRef,
15327                                              const PointerType *PtrTy) {
15328   auto &Ctx = SemaRef.Context;
15329   Qualifiers PtrQuals = PtrTy->getPointeeType().getQualifiers();
15330   PtrQuals.removeAddressSpace();
15331   return Ctx.getPointerType(Ctx.getCanonicalType(Ctx.getQualifiedType(
15332       PtrTy->getPointeeType().getUnqualifiedType(), PtrQuals)));
15333 }
15334 
15335 static inline bool
CheckOperatorNewDeleteTypes(Sema & SemaRef,const FunctionDecl * FnDecl,CanQualType ExpectedResultType,CanQualType ExpectedFirstParamType,unsigned DependentParamTypeDiag,unsigned InvalidParamTypeDiag)15336 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
15337                             CanQualType ExpectedResultType,
15338                             CanQualType ExpectedFirstParamType,
15339                             unsigned DependentParamTypeDiag,
15340                             unsigned InvalidParamTypeDiag) {
15341   QualType ResultType =
15342       FnDecl->getType()->castAs<FunctionType>()->getReturnType();
15343 
15344   if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
15345     // The operator is valid on any address space for OpenCL.
15346     // Drop address space from actual and expected result types.
15347     if (const auto *PtrTy = ResultType->getAs<PointerType>())
15348       ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
15349 
15350     if (auto ExpectedPtrTy = ExpectedResultType->getAs<PointerType>())
15351       ExpectedResultType = RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy);
15352   }
15353 
15354   // Check that the result type is what we expect.
15355   if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) {
15356     // Reject even if the type is dependent; an operator delete function is
15357     // required to have a non-dependent result type.
15358     return SemaRef.Diag(
15359                FnDecl->getLocation(),
15360                ResultType->isDependentType()
15361                    ? diag::err_operator_new_delete_dependent_result_type
15362                    : diag::err_operator_new_delete_invalid_result_type)
15363            << FnDecl->getDeclName() << ExpectedResultType;
15364   }
15365 
15366   // A function template must have at least 2 parameters.
15367   if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
15368     return SemaRef.Diag(FnDecl->getLocation(),
15369                       diag::err_operator_new_delete_template_too_few_parameters)
15370         << FnDecl->getDeclName();
15371 
15372   // The function decl must have at least 1 parameter.
15373   if (FnDecl->getNumParams() == 0)
15374     return SemaRef.Diag(FnDecl->getLocation(),
15375                         diag::err_operator_new_delete_too_few_parameters)
15376       << FnDecl->getDeclName();
15377 
15378   QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
15379   if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
15380     // The operator is valid on any address space for OpenCL.
15381     // Drop address space from actual and expected first parameter types.
15382     if (const auto *PtrTy =
15383             FnDecl->getParamDecl(0)->getType()->getAs<PointerType>())
15384       FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
15385 
15386     if (auto ExpectedPtrTy = ExpectedFirstParamType->getAs<PointerType>())
15387       ExpectedFirstParamType =
15388           RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy);
15389   }
15390 
15391   // Check that the first parameter type is what we expect.
15392   if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
15393       ExpectedFirstParamType) {
15394     // The first parameter type is not allowed to be dependent. As a tentative
15395     // DR resolution, we allow a dependent parameter type if it is the right
15396     // type anyway, to allow destroying operator delete in class templates.
15397     return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType()
15398                                                    ? DependentParamTypeDiag
15399                                                    : InvalidParamTypeDiag)
15400            << FnDecl->getDeclName() << ExpectedFirstParamType;
15401   }
15402 
15403   return false;
15404 }
15405 
15406 static bool
CheckOperatorNewDeclaration(Sema & SemaRef,const FunctionDecl * FnDecl)15407 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
15408   // C++ [basic.stc.dynamic.allocation]p1:
15409   //   A program is ill-formed if an allocation function is declared in a
15410   //   namespace scope other than global scope or declared static in global
15411   //   scope.
15412   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
15413     return true;
15414 
15415   CanQualType SizeTy =
15416     SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
15417 
15418   // C++ [basic.stc.dynamic.allocation]p1:
15419   //  The return type shall be void*. The first parameter shall have type
15420   //  std::size_t.
15421   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
15422                                   SizeTy,
15423                                   diag::err_operator_new_dependent_param_type,
15424                                   diag::err_operator_new_param_type))
15425     return true;
15426 
15427   // C++ [basic.stc.dynamic.allocation]p1:
15428   //  The first parameter shall not have an associated default argument.
15429   if (FnDecl->getParamDecl(0)->hasDefaultArg())
15430     return SemaRef.Diag(FnDecl->getLocation(),
15431                         diag::err_operator_new_default_arg)
15432       << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
15433 
15434   return false;
15435 }
15436 
15437 static bool
CheckOperatorDeleteDeclaration(Sema & SemaRef,FunctionDecl * FnDecl)15438 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
15439   // C++ [basic.stc.dynamic.deallocation]p1:
15440   //   A program is ill-formed if deallocation functions are declared in a
15441   //   namespace scope other than global scope or declared static in global
15442   //   scope.
15443   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
15444     return true;
15445 
15446   auto *MD = dyn_cast<CXXMethodDecl>(FnDecl);
15447 
15448   // C++ P0722:
15449   //   Within a class C, the first parameter of a destroying operator delete
15450   //   shall be of type C *. The first parameter of any other deallocation
15451   //   function shall be of type void *.
15452   CanQualType ExpectedFirstParamType =
15453       MD && MD->isDestroyingOperatorDelete()
15454           ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType(
15455                 SemaRef.Context.getRecordType(MD->getParent())))
15456           : SemaRef.Context.VoidPtrTy;
15457 
15458   // C++ [basic.stc.dynamic.deallocation]p2:
15459   //   Each deallocation function shall return void
15460   if (CheckOperatorNewDeleteTypes(
15461           SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType,
15462           diag::err_operator_delete_dependent_param_type,
15463           diag::err_operator_delete_param_type))
15464     return true;
15465 
15466   // C++ P0722:
15467   //   A destroying operator delete shall be a usual deallocation function.
15468   if (MD && !MD->getParent()->isDependentContext() &&
15469       MD->isDestroyingOperatorDelete() &&
15470       !SemaRef.isUsualDeallocationFunction(MD)) {
15471     SemaRef.Diag(MD->getLocation(),
15472                  diag::err_destroying_operator_delete_not_usual);
15473     return true;
15474   }
15475 
15476   return false;
15477 }
15478 
15479 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
15480 /// of this overloaded operator is well-formed. If so, returns false;
15481 /// otherwise, emits appropriate diagnostics and returns true.
CheckOverloadedOperatorDeclaration(FunctionDecl * FnDecl)15482 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
15483   assert(FnDecl && FnDecl->isOverloadedOperator() &&
15484          "Expected an overloaded operator declaration");
15485 
15486   OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
15487 
15488   // C++ [over.oper]p5:
15489   //   The allocation and deallocation functions, operator new,
15490   //   operator new[], operator delete and operator delete[], are
15491   //   described completely in 3.7.3. The attributes and restrictions
15492   //   found in the rest of this subclause do not apply to them unless
15493   //   explicitly stated in 3.7.3.
15494   if (Op == OO_Delete || Op == OO_Array_Delete)
15495     return CheckOperatorDeleteDeclaration(*this, FnDecl);
15496 
15497   if (Op == OO_New || Op == OO_Array_New)
15498     return CheckOperatorNewDeclaration(*this, FnDecl);
15499 
15500   // C++ [over.oper]p6:
15501   //   An operator function shall either be a non-static member
15502   //   function or be a non-member function and have at least one
15503   //   parameter whose type is a class, a reference to a class, an
15504   //   enumeration, or a reference to an enumeration.
15505   if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
15506     if (MethodDecl->isStatic())
15507       return Diag(FnDecl->getLocation(),
15508                   diag::err_operator_overload_static) << FnDecl->getDeclName();
15509   } else {
15510     bool ClassOrEnumParam = false;
15511     for (auto Param : FnDecl->parameters()) {
15512       QualType ParamType = Param->getType().getNonReferenceType();
15513       if (ParamType->isDependentType() || ParamType->isRecordType() ||
15514           ParamType->isEnumeralType()) {
15515         ClassOrEnumParam = true;
15516         break;
15517       }
15518     }
15519 
15520     if (!ClassOrEnumParam)
15521       return Diag(FnDecl->getLocation(),
15522                   diag::err_operator_overload_needs_class_or_enum)
15523         << FnDecl->getDeclName();
15524   }
15525 
15526   // C++ [over.oper]p8:
15527   //   An operator function cannot have default arguments (8.3.6),
15528   //   except where explicitly stated below.
15529   //
15530   // Only the function-call operator allows default arguments
15531   // (C++ [over.call]p1).
15532   if (Op != OO_Call) {
15533     for (auto Param : FnDecl->parameters()) {
15534       if (Param->hasDefaultArg())
15535         return Diag(Param->getLocation(),
15536                     diag::err_operator_overload_default_arg)
15537           << FnDecl->getDeclName() << Param->getDefaultArgRange();
15538     }
15539   }
15540 
15541   static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
15542     { false, false, false }
15543 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
15544     , { Unary, Binary, MemberOnly }
15545 #include "clang/Basic/OperatorKinds.def"
15546   };
15547 
15548   bool CanBeUnaryOperator = OperatorUses[Op][0];
15549   bool CanBeBinaryOperator = OperatorUses[Op][1];
15550   bool MustBeMemberOperator = OperatorUses[Op][2];
15551 
15552   // C++ [over.oper]p8:
15553   //   [...] Operator functions cannot have more or fewer parameters
15554   //   than the number required for the corresponding operator, as
15555   //   described in the rest of this subclause.
15556   unsigned NumParams = FnDecl->getNumParams()
15557                      + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
15558   if (Op != OO_Call &&
15559       ((NumParams == 1 && !CanBeUnaryOperator) ||
15560        (NumParams == 2 && !CanBeBinaryOperator) ||
15561        (NumParams < 1) || (NumParams > 2))) {
15562     // We have the wrong number of parameters.
15563     unsigned ErrorKind;
15564     if (CanBeUnaryOperator && CanBeBinaryOperator) {
15565       ErrorKind = 2;  // 2 -> unary or binary.
15566     } else if (CanBeUnaryOperator) {
15567       ErrorKind = 0;  // 0 -> unary
15568     } else {
15569       assert(CanBeBinaryOperator &&
15570              "All non-call overloaded operators are unary or binary!");
15571       ErrorKind = 1;  // 1 -> binary
15572     }
15573 
15574     return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
15575       << FnDecl->getDeclName() << NumParams << ErrorKind;
15576   }
15577 
15578   // Overloaded operators other than operator() cannot be variadic.
15579   if (Op != OO_Call &&
15580       FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) {
15581     return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
15582       << FnDecl->getDeclName();
15583   }
15584 
15585   // Some operators must be non-static member functions.
15586   if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
15587     return Diag(FnDecl->getLocation(),
15588                 diag::err_operator_overload_must_be_member)
15589       << FnDecl->getDeclName();
15590   }
15591 
15592   // C++ [over.inc]p1:
15593   //   The user-defined function called operator++ implements the
15594   //   prefix and postfix ++ operator. If this function is a member
15595   //   function with no parameters, or a non-member function with one
15596   //   parameter of class or enumeration type, it defines the prefix
15597   //   increment operator ++ for objects of that type. If the function
15598   //   is a member function with one parameter (which shall be of type
15599   //   int) or a non-member function with two parameters (the second
15600   //   of which shall be of type int), it defines the postfix
15601   //   increment operator ++ for objects of that type.
15602   if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
15603     ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
15604     QualType ParamType = LastParam->getType();
15605 
15606     if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
15607         !ParamType->isDependentType())
15608       return Diag(LastParam->getLocation(),
15609                   diag::err_operator_overload_post_incdec_must_be_int)
15610         << LastParam->getType() << (Op == OO_MinusMinus);
15611   }
15612 
15613   return false;
15614 }
15615 
15616 static bool
checkLiteralOperatorTemplateParameterList(Sema & SemaRef,FunctionTemplateDecl * TpDecl)15617 checkLiteralOperatorTemplateParameterList(Sema &SemaRef,
15618                                           FunctionTemplateDecl *TpDecl) {
15619   TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters();
15620 
15621   // Must have one or two template parameters.
15622   if (TemplateParams->size() == 1) {
15623     NonTypeTemplateParmDecl *PmDecl =
15624         dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0));
15625 
15626     // The template parameter must be a char parameter pack.
15627     if (PmDecl && PmDecl->isTemplateParameterPack() &&
15628         SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy))
15629       return false;
15630 
15631     // C++20 [over.literal]p5:
15632     //   A string literal operator template is a literal operator template
15633     //   whose template-parameter-list comprises a single non-type
15634     //   template-parameter of class type.
15635     //
15636     // As a DR resolution, we also allow placeholders for deduced class
15637     // template specializations.
15638     if (SemaRef.getLangOpts().CPlusPlus20 &&
15639         !PmDecl->isTemplateParameterPack() &&
15640         (PmDecl->getType()->isRecordType() ||
15641          PmDecl->getType()->getAs<DeducedTemplateSpecializationType>()))
15642       return false;
15643   } else if (TemplateParams->size() == 2) {
15644     TemplateTypeParmDecl *PmType =
15645         dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0));
15646     NonTypeTemplateParmDecl *PmArgs =
15647         dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1));
15648 
15649     // The second template parameter must be a parameter pack with the
15650     // first template parameter as its type.
15651     if (PmType && PmArgs && !PmType->isTemplateParameterPack() &&
15652         PmArgs->isTemplateParameterPack()) {
15653       const TemplateTypeParmType *TArgs =
15654           PmArgs->getType()->getAs<TemplateTypeParmType>();
15655       if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
15656           TArgs->getIndex() == PmType->getIndex()) {
15657         if (!SemaRef.inTemplateInstantiation())
15658           SemaRef.Diag(TpDecl->getLocation(),
15659                        diag::ext_string_literal_operator_template);
15660         return false;
15661       }
15662     }
15663   }
15664 
15665   SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(),
15666                diag::err_literal_operator_template)
15667       << TpDecl->getTemplateParameters()->getSourceRange();
15668   return true;
15669 }
15670 
15671 /// CheckLiteralOperatorDeclaration - Check whether the declaration
15672 /// of this literal operator function is well-formed. If so, returns
15673 /// false; otherwise, emits appropriate diagnostics and returns true.
CheckLiteralOperatorDeclaration(FunctionDecl * FnDecl)15674 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
15675   if (isa<CXXMethodDecl>(FnDecl)) {
15676     Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
15677       << FnDecl->getDeclName();
15678     return true;
15679   }
15680 
15681   if (FnDecl->isExternC()) {
15682     Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
15683     if (const LinkageSpecDecl *LSD =
15684             FnDecl->getDeclContext()->getExternCContext())
15685       Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
15686     return true;
15687   }
15688 
15689   // This might be the definition of a literal operator template.
15690   FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
15691 
15692   // This might be a specialization of a literal operator template.
15693   if (!TpDecl)
15694     TpDecl = FnDecl->getPrimaryTemplate();
15695 
15696   // template <char...> type operator "" name() and
15697   // template <class T, T...> type operator "" name() are the only valid
15698   // template signatures, and the only valid signatures with no parameters.
15699   //
15700   // C++20 also allows template <SomeClass T> type operator "" name().
15701   if (TpDecl) {
15702     if (FnDecl->param_size() != 0) {
15703       Diag(FnDecl->getLocation(),
15704            diag::err_literal_operator_template_with_params);
15705       return true;
15706     }
15707 
15708     if (checkLiteralOperatorTemplateParameterList(*this, TpDecl))
15709       return true;
15710 
15711   } else if (FnDecl->param_size() == 1) {
15712     const ParmVarDecl *Param = FnDecl->getParamDecl(0);
15713 
15714     QualType ParamType = Param->getType().getUnqualifiedType();
15715 
15716     // Only unsigned long long int, long double, any character type, and const
15717     // char * are allowed as the only parameters.
15718     if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
15719         ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) ||
15720         Context.hasSameType(ParamType, Context.CharTy) ||
15721         Context.hasSameType(ParamType, Context.WideCharTy) ||
15722         Context.hasSameType(ParamType, Context.Char8Ty) ||
15723         Context.hasSameType(ParamType, Context.Char16Ty) ||
15724         Context.hasSameType(ParamType, Context.Char32Ty)) {
15725     } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) {
15726       QualType InnerType = Ptr->getPointeeType();
15727 
15728       // Pointer parameter must be a const char *.
15729       if (!(Context.hasSameType(InnerType.getUnqualifiedType(),
15730                                 Context.CharTy) &&
15731             InnerType.isConstQualified() && !InnerType.isVolatileQualified())) {
15732         Diag(Param->getSourceRange().getBegin(),
15733              diag::err_literal_operator_param)
15734             << ParamType << "'const char *'" << Param->getSourceRange();
15735         return true;
15736       }
15737 
15738     } else if (ParamType->isRealFloatingType()) {
15739       Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
15740           << ParamType << Context.LongDoubleTy << Param->getSourceRange();
15741       return true;
15742 
15743     } else if (ParamType->isIntegerType()) {
15744       Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
15745           << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange();
15746       return true;
15747 
15748     } else {
15749       Diag(Param->getSourceRange().getBegin(),
15750            diag::err_literal_operator_invalid_param)
15751           << ParamType << Param->getSourceRange();
15752       return true;
15753     }
15754 
15755   } else if (FnDecl->param_size() == 2) {
15756     FunctionDecl::param_iterator Param = FnDecl->param_begin();
15757 
15758     // First, verify that the first parameter is correct.
15759 
15760     QualType FirstParamType = (*Param)->getType().getUnqualifiedType();
15761 
15762     // Two parameter function must have a pointer to const as a
15763     // first parameter; let's strip those qualifiers.
15764     const PointerType *PT = FirstParamType->getAs<PointerType>();
15765 
15766     if (!PT) {
15767       Diag((*Param)->getSourceRange().getBegin(),
15768            diag::err_literal_operator_param)
15769           << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
15770       return true;
15771     }
15772 
15773     QualType PointeeType = PT->getPointeeType();
15774     // First parameter must be const
15775     if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) {
15776       Diag((*Param)->getSourceRange().getBegin(),
15777            diag::err_literal_operator_param)
15778           << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
15779       return true;
15780     }
15781 
15782     QualType InnerType = PointeeType.getUnqualifiedType();
15783     // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and
15784     // const char32_t* are allowed as the first parameter to a two-parameter
15785     // function
15786     if (!(Context.hasSameType(InnerType, Context.CharTy) ||
15787           Context.hasSameType(InnerType, Context.WideCharTy) ||
15788           Context.hasSameType(InnerType, Context.Char8Ty) ||
15789           Context.hasSameType(InnerType, Context.Char16Ty) ||
15790           Context.hasSameType(InnerType, Context.Char32Ty))) {
15791       Diag((*Param)->getSourceRange().getBegin(),
15792            diag::err_literal_operator_param)
15793           << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
15794       return true;
15795     }
15796 
15797     // Move on to the second and final parameter.
15798     ++Param;
15799 
15800     // The second parameter must be a std::size_t.
15801     QualType SecondParamType = (*Param)->getType().getUnqualifiedType();
15802     if (!Context.hasSameType(SecondParamType, Context.getSizeType())) {
15803       Diag((*Param)->getSourceRange().getBegin(),
15804            diag::err_literal_operator_param)
15805           << SecondParamType << Context.getSizeType()
15806           << (*Param)->getSourceRange();
15807       return true;
15808     }
15809   } else {
15810     Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count);
15811     return true;
15812   }
15813 
15814   // Parameters are good.
15815 
15816   // A parameter-declaration-clause containing a default argument is not
15817   // equivalent to any of the permitted forms.
15818   for (auto Param : FnDecl->parameters()) {
15819     if (Param->hasDefaultArg()) {
15820       Diag(Param->getDefaultArgRange().getBegin(),
15821            diag::err_literal_operator_default_argument)
15822         << Param->getDefaultArgRange();
15823       break;
15824     }
15825   }
15826 
15827   StringRef LiteralName
15828     = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
15829   if (LiteralName[0] != '_' &&
15830       !getSourceManager().isInSystemHeader(FnDecl->getLocation())) {
15831     // C++11 [usrlit.suffix]p1:
15832     //   Literal suffix identifiers that do not start with an underscore
15833     //   are reserved for future standardization.
15834     Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
15835       << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
15836   }
15837 
15838   return false;
15839 }
15840 
15841 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
15842 /// linkage specification, including the language and (if present)
15843 /// the '{'. ExternLoc is the location of the 'extern', Lang is the
15844 /// language string literal. LBraceLoc, if valid, provides the location of
15845 /// the '{' brace. Otherwise, this linkage specification does not
15846 /// have any braces.
ActOnStartLinkageSpecification(Scope * S,SourceLocation ExternLoc,Expr * LangStr,SourceLocation LBraceLoc)15847 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
15848                                            Expr *LangStr,
15849                                            SourceLocation LBraceLoc) {
15850   StringLiteral *Lit = cast<StringLiteral>(LangStr);
15851   if (!Lit->isAscii()) {
15852     Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
15853       << LangStr->getSourceRange();
15854     return nullptr;
15855   }
15856 
15857   StringRef Lang = Lit->getString();
15858   LinkageSpecDecl::LanguageIDs Language;
15859   if (Lang == "C")
15860     Language = LinkageSpecDecl::lang_c;
15861   else if (Lang == "C++")
15862     Language = LinkageSpecDecl::lang_cxx;
15863   else {
15864     Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
15865       << LangStr->getSourceRange();
15866     return nullptr;
15867   }
15868 
15869   // FIXME: Add all the various semantics of linkage specifications
15870 
15871   LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
15872                                                LangStr->getExprLoc(), Language,
15873                                                LBraceLoc.isValid());
15874   CurContext->addDecl(D);
15875   PushDeclContext(S, D);
15876   return D;
15877 }
15878 
15879 /// ActOnFinishLinkageSpecification - Complete the definition of
15880 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
15881 /// valid, it's the position of the closing '}' brace in a linkage
15882 /// specification that uses braces.
ActOnFinishLinkageSpecification(Scope * S,Decl * LinkageSpec,SourceLocation RBraceLoc)15883 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
15884                                             Decl *LinkageSpec,
15885                                             SourceLocation RBraceLoc) {
15886   if (RBraceLoc.isValid()) {
15887     LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
15888     LSDecl->setRBraceLoc(RBraceLoc);
15889   }
15890   PopDeclContext();
15891   return LinkageSpec;
15892 }
15893 
ActOnEmptyDeclaration(Scope * S,const ParsedAttributesView & AttrList,SourceLocation SemiLoc)15894 Decl *Sema::ActOnEmptyDeclaration(Scope *S,
15895                                   const ParsedAttributesView &AttrList,
15896                                   SourceLocation SemiLoc) {
15897   Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
15898   // Attribute declarations appertain to empty declaration so we handle
15899   // them here.
15900   ProcessDeclAttributeList(S, ED, AttrList);
15901 
15902   CurContext->addDecl(ED);
15903   return ED;
15904 }
15905 
15906 /// Perform semantic analysis for the variable declaration that
15907 /// occurs within a C++ catch clause, returning the newly-created
15908 /// variable.
BuildExceptionDeclaration(Scope * S,TypeSourceInfo * TInfo,SourceLocation StartLoc,SourceLocation Loc,IdentifierInfo * Name)15909 VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
15910                                          TypeSourceInfo *TInfo,
15911                                          SourceLocation StartLoc,
15912                                          SourceLocation Loc,
15913                                          IdentifierInfo *Name) {
15914   bool Invalid = false;
15915   QualType ExDeclType = TInfo->getType();
15916 
15917   // Arrays and functions decay.
15918   if (ExDeclType->isArrayType())
15919     ExDeclType = Context.getArrayDecayedType(ExDeclType);
15920   else if (ExDeclType->isFunctionType())
15921     ExDeclType = Context.getPointerType(ExDeclType);
15922 
15923   // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
15924   // The exception-declaration shall not denote a pointer or reference to an
15925   // incomplete type, other than [cv] void*.
15926   // N2844 forbids rvalue references.
15927   if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
15928     Diag(Loc, diag::err_catch_rvalue_ref);
15929     Invalid = true;
15930   }
15931 
15932   if (ExDeclType->isVariablyModifiedType()) {
15933     Diag(Loc, diag::err_catch_variably_modified) << ExDeclType;
15934     Invalid = true;
15935   }
15936 
15937   QualType BaseType = ExDeclType;
15938   int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
15939   unsigned DK = diag::err_catch_incomplete;
15940   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
15941     BaseType = Ptr->getPointeeType();
15942     Mode = 1;
15943     DK = diag::err_catch_incomplete_ptr;
15944   } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
15945     // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
15946     BaseType = Ref->getPointeeType();
15947     Mode = 2;
15948     DK = diag::err_catch_incomplete_ref;
15949   }
15950   if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
15951       !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
15952     Invalid = true;
15953 
15954   if (!Invalid && Mode != 1 && BaseType->isSizelessType()) {
15955     Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType;
15956     Invalid = true;
15957   }
15958 
15959   if (!Invalid && !ExDeclType->isDependentType() &&
15960       RequireNonAbstractType(Loc, ExDeclType,
15961                              diag::err_abstract_type_in_decl,
15962                              AbstractVariableType))
15963     Invalid = true;
15964 
15965   // Only the non-fragile NeXT runtime currently supports C++ catches
15966   // of ObjC types, and no runtime supports catching ObjC types by value.
15967   if (!Invalid && getLangOpts().ObjC) {
15968     QualType T = ExDeclType;
15969     if (const ReferenceType *RT = T->getAs<ReferenceType>())
15970       T = RT->getPointeeType();
15971 
15972     if (T->isObjCObjectType()) {
15973       Diag(Loc, diag::err_objc_object_catch);
15974       Invalid = true;
15975     } else if (T->isObjCObjectPointerType()) {
15976       // FIXME: should this be a test for macosx-fragile specifically?
15977       if (getLangOpts().ObjCRuntime.isFragile())
15978         Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
15979     }
15980   }
15981 
15982   VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
15983                                     ExDeclType, TInfo, SC_None);
15984   ExDecl->setExceptionVariable(true);
15985 
15986   // In ARC, infer 'retaining' for variables of retainable type.
15987   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
15988     Invalid = true;
15989 
15990   if (!Invalid && !ExDeclType->isDependentType()) {
15991     if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
15992       // Insulate this from anything else we might currently be parsing.
15993       EnterExpressionEvaluationContext scope(
15994           *this, ExpressionEvaluationContext::PotentiallyEvaluated);
15995 
15996       // C++ [except.handle]p16:
15997       //   The object declared in an exception-declaration or, if the
15998       //   exception-declaration does not specify a name, a temporary (12.2) is
15999       //   copy-initialized (8.5) from the exception object. [...]
16000       //   The object is destroyed when the handler exits, after the destruction
16001       //   of any automatic objects initialized within the handler.
16002       //
16003       // We just pretend to initialize the object with itself, then make sure
16004       // it can be destroyed later.
16005       QualType initType = Context.getExceptionObjectType(ExDeclType);
16006 
16007       InitializedEntity entity =
16008         InitializedEntity::InitializeVariable(ExDecl);
16009       InitializationKind initKind =
16010         InitializationKind::CreateCopy(Loc, SourceLocation());
16011 
16012       Expr *opaqueValue =
16013         new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
16014       InitializationSequence sequence(*this, entity, initKind, opaqueValue);
16015       ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
16016       if (result.isInvalid())
16017         Invalid = true;
16018       else {
16019         // If the constructor used was non-trivial, set this as the
16020         // "initializer".
16021         CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
16022         if (!construct->getConstructor()->isTrivial()) {
16023           Expr *init = MaybeCreateExprWithCleanups(construct);
16024           ExDecl->setInit(init);
16025         }
16026 
16027         // And make sure it's destructable.
16028         FinalizeVarWithDestructor(ExDecl, recordType);
16029       }
16030     }
16031   }
16032 
16033   if (Invalid)
16034     ExDecl->setInvalidDecl();
16035 
16036   return ExDecl;
16037 }
16038 
16039 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
16040 /// handler.
ActOnExceptionDeclarator(Scope * S,Declarator & D)16041 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
16042   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16043   bool Invalid = D.isInvalidType();
16044 
16045   // Check for unexpanded parameter packs.
16046   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
16047                                       UPPC_ExceptionType)) {
16048     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
16049                                              D.getIdentifierLoc());
16050     Invalid = true;
16051   }
16052 
16053   IdentifierInfo *II = D.getIdentifier();
16054   if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
16055                                              LookupOrdinaryName,
16056                                              ForVisibleRedeclaration)) {
16057     // The scope should be freshly made just for us. There is just no way
16058     // it contains any previous declaration, except for function parameters in
16059     // a function-try-block's catch statement.
16060     assert(!S->isDeclScope(PrevDecl));
16061     if (isDeclInScope(PrevDecl, CurContext, S)) {
16062       Diag(D.getIdentifierLoc(), diag::err_redefinition)
16063         << D.getIdentifier();
16064       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
16065       Invalid = true;
16066     } else if (PrevDecl->isTemplateParameter())
16067       // Maybe we will complain about the shadowed template parameter.
16068       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
16069   }
16070 
16071   if (D.getCXXScopeSpec().isSet() && !Invalid) {
16072     Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
16073       << D.getCXXScopeSpec().getRange();
16074     Invalid = true;
16075   }
16076 
16077   VarDecl *ExDecl = BuildExceptionDeclaration(
16078       S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier());
16079   if (Invalid)
16080     ExDecl->setInvalidDecl();
16081 
16082   // Add the exception declaration into this scope.
16083   if (II)
16084     PushOnScopeChains(ExDecl, S);
16085   else
16086     CurContext->addDecl(ExDecl);
16087 
16088   ProcessDeclAttributes(S, ExDecl, D);
16089   return ExDecl;
16090 }
16091 
ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,Expr * AssertMessageExpr,SourceLocation RParenLoc)16092 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
16093                                          Expr *AssertExpr,
16094                                          Expr *AssertMessageExpr,
16095                                          SourceLocation RParenLoc) {
16096   StringLiteral *AssertMessage =
16097       AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
16098 
16099   if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
16100     return nullptr;
16101 
16102   return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
16103                                       AssertMessage, RParenLoc, false);
16104 }
16105 
BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * AssertMessage,SourceLocation RParenLoc,bool Failed)16106 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
16107                                          Expr *AssertExpr,
16108                                          StringLiteral *AssertMessage,
16109                                          SourceLocation RParenLoc,
16110                                          bool Failed) {
16111   assert(AssertExpr != nullptr && "Expected non-null condition");
16112   if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
16113       !Failed) {
16114     // In a static_assert-declaration, the constant-expression shall be a
16115     // constant expression that can be contextually converted to bool.
16116     ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
16117     if (Converted.isInvalid())
16118       Failed = true;
16119 
16120     ExprResult FullAssertExpr =
16121         ActOnFinishFullExpr(Converted.get(), StaticAssertLoc,
16122                             /*DiscardedValue*/ false,
16123                             /*IsConstexpr*/ true);
16124     if (FullAssertExpr.isInvalid())
16125       Failed = true;
16126     else
16127       AssertExpr = FullAssertExpr.get();
16128 
16129     llvm::APSInt Cond;
16130     if (!Failed && VerifyIntegerConstantExpression(
16131                        AssertExpr, &Cond,
16132                        diag::err_static_assert_expression_is_not_constant)
16133                        .isInvalid())
16134       Failed = true;
16135 
16136     if (!Failed && !Cond) {
16137       SmallString<256> MsgBuffer;
16138       llvm::raw_svector_ostream Msg(MsgBuffer);
16139       if (AssertMessage)
16140         AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy());
16141 
16142       Expr *InnerCond = nullptr;
16143       std::string InnerCondDescription;
16144       std::tie(InnerCond, InnerCondDescription) =
16145         findFailedBooleanCondition(Converted.get());
16146       if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) {
16147         // Drill down into concept specialization expressions to see why they
16148         // weren't satisfied.
16149         Diag(StaticAssertLoc, diag::err_static_assert_failed)
16150           << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
16151         ConstraintSatisfaction Satisfaction;
16152         if (!CheckConstraintSatisfaction(InnerCond, Satisfaction))
16153           DiagnoseUnsatisfiedConstraint(Satisfaction);
16154       } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond)
16155                            && !isa<IntegerLiteral>(InnerCond)) {
16156         Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed)
16157           << InnerCondDescription << !AssertMessage
16158           << Msg.str() << InnerCond->getSourceRange();
16159       } else {
16160         Diag(StaticAssertLoc, diag::err_static_assert_failed)
16161           << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
16162       }
16163       Failed = true;
16164     }
16165   } else {
16166     ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc,
16167                                                     /*DiscardedValue*/false,
16168                                                     /*IsConstexpr*/true);
16169     if (FullAssertExpr.isInvalid())
16170       Failed = true;
16171     else
16172       AssertExpr = FullAssertExpr.get();
16173   }
16174 
16175   Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
16176                                         AssertExpr, AssertMessage, RParenLoc,
16177                                         Failed);
16178 
16179   CurContext->addDecl(Decl);
16180   return Decl;
16181 }
16182 
16183 /// Perform semantic analysis of the given friend type declaration.
16184 ///
16185 /// \returns A friend declaration that.
CheckFriendTypeDecl(SourceLocation LocStart,SourceLocation FriendLoc,TypeSourceInfo * TSInfo)16186 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
16187                                       SourceLocation FriendLoc,
16188                                       TypeSourceInfo *TSInfo) {
16189   assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
16190 
16191   QualType T = TSInfo->getType();
16192   SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
16193 
16194   // C++03 [class.friend]p2:
16195   //   An elaborated-type-specifier shall be used in a friend declaration
16196   //   for a class.*
16197   //
16198   //   * The class-key of the elaborated-type-specifier is required.
16199   if (!CodeSynthesisContexts.empty()) {
16200     // Do not complain about the form of friend template types during any kind
16201     // of code synthesis. For template instantiation, we will have complained
16202     // when the template was defined.
16203   } else {
16204     if (!T->isElaboratedTypeSpecifier()) {
16205       // If we evaluated the type to a record type, suggest putting
16206       // a tag in front.
16207       if (const RecordType *RT = T->getAs<RecordType>()) {
16208         RecordDecl *RD = RT->getDecl();
16209 
16210         SmallString<16> InsertionText(" ");
16211         InsertionText += RD->getKindName();
16212 
16213         Diag(TypeRange.getBegin(),
16214              getLangOpts().CPlusPlus11 ?
16215                diag::warn_cxx98_compat_unelaborated_friend_type :
16216                diag::ext_unelaborated_friend_type)
16217           << (unsigned) RD->getTagKind()
16218           << T
16219           << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc),
16220                                         InsertionText);
16221       } else {
16222         Diag(FriendLoc,
16223              getLangOpts().CPlusPlus11 ?
16224                diag::warn_cxx98_compat_nonclass_type_friend :
16225                diag::ext_nonclass_type_friend)
16226           << T
16227           << TypeRange;
16228       }
16229     } else if (T->getAs<EnumType>()) {
16230       Diag(FriendLoc,
16231            getLangOpts().CPlusPlus11 ?
16232              diag::warn_cxx98_compat_enum_friend :
16233              diag::ext_enum_friend)
16234         << T
16235         << TypeRange;
16236     }
16237 
16238     // C++11 [class.friend]p3:
16239     //   A friend declaration that does not declare a function shall have one
16240     //   of the following forms:
16241     //     friend elaborated-type-specifier ;
16242     //     friend simple-type-specifier ;
16243     //     friend typename-specifier ;
16244     if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
16245       Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
16246   }
16247 
16248   //   If the type specifier in a friend declaration designates a (possibly
16249   //   cv-qualified) class type, that class is declared as a friend; otherwise,
16250   //   the friend declaration is ignored.
16251   return FriendDecl::Create(Context, CurContext,
16252                             TSInfo->getTypeLoc().getBeginLoc(), TSInfo,
16253                             FriendLoc);
16254 }
16255 
16256 /// Handle a friend tag declaration where the scope specifier was
16257 /// templated.
ActOnTemplatedFriendTag(Scope * S,SourceLocation FriendLoc,unsigned TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,const ParsedAttributesView & Attr,MultiTemplateParamsArg TempParamLists)16258 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
16259                                     unsigned TagSpec, SourceLocation TagLoc,
16260                                     CXXScopeSpec &SS, IdentifierInfo *Name,
16261                                     SourceLocation NameLoc,
16262                                     const ParsedAttributesView &Attr,
16263                                     MultiTemplateParamsArg TempParamLists) {
16264   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
16265 
16266   bool IsMemberSpecialization = false;
16267   bool Invalid = false;
16268 
16269   if (TemplateParameterList *TemplateParams =
16270           MatchTemplateParametersToScopeSpecifier(
16271               TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
16272               IsMemberSpecialization, Invalid)) {
16273     if (TemplateParams->size() > 0) {
16274       // This is a declaration of a class template.
16275       if (Invalid)
16276         return nullptr;
16277 
16278       return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name,
16279                                 NameLoc, Attr, TemplateParams, AS_public,
16280                                 /*ModulePrivateLoc=*/SourceLocation(),
16281                                 FriendLoc, TempParamLists.size() - 1,
16282                                 TempParamLists.data()).get();
16283     } else {
16284       // The "template<>" header is extraneous.
16285       Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
16286         << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
16287       IsMemberSpecialization = true;
16288     }
16289   }
16290 
16291   if (Invalid) return nullptr;
16292 
16293   bool isAllExplicitSpecializations = true;
16294   for (unsigned I = TempParamLists.size(); I-- > 0; ) {
16295     if (TempParamLists[I]->size()) {
16296       isAllExplicitSpecializations = false;
16297       break;
16298     }
16299   }
16300 
16301   // FIXME: don't ignore attributes.
16302 
16303   // If it's explicit specializations all the way down, just forget
16304   // about the template header and build an appropriate non-templated
16305   // friend.  TODO: for source fidelity, remember the headers.
16306   if (isAllExplicitSpecializations) {
16307     if (SS.isEmpty()) {
16308       bool Owned = false;
16309       bool IsDependent = false;
16310       return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
16311                       Attr, AS_public,
16312                       /*ModulePrivateLoc=*/SourceLocation(),
16313                       MultiTemplateParamsArg(), Owned, IsDependent,
16314                       /*ScopedEnumKWLoc=*/SourceLocation(),
16315                       /*ScopedEnumUsesClassTag=*/false,
16316                       /*UnderlyingType=*/TypeResult(),
16317                       /*IsTypeSpecifier=*/false,
16318                       /*IsTemplateParamOrArg=*/false);
16319     }
16320 
16321     NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
16322     ElaboratedTypeKeyword Keyword
16323       = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
16324     QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
16325                                    *Name, NameLoc);
16326     if (T.isNull())
16327       return nullptr;
16328 
16329     TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
16330     if (isa<DependentNameType>(T)) {
16331       DependentNameTypeLoc TL =
16332           TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
16333       TL.setElaboratedKeywordLoc(TagLoc);
16334       TL.setQualifierLoc(QualifierLoc);
16335       TL.setNameLoc(NameLoc);
16336     } else {
16337       ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
16338       TL.setElaboratedKeywordLoc(TagLoc);
16339       TL.setQualifierLoc(QualifierLoc);
16340       TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
16341     }
16342 
16343     FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
16344                                             TSI, FriendLoc, TempParamLists);
16345     Friend->setAccess(AS_public);
16346     CurContext->addDecl(Friend);
16347     return Friend;
16348   }
16349 
16350   assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
16351 
16352 
16353 
16354   // Handle the case of a templated-scope friend class.  e.g.
16355   //   template <class T> class A<T>::B;
16356   // FIXME: we don't support these right now.
16357   Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
16358     << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
16359   ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
16360   QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
16361   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
16362   DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
16363   TL.setElaboratedKeywordLoc(TagLoc);
16364   TL.setQualifierLoc(SS.getWithLocInContext(Context));
16365   TL.setNameLoc(NameLoc);
16366 
16367   FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
16368                                           TSI, FriendLoc, TempParamLists);
16369   Friend->setAccess(AS_public);
16370   Friend->setUnsupportedFriend(true);
16371   CurContext->addDecl(Friend);
16372   return Friend;
16373 }
16374 
16375 /// Handle a friend type declaration.  This works in tandem with
16376 /// ActOnTag.
16377 ///
16378 /// Notes on friend class templates:
16379 ///
16380 /// We generally treat friend class declarations as if they were
16381 /// declaring a class.  So, for example, the elaborated type specifier
16382 /// in a friend declaration is required to obey the restrictions of a
16383 /// class-head (i.e. no typedefs in the scope chain), template
16384 /// parameters are required to match up with simple template-ids, &c.
16385 /// However, unlike when declaring a template specialization, it's
16386 /// okay to refer to a template specialization without an empty
16387 /// template parameter declaration, e.g.
16388 ///   friend class A<T>::B<unsigned>;
16389 /// We permit this as a special case; if there are any template
16390 /// parameters present at all, require proper matching, i.e.
16391 ///   template <> template \<class T> friend class A<int>::B;
ActOnFriendTypeDecl(Scope * S,const DeclSpec & DS,MultiTemplateParamsArg TempParams)16392 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
16393                                 MultiTemplateParamsArg TempParams) {
16394   SourceLocation Loc = DS.getBeginLoc();
16395 
16396   assert(DS.isFriendSpecified());
16397   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
16398 
16399   // C++ [class.friend]p3:
16400   // A friend declaration that does not declare a function shall have one of
16401   // the following forms:
16402   //     friend elaborated-type-specifier ;
16403   //     friend simple-type-specifier ;
16404   //     friend typename-specifier ;
16405   //
16406   // Any declaration with a type qualifier does not have that form. (It's
16407   // legal to specify a qualified type as a friend, you just can't write the
16408   // keywords.)
16409   if (DS.getTypeQualifiers()) {
16410     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
16411       Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const";
16412     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
16413       Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile";
16414     if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
16415       Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict";
16416     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
16417       Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic";
16418     if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
16419       Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned";
16420   }
16421 
16422   // Try to convert the decl specifier to a type.  This works for
16423   // friend templates because ActOnTag never produces a ClassTemplateDecl
16424   // for a TUK_Friend.
16425   Declarator TheDeclarator(DS, DeclaratorContext::Member);
16426   TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
16427   QualType T = TSI->getType();
16428   if (TheDeclarator.isInvalidType())
16429     return nullptr;
16430 
16431   if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
16432     return nullptr;
16433 
16434   // This is definitely an error in C++98.  It's probably meant to
16435   // be forbidden in C++0x, too, but the specification is just
16436   // poorly written.
16437   //
16438   // The problem is with declarations like the following:
16439   //   template <T> friend A<T>::foo;
16440   // where deciding whether a class C is a friend or not now hinges
16441   // on whether there exists an instantiation of A that causes
16442   // 'foo' to equal C.  There are restrictions on class-heads
16443   // (which we declare (by fiat) elaborated friend declarations to
16444   // be) that makes this tractable.
16445   //
16446   // FIXME: handle "template <> friend class A<T>;", which
16447   // is possibly well-formed?  Who even knows?
16448   if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
16449     Diag(Loc, diag::err_tagless_friend_type_template)
16450       << DS.getSourceRange();
16451     return nullptr;
16452   }
16453 
16454   // C++98 [class.friend]p1: A friend of a class is a function
16455   //   or class that is not a member of the class . . .
16456   // This is fixed in DR77, which just barely didn't make the C++03
16457   // deadline.  It's also a very silly restriction that seriously
16458   // affects inner classes and which nobody else seems to implement;
16459   // thus we never diagnose it, not even in -pedantic.
16460   //
16461   // But note that we could warn about it: it's always useless to
16462   // friend one of your own members (it's not, however, worthless to
16463   // friend a member of an arbitrary specialization of your template).
16464 
16465   Decl *D;
16466   if (!TempParams.empty())
16467     D = FriendTemplateDecl::Create(Context, CurContext, Loc,
16468                                    TempParams,
16469                                    TSI,
16470                                    DS.getFriendSpecLoc());
16471   else
16472     D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
16473 
16474   if (!D)
16475     return nullptr;
16476 
16477   D->setAccess(AS_public);
16478   CurContext->addDecl(D);
16479 
16480   return D;
16481 }
16482 
ActOnFriendFunctionDecl(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParams)16483 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
16484                                         MultiTemplateParamsArg TemplateParams) {
16485   const DeclSpec &DS = D.getDeclSpec();
16486 
16487   assert(DS.isFriendSpecified());
16488   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
16489 
16490   SourceLocation Loc = D.getIdentifierLoc();
16491   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16492 
16493   // C++ [class.friend]p1
16494   //   A friend of a class is a function or class....
16495   // Note that this sees through typedefs, which is intended.
16496   // It *doesn't* see through dependent types, which is correct
16497   // according to [temp.arg.type]p3:
16498   //   If a declaration acquires a function type through a
16499   //   type dependent on a template-parameter and this causes
16500   //   a declaration that does not use the syntactic form of a
16501   //   function declarator to have a function type, the program
16502   //   is ill-formed.
16503   if (!TInfo->getType()->isFunctionType()) {
16504     Diag(Loc, diag::err_unexpected_friend);
16505 
16506     // It might be worthwhile to try to recover by creating an
16507     // appropriate declaration.
16508     return nullptr;
16509   }
16510 
16511   // C++ [namespace.memdef]p3
16512   //  - If a friend declaration in a non-local class first declares a
16513   //    class or function, the friend class or function is a member
16514   //    of the innermost enclosing namespace.
16515   //  - The name of the friend is not found by simple name lookup
16516   //    until a matching declaration is provided in that namespace
16517   //    scope (either before or after the class declaration granting
16518   //    friendship).
16519   //  - If a friend function is called, its name may be found by the
16520   //    name lookup that considers functions from namespaces and
16521   //    classes associated with the types of the function arguments.
16522   //  - When looking for a prior declaration of a class or a function
16523   //    declared as a friend, scopes outside the innermost enclosing
16524   //    namespace scope are not considered.
16525 
16526   CXXScopeSpec &SS = D.getCXXScopeSpec();
16527   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
16528   assert(NameInfo.getName());
16529 
16530   // Check for unexpanded parameter packs.
16531   if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
16532       DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
16533       DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
16534     return nullptr;
16535 
16536   // The context we found the declaration in, or in which we should
16537   // create the declaration.
16538   DeclContext *DC;
16539   Scope *DCScope = S;
16540   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
16541                         ForExternalRedeclaration);
16542 
16543   // There are five cases here.
16544   //   - There's no scope specifier and we're in a local class. Only look
16545   //     for functions declared in the immediately-enclosing block scope.
16546   // We recover from invalid scope qualifiers as if they just weren't there.
16547   FunctionDecl *FunctionContainingLocalClass = nullptr;
16548   if ((SS.isInvalid() || !SS.isSet()) &&
16549       (FunctionContainingLocalClass =
16550            cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
16551     // C++11 [class.friend]p11:
16552     //   If a friend declaration appears in a local class and the name
16553     //   specified is an unqualified name, a prior declaration is
16554     //   looked up without considering scopes that are outside the
16555     //   innermost enclosing non-class scope. For a friend function
16556     //   declaration, if there is no prior declaration, the program is
16557     //   ill-formed.
16558 
16559     // Find the innermost enclosing non-class scope. This is the block
16560     // scope containing the local class definition (or for a nested class,
16561     // the outer local class).
16562     DCScope = S->getFnParent();
16563 
16564     // Look up the function name in the scope.
16565     Previous.clear(LookupLocalFriendName);
16566     LookupName(Previous, S, /*AllowBuiltinCreation*/false);
16567 
16568     if (!Previous.empty()) {
16569       // All possible previous declarations must have the same context:
16570       // either they were declared at block scope or they are members of
16571       // one of the enclosing local classes.
16572       DC = Previous.getRepresentativeDecl()->getDeclContext();
16573     } else {
16574       // This is ill-formed, but provide the context that we would have
16575       // declared the function in, if we were permitted to, for error recovery.
16576       DC = FunctionContainingLocalClass;
16577     }
16578     adjustContextForLocalExternDecl(DC);
16579 
16580     // C++ [class.friend]p6:
16581     //   A function can be defined in a friend declaration of a class if and
16582     //   only if the class is a non-local class (9.8), the function name is
16583     //   unqualified, and the function has namespace scope.
16584     if (D.isFunctionDefinition()) {
16585       Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
16586     }
16587 
16588   //   - There's no scope specifier, in which case we just go to the
16589   //     appropriate scope and look for a function or function template
16590   //     there as appropriate.
16591   } else if (SS.isInvalid() || !SS.isSet()) {
16592     // C++11 [namespace.memdef]p3:
16593     //   If the name in a friend declaration is neither qualified nor
16594     //   a template-id and the declaration is a function or an
16595     //   elaborated-type-specifier, the lookup to determine whether
16596     //   the entity has been previously declared shall not consider
16597     //   any scopes outside the innermost enclosing namespace.
16598     bool isTemplateId =
16599         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId;
16600 
16601     // Find the appropriate context according to the above.
16602     DC = CurContext;
16603 
16604     // Skip class contexts.  If someone can cite chapter and verse
16605     // for this behavior, that would be nice --- it's what GCC and
16606     // EDG do, and it seems like a reasonable intent, but the spec
16607     // really only says that checks for unqualified existing
16608     // declarations should stop at the nearest enclosing namespace,
16609     // not that they should only consider the nearest enclosing
16610     // namespace.
16611     while (DC->isRecord())
16612       DC = DC->getParent();
16613 
16614     DeclContext *LookupDC = DC;
16615     while (LookupDC->isTransparentContext())
16616       LookupDC = LookupDC->getParent();
16617 
16618     while (true) {
16619       LookupQualifiedName(Previous, LookupDC);
16620 
16621       if (!Previous.empty()) {
16622         DC = LookupDC;
16623         break;
16624       }
16625 
16626       if (isTemplateId) {
16627         if (isa<TranslationUnitDecl>(LookupDC)) break;
16628       } else {
16629         if (LookupDC->isFileContext()) break;
16630       }
16631       LookupDC = LookupDC->getParent();
16632     }
16633 
16634     DCScope = getScopeForDeclContext(S, DC);
16635 
16636   //   - There's a non-dependent scope specifier, in which case we
16637   //     compute it and do a previous lookup there for a function
16638   //     or function template.
16639   } else if (!SS.getScopeRep()->isDependent()) {
16640     DC = computeDeclContext(SS);
16641     if (!DC) return nullptr;
16642 
16643     if (RequireCompleteDeclContext(SS, DC)) return nullptr;
16644 
16645     LookupQualifiedName(Previous, DC);
16646 
16647     // C++ [class.friend]p1: A friend of a class is a function or
16648     //   class that is not a member of the class . . .
16649     if (DC->Equals(CurContext))
16650       Diag(DS.getFriendSpecLoc(),
16651            getLangOpts().CPlusPlus11 ?
16652              diag::warn_cxx98_compat_friend_is_member :
16653              diag::err_friend_is_member);
16654 
16655     if (D.isFunctionDefinition()) {
16656       // C++ [class.friend]p6:
16657       //   A function can be defined in a friend declaration of a class if and
16658       //   only if the class is a non-local class (9.8), the function name is
16659       //   unqualified, and the function has namespace scope.
16660       //
16661       // FIXME: We should only do this if the scope specifier names the
16662       // innermost enclosing namespace; otherwise the fixit changes the
16663       // meaning of the code.
16664       SemaDiagnosticBuilder DB
16665         = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
16666 
16667       DB << SS.getScopeRep();
16668       if (DC->isFileContext())
16669         DB << FixItHint::CreateRemoval(SS.getRange());
16670       SS.clear();
16671     }
16672 
16673   //   - There's a scope specifier that does not match any template
16674   //     parameter lists, in which case we use some arbitrary context,
16675   //     create a method or method template, and wait for instantiation.
16676   //   - There's a scope specifier that does match some template
16677   //     parameter lists, which we don't handle right now.
16678   } else {
16679     if (D.isFunctionDefinition()) {
16680       // C++ [class.friend]p6:
16681       //   A function can be defined in a friend declaration of a class if and
16682       //   only if the class is a non-local class (9.8), the function name is
16683       //   unqualified, and the function has namespace scope.
16684       Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
16685         << SS.getScopeRep();
16686     }
16687 
16688     DC = CurContext;
16689     assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
16690   }
16691 
16692   if (!DC->isRecord()) {
16693     int DiagArg = -1;
16694     switch (D.getName().getKind()) {
16695     case UnqualifiedIdKind::IK_ConstructorTemplateId:
16696     case UnqualifiedIdKind::IK_ConstructorName:
16697       DiagArg = 0;
16698       break;
16699     case UnqualifiedIdKind::IK_DestructorName:
16700       DiagArg = 1;
16701       break;
16702     case UnqualifiedIdKind::IK_ConversionFunctionId:
16703       DiagArg = 2;
16704       break;
16705     case UnqualifiedIdKind::IK_DeductionGuideName:
16706       DiagArg = 3;
16707       break;
16708     case UnqualifiedIdKind::IK_Identifier:
16709     case UnqualifiedIdKind::IK_ImplicitSelfParam:
16710     case UnqualifiedIdKind::IK_LiteralOperatorId:
16711     case UnqualifiedIdKind::IK_OperatorFunctionId:
16712     case UnqualifiedIdKind::IK_TemplateId:
16713       break;
16714     }
16715     // This implies that it has to be an operator or function.
16716     if (DiagArg >= 0) {
16717       Diag(Loc, diag::err_introducing_special_friend) << DiagArg;
16718       return nullptr;
16719     }
16720   }
16721 
16722   // FIXME: This is an egregious hack to cope with cases where the scope stack
16723   // does not contain the declaration context, i.e., in an out-of-line
16724   // definition of a class.
16725   Scope FakeDCScope(S, Scope::DeclScope, Diags);
16726   if (!DCScope) {
16727     FakeDCScope.setEntity(DC);
16728     DCScope = &FakeDCScope;
16729   }
16730 
16731   bool AddToScope = true;
16732   NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
16733                                           TemplateParams, AddToScope);
16734   if (!ND) return nullptr;
16735 
16736   assert(ND->getLexicalDeclContext() == CurContext);
16737 
16738   // If we performed typo correction, we might have added a scope specifier
16739   // and changed the decl context.
16740   DC = ND->getDeclContext();
16741 
16742   // Add the function declaration to the appropriate lookup tables,
16743   // adjusting the redeclarations list as necessary.  We don't
16744   // want to do this yet if the friending class is dependent.
16745   //
16746   // Also update the scope-based lookup if the target context's
16747   // lookup context is in lexical scope.
16748   if (!CurContext->isDependentContext()) {
16749     DC = DC->getRedeclContext();
16750     DC->makeDeclVisibleInContext(ND);
16751     if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
16752       PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
16753   }
16754 
16755   FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
16756                                        D.getIdentifierLoc(), ND,
16757                                        DS.getFriendSpecLoc());
16758   FrD->setAccess(AS_public);
16759   CurContext->addDecl(FrD);
16760 
16761   if (ND->isInvalidDecl()) {
16762     FrD->setInvalidDecl();
16763   } else {
16764     if (DC->isRecord()) CheckFriendAccess(ND);
16765 
16766     FunctionDecl *FD;
16767     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
16768       FD = FTD->getTemplatedDecl();
16769     else
16770       FD = cast<FunctionDecl>(ND);
16771 
16772     // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
16773     // default argument expression, that declaration shall be a definition
16774     // and shall be the only declaration of the function or function
16775     // template in the translation unit.
16776     if (functionDeclHasDefaultArgument(FD)) {
16777       // We can't look at FD->getPreviousDecl() because it may not have been set
16778       // if we're in a dependent context. If the function is known to be a
16779       // redeclaration, we will have narrowed Previous down to the right decl.
16780       if (D.isRedeclaration()) {
16781         Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
16782         Diag(Previous.getRepresentativeDecl()->getLocation(),
16783              diag::note_previous_declaration);
16784       } else if (!D.isFunctionDefinition())
16785         Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
16786     }
16787 
16788     // Mark templated-scope function declarations as unsupported.
16789     if (FD->getNumTemplateParameterLists() && SS.isValid()) {
16790       Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
16791         << SS.getScopeRep() << SS.getRange()
16792         << cast<CXXRecordDecl>(CurContext);
16793       FrD->setUnsupportedFriend(true);
16794     }
16795   }
16796 
16797   warnOnReservedIdentifier(ND);
16798 
16799   return ND;
16800 }
16801 
SetDeclDeleted(Decl * Dcl,SourceLocation DelLoc)16802 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
16803   AdjustDeclIfTemplate(Dcl);
16804 
16805   FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
16806   if (!Fn) {
16807     Diag(DelLoc, diag::err_deleted_non_function);
16808     return;
16809   }
16810 
16811   // Deleted function does not have a body.
16812   Fn->setWillHaveBody(false);
16813 
16814   if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
16815     // Don't consider the implicit declaration we generate for explicit
16816     // specializations. FIXME: Do not generate these implicit declarations.
16817     if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
16818          Prev->getPreviousDecl()) &&
16819         !Prev->isDefined()) {
16820       Diag(DelLoc, diag::err_deleted_decl_not_first);
16821       Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
16822            Prev->isImplicit() ? diag::note_previous_implicit_declaration
16823                               : diag::note_previous_declaration);
16824       // We can't recover from this; the declaration might have already
16825       // been used.
16826       Fn->setInvalidDecl();
16827       return;
16828     }
16829 
16830     // To maintain the invariant that functions are only deleted on their first
16831     // declaration, mark the implicitly-instantiated declaration of the
16832     // explicitly-specialized function as deleted instead of marking the
16833     // instantiated redeclaration.
16834     Fn = Fn->getCanonicalDecl();
16835   }
16836 
16837   // dllimport/dllexport cannot be deleted.
16838   if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
16839     Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
16840     Fn->setInvalidDecl();
16841   }
16842 
16843   // C++11 [basic.start.main]p3:
16844   //   A program that defines main as deleted [...] is ill-formed.
16845   if (Fn->isMain())
16846     Diag(DelLoc, diag::err_deleted_main);
16847 
16848   // C++11 [dcl.fct.def.delete]p4:
16849   //  A deleted function is implicitly inline.
16850   Fn->setImplicitlyInline();
16851   Fn->setDeletedAsWritten();
16852 }
16853 
SetDeclDefaulted(Decl * Dcl,SourceLocation DefaultLoc)16854 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
16855   if (!Dcl || Dcl->isInvalidDecl())
16856     return;
16857 
16858   auto *FD = dyn_cast<FunctionDecl>(Dcl);
16859   if (!FD) {
16860     if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) {
16861       if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) {
16862         Diag(DefaultLoc, diag::err_defaulted_comparison_template);
16863         return;
16864       }
16865     }
16866 
16867     Diag(DefaultLoc, diag::err_default_special_members)
16868         << getLangOpts().CPlusPlus20;
16869     return;
16870   }
16871 
16872   // Reject if this can't possibly be a defaultable function.
16873   DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
16874   if (!DefKind &&
16875       // A dependent function that doesn't locally look defaultable can
16876       // still instantiate to a defaultable function if it's a constructor
16877       // or assignment operator.
16878       (!FD->isDependentContext() ||
16879        (!isa<CXXConstructorDecl>(FD) &&
16880         FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) {
16881     Diag(DefaultLoc, diag::err_default_special_members)
16882         << getLangOpts().CPlusPlus20;
16883     return;
16884   }
16885 
16886   if (DefKind.isComparison() &&
16887       !isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
16888     Diag(FD->getLocation(), diag::err_defaulted_comparison_out_of_class)
16889         << (int)DefKind.asComparison();
16890     return;
16891   }
16892 
16893   // Issue compatibility warning. We already warned if the operator is
16894   // 'operator<=>' when parsing the '<=>' token.
16895   if (DefKind.isComparison() &&
16896       DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) {
16897     Diag(DefaultLoc, getLangOpts().CPlusPlus20
16898                          ? diag::warn_cxx17_compat_defaulted_comparison
16899                          : diag::ext_defaulted_comparison);
16900   }
16901 
16902   FD->setDefaulted();
16903   FD->setExplicitlyDefaulted();
16904 
16905   // Defer checking functions that are defaulted in a dependent context.
16906   if (FD->isDependentContext())
16907     return;
16908 
16909   // Unset that we will have a body for this function. We might not,
16910   // if it turns out to be trivial, and we don't need this marking now
16911   // that we've marked it as defaulted.
16912   FD->setWillHaveBody(false);
16913 
16914   // If this definition appears within the record, do the checking when
16915   // the record is complete. This is always the case for a defaulted
16916   // comparison.
16917   if (DefKind.isComparison())
16918     return;
16919   auto *MD = cast<CXXMethodDecl>(FD);
16920 
16921   const FunctionDecl *Primary = FD;
16922   if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
16923     // Ask the template instantiation pattern that actually had the
16924     // '= default' on it.
16925     Primary = Pattern;
16926 
16927   // If the method was defaulted on its first declaration, we will have
16928   // already performed the checking in CheckCompletedCXXClass. Such a
16929   // declaration doesn't trigger an implicit definition.
16930   if (Primary->getCanonicalDecl()->isDefaulted())
16931     return;
16932 
16933   // FIXME: Once we support defining comparisons out of class, check for a
16934   // defaulted comparison here.
16935   if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember()))
16936     MD->setInvalidDecl();
16937   else
16938     DefineDefaultedFunction(*this, MD, DefaultLoc);
16939 }
16940 
SearchForReturnInStmt(Sema & Self,Stmt * S)16941 static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
16942   for (Stmt *SubStmt : S->children()) {
16943     if (!SubStmt)
16944       continue;
16945     if (isa<ReturnStmt>(SubStmt))
16946       Self.Diag(SubStmt->getBeginLoc(),
16947                 diag::err_return_in_constructor_handler);
16948     if (!isa<Expr>(SubStmt))
16949       SearchForReturnInStmt(Self, SubStmt);
16950   }
16951 }
16952 
DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt * TryBlock)16953 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
16954   for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
16955     CXXCatchStmt *Handler = TryBlock->getHandler(I);
16956     SearchForReturnInStmt(*this, Handler);
16957   }
16958 }
16959 
CheckOverridingFunctionAttributes(const CXXMethodDecl * New,const CXXMethodDecl * Old)16960 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
16961                                              const CXXMethodDecl *Old) {
16962   const auto *NewFT = New->getType()->castAs<FunctionProtoType>();
16963   const auto *OldFT = Old->getType()->castAs<FunctionProtoType>();
16964 
16965   if (OldFT->hasExtParameterInfos()) {
16966     for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I)
16967       // A parameter of the overriding method should be annotated with noescape
16968       // if the corresponding parameter of the overridden method is annotated.
16969       if (OldFT->getExtParameterInfo(I).isNoEscape() &&
16970           !NewFT->getExtParameterInfo(I).isNoEscape()) {
16971         Diag(New->getParamDecl(I)->getLocation(),
16972              diag::warn_overriding_method_missing_noescape);
16973         Diag(Old->getParamDecl(I)->getLocation(),
16974              diag::note_overridden_marked_noescape);
16975       }
16976   }
16977 
16978   // Virtual overrides must have the same code_seg.
16979   const auto *OldCSA = Old->getAttr<CodeSegAttr>();
16980   const auto *NewCSA = New->getAttr<CodeSegAttr>();
16981   if ((NewCSA || OldCSA) &&
16982       (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) {
16983     Diag(New->getLocation(), diag::err_mismatched_code_seg_override);
16984     Diag(Old->getLocation(), diag::note_previous_declaration);
16985     return true;
16986   }
16987 
16988   CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
16989 
16990   // If the calling conventions match, everything is fine
16991   if (NewCC == OldCC)
16992     return false;
16993 
16994   // If the calling conventions mismatch because the new function is static,
16995   // suppress the calling convention mismatch error; the error about static
16996   // function override (err_static_overrides_virtual from
16997   // Sema::CheckFunctionDeclaration) is more clear.
16998   if (New->getStorageClass() == SC_Static)
16999     return false;
17000 
17001   Diag(New->getLocation(),
17002        diag::err_conflicting_overriding_cc_attributes)
17003     << New->getDeclName() << New->getType() << Old->getType();
17004   Diag(Old->getLocation(), diag::note_overridden_virtual_function);
17005   return true;
17006 }
17007 
CheckOverridingFunctionReturnType(const CXXMethodDecl * New,const CXXMethodDecl * Old)17008 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
17009                                              const CXXMethodDecl *Old) {
17010   QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType();
17011   QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType();
17012 
17013   if (Context.hasSameType(NewTy, OldTy) ||
17014       NewTy->isDependentType() || OldTy->isDependentType())
17015     return false;
17016 
17017   // Check if the return types are covariant
17018   QualType NewClassTy, OldClassTy;
17019 
17020   /// Both types must be pointers or references to classes.
17021   if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
17022     if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
17023       NewClassTy = NewPT->getPointeeType();
17024       OldClassTy = OldPT->getPointeeType();
17025     }
17026   } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
17027     if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
17028       if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
17029         NewClassTy = NewRT->getPointeeType();
17030         OldClassTy = OldRT->getPointeeType();
17031       }
17032     }
17033   }
17034 
17035   // The return types aren't either both pointers or references to a class type.
17036   if (NewClassTy.isNull()) {
17037     Diag(New->getLocation(),
17038          diag::err_different_return_type_for_overriding_virtual_function)
17039         << New->getDeclName() << NewTy << OldTy
17040         << New->getReturnTypeSourceRange();
17041     Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17042         << Old->getReturnTypeSourceRange();
17043 
17044     return true;
17045   }
17046 
17047   if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
17048     // C++14 [class.virtual]p8:
17049     //   If the class type in the covariant return type of D::f differs from
17050     //   that of B::f, the class type in the return type of D::f shall be
17051     //   complete at the point of declaration of D::f or shall be the class
17052     //   type D.
17053     if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
17054       if (!RT->isBeingDefined() &&
17055           RequireCompleteType(New->getLocation(), NewClassTy,
17056                               diag::err_covariant_return_incomplete,
17057                               New->getDeclName()))
17058         return true;
17059     }
17060 
17061     // Check if the new class derives from the old class.
17062     if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) {
17063       Diag(New->getLocation(), diag::err_covariant_return_not_derived)
17064           << New->getDeclName() << NewTy << OldTy
17065           << New->getReturnTypeSourceRange();
17066       Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17067           << Old->getReturnTypeSourceRange();
17068       return true;
17069     }
17070 
17071     // Check if we the conversion from derived to base is valid.
17072     if (CheckDerivedToBaseConversion(
17073             NewClassTy, OldClassTy,
17074             diag::err_covariant_return_inaccessible_base,
17075             diag::err_covariant_return_ambiguous_derived_to_base_conv,
17076             New->getLocation(), New->getReturnTypeSourceRange(),
17077             New->getDeclName(), nullptr)) {
17078       // FIXME: this note won't trigger for delayed access control
17079       // diagnostics, and it's impossible to get an undelayed error
17080       // here from access control during the original parse because
17081       // the ParsingDeclSpec/ParsingDeclarator are still in scope.
17082       Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17083           << Old->getReturnTypeSourceRange();
17084       return true;
17085     }
17086   }
17087 
17088   // The qualifiers of the return types must be the same.
17089   if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
17090     Diag(New->getLocation(),
17091          diag::err_covariant_return_type_different_qualifications)
17092         << New->getDeclName() << NewTy << OldTy
17093         << New->getReturnTypeSourceRange();
17094     Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17095         << Old->getReturnTypeSourceRange();
17096     return true;
17097   }
17098 
17099 
17100   // The new class type must have the same or less qualifiers as the old type.
17101   if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
17102     Diag(New->getLocation(),
17103          diag::err_covariant_return_type_class_type_more_qualified)
17104         << New->getDeclName() << NewTy << OldTy
17105         << New->getReturnTypeSourceRange();
17106     Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17107         << Old->getReturnTypeSourceRange();
17108     return true;
17109   }
17110 
17111   return false;
17112 }
17113 
17114 /// Mark the given method pure.
17115 ///
17116 /// \param Method the method to be marked pure.
17117 ///
17118 /// \param InitRange the source range that covers the "0" initializer.
CheckPureMethod(CXXMethodDecl * Method,SourceRange InitRange)17119 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
17120   SourceLocation EndLoc = InitRange.getEnd();
17121   if (EndLoc.isValid())
17122     Method->setRangeEnd(EndLoc);
17123 
17124   if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
17125     Method->setPure();
17126     return false;
17127   }
17128 
17129   if (!Method->isInvalidDecl())
17130     Diag(Method->getLocation(), diag::err_non_virtual_pure)
17131       << Method->getDeclName() << InitRange;
17132   return true;
17133 }
17134 
ActOnPureSpecifier(Decl * D,SourceLocation ZeroLoc)17135 void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) {
17136   if (D->getFriendObjectKind())
17137     Diag(D->getLocation(), diag::err_pure_friend);
17138   else if (auto *M = dyn_cast<CXXMethodDecl>(D))
17139     CheckPureMethod(M, ZeroLoc);
17140   else
17141     Diag(D->getLocation(), diag::err_illegal_initializer);
17142 }
17143 
17144 /// Determine whether the given declaration is a global variable or
17145 /// static data member.
isNonlocalVariable(const Decl * D)17146 static bool isNonlocalVariable(const Decl *D) {
17147   if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
17148     return Var->hasGlobalStorage();
17149 
17150   return false;
17151 }
17152 
17153 /// Invoked when we are about to parse an initializer for the declaration
17154 /// 'Dcl'.
17155 ///
17156 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
17157 /// static data member of class X, names should be looked up in the scope of
17158 /// class X. If the declaration had a scope specifier, a scope will have
17159 /// been created and passed in for this purpose. Otherwise, S will be null.
ActOnCXXEnterDeclInitializer(Scope * S,Decl * D)17160 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
17161   // If there is no declaration, there was an error parsing it.
17162   if (!D || D->isInvalidDecl())
17163     return;
17164 
17165   // We will always have a nested name specifier here, but this declaration
17166   // might not be out of line if the specifier names the current namespace:
17167   //   extern int n;
17168   //   int ::n = 0;
17169   if (S && D->isOutOfLine())
17170     EnterDeclaratorContext(S, D->getDeclContext());
17171 
17172   // If we are parsing the initializer for a static data member, push a
17173   // new expression evaluation context that is associated with this static
17174   // data member.
17175   if (isNonlocalVariable(D))
17176     PushExpressionEvaluationContext(
17177         ExpressionEvaluationContext::PotentiallyEvaluated, D);
17178 }
17179 
17180 /// Invoked after we are finished parsing an initializer for the declaration D.
ActOnCXXExitDeclInitializer(Scope * S,Decl * D)17181 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
17182   // If there is no declaration, there was an error parsing it.
17183   if (!D || D->isInvalidDecl())
17184     return;
17185 
17186   if (isNonlocalVariable(D))
17187     PopExpressionEvaluationContext();
17188 
17189   if (S && D->isOutOfLine())
17190     ExitDeclaratorContext(S);
17191 }
17192 
17193 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
17194 /// C++ if/switch/while/for statement.
17195 /// e.g: "if (int x = f()) {...}"
ActOnCXXConditionDeclaration(Scope * S,Declarator & D)17196 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
17197   // C++ 6.4p2:
17198   // The declarator shall not specify a function or an array.
17199   // The type-specifier-seq shall not contain typedef and shall not declare a
17200   // new class or enumeration.
17201   assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
17202          "Parser allowed 'typedef' as storage class of condition decl.");
17203 
17204   Decl *Dcl = ActOnDeclarator(S, D);
17205   if (!Dcl)
17206     return true;
17207 
17208   if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
17209     Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
17210       << D.getSourceRange();
17211     return true;
17212   }
17213 
17214   return Dcl;
17215 }
17216 
LoadExternalVTableUses()17217 void Sema::LoadExternalVTableUses() {
17218   if (!ExternalSource)
17219     return;
17220 
17221   SmallVector<ExternalVTableUse, 4> VTables;
17222   ExternalSource->ReadUsedVTables(VTables);
17223   SmallVector<VTableUse, 4> NewUses;
17224   for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
17225     llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
17226       = VTablesUsed.find(VTables[I].Record);
17227     // Even if a definition wasn't required before, it may be required now.
17228     if (Pos != VTablesUsed.end()) {
17229       if (!Pos->second && VTables[I].DefinitionRequired)
17230         Pos->second = true;
17231       continue;
17232     }
17233 
17234     VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
17235     NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
17236   }
17237 
17238   VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
17239 }
17240 
MarkVTableUsed(SourceLocation Loc,CXXRecordDecl * Class,bool DefinitionRequired)17241 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
17242                           bool DefinitionRequired) {
17243   // Ignore any vtable uses in unevaluated operands or for classes that do
17244   // not have a vtable.
17245   if (!Class->isDynamicClass() || Class->isDependentContext() ||
17246       CurContext->isDependentContext() || isUnevaluatedContext())
17247     return;
17248   // Do not mark as used if compiling for the device outside of the target
17249   // region.
17250   if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsDevice &&
17251       !isInOpenMPDeclareTargetContext() &&
17252       !isInOpenMPTargetExecutionDirective()) {
17253     if (!DefinitionRequired)
17254       MarkVirtualMembersReferenced(Loc, Class);
17255     return;
17256   }
17257 
17258   // Try to insert this class into the map.
17259   LoadExternalVTableUses();
17260   Class = Class->getCanonicalDecl();
17261   std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
17262     Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
17263   if (!Pos.second) {
17264     // If we already had an entry, check to see if we are promoting this vtable
17265     // to require a definition. If so, we need to reappend to the VTableUses
17266     // list, since we may have already processed the first entry.
17267     if (DefinitionRequired && !Pos.first->second) {
17268       Pos.first->second = true;
17269     } else {
17270       // Otherwise, we can early exit.
17271       return;
17272     }
17273   } else {
17274     // The Microsoft ABI requires that we perform the destructor body
17275     // checks (i.e. operator delete() lookup) when the vtable is marked used, as
17276     // the deleting destructor is emitted with the vtable, not with the
17277     // destructor definition as in the Itanium ABI.
17278     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
17279       CXXDestructorDecl *DD = Class->getDestructor();
17280       if (DD && DD->isVirtual() && !DD->isDeleted()) {
17281         if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) {
17282           // If this is an out-of-line declaration, marking it referenced will
17283           // not do anything. Manually call CheckDestructor to look up operator
17284           // delete().
17285           ContextRAII SavedContext(*this, DD);
17286           CheckDestructor(DD);
17287         } else {
17288           MarkFunctionReferenced(Loc, Class->getDestructor());
17289         }
17290       }
17291     }
17292   }
17293 
17294   // Local classes need to have their virtual members marked
17295   // immediately. For all other classes, we mark their virtual members
17296   // at the end of the translation unit.
17297   if (Class->isLocalClass())
17298     MarkVirtualMembersReferenced(Loc, Class);
17299   else
17300     VTableUses.push_back(std::make_pair(Class, Loc));
17301 }
17302 
DefineUsedVTables()17303 bool Sema::DefineUsedVTables() {
17304   LoadExternalVTableUses();
17305   if (VTableUses.empty())
17306     return false;
17307 
17308   // Note: The VTableUses vector could grow as a result of marking
17309   // the members of a class as "used", so we check the size each
17310   // time through the loop and prefer indices (which are stable) to
17311   // iterators (which are not).
17312   bool DefinedAnything = false;
17313   for (unsigned I = 0; I != VTableUses.size(); ++I) {
17314     CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
17315     if (!Class)
17316       continue;
17317     TemplateSpecializationKind ClassTSK =
17318         Class->getTemplateSpecializationKind();
17319 
17320     SourceLocation Loc = VTableUses[I].second;
17321 
17322     bool DefineVTable = true;
17323 
17324     // If this class has a key function, but that key function is
17325     // defined in another translation unit, we don't need to emit the
17326     // vtable even though we're using it.
17327     const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
17328     if (KeyFunction && !KeyFunction->hasBody()) {
17329       // The key function is in another translation unit.
17330       DefineVTable = false;
17331       TemplateSpecializationKind TSK =
17332           KeyFunction->getTemplateSpecializationKind();
17333       assert(TSK != TSK_ExplicitInstantiationDefinition &&
17334              TSK != TSK_ImplicitInstantiation &&
17335              "Instantiations don't have key functions");
17336       (void)TSK;
17337     } else if (!KeyFunction) {
17338       // If we have a class with no key function that is the subject
17339       // of an explicit instantiation declaration, suppress the
17340       // vtable; it will live with the explicit instantiation
17341       // definition.
17342       bool IsExplicitInstantiationDeclaration =
17343           ClassTSK == TSK_ExplicitInstantiationDeclaration;
17344       for (auto R : Class->redecls()) {
17345         TemplateSpecializationKind TSK
17346           = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
17347         if (TSK == TSK_ExplicitInstantiationDeclaration)
17348           IsExplicitInstantiationDeclaration = true;
17349         else if (TSK == TSK_ExplicitInstantiationDefinition) {
17350           IsExplicitInstantiationDeclaration = false;
17351           break;
17352         }
17353       }
17354 
17355       if (IsExplicitInstantiationDeclaration)
17356         DefineVTable = false;
17357     }
17358 
17359     // The exception specifications for all virtual members may be needed even
17360     // if we are not providing an authoritative form of the vtable in this TU.
17361     // We may choose to emit it available_externally anyway.
17362     if (!DefineVTable) {
17363       MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
17364       continue;
17365     }
17366 
17367     // Mark all of the virtual members of this class as referenced, so
17368     // that we can build a vtable. Then, tell the AST consumer that a
17369     // vtable for this class is required.
17370     DefinedAnything = true;
17371     MarkVirtualMembersReferenced(Loc, Class);
17372     CXXRecordDecl *Canonical = Class->getCanonicalDecl();
17373     if (VTablesUsed[Canonical])
17374       Consumer.HandleVTable(Class);
17375 
17376     // Warn if we're emitting a weak vtable. The vtable will be weak if there is
17377     // no key function or the key function is inlined. Don't warn in C++ ABIs
17378     // that lack key functions, since the user won't be able to make one.
17379     if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() &&
17380         Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation) {
17381       const FunctionDecl *KeyFunctionDef = nullptr;
17382       if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) &&
17383                            KeyFunctionDef->isInlined())) {
17384         Diag(Class->getLocation(),
17385              ClassTSK == TSK_ExplicitInstantiationDefinition
17386                  ? diag::warn_weak_template_vtable
17387                  : diag::warn_weak_vtable)
17388             << Class;
17389       }
17390     }
17391   }
17392   VTableUses.clear();
17393 
17394   return DefinedAnything;
17395 }
17396 
MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,const CXXRecordDecl * RD)17397 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
17398                                                  const CXXRecordDecl *RD) {
17399   for (const auto *I : RD->methods())
17400     if (I->isVirtual() && !I->isPure())
17401       ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
17402 }
17403 
MarkVirtualMembersReferenced(SourceLocation Loc,const CXXRecordDecl * RD,bool ConstexprOnly)17404 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
17405                                         const CXXRecordDecl *RD,
17406                                         bool ConstexprOnly) {
17407   // Mark all functions which will appear in RD's vtable as used.
17408   CXXFinalOverriderMap FinalOverriders;
17409   RD->getFinalOverriders(FinalOverriders);
17410   for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
17411                                             E = FinalOverriders.end();
17412        I != E; ++I) {
17413     for (OverridingMethods::const_iterator OI = I->second.begin(),
17414                                            OE = I->second.end();
17415          OI != OE; ++OI) {
17416       assert(OI->second.size() > 0 && "no final overrider");
17417       CXXMethodDecl *Overrider = OI->second.front().Method;
17418 
17419       // C++ [basic.def.odr]p2:
17420       //   [...] A virtual member function is used if it is not pure. [...]
17421       if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr()))
17422         MarkFunctionReferenced(Loc, Overrider);
17423     }
17424   }
17425 
17426   // Only classes that have virtual bases need a VTT.
17427   if (RD->getNumVBases() == 0)
17428     return;
17429 
17430   for (const auto &I : RD->bases()) {
17431     const auto *Base =
17432         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
17433     if (Base->getNumVBases() == 0)
17434       continue;
17435     MarkVirtualMembersReferenced(Loc, Base);
17436   }
17437 }
17438 
17439 /// SetIvarInitializers - This routine builds initialization ASTs for the
17440 /// Objective-C implementation whose ivars need be initialized.
SetIvarInitializers(ObjCImplementationDecl * ObjCImplementation)17441 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
17442   if (!getLangOpts().CPlusPlus)
17443     return;
17444   if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
17445     SmallVector<ObjCIvarDecl*, 8> ivars;
17446     CollectIvarsToConstructOrDestruct(OID, ivars);
17447     if (ivars.empty())
17448       return;
17449     SmallVector<CXXCtorInitializer*, 32> AllToInit;
17450     for (unsigned i = 0; i < ivars.size(); i++) {
17451       FieldDecl *Field = ivars[i];
17452       if (Field->isInvalidDecl())
17453         continue;
17454 
17455       CXXCtorInitializer *Member;
17456       InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
17457       InitializationKind InitKind =
17458         InitializationKind::CreateDefault(ObjCImplementation->getLocation());
17459 
17460       InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
17461       ExprResult MemberInit =
17462         InitSeq.Perform(*this, InitEntity, InitKind, None);
17463       MemberInit = MaybeCreateExprWithCleanups(MemberInit);
17464       // Note, MemberInit could actually come back empty if no initialization
17465       // is required (e.g., because it would call a trivial default constructor)
17466       if (!MemberInit.get() || MemberInit.isInvalid())
17467         continue;
17468 
17469       Member =
17470         new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
17471                                          SourceLocation(),
17472                                          MemberInit.getAs<Expr>(),
17473                                          SourceLocation());
17474       AllToInit.push_back(Member);
17475 
17476       // Be sure that the destructor is accessible and is marked as referenced.
17477       if (const RecordType *RecordTy =
17478               Context.getBaseElementType(Field->getType())
17479                   ->getAs<RecordType>()) {
17480         CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
17481         if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
17482           MarkFunctionReferenced(Field->getLocation(), Destructor);
17483           CheckDestructorAccess(Field->getLocation(), Destructor,
17484                             PDiag(diag::err_access_dtor_ivar)
17485                               << Context.getBaseElementType(Field->getType()));
17486         }
17487       }
17488     }
17489     ObjCImplementation->setIvarInitializers(Context,
17490                                             AllToInit.data(), AllToInit.size());
17491   }
17492 }
17493 
17494 static
DelegatingCycleHelper(CXXConstructorDecl * Ctor,llvm::SmallPtrSet<CXXConstructorDecl *,4> & Valid,llvm::SmallPtrSet<CXXConstructorDecl *,4> & Invalid,llvm::SmallPtrSet<CXXConstructorDecl *,4> & Current,Sema & S)17495 void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
17496                            llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid,
17497                            llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid,
17498                            llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current,
17499                            Sema &S) {
17500   if (Ctor->isInvalidDecl())
17501     return;
17502 
17503   CXXConstructorDecl *Target = Ctor->getTargetConstructor();
17504 
17505   // Target may not be determinable yet, for instance if this is a dependent
17506   // call in an uninstantiated template.
17507   if (Target) {
17508     const FunctionDecl *FNTarget = nullptr;
17509     (void)Target->hasBody(FNTarget);
17510     Target = const_cast<CXXConstructorDecl*>(
17511       cast_or_null<CXXConstructorDecl>(FNTarget));
17512   }
17513 
17514   CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
17515                      // Avoid dereferencing a null pointer here.
17516                      *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
17517 
17518   if (!Current.insert(Canonical).second)
17519     return;
17520 
17521   // We know that beyond here, we aren't chaining into a cycle.
17522   if (!Target || !Target->isDelegatingConstructor() ||
17523       Target->isInvalidDecl() || Valid.count(TCanonical)) {
17524     Valid.insert(Current.begin(), Current.end());
17525     Current.clear();
17526   // We've hit a cycle.
17527   } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
17528              Current.count(TCanonical)) {
17529     // If we haven't diagnosed this cycle yet, do so now.
17530     if (!Invalid.count(TCanonical)) {
17531       S.Diag((*Ctor->init_begin())->getSourceLocation(),
17532              diag::warn_delegating_ctor_cycle)
17533         << Ctor;
17534 
17535       // Don't add a note for a function delegating directly to itself.
17536       if (TCanonical != Canonical)
17537         S.Diag(Target->getLocation(), diag::note_it_delegates_to);
17538 
17539       CXXConstructorDecl *C = Target;
17540       while (C->getCanonicalDecl() != Canonical) {
17541         const FunctionDecl *FNTarget = nullptr;
17542         (void)C->getTargetConstructor()->hasBody(FNTarget);
17543         assert(FNTarget && "Ctor cycle through bodiless function");
17544 
17545         C = const_cast<CXXConstructorDecl*>(
17546           cast<CXXConstructorDecl>(FNTarget));
17547         S.Diag(C->getLocation(), diag::note_which_delegates_to);
17548       }
17549     }
17550 
17551     Invalid.insert(Current.begin(), Current.end());
17552     Current.clear();
17553   } else {
17554     DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
17555   }
17556 }
17557 
17558 
CheckDelegatingCtorCycles()17559 void Sema::CheckDelegatingCtorCycles() {
17560   llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
17561 
17562   for (DelegatingCtorDeclsType::iterator
17563          I = DelegatingCtorDecls.begin(ExternalSource),
17564          E = DelegatingCtorDecls.end();
17565        I != E; ++I)
17566     DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
17567 
17568   for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
17569     (*CI)->setInvalidDecl();
17570 }
17571 
17572 namespace {
17573   /// AST visitor that finds references to the 'this' expression.
17574   class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
17575     Sema &S;
17576 
17577   public:
FindCXXThisExpr(Sema & S)17578     explicit FindCXXThisExpr(Sema &S) : S(S) { }
17579 
VisitCXXThisExpr(CXXThisExpr * E)17580     bool VisitCXXThisExpr(CXXThisExpr *E) {
17581       S.Diag(E->getLocation(), diag::err_this_static_member_func)
17582         << E->isImplicit();
17583       return false;
17584     }
17585   };
17586 }
17587 
checkThisInStaticMemberFunctionType(CXXMethodDecl * Method)17588 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
17589   TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
17590   if (!TSInfo)
17591     return false;
17592 
17593   TypeLoc TL = TSInfo->getTypeLoc();
17594   FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
17595   if (!ProtoTL)
17596     return false;
17597 
17598   // C++11 [expr.prim.general]p3:
17599   //   [The expression this] shall not appear before the optional
17600   //   cv-qualifier-seq and it shall not appear within the declaration of a
17601   //   static member function (although its type and value category are defined
17602   //   within a static member function as they are within a non-static member
17603   //   function). [ Note: this is because declaration matching does not occur
17604   //  until the complete declarator is known. - end note ]
17605   const FunctionProtoType *Proto = ProtoTL.getTypePtr();
17606   FindCXXThisExpr Finder(*this);
17607 
17608   // If the return type came after the cv-qualifier-seq, check it now.
17609   if (Proto->hasTrailingReturn() &&
17610       !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
17611     return true;
17612 
17613   // Check the exception specification.
17614   if (checkThisInStaticMemberFunctionExceptionSpec(Method))
17615     return true;
17616 
17617   // Check the trailing requires clause
17618   if (Expr *E = Method->getTrailingRequiresClause())
17619     if (!Finder.TraverseStmt(E))
17620       return true;
17621 
17622   return checkThisInStaticMemberFunctionAttributes(Method);
17623 }
17624 
checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl * Method)17625 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
17626   TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
17627   if (!TSInfo)
17628     return false;
17629 
17630   TypeLoc TL = TSInfo->getTypeLoc();
17631   FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
17632   if (!ProtoTL)
17633     return false;
17634 
17635   const FunctionProtoType *Proto = ProtoTL.getTypePtr();
17636   FindCXXThisExpr Finder(*this);
17637 
17638   switch (Proto->getExceptionSpecType()) {
17639   case EST_Unparsed:
17640   case EST_Uninstantiated:
17641   case EST_Unevaluated:
17642   case EST_BasicNoexcept:
17643   case EST_NoThrow:
17644   case EST_DynamicNone:
17645   case EST_MSAny:
17646   case EST_None:
17647     break;
17648 
17649   case EST_DependentNoexcept:
17650   case EST_NoexceptFalse:
17651   case EST_NoexceptTrue:
17652     if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
17653       return true;
17654     LLVM_FALLTHROUGH;
17655 
17656   case EST_Dynamic:
17657     for (const auto &E : Proto->exceptions()) {
17658       if (!Finder.TraverseType(E))
17659         return true;
17660     }
17661     break;
17662   }
17663 
17664   return false;
17665 }
17666 
checkThisInStaticMemberFunctionAttributes(CXXMethodDecl * Method)17667 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
17668   FindCXXThisExpr Finder(*this);
17669 
17670   // Check attributes.
17671   for (const auto *A : Method->attrs()) {
17672     // FIXME: This should be emitted by tblgen.
17673     Expr *Arg = nullptr;
17674     ArrayRef<Expr *> Args;
17675     if (const auto *G = dyn_cast<GuardedByAttr>(A))
17676       Arg = G->getArg();
17677     else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
17678       Arg = G->getArg();
17679     else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
17680       Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size());
17681     else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
17682       Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size());
17683     else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
17684       Arg = ETLF->getSuccessValue();
17685       Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size());
17686     } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
17687       Arg = STLF->getSuccessValue();
17688       Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size());
17689     } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
17690       Arg = LR->getArg();
17691     else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
17692       Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size());
17693     else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
17694       Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
17695     else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
17696       Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
17697     else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
17698       Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
17699     else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
17700       Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
17701 
17702     if (Arg && !Finder.TraverseStmt(Arg))
17703       return true;
17704 
17705     for (unsigned I = 0, N = Args.size(); I != N; ++I) {
17706       if (!Finder.TraverseStmt(Args[I]))
17707         return true;
17708     }
17709   }
17710 
17711   return false;
17712 }
17713 
checkExceptionSpecification(bool IsTopLevel,ExceptionSpecificationType EST,ArrayRef<ParsedType> DynamicExceptions,ArrayRef<SourceRange> DynamicExceptionRanges,Expr * NoexceptExpr,SmallVectorImpl<QualType> & Exceptions,FunctionProtoType::ExceptionSpecInfo & ESI)17714 void Sema::checkExceptionSpecification(
17715     bool IsTopLevel, ExceptionSpecificationType EST,
17716     ArrayRef<ParsedType> DynamicExceptions,
17717     ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
17718     SmallVectorImpl<QualType> &Exceptions,
17719     FunctionProtoType::ExceptionSpecInfo &ESI) {
17720   Exceptions.clear();
17721   ESI.Type = EST;
17722   if (EST == EST_Dynamic) {
17723     Exceptions.reserve(DynamicExceptions.size());
17724     for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
17725       // FIXME: Preserve type source info.
17726       QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
17727 
17728       if (IsTopLevel) {
17729         SmallVector<UnexpandedParameterPack, 2> Unexpanded;
17730         collectUnexpandedParameterPacks(ET, Unexpanded);
17731         if (!Unexpanded.empty()) {
17732           DiagnoseUnexpandedParameterPacks(
17733               DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType,
17734               Unexpanded);
17735           continue;
17736         }
17737       }
17738 
17739       // Check that the type is valid for an exception spec, and
17740       // drop it if not.
17741       if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
17742         Exceptions.push_back(ET);
17743     }
17744     ESI.Exceptions = Exceptions;
17745     return;
17746   }
17747 
17748   if (isComputedNoexcept(EST)) {
17749     assert((NoexceptExpr->isTypeDependent() ||
17750             NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
17751             Context.BoolTy) &&
17752            "Parser should have made sure that the expression is boolean");
17753     if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
17754       ESI.Type = EST_BasicNoexcept;
17755       return;
17756     }
17757 
17758     ESI.NoexceptExpr = NoexceptExpr;
17759     return;
17760   }
17761 }
17762 
actOnDelayedExceptionSpecification(Decl * MethodD,ExceptionSpecificationType EST,SourceRange SpecificationRange,ArrayRef<ParsedType> DynamicExceptions,ArrayRef<SourceRange> DynamicExceptionRanges,Expr * NoexceptExpr)17763 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
17764              ExceptionSpecificationType EST,
17765              SourceRange SpecificationRange,
17766              ArrayRef<ParsedType> DynamicExceptions,
17767              ArrayRef<SourceRange> DynamicExceptionRanges,
17768              Expr *NoexceptExpr) {
17769   if (!MethodD)
17770     return;
17771 
17772   // Dig out the method we're referring to.
17773   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
17774     MethodD = FunTmpl->getTemplatedDecl();
17775 
17776   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD);
17777   if (!Method)
17778     return;
17779 
17780   // Check the exception specification.
17781   llvm::SmallVector<QualType, 4> Exceptions;
17782   FunctionProtoType::ExceptionSpecInfo ESI;
17783   checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
17784                               DynamicExceptionRanges, NoexceptExpr, Exceptions,
17785                               ESI);
17786 
17787   // Update the exception specification on the function type.
17788   Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
17789 
17790   if (Method->isStatic())
17791     checkThisInStaticMemberFunctionExceptionSpec(Method);
17792 
17793   if (Method->isVirtual()) {
17794     // Check overrides, which we previously had to delay.
17795     for (const CXXMethodDecl *O : Method->overridden_methods())
17796       CheckOverridingFunctionExceptionSpec(Method, O);
17797   }
17798 }
17799 
17800 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
17801 ///
HandleMSProperty(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS,const ParsedAttr & MSPropertyAttr)17802 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
17803                                        SourceLocation DeclStart, Declarator &D,
17804                                        Expr *BitWidth,
17805                                        InClassInitStyle InitStyle,
17806                                        AccessSpecifier AS,
17807                                        const ParsedAttr &MSPropertyAttr) {
17808   IdentifierInfo *II = D.getIdentifier();
17809   if (!II) {
17810     Diag(DeclStart, diag::err_anonymous_property);
17811     return nullptr;
17812   }
17813   SourceLocation Loc = D.getIdentifierLoc();
17814 
17815   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
17816   QualType T = TInfo->getType();
17817   if (getLangOpts().CPlusPlus) {
17818     CheckExtraCXXDefaultArguments(D);
17819 
17820     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
17821                                         UPPC_DataMemberType)) {
17822       D.setInvalidType();
17823       T = Context.IntTy;
17824       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
17825     }
17826   }
17827 
17828   DiagnoseFunctionSpecifiers(D.getDeclSpec());
17829 
17830   if (D.getDeclSpec().isInlineSpecified())
17831     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
17832         << getLangOpts().CPlusPlus17;
17833   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
17834     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
17835          diag::err_invalid_thread)
17836       << DeclSpec::getSpecifierName(TSCS);
17837 
17838   // Check to see if this name was declared as a member previously
17839   NamedDecl *PrevDecl = nullptr;
17840   LookupResult Previous(*this, II, Loc, LookupMemberName,
17841                         ForVisibleRedeclaration);
17842   LookupName(Previous, S);
17843   switch (Previous.getResultKind()) {
17844   case LookupResult::Found:
17845   case LookupResult::FoundUnresolvedValue:
17846     PrevDecl = Previous.getAsSingle<NamedDecl>();
17847     break;
17848 
17849   case LookupResult::FoundOverloaded:
17850     PrevDecl = Previous.getRepresentativeDecl();
17851     break;
17852 
17853   case LookupResult::NotFound:
17854   case LookupResult::NotFoundInCurrentInstantiation:
17855   case LookupResult::Ambiguous:
17856     break;
17857   }
17858 
17859   if (PrevDecl && PrevDecl->isTemplateParameter()) {
17860     // Maybe we will complain about the shadowed template parameter.
17861     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
17862     // Just pretend that we didn't see the previous declaration.
17863     PrevDecl = nullptr;
17864   }
17865 
17866   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
17867     PrevDecl = nullptr;
17868 
17869   SourceLocation TSSL = D.getBeginLoc();
17870   MSPropertyDecl *NewPD =
17871       MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL,
17872                              MSPropertyAttr.getPropertyDataGetter(),
17873                              MSPropertyAttr.getPropertyDataSetter());
17874   ProcessDeclAttributes(TUScope, NewPD, D);
17875   NewPD->setAccess(AS);
17876 
17877   if (NewPD->isInvalidDecl())
17878     Record->setInvalidDecl();
17879 
17880   if (D.getDeclSpec().isModulePrivateSpecified())
17881     NewPD->setModulePrivate();
17882 
17883   if (NewPD->isInvalidDecl() && PrevDecl) {
17884     // Don't introduce NewFD into scope; there's already something
17885     // with the same name in the same scope.
17886   } else if (II) {
17887     PushOnScopeChains(NewPD, S);
17888   } else
17889     Record->addDecl(NewPD);
17890 
17891   return NewPD;
17892 }
17893 
ActOnStartFunctionDeclarationDeclarator(Declarator & Declarator,unsigned TemplateParameterDepth)17894 void Sema::ActOnStartFunctionDeclarationDeclarator(
17895     Declarator &Declarator, unsigned TemplateParameterDepth) {
17896   auto &Info = InventedParameterInfos.emplace_back();
17897   TemplateParameterList *ExplicitParams = nullptr;
17898   ArrayRef<TemplateParameterList *> ExplicitLists =
17899       Declarator.getTemplateParameterLists();
17900   if (!ExplicitLists.empty()) {
17901     bool IsMemberSpecialization, IsInvalid;
17902     ExplicitParams = MatchTemplateParametersToScopeSpecifier(
17903         Declarator.getBeginLoc(), Declarator.getIdentifierLoc(),
17904         Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr,
17905         ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid,
17906         /*SuppressDiagnostic=*/true);
17907   }
17908   if (ExplicitParams) {
17909     Info.AutoTemplateParameterDepth = ExplicitParams->getDepth();
17910     for (NamedDecl *Param : *ExplicitParams)
17911       Info.TemplateParams.push_back(Param);
17912     Info.NumExplicitTemplateParams = ExplicitParams->size();
17913   } else {
17914     Info.AutoTemplateParameterDepth = TemplateParameterDepth;
17915     Info.NumExplicitTemplateParams = 0;
17916   }
17917 }
17918 
ActOnFinishFunctionDeclarationDeclarator(Declarator & Declarator)17919 void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) {
17920   auto &FSI = InventedParameterInfos.back();
17921   if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) {
17922     if (FSI.NumExplicitTemplateParams != 0) {
17923       TemplateParameterList *ExplicitParams =
17924           Declarator.getTemplateParameterLists().back();
17925       Declarator.setInventedTemplateParameterList(
17926           TemplateParameterList::Create(
17927               Context, ExplicitParams->getTemplateLoc(),
17928               ExplicitParams->getLAngleLoc(), FSI.TemplateParams,
17929               ExplicitParams->getRAngleLoc(),
17930               ExplicitParams->getRequiresClause()));
17931     } else {
17932       Declarator.setInventedTemplateParameterList(
17933           TemplateParameterList::Create(
17934               Context, SourceLocation(), SourceLocation(), FSI.TemplateParams,
17935               SourceLocation(), /*RequiresClause=*/nullptr));
17936     }
17937   }
17938   InventedParameterInfos.pop_back();
17939 }
17940