1 //===- Symbols.h ------------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLD_COFF_SYMBOLS_H
10 #define LLD_COFF_SYMBOLS_H
11 
12 #include "Chunks.h"
13 #include "Config.h"
14 #include "lld/Common/LLVM.h"
15 #include "lld/Common/Memory.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/Object/Archive.h"
18 #include "llvm/Object/COFF.h"
19 #include <atomic>
20 #include <memory>
21 #include <vector>
22 
23 namespace lld {
24 
25 namespace coff {
26 
27 using llvm::object::Archive;
28 using llvm::object::COFFSymbolRef;
29 using llvm::object::coff_import_header;
30 using llvm::object::coff_symbol_generic;
31 
32 class ArchiveFile;
33 class COFFLinkerContext;
34 class InputFile;
35 class ObjFile;
36 class SymbolTable;
37 
38 // The base class for real symbol classes.
39 class Symbol {
40 public:
41   enum Kind {
42     // The order of these is significant. We start with the regular defined
43     // symbols as those are the most prevalent and the zero tag is the cheapest
44     // to set. Among the defined kinds, the lower the kind is preferred over
45     // the higher kind when testing whether one symbol should take precedence
46     // over another.
47     DefinedRegularKind = 0,
48     DefinedCommonKind,
49     DefinedLocalImportKind,
50     DefinedImportThunkKind,
51     DefinedImportDataKind,
52     DefinedAbsoluteKind,
53     DefinedSyntheticKind,
54 
55     UndefinedKind,
56     LazyArchiveKind,
57     LazyObjectKind,
58     LazyDLLSymbolKind,
59 
60     LastDefinedCOFFKind = DefinedCommonKind,
61     LastDefinedKind = DefinedSyntheticKind,
62   };
63 
kind()64   Kind kind() const { return static_cast<Kind>(symbolKind); }
65 
66   // Returns the symbol name.
getName()67   StringRef getName() {
68     // COFF symbol names are read lazily for a performance reason.
69     // Non-external symbol names are never used by the linker except for logging
70     // or debugging. Their internal references are resolved not by name but by
71     // symbol index. And because they are not external, no one can refer them by
72     // name. Object files contain lots of non-external symbols, and creating
73     // StringRefs for them (which involves lots of strlen() on the string table)
74     // is a waste of time.
75     if (nameData == nullptr)
76       computeName();
77     return StringRef(nameData, nameSize);
78   }
79 
80   void replaceKeepingName(Symbol *other, size_t size);
81 
82   // Returns the file from which this symbol was created.
83   InputFile *getFile();
84 
85   // Indicates that this symbol will be included in the final image. Only valid
86   // after calling markLive.
87   bool isLive() const;
88 
isLazy()89   bool isLazy() const {
90     return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind ||
91            symbolKind == LazyDLLSymbolKind;
92   }
93 
94 private:
95   void computeName();
96 
97 protected:
98   friend SymbolTable;
99   explicit Symbol(Kind k, StringRef n = "")
symbolKind(k)100       : symbolKind(k), isExternal(true), isCOMDAT(false),
101         writtenToSymtab(false), pendingArchiveLoad(false), isGCRoot(false),
102         isRuntimePseudoReloc(false), deferUndefined(false), canInline(true),
103         isWeak(false), nameSize(n.size()),
104         nameData(n.empty() ? nullptr : n.data()) {
105     assert((!n.empty() || k <= LastDefinedCOFFKind) &&
106            "If the name is empty, the Symbol must be a DefinedCOFF.");
107   }
108 
109   const unsigned symbolKind : 8;
110   unsigned isExternal : 1;
111 
112 public:
113   // This bit is used by the \c DefinedRegular subclass.
114   unsigned isCOMDAT : 1;
115 
116   // This bit is used by Writer::createSymbolAndStringTable() to prevent
117   // symbols from being written to the symbol table more than once.
118   unsigned writtenToSymtab : 1;
119 
120   // True if this symbol was referenced by a regular (non-bitcode) object.
121   unsigned isUsedInRegularObj : 1;
122 
123   // True if we've seen both a lazy and an undefined symbol with this symbol
124   // name, which means that we have enqueued an archive member load and should
125   // not load any more archive members to resolve the same symbol.
126   unsigned pendingArchiveLoad : 1;
127 
128   /// True if we've already added this symbol to the list of GC roots.
129   unsigned isGCRoot : 1;
130 
131   unsigned isRuntimePseudoReloc : 1;
132 
133   // True if we want to allow this symbol to be undefined in the early
134   // undefined check pass in SymbolTable::reportUnresolvable(), as it
135   // might be fixed up later.
136   unsigned deferUndefined : 1;
137 
138   // False if LTO shouldn't inline whatever this symbol points to. If a symbol
139   // is overwritten after LTO, LTO shouldn't inline the symbol because it
140   // doesn't know the final contents of the symbol.
141   unsigned canInline : 1;
142 
143   // True if the symbol is weak. This is only tracked for bitcode/LTO symbols.
144   // This information isn't written to the output; rather, it's used for
145   // managing weak symbol overrides.
146   unsigned isWeak : 1;
147 
148 protected:
149   // Symbol name length. Assume symbol lengths fit in a 32-bit integer.
150   uint32_t nameSize;
151 
152   const char *nameData;
153 };
154 
155 // The base class for any defined symbols, including absolute symbols,
156 // etc.
157 class Defined : public Symbol {
158 public:
Defined(Kind k,StringRef n)159   Defined(Kind k, StringRef n) : Symbol(k, n) {}
160 
classof(const Symbol * s)161   static bool classof(const Symbol *s) { return s->kind() <= LastDefinedKind; }
162 
163   // Returns the RVA (relative virtual address) of this symbol. The
164   // writer sets and uses RVAs.
165   uint64_t getRVA();
166 
167   // Returns the chunk containing this symbol. Absolute symbols and __ImageBase
168   // do not have chunks, so this may return null.
169   Chunk *getChunk();
170 };
171 
172 // Symbols defined via a COFF object file or bitcode file.  For COFF files, this
173 // stores a coff_symbol_generic*, and names of internal symbols are lazily
174 // loaded through that. For bitcode files, Sym is nullptr and the name is stored
175 // as a decomposed StringRef.
176 class DefinedCOFF : public Defined {
177   friend Symbol;
178 
179 public:
DefinedCOFF(Kind k,InputFile * f,StringRef n,const coff_symbol_generic * s)180   DefinedCOFF(Kind k, InputFile *f, StringRef n, const coff_symbol_generic *s)
181       : Defined(k, n), file(f), sym(s) {}
182 
classof(const Symbol * s)183   static bool classof(const Symbol *s) {
184     return s->kind() <= LastDefinedCOFFKind;
185   }
186 
getFile()187   InputFile *getFile() { return file; }
188 
189   COFFSymbolRef getCOFFSymbol();
190 
191   InputFile *file;
192 
193 protected:
194   const coff_symbol_generic *sym;
195 };
196 
197 // Regular defined symbols read from object file symbol tables.
198 class DefinedRegular : public DefinedCOFF {
199 public:
200   DefinedRegular(InputFile *f, StringRef n, bool isCOMDAT,
201                  bool isExternal = false,
202                  const coff_symbol_generic *s = nullptr,
203                  SectionChunk *c = nullptr, bool isWeak = false)
DefinedCOFF(DefinedRegularKind,f,n,s)204       : DefinedCOFF(DefinedRegularKind, f, n, s), data(c ? &c->repl : nullptr) {
205     this->isExternal = isExternal;
206     this->isCOMDAT = isCOMDAT;
207     this->isWeak = isWeak;
208   }
209 
classof(const Symbol * s)210   static bool classof(const Symbol *s) {
211     return s->kind() == DefinedRegularKind;
212   }
213 
getRVA()214   uint64_t getRVA() const { return (*data)->getRVA() + sym->Value; }
getChunk()215   SectionChunk *getChunk() const { return *data; }
getValue()216   uint32_t getValue() const { return sym->Value; }
217 
218   SectionChunk **data;
219 };
220 
221 class DefinedCommon : public DefinedCOFF {
222 public:
223   DefinedCommon(InputFile *f, StringRef n, uint64_t size,
224                 const coff_symbol_generic *s = nullptr,
225                 CommonChunk *c = nullptr)
DefinedCOFF(DefinedCommonKind,f,n,s)226       : DefinedCOFF(DefinedCommonKind, f, n, s), data(c), size(size) {
227     this->isExternal = true;
228   }
229 
classof(const Symbol * s)230   static bool classof(const Symbol *s) {
231     return s->kind() == DefinedCommonKind;
232   }
233 
getRVA()234   uint64_t getRVA() { return data->getRVA(); }
getChunk()235   CommonChunk *getChunk() { return data; }
236 
237 private:
238   friend SymbolTable;
getSize()239   uint64_t getSize() const { return size; }
240   CommonChunk *data;
241   uint64_t size;
242 };
243 
244 // Absolute symbols.
245 class DefinedAbsolute : public Defined {
246 public:
DefinedAbsolute(const COFFLinkerContext & c,StringRef n,COFFSymbolRef s)247   DefinedAbsolute(const COFFLinkerContext &c, StringRef n, COFFSymbolRef s)
248       : Defined(DefinedAbsoluteKind, n), va(s.getValue()), ctx(c) {
249     isExternal = s.isExternal();
250   }
251 
DefinedAbsolute(const COFFLinkerContext & c,StringRef n,uint64_t v)252   DefinedAbsolute(const COFFLinkerContext &c, StringRef n, uint64_t v)
253       : Defined(DefinedAbsoluteKind, n), va(v), ctx(c) {}
254 
classof(const Symbol * s)255   static bool classof(const Symbol *s) {
256     return s->kind() == DefinedAbsoluteKind;
257   }
258 
259   uint64_t getRVA();
setVA(uint64_t v)260   void setVA(uint64_t v) { va = v; }
getVA()261   uint64_t getVA() const { return va; }
262 
263 private:
264   uint64_t va;
265   const COFFLinkerContext &ctx;
266 };
267 
268 // This symbol is used for linker-synthesized symbols like __ImageBase and
269 // __safe_se_handler_table.
270 class DefinedSynthetic : public Defined {
271 public:
272   explicit DefinedSynthetic(StringRef name, Chunk *c, uint32_t offset = 0)
Defined(DefinedSyntheticKind,name)273       : Defined(DefinedSyntheticKind, name), c(c), offset(offset) {}
274 
classof(const Symbol * s)275   static bool classof(const Symbol *s) {
276     return s->kind() == DefinedSyntheticKind;
277   }
278 
279   // A null chunk indicates that this is __ImageBase. Otherwise, this is some
280   // other synthesized chunk, like SEHTableChunk.
getRVA()281   uint32_t getRVA() { return c ? c->getRVA() + offset : 0; }
getChunk()282   Chunk *getChunk() { return c; }
283 
284 private:
285   Chunk *c;
286   uint32_t offset;
287 };
288 
289 // This class represents a symbol defined in an archive file. It is
290 // created from an archive file header, and it knows how to load an
291 // object file from an archive to replace itself with a defined
292 // symbol. If the resolver finds both Undefined and LazyArchive for
293 // the same name, it will ask the LazyArchive to load a file.
294 class LazyArchive : public Symbol {
295 public:
LazyArchive(ArchiveFile * f,const Archive::Symbol s)296   LazyArchive(ArchiveFile *f, const Archive::Symbol s)
297       : Symbol(LazyArchiveKind, s.getName()), file(f), sym(s) {}
298 
classof(const Symbol * s)299   static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; }
300 
301   MemoryBufferRef getMemberBuffer();
302 
303   ArchiveFile *file;
304   const Archive::Symbol sym;
305 };
306 
307 class LazyObject : public Symbol {
308 public:
LazyObject(InputFile * f,StringRef n)309   LazyObject(InputFile *f, StringRef n) : Symbol(LazyObjectKind, n), file(f) {}
classof(const Symbol * s)310   static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; }
311   InputFile *file;
312 };
313 
314 // MinGW only.
315 class LazyDLLSymbol : public Symbol {
316 public:
LazyDLLSymbol(DLLFile * f,DLLFile::Symbol * s,StringRef n)317   LazyDLLSymbol(DLLFile *f, DLLFile::Symbol *s, StringRef n)
318       : Symbol(LazyDLLSymbolKind, n), file(f), sym(s) {}
classof(const Symbol * s)319   static bool classof(const Symbol *s) {
320     return s->kind() == LazyDLLSymbolKind;
321   }
322 
323   DLLFile *file;
324   DLLFile::Symbol *sym;
325 };
326 
327 // Undefined symbols.
328 class Undefined : public Symbol {
329 public:
Undefined(StringRef n)330   explicit Undefined(StringRef n) : Symbol(UndefinedKind, n) {}
331 
classof(const Symbol * s)332   static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; }
333 
334   // An undefined symbol can have a fallback symbol which gives an
335   // undefined symbol a second chance if it would remain undefined.
336   // If it remains undefined, it'll be replaced with whatever the
337   // Alias pointer points to.
338   Symbol *weakAlias = nullptr;
339 
340   // If this symbol is external weak, try to resolve it to a defined
341   // symbol by searching the chain of fallback symbols. Returns the symbol if
342   // successful, otherwise returns null.
343   Defined *getWeakAlias();
344 };
345 
346 // Windows-specific classes.
347 
348 // This class represents a symbol imported from a DLL. This has two
349 // names for internal use and external use. The former is used for
350 // name resolution, and the latter is used for the import descriptor
351 // table in an output. The former has "__imp_" prefix.
352 class DefinedImportData : public Defined {
353 public:
DefinedImportData(StringRef n,ImportFile * f)354   DefinedImportData(StringRef n, ImportFile *f)
355       : Defined(DefinedImportDataKind, n), file(f) {
356   }
357 
classof(const Symbol * s)358   static bool classof(const Symbol *s) {
359     return s->kind() == DefinedImportDataKind;
360   }
361 
getRVA()362   uint64_t getRVA() { return file->location->getRVA(); }
getChunk()363   Chunk *getChunk() { return file->location; }
setLocation(Chunk * addressTable)364   void setLocation(Chunk *addressTable) { file->location = addressTable; }
365 
getDLLName()366   StringRef getDLLName() { return file->dllName; }
getExternalName()367   StringRef getExternalName() { return file->externalName; }
getOrdinal()368   uint16_t getOrdinal() { return file->hdr->OrdinalHint; }
369 
370   ImportFile *file;
371 
372   // This is a pointer to the synthetic symbol associated with the load thunk
373   // for this symbol that will be called if the DLL is delay-loaded. This is
374   // needed for Control Flow Guard because if this DefinedImportData symbol is a
375   // valid call target, the corresponding load thunk must also be marked as a
376   // valid call target.
377   DefinedSynthetic *loadThunkSym = nullptr;
378 };
379 
380 // This class represents a symbol for a jump table entry which jumps
381 // to a function in a DLL. Linker are supposed to create such symbols
382 // without "__imp_" prefix for all function symbols exported from
383 // DLLs, so that you can call DLL functions as regular functions with
384 // a regular name. A function pointer is given as a DefinedImportData.
385 class DefinedImportThunk : public Defined {
386 public:
387   DefinedImportThunk(COFFLinkerContext &ctx, StringRef name,
388                      DefinedImportData *s, uint16_t machine);
389 
classof(const Symbol * s)390   static bool classof(const Symbol *s) {
391     return s->kind() == DefinedImportThunkKind;
392   }
393 
getRVA()394   uint64_t getRVA() { return data->getRVA(); }
getChunk()395   Chunk *getChunk() { return data; }
396 
397   DefinedImportData *wrappedSym;
398 
399 private:
400   Chunk *data;
401 };
402 
403 // If you have a symbol "foo" in your object file, a symbol name
404 // "__imp_foo" becomes automatically available as a pointer to "foo".
405 // This class is for such automatically-created symbols.
406 // Yes, this is an odd feature. We didn't intend to implement that.
407 // This is here just for compatibility with MSVC.
408 class DefinedLocalImport : public Defined {
409 public:
DefinedLocalImport(COFFLinkerContext & ctx,StringRef n,Defined * s)410   DefinedLocalImport(COFFLinkerContext &ctx, StringRef n, Defined *s)
411       : Defined(DefinedLocalImportKind, n),
412         data(make<LocalImportChunk>(ctx, s)) {}
413 
classof(const Symbol * s)414   static bool classof(const Symbol *s) {
415     return s->kind() == DefinedLocalImportKind;
416   }
417 
getRVA()418   uint64_t getRVA() { return data->getRVA(); }
getChunk()419   Chunk *getChunk() { return data; }
420 
421 private:
422   LocalImportChunk *data;
423 };
424 
getRVA()425 inline uint64_t Defined::getRVA() {
426   switch (kind()) {
427   case DefinedAbsoluteKind:
428     return cast<DefinedAbsolute>(this)->getRVA();
429   case DefinedSyntheticKind:
430     return cast<DefinedSynthetic>(this)->getRVA();
431   case DefinedImportDataKind:
432     return cast<DefinedImportData>(this)->getRVA();
433   case DefinedImportThunkKind:
434     return cast<DefinedImportThunk>(this)->getRVA();
435   case DefinedLocalImportKind:
436     return cast<DefinedLocalImport>(this)->getRVA();
437   case DefinedCommonKind:
438     return cast<DefinedCommon>(this)->getRVA();
439   case DefinedRegularKind:
440     return cast<DefinedRegular>(this)->getRVA();
441   case LazyArchiveKind:
442   case LazyObjectKind:
443   case LazyDLLSymbolKind:
444   case UndefinedKind:
445     llvm_unreachable("Cannot get the address for an undefined symbol.");
446   }
447   llvm_unreachable("unknown symbol kind");
448 }
449 
getChunk()450 inline Chunk *Defined::getChunk() {
451   switch (kind()) {
452   case DefinedRegularKind:
453     return cast<DefinedRegular>(this)->getChunk();
454   case DefinedAbsoluteKind:
455     return nullptr;
456   case DefinedSyntheticKind:
457     return cast<DefinedSynthetic>(this)->getChunk();
458   case DefinedImportDataKind:
459     return cast<DefinedImportData>(this)->getChunk();
460   case DefinedImportThunkKind:
461     return cast<DefinedImportThunk>(this)->getChunk();
462   case DefinedLocalImportKind:
463     return cast<DefinedLocalImport>(this)->getChunk();
464   case DefinedCommonKind:
465     return cast<DefinedCommon>(this)->getChunk();
466   case LazyArchiveKind:
467   case LazyObjectKind:
468   case LazyDLLSymbolKind:
469   case UndefinedKind:
470     llvm_unreachable("Cannot get the chunk of an undefined symbol.");
471   }
472   llvm_unreachable("unknown symbol kind");
473 }
474 
475 // A buffer class that is large enough to hold any Symbol-derived
476 // object. We allocate memory using this class and instantiate a symbol
477 // using the placement new.
478 union SymbolUnion {
479   alignas(DefinedRegular) char a[sizeof(DefinedRegular)];
480   alignas(DefinedCommon) char b[sizeof(DefinedCommon)];
481   alignas(DefinedAbsolute) char c[sizeof(DefinedAbsolute)];
482   alignas(DefinedSynthetic) char d[sizeof(DefinedSynthetic)];
483   alignas(LazyArchive) char e[sizeof(LazyArchive)];
484   alignas(Undefined) char f[sizeof(Undefined)];
485   alignas(DefinedImportData) char g[sizeof(DefinedImportData)];
486   alignas(DefinedImportThunk) char h[sizeof(DefinedImportThunk)];
487   alignas(DefinedLocalImport) char i[sizeof(DefinedLocalImport)];
488   alignas(LazyObject) char j[sizeof(LazyObject)];
489   alignas(LazyDLLSymbol) char k[sizeof(LazyDLLSymbol)];
490 };
491 
492 template <typename T, typename... ArgT>
replaceSymbol(Symbol * s,ArgT &&...arg)493 void replaceSymbol(Symbol *s, ArgT &&... arg) {
494   static_assert(std::is_trivially_destructible<T>(),
495                 "Symbol types must be trivially destructible");
496   static_assert(sizeof(T) <= sizeof(SymbolUnion), "Symbol too small");
497   static_assert(alignof(T) <= alignof(SymbolUnion),
498                 "SymbolUnion not aligned enough");
499   assert(static_cast<Symbol *>(static_cast<T *>(nullptr)) == nullptr &&
500          "Not a Symbol");
501   bool canInline = s->canInline;
502   new (s) T(std::forward<ArgT>(arg)...);
503   s->canInline = canInline;
504 }
505 } // namespace coff
506 
507 std::string toString(const coff::COFFLinkerContext &ctx, coff::Symbol &b);
508 std::string toCOFFString(const coff::COFFLinkerContext &ctx,
509                          const llvm::object::Archive::Symbol &b);
510 
511 } // namespace lld
512 
513 #endif
514