1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MCOperandInfo and MCInstrDesc classes, which
10 // are used to describe target instructions and their operands.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_MC_MCINSTRDESC_H
15 #define LLVM_MC_MCINSTRDESC_H
16 
17 #include "llvm/MC/MCRegisterInfo.h"
18 #include "llvm/Support/DataTypes.h"
19 #include <string>
20 
21 namespace llvm {
22 
23 class MCInst;
24 
25 //===----------------------------------------------------------------------===//
26 // Machine Operand Flags and Description
27 //===----------------------------------------------------------------------===//
28 
29 namespace MCOI {
30 // Operand constraints
31 enum OperandConstraint {
32   TIED_TO = 0,  // Must be allocated the same register as.
33   EARLY_CLOBBER // Operand is an early clobber register operand
34 };
35 
36 /// These are flags set on operands, but should be considered
37 /// private, all access should go through the MCOperandInfo accessors.
38 /// See the accessors for a description of what these are.
39 enum OperandFlags {
40   LookupPtrRegClass = 0,
41   Predicate,
42   OptionalDef,
43   BranchTarget,
44   TrapsIfSealedCapability,
45 };
46 
47 /// Operands are tagged with one of the values of this enum.
48 enum OperandType {
49   OPERAND_UNKNOWN = 0,
50   OPERAND_IMMEDIATE = 1,
51   OPERAND_REGISTER = 2,
52   OPERAND_MEMORY = 3,
53   OPERAND_PCREL = 4,
54 
55   OPERAND_FIRST_GENERIC = 6,
56   OPERAND_GENERIC_0 = 6,
57   OPERAND_GENERIC_1 = 7,
58   OPERAND_GENERIC_2 = 8,
59   OPERAND_GENERIC_3 = 9,
60   OPERAND_GENERIC_4 = 10,
61   OPERAND_GENERIC_5 = 11,
62   OPERAND_LAST_GENERIC = 11,
63 
64   OPERAND_FIRST_GENERIC_IMM = 12,
65   OPERAND_GENERIC_IMM_0 = 12,
66   OPERAND_LAST_GENERIC_IMM = 12,
67 
68   OPERAND_FIRST_TARGET = 13,
69 };
70 
71 }
72 
73 /// This holds information about one operand of a machine instruction,
74 /// indicating the register class for register operands, etc.
75 class MCOperandInfo {
76 public:
77   /// This specifies the register class enumeration of the operand
78   /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
79   /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
80   /// get a dynamic register class.
81   int16_t RegClass;
82 
83   /// These are flags from the MCOI::OperandFlags enum.
84   uint8_t Flags;
85 
86   /// Information about the type of the operand.
87   uint8_t OperandType;
88   /// The lower 16 bits are used to specify which constraints are set.
89   /// The higher 16 bits are used to specify the value of constraints (4 bits
90   /// each).
91   uint32_t Constraints;
92 
93   /// Set if this operand is a pointer value and it requires a callback
94   /// to look up its register class.
isLookupPtrRegClass()95   bool isLookupPtrRegClass() const {
96     return Flags & (1 << MCOI::LookupPtrRegClass);
97   }
98 
99   /// Set if this is one of the operands that made up of the predicate
100   /// operand that controls an isPredicable() instruction.
isPredicate()101   bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
102 
103   /// Set if this operand is a optional def.
isOptionalDef()104   bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
105 
106   /// Set if this operand is a branch target.
isBranchTarget()107   bool isBranchTarget() const { return Flags & (1 << MCOI::BranchTarget); }
108 
109   /// Whether the instruction traps if this operand is a sealed capability.
mustBeUnsealedCapability()110   bool mustBeUnsealedCapability() const {
111     return Flags & (1 << MCOI::TrapsIfSealedCapability);
112   }
113 
isGenericType()114   bool isGenericType() const {
115     return OperandType >= MCOI::OPERAND_FIRST_GENERIC &&
116            OperandType <= MCOI::OPERAND_LAST_GENERIC;
117   }
118 
getGenericTypeIndex()119   unsigned getGenericTypeIndex() const {
120     assert(isGenericType() && "non-generic types don't have an index");
121     return OperandType - MCOI::OPERAND_FIRST_GENERIC;
122   }
123 
isGenericImm()124   bool isGenericImm() const {
125     return OperandType >= MCOI::OPERAND_FIRST_GENERIC_IMM &&
126            OperandType <= MCOI::OPERAND_LAST_GENERIC_IMM;
127   }
128 
getGenericImmIndex()129   unsigned getGenericImmIndex() const {
130     assert(isGenericImm() && "non-generic immediates don't have an index");
131     return OperandType - MCOI::OPERAND_FIRST_GENERIC_IMM;
132   }
133 };
134 
135 //===----------------------------------------------------------------------===//
136 // Machine Instruction Flags and Description
137 //===----------------------------------------------------------------------===//
138 
139 namespace MCID {
140 /// These should be considered private to the implementation of the
141 /// MCInstrDesc class.  Clients should use the predicate methods on MCInstrDesc,
142 /// not use these directly.  These all correspond to bitfields in the
143 /// MCInstrDesc::Flags field.
144 enum Flag {
145   PreISelOpcode = 0,
146   Variadic,
147   HasOptionalDef,
148   Pseudo,
149   Return,
150   EHScopeReturn,
151   Call,
152   Barrier,
153   Terminator,
154   Branch,
155   IndirectBranch,
156   Compare,
157   MoveImm,
158   MoveReg,
159   Bitcast,
160   Select,
161   DelaySlot,
162   FoldableAsLoad,
163   MayLoad,
164   MayStore,
165   MayRaiseFPException,
166   MayTrap,
167   MayTrapOnSealedInput,
168   DefsCanBeSealed,
169   Predicable,
170   NotDuplicable,
171   UnmodeledSideEffects,
172   Commutable,
173   ConvertibleTo3Addr,
174   UsesCustomInserter,
175   HasPostISelHook,
176   Rematerializable,
177   CheapAsAMove,
178   ExtraSrcRegAllocReq,
179   ExtraDefRegAllocReq,
180   RegSequence,
181   ExtractSubreg,
182   InsertSubreg,
183   Convergent,
184   Add,
185   Trap,
186   VariadicOpsAreDefs,
187   Authenticated,
188 };
189 }
190 
191 /// Describe properties that are true of each instruction in the target
192 /// description file.  This captures information about side effects, register
193 /// use and many other things.  There is one instance of this struct for each
194 /// target instruction class, and the MachineInstr class points to this struct
195 /// directly to describe itself.
196 class MCInstrDesc {
197 public:
198   unsigned short Opcode;         // The opcode number
199   unsigned short NumOperands;    // Num of args (may be more if variable_ops)
200   unsigned char NumDefs;         // Num of args that are definitions
201   unsigned char Size;            // Number of bytes in encoding.
202   unsigned short SchedClass;     // enum identifying instr sched class
203   uint64_t Flags;                // Flags identifying machine instr class
204   uint64_t TSFlags;              // Target Specific Flag values
205   const MCPhysReg *ImplicitUses; // Registers implicitly read by this instr
206   const MCPhysReg *ImplicitDefs; // Registers implicitly defined by this instr
207   const MCOperandInfo *OpInfo;   // 'NumOperands' entries about operands
208 
209   /// Returns the value of the specific constraint if
210   /// it is set. Returns -1 if it is not set.
getOperandConstraint(unsigned OpNum,MCOI::OperandConstraint Constraint)211   int getOperandConstraint(unsigned OpNum,
212                            MCOI::OperandConstraint Constraint) const {
213     if (OpNum < NumOperands &&
214         (OpInfo[OpNum].Constraints & (1 << Constraint))) {
215       unsigned Pos = 16 + Constraint * 4;
216       return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
217     }
218     return -1;
219   }
220 
221   /// Return the opcode number for this descriptor.
getOpcode()222   unsigned getOpcode() const { return Opcode; }
223 
224   /// Return the number of declared MachineOperands for this
225   /// MachineInstruction.  Note that variadic (isVariadic() returns true)
226   /// instructions may have additional operands at the end of the list, and note
227   /// that the machine instruction may include implicit register def/uses as
228   /// well.
getNumOperands()229   unsigned getNumOperands() const { return NumOperands; }
230 
231   using const_opInfo_iterator = const MCOperandInfo *;
232 
opInfo_begin()233   const_opInfo_iterator opInfo_begin() const { return OpInfo; }
opInfo_end()234   const_opInfo_iterator opInfo_end() const { return OpInfo + NumOperands; }
235 
operands()236   iterator_range<const_opInfo_iterator> operands() const {
237     return make_range(opInfo_begin(), opInfo_end());
238   }
239 
240   /// Return the number of MachineOperands that are register
241   /// definitions.  Register definitions always occur at the start of the
242   /// machine operand list.  This is the number of "outs" in the .td file,
243   /// and does not include implicit defs.
getNumDefs()244   unsigned getNumDefs() const { return NumDefs; }
245 
246   /// Return flags of this instruction.
getFlags()247   uint64_t getFlags() const { return Flags; }
248 
249   /// \returns true if this instruction is emitted before instruction selection
250   /// and should be legalized/regbankselected/selected.
isPreISelOpcode()251   bool isPreISelOpcode() const { return Flags & (1ULL << MCID::PreISelOpcode); }
252 
253   /// Return true if this instruction can have a variable number of
254   /// operands.  In this case, the variable operands will be after the normal
255   /// operands but before the implicit definitions and uses (if any are
256   /// present).
isVariadic()257   bool isVariadic() const { return Flags & (1ULL << MCID::Variadic); }
258 
259   /// Set if this instruction has an optional definition, e.g.
260   /// ARM instructions which can set condition code if 's' bit is set.
hasOptionalDef()261   bool hasOptionalDef() const { return Flags & (1ULL << MCID::HasOptionalDef); }
262 
263   /// Return true if this is a pseudo instruction that doesn't
264   /// correspond to a real machine instruction.
isPseudo()265   bool isPseudo() const { return Flags & (1ULL << MCID::Pseudo); }
266 
267   /// Return true if the instruction is a return.
isReturn()268   bool isReturn() const { return Flags & (1ULL << MCID::Return); }
269 
270   /// Return true if the instruction is an add instruction.
isAdd()271   bool isAdd() const { return Flags & (1ULL << MCID::Add); }
272 
273   /// Return true if this instruction is a trap.
isTrap()274   bool isTrap() const { return Flags & (1ULL << MCID::Trap); }
275 
276   /// Return true if the instruction is a register to register move.
isMoveReg()277   bool isMoveReg() const { return Flags & (1ULL << MCID::MoveReg); }
278 
279   ///  Return true if the instruction is a call.
isCall()280   bool isCall() const { return Flags & (1ULL << MCID::Call); }
281 
282   /// Returns true if the specified instruction stops control flow
283   /// from executing the instruction immediately following it.  Examples include
284   /// unconditional branches and return instructions.
isBarrier()285   bool isBarrier() const { return Flags & (1ULL << MCID::Barrier); }
286 
287   /// Returns true if this instruction part of the terminator for
288   /// a basic block.  Typically this is things like return and branch
289   /// instructions.
290   ///
291   /// Various passes use this to insert code into the bottom of a basic block,
292   /// but before control flow occurs.
isTerminator()293   bool isTerminator() const { return Flags & (1ULL << MCID::Terminator); }
294 
295   /// Returns true if this is a conditional, unconditional, or
296   /// indirect branch.  Predicates below can be used to discriminate between
297   /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
298   /// get more information.
isBranch()299   bool isBranch() const { return Flags & (1ULL << MCID::Branch); }
300 
301   /// Return true if this is an indirect branch, such as a
302   /// branch through a register.
isIndirectBranch()303   bool isIndirectBranch() const { return Flags & (1ULL << MCID::IndirectBranch); }
304 
305   /// Return true if this is a branch which may fall
306   /// through to the next instruction or may transfer control flow to some other
307   /// block.  The TargetInstrInfo::analyzeBranch method can be used to get more
308   /// information about this branch.
isConditionalBranch()309   bool isConditionalBranch() const {
310     return isBranch() && !isBarrier() && !isIndirectBranch();
311   }
312 
313   /// Return true if this is a branch which always
314   /// transfers control flow to some other block.  The
315   /// TargetInstrInfo::analyzeBranch method can be used to get more information
316   /// about this branch.
isUnconditionalBranch()317   bool isUnconditionalBranch() const {
318     return isBranch() && isBarrier() && !isIndirectBranch();
319   }
320 
321   /// Return true if this is a branch or an instruction which directly
322   /// writes to the program counter. Considered 'may' affect rather than
323   /// 'does' affect as things like predication are not taken into account.
324   bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const;
325 
326   /// Return true if this instruction has a predicate operand
327   /// that controls execution. It may be set to 'always', or may be set to other
328   /// values. There are various methods in TargetInstrInfo that can be used to
329   /// control and modify the predicate in this instruction.
isPredicable()330   bool isPredicable() const { return Flags & (1ULL << MCID::Predicable); }
331 
332   /// Return true if this instruction is a comparison.
isCompare()333   bool isCompare() const { return Flags & (1ULL << MCID::Compare); }
334 
335   /// Return true if this instruction is a move immediate
336   /// (including conditional moves) instruction.
isMoveImmediate()337   bool isMoveImmediate() const { return Flags & (1ULL << MCID::MoveImm); }
338 
339   /// Return true if this instruction is a bitcast instruction.
isBitcast()340   bool isBitcast() const { return Flags & (1ULL << MCID::Bitcast); }
341 
342   /// Return true if this is a select instruction.
isSelect()343   bool isSelect() const { return Flags & (1ULL << MCID::Select); }
344 
345   /// Return true if this instruction cannot be safely
346   /// duplicated.  For example, if the instruction has a unique labels attached
347   /// to it, duplicating it would cause multiple definition errors.
isNotDuplicable()348   bool isNotDuplicable() const { return Flags & (1ULL << MCID::NotDuplicable); }
349 
350   /// Returns true if the specified instruction has a delay slot which
351   /// must be filled by the code generator.
hasDelaySlot()352   bool hasDelaySlot() const { return Flags & (1ULL << MCID::DelaySlot); }
353 
354   /// Return true for instructions that can be folded as memory operands
355   /// in other instructions. The most common use for this is instructions that
356   /// are simple loads from memory that don't modify the loaded value in any
357   /// way, but it can also be used for instructions that can be expressed as
358   /// constant-pool loads, such as V_SETALLONES on x86, to allow them to be
359   /// folded when it is beneficial.  This should only be set on instructions
360   /// that return a value in their only virtual register definition.
canFoldAsLoad()361   bool canFoldAsLoad() const { return Flags & (1ULL << MCID::FoldableAsLoad); }
362 
363   /// Return true if this instruction behaves
364   /// the same way as the generic REG_SEQUENCE instructions.
365   /// E.g., on ARM,
366   /// dX VMOVDRR rY, rZ
367   /// is equivalent to
368   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
369   ///
370   /// Note that for the optimizers to be able to take advantage of
371   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
372   /// override accordingly.
isRegSequenceLike()373   bool isRegSequenceLike() const { return Flags & (1ULL << MCID::RegSequence); }
374 
375   /// Return true if this instruction behaves
376   /// the same way as the generic EXTRACT_SUBREG instructions.
377   /// E.g., on ARM,
378   /// rX, rY VMOVRRD dZ
379   /// is equivalent to two EXTRACT_SUBREG:
380   /// rX = EXTRACT_SUBREG dZ, ssub_0
381   /// rY = EXTRACT_SUBREG dZ, ssub_1
382   ///
383   /// Note that for the optimizers to be able to take advantage of
384   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
385   /// override accordingly.
isExtractSubregLike()386   bool isExtractSubregLike() const {
387     return Flags & (1ULL << MCID::ExtractSubreg);
388   }
389 
390   /// Return true if this instruction behaves
391   /// the same way as the generic INSERT_SUBREG instructions.
392   /// E.g., on ARM,
393   /// dX = VSETLNi32 dY, rZ, Imm
394   /// is equivalent to a INSERT_SUBREG:
395   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
396   ///
397   /// Note that for the optimizers to be able to take advantage of
398   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
399   /// override accordingly.
isInsertSubregLike()400   bool isInsertSubregLike() const { return Flags & (1ULL << MCID::InsertSubreg); }
401 
402 
403   /// Return true if this instruction is convergent.
404   ///
405   /// Convergent instructions may not be made control-dependent on any
406   /// additional values.
isConvergent()407   bool isConvergent() const { return Flags & (1ULL << MCID::Convergent); }
408 
409   /// Return true if variadic operands of this instruction are definitions.
variadicOpsAreDefs()410   bool variadicOpsAreDefs() const {
411     return Flags & (1ULL << MCID::VariadicOpsAreDefs);
412   }
413 
414   /// Return true if this instruction authenticates a pointer (e.g. LDRAx/BRAx
415   /// from ARMv8.3, which perform loads/branches with authentication).
416   ///
417   /// An authenticated instruction may fail in an ABI-defined manner when
418   /// operating on an invalid signed pointer.
isAuthenticated()419   bool isAuthenticated() const {
420     return Flags & (1ULL << MCID::Authenticated);
421   }
422 
423   //===--------------------------------------------------------------------===//
424   // Side Effect Analysis
425   //===--------------------------------------------------------------------===//
426 
427   /// Return true if this instruction could possibly read memory.
428   /// Instructions with this flag set are not necessarily simple load
429   /// instructions, they may load a value and modify it, for example.
mayLoad()430   bool mayLoad() const { return Flags & (1ULL << MCID::MayLoad); }
431 
432   /// Return true if this instruction could possibly modify memory.
433   /// Instructions with this flag set are not necessarily simple store
434   /// instructions, they may store a modified value based on their operands, or
435   /// may not actually modify anything, for example.
mayStore()436   bool mayStore() const { return Flags & (1ULL << MCID::MayStore); }
437 
438   /// Return true if this instruction may raise a floating-point exception.
mayRaiseFPException()439   bool mayRaiseFPException() const {
440     return Flags & (1ULL << MCID::MayRaiseFPException);
441   }
442 
443   /// Return true if this instruction has side
444   /// effects that are not modeled by other flags.  This does not return true
445   /// for instructions whose effects are captured by:
446   ///
447   ///  1. Their operand list and implicit definition/use list.  Register use/def
448   ///     info is explicit for instructions.
449   ///  2. Memory accesses.  Use mayLoad/mayStore.
450   ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
451   ///
452   /// Examples of side effects would be modifying 'invisible' machine state like
453   /// a control register, flushing a cache, modifying a register invisible to
454   /// LLVM, etc.
hasUnmodeledSideEffects()455   bool hasUnmodeledSideEffects() const {
456     return Flags & (1ULL << MCID::UnmodeledSideEffects);
457   }
458 
459   //===--------------------------------------------------------------------===//
460   // Flags that indicate whether an instruction can be modified by a method.
461   //===--------------------------------------------------------------------===//
462 
463   /// Return true if this may be a 2- or 3-address instruction (of the
464   /// form "X = op Y, Z, ..."), which produces the same result if Y and Z are
465   /// exchanged.  If this flag is set, then the
466   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
467   /// instruction.
468   ///
469   /// Note that this flag may be set on instructions that are only commutable
470   /// sometimes.  In these cases, the call to commuteInstruction will fail.
471   /// Also note that some instructions require non-trivial modification to
472   /// commute them.
isCommutable()473   bool isCommutable() const { return Flags & (1ULL << MCID::Commutable); }
474 
475   /// Return true if this is a 2-address instruction which can be changed
476   /// into a 3-address instruction if needed.  Doing this transformation can be
477   /// profitable in the register allocator, because it means that the
478   /// instruction can use a 2-address form if possible, but degrade into a less
479   /// efficient form if the source and dest register cannot be assigned to the
480   /// same register.  For example, this allows the x86 backend to turn a "shl
481   /// reg, 3" instruction into an LEA instruction, which is the same speed as
482   /// the shift but has bigger code size.
483   ///
484   /// If this returns true, then the target must implement the
485   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
486   /// is allowed to fail if the transformation isn't valid for this specific
487   /// instruction (e.g. shl reg, 4 on x86).
488   ///
isConvertibleTo3Addr()489   bool isConvertibleTo3Addr() const {
490     return Flags & (1ULL << MCID::ConvertibleTo3Addr);
491   }
492 
493   /// Return true if this instruction requires custom insertion support
494   /// when the DAG scheduler is inserting it into a machine basic block.  If
495   /// this is true for the instruction, it basically means that it is a pseudo
496   /// instruction used at SelectionDAG time that is expanded out into magic code
497   /// by the target when MachineInstrs are formed.
498   ///
499   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
500   /// is used to insert this into the MachineBasicBlock.
usesCustomInsertionHook()501   bool usesCustomInsertionHook() const {
502     return Flags & (1ULL << MCID::UsesCustomInserter);
503   }
504 
505   /// Return true if this instruction requires *adjustment* after
506   /// instruction selection by calling a target hook. For example, this can be
507   /// used to fill in ARM 's' optional operand depending on whether the
508   /// conditional flag register is used.
hasPostISelHook()509   bool hasPostISelHook() const { return Flags & (1ULL << MCID::HasPostISelHook); }
510 
511   /// Returns true if this instruction is a candidate for remat. This
512   /// flag is only used in TargetInstrInfo method isTriviallyRematerializable.
513   ///
514   /// If this flag is set, the isReallyTriviallyReMaterializable()
515   /// or isReallyTriviallyReMaterializableGeneric methods are called to verify
516   /// the instruction is really rematable.
isRematerializable()517   bool isRematerializable() const {
518     return Flags & (1ULL << MCID::Rematerializable);
519   }
520 
521   /// Returns true if this instruction has the same cost (or less) than a
522   /// move instruction. This is useful during certain types of optimizations
523   /// (e.g., remat during two-address conversion or machine licm) where we would
524   /// like to remat or hoist the instruction, but not if it costs more than
525   /// moving the instruction into the appropriate register. Note, we are not
526   /// marking copies from and to the same register class with this flag.
527   ///
528   /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove
529   /// for different subtargets.
isAsCheapAsAMove()530   bool isAsCheapAsAMove() const { return Flags & (1ULL << MCID::CheapAsAMove); }
531 
532   /// Returns true if this instruction source operands have special
533   /// register allocation requirements that are not captured by the operand
534   /// register classes. e.g. ARM::STRD's two source registers must be an even /
535   /// odd pair, ARM::STM registers have to be in ascending order.  Post-register
536   /// allocation passes should not attempt to change allocations for sources of
537   /// instructions with this flag.
hasExtraSrcRegAllocReq()538   bool hasExtraSrcRegAllocReq() const {
539     return Flags & (1ULL << MCID::ExtraSrcRegAllocReq);
540   }
541 
542   /// Returns true if this instruction def operands have special register
543   /// allocation requirements that are not captured by the operand register
544   /// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair,
545   /// ARM::LDM registers have to be in ascending order.  Post-register
546   /// allocation passes should not attempt to change allocations for definitions
547   /// of instructions with this flag.
hasExtraDefRegAllocReq()548   bool hasExtraDefRegAllocReq() const {
549     return Flags & (1ULL << MCID::ExtraDefRegAllocReq);
550   }
551 
552   /// Return a list of registers that are potentially read by any
553   /// instance of this machine instruction.  For example, on X86, the "adc"
554   /// instruction adds two register operands and adds the carry bit in from the
555   /// flags register.  In this case, the instruction is marked as implicitly
556   /// reading the flags.  Likewise, the variable shift instruction on X86 is
557   /// marked as implicitly reading the 'CL' register, which it always does.
558   ///
559   /// This method returns null if the instruction has no implicit uses.
getImplicitUses()560   const MCPhysReg *getImplicitUses() const { return ImplicitUses; }
561 
562   /// Return the number of implicit uses this instruction has.
getNumImplicitUses()563   unsigned getNumImplicitUses() const {
564     if (!ImplicitUses)
565       return 0;
566     unsigned i = 0;
567     for (; ImplicitUses[i]; ++i) /*empty*/
568       ;
569     return i;
570   }
571 
572   /// Return a list of registers that are potentially written by any
573   /// instance of this machine instruction.  For example, on X86, many
574   /// instructions implicitly set the flags register.  In this case, they are
575   /// marked as setting the FLAGS.  Likewise, many instructions always deposit
576   /// their result in a physical register.  For example, the X86 divide
577   /// instruction always deposits the quotient and remainder in the EAX/EDX
578   /// registers.  For that instruction, this will return a list containing the
579   /// EAX/EDX/EFLAGS registers.
580   ///
581   /// This method returns null if the instruction has no implicit defs.
getImplicitDefs()582   const MCPhysReg *getImplicitDefs() const { return ImplicitDefs; }
583 
584   /// Return the number of implicit defs this instruct has.
getNumImplicitDefs()585   unsigned getNumImplicitDefs() const {
586     if (!ImplicitDefs)
587       return 0;
588     unsigned i = 0;
589     for (; ImplicitDefs[i]; ++i) /*empty*/
590       ;
591     return i;
592   }
593 
594   /// Return true if this instruction implicitly
595   /// uses the specified physical register.
hasImplicitUseOfPhysReg(unsigned Reg)596   bool hasImplicitUseOfPhysReg(unsigned Reg) const {
597     if (const MCPhysReg *ImpUses = ImplicitUses)
598       for (; *ImpUses; ++ImpUses)
599         if (*ImpUses == Reg)
600           return true;
601     return false;
602   }
603 
604   /// Return true if this instruction implicitly
605   /// defines the specified physical register.
606   bool hasImplicitDefOfPhysReg(unsigned Reg,
607                                const MCRegisterInfo *MRI = nullptr) const;
608 
609   /// Return the scheduling class for this instruction.  The
610   /// scheduling class is an index into the InstrItineraryData table.  This
611   /// returns zero if there is no known scheduling information for the
612   /// instruction.
getSchedClass()613   unsigned getSchedClass() const { return SchedClass; }
614 
615   /// Return the number of bytes in the encoding of this instruction,
616   /// or zero if the encoding size cannot be known from the opcode.
getSize()617   unsigned getSize() const { return Size; }
618 
619   /// Find the index of the first operand in the
620   /// operand list that is used to represent the predicate. It returns -1 if
621   /// none is found.
findFirstPredOperandIdx()622   int findFirstPredOperandIdx() const {
623     if (isPredicable()) {
624       for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
625         if (OpInfo[i].isPredicate())
626           return i;
627     }
628     return -1;
629   }
630 
631   /// Return true if this instruction defines the specified physical
632   /// register, either explicitly or implicitly.
633   bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg,
634                        const MCRegisterInfo &RI) const;
635 };
636 
637 } // end namespace llvm
638 
639 #endif
640