1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass performs peephole optimizations to clean up ugly code
10 // sequences at the MachineInstruction layer.  It runs at the end of
11 // the SSA phases, following VSX swap removal.  A pass of dead code
12 // elimination follows this one for quick clean-up of any dead
13 // instructions introduced here.  Although we could do this as callbacks
14 // from the generic peephole pass, this would have a couple of bad
15 // effects:  it might remove optimization opportunities for VSX swap
16 // removal, and it would miss cleanups made possible following VSX
17 // swap removal.
18 //
19 // NOTE: We run the verifier after this pass in Asserts/Debug builds so it
20 //       is important to keep the code valid after transformations.
21 //       Common causes of errors stem from violating the contract specified
22 //       by kill flags. Whenever a transformation changes the live range of
23 //       a register, that register should be added to the work list using
24 //       addRegToUpdate(RegsToUpdate, <Reg>). Furthermore, if a transformation
25 //       is changing the definition of a register (i.e. removing the single
26 //       definition of the original vreg), it needs to provide a dummy
27 //       definition of that register using addDummyDef(<MBB>, <Reg>).
28 //===---------------------------------------------------------------------===//
29 
30 #include "MCTargetDesc/PPCMCTargetDesc.h"
31 #include "MCTargetDesc/PPCPredicates.h"
32 #include "PPC.h"
33 #include "PPCInstrBuilder.h"
34 #include "PPCInstrInfo.h"
35 #include "PPCMachineFunctionInfo.h"
36 #include "PPCTargetMachine.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/CodeGen/LiveVariables.h"
39 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
40 #include "llvm/CodeGen/MachineDominators.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Support/Debug.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "ppc-mi-peepholes"
52 
53 STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
54 STATISTIC(MultiTOCSaves,
55           "Number of functions with multiple TOC saves that must be kept");
56 STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
57 STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
58 STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
59 STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
60 STATISTIC(NumConvertedToImmediateForm,
61           "Number of instructions converted to their immediate form");
62 STATISTIC(NumFunctionsEnteredInMIPeephole,
63           "Number of functions entered in PPC MI Peepholes");
64 STATISTIC(NumFixedPointIterations,
65           "Number of fixed-point iterations converting reg-reg instructions "
66           "to reg-imm ones");
67 STATISTIC(NumRotatesCollapsed,
68           "Number of pairs of rotate left, clear left/right collapsed");
69 STATISTIC(NumEXTSWAndSLDICombined,
70           "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
71 STATISTIC(NumLoadImmZeroFoldedAndRemoved,
72           "Number of LI(8) reg, 0 that are folded to r0 and removed");
73 
74 static cl::opt<bool>
75 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
76                    cl::desc("Iterate to a fixed point when attempting to "
77                             "convert reg-reg instructions to reg-imm"));
78 
79 static cl::opt<bool>
80 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
81               cl::desc("Convert eligible reg+reg instructions to reg+imm"));
82 
83 static cl::opt<bool>
84     EnableSExtElimination("ppc-eliminate-signext",
85                           cl::desc("enable elimination of sign-extensions"),
86                           cl::init(true), cl::Hidden);
87 
88 static cl::opt<bool>
89     EnableZExtElimination("ppc-eliminate-zeroext",
90                           cl::desc("enable elimination of zero-extensions"),
91                           cl::init(true), cl::Hidden);
92 
93 static cl::opt<bool>
94     EnableTrapOptimization("ppc-opt-conditional-trap",
95                            cl::desc("enable optimization of conditional traps"),
96                            cl::init(false), cl::Hidden);
97 
98 namespace {
99 
100 struct PPCMIPeephole : public MachineFunctionPass {
101 
102   static char ID;
103   const PPCInstrInfo *TII;
104   MachineFunction *MF;
105   MachineRegisterInfo *MRI;
106   LiveVariables *LV;
107 
PPCMIPeephole__anon934d18280111::PPCMIPeephole108   PPCMIPeephole() : MachineFunctionPass(ID) {
109     initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
110   }
111 
112 private:
113   MachineDominatorTree *MDT;
114   MachinePostDominatorTree *MPDT;
115   MachineBlockFrequencyInfo *MBFI;
116   BlockFrequency EntryFreq;
117   SmallSet<Register, 16> RegsToUpdate;
118 
119   // Initialize class variables.
120   void initialize(MachineFunction &MFParm);
121 
122   // Perform peepholes.
123   bool simplifyCode();
124 
125   // Perform peepholes.
126   bool eliminateRedundantCompare();
127   bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
128   bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
129   bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI,
130                                        MachineInstr *&ToErase);
131   void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
132                       MachineInstr *MI);
133 
134   // A number of transformations will eliminate the definition of a register
135   // as all of its uses will be removed. However, this leaves a register
136   // without a definition for LiveVariables. Such transformations should
137   // use this function to provide a dummy definition of the register that
138   // will simply be removed by DCE.
addDummyDef__anon934d18280111::PPCMIPeephole139   void addDummyDef(MachineBasicBlock &MBB, MachineInstr *At, Register Reg) {
140     BuildMI(MBB, At, At->getDebugLoc(), TII->get(PPC::IMPLICIT_DEF), Reg);
141   }
142   void addRegToUpdateWithLine(Register Reg, int Line);
143   void convertUnprimedAccPHIs(const PPCInstrInfo *TII, MachineRegisterInfo *MRI,
144                               SmallVectorImpl<MachineInstr *> &PHIs,
145                               Register Dst);
146 
147 public:
148 
getAnalysisUsage__anon934d18280111::PPCMIPeephole149   void getAnalysisUsage(AnalysisUsage &AU) const override {
150     AU.addRequired<LiveVariables>();
151     AU.addRequired<MachineDominatorTree>();
152     AU.addRequired<MachinePostDominatorTree>();
153     AU.addRequired<MachineBlockFrequencyInfo>();
154     AU.addPreserved<LiveVariables>();
155     AU.addPreserved<MachineDominatorTree>();
156     AU.addPreserved<MachinePostDominatorTree>();
157     AU.addPreserved<MachineBlockFrequencyInfo>();
158     MachineFunctionPass::getAnalysisUsage(AU);
159   }
160 
161   // Main entry point for this pass.
runOnMachineFunction__anon934d18280111::PPCMIPeephole162   bool runOnMachineFunction(MachineFunction &MF) override {
163     initialize(MF);
164     // At this point, TOC pointer should not be used in a function that uses
165     // PC-Relative addressing.
166     assert((MF.getRegInfo().use_empty(PPC::X2) ||
167             !MF.getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) &&
168            "TOC pointer used in a function using PC-Relative addressing!");
169     if (skipFunction(MF.getFunction()))
170       return false;
171     bool Changed = simplifyCode();
172 #ifndef NDEBUG
173     if (Changed)
174       MF.verify(this, "Error in PowerPC MI Peephole optimization, compile with "
175                       "-mllvm -disable-ppc-peephole");
176 #endif
177     return Changed;
178   }
179 };
180 
181 #define addRegToUpdate(R) addRegToUpdateWithLine(R, __LINE__)
addRegToUpdateWithLine(Register Reg,int Line)182 void PPCMIPeephole::addRegToUpdateWithLine(Register Reg, int Line) {
183   if (!Register::isVirtualRegister(Reg))
184     return;
185   if (RegsToUpdate.insert(Reg).second)
186     LLVM_DEBUG(dbgs() << "Adding register: " << Register::virtReg2Index(Reg)
187                       << " on line " << Line
188                       << " for re-computation of kill flags\n");
189 }
190 
191 // Initialize class variables.
initialize(MachineFunction & MFParm)192 void PPCMIPeephole::initialize(MachineFunction &MFParm) {
193   MF = &MFParm;
194   MRI = &MF->getRegInfo();
195   MDT = &getAnalysis<MachineDominatorTree>();
196   MPDT = &getAnalysis<MachinePostDominatorTree>();
197   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
198   LV = &getAnalysis<LiveVariables>();
199   EntryFreq = MBFI->getEntryFreq();
200   TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
201   RegsToUpdate.clear();
202   LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
203   LLVM_DEBUG(MF->dump());
204 }
205 
getVRegDefOrNull(MachineOperand * Op,MachineRegisterInfo * MRI)206 static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
207                                       MachineRegisterInfo *MRI) {
208   assert(Op && "Invalid Operand!");
209   if (!Op->isReg())
210     return nullptr;
211 
212   Register Reg = Op->getReg();
213   if (!Reg.isVirtual())
214     return nullptr;
215 
216   return MRI->getVRegDef(Reg);
217 }
218 
219 // This function returns number of known zero bits in output of MI
220 // starting from the most significant bit.
getKnownLeadingZeroCount(const unsigned Reg,const PPCInstrInfo * TII,const MachineRegisterInfo * MRI)221 static unsigned getKnownLeadingZeroCount(const unsigned Reg,
222                                          const PPCInstrInfo *TII,
223                                          const MachineRegisterInfo *MRI) {
224   MachineInstr *MI = MRI->getVRegDef(Reg);
225   unsigned Opcode = MI->getOpcode();
226   if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
227       Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec)
228     return MI->getOperand(3).getImm();
229 
230   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
231       MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
232     return MI->getOperand(3).getImm();
233 
234   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
235        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
236        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
237       MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
238     return 32 + MI->getOperand(3).getImm();
239 
240   if (Opcode == PPC::ANDI_rec) {
241     uint16_t Imm = MI->getOperand(2).getImm();
242     return 48 + llvm::countl_zero(Imm);
243   }
244 
245   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
246       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
247       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
248     // The result ranges from 0 to 32.
249     return 58;
250 
251   if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
252       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec)
253     // The result ranges from 0 to 64.
254     return 57;
255 
256   if (Opcode == PPC::LHZ   || Opcode == PPC::LHZX  ||
257       Opcode == PPC::LHZ8  || Opcode == PPC::LHZX8 ||
258       Opcode == PPC::LHZU  || Opcode == PPC::LHZUX ||
259       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
260     return 48;
261 
262   if (Opcode == PPC::LBZ   || Opcode == PPC::LBZX  ||
263       Opcode == PPC::LBZ8  || Opcode == PPC::LBZX8 ||
264       Opcode == PPC::LBZU  || Opcode == PPC::LBZUX ||
265       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
266     return 56;
267 
268   if (Opcode == PPC::AND || Opcode == PPC::AND8 || Opcode == PPC::AND_rec ||
269       Opcode == PPC::AND8_rec)
270     return std::max(
271         getKnownLeadingZeroCount(MI->getOperand(1).getReg(), TII, MRI),
272         getKnownLeadingZeroCount(MI->getOperand(2).getReg(), TII, MRI));
273 
274   if (Opcode == PPC::OR || Opcode == PPC::OR8 || Opcode == PPC::XOR ||
275       Opcode == PPC::XOR8 || Opcode == PPC::OR_rec ||
276       Opcode == PPC::OR8_rec || Opcode == PPC::XOR_rec ||
277       Opcode == PPC::XOR8_rec)
278     return std::min(
279         getKnownLeadingZeroCount(MI->getOperand(1).getReg(), TII, MRI),
280         getKnownLeadingZeroCount(MI->getOperand(2).getReg(), TII, MRI));
281 
282   if (TII->isZeroExtended(Reg, MRI))
283     return 32;
284 
285   return 0;
286 }
287 
288 // This function maintains a map for the pairs <TOC Save Instr, Keep>
289 // Each time a new TOC save is encountered, it checks if any of the existing
290 // ones are dominated by the new one. If so, it marks the existing one as
291 // redundant by setting it's entry in the map as false. It then adds the new
292 // instruction to the map with either true or false depending on if any
293 // existing instructions dominated the new one.
UpdateTOCSaves(std::map<MachineInstr *,bool> & TOCSaves,MachineInstr * MI)294 void PPCMIPeephole::UpdateTOCSaves(
295   std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
296   assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
297   // FIXME: Saving TOC in prologue hasn't been implemented well in AIX ABI part,
298   // here only support it under ELFv2.
299   if (MF->getSubtarget<PPCSubtarget>().isELFv2ABI()) {
300     PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
301 
302     MachineBasicBlock *Entry = &MF->front();
303     BlockFrequency CurrBlockFreq = MBFI->getBlockFreq(MI->getParent());
304 
305     // If the block in which the TOC save resides is in a block that
306     // post-dominates Entry, or a block that is hotter than entry (keep in mind
307     // that early MachineLICM has already run so the TOC save won't be hoisted)
308     // we can just do the save in the prologue.
309     if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
310       FI->setMustSaveTOC(true);
311 
312     // If we are saving the TOC in the prologue, all the TOC saves can be
313     // removed from the code.
314     if (FI->mustSaveTOC()) {
315       for (auto &TOCSave : TOCSaves)
316         TOCSave.second = false;
317       // Add new instruction to map.
318       TOCSaves[MI] = false;
319       return;
320     }
321   }
322 
323   bool Keep = true;
324   for (auto &I : TOCSaves) {
325     MachineInstr *CurrInst = I.first;
326     // If new instruction dominates an existing one, mark existing one as
327     // redundant.
328     if (I.second && MDT->dominates(MI, CurrInst))
329       I.second = false;
330     // Check if the new instruction is redundant.
331     if (MDT->dominates(CurrInst, MI)) {
332       Keep = false;
333       break;
334     }
335   }
336   // Add new instruction to map.
337   TOCSaves[MI] = Keep;
338 }
339 
340 // This function returns a list of all PHI nodes in the tree starting from
341 // the RootPHI node. We perform a BFS traversal to get an ordered list of nodes.
342 // The list initially only contains the root PHI. When we visit a PHI node, we
343 // add it to the list. We continue to look for other PHI node operands while
344 // there are nodes to visit in the list. The function returns false if the
345 // optimization cannot be applied on this tree.
collectUnprimedAccPHIs(MachineRegisterInfo * MRI,MachineInstr * RootPHI,SmallVectorImpl<MachineInstr * > & PHIs)346 static bool collectUnprimedAccPHIs(MachineRegisterInfo *MRI,
347                                    MachineInstr *RootPHI,
348                                    SmallVectorImpl<MachineInstr *> &PHIs) {
349   PHIs.push_back(RootPHI);
350   unsigned VisitedIndex = 0;
351   while (VisitedIndex < PHIs.size()) {
352     MachineInstr *VisitedPHI = PHIs[VisitedIndex];
353     for (unsigned PHIOp = 1, NumOps = VisitedPHI->getNumOperands();
354          PHIOp != NumOps; PHIOp += 2) {
355       Register RegOp = VisitedPHI->getOperand(PHIOp).getReg();
356       if (!RegOp.isVirtual())
357         return false;
358       MachineInstr *Instr = MRI->getVRegDef(RegOp);
359       // While collecting the PHI nodes, we check if they can be converted (i.e.
360       // all the operands are either copies, implicit defs or PHI nodes).
361       unsigned Opcode = Instr->getOpcode();
362       if (Opcode == PPC::COPY) {
363         Register Reg = Instr->getOperand(1).getReg();
364         if (!Reg.isVirtual() || MRI->getRegClass(Reg) != &PPC::ACCRCRegClass)
365           return false;
366       } else if (Opcode != PPC::IMPLICIT_DEF && Opcode != PPC::PHI)
367         return false;
368       // If we detect a cycle in the PHI nodes, we exit. It would be
369       // possible to change cycles as well, but that would add a lot
370       // of complexity for a case that is unlikely to occur with MMA
371       // code.
372       if (Opcode != PPC::PHI)
373         continue;
374       if (llvm::is_contained(PHIs, Instr))
375         return false;
376       PHIs.push_back(Instr);
377     }
378     VisitedIndex++;
379   }
380   return true;
381 }
382 
383 // This function changes the unprimed accumulator PHI nodes in the PHIs list to
384 // primed accumulator PHI nodes. The list is traversed in reverse order to
385 // change all the PHI operands of a PHI node before changing the node itself.
386 // We keep a map to associate each changed PHI node to its non-changed form.
convertUnprimedAccPHIs(const PPCInstrInfo * TII,MachineRegisterInfo * MRI,SmallVectorImpl<MachineInstr * > & PHIs,Register Dst)387 void PPCMIPeephole::convertUnprimedAccPHIs(
388     const PPCInstrInfo *TII, MachineRegisterInfo *MRI,
389     SmallVectorImpl<MachineInstr *> &PHIs, Register Dst) {
390   DenseMap<MachineInstr *, MachineInstr *> ChangedPHIMap;
391   for (MachineInstr *PHI : llvm::reverse(PHIs)) {
392     SmallVector<std::pair<MachineOperand, MachineOperand>, 4> PHIOps;
393     // We check if the current PHI node can be changed by looking at its
394     // operands. If all the operands are either copies from primed
395     // accumulators, implicit definitions or other unprimed accumulator
396     // PHI nodes, we change it.
397     for (unsigned PHIOp = 1, NumOps = PHI->getNumOperands(); PHIOp != NumOps;
398          PHIOp += 2) {
399       Register RegOp = PHI->getOperand(PHIOp).getReg();
400       MachineInstr *PHIInput = MRI->getVRegDef(RegOp);
401       unsigned Opcode = PHIInput->getOpcode();
402       assert((Opcode == PPC::COPY || Opcode == PPC::IMPLICIT_DEF ||
403               Opcode == PPC::PHI) &&
404              "Unexpected instruction");
405       if (Opcode == PPC::COPY) {
406         assert(MRI->getRegClass(PHIInput->getOperand(1).getReg()) ==
407                    &PPC::ACCRCRegClass &&
408                "Unexpected register class");
409         PHIOps.push_back({PHIInput->getOperand(1), PHI->getOperand(PHIOp + 1)});
410       } else if (Opcode == PPC::IMPLICIT_DEF) {
411         Register AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
412         BuildMI(*PHIInput->getParent(), PHIInput, PHIInput->getDebugLoc(),
413                 TII->get(PPC::IMPLICIT_DEF), AccReg);
414         PHIOps.push_back({MachineOperand::CreateReg(AccReg, false),
415                           PHI->getOperand(PHIOp + 1)});
416       } else if (Opcode == PPC::PHI) {
417         // We found a PHI operand. At this point we know this operand
418         // has already been changed so we get its associated changed form
419         // from the map.
420         assert(ChangedPHIMap.count(PHIInput) == 1 &&
421                "This PHI node should have already been changed.");
422         MachineInstr *PrimedAccPHI = ChangedPHIMap.lookup(PHIInput);
423         PHIOps.push_back({MachineOperand::CreateReg(
424                               PrimedAccPHI->getOperand(0).getReg(), false),
425                           PHI->getOperand(PHIOp + 1)});
426       }
427     }
428     Register AccReg = Dst;
429     // If the PHI node we are changing is the root node, the register it defines
430     // will be the destination register of the original copy (of the PHI def).
431     // For all other PHI's in the list, we need to create another primed
432     // accumulator virtual register as the PHI will no longer define the
433     // unprimed accumulator.
434     if (PHI != PHIs[0])
435       AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
436     MachineInstrBuilder NewPHI = BuildMI(
437         *PHI->getParent(), PHI, PHI->getDebugLoc(), TII->get(PPC::PHI), AccReg);
438     for (auto RegMBB : PHIOps) {
439       NewPHI.add(RegMBB.first).add(RegMBB.second);
440       if (MRI->isSSA())
441         addRegToUpdate(RegMBB.first.getReg());
442     }
443     ChangedPHIMap[PHI] = NewPHI.getInstr();
444     LLVM_DEBUG(dbgs() << "Converting PHI: ");
445     LLVM_DEBUG(PHI->dump());
446     LLVM_DEBUG(dbgs() << "To: ");
447     LLVM_DEBUG(NewPHI.getInstr()->dump());
448   }
449 }
450 
451 // Perform peephole optimizations.
simplifyCode()452 bool PPCMIPeephole::simplifyCode() {
453   bool Simplified = false;
454   bool TrapOpt = false;
455   MachineInstr* ToErase = nullptr;
456   std::map<MachineInstr *, bool> TOCSaves;
457   const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
458   NumFunctionsEnteredInMIPeephole++;
459   if (ConvertRegReg) {
460     // Fixed-point conversion of reg/reg instructions fed by load-immediate
461     // into reg/imm instructions. FIXME: This is expensive, control it with
462     // an option.
463     bool SomethingChanged = false;
464     do {
465       NumFixedPointIterations++;
466       SomethingChanged = false;
467       for (MachineBasicBlock &MBB : *MF) {
468         for (MachineInstr &MI : MBB) {
469           if (MI.isDebugInstr())
470             continue;
471 
472           SmallSet<Register, 4> RRToRIRegsToUpdate;
473           if (!TII->convertToImmediateForm(MI, RRToRIRegsToUpdate))
474             continue;
475           for (Register R : RRToRIRegsToUpdate)
476             addRegToUpdate(R);
477           // The updated instruction may now have new register operands.
478           // Conservatively add them to recompute the flags as well.
479           for (const MachineOperand &MO : MI.operands())
480             if (MO.isReg())
481               addRegToUpdate(MO.getReg());
482           // We don't erase anything in case the def has other uses. Let DCE
483           // remove it if it can be removed.
484           LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
485           LLVM_DEBUG(MI.dump());
486           NumConvertedToImmediateForm++;
487           SomethingChanged = true;
488           Simplified = true;
489           continue;
490         }
491       }
492     } while (SomethingChanged && FixedPointRegToImm);
493   }
494 
495   // Since we are deleting this instruction, we need to run LiveVariables
496   // on any of its definitions that are marked as needing an update since
497   // we can't run LiveVariables on a deleted register. This only needs
498   // to be done for defs since uses will have their own defining
499   // instructions so we won't be running LiveVariables on a deleted reg.
500   auto recomputeLVForDyingInstr = [&]() {
501     if (RegsToUpdate.empty())
502       return;
503     for (MachineOperand &MO : ToErase->operands()) {
504       if (!MO.isReg() || !MO.isDef() || !RegsToUpdate.count(MO.getReg()))
505         continue;
506       Register RegToUpdate = MO.getReg();
507       RegsToUpdate.erase(RegToUpdate);
508       // If some transformation has introduced an additional definition of
509       // this register (breaking SSA), we can safely convert this def to
510       // a def of an invalid register as the instruction is going away.
511       if (!MRI->getUniqueVRegDef(RegToUpdate))
512         MO.setReg(PPC::NoRegister);
513       LV->recomputeForSingleDefVirtReg(RegToUpdate);
514     }
515   };
516 
517   for (MachineBasicBlock &MBB : *MF) {
518     for (MachineInstr &MI : MBB) {
519 
520       // If the previous instruction was marked for elimination,
521       // remove it now.
522       if (ToErase) {
523         LLVM_DEBUG(dbgs() << "Deleting instruction: ");
524         LLVM_DEBUG(ToErase->dump());
525         recomputeLVForDyingInstr();
526         ToErase->eraseFromParent();
527         ToErase = nullptr;
528       }
529       // If a conditional trap instruction got optimized to an
530       // unconditional trap, eliminate all the instructions after
531       // the trap.
532       if (EnableTrapOptimization && TrapOpt) {
533         ToErase = &MI;
534         continue;
535       }
536 
537       // Ignore debug instructions.
538       if (MI.isDebugInstr())
539         continue;
540 
541       // Per-opcode peepholes.
542       switch (MI.getOpcode()) {
543 
544       default:
545         break;
546       case PPC::COPY: {
547         Register Src = MI.getOperand(1).getReg();
548         Register Dst = MI.getOperand(0).getReg();
549         if (!Src.isVirtual() || !Dst.isVirtual())
550           break;
551         if (MRI->getRegClass(Src) != &PPC::UACCRCRegClass ||
552             MRI->getRegClass(Dst) != &PPC::ACCRCRegClass)
553           break;
554 
555         // We are copying an unprimed accumulator to a primed accumulator.
556         // If the input to the copy is a PHI that is fed only by (i) copies in
557         // the other direction (ii) implicitly defined unprimed accumulators or
558         // (iii) other PHI nodes satisfying (i) and (ii), we can change
559         // the PHI to a PHI on primed accumulators (as long as we also change
560         // its operands). To detect and change such copies, we first get a list
561         // of all the PHI nodes starting from the root PHI node in BFS order.
562         // We then visit all these PHI nodes to check if they can be changed to
563         // primed accumulator PHI nodes and if so, we change them.
564         MachineInstr *RootPHI = MRI->getVRegDef(Src);
565         if (RootPHI->getOpcode() != PPC::PHI)
566           break;
567 
568         SmallVector<MachineInstr *, 4> PHIs;
569         if (!collectUnprimedAccPHIs(MRI, RootPHI, PHIs))
570           break;
571 
572         convertUnprimedAccPHIs(TII, MRI, PHIs, Dst);
573 
574         ToErase = &MI;
575         break;
576       }
577       case PPC::LI:
578       case PPC::LI8: {
579         // If we are materializing a zero, look for any use operands for which
580         // zero means immediate zero. All such operands can be replaced with
581         // PPC::ZERO.
582         if (!MI.getOperand(1).isImm() || MI.getOperand(1).getImm() != 0)
583           break;
584         Register MIDestReg = MI.getOperand(0).getReg();
585         bool Folded = false;
586         for (MachineInstr& UseMI : MRI->use_instructions(MIDestReg))
587           Folded |= TII->onlyFoldImmediate(UseMI, MI, MIDestReg);
588         if (MRI->use_nodbg_empty(MIDestReg)) {
589           ++NumLoadImmZeroFoldedAndRemoved;
590           ToErase = &MI;
591         }
592         if (Folded)
593           addRegToUpdate(MIDestReg);
594         Simplified |= Folded;
595         break;
596       }
597       case PPC::STW:
598       case PPC::STD: {
599         MachineFrameInfo &MFI = MF->getFrameInfo();
600         if (MFI.hasVarSizedObjects() ||
601             (!MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
602              !MF->getSubtarget<PPCSubtarget>().isAIXABI()))
603           break;
604         // When encountering a TOC save instruction, call UpdateTOCSaves
605         // to add it to the TOCSaves map and mark any existing TOC saves
606         // it dominates as redundant.
607         if (TII->isTOCSaveMI(MI))
608           UpdateTOCSaves(TOCSaves, &MI);
609         break;
610       }
611       case PPC::XXPERMDI: {
612         // Perform simplifications of 2x64 vector swaps and splats.
613         // A swap is identified by an immediate value of 2, and a splat
614         // is identified by an immediate value of 0 or 3.
615         int Immed = MI.getOperand(3).getImm();
616 
617         if (Immed == 1)
618           break;
619 
620         // For each of these simplifications, we need the two source
621         // regs to match.  Unfortunately, MachineCSE ignores COPY and
622         // SUBREG_TO_REG, so for example we can see
623         //   XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
624         // We have to look through chains of COPY and SUBREG_TO_REG
625         // to find the real source values for comparison.
626         Register TrueReg1 =
627           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
628         Register TrueReg2 =
629           TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
630 
631         if (!(TrueReg1 == TrueReg2 && TrueReg1.isVirtual()))
632           break;
633 
634         MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
635 
636         if (!DefMI)
637           break;
638 
639         unsigned DefOpc = DefMI->getOpcode();
640 
641         // If this is a splat fed by a splatting load, the splat is
642         // redundant. Replace with a copy. This doesn't happen directly due
643         // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
644         // a load of a double to a vector of 64-bit integers.
645         auto isConversionOfLoadAndSplat = [=]() -> bool {
646           if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
647             return false;
648           Register FeedReg1 =
649             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
650           if (FeedReg1.isVirtual()) {
651             MachineInstr *LoadMI = MRI->getVRegDef(FeedReg1);
652             if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
653               return true;
654           }
655           return false;
656         };
657         if ((Immed == 0 || Immed == 3) &&
658             (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) {
659           LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
660                                "to load-and-splat/copy: ");
661           LLVM_DEBUG(MI.dump());
662           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
663                   MI.getOperand(0).getReg())
664               .add(MI.getOperand(1));
665           addRegToUpdate(MI.getOperand(1).getReg());
666           ToErase = &MI;
667           Simplified = true;
668         }
669 
670         // If this is a splat or a swap fed by another splat, we
671         // can replace it with a copy.
672         if (DefOpc == PPC::XXPERMDI) {
673           Register DefReg1 = DefMI->getOperand(1).getReg();
674           Register DefReg2 = DefMI->getOperand(2).getReg();
675           unsigned DefImmed = DefMI->getOperand(3).getImm();
676 
677           // If the two inputs are not the same register, check to see if
678           // they originate from the same virtual register after only
679           // copy-like instructions.
680           if (DefReg1 != DefReg2) {
681             Register FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI);
682             Register FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI);
683 
684             if (!(FeedReg1 == FeedReg2 && FeedReg1.isVirtual()))
685               break;
686           }
687 
688           if (DefImmed == 0 || DefImmed == 3) {
689             LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
690                                  "to splat/copy: ");
691             LLVM_DEBUG(MI.dump());
692             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
693                     MI.getOperand(0).getReg())
694                 .add(MI.getOperand(1));
695             addRegToUpdate(MI.getOperand(1).getReg());
696             ToErase = &MI;
697             Simplified = true;
698           }
699 
700           // If this is a splat fed by a swap, we can simplify modify
701           // the splat to splat the other value from the swap's input
702           // parameter.
703           else if ((Immed == 0 || Immed == 3) && DefImmed == 2) {
704             LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
705             LLVM_DEBUG(MI.dump());
706             addRegToUpdate(MI.getOperand(1).getReg());
707             addRegToUpdate(MI.getOperand(2).getReg());
708             MI.getOperand(1).setReg(DefReg1);
709             MI.getOperand(2).setReg(DefReg2);
710             MI.getOperand(3).setImm(3 - Immed);
711             addRegToUpdate(DefReg1);
712             addRegToUpdate(DefReg2);
713             Simplified = true;
714           }
715 
716           // If this is a swap fed by a swap, we can replace it
717           // with a copy from the first swap's input.
718           else if (Immed == 2 && DefImmed == 2) {
719             LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
720             LLVM_DEBUG(MI.dump());
721             addRegToUpdate(MI.getOperand(1).getReg());
722             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
723                     MI.getOperand(0).getReg())
724                 .add(DefMI->getOperand(1));
725             addRegToUpdate(DefMI->getOperand(0).getReg());
726             addRegToUpdate(DefMI->getOperand(1).getReg());
727             ToErase = &MI;
728             Simplified = true;
729           }
730         } else if ((Immed == 0 || Immed == 3 || Immed == 2) &&
731                    DefOpc == PPC::XXPERMDIs &&
732                    (DefMI->getOperand(2).getImm() == 0 ||
733                     DefMI->getOperand(2).getImm() == 3)) {
734           ToErase = &MI;
735           Simplified = true;
736           // Swap of a splat, convert to copy.
737           if (Immed == 2) {
738             LLVM_DEBUG(dbgs() << "Optimizing swap(splat) => copy(splat): ");
739             LLVM_DEBUG(MI.dump());
740             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
741                     MI.getOperand(0).getReg())
742                 .add(MI.getOperand(1));
743             addRegToUpdate(MI.getOperand(1).getReg());
744             break;
745           }
746           // Splat fed by another splat - switch the output of the first
747           // and remove the second.
748           DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
749           LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
750           LLVM_DEBUG(MI.dump());
751         } else if (Immed == 2 &&
752                    (DefOpc == PPC::VSPLTB || DefOpc == PPC::VSPLTH ||
753                     DefOpc == PPC::VSPLTW || DefOpc == PPC::XXSPLTW ||
754                     DefOpc == PPC::VSPLTISB || DefOpc == PPC::VSPLTISH ||
755                     DefOpc == PPC::VSPLTISW)) {
756           // Swap of various vector splats, convert to copy.
757           ToErase = &MI;
758           Simplified = true;
759           LLVM_DEBUG(dbgs() << "Optimizing swap(vsplt(is)?[b|h|w]|xxspltw) => "
760                                "copy(vsplt(is)?[b|h|w]|xxspltw): ");
761           LLVM_DEBUG(MI.dump());
762           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
763                   MI.getOperand(0).getReg())
764               .add(MI.getOperand(1));
765           addRegToUpdate(MI.getOperand(1).getReg());
766         } else if ((Immed == 0 || Immed == 3 || Immed == 2) &&
767                    TII->isLoadFromConstantPool(DefMI)) {
768           const Constant *C = TII->getConstantFromConstantPool(DefMI);
769           if (C && C->getType()->isVectorTy() && C->getSplatValue()) {
770             ToErase = &MI;
771             Simplified = true;
772             LLVM_DEBUG(dbgs()
773                        << "Optimizing swap(splat pattern from constant-pool) "
774                           "=> copy(splat pattern from constant-pool): ");
775             LLVM_DEBUG(MI.dump());
776             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
777                     MI.getOperand(0).getReg())
778                 .add(MI.getOperand(1));
779             addRegToUpdate(MI.getOperand(1).getReg());
780           }
781         }
782         break;
783       }
784       case PPC::VSPLTB:
785       case PPC::VSPLTH:
786       case PPC::XXSPLTW: {
787         unsigned MyOpcode = MI.getOpcode();
788         unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
789         Register TrueReg =
790           TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
791         if (!TrueReg.isVirtual())
792           break;
793         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
794         if (!DefMI)
795           break;
796         unsigned DefOpcode = DefMI->getOpcode();
797         auto isConvertOfSplat = [=]() -> bool {
798           if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
799             return false;
800           Register ConvReg = DefMI->getOperand(1).getReg();
801           if (!ConvReg.isVirtual())
802             return false;
803           MachineInstr *Splt = MRI->getVRegDef(ConvReg);
804           return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
805             Splt->getOpcode() == PPC::XXSPLTW);
806         };
807         bool AlreadySplat = (MyOpcode == DefOpcode) ||
808           (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
809           (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
810           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
811           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
812           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
813           (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
814         // If the instruction[s] that feed this splat have already splat
815         // the value, this splat is redundant.
816         if (AlreadySplat) {
817           LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
818           LLVM_DEBUG(MI.dump());
819           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
820                   MI.getOperand(0).getReg())
821               .add(MI.getOperand(OpNo));
822           addRegToUpdate(MI.getOperand(OpNo).getReg());
823           ToErase = &MI;
824           Simplified = true;
825         }
826         // Splat fed by a shift. Usually when we align value to splat into
827         // vector element zero.
828         if (DefOpcode == PPC::XXSLDWI) {
829           Register ShiftRes = DefMI->getOperand(0).getReg();
830           Register ShiftOp1 = DefMI->getOperand(1).getReg();
831           Register ShiftOp2 = DefMI->getOperand(2).getReg();
832           unsigned ShiftImm = DefMI->getOperand(3).getImm();
833           unsigned SplatImm =
834               MI.getOperand(MyOpcode == PPC::XXSPLTW ? 2 : 1).getImm();
835           if (ShiftOp1 == ShiftOp2) {
836             unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
837             if (MRI->hasOneNonDBGUse(ShiftRes)) {
838               LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
839               LLVM_DEBUG(DefMI->dump());
840               ToErase = DefMI;
841             }
842             Simplified = true;
843             LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
844                               << " to " << NewElem << " in instruction: ");
845             LLVM_DEBUG(MI.dump());
846             addRegToUpdate(MI.getOperand(OpNo).getReg());
847             addRegToUpdate(ShiftOp1);
848             MI.getOperand(OpNo).setReg(ShiftOp1);
849             MI.getOperand(2).setImm(NewElem);
850           }
851         }
852         break;
853       }
854       case PPC::XVCVDPSP: {
855         // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
856         Register TrueReg =
857           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
858         if (!TrueReg.isVirtual())
859           break;
860         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
861 
862         // This can occur when building a vector of single precision or integer
863         // values.
864         if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
865           Register DefsReg1 =
866             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
867           Register DefsReg2 =
868             TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
869           if (!DefsReg1.isVirtual() || !DefsReg2.isVirtual())
870             break;
871           MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
872           MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
873 
874           if (!P1 || !P2)
875             break;
876 
877           // Remove the passed FRSP/XSRSP instruction if it only feeds this MI
878           // and set any uses of that FRSP/XSRSP (in this MI) to the source of
879           // the FRSP/XSRSP.
880           auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
881             unsigned Opc = RoundInstr->getOpcode();
882             if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) &&
883                 MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
884               Simplified = true;
885               Register ConvReg1 = RoundInstr->getOperand(1).getReg();
886               Register FRSPDefines = RoundInstr->getOperand(0).getReg();
887               MachineInstr &Use = *(MRI->use_instr_nodbg_begin(FRSPDefines));
888               for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
889                 if (Use.getOperand(i).isReg() &&
890                     Use.getOperand(i).getReg() == FRSPDefines)
891                   Use.getOperand(i).setReg(ConvReg1);
892               LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n");
893               LLVM_DEBUG(RoundInstr->dump());
894               LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
895               LLVM_DEBUG(MI.dump());
896               LLVM_DEBUG(dbgs() << "Through instruction:\n");
897               LLVM_DEBUG(DefMI->dump());
898               addRegToUpdate(ConvReg1);
899               addRegToUpdate(FRSPDefines);
900               ToErase = RoundInstr;
901             }
902           };
903 
904           // If the input to XVCVDPSP is a vector that was built (even
905           // partially) out of FRSP's, the FRSP(s) can safely be removed
906           // since this instruction performs the same operation.
907           if (P1 != P2) {
908             removeFRSPIfPossible(P1);
909             removeFRSPIfPossible(P2);
910             break;
911           }
912           removeFRSPIfPossible(P1);
913         }
914         break;
915       }
916       case PPC::EXTSH:
917       case PPC::EXTSH8:
918       case PPC::EXTSH8_32_64: {
919         if (!EnableSExtElimination) break;
920         Register NarrowReg = MI.getOperand(1).getReg();
921         if (!NarrowReg.isVirtual())
922           break;
923 
924         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
925         unsigned SrcOpcode = SrcMI->getOpcode();
926         // If we've used a zero-extending load that we will sign-extend,
927         // just do a sign-extending load.
928         if (SrcOpcode == PPC::LHZ || SrcOpcode == PPC::LHZX) {
929           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
930             break;
931           // Determine the new opcode. We need to make sure that if the original
932           // instruction has a 64 bit opcode we keep using a 64 bit opcode.
933           // Likewise if the source is X-Form the new opcode should also be
934           // X-Form.
935           unsigned Opc = PPC::LHA;
936           bool SourceIsXForm = SrcOpcode == PPC::LHZX;
937           bool MIIs64Bit = MI.getOpcode() == PPC::EXTSH8 ||
938             MI.getOpcode() == PPC::EXTSH8_32_64;
939 
940           if (SourceIsXForm && MIIs64Bit)
941             Opc = PPC::LHAX8;
942           else if (SourceIsXForm && !MIIs64Bit)
943             Opc = PPC::LHAX;
944           else if (MIIs64Bit)
945             Opc = PPC::LHA8;
946 
947           addRegToUpdate(NarrowReg);
948           addRegToUpdate(MI.getOperand(0).getReg());
949 
950           // We are removing a definition of NarrowReg which will cause
951           // problems in AliveBlocks. Add an implicit def that will be
952           // removed so that AliveBlocks are updated correctly.
953           addDummyDef(MBB, &MI, NarrowReg);
954           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
955           LLVM_DEBUG(SrcMI->dump());
956           LLVM_DEBUG(dbgs() << "and sign-extension\n");
957           LLVM_DEBUG(MI.dump());
958           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
959           SrcMI->setDesc(TII->get(Opc));
960           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
961           ToErase = &MI;
962           Simplified = true;
963           NumEliminatedSExt++;
964         }
965         break;
966       }
967       case PPC::EXTSW:
968       case PPC::EXTSW_32:
969       case PPC::EXTSW_32_64: {
970         if (!EnableSExtElimination) break;
971         Register NarrowReg = MI.getOperand(1).getReg();
972         if (!NarrowReg.isVirtual())
973           break;
974 
975         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
976         unsigned SrcOpcode = SrcMI->getOpcode();
977         // If we've used a zero-extending load that we will sign-extend,
978         // just do a sign-extending load.
979         if (SrcOpcode == PPC::LWZ || SrcOpcode == PPC::LWZX) {
980           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
981             break;
982 
983           // The transformation from a zero-extending load to a sign-extending
984           // load is only legal when the displacement is a multiple of 4.
985           // If the displacement is not at least 4 byte aligned, don't perform
986           // the transformation.
987           bool IsWordAligned = false;
988           if (SrcMI->getOperand(1).isGlobal()) {
989             const GlobalObject *GO =
990                 dyn_cast<GlobalObject>(SrcMI->getOperand(1).getGlobal());
991             if (GO && GO->getAlign() && *GO->getAlign() >= 4 &&
992                 (SrcMI->getOperand(1).getOffset() % 4 == 0))
993               IsWordAligned = true;
994           } else if (SrcMI->getOperand(1).isImm()) {
995             int64_t Value = SrcMI->getOperand(1).getImm();
996             if (Value % 4 == 0)
997               IsWordAligned = true;
998           }
999 
1000           // Determine the new opcode. We need to make sure that if the original
1001           // instruction has a 64 bit opcode we keep using a 64 bit opcode.
1002           // Likewise if the source is X-Form the new opcode should also be
1003           // X-Form.
1004           unsigned Opc = PPC::LWA_32;
1005           bool SourceIsXForm = SrcOpcode == PPC::LWZX;
1006           bool MIIs64Bit = MI.getOpcode() == PPC::EXTSW ||
1007             MI.getOpcode() == PPC::EXTSW_32_64;
1008 
1009           if (SourceIsXForm && MIIs64Bit)
1010             Opc = PPC::LWAX;
1011           else if (SourceIsXForm && !MIIs64Bit)
1012             Opc = PPC::LWAX_32;
1013           else if (MIIs64Bit)
1014             Opc = PPC::LWA;
1015 
1016           if (!IsWordAligned && (Opc == PPC::LWA || Opc == PPC::LWA_32))
1017             break;
1018 
1019           addRegToUpdate(NarrowReg);
1020           addRegToUpdate(MI.getOperand(0).getReg());
1021 
1022           // We are removing a definition of NarrowReg which will cause
1023           // problems in AliveBlocks. Add an implicit def that will be
1024           // removed so that AliveBlocks are updated correctly.
1025           addDummyDef(MBB, &MI, NarrowReg);
1026           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
1027           LLVM_DEBUG(SrcMI->dump());
1028           LLVM_DEBUG(dbgs() << "and sign-extension\n");
1029           LLVM_DEBUG(MI.dump());
1030           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
1031           SrcMI->setDesc(TII->get(Opc));
1032           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
1033           ToErase = &MI;
1034           Simplified = true;
1035           NumEliminatedSExt++;
1036         } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
1037                    TII->isSignExtended(NarrowReg, MRI)) {
1038           // We can eliminate EXTSW if the input is known to be already
1039           // sign-extended.
1040           LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
1041           Register TmpReg =
1042               MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
1043           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
1044                   TmpReg);
1045           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
1046                   MI.getOperand(0).getReg())
1047               .addReg(TmpReg)
1048               .addReg(NarrowReg)
1049               .addImm(PPC::sub_32);
1050           ToErase = &MI;
1051           Simplified = true;
1052           NumEliminatedSExt++;
1053         }
1054         break;
1055       }
1056       case PPC::RLDICL: {
1057         // We can eliminate RLDICL (e.g. for zero-extension)
1058         // if all bits to clear are already zero in the input.
1059         // This code assume following code sequence for zero-extension.
1060         //   %6 = COPY %5:sub_32; (optional)
1061         //   %8 = IMPLICIT_DEF;
1062         //   %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
1063         if (!EnableZExtElimination) break;
1064 
1065         if (MI.getOperand(2).getImm() != 0)
1066           break;
1067 
1068         Register SrcReg = MI.getOperand(1).getReg();
1069         if (!SrcReg.isVirtual())
1070           break;
1071 
1072         MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1073         if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
1074               SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
1075           break;
1076 
1077         MachineInstr *ImpDefMI, *SubRegMI;
1078         ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
1079         SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
1080         if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
1081 
1082         SrcMI = SubRegMI;
1083         if (SubRegMI->getOpcode() == PPC::COPY) {
1084           Register CopyReg = SubRegMI->getOperand(1).getReg();
1085           if (CopyReg.isVirtual())
1086             SrcMI = MRI->getVRegDef(CopyReg);
1087         }
1088         if (!SrcMI->getOperand(0).isReg())
1089           break;
1090 
1091         unsigned KnownZeroCount =
1092             getKnownLeadingZeroCount(SrcMI->getOperand(0).getReg(), TII, MRI);
1093         if (MI.getOperand(3).getImm() <= KnownZeroCount) {
1094           LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
1095           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
1096                   MI.getOperand(0).getReg())
1097               .addReg(SrcReg);
1098           addRegToUpdate(SrcReg);
1099           ToErase = &MI;
1100           Simplified = true;
1101           NumEliminatedZExt++;
1102         }
1103         break;
1104       }
1105 
1106       // TODO: Any instruction that has an immediate form fed only by a PHI
1107       // whose operands are all load immediate can be folded away. We currently
1108       // do this for ADD instructions, but should expand it to arithmetic and
1109       // binary instructions with immediate forms in the future.
1110       case PPC::ADD4:
1111       case PPC::ADD8: {
1112         auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
1113           assert(PhiOp && "Invalid Operand!");
1114           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
1115 
1116           return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
1117                  MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
1118         };
1119 
1120         auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
1121                                             MachineOperand *PhiOp) {
1122           assert(PhiOp && "Invalid Operand!");
1123           assert(DominatorOp && "Invalid Operand!");
1124           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
1125           MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
1126 
1127           // Note: the vregs only show up at odd indices position of PHI Node,
1128           // the even indices position save the BB info.
1129           for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
1130             MachineInstr *LiMI =
1131                 getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
1132             if (!LiMI ||
1133                 (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
1134                 || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
1135                 !MDT->dominates(DefDomMI, LiMI))
1136               return false;
1137           }
1138 
1139           return true;
1140         };
1141 
1142         MachineOperand Op1 = MI.getOperand(1);
1143         MachineOperand Op2 = MI.getOperand(2);
1144         if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
1145           std::swap(Op1, Op2);
1146         else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
1147           break; // We don't have an ADD fed by LI's that can be transformed
1148 
1149         // Now we know that Op1 is the PHI node and Op2 is the dominator
1150         Register DominatorReg = Op2.getReg();
1151 
1152         const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
1153                                              ? &PPC::G8RC_and_G8RC_NOX0RegClass
1154                                              : &PPC::GPRC_and_GPRC_NOR0RegClass;
1155         MRI->setRegClass(DominatorReg, TRC);
1156 
1157         // replace LIs with ADDIs
1158         MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
1159         for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
1160           MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
1161           LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
1162           LLVM_DEBUG(LiMI->dump());
1163 
1164           // There could be repeated registers in the PHI, e.g: %1 =
1165           // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
1166           // already replaced the def instruction, skip.
1167           if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
1168             continue;
1169 
1170           assert((LiMI->getOpcode() == PPC::LI ||
1171                   LiMI->getOpcode() == PPC::LI8) &&
1172                  "Invalid Opcode!");
1173           auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
1174           LiMI->removeOperand(1);                    // remove the imm of LI
1175           LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
1176                                                               : PPC::ADDI8));
1177           MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
1178               .addReg(DominatorReg)
1179               .addImm(LiImm); // restore the imm of LI
1180           LLVM_DEBUG(LiMI->dump());
1181         }
1182 
1183         // Replace ADD with COPY
1184         LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
1185         LLVM_DEBUG(MI.dump());
1186         BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
1187                 MI.getOperand(0).getReg())
1188             .add(Op1);
1189         addRegToUpdate(Op1.getReg());
1190         addRegToUpdate(Op2.getReg());
1191         ToErase = &MI;
1192         Simplified = true;
1193         NumOptADDLIs++;
1194         break;
1195       }
1196       case PPC::RLDICR: {
1197         Simplified |= emitRLDICWhenLoweringJumpTables(MI, ToErase) ||
1198                       combineSEXTAndSHL(MI, ToErase);
1199         break;
1200       }
1201       case PPC::ANDI_rec:
1202       case PPC::ANDI8_rec:
1203       case PPC::ANDIS_rec:
1204       case PPC::ANDIS8_rec: {
1205         Register TrueReg =
1206             TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
1207         if (!TrueReg.isVirtual() || !MRI->hasOneNonDBGUse(TrueReg))
1208           break;
1209 
1210         MachineInstr *SrcMI = MRI->getVRegDef(TrueReg);
1211         if (!SrcMI)
1212           break;
1213 
1214         unsigned SrcOpCode = SrcMI->getOpcode();
1215         if (SrcOpCode != PPC::RLDICL && SrcOpCode != PPC::RLDICR)
1216           break;
1217 
1218         Register SrcReg, DstReg;
1219         SrcReg = SrcMI->getOperand(1).getReg();
1220         DstReg = MI.getOperand(1).getReg();
1221         const TargetRegisterClass *SrcRC = MRI->getRegClassOrNull(SrcReg);
1222         const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(DstReg);
1223         if (DstRC != SrcRC)
1224           break;
1225 
1226         uint64_t AndImm = MI.getOperand(2).getImm();
1227         if (MI.getOpcode() == PPC::ANDIS_rec ||
1228             MI.getOpcode() == PPC::ANDIS8_rec)
1229           AndImm <<= 16;
1230         uint64_t LZeroAndImm = llvm::countl_zero<uint64_t>(AndImm);
1231         uint64_t RZeroAndImm = llvm::countr_zero<uint64_t>(AndImm);
1232         uint64_t ImmSrc = SrcMI->getOperand(3).getImm();
1233 
1234         // We can transfer `RLDICL/RLDICR + ANDI_rec/ANDIS_rec` to `ANDI_rec 0`
1235         // if all bits to AND are already zero in the input.
1236         bool PatternResultZero =
1237             (SrcOpCode == PPC::RLDICL && (RZeroAndImm + ImmSrc > 63)) ||
1238             (SrcOpCode == PPC::RLDICR && LZeroAndImm > ImmSrc);
1239 
1240         // We can eliminate RLDICL/RLDICR if it's used to clear bits and all
1241         // bits cleared will be ANDed with 0 by ANDI_rec/ANDIS_rec.
1242         bool PatternRemoveRotate =
1243             SrcMI->getOperand(2).getImm() == 0 &&
1244             ((SrcOpCode == PPC::RLDICL && LZeroAndImm >= ImmSrc) ||
1245              (SrcOpCode == PPC::RLDICR && (RZeroAndImm + ImmSrc > 63)));
1246 
1247         if (!PatternResultZero && !PatternRemoveRotate)
1248           break;
1249 
1250         LLVM_DEBUG(dbgs() << "Combining pair: ");
1251         LLVM_DEBUG(SrcMI->dump());
1252         LLVM_DEBUG(MI.dump());
1253         if (PatternResultZero)
1254           MI.getOperand(2).setImm(0);
1255         MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
1256         LLVM_DEBUG(dbgs() << "To: ");
1257         LLVM_DEBUG(MI.dump());
1258         addRegToUpdate(MI.getOperand(1).getReg());
1259         addRegToUpdate(SrcMI->getOperand(0).getReg());
1260         Simplified = true;
1261         break;
1262       }
1263       case PPC::RLWINM:
1264       case PPC::RLWINM_rec:
1265       case PPC::RLWINM8:
1266       case PPC::RLWINM8_rec: {
1267         // We might replace operand 1 of the instruction which will
1268         // require we recompute kill flags for it.
1269         Register OrigOp1Reg = MI.getOperand(1).isReg()
1270                                   ? MI.getOperand(1).getReg()
1271                                   : PPC::NoRegister;
1272         Simplified = TII->combineRLWINM(MI, &ToErase);
1273         if (Simplified) {
1274           addRegToUpdate(OrigOp1Reg);
1275           if (MI.getOperand(1).isReg())
1276             addRegToUpdate(MI.getOperand(1).getReg());
1277           ++NumRotatesCollapsed;
1278         }
1279         break;
1280       }
1281       // We will replace TD/TW/TDI/TWI with an unconditional trap if it will
1282       // always trap, we will delete the node if it will never trap.
1283       case PPC::TDI:
1284       case PPC::TWI:
1285       case PPC::TD:
1286       case PPC::TW: {
1287         if (!EnableTrapOptimization) break;
1288         MachineInstr *LiMI1 = getVRegDefOrNull(&MI.getOperand(1), MRI);
1289         MachineInstr *LiMI2 = getVRegDefOrNull(&MI.getOperand(2), MRI);
1290         bool IsOperand2Immediate = MI.getOperand(2).isImm();
1291         // We can only do the optimization if we can get immediates
1292         // from both operands
1293         if (!(LiMI1 && (LiMI1->getOpcode() == PPC::LI ||
1294                         LiMI1->getOpcode() == PPC::LI8)))
1295           break;
1296         if (!IsOperand2Immediate &&
1297             !(LiMI2 && (LiMI2->getOpcode() == PPC::LI ||
1298                         LiMI2->getOpcode() == PPC::LI8)))
1299           break;
1300 
1301         auto ImmOperand0 = MI.getOperand(0).getImm();
1302         auto ImmOperand1 = LiMI1->getOperand(1).getImm();
1303         auto ImmOperand2 = IsOperand2Immediate ? MI.getOperand(2).getImm()
1304                                                : LiMI2->getOperand(1).getImm();
1305 
1306         // We will replace the MI with an unconditional trap if it will always
1307         // trap.
1308         if ((ImmOperand0 == 31) ||
1309             ((ImmOperand0 & 0x10) &&
1310              ((int64_t)ImmOperand1 < (int64_t)ImmOperand2)) ||
1311             ((ImmOperand0 & 0x8) &&
1312              ((int64_t)ImmOperand1 > (int64_t)ImmOperand2)) ||
1313             ((ImmOperand0 & 0x2) &&
1314              ((uint64_t)ImmOperand1 < (uint64_t)ImmOperand2)) ||
1315             ((ImmOperand0 & 0x1) &&
1316              ((uint64_t)ImmOperand1 > (uint64_t)ImmOperand2)) ||
1317             ((ImmOperand0 & 0x4) && (ImmOperand1 == ImmOperand2))) {
1318           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::TRAP));
1319           TrapOpt = true;
1320         }
1321         // We will delete the MI if it will never trap.
1322         ToErase = &MI;
1323         Simplified = true;
1324         break;
1325       }
1326       }
1327     }
1328 
1329     // If the last instruction was marked for elimination,
1330     // remove it now.
1331     if (ToErase) {
1332       recomputeLVForDyingInstr();
1333       ToErase->eraseFromParent();
1334       ToErase = nullptr;
1335     }
1336     // Reset TrapOpt to false at the end of the basic block.
1337     if (EnableTrapOptimization)
1338       TrapOpt = false;
1339   }
1340 
1341   // Eliminate all the TOC save instructions which are redundant.
1342   Simplified |= eliminateRedundantTOCSaves(TOCSaves);
1343   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
1344   if (FI->mustSaveTOC())
1345     NumTOCSavesInPrologue++;
1346 
1347   // We try to eliminate redundant compare instruction.
1348   Simplified |= eliminateRedundantCompare();
1349 
1350   // If we have made any modifications and added any registers to the set of
1351   // registers for which we need to update the kill flags, do so by recomputing
1352   // LiveVariables for those registers.
1353   for (Register Reg : RegsToUpdate) {
1354     if (!MRI->reg_empty(Reg))
1355       LV->recomputeForSingleDefVirtReg(Reg);
1356   }
1357   return Simplified;
1358 }
1359 
1360 // helper functions for eliminateRedundantCompare
isEqOrNe(MachineInstr * BI)1361 static bool isEqOrNe(MachineInstr *BI) {
1362   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1363   unsigned PredCond = PPC::getPredicateCondition(Pred);
1364   return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
1365 }
1366 
isSupportedCmpOp(unsigned opCode)1367 static bool isSupportedCmpOp(unsigned opCode) {
1368   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD  ||
1369           opCode == PPC::CMPLW  || opCode == PPC::CMPW  ||
1370           opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
1371           opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
1372 }
1373 
is64bitCmpOp(unsigned opCode)1374 static bool is64bitCmpOp(unsigned opCode) {
1375   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD ||
1376           opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
1377 }
1378 
isSignedCmpOp(unsigned opCode)1379 static bool isSignedCmpOp(unsigned opCode) {
1380   return (opCode == PPC::CMPD  || opCode == PPC::CMPW ||
1381           opCode == PPC::CMPDI || opCode == PPC::CMPWI);
1382 }
1383 
getSignedCmpOpCode(unsigned opCode)1384 static unsigned getSignedCmpOpCode(unsigned opCode) {
1385   if (opCode == PPC::CMPLD)  return PPC::CMPD;
1386   if (opCode == PPC::CMPLW)  return PPC::CMPW;
1387   if (opCode == PPC::CMPLDI) return PPC::CMPDI;
1388   if (opCode == PPC::CMPLWI) return PPC::CMPWI;
1389   return opCode;
1390 }
1391 
1392 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
1393 // (LT x) to (LE x-1)
getPredicateToDecImm(MachineInstr * BI,MachineInstr * CMPI)1394 static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
1395   uint64_t Imm = CMPI->getOperand(2).getImm();
1396   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1397   if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
1398     return 0;
1399 
1400   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1401   unsigned PredCond = PPC::getPredicateCondition(Pred);
1402   unsigned PredHint = PPC::getPredicateHint(Pred);
1403   if (PredCond == PPC::PRED_GE)
1404     return PPC::getPredicate(PPC::PRED_GT, PredHint);
1405   if (PredCond == PPC::PRED_LT)
1406     return PPC::getPredicate(PPC::PRED_LE, PredHint);
1407 
1408   return 0;
1409 }
1410 
1411 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
1412 // (LE x) to (LT x+1)
getPredicateToIncImm(MachineInstr * BI,MachineInstr * CMPI)1413 static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
1414   uint64_t Imm = CMPI->getOperand(2).getImm();
1415   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1416   if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
1417     return 0;
1418 
1419   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1420   unsigned PredCond = PPC::getPredicateCondition(Pred);
1421   unsigned PredHint = PPC::getPredicateHint(Pred);
1422   if (PredCond == PPC::PRED_GT)
1423     return PPC::getPredicate(PPC::PRED_GE, PredHint);
1424   if (PredCond == PPC::PRED_LE)
1425     return PPC::getPredicate(PPC::PRED_LT, PredHint);
1426 
1427   return 0;
1428 }
1429 
1430 // This takes a Phi node and returns a register value for the specified BB.
getIncomingRegForBlock(MachineInstr * Phi,MachineBasicBlock * MBB)1431 static unsigned getIncomingRegForBlock(MachineInstr *Phi,
1432                                        MachineBasicBlock *MBB) {
1433   for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
1434     MachineOperand &MO = Phi->getOperand(I);
1435     if (MO.getMBB() == MBB)
1436       return Phi->getOperand(I-1).getReg();
1437   }
1438   llvm_unreachable("invalid src basic block for this Phi node\n");
1439   return 0;
1440 }
1441 
1442 // This function tracks the source of the register through register copy.
1443 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
1444 // assuming that the control comes from BB1 into BB2.
getSrcVReg(unsigned Reg,MachineBasicBlock * BB1,MachineBasicBlock * BB2,MachineRegisterInfo * MRI)1445 static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
1446                            MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
1447   unsigned SrcReg = Reg;
1448   while (true) {
1449     unsigned NextReg = SrcReg;
1450     MachineInstr *Inst = MRI->getVRegDef(SrcReg);
1451     if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
1452       NextReg = getIncomingRegForBlock(Inst, BB1);
1453       // We track through PHI only once to avoid infinite loop.
1454       BB1 = nullptr;
1455     }
1456     else if (Inst->isFullCopy())
1457       NextReg = Inst->getOperand(1).getReg();
1458     if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg))
1459       break;
1460     SrcReg = NextReg;
1461   }
1462   return SrcReg;
1463 }
1464 
eligibleForCompareElimination(MachineBasicBlock & MBB,MachineBasicBlock * & PredMBB,MachineBasicBlock * & MBBtoMoveCmp,MachineRegisterInfo * MRI)1465 static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
1466                                           MachineBasicBlock *&PredMBB,
1467                                           MachineBasicBlock *&MBBtoMoveCmp,
1468                                           MachineRegisterInfo *MRI) {
1469 
1470   auto isEligibleBB = [&](MachineBasicBlock &BB) {
1471     auto BII = BB.getFirstInstrTerminator();
1472     // We optimize BBs ending with a conditional branch.
1473     // We check only for BCC here, not BCCLR, because BCCLR
1474     // will be formed only later in the pipeline.
1475     if (BB.succ_size() == 2 &&
1476         BII != BB.instr_end() &&
1477         (*BII).getOpcode() == PPC::BCC &&
1478         (*BII).getOperand(1).isReg()) {
1479       // We optimize only if the condition code is used only by one BCC.
1480       Register CndReg = (*BII).getOperand(1).getReg();
1481       if (!CndReg.isVirtual() || !MRI->hasOneNonDBGUse(CndReg))
1482         return false;
1483 
1484       MachineInstr *CMPI = MRI->getVRegDef(CndReg);
1485       // We assume compare and branch are in the same BB for ease of analysis.
1486       if (CMPI->getParent() != &BB)
1487         return false;
1488 
1489       // We skip this BB if a physical register is used in comparison.
1490       for (MachineOperand &MO : CMPI->operands())
1491         if (MO.isReg() && !MO.getReg().isVirtual())
1492           return false;
1493 
1494       return true;
1495     }
1496     return false;
1497   };
1498 
1499   // If this BB has more than one successor, we can create a new BB and
1500   // move the compare instruction in the new BB.
1501   // So far, we do not move compare instruction to a BB having multiple
1502   // successors to avoid potentially increasing code size.
1503   auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
1504     return BB.succ_size() == 1;
1505   };
1506 
1507   if (!isEligibleBB(MBB))
1508     return false;
1509 
1510   unsigned NumPredBBs = MBB.pred_size();
1511   if (NumPredBBs == 1) {
1512     MachineBasicBlock *TmpMBB = *MBB.pred_begin();
1513     if (isEligibleBB(*TmpMBB)) {
1514       PredMBB = TmpMBB;
1515       MBBtoMoveCmp = nullptr;
1516       return true;
1517     }
1518   }
1519   else if (NumPredBBs == 2) {
1520     // We check for partially redundant case.
1521     // So far, we support cases with only two predecessors
1522     // to avoid increasing the number of instructions.
1523     MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
1524     MachineBasicBlock *Pred1MBB = *PI;
1525     MachineBasicBlock *Pred2MBB = *(PI+1);
1526 
1527     if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
1528       // We assume Pred1MBB is the BB containing the compare to be merged and
1529       // Pred2MBB is the BB to which we will append a compare instruction.
1530       // Proceed as is if Pred1MBB is different from MBB.
1531     }
1532     else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
1533       // We need to swap Pred1MBB and Pred2MBB to canonicalize.
1534       std::swap(Pred1MBB, Pred2MBB);
1535     }
1536     else return false;
1537 
1538     if (Pred1MBB == &MBB)
1539       return false;
1540 
1541     // Here, Pred2MBB is the BB to which we need to append a compare inst.
1542     // We cannot move the compare instruction if operands are not available
1543     // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
1544     MachineInstr *BI = &*MBB.getFirstInstrTerminator();
1545     MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
1546     for (int I = 1; I <= 2; I++)
1547       if (CMPI->getOperand(I).isReg()) {
1548         MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
1549         if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
1550           return false;
1551       }
1552 
1553     PredMBB = Pred1MBB;
1554     MBBtoMoveCmp = Pred2MBB;
1555     return true;
1556   }
1557 
1558   return false;
1559 }
1560 
1561 // This function will iterate over the input map containing a pair of TOC save
1562 // instruction and a flag. The flag will be set to false if the TOC save is
1563 // proven redundant. This function will erase from the basic block all the TOC
1564 // saves marked as redundant.
eliminateRedundantTOCSaves(std::map<MachineInstr *,bool> & TOCSaves)1565 bool PPCMIPeephole::eliminateRedundantTOCSaves(
1566     std::map<MachineInstr *, bool> &TOCSaves) {
1567   bool Simplified = false;
1568   int NumKept = 0;
1569   for (auto TOCSave : TOCSaves) {
1570     if (!TOCSave.second) {
1571       TOCSave.first->eraseFromParent();
1572       RemoveTOCSave++;
1573       Simplified = true;
1574     } else {
1575       NumKept++;
1576     }
1577   }
1578 
1579   if (NumKept > 1)
1580     MultiTOCSaves++;
1581 
1582   return Simplified;
1583 }
1584 
1585 // If multiple conditional branches are executed based on the (essentially)
1586 // same comparison, we merge compare instructions into one and make multiple
1587 // conditional branches on this comparison.
1588 // For example,
1589 //   if (a == 0) { ... }
1590 //   else if (a < 0) { ... }
1591 // can be executed by one compare and two conditional branches instead of
1592 // two pairs of a compare and a conditional branch.
1593 //
1594 // This method merges two compare instructions in two MBBs and modifies the
1595 // compare and conditional branch instructions if needed.
1596 // For the above example, the input for this pass looks like:
1597 //   cmplwi r3, 0
1598 //   beq    0, .LBB0_3
1599 //   cmpwi  r3, -1
1600 //   bgt    0, .LBB0_4
1601 // So, before merging two compares, we need to modify these instructions as
1602 //   cmpwi  r3, 0       ; cmplwi and cmpwi yield same result for beq
1603 //   beq    0, .LBB0_3
1604 //   cmpwi  r3, 0       ; greather than -1 means greater or equal to 0
1605 //   bge    0, .LBB0_4
1606 
eliminateRedundantCompare()1607 bool PPCMIPeephole::eliminateRedundantCompare() {
1608   bool Simplified = false;
1609 
1610   for (MachineBasicBlock &MBB2 : *MF) {
1611     MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
1612 
1613     // For fully redundant case, we select two basic blocks MBB1 and MBB2
1614     // as an optimization target if
1615     // - both MBBs end with a conditional branch,
1616     // - MBB1 is the only predecessor of MBB2, and
1617     // - compare does not take a physical register as a operand in both MBBs.
1618     // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1619     //
1620     // As partially redundant case, we additionally handle if MBB2 has one
1621     // additional predecessor, which has only one successor (MBB2).
1622     // In this case, we move the compare instruction originally in MBB2 into
1623     // MBBtoMoveCmp. This partially redundant case is typically appear by
1624     // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1625     //
1626     // Overview of CFG of related basic blocks
1627     // Fully redundant case        Partially redundant case
1628     //   --------                   ----------------  --------
1629     //   | MBB1 | (w/ 2 succ)       | MBBtoMoveCmp |  | MBB1 | (w/ 2 succ)
1630     //   --------                   ----------------  --------
1631     //      |    \                     (w/ 1 succ) \     |    \
1632     //      |     \                                 \    |     \
1633     //      |                                        \   |
1634     //   --------                                     --------
1635     //   | MBB2 | (w/ 1 pred                          | MBB2 | (w/ 2 pred
1636     //   -------- and 2 succ)                         -------- and 2 succ)
1637     //      |    \                                       |    \
1638     //      |     \                                      |     \
1639     //
1640     if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
1641       continue;
1642 
1643     MachineInstr *BI1   = &*MBB1->getFirstInstrTerminator();
1644     MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
1645 
1646     MachineInstr *BI2   = &*MBB2.getFirstInstrTerminator();
1647     MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
1648     bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
1649 
1650     // We cannot optimize an unsupported compare opcode or
1651     // a mix of 32-bit and 64-bit comparisons
1652     if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
1653         !isSupportedCmpOp(CMPI2->getOpcode()) ||
1654         is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
1655       continue;
1656 
1657     unsigned NewOpCode = 0;
1658     unsigned NewPredicate1 = 0, NewPredicate2 = 0;
1659     int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
1660     bool SwapOperands = false;
1661 
1662     if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
1663       // Typically, unsigned comparison is used for equality check, but
1664       // we replace it with a signed comparison if the comparison
1665       // to be merged is a signed comparison.
1666       // In other cases of opcode mismatch, we cannot optimize this.
1667 
1668       // We cannot change opcode when comparing against an immediate
1669       // if the most significant bit of the immediate is one
1670       // due to the difference in sign extension.
1671       auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
1672         if (!I->getOperand(2).isImm())
1673           return false;
1674         int16_t Imm = (int16_t)I->getOperand(2).getImm();
1675         return Imm < 0;
1676       };
1677 
1678       if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
1679           CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
1680         NewOpCode = CMPI1->getOpcode();
1681       else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
1682                getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
1683         NewOpCode = CMPI2->getOpcode();
1684       else continue;
1685     }
1686 
1687     if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
1688       // In case of comparisons between two registers, these two registers
1689       // must be same to merge two comparisons.
1690       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1691                                          nullptr, nullptr, MRI);
1692       unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
1693                                          nullptr, nullptr, MRI);
1694       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1695                                          MBB1, &MBB2, MRI);
1696       unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
1697                                          MBB1, &MBB2, MRI);
1698 
1699       if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
1700         // Same pair of registers in the same order; ready to merge as is.
1701       }
1702       else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
1703         // Same pair of registers in different order.
1704         // We reverse the predicate to merge compare instructions.
1705         PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
1706         NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
1707         // In case of partial redundancy, we need to swap operands
1708         // in another compare instruction.
1709         SwapOperands = true;
1710       }
1711       else continue;
1712     }
1713     else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
1714       // In case of comparisons between a register and an immediate,
1715       // the operand register must be same for two compare instructions.
1716       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1717                                          nullptr, nullptr, MRI);
1718       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1719                                          MBB1, &MBB2, MRI);
1720       if (Cmp1Operand1 != Cmp2Operand1)
1721         continue;
1722 
1723       NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
1724       NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
1725 
1726       // If immediate are not same, we try to adjust by changing predicate;
1727       // e.g. GT imm means GE (imm+1).
1728       if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
1729         int Diff = Imm1 - Imm2;
1730         if (Diff < -2 || Diff > 2)
1731           continue;
1732 
1733         unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
1734         unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
1735         unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
1736         unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
1737         if (Diff == 2) {
1738           if (PredToInc2 && PredToDec1) {
1739             NewPredicate2 = PredToInc2;
1740             NewPredicate1 = PredToDec1;
1741             NewImm2++;
1742             NewImm1--;
1743           }
1744         }
1745         else if (Diff == 1) {
1746           if (PredToInc2) {
1747             NewImm2++;
1748             NewPredicate2 = PredToInc2;
1749           }
1750           else if (PredToDec1) {
1751             NewImm1--;
1752             NewPredicate1 = PredToDec1;
1753           }
1754         }
1755         else if (Diff == -1) {
1756           if (PredToDec2) {
1757             NewImm2--;
1758             NewPredicate2 = PredToDec2;
1759           }
1760           else if (PredToInc1) {
1761             NewImm1++;
1762             NewPredicate1 = PredToInc1;
1763           }
1764         }
1765         else if (Diff == -2) {
1766           if (PredToDec2 && PredToInc1) {
1767             NewPredicate2 = PredToDec2;
1768             NewPredicate1 = PredToInc1;
1769             NewImm2--;
1770             NewImm1++;
1771           }
1772         }
1773       }
1774 
1775       // We cannot merge two compares if the immediates are not same.
1776       if (NewImm2 != NewImm1)
1777         continue;
1778     }
1779 
1780     LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1781     LLVM_DEBUG(CMPI1->dump());
1782     LLVM_DEBUG(BI1->dump());
1783     LLVM_DEBUG(CMPI2->dump());
1784     LLVM_DEBUG(BI2->dump());
1785     for (const MachineOperand &MO : CMPI1->operands())
1786       if (MO.isReg())
1787         addRegToUpdate(MO.getReg());
1788     for (const MachineOperand &MO : CMPI2->operands())
1789       if (MO.isReg())
1790         addRegToUpdate(MO.getReg());
1791 
1792     // We adjust opcode, predicates and immediate as we determined above.
1793     if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
1794       CMPI1->setDesc(TII->get(NewOpCode));
1795     }
1796     if (NewPredicate1) {
1797       BI1->getOperand(0).setImm(NewPredicate1);
1798     }
1799     if (NewPredicate2) {
1800       BI2->getOperand(0).setImm(NewPredicate2);
1801     }
1802     if (NewImm1 != Imm1) {
1803       CMPI1->getOperand(2).setImm(NewImm1);
1804     }
1805 
1806     if (IsPartiallyRedundant) {
1807       // We touch up the compare instruction in MBB2 and move it to
1808       // a previous BB to handle partially redundant case.
1809       if (SwapOperands) {
1810         Register Op1 = CMPI2->getOperand(1).getReg();
1811         Register Op2 = CMPI2->getOperand(2).getReg();
1812         CMPI2->getOperand(1).setReg(Op2);
1813         CMPI2->getOperand(2).setReg(Op1);
1814       }
1815       if (NewImm2 != Imm2)
1816         CMPI2->getOperand(2).setImm(NewImm2);
1817 
1818       for (int I = 1; I <= 2; I++) {
1819         if (CMPI2->getOperand(I).isReg()) {
1820           MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
1821           if (Inst->getParent() != &MBB2)
1822             continue;
1823 
1824           assert(Inst->getOpcode() == PPC::PHI &&
1825                  "We cannot support if an operand comes from this BB.");
1826           unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
1827           CMPI2->getOperand(I).setReg(SrcReg);
1828           addRegToUpdate(SrcReg);
1829         }
1830       }
1831       auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
1832       MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
1833 
1834       DebugLoc DL = CMPI2->getDebugLoc();
1835       Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
1836       BuildMI(MBB2, MBB2.begin(), DL,
1837               TII->get(PPC::PHI), NewVReg)
1838         .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
1839         .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
1840       BI2->getOperand(1).setReg(NewVReg);
1841       addRegToUpdate(NewVReg);
1842     }
1843     else {
1844       // We finally eliminate compare instruction in MBB2.
1845       // We do not need to treat CMPI2 specially here in terms of re-computing
1846       // live variables even though it is being deleted because:
1847       // - It defines a register that has a single use (already checked in
1848       // eligibleForCompareElimination())
1849       // - The only user (BI2) is no longer using it so the register is dead (no
1850       // def, no uses)
1851       // - We do not attempt to recompute live variables for dead registers
1852       BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
1853       CMPI2->eraseFromParent();
1854     }
1855 
1856     LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1857     LLVM_DEBUG(CMPI1->dump());
1858     LLVM_DEBUG(BI1->dump());
1859     LLVM_DEBUG(BI2->dump());
1860     if (IsPartiallyRedundant) {
1861       LLVM_DEBUG(dbgs() << "The following compare is moved into "
1862                         << printMBBReference(*MBBtoMoveCmp)
1863                         << " to handle partial redundancy.\n");
1864       LLVM_DEBUG(CMPI2->dump());
1865     }
1866     Simplified = true;
1867   }
1868 
1869   return Simplified;
1870 }
1871 
1872 // We miss the opportunity to emit an RLDIC when lowering jump tables
1873 // since ISEL sees only a single basic block. When selecting, the clear
1874 // and shift left will be in different blocks.
emitRLDICWhenLoweringJumpTables(MachineInstr & MI,MachineInstr * & ToErase)1875 bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI,
1876                                                     MachineInstr *&ToErase) {
1877   if (MI.getOpcode() != PPC::RLDICR)
1878     return false;
1879 
1880   Register SrcReg = MI.getOperand(1).getReg();
1881   if (!SrcReg.isVirtual())
1882     return false;
1883 
1884   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1885   if (SrcMI->getOpcode() != PPC::RLDICL)
1886     return false;
1887 
1888   MachineOperand MOpSHSrc = SrcMI->getOperand(2);
1889   MachineOperand MOpMBSrc = SrcMI->getOperand(3);
1890   MachineOperand MOpSHMI = MI.getOperand(2);
1891   MachineOperand MOpMEMI = MI.getOperand(3);
1892   if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
1893         MOpMEMI.isImm()))
1894     return false;
1895 
1896   uint64_t SHSrc = MOpSHSrc.getImm();
1897   uint64_t MBSrc = MOpMBSrc.getImm();
1898   uint64_t SHMI = MOpSHMI.getImm();
1899   uint64_t MEMI = MOpMEMI.getImm();
1900   uint64_t NewSH = SHSrc + SHMI;
1901   uint64_t NewMB = MBSrc - SHMI;
1902   if (NewMB > 63 || NewSH > 63)
1903     return false;
1904 
1905   // The bits cleared with RLDICL are [0, MBSrc).
1906   // The bits cleared with RLDICR are (MEMI, 63].
1907   // After the sequence, the bits cleared are:
1908   // [0, MBSrc-SHMI) and (MEMI, 63).
1909   //
1910   // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
1911   if ((63 - NewSH) != MEMI)
1912     return false;
1913 
1914   LLVM_DEBUG(dbgs() << "Converting pair: ");
1915   LLVM_DEBUG(SrcMI->dump());
1916   LLVM_DEBUG(MI.dump());
1917 
1918   MI.setDesc(TII->get(PPC::RLDIC));
1919   MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
1920   MI.getOperand(2).setImm(NewSH);
1921   MI.getOperand(3).setImm(NewMB);
1922   addRegToUpdate(MI.getOperand(1).getReg());
1923   addRegToUpdate(SrcMI->getOperand(0).getReg());
1924 
1925   LLVM_DEBUG(dbgs() << "To: ");
1926   LLVM_DEBUG(MI.dump());
1927   NumRotatesCollapsed++;
1928   // If SrcReg has no non-debug use it's safe to delete its def SrcMI.
1929   if (MRI->use_nodbg_empty(SrcReg)) {
1930     assert(!SrcMI->hasImplicitDef() &&
1931            "Not expecting an implicit def with this instr.");
1932     ToErase = SrcMI;
1933   }
1934   return true;
1935 }
1936 
1937 // For case in LLVM IR
1938 // entry:
1939 //   %iconv = sext i32 %index to i64
1940 //   br i1 undef label %true, label %false
1941 // true:
1942 //   %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
1943 // ...
1944 // PPCISelLowering::combineSHL fails to combine, because sext and shl are in
1945 // different BBs when conducting instruction selection. We can do a peephole
1946 // optimization to combine these two instructions into extswsli after
1947 // instruction selection.
combineSEXTAndSHL(MachineInstr & MI,MachineInstr * & ToErase)1948 bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
1949                                       MachineInstr *&ToErase) {
1950   if (MI.getOpcode() != PPC::RLDICR)
1951     return false;
1952 
1953   if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
1954     return false;
1955 
1956   assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
1957 
1958   MachineOperand MOpSHMI = MI.getOperand(2);
1959   MachineOperand MOpMEMI = MI.getOperand(3);
1960   if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
1961     return false;
1962 
1963   uint64_t SHMI = MOpSHMI.getImm();
1964   uint64_t MEMI = MOpMEMI.getImm();
1965   if (SHMI + MEMI != 63)
1966     return false;
1967 
1968   Register SrcReg = MI.getOperand(1).getReg();
1969   if (!SrcReg.isVirtual())
1970     return false;
1971 
1972   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1973   if (SrcMI->getOpcode() != PPC::EXTSW &&
1974       SrcMI->getOpcode() != PPC::EXTSW_32_64)
1975     return false;
1976 
1977   // If the register defined by extsw has more than one use, combination is not
1978   // needed.
1979   if (!MRI->hasOneNonDBGUse(SrcReg))
1980     return false;
1981 
1982   assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands");
1983   assert(SrcMI->getOperand(1).isReg() &&
1984          "EXTSW's second operand should be a register");
1985   if (!SrcMI->getOperand(1).getReg().isVirtual())
1986     return false;
1987 
1988   LLVM_DEBUG(dbgs() << "Combining pair: ");
1989   LLVM_DEBUG(SrcMI->dump());
1990   LLVM_DEBUG(MI.dump());
1991 
1992   MachineInstr *NewInstr =
1993       BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
1994               SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
1995                                                : TII->get(PPC::EXTSWSLI_32_64),
1996               MI.getOperand(0).getReg())
1997           .add(SrcMI->getOperand(1))
1998           .add(MOpSHMI);
1999   (void)NewInstr;
2000 
2001   LLVM_DEBUG(dbgs() << "TO: ");
2002   LLVM_DEBUG(NewInstr->dump());
2003   ++NumEXTSWAndSLDICombined;
2004   ToErase = &MI;
2005   // SrcMI, which is extsw, is of no use now, but we don't erase it here so we
2006   // can recompute its kill flags. We run DCE immediately after this pass
2007   // to clean up dead instructions such as this.
2008   addRegToUpdate(NewInstr->getOperand(1).getReg());
2009   addRegToUpdate(SrcMI->getOperand(0).getReg());
2010   return true;
2011 }
2012 
2013 } // end default namespace
2014 
2015 INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
2016                       "PowerPC MI Peephole Optimization", false, false)
2017 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
2018 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
2019 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
2020 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
2021 INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
2022                     "PowerPC MI Peephole Optimization", false, false)
2023 
2024 char PPCMIPeephole::ID = 0;
2025 FunctionPass*
createPPCMIPeepholePass()2026 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }
2027