1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/Support/TypeSize.h"
44 #include <cstdarg>
45 #include <optional>
46
47 using namespace clang;
48 using namespace CodeGen;
49 using llvm::Value;
50
51 //===----------------------------------------------------------------------===//
52 // Scalar Expression Emitter
53 //===----------------------------------------------------------------------===//
54
55 namespace {
56
57 /// Determine whether the given binary operation may overflow.
58 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
59 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
60 /// the returned overflow check is precise. The returned value is 'true' for
61 /// all other opcodes, to be conservative.
mayHaveIntegerOverflow(llvm::ConstantInt * LHS,llvm::ConstantInt * RHS,BinaryOperator::Opcode Opcode,bool Signed,llvm::APInt & Result)62 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
63 BinaryOperator::Opcode Opcode, bool Signed,
64 llvm::APInt &Result) {
65 // Assume overflow is possible, unless we can prove otherwise.
66 bool Overflow = true;
67 const auto &LHSAP = LHS->getValue();
68 const auto &RHSAP = RHS->getValue();
69 if (Opcode == BO_Add) {
70 Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow)
71 : LHSAP.uadd_ov(RHSAP, Overflow);
72 } else if (Opcode == BO_Sub) {
73 Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow)
74 : LHSAP.usub_ov(RHSAP, Overflow);
75 } else if (Opcode == BO_Mul) {
76 Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow)
77 : LHSAP.umul_ov(RHSAP, Overflow);
78 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
79 if (Signed && !RHS->isZero())
80 Result = LHSAP.sdiv_ov(RHSAP, Overflow);
81 else
82 return false;
83 }
84 return Overflow;
85 }
86
87 struct BinOpInfo {
88 Value *LHS;
89 Value *RHS;
90 QualType Ty; // Computation Type.
91 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
92 FPOptions FPFeatures;
93 const Expr *E; // Entire expr, for error unsupported. May not be binop.
94
95 /// Check if the binop can result in integer overflow.
mayHaveIntegerOverflow__anon7dd068ea0111::BinOpInfo96 bool mayHaveIntegerOverflow() const {
97 // Without constant input, we can't rule out overflow.
98 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
99 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
100 if (!LHSCI || !RHSCI)
101 return true;
102
103 llvm::APInt Result;
104 return ::mayHaveIntegerOverflow(
105 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
106 }
107
108 /// Check if the binop computes a division or a remainder.
isDivremOp__anon7dd068ea0111::BinOpInfo109 bool isDivremOp() const {
110 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
111 Opcode == BO_RemAssign;
112 }
113
114 /// Check if the binop can result in an integer division by zero.
mayHaveIntegerDivisionByZero__anon7dd068ea0111::BinOpInfo115 bool mayHaveIntegerDivisionByZero() const {
116 if (isDivremOp())
117 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
118 return CI->isZero();
119 return true;
120 }
121
122 /// Check if the binop can result in a float division by zero.
mayHaveFloatDivisionByZero__anon7dd068ea0111::BinOpInfo123 bool mayHaveFloatDivisionByZero() const {
124 if (isDivremOp())
125 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
126 return CFP->isZero();
127 return true;
128 }
129
130 /// Check if at least one operand is a fixed point type. In such cases, this
131 /// operation did not follow usual arithmetic conversion and both operands
132 /// might not be of the same type.
isFixedPointOp__anon7dd068ea0111::BinOpInfo133 bool isFixedPointOp() const {
134 // We cannot simply check the result type since comparison operations return
135 // an int.
136 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
137 QualType LHSType = BinOp->getLHS()->getType();
138 QualType RHSType = BinOp->getRHS()->getType();
139 return LHSType->isFixedPointType() || RHSType->isFixedPointType();
140 }
141 if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
142 return UnOp->getSubExpr()->getType()->isFixedPointType();
143 return false;
144 }
145 };
146
MustVisitNullValue(const Expr * E)147 static bool MustVisitNullValue(const Expr *E) {
148 // If a null pointer expression's type is the C++0x nullptr_t, then
149 // it's not necessarily a simple constant and it must be evaluated
150 // for its potential side effects.
151 return E->getType()->isNullPtrType();
152 }
153
154 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
getUnwidenedIntegerType(const ASTContext & Ctx,const Expr * E)155 static std::optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
156 const Expr *E) {
157 const Expr *Base = E->IgnoreImpCasts();
158 if (E == Base)
159 return std::nullopt;
160
161 QualType BaseTy = Base->getType();
162 if (!Ctx.isPromotableIntegerType(BaseTy) ||
163 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
164 return std::nullopt;
165
166 return BaseTy;
167 }
168
169 /// Check if \p E is a widened promoted integer.
IsWidenedIntegerOp(const ASTContext & Ctx,const Expr * E)170 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
171 return getUnwidenedIntegerType(Ctx, E).has_value();
172 }
173
174 /// Check if we can skip the overflow check for \p Op.
CanElideOverflowCheck(const ASTContext & Ctx,const BinOpInfo & Op)175 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
176 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
177 "Expected a unary or binary operator");
178
179 // If the binop has constant inputs and we can prove there is no overflow,
180 // we can elide the overflow check.
181 if (!Op.mayHaveIntegerOverflow())
182 return true;
183
184 // If a unary op has a widened operand, the op cannot overflow.
185 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
186 return !UO->canOverflow();
187
188 // We usually don't need overflow checks for binops with widened operands.
189 // Multiplication with promoted unsigned operands is a special case.
190 const auto *BO = cast<BinaryOperator>(Op.E);
191 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
192 if (!OptionalLHSTy)
193 return false;
194
195 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
196 if (!OptionalRHSTy)
197 return false;
198
199 QualType LHSTy = *OptionalLHSTy;
200 QualType RHSTy = *OptionalRHSTy;
201
202 // This is the simple case: binops without unsigned multiplication, and with
203 // widened operands. No overflow check is needed here.
204 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
205 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
206 return true;
207
208 // For unsigned multiplication the overflow check can be elided if either one
209 // of the unpromoted types are less than half the size of the promoted type.
210 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
211 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
212 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
213 }
214
215 class ScalarExprEmitter
216 : public StmtVisitor<ScalarExprEmitter, Value*> {
217 CodeGenFunction &CGF;
218 CGBuilderTy &Builder;
219 bool IgnoreResultAssign;
220 llvm::LLVMContext &VMContext;
221 public:
222
ScalarExprEmitter(CodeGenFunction & cgf,bool ira=false)223 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
224 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
225 VMContext(cgf.getLLVMContext()) {
226 }
227
228 //===--------------------------------------------------------------------===//
229 // Utilities
230 //===--------------------------------------------------------------------===//
231
TestAndClearIgnoreResultAssign()232 bool TestAndClearIgnoreResultAssign() {
233 bool I = IgnoreResultAssign;
234 IgnoreResultAssign = false;
235 return I;
236 }
237
ConvertType(QualType T)238 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
EmitLValue(const Expr * E)239 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
EmitCheckedLValue(const Expr * E,CodeGenFunction::TypeCheckKind TCK)240 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
241 return CGF.EmitCheckedLValue(E, TCK);
242 }
243
244 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
245 const BinOpInfo &Info);
246
EmitLoadOfLValue(LValue LV,SourceLocation Loc)247 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
248 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
249 }
250
EmitLValueAlignmentAssumption(const Expr * E,Value * V)251 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
252 const AlignValueAttr *AVAttr = nullptr;
253 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
254 const ValueDecl *VD = DRE->getDecl();
255
256 if (VD->getType()->isReferenceType()) {
257 if (const auto *TTy =
258 VD->getType().getNonReferenceType()->getAs<TypedefType>())
259 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
260 } else {
261 // Assumptions for function parameters are emitted at the start of the
262 // function, so there is no need to repeat that here,
263 // unless the alignment-assumption sanitizer is enabled,
264 // then we prefer the assumption over alignment attribute
265 // on IR function param.
266 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
267 return;
268
269 AVAttr = VD->getAttr<AlignValueAttr>();
270 }
271 }
272
273 if (!AVAttr)
274 if (const auto *TTy = E->getType()->getAs<TypedefType>())
275 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
276
277 if (!AVAttr)
278 return;
279
280 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
281 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
282 CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
283 }
284
285 /// EmitLoadOfLValue - Given an expression with complex type that represents a
286 /// value l-value, this method emits the address of the l-value, then loads
287 /// and returns the result.
EmitLoadOfLValue(const Expr * E)288 Value *EmitLoadOfLValue(const Expr *E) {
289 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
290 E->getExprLoc());
291
292 EmitLValueAlignmentAssumption(E, V);
293 return V;
294 }
295
296 /// EmitConversionToBool - Convert the specified expression value to a
297 /// boolean (i1) truth value. This is equivalent to "Val != 0".
298 Value *EmitConversionToBool(Value *Src, QualType DstTy);
299
300 /// Emit a check that a conversion from a floating-point type does not
301 /// overflow.
302 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
303 Value *Src, QualType SrcType, QualType DstType,
304 llvm::Type *DstTy, SourceLocation Loc);
305
306 /// Known implicit conversion check kinds.
307 /// Keep in sync with the enum of the same name in ubsan_handlers.h
308 enum ImplicitConversionCheckKind : unsigned char {
309 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
310 ICCK_UnsignedIntegerTruncation = 1,
311 ICCK_SignedIntegerTruncation = 2,
312 ICCK_IntegerSignChange = 3,
313 ICCK_SignedIntegerTruncationOrSignChange = 4,
314 };
315
316 /// Emit a check that an [implicit] truncation of an integer does not
317 /// discard any bits. It is not UB, so we use the value after truncation.
318 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
319 QualType DstType, SourceLocation Loc);
320
321 /// Emit a check that an [implicit] conversion of an integer does not change
322 /// the sign of the value. It is not UB, so we use the value after conversion.
323 /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
324 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
325 QualType DstType, SourceLocation Loc);
326
327 /// Emit a conversion from the specified type to the specified destination
328 /// type, both of which are LLVM scalar types.
329 struct ScalarConversionOpts {
330 bool TreatBooleanAsSigned;
331 bool EmitImplicitIntegerTruncationChecks;
332 bool EmitImplicitIntegerSignChangeChecks;
333
ScalarConversionOpts__anon7dd068ea0111::ScalarExprEmitter::ScalarConversionOpts334 ScalarConversionOpts()
335 : TreatBooleanAsSigned(false),
336 EmitImplicitIntegerTruncationChecks(false),
337 EmitImplicitIntegerSignChangeChecks(false) {}
338
ScalarConversionOpts__anon7dd068ea0111::ScalarExprEmitter::ScalarConversionOpts339 ScalarConversionOpts(clang::SanitizerSet SanOpts)
340 : TreatBooleanAsSigned(false),
341 EmitImplicitIntegerTruncationChecks(
342 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
343 EmitImplicitIntegerSignChangeChecks(
344 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
345 };
346 Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
347 llvm::Type *SrcTy, llvm::Type *DstTy,
348 ScalarConversionOpts Opts);
349 Value *
350 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
351 SourceLocation Loc,
352 ScalarConversionOpts Opts = ScalarConversionOpts());
353
354 /// Convert between either a fixed point and other fixed point or fixed point
355 /// and an integer.
356 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
357 SourceLocation Loc);
358
359 /// Emit a conversion from the specified complex type to the specified
360 /// destination type, where the destination type is an LLVM scalar type.
361 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
362 QualType SrcTy, QualType DstTy,
363 SourceLocation Loc);
364
365 /// EmitNullValue - Emit a value that corresponds to null for the given type.
366 Value *EmitNullValue(QualType Ty);
367
368 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
EmitFloatToBoolConversion(Value * V)369 Value *EmitFloatToBoolConversion(Value *V) {
370 // Compare against 0.0 for fp scalars.
371 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
372 return Builder.CreateFCmpUNE(V, Zero, "tobool");
373 }
374
375 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
EmitPointerToBoolConversion(Value * V,QualType QT)376 Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
377 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
378
379 return Builder.CreateICmpNE(V, Zero, "tobool");
380 }
381
EmitIntToBoolConversion(Value * V)382 Value *EmitIntToBoolConversion(Value *V) {
383 // Because of the type rules of C, we often end up computing a
384 // logical value, then zero extending it to int, then wanting it
385 // as a logical value again. Optimize this common case.
386 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
387 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
388 Value *Result = ZI->getOperand(0);
389 // If there aren't any more uses, zap the instruction to save space.
390 // Note that there can be more uses, for example if this
391 // is the result of an assignment.
392 if (ZI->use_empty())
393 ZI->eraseFromParent();
394 return Result;
395 }
396 }
397
398 return Builder.CreateIsNotNull(V, "tobool");
399 }
400
401 //===--------------------------------------------------------------------===//
402 // Visitor Methods
403 //===--------------------------------------------------------------------===//
404
Visit(Expr * E)405 Value *Visit(Expr *E) {
406 ApplyDebugLocation DL(CGF, E);
407 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
408 }
409
VisitStmt(Stmt * S)410 Value *VisitStmt(Stmt *S) {
411 S->dump(llvm::errs(), CGF.getContext());
412 llvm_unreachable("Stmt can't have complex result type!");
413 }
414 Value *VisitExpr(Expr *S);
415
VisitConstantExpr(ConstantExpr * E)416 Value *VisitConstantExpr(ConstantExpr *E) {
417 // A constant expression of type 'void' generates no code and produces no
418 // value.
419 if (E->getType()->isVoidType())
420 return nullptr;
421
422 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
423 if (E->isGLValue())
424 return CGF.Builder.CreateLoad(Address(
425 Result, CGF.ConvertTypeForMem(E->getType()),
426 CGF.getContext().getTypeAlignInChars(E->getType())));
427 return Result;
428 }
429 return Visit(E->getSubExpr());
430 }
VisitParenExpr(ParenExpr * PE)431 Value *VisitParenExpr(ParenExpr *PE) {
432 return Visit(PE->getSubExpr());
433 }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)434 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
435 return Visit(E->getReplacement());
436 }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)437 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
438 return Visit(GE->getResultExpr());
439 }
VisitCoawaitExpr(CoawaitExpr * S)440 Value *VisitCoawaitExpr(CoawaitExpr *S) {
441 return CGF.EmitCoawaitExpr(*S).getScalarVal();
442 }
VisitCoyieldExpr(CoyieldExpr * S)443 Value *VisitCoyieldExpr(CoyieldExpr *S) {
444 return CGF.EmitCoyieldExpr(*S).getScalarVal();
445 }
VisitUnaryCoawait(const UnaryOperator * E)446 Value *VisitUnaryCoawait(const UnaryOperator *E) {
447 return Visit(E->getSubExpr());
448 }
449
450 // Leaves.
VisitIntegerLiteral(const IntegerLiteral * E)451 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
452 return Builder.getInt(E->getValue());
453 }
VisitFixedPointLiteral(const FixedPointLiteral * E)454 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
455 return Builder.getInt(E->getValue());
456 }
VisitFloatingLiteral(const FloatingLiteral * E)457 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
458 return llvm::ConstantFP::get(VMContext, E->getValue());
459 }
VisitCharacterLiteral(const CharacterLiteral * E)460 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
461 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
462 }
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)463 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
464 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
465 }
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)466 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
467 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
468 }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)469 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
470 if (E->getType()->isVoidType())
471 return nullptr;
472
473 return EmitNullValue(E->getType());
474 }
VisitGNUNullExpr(const GNUNullExpr * E)475 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
476 return EmitNullValue(E->getType());
477 }
478 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
479 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
VisitAddrLabelExpr(const AddrLabelExpr * E)480 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
481 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
482 return Builder.CreateBitCast(V, ConvertType(E->getType()));
483 }
484
VisitSizeOfPackExpr(SizeOfPackExpr * E)485 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
486 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
487 }
488
VisitPseudoObjectExpr(PseudoObjectExpr * E)489 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
490 return CGF.EmitPseudoObjectRValue(E).getScalarVal();
491 }
492
493 Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
494
VisitOpaqueValueExpr(OpaqueValueExpr * E)495 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
496 if (E->isGLValue())
497 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
498 E->getExprLoc());
499
500 // Otherwise, assume the mapping is the scalar directly.
501 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
502 }
503
504 // l-values.
VisitDeclRefExpr(DeclRefExpr * E)505 Value *VisitDeclRefExpr(DeclRefExpr *E) {
506 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
507 return CGF.emitScalarConstant(Constant, E);
508 return EmitLoadOfLValue(E);
509 }
510
VisitObjCSelectorExpr(ObjCSelectorExpr * E)511 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
512 return CGF.EmitObjCSelectorExpr(E);
513 }
VisitObjCProtocolExpr(ObjCProtocolExpr * E)514 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
515 return CGF.EmitObjCProtocolExpr(E);
516 }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)517 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
518 return EmitLoadOfLValue(E);
519 }
VisitObjCMessageExpr(ObjCMessageExpr * E)520 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
521 if (E->getMethodDecl() &&
522 E->getMethodDecl()->getReturnType()->isReferenceType())
523 return EmitLoadOfLValue(E);
524 return CGF.EmitObjCMessageExpr(E).getScalarVal();
525 }
526
VisitObjCIsaExpr(ObjCIsaExpr * E)527 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
528 LValue LV = CGF.EmitObjCIsaExpr(E);
529 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
530 return V;
531 }
532
VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr * E)533 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
534 VersionTuple Version = E->getVersion();
535
536 // If we're checking for a platform older than our minimum deployment
537 // target, we can fold the check away.
538 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
539 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
540
541 return CGF.EmitBuiltinAvailable(Version);
542 }
543
544 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
545 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
546 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
547 Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
548 Value *VisitMemberExpr(MemberExpr *E);
VisitExtVectorElementExpr(Expr * E)549 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)550 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
551 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
552 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
553 // literals aren't l-values in C++. We do so simply because that's the
554 // cleanest way to handle compound literals in C++.
555 // See the discussion here: https://reviews.llvm.org/D64464
556 return EmitLoadOfLValue(E);
557 }
558
559 Value *VisitInitListExpr(InitListExpr *E);
560
VisitArrayInitIndexExpr(ArrayInitIndexExpr * E)561 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
562 assert(CGF.getArrayInitIndex() &&
563 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
564 return CGF.getArrayInitIndex();
565 }
566
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)567 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
568 return EmitNullValue(E->getType());
569 }
VisitExplicitCastExpr(ExplicitCastExpr * E)570 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
571 CGF.CGM.EmitExplicitCastExprType(E, &CGF);
572 return VisitCastExpr(E);
573 }
574 Value *VisitCastExpr(CastExpr *E);
575
VisitCallExpr(const CallExpr * E)576 Value *VisitCallExpr(const CallExpr *E) {
577 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
578 return EmitLoadOfLValue(E);
579
580 Value *V = CGF.EmitCallExpr(E).getScalarVal();
581
582 EmitLValueAlignmentAssumption(E, V);
583 return V;
584 }
585
586 Value *VisitStmtExpr(const StmtExpr *E);
587
588 // Unary Operators.
VisitUnaryPostDec(const UnaryOperator * E)589 Value *VisitUnaryPostDec(const UnaryOperator *E) {
590 LValue LV = EmitLValue(E->getSubExpr());
591 return EmitScalarPrePostIncDec(E, LV, false, false);
592 }
VisitUnaryPostInc(const UnaryOperator * E)593 Value *VisitUnaryPostInc(const UnaryOperator *E) {
594 LValue LV = EmitLValue(E->getSubExpr());
595 return EmitScalarPrePostIncDec(E, LV, true, false);
596 }
VisitUnaryPreDec(const UnaryOperator * E)597 Value *VisitUnaryPreDec(const UnaryOperator *E) {
598 LValue LV = EmitLValue(E->getSubExpr());
599 return EmitScalarPrePostIncDec(E, LV, false, true);
600 }
VisitUnaryPreInc(const UnaryOperator * E)601 Value *VisitUnaryPreInc(const UnaryOperator *E) {
602 LValue LV = EmitLValue(E->getSubExpr());
603 return EmitScalarPrePostIncDec(E, LV, true, true);
604 }
605
606 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
607 llvm::Value *InVal,
608 bool IsInc);
609
610 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
611 bool isInc, bool isPre);
612
613
VisitUnaryAddrOf(const UnaryOperator * E)614 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
615 if (isa<MemberPointerType>(E->getType())) // never sugared
616 return CGF.CGM.getMemberPointerConstant(E);
617
618 return EmitLValue(E->getSubExpr()).getPointer(CGF);
619 }
VisitUnaryDeref(const UnaryOperator * E)620 Value *VisitUnaryDeref(const UnaryOperator *E) {
621 if (E->getType()->isVoidType())
622 return Visit(E->getSubExpr()); // the actual value should be unused
623 return EmitLoadOfLValue(E);
624 }
625
626 Value *VisitUnaryPlus(const UnaryOperator *E,
627 QualType PromotionType = QualType());
628 Value *VisitPlus(const UnaryOperator *E, QualType PromotionType);
629 Value *VisitUnaryMinus(const UnaryOperator *E,
630 QualType PromotionType = QualType());
631 Value *VisitMinus(const UnaryOperator *E, QualType PromotionType);
632
633 Value *VisitUnaryNot (const UnaryOperator *E);
634 Value *VisitUnaryLNot (const UnaryOperator *E);
635 Value *VisitUnaryReal(const UnaryOperator *E,
636 QualType PromotionType = QualType());
637 Value *VisitReal(const UnaryOperator *E, QualType PromotionType);
638 Value *VisitUnaryImag(const UnaryOperator *E,
639 QualType PromotionType = QualType());
640 Value *VisitImag(const UnaryOperator *E, QualType PromotionType);
VisitUnaryExtension(const UnaryOperator * E)641 Value *VisitUnaryExtension(const UnaryOperator *E) {
642 return Visit(E->getSubExpr());
643 }
644
645 // C++
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)646 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
647 return EmitLoadOfLValue(E);
648 }
VisitSourceLocExpr(SourceLocExpr * SLE)649 Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
650 auto &Ctx = CGF.getContext();
651 APValue Evaluated =
652 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
653 return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
654 SLE->getType());
655 }
656
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)657 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
658 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
659 return Visit(DAE->getExpr());
660 }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)661 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
662 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
663 return Visit(DIE->getExpr());
664 }
VisitCXXThisExpr(CXXThisExpr * TE)665 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
666 return CGF.LoadCXXThis();
667 }
668
669 Value *VisitExprWithCleanups(ExprWithCleanups *E);
VisitCXXNewExpr(const CXXNewExpr * E)670 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
671 return CGF.EmitCXXNewExpr(E);
672 }
VisitCXXDeleteExpr(const CXXDeleteExpr * E)673 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
674 CGF.EmitCXXDeleteExpr(E);
675 return nullptr;
676 }
677
VisitTypeTraitExpr(const TypeTraitExpr * E)678 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
679 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
680 }
681
VisitConceptSpecializationExpr(const ConceptSpecializationExpr * E)682 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
683 return Builder.getInt1(E->isSatisfied());
684 }
685
VisitRequiresExpr(const RequiresExpr * E)686 Value *VisitRequiresExpr(const RequiresExpr *E) {
687 return Builder.getInt1(E->isSatisfied());
688 }
689
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)690 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
691 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
692 }
693
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)694 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
695 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
696 }
697
VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr * E)698 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
699 // C++ [expr.pseudo]p1:
700 // The result shall only be used as the operand for the function call
701 // operator (), and the result of such a call has type void. The only
702 // effect is the evaluation of the postfix-expression before the dot or
703 // arrow.
704 CGF.EmitScalarExpr(E->getBase());
705 return nullptr;
706 }
707
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)708 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
709 return EmitNullValue(E->getType());
710 }
711
VisitCXXThrowExpr(const CXXThrowExpr * E)712 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
713 CGF.EmitCXXThrowExpr(E);
714 return nullptr;
715 }
716
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)717 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
718 return Builder.getInt1(E->getValue());
719 }
720
721 // Binary Operators.
EmitMul(const BinOpInfo & Ops)722 Value *EmitMul(const BinOpInfo &Ops) {
723 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
724 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
725 case LangOptions::SOB_Defined:
726 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
727 case LangOptions::SOB_Undefined:
728 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
729 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
730 [[fallthrough]];
731 case LangOptions::SOB_Trapping:
732 if (CanElideOverflowCheck(CGF.getContext(), Ops))
733 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
734 return EmitOverflowCheckedBinOp(Ops);
735 }
736 }
737
738 if (Ops.Ty->isConstantMatrixType()) {
739 llvm::MatrixBuilder MB(Builder);
740 // We need to check the types of the operands of the operator to get the
741 // correct matrix dimensions.
742 auto *BO = cast<BinaryOperator>(Ops.E);
743 auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
744 BO->getLHS()->getType().getCanonicalType());
745 auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
746 BO->getRHS()->getType().getCanonicalType());
747 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
748 if (LHSMatTy && RHSMatTy)
749 return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
750 LHSMatTy->getNumColumns(),
751 RHSMatTy->getNumColumns());
752 return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
753 }
754
755 if (Ops.Ty->isUnsignedIntegerType() &&
756 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
757 !CanElideOverflowCheck(CGF.getContext(), Ops))
758 return EmitOverflowCheckedBinOp(Ops);
759
760 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
761 // Preserve the old values
762 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
763 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
764 }
765 if (Ops.isFixedPointOp())
766 return EmitFixedPointBinOp(Ops);
767 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
768 }
769 /// Create a binary op that checks for overflow.
770 /// Currently only supports +, - and *.
771 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
772
773 // Check for undefined division and modulus behaviors.
774 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
775 llvm::Value *Zero,bool isDiv);
776 // Common helper for getting how wide LHS of shift is.
777 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
778
779 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
780 // non powers of two.
781 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
782
783 Value *EmitDiv(const BinOpInfo &Ops);
784 Value *EmitRem(const BinOpInfo &Ops);
785 Value *EmitAdd(const BinOpInfo &Ops);
786 Value *EmitSub(const BinOpInfo &Ops);
787 Value *EmitShl(const BinOpInfo &Ops);
788 Value *EmitShr(const BinOpInfo &Ops);
EmitAnd(const BinOpInfo & Ops)789 Value *EmitAnd(const BinOpInfo &Ops) {
790 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
791 }
EmitXor(const BinOpInfo & Ops)792 Value *EmitXor(const BinOpInfo &Ops) {
793 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
794 }
EmitOr(const BinOpInfo & Ops)795 Value *EmitOr (const BinOpInfo &Ops) {
796 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
797 }
798
799 // Helper functions for fixed point binary operations.
800 Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
801
802 BinOpInfo EmitBinOps(const BinaryOperator *E,
803 QualType PromotionTy = QualType());
804
805 Value *EmitPromotedValue(Value *result, QualType PromotionType);
806 Value *EmitUnPromotedValue(Value *result, QualType ExprType);
807 Value *EmitPromoted(const Expr *E, QualType PromotionType);
808
809 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
810 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
811 Value *&Result);
812
813 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
814 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
815
getPromotionType(QualType Ty)816 QualType getPromotionType(QualType Ty) {
817 if (auto *CT = Ty->getAs<ComplexType>()) {
818 QualType ElementType = CT->getElementType();
819 if (ElementType.UseExcessPrecision(CGF.getContext()))
820 return CGF.getContext().getComplexType(CGF.getContext().FloatTy);
821 }
822 if (Ty.UseExcessPrecision(CGF.getContext()))
823 return CGF.getContext().FloatTy;
824 return QualType();
825 }
826
827 // Binary operators and binary compound assignment operators.
828 #define HANDLEBINOP(OP) \
829 Value *VisitBin##OP(const BinaryOperator *E) { \
830 QualType promotionTy = getPromotionType(E->getType()); \
831 auto result = Emit##OP(EmitBinOps(E, promotionTy)); \
832 if (result && !promotionTy.isNull()) \
833 result = EmitUnPromotedValue(result, E->getType()); \
834 return result; \
835 } \
836 Value *VisitBin##OP##Assign(const CompoundAssignOperator *E) { \
837 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit##OP); \
838 }
839 HANDLEBINOP(Mul)
840 HANDLEBINOP(Div)
841 HANDLEBINOP(Rem)
842 HANDLEBINOP(Add)
843 HANDLEBINOP(Sub)
844 HANDLEBINOP(Shl)
845 HANDLEBINOP(Shr)
846 HANDLEBINOP(And)
847 HANDLEBINOP(Xor)
848 HANDLEBINOP(Or)
849 #undef HANDLEBINOP
850
851 // Comparisons.
852 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
853 llvm::CmpInst::Predicate SICmpOpc,
854 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
855 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
856 Value *VisitBin##CODE(const BinaryOperator *E) { \
857 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
858 llvm::FCmpInst::FP, SIG); }
859 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
860 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
861 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
862 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
863 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
864 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
865 #undef VISITCOMP
866
867 Value *VisitBinAssign (const BinaryOperator *E);
868
869 Value *VisitBinLAnd (const BinaryOperator *E);
870 Value *VisitBinLOr (const BinaryOperator *E);
871 Value *VisitBinComma (const BinaryOperator *E);
872
VisitBinPtrMemD(const Expr * E)873 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
VisitBinPtrMemI(const Expr * E)874 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
875
VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator * E)876 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
877 return Visit(E->getSemanticForm());
878 }
879
880 // Other Operators.
881 Value *VisitBlockExpr(const BlockExpr *BE);
882 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
883 Value *VisitChooseExpr(ChooseExpr *CE);
884 Value *VisitVAArgExpr(VAArgExpr *VE);
VisitObjCStringLiteral(const ObjCStringLiteral * E)885 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
886 return CGF.EmitObjCStringLiteral(E);
887 }
VisitObjCBoxedExpr(ObjCBoxedExpr * E)888 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
889 return CGF.EmitObjCBoxedExpr(E);
890 }
VisitObjCArrayLiteral(ObjCArrayLiteral * E)891 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
892 return CGF.EmitObjCArrayLiteral(E);
893 }
VisitObjCDictionaryLiteral(ObjCDictionaryLiteral * E)894 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
895 return CGF.EmitObjCDictionaryLiteral(E);
896 }
897 Value *VisitAsTypeExpr(AsTypeExpr *CE);
898 Value *VisitAtomicExpr(AtomicExpr *AE);
899 };
900 } // end anonymous namespace.
901
902 //===----------------------------------------------------------------------===//
903 // Utilities
904 //===----------------------------------------------------------------------===//
905
906 /// EmitConversionToBool - Convert the specified expression value to a
907 /// boolean (i1) truth value. This is equivalent to "Val != 0".
EmitConversionToBool(Value * Src,QualType SrcType)908 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
909 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
910
911 if (SrcType->isRealFloatingType())
912 return EmitFloatToBoolConversion(Src);
913
914 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
915 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
916
917 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
918 "Unknown scalar type to convert");
919
920 if (isa<llvm::IntegerType>(Src->getType()))
921 return EmitIntToBoolConversion(Src);
922
923 assert(isa<llvm::PointerType>(Src->getType()));
924 return EmitPointerToBoolConversion(Src, SrcType);
925 }
926
EmitFloatConversionCheck(Value * OrigSrc,QualType OrigSrcType,Value * Src,QualType SrcType,QualType DstType,llvm::Type * DstTy,SourceLocation Loc)927 void ScalarExprEmitter::EmitFloatConversionCheck(
928 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
929 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
930 assert(SrcType->isFloatingType() && "not a conversion from floating point");
931 if (!isa<llvm::IntegerType>(DstTy))
932 return;
933
934 CodeGenFunction::SanitizerScope SanScope(&CGF);
935 using llvm::APFloat;
936 using llvm::APSInt;
937
938 llvm::Value *Check = nullptr;
939 const llvm::fltSemantics &SrcSema =
940 CGF.getContext().getFloatTypeSemantics(OrigSrcType);
941
942 // Floating-point to integer. This has undefined behavior if the source is
943 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
944 // to an integer).
945 unsigned Width = CGF.getContext().getIntWidth(DstType);
946 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
947
948 APSInt Min = APSInt::getMinValue(Width, Unsigned);
949 APFloat MinSrc(SrcSema, APFloat::uninitialized);
950 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
951 APFloat::opOverflow)
952 // Don't need an overflow check for lower bound. Just check for
953 // -Inf/NaN.
954 MinSrc = APFloat::getInf(SrcSema, true);
955 else
956 // Find the largest value which is too small to represent (before
957 // truncation toward zero).
958 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
959
960 APSInt Max = APSInt::getMaxValue(Width, Unsigned);
961 APFloat MaxSrc(SrcSema, APFloat::uninitialized);
962 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
963 APFloat::opOverflow)
964 // Don't need an overflow check for upper bound. Just check for
965 // +Inf/NaN.
966 MaxSrc = APFloat::getInf(SrcSema, false);
967 else
968 // Find the smallest value which is too large to represent (before
969 // truncation toward zero).
970 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
971
972 // If we're converting from __half, convert the range to float to match
973 // the type of src.
974 if (OrigSrcType->isHalfType()) {
975 const llvm::fltSemantics &Sema =
976 CGF.getContext().getFloatTypeSemantics(SrcType);
977 bool IsInexact;
978 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
979 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
980 }
981
982 llvm::Value *GE =
983 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
984 llvm::Value *LE =
985 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
986 Check = Builder.CreateAnd(GE, LE);
987
988 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
989 CGF.EmitCheckTypeDescriptor(OrigSrcType),
990 CGF.EmitCheckTypeDescriptor(DstType)};
991 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
992 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
993 }
994
995 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
996 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
997 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
998 std::pair<llvm::Value *, SanitizerMask>>
EmitIntegerTruncationCheckHelper(Value * Src,QualType SrcType,Value * Dst,QualType DstType,CGBuilderTy & Builder)999 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1000 QualType DstType, CGBuilderTy &Builder) {
1001 llvm::Type *SrcTy = Src->getType();
1002 llvm::Type *DstTy = Dst->getType();
1003 (void)DstTy; // Only used in assert()
1004
1005 // This should be truncation of integral types.
1006 assert(Src != Dst);
1007 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
1008 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1009 "non-integer llvm type");
1010
1011 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1012 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1013
1014 // If both (src and dst) types are unsigned, then it's an unsigned truncation.
1015 // Else, it is a signed truncation.
1016 ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1017 SanitizerMask Mask;
1018 if (!SrcSigned && !DstSigned) {
1019 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1020 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
1021 } else {
1022 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1023 Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
1024 }
1025
1026 llvm::Value *Check = nullptr;
1027 // 1. Extend the truncated value back to the same width as the Src.
1028 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1029 // 2. Equality-compare with the original source value
1030 Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1031 // If the comparison result is 'i1 false', then the truncation was lossy.
1032 return std::make_pair(Kind, std::make_pair(Check, Mask));
1033 }
1034
PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(QualType SrcType,QualType DstType)1035 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1036 QualType SrcType, QualType DstType) {
1037 return SrcType->isIntegerType() && DstType->isIntegerType();
1038 }
1039
EmitIntegerTruncationCheck(Value * Src,QualType SrcType,Value * Dst,QualType DstType,SourceLocation Loc)1040 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1041 Value *Dst, QualType DstType,
1042 SourceLocation Loc) {
1043 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1044 return;
1045
1046 // We only care about int->int conversions here.
1047 // We ignore conversions to/from pointer and/or bool.
1048 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1049 DstType))
1050 return;
1051
1052 unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1053 unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1054 // This must be truncation. Else we do not care.
1055 if (SrcBits <= DstBits)
1056 return;
1057
1058 assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1059
1060 // If the integer sign change sanitizer is enabled,
1061 // and we are truncating from larger unsigned type to smaller signed type,
1062 // let that next sanitizer deal with it.
1063 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1064 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1065 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1066 (!SrcSigned && DstSigned))
1067 return;
1068
1069 CodeGenFunction::SanitizerScope SanScope(&CGF);
1070
1071 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1072 std::pair<llvm::Value *, SanitizerMask>>
1073 Check =
1074 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1075 // If the comparison result is 'i1 false', then the truncation was lossy.
1076
1077 // Do we care about this type of truncation?
1078 if (!CGF.SanOpts.has(Check.second.second))
1079 return;
1080
1081 llvm::Constant *StaticArgs[] = {
1082 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1083 CGF.EmitCheckTypeDescriptor(DstType),
1084 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1085 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1086 {Src, Dst});
1087 }
1088
1089 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1090 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1091 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1092 std::pair<llvm::Value *, SanitizerMask>>
EmitIntegerSignChangeCheckHelper(Value * Src,QualType SrcType,Value * Dst,QualType DstType,CGBuilderTy & Builder)1093 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1094 QualType DstType, CGBuilderTy &Builder) {
1095 llvm::Type *SrcTy = Src->getType();
1096 llvm::Type *DstTy = Dst->getType();
1097
1098 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1099 "non-integer llvm type");
1100
1101 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1102 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1103 (void)SrcSigned; // Only used in assert()
1104 (void)DstSigned; // Only used in assert()
1105 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1106 unsigned DstBits = DstTy->getScalarSizeInBits();
1107 (void)SrcBits; // Only used in assert()
1108 (void)DstBits; // Only used in assert()
1109
1110 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1111 "either the widths should be different, or the signednesses.");
1112
1113 // NOTE: zero value is considered to be non-negative.
1114 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1115 const char *Name) -> Value * {
1116 // Is this value a signed type?
1117 bool VSigned = VType->isSignedIntegerOrEnumerationType();
1118 llvm::Type *VTy = V->getType();
1119 if (!VSigned) {
1120 // If the value is unsigned, then it is never negative.
1121 // FIXME: can we encounter non-scalar VTy here?
1122 return llvm::ConstantInt::getFalse(VTy->getContext());
1123 }
1124 // Get the zero of the same type with which we will be comparing.
1125 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1126 // %V.isnegative = icmp slt %V, 0
1127 // I.e is %V *strictly* less than zero, does it have negative value?
1128 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1129 llvm::Twine(Name) + "." + V->getName() +
1130 ".negativitycheck");
1131 };
1132
1133 // 1. Was the old Value negative?
1134 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1135 // 2. Is the new Value negative?
1136 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1137 // 3. Now, was the 'negativity status' preserved during the conversion?
1138 // NOTE: conversion from negative to zero is considered to change the sign.
1139 // (We want to get 'false' when the conversion changed the sign)
1140 // So we should just equality-compare the negativity statuses.
1141 llvm::Value *Check = nullptr;
1142 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1143 // If the comparison result is 'false', then the conversion changed the sign.
1144 return std::make_pair(
1145 ScalarExprEmitter::ICCK_IntegerSignChange,
1146 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1147 }
1148
EmitIntegerSignChangeCheck(Value * Src,QualType SrcType,Value * Dst,QualType DstType,SourceLocation Loc)1149 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1150 Value *Dst, QualType DstType,
1151 SourceLocation Loc) {
1152 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1153 return;
1154
1155 llvm::Type *SrcTy = Src->getType();
1156 llvm::Type *DstTy = Dst->getType();
1157
1158 // We only care about int->int conversions here.
1159 // We ignore conversions to/from pointer and/or bool.
1160 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1161 DstType))
1162 return;
1163
1164 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1165 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1166 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1167 unsigned DstBits = DstTy->getScalarSizeInBits();
1168
1169 // Now, we do not need to emit the check in *all* of the cases.
1170 // We can avoid emitting it in some obvious cases where it would have been
1171 // dropped by the opt passes (instcombine) always anyways.
1172 // If it's a cast between effectively the same type, no check.
1173 // NOTE: this is *not* equivalent to checking the canonical types.
1174 if (SrcSigned == DstSigned && SrcBits == DstBits)
1175 return;
1176 // At least one of the values needs to have signed type.
1177 // If both are unsigned, then obviously, neither of them can be negative.
1178 if (!SrcSigned && !DstSigned)
1179 return;
1180 // If the conversion is to *larger* *signed* type, then no check is needed.
1181 // Because either sign-extension happens (so the sign will remain),
1182 // or zero-extension will happen (the sign bit will be zero.)
1183 if ((DstBits > SrcBits) && DstSigned)
1184 return;
1185 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1186 (SrcBits > DstBits) && SrcSigned) {
1187 // If the signed integer truncation sanitizer is enabled,
1188 // and this is a truncation from signed type, then no check is needed.
1189 // Because here sign change check is interchangeable with truncation check.
1190 return;
1191 }
1192 // That's it. We can't rule out any more cases with the data we have.
1193
1194 CodeGenFunction::SanitizerScope SanScope(&CGF);
1195
1196 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1197 std::pair<llvm::Value *, SanitizerMask>>
1198 Check;
1199
1200 // Each of these checks needs to return 'false' when an issue was detected.
1201 ImplicitConversionCheckKind CheckKind;
1202 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1203 // So we can 'and' all the checks together, and still get 'false',
1204 // if at least one of the checks detected an issue.
1205
1206 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1207 CheckKind = Check.first;
1208 Checks.emplace_back(Check.second);
1209
1210 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1211 (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1212 // If the signed integer truncation sanitizer was enabled,
1213 // and we are truncating from larger unsigned type to smaller signed type,
1214 // let's handle the case we skipped in that check.
1215 Check =
1216 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1217 CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1218 Checks.emplace_back(Check.second);
1219 // If the comparison result is 'i1 false', then the truncation was lossy.
1220 }
1221
1222 llvm::Constant *StaticArgs[] = {
1223 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1224 CGF.EmitCheckTypeDescriptor(DstType),
1225 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1226 // EmitCheck() will 'and' all the checks together.
1227 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1228 {Src, Dst});
1229 }
1230
EmitScalarCast(Value * Src,QualType SrcType,QualType DstType,llvm::Type * SrcTy,llvm::Type * DstTy,ScalarConversionOpts Opts)1231 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1232 QualType DstType, llvm::Type *SrcTy,
1233 llvm::Type *DstTy,
1234 ScalarConversionOpts Opts) {
1235 // The Element types determine the type of cast to perform.
1236 llvm::Type *SrcElementTy;
1237 llvm::Type *DstElementTy;
1238 QualType SrcElementType;
1239 QualType DstElementType;
1240 if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1241 SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1242 DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1243 SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1244 DstElementType = DstType->castAs<MatrixType>()->getElementType();
1245 } else {
1246 assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1247 "cannot cast between matrix and non-matrix types");
1248 SrcElementTy = SrcTy;
1249 DstElementTy = DstTy;
1250 SrcElementType = SrcType;
1251 DstElementType = DstType;
1252 }
1253
1254 if (isa<llvm::IntegerType>(SrcElementTy)) {
1255 bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1256 if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1257 InputSigned = true;
1258 }
1259
1260 if (isa<llvm::IntegerType>(DstElementTy))
1261 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1262 if (InputSigned)
1263 return Builder.CreateSIToFP(Src, DstTy, "conv");
1264 return Builder.CreateUIToFP(Src, DstTy, "conv");
1265 }
1266
1267 if (isa<llvm::IntegerType>(DstElementTy)) {
1268 assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1269 bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType();
1270
1271 // If we can't recognize overflow as undefined behavior, assume that
1272 // overflow saturates. This protects against normal optimizations if we are
1273 // compiling with non-standard FP semantics.
1274 if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) {
1275 llvm::Intrinsic::ID IID =
1276 IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat;
1277 return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src);
1278 }
1279
1280 if (IsSigned)
1281 return Builder.CreateFPToSI(Src, DstTy, "conv");
1282 return Builder.CreateFPToUI(Src, DstTy, "conv");
1283 }
1284
1285 if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1286 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1287 return Builder.CreateFPExt(Src, DstTy, "conv");
1288 }
1289
1290 /// Emit a conversion from the specified type to the specified destination type,
1291 /// both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcType,QualType DstType,SourceLocation Loc,ScalarConversionOpts Opts)1292 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1293 QualType DstType,
1294 SourceLocation Loc,
1295 ScalarConversionOpts Opts) {
1296 // All conversions involving fixed point types should be handled by the
1297 // EmitFixedPoint family functions. This is done to prevent bloating up this
1298 // function more, and although fixed point numbers are represented by
1299 // integers, we do not want to follow any logic that assumes they should be
1300 // treated as integers.
1301 // TODO(leonardchan): When necessary, add another if statement checking for
1302 // conversions to fixed point types from other types.
1303 if (SrcType->isFixedPointType()) {
1304 if (DstType->isBooleanType())
1305 // It is important that we check this before checking if the dest type is
1306 // an integer because booleans are technically integer types.
1307 // We do not need to check the padding bit on unsigned types if unsigned
1308 // padding is enabled because overflow into this bit is undefined
1309 // behavior.
1310 return Builder.CreateIsNotNull(Src, "tobool");
1311 if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1312 DstType->isRealFloatingType())
1313 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1314
1315 llvm_unreachable(
1316 "Unhandled scalar conversion from a fixed point type to another type.");
1317 } else if (DstType->isFixedPointType()) {
1318 if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1319 // This also includes converting booleans and enums to fixed point types.
1320 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1321
1322 llvm_unreachable(
1323 "Unhandled scalar conversion to a fixed point type from another type.");
1324 }
1325
1326 QualType NoncanonicalSrcType = SrcType;
1327 QualType NoncanonicalDstType = DstType;
1328
1329 SrcType = CGF.getContext().getCanonicalType(SrcType);
1330 DstType = CGF.getContext().getCanonicalType(DstType);
1331 if (SrcType == DstType) return Src;
1332
1333 if (DstType->isVoidType()) return nullptr;
1334
1335 llvm::Value *OrigSrc = Src;
1336 QualType OrigSrcType = SrcType;
1337 llvm::Type *SrcTy = Src->getType();
1338
1339 // Handle conversions to bool first, they are special: comparisons against 0.
1340 if (DstType->isBooleanType())
1341 return EmitConversionToBool(Src, SrcType);
1342
1343 llvm::Type *DstTy = ConvertType(DstType);
1344
1345 // Cast from half through float if half isn't a native type.
1346 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1347 // Cast to FP using the intrinsic if the half type itself isn't supported.
1348 if (DstTy->isFloatingPointTy()) {
1349 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1350 return Builder.CreateCall(
1351 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1352 Src);
1353 } else {
1354 // Cast to other types through float, using either the intrinsic or FPExt,
1355 // depending on whether the half type itself is supported
1356 // (as opposed to operations on half, available with NativeHalfType).
1357 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1358 Src = Builder.CreateCall(
1359 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1360 CGF.CGM.FloatTy),
1361 Src);
1362 } else {
1363 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1364 }
1365 SrcType = CGF.getContext().FloatTy;
1366 SrcTy = CGF.FloatTy;
1367 }
1368 }
1369
1370 // Ignore conversions like int -> uint.
1371 if (SrcTy == DstTy) {
1372 if (Opts.EmitImplicitIntegerSignChangeChecks)
1373 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1374 NoncanonicalDstType, Loc);
1375
1376 return Src;
1377 }
1378
1379 // Handle pointer conversions next: pointers can only be converted to/from
1380 // other pointers and integers. Check for pointer types in terms of LLVM, as
1381 // some native types (like Obj-C id) may map to a pointer type.
1382 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1383 // The source value may be an integer, or a pointer.
1384 if (isa<llvm::PointerType>(SrcTy))
1385 return Builder.CreateBitCast(Src, DstTy, "conv");
1386
1387 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1388 // First, convert to the correct width so that we control the kind of
1389 // extension.
1390 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1391 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1392 llvm::Value* IntResult =
1393 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1394 // Then, cast to pointer.
1395 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1396 }
1397
1398 if (isa<llvm::PointerType>(SrcTy)) {
1399 // Must be an ptr to int cast.
1400 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1401 return Builder.CreatePtrToInt(Src, DstTy, "conv");
1402 }
1403
1404 // A scalar can be splatted to an extended vector of the same element type
1405 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1406 // Sema should add casts to make sure that the source expression's type is
1407 // the same as the vector's element type (sans qualifiers)
1408 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1409 SrcType.getTypePtr() &&
1410 "Splatted expr doesn't match with vector element type?");
1411
1412 // Splat the element across to all elements
1413 unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1414 return Builder.CreateVectorSplat(NumElements, Src, "splat");
1415 }
1416
1417 if (SrcType->isMatrixType() && DstType->isMatrixType())
1418 return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1419
1420 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1421 // Allow bitcast from vector to integer/fp of the same size.
1422 llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits();
1423 llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits();
1424 if (SrcSize == DstSize)
1425 return Builder.CreateBitCast(Src, DstTy, "conv");
1426
1427 // Conversions between vectors of different sizes are not allowed except
1428 // when vectors of half are involved. Operations on storage-only half
1429 // vectors require promoting half vector operands to float vectors and
1430 // truncating the result, which is either an int or float vector, to a
1431 // short or half vector.
1432
1433 // Source and destination are both expected to be vectors.
1434 llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1435 llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1436 (void)DstElementTy;
1437
1438 assert(((SrcElementTy->isIntegerTy() &&
1439 DstElementTy->isIntegerTy()) ||
1440 (SrcElementTy->isFloatingPointTy() &&
1441 DstElementTy->isFloatingPointTy())) &&
1442 "unexpected conversion between a floating-point vector and an "
1443 "integer vector");
1444
1445 // Truncate an i32 vector to an i16 vector.
1446 if (SrcElementTy->isIntegerTy())
1447 return Builder.CreateIntCast(Src, DstTy, false, "conv");
1448
1449 // Truncate a float vector to a half vector.
1450 if (SrcSize > DstSize)
1451 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1452
1453 // Promote a half vector to a float vector.
1454 return Builder.CreateFPExt(Src, DstTy, "conv");
1455 }
1456
1457 // Finally, we have the arithmetic types: real int/float.
1458 Value *Res = nullptr;
1459 llvm::Type *ResTy = DstTy;
1460
1461 // An overflowing conversion has undefined behavior if either the source type
1462 // or the destination type is a floating-point type. However, we consider the
1463 // range of representable values for all floating-point types to be
1464 // [-inf,+inf], so no overflow can ever happen when the destination type is a
1465 // floating-point type.
1466 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1467 OrigSrcType->isFloatingType())
1468 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1469 Loc);
1470
1471 // Cast to half through float if half isn't a native type.
1472 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1473 // Make sure we cast in a single step if from another FP type.
1474 if (SrcTy->isFloatingPointTy()) {
1475 // Use the intrinsic if the half type itself isn't supported
1476 // (as opposed to operations on half, available with NativeHalfType).
1477 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1478 return Builder.CreateCall(
1479 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1480 // If the half type is supported, just use an fptrunc.
1481 return Builder.CreateFPTrunc(Src, DstTy);
1482 }
1483 DstTy = CGF.FloatTy;
1484 }
1485
1486 Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1487
1488 if (DstTy != ResTy) {
1489 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1490 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1491 Res = Builder.CreateCall(
1492 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1493 Res);
1494 } else {
1495 Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1496 }
1497 }
1498
1499 if (Opts.EmitImplicitIntegerTruncationChecks)
1500 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1501 NoncanonicalDstType, Loc);
1502
1503 if (Opts.EmitImplicitIntegerSignChangeChecks)
1504 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1505 NoncanonicalDstType, Loc);
1506
1507 return Res;
1508 }
1509
EmitFixedPointConversion(Value * Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)1510 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1511 QualType DstTy,
1512 SourceLocation Loc) {
1513 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1514 llvm::Value *Result;
1515 if (SrcTy->isRealFloatingType())
1516 Result = FPBuilder.CreateFloatingToFixed(Src,
1517 CGF.getContext().getFixedPointSemantics(DstTy));
1518 else if (DstTy->isRealFloatingType())
1519 Result = FPBuilder.CreateFixedToFloating(Src,
1520 CGF.getContext().getFixedPointSemantics(SrcTy),
1521 ConvertType(DstTy));
1522 else {
1523 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1524 auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1525
1526 if (DstTy->isIntegerType())
1527 Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1528 DstFPSema.getWidth(),
1529 DstFPSema.isSigned());
1530 else if (SrcTy->isIntegerType())
1531 Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1532 DstFPSema);
1533 else
1534 Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1535 }
1536 return Result;
1537 }
1538
1539 /// Emit a conversion from the specified complex type to the specified
1540 /// destination type, where the destination type is an LLVM scalar type.
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)1541 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1542 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1543 SourceLocation Loc) {
1544 // Get the source element type.
1545 SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1546
1547 // Handle conversions to bool first, they are special: comparisons against 0.
1548 if (DstTy->isBooleanType()) {
1549 // Complex != 0 -> (Real != 0) | (Imag != 0)
1550 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1551 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1552 return Builder.CreateOr(Src.first, Src.second, "tobool");
1553 }
1554
1555 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1556 // the imaginary part of the complex value is discarded and the value of the
1557 // real part is converted according to the conversion rules for the
1558 // corresponding real type.
1559 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1560 }
1561
EmitNullValue(QualType Ty)1562 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1563 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1564 }
1565
1566 /// Emit a sanitization check for the given "binary" operation (which
1567 /// might actually be a unary increment which has been lowered to a binary
1568 /// operation). The check passes if all values in \p Checks (which are \c i1),
1569 /// are \c true.
EmitBinOpCheck(ArrayRef<std::pair<Value *,SanitizerMask>> Checks,const BinOpInfo & Info)1570 void ScalarExprEmitter::EmitBinOpCheck(
1571 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1572 assert(CGF.IsSanitizerScope);
1573 SanitizerHandler Check;
1574 SmallVector<llvm::Constant *, 4> StaticData;
1575 SmallVector<llvm::Value *, 2> DynamicData;
1576
1577 BinaryOperatorKind Opcode = Info.Opcode;
1578 if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1579 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1580
1581 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1582 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1583 if (UO && UO->getOpcode() == UO_Minus) {
1584 Check = SanitizerHandler::NegateOverflow;
1585 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1586 DynamicData.push_back(Info.RHS);
1587 } else {
1588 if (BinaryOperator::isShiftOp(Opcode)) {
1589 // Shift LHS negative or too large, or RHS out of bounds.
1590 Check = SanitizerHandler::ShiftOutOfBounds;
1591 const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1592 StaticData.push_back(
1593 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1594 StaticData.push_back(
1595 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1596 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1597 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1598 Check = SanitizerHandler::DivremOverflow;
1599 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1600 } else {
1601 // Arithmetic overflow (+, -, *).
1602 switch (Opcode) {
1603 case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1604 case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1605 case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1606 default: llvm_unreachable("unexpected opcode for bin op check");
1607 }
1608 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1609 }
1610 DynamicData.push_back(Info.LHS);
1611 DynamicData.push_back(Info.RHS);
1612 }
1613
1614 CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1615 }
1616
1617 //===----------------------------------------------------------------------===//
1618 // Visitor Methods
1619 //===----------------------------------------------------------------------===//
1620
VisitExpr(Expr * E)1621 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1622 CGF.ErrorUnsupported(E, "scalar expression");
1623 if (E->getType()->isVoidType())
1624 return nullptr;
1625 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1626 }
1627
1628 Value *
VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr * E)1629 ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1630 ASTContext &Context = CGF.getContext();
1631 unsigned AddrSpace =
1632 Context.getTargetAddressSpace(CGF.CGM.GetGlobalConstantAddressSpace());
1633 llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1634 E->ComputeName(Context), "__usn_str", AddrSpace);
1635
1636 llvm::Type *ExprTy = ConvertType(E->getType());
1637 return Builder.CreatePointerBitCastOrAddrSpaceCast(GlobalConstStr, ExprTy,
1638 "usn_addr_cast");
1639 }
1640
VisitShuffleVectorExpr(ShuffleVectorExpr * E)1641 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1642 // Vector Mask Case
1643 if (E->getNumSubExprs() == 2) {
1644 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1645 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1646 Value *Mask;
1647
1648 auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1649 unsigned LHSElts = LTy->getNumElements();
1650
1651 Mask = RHS;
1652
1653 auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1654
1655 // Mask off the high bits of each shuffle index.
1656 Value *MaskBits =
1657 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1658 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1659
1660 // newv = undef
1661 // mask = mask & maskbits
1662 // for each elt
1663 // n = extract mask i
1664 // x = extract val n
1665 // newv = insert newv, x, i
1666 auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1667 MTy->getNumElements());
1668 Value* NewV = llvm::PoisonValue::get(RTy);
1669 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1670 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1671 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1672
1673 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1674 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1675 }
1676 return NewV;
1677 }
1678
1679 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1680 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1681
1682 SmallVector<int, 32> Indices;
1683 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1684 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1685 // Check for -1 and output it as undef in the IR.
1686 if (Idx.isSigned() && Idx.isAllOnes())
1687 Indices.push_back(-1);
1688 else
1689 Indices.push_back(Idx.getZExtValue());
1690 }
1691
1692 return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1693 }
1694
VisitConvertVectorExpr(ConvertVectorExpr * E)1695 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1696 QualType SrcType = E->getSrcExpr()->getType(),
1697 DstType = E->getType();
1698
1699 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1700
1701 SrcType = CGF.getContext().getCanonicalType(SrcType);
1702 DstType = CGF.getContext().getCanonicalType(DstType);
1703 if (SrcType == DstType) return Src;
1704
1705 assert(SrcType->isVectorType() &&
1706 "ConvertVector source type must be a vector");
1707 assert(DstType->isVectorType() &&
1708 "ConvertVector destination type must be a vector");
1709
1710 llvm::Type *SrcTy = Src->getType();
1711 llvm::Type *DstTy = ConvertType(DstType);
1712
1713 // Ignore conversions like int -> uint.
1714 if (SrcTy == DstTy)
1715 return Src;
1716
1717 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1718 DstEltType = DstType->castAs<VectorType>()->getElementType();
1719
1720 assert(SrcTy->isVectorTy() &&
1721 "ConvertVector source IR type must be a vector");
1722 assert(DstTy->isVectorTy() &&
1723 "ConvertVector destination IR type must be a vector");
1724
1725 llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1726 *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1727
1728 if (DstEltType->isBooleanType()) {
1729 assert((SrcEltTy->isFloatingPointTy() ||
1730 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1731
1732 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1733 if (SrcEltTy->isFloatingPointTy()) {
1734 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1735 } else {
1736 return Builder.CreateICmpNE(Src, Zero, "tobool");
1737 }
1738 }
1739
1740 // We have the arithmetic types: real int/float.
1741 Value *Res = nullptr;
1742
1743 if (isa<llvm::IntegerType>(SrcEltTy)) {
1744 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1745 if (isa<llvm::IntegerType>(DstEltTy))
1746 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1747 else if (InputSigned)
1748 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1749 else
1750 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1751 } else if (isa<llvm::IntegerType>(DstEltTy)) {
1752 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1753 if (DstEltType->isSignedIntegerOrEnumerationType())
1754 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1755 else
1756 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1757 } else {
1758 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1759 "Unknown real conversion");
1760 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1761 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1762 else
1763 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1764 }
1765
1766 return Res;
1767 }
1768
VisitMemberExpr(MemberExpr * E)1769 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1770 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1771 CGF.EmitIgnoredExpr(E->getBase());
1772 return CGF.emitScalarConstant(Constant, E);
1773 } else {
1774 Expr::EvalResult Result;
1775 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1776 llvm::APSInt Value = Result.Val.getInt();
1777 CGF.EmitIgnoredExpr(E->getBase());
1778 return Builder.getInt(Value);
1779 }
1780 }
1781
1782 return EmitLoadOfLValue(E);
1783 }
1784
VisitArraySubscriptExpr(ArraySubscriptExpr * E)1785 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1786 TestAndClearIgnoreResultAssign();
1787
1788 // Emit subscript expressions in rvalue context's. For most cases, this just
1789 // loads the lvalue formed by the subscript expr. However, we have to be
1790 // careful, because the base of a vector subscript is occasionally an rvalue,
1791 // so we can't get it as an lvalue.
1792 if (!E->getBase()->getType()->isVectorType() &&
1793 !E->getBase()->getType()->isVLSTBuiltinType())
1794 return EmitLoadOfLValue(E);
1795
1796 // Handle the vector case. The base must be a vector, the index must be an
1797 // integer value.
1798 Value *Base = Visit(E->getBase());
1799 Value *Idx = Visit(E->getIdx());
1800 QualType IdxTy = E->getIdx()->getType();
1801
1802 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1803 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1804
1805 return Builder.CreateExtractElement(Base, Idx, "vecext");
1806 }
1807
VisitMatrixSubscriptExpr(MatrixSubscriptExpr * E)1808 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1809 TestAndClearIgnoreResultAssign();
1810
1811 // Handle the vector case. The base must be a vector, the index must be an
1812 // integer value.
1813 Value *RowIdx = Visit(E->getRowIdx());
1814 Value *ColumnIdx = Visit(E->getColumnIdx());
1815
1816 const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
1817 unsigned NumRows = MatrixTy->getNumRows();
1818 llvm::MatrixBuilder MB(Builder);
1819 Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
1820 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
1821 MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened());
1822
1823 Value *Matrix = Visit(E->getBase());
1824
1825 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1826 return Builder.CreateExtractElement(Matrix, Idx, "matrixext");
1827 }
1828
getMaskElt(llvm::ShuffleVectorInst * SVI,unsigned Idx,unsigned Off)1829 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1830 unsigned Off) {
1831 int MV = SVI->getMaskValue(Idx);
1832 if (MV == -1)
1833 return -1;
1834 return Off + MV;
1835 }
1836
getAsInt32(llvm::ConstantInt * C,llvm::Type * I32Ty)1837 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1838 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1839 "Index operand too large for shufflevector mask!");
1840 return C->getZExtValue();
1841 }
1842
VisitInitListExpr(InitListExpr * E)1843 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1844 bool Ignore = TestAndClearIgnoreResultAssign();
1845 (void)Ignore;
1846 assert (Ignore == false && "init list ignored");
1847 unsigned NumInitElements = E->getNumInits();
1848
1849 if (E->hadArrayRangeDesignator())
1850 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1851
1852 llvm::VectorType *VType =
1853 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1854
1855 if (!VType) {
1856 if (NumInitElements == 0) {
1857 // C++11 value-initialization for the scalar.
1858 return EmitNullValue(E->getType());
1859 }
1860 // We have a scalar in braces. Just use the first element.
1861 return Visit(E->getInit(0));
1862 }
1863
1864 unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1865
1866 // Loop over initializers collecting the Value for each, and remembering
1867 // whether the source was swizzle (ExtVectorElementExpr). This will allow
1868 // us to fold the shuffle for the swizzle into the shuffle for the vector
1869 // initializer, since LLVM optimizers generally do not want to touch
1870 // shuffles.
1871 unsigned CurIdx = 0;
1872 bool VIsUndefShuffle = false;
1873 llvm::Value *V = llvm::UndefValue::get(VType);
1874 for (unsigned i = 0; i != NumInitElements; ++i) {
1875 Expr *IE = E->getInit(i);
1876 Value *Init = Visit(IE);
1877 SmallVector<int, 16> Args;
1878
1879 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1880
1881 // Handle scalar elements. If the scalar initializer is actually one
1882 // element of a different vector of the same width, use shuffle instead of
1883 // extract+insert.
1884 if (!VVT) {
1885 if (isa<ExtVectorElementExpr>(IE)) {
1886 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1887
1888 if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1889 ->getNumElements() == ResElts) {
1890 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1891 Value *LHS = nullptr, *RHS = nullptr;
1892 if (CurIdx == 0) {
1893 // insert into undef -> shuffle (src, undef)
1894 // shufflemask must use an i32
1895 Args.push_back(getAsInt32(C, CGF.Int32Ty));
1896 Args.resize(ResElts, -1);
1897
1898 LHS = EI->getVectorOperand();
1899 RHS = V;
1900 VIsUndefShuffle = true;
1901 } else if (VIsUndefShuffle) {
1902 // insert into undefshuffle && size match -> shuffle (v, src)
1903 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1904 for (unsigned j = 0; j != CurIdx; ++j)
1905 Args.push_back(getMaskElt(SVV, j, 0));
1906 Args.push_back(ResElts + C->getZExtValue());
1907 Args.resize(ResElts, -1);
1908
1909 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1910 RHS = EI->getVectorOperand();
1911 VIsUndefShuffle = false;
1912 }
1913 if (!Args.empty()) {
1914 V = Builder.CreateShuffleVector(LHS, RHS, Args);
1915 ++CurIdx;
1916 continue;
1917 }
1918 }
1919 }
1920 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1921 "vecinit");
1922 VIsUndefShuffle = false;
1923 ++CurIdx;
1924 continue;
1925 }
1926
1927 unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1928
1929 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1930 // input is the same width as the vector being constructed, generate an
1931 // optimized shuffle of the swizzle input into the result.
1932 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1933 if (isa<ExtVectorElementExpr>(IE)) {
1934 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1935 Value *SVOp = SVI->getOperand(0);
1936 auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1937
1938 if (OpTy->getNumElements() == ResElts) {
1939 for (unsigned j = 0; j != CurIdx; ++j) {
1940 // If the current vector initializer is a shuffle with undef, merge
1941 // this shuffle directly into it.
1942 if (VIsUndefShuffle) {
1943 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1944 } else {
1945 Args.push_back(j);
1946 }
1947 }
1948 for (unsigned j = 0, je = InitElts; j != je; ++j)
1949 Args.push_back(getMaskElt(SVI, j, Offset));
1950 Args.resize(ResElts, -1);
1951
1952 if (VIsUndefShuffle)
1953 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1954
1955 Init = SVOp;
1956 }
1957 }
1958
1959 // Extend init to result vector length, and then shuffle its contribution
1960 // to the vector initializer into V.
1961 if (Args.empty()) {
1962 for (unsigned j = 0; j != InitElts; ++j)
1963 Args.push_back(j);
1964 Args.resize(ResElts, -1);
1965 Init = Builder.CreateShuffleVector(Init, Args, "vext");
1966
1967 Args.clear();
1968 for (unsigned j = 0; j != CurIdx; ++j)
1969 Args.push_back(j);
1970 for (unsigned j = 0; j != InitElts; ++j)
1971 Args.push_back(j + Offset);
1972 Args.resize(ResElts, -1);
1973 }
1974
1975 // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1976 // merging subsequent shuffles into this one.
1977 if (CurIdx == 0)
1978 std::swap(V, Init);
1979 V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1980 VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1981 CurIdx += InitElts;
1982 }
1983
1984 // FIXME: evaluate codegen vs. shuffling against constant null vector.
1985 // Emit remaining default initializers.
1986 llvm::Type *EltTy = VType->getElementType();
1987
1988 // Emit remaining default initializers
1989 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1990 Value *Idx = Builder.getInt32(CurIdx);
1991 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1992 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1993 }
1994 return V;
1995 }
1996
ShouldNullCheckClassCastValue(const CastExpr * CE)1997 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1998 const Expr *E = CE->getSubExpr();
1999
2000 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
2001 return false;
2002
2003 if (isa<CXXThisExpr>(E->IgnoreParens())) {
2004 // We always assume that 'this' is never null.
2005 return false;
2006 }
2007
2008 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2009 // And that glvalue casts are never null.
2010 if (ICE->isGLValue())
2011 return false;
2012 }
2013
2014 return true;
2015 }
2016
2017 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
2018 // have to handle a more broad range of conversions than explicit casts, as they
2019 // handle things like function to ptr-to-function decay etc.
VisitCastExpr(CastExpr * CE)2020 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2021 Expr *E = CE->getSubExpr();
2022 QualType DestTy = CE->getType();
2023 CastKind Kind = CE->getCastKind();
2024 CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, CE);
2025
2026 // These cases are generally not written to ignore the result of
2027 // evaluating their sub-expressions, so we clear this now.
2028 bool Ignored = TestAndClearIgnoreResultAssign();
2029
2030 // Since almost all cast kinds apply to scalars, this switch doesn't have
2031 // a default case, so the compiler will warn on a missing case. The cases
2032 // are in the same order as in the CastKind enum.
2033 switch (Kind) {
2034 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2035 case CK_BuiltinFnToFnPtr:
2036 llvm_unreachable("builtin functions are handled elsewhere");
2037
2038 case CK_LValueBitCast:
2039 case CK_ObjCObjectLValueCast: {
2040 Address Addr = EmitLValue(E).getAddress(CGF);
2041 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2042 LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2043 return EmitLoadOfLValue(LV, CE->getExprLoc());
2044 }
2045
2046 case CK_LValueToRValueBitCast: {
2047 LValue SourceLVal = CGF.EmitLValue(E);
2048 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
2049 CGF.ConvertTypeForMem(DestTy));
2050 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2051 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2052 return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2053 }
2054
2055 case CK_CPointerToObjCPointerCast:
2056 case CK_BlockPointerToObjCPointerCast:
2057 case CK_AnyPointerToBlockPointerCast:
2058 case CK_BitCast: {
2059 Value *Src = Visit(const_cast<Expr*>(E));
2060 llvm::Type *SrcTy = Src->getType();
2061 llvm::Type *DstTy = ConvertType(DestTy);
2062 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2063 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2064 llvm_unreachable("wrong cast for pointers in different address spaces"
2065 "(must be an address space cast)!");
2066 }
2067
2068 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2069 if (auto *PT = DestTy->getAs<PointerType>()) {
2070 CGF.EmitVTablePtrCheckForCast(
2071 PT->getPointeeType(),
2072 Address(Src,
2073 CGF.ConvertTypeForMem(
2074 E->getType()->castAs<PointerType>()->getPointeeType()),
2075 CGF.getPointerAlign()),
2076 /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast,
2077 CE->getBeginLoc());
2078 }
2079 }
2080
2081 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2082 const QualType SrcType = E->getType();
2083
2084 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2085 // Casting to pointer that could carry dynamic information (provided by
2086 // invariant.group) requires launder.
2087 Src = Builder.CreateLaunderInvariantGroup(Src);
2088 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2089 // Casting to pointer that does not carry dynamic information (provided
2090 // by invariant.group) requires stripping it. Note that we don't do it
2091 // if the source could not be dynamic type and destination could be
2092 // dynamic because dynamic information is already laundered. It is
2093 // because launder(strip(src)) == launder(src), so there is no need to
2094 // add extra strip before launder.
2095 Src = Builder.CreateStripInvariantGroup(Src);
2096 }
2097 }
2098
2099 // Update heapallocsite metadata when there is an explicit pointer cast.
2100 if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2101 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
2102 QualType PointeeType = DestTy->getPointeeType();
2103 if (!PointeeType.isNull())
2104 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2105 CE->getExprLoc());
2106 }
2107 }
2108
2109 // If Src is a fixed vector and Dst is a scalable vector, and both have the
2110 // same element type, use the llvm.vector.insert intrinsic to perform the
2111 // bitcast.
2112 if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2113 if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2114 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
2115 // vector, use a vector insert and bitcast the result.
2116 bool NeedsBitCast = false;
2117 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2118 llvm::Type *OrigType = DstTy;
2119 if (ScalableDst == PredType &&
2120 FixedSrc->getElementType() == Builder.getInt8Ty()) {
2121 DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2122 ScalableDst = cast<llvm::ScalableVectorType>(DstTy);
2123 NeedsBitCast = true;
2124 }
2125 if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2126 llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2127 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2128 llvm::Value *Result = Builder.CreateInsertVector(
2129 DstTy, UndefVec, Src, Zero, "castScalableSve");
2130 if (NeedsBitCast)
2131 Result = Builder.CreateBitCast(Result, OrigType);
2132 return Result;
2133 }
2134 }
2135 }
2136
2137 // If Src is a scalable vector and Dst is a fixed vector, and both have the
2138 // same element type, use the llvm.vector.extract intrinsic to perform the
2139 // bitcast.
2140 if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2141 if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2142 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
2143 // vector, bitcast the source and use a vector extract.
2144 auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
2145 if (ScalableSrc == PredType &&
2146 FixedDst->getElementType() == Builder.getInt8Ty()) {
2147 SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
2148 ScalableSrc = cast<llvm::ScalableVectorType>(SrcTy);
2149 Src = Builder.CreateBitCast(Src, SrcTy);
2150 }
2151 if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2152 llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2153 return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
2154 }
2155 }
2156 }
2157
2158 // Perform VLAT <-> VLST bitcast through memory.
2159 // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2160 // require the element types of the vectors to be the same, we
2161 // need to keep this around for bitcasts between VLAT <-> VLST where
2162 // the element types of the vectors are not the same, until we figure
2163 // out a better way of doing these casts.
2164 if ((isa<llvm::FixedVectorType>(SrcTy) &&
2165 isa<llvm::ScalableVectorType>(DstTy)) ||
2166 (isa<llvm::ScalableVectorType>(SrcTy) &&
2167 isa<llvm::FixedVectorType>(DstTy))) {
2168 Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value");
2169 LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
2170 CGF.EmitStoreOfScalar(Src, LV);
2171 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2172 "castFixedSve");
2173 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2174 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2175 return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2176 }
2177 return Builder.CreateBitCast(Src, DstTy);
2178 }
2179 case CK_AddressSpaceConversion: {
2180 Expr::EvalResult Result;
2181 if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2182 Result.Val.isNullPointer()) {
2183 // If E has side effect, it is emitted even if its final result is a
2184 // null pointer. In that case, a DCE pass should be able to
2185 // eliminate the useless instructions emitted during translating E.
2186 if (Result.HasSideEffects)
2187 Visit(E);
2188 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2189 ConvertType(DestTy)), DestTy);
2190 }
2191 // Since target may map different address spaces in AST to the same address
2192 // space, an address space conversion may end up as a bitcast.
2193 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2194 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2195 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2196 }
2197 case CK_AtomicToNonAtomic:
2198 case CK_NonAtomicToAtomic:
2199 case CK_UserDefinedConversion:
2200 return Visit(const_cast<Expr*>(E));
2201
2202 case CK_NoOp: {
2203 llvm::Value *V = Visit(const_cast<Expr *>(E));
2204 if (V) {
2205 // CK_NoOp can model a pointer qualification conversion, which can remove
2206 // an array bound and change the IR type.
2207 // FIXME: Once pointee types are removed from IR, remove this.
2208 llvm::Type *T = ConvertType(DestTy);
2209 if (T != V->getType())
2210 V = Builder.CreateBitCast(V, T);
2211 }
2212 return V;
2213 }
2214
2215 case CK_BaseToDerived: {
2216 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2217 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2218
2219 Address Base = CGF.EmitPointerWithAlignment(E);
2220 Address Derived =
2221 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2222 CE->path_begin(), CE->path_end(),
2223 CGF.ShouldNullCheckClassCastValue(CE));
2224
2225 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2226 // performed and the object is not of the derived type.
2227 if (CGF.sanitizePerformTypeCheck())
2228 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2229 Derived.getPointer(), DestTy->getPointeeType());
2230
2231 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2232 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
2233 /*MayBeNull=*/true,
2234 CodeGenFunction::CFITCK_DerivedCast,
2235 CE->getBeginLoc());
2236
2237 return Derived.getPointer();
2238 }
2239 case CK_UncheckedDerivedToBase:
2240 case CK_DerivedToBase: {
2241 // The EmitPointerWithAlignment path does this fine; just discard
2242 // the alignment.
2243 return CGF.EmitPointerWithAlignment(CE).getPointer();
2244 }
2245
2246 case CK_Dynamic: {
2247 Address V = CGF.EmitPointerWithAlignment(E);
2248 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2249 return CGF.EmitDynamicCast(V, DCE);
2250 }
2251
2252 case CK_ArrayToPointerDecay:
2253 return CGF.EmitArrayToPointerDecay(E).getPointer();
2254 case CK_FunctionToPointerDecay:
2255 return EmitLValue(E).getPointer(CGF);
2256
2257 case CK_NullToPointer:
2258 if (MustVisitNullValue(E))
2259 CGF.EmitIgnoredExpr(E);
2260
2261 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2262 DestTy);
2263
2264 case CK_NullToMemberPointer: {
2265 if (MustVisitNullValue(E))
2266 CGF.EmitIgnoredExpr(E);
2267
2268 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2269 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2270 }
2271
2272 case CK_ReinterpretMemberPointer:
2273 case CK_BaseToDerivedMemberPointer:
2274 case CK_DerivedToBaseMemberPointer: {
2275 Value *Src = Visit(E);
2276
2277 // Note that the AST doesn't distinguish between checked and
2278 // unchecked member pointer conversions, so we always have to
2279 // implement checked conversions here. This is inefficient when
2280 // actual control flow may be required in order to perform the
2281 // check, which it is for data member pointers (but not member
2282 // function pointers on Itanium and ARM).
2283 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2284 }
2285
2286 case CK_ARCProduceObject:
2287 return CGF.EmitARCRetainScalarExpr(E);
2288 case CK_ARCConsumeObject:
2289 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2290 case CK_ARCReclaimReturnedObject:
2291 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2292 case CK_ARCExtendBlockObject:
2293 return CGF.EmitARCExtendBlockObject(E);
2294
2295 case CK_CopyAndAutoreleaseBlockObject:
2296 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2297
2298 case CK_FloatingRealToComplex:
2299 case CK_FloatingComplexCast:
2300 case CK_IntegralRealToComplex:
2301 case CK_IntegralComplexCast:
2302 case CK_IntegralComplexToFloatingComplex:
2303 case CK_FloatingComplexToIntegralComplex:
2304 case CK_ConstructorConversion:
2305 case CK_ToUnion:
2306 llvm_unreachable("scalar cast to non-scalar value");
2307
2308 case CK_LValueToRValue:
2309 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2310 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2311 return Visit(const_cast<Expr*>(E));
2312
2313 case CK_IntegralToPointer: {
2314 Value *Src = Visit(const_cast<Expr*>(E));
2315
2316 // First, convert to the correct width so that we control the kind of
2317 // extension.
2318 auto DestLLVMTy = ConvertType(DestTy);
2319 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2320 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2321 llvm::Value* IntResult =
2322 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2323
2324 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2325
2326 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2327 // Going from integer to pointer that could be dynamic requires reloading
2328 // dynamic information from invariant.group.
2329 if (DestTy.mayBeDynamicClass())
2330 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2331 }
2332 return IntToPtr;
2333 }
2334 case CK_PointerToIntegral: {
2335 assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2336 auto *PtrExpr = Visit(E);
2337
2338 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2339 const QualType SrcType = E->getType();
2340
2341 // Casting to integer requires stripping dynamic information as it does
2342 // not carries it.
2343 if (SrcType.mayBeDynamicClass())
2344 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2345 }
2346
2347 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2348 }
2349 case CK_ToVoid: {
2350 CGF.EmitIgnoredExpr(E);
2351 return nullptr;
2352 }
2353 case CK_MatrixCast: {
2354 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2355 CE->getExprLoc());
2356 }
2357 case CK_VectorSplat: {
2358 llvm::Type *DstTy = ConvertType(DestTy);
2359 Value *Elt = Visit(const_cast<Expr *>(E));
2360 // Splat the element across to all elements
2361 llvm::ElementCount NumElements =
2362 cast<llvm::VectorType>(DstTy)->getElementCount();
2363 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2364 }
2365
2366 case CK_FixedPointCast:
2367 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2368 CE->getExprLoc());
2369
2370 case CK_FixedPointToBoolean:
2371 assert(E->getType()->isFixedPointType() &&
2372 "Expected src type to be fixed point type");
2373 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2374 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2375 CE->getExprLoc());
2376
2377 case CK_FixedPointToIntegral:
2378 assert(E->getType()->isFixedPointType() &&
2379 "Expected src type to be fixed point type");
2380 assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2381 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2382 CE->getExprLoc());
2383
2384 case CK_IntegralToFixedPoint:
2385 assert(E->getType()->isIntegerType() &&
2386 "Expected src type to be an integer");
2387 assert(DestTy->isFixedPointType() &&
2388 "Expected dest type to be fixed point type");
2389 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2390 CE->getExprLoc());
2391
2392 case CK_IntegralCast: {
2393 ScalarConversionOpts Opts;
2394 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2395 if (!ICE->isPartOfExplicitCast())
2396 Opts = ScalarConversionOpts(CGF.SanOpts);
2397 }
2398 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2399 CE->getExprLoc(), Opts);
2400 }
2401 case CK_IntegralToFloating:
2402 case CK_FloatingToIntegral:
2403 case CK_FloatingCast:
2404 case CK_FixedPointToFloating:
2405 case CK_FloatingToFixedPoint: {
2406 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2407 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2408 CE->getExprLoc());
2409 }
2410 case CK_BooleanToSignedIntegral: {
2411 ScalarConversionOpts Opts;
2412 Opts.TreatBooleanAsSigned = true;
2413 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2414 CE->getExprLoc(), Opts);
2415 }
2416 case CK_IntegralToBoolean:
2417 return EmitIntToBoolConversion(Visit(E));
2418 case CK_PointerToBoolean:
2419 return EmitPointerToBoolConversion(Visit(E), E->getType());
2420 case CK_FloatingToBoolean: {
2421 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2422 return EmitFloatToBoolConversion(Visit(E));
2423 }
2424 case CK_MemberPointerToBoolean: {
2425 llvm::Value *MemPtr = Visit(E);
2426 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2427 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2428 }
2429
2430 case CK_FloatingComplexToReal:
2431 case CK_IntegralComplexToReal:
2432 return CGF.EmitComplexExpr(E, false, true).first;
2433
2434 case CK_FloatingComplexToBoolean:
2435 case CK_IntegralComplexToBoolean: {
2436 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2437
2438 // TODO: kill this function off, inline appropriate case here
2439 return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2440 CE->getExprLoc());
2441 }
2442
2443 case CK_ZeroToOCLOpaqueType: {
2444 assert((DestTy->isEventT() || DestTy->isQueueT() ||
2445 DestTy->isOCLIntelSubgroupAVCType()) &&
2446 "CK_ZeroToOCLEvent cast on non-event type");
2447 return llvm::Constant::getNullValue(ConvertType(DestTy));
2448 }
2449
2450 case CK_IntToOCLSampler:
2451 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2452
2453 } // end of switch
2454
2455 llvm_unreachable("unknown scalar cast");
2456 }
2457
VisitStmtExpr(const StmtExpr * E)2458 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2459 CodeGenFunction::StmtExprEvaluation eval(CGF);
2460 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2461 !E->getType()->isVoidType());
2462 if (!RetAlloca.isValid())
2463 return nullptr;
2464 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2465 E->getExprLoc());
2466 }
2467
VisitExprWithCleanups(ExprWithCleanups * E)2468 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2469 CodeGenFunction::RunCleanupsScope Scope(CGF);
2470 Value *V = Visit(E->getSubExpr());
2471 // Defend against dominance problems caused by jumps out of expression
2472 // evaluation through the shared cleanup block.
2473 Scope.ForceCleanup({&V});
2474 return V;
2475 }
2476
2477 //===----------------------------------------------------------------------===//
2478 // Unary Operators
2479 //===----------------------------------------------------------------------===//
2480
createBinOpInfoFromIncDec(const UnaryOperator * E,llvm::Value * InVal,bool IsInc,FPOptions FPFeatures)2481 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2482 llvm::Value *InVal, bool IsInc,
2483 FPOptions FPFeatures) {
2484 BinOpInfo BinOp;
2485 BinOp.LHS = InVal;
2486 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2487 BinOp.Ty = E->getType();
2488 BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2489 BinOp.FPFeatures = FPFeatures;
2490 BinOp.E = E;
2491 return BinOp;
2492 }
2493
EmitIncDecConsiderOverflowBehavior(const UnaryOperator * E,llvm::Value * InVal,bool IsInc)2494 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2495 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2496 llvm::Value *Amount =
2497 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2498 StringRef Name = IsInc ? "inc" : "dec";
2499 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2500 case LangOptions::SOB_Defined:
2501 return Builder.CreateAdd(InVal, Amount, Name);
2502 case LangOptions::SOB_Undefined:
2503 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2504 return Builder.CreateNSWAdd(InVal, Amount, Name);
2505 [[fallthrough]];
2506 case LangOptions::SOB_Trapping:
2507 if (!E->canOverflow())
2508 return Builder.CreateNSWAdd(InVal, Amount, Name);
2509 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2510 E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2511 }
2512 llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2513 }
2514
2515 namespace {
2516 /// Handles check and update for lastprivate conditional variables.
2517 class OMPLastprivateConditionalUpdateRAII {
2518 private:
2519 CodeGenFunction &CGF;
2520 const UnaryOperator *E;
2521
2522 public:
OMPLastprivateConditionalUpdateRAII(CodeGenFunction & CGF,const UnaryOperator * E)2523 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2524 const UnaryOperator *E)
2525 : CGF(CGF), E(E) {}
~OMPLastprivateConditionalUpdateRAII()2526 ~OMPLastprivateConditionalUpdateRAII() {
2527 if (CGF.getLangOpts().OpenMP)
2528 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2529 CGF, E->getSubExpr());
2530 }
2531 };
2532 } // namespace
2533
2534 llvm::Value *
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)2535 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2536 bool isInc, bool isPre) {
2537 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2538 QualType type = E->getSubExpr()->getType();
2539 llvm::PHINode *atomicPHI = nullptr;
2540 llvm::Value *value;
2541 llvm::Value *input;
2542
2543 int amount = (isInc ? 1 : -1);
2544 bool isSubtraction = !isInc;
2545
2546 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2547 type = atomicTy->getValueType();
2548 if (isInc && type->isBooleanType()) {
2549 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2550 if (isPre) {
2551 Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2552 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2553 return Builder.getTrue();
2554 }
2555 // For atomic bool increment, we just store true and return it for
2556 // preincrement, do an atomic swap with true for postincrement
2557 return Builder.CreateAtomicRMW(
2558 llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2559 llvm::AtomicOrdering::SequentiallyConsistent);
2560 }
2561 // Special case for atomic increment / decrement on integers, emit
2562 // atomicrmw instructions. We skip this if we want to be doing overflow
2563 // checking, and fall into the slow path with the atomic cmpxchg loop.
2564 if (!type->isBooleanType() && type->isIntegerType() &&
2565 !(type->isUnsignedIntegerType() &&
2566 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2567 CGF.getLangOpts().getSignedOverflowBehavior() !=
2568 LangOptions::SOB_Trapping) {
2569 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2570 llvm::AtomicRMWInst::Sub;
2571 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2572 llvm::Instruction::Sub;
2573 llvm::Value *amt = CGF.EmitToMemory(
2574 llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2575 llvm::Value *old =
2576 Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2577 llvm::AtomicOrdering::SequentiallyConsistent);
2578 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2579 }
2580 value = EmitLoadOfLValue(LV, E->getExprLoc());
2581 input = value;
2582 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2583 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2584 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2585 value = CGF.EmitToMemory(value, type);
2586 Builder.CreateBr(opBB);
2587 Builder.SetInsertPoint(opBB);
2588 atomicPHI = Builder.CreatePHI(value->getType(), 2);
2589 atomicPHI->addIncoming(value, startBB);
2590 value = atomicPHI;
2591 } else {
2592 value = EmitLoadOfLValue(LV, E->getExprLoc());
2593 input = value;
2594 }
2595
2596 // Special case of integer increment that we have to check first: bool++.
2597 // Due to promotion rules, we get:
2598 // bool++ -> bool = bool + 1
2599 // -> bool = (int)bool + 1
2600 // -> bool = ((int)bool + 1 != 0)
2601 // An interesting aspect of this is that increment is always true.
2602 // Decrement does not have this property.
2603 if (isInc && type->isBooleanType()) {
2604 value = Builder.getTrue();
2605
2606 // Most common case by far: integer increment.
2607 } else if (type->isIntegerType()) {
2608 QualType promotedType;
2609 bool canPerformLossyDemotionCheck = false;
2610 if (CGF.getContext().isPromotableIntegerType(type)) {
2611 promotedType = CGF.getContext().getPromotedIntegerType(type);
2612 assert(promotedType != type && "Shouldn't promote to the same type.");
2613 canPerformLossyDemotionCheck = true;
2614 canPerformLossyDemotionCheck &=
2615 CGF.getContext().getCanonicalType(type) !=
2616 CGF.getContext().getCanonicalType(promotedType);
2617 canPerformLossyDemotionCheck &=
2618 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2619 type, promotedType);
2620 assert((!canPerformLossyDemotionCheck ||
2621 type->isSignedIntegerOrEnumerationType() ||
2622 promotedType->isSignedIntegerOrEnumerationType() ||
2623 ConvertType(type)->getScalarSizeInBits() ==
2624 ConvertType(promotedType)->getScalarSizeInBits()) &&
2625 "The following check expects that if we do promotion to different "
2626 "underlying canonical type, at least one of the types (either "
2627 "base or promoted) will be signed, or the bitwidths will match.");
2628 }
2629 if (CGF.SanOpts.hasOneOf(
2630 SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2631 canPerformLossyDemotionCheck) {
2632 // While `x += 1` (for `x` with width less than int) is modeled as
2633 // promotion+arithmetics+demotion, and we can catch lossy demotion with
2634 // ease; inc/dec with width less than int can't overflow because of
2635 // promotion rules, so we omit promotion+demotion, which means that we can
2636 // not catch lossy "demotion". Because we still want to catch these cases
2637 // when the sanitizer is enabled, we perform the promotion, then perform
2638 // the increment/decrement in the wider type, and finally
2639 // perform the demotion. This will catch lossy demotions.
2640
2641 value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2642 Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2643 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2644 // Do pass non-default ScalarConversionOpts so that sanitizer check is
2645 // emitted.
2646 value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2647 ScalarConversionOpts(CGF.SanOpts));
2648
2649 // Note that signed integer inc/dec with width less than int can't
2650 // overflow because of promotion rules; we're just eliding a few steps
2651 // here.
2652 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2653 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2654 } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2655 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2656 value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2657 E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2658 } else {
2659 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2660 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2661 }
2662
2663 // Next most common: pointer increment.
2664 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2665 QualType type = ptr->getPointeeType();
2666
2667 // VLA types don't have constant size.
2668 if (const VariableArrayType *vla
2669 = CGF.getContext().getAsVariableArrayType(type)) {
2670 llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2671 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2672 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
2673 if (CGF.getLangOpts().isSignedOverflowDefined())
2674 value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc");
2675 else
2676 value = CGF.EmitCheckedInBoundsGEP(
2677 elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction,
2678 E->getExprLoc(), "vla.inc");
2679
2680 // Arithmetic on function pointers (!) is just +-1.
2681 } else if (type->isFunctionType()) {
2682 llvm::Value *amt = Builder.getInt32(amount);
2683
2684 value = CGF.EmitCastToVoidPtr(value);
2685 if (CGF.getLangOpts().isSignedOverflowDefined())
2686 value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr");
2687 else
2688 value = CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt,
2689 /*SignedIndices=*/false,
2690 isSubtraction, E->getExprLoc(),
2691 "incdec.funcptr");
2692 value = Builder.CreateBitCast(value, input->getType());
2693
2694 // For everything else, we can just do a simple increment.
2695 } else {
2696 llvm::Value *amt = Builder.getInt32(amount);
2697 llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2698 if (CGF.getLangOpts().isSignedOverflowDefined())
2699 value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr");
2700 else
2701 value = CGF.EmitCheckedInBoundsGEP(
2702 elemTy, value, amt, /*SignedIndices=*/false, isSubtraction,
2703 E->getExprLoc(), "incdec.ptr");
2704 }
2705
2706 // Vector increment/decrement.
2707 } else if (type->isVectorType()) {
2708 if (type->hasIntegerRepresentation()) {
2709 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2710
2711 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2712 } else {
2713 value = Builder.CreateFAdd(
2714 value,
2715 llvm::ConstantFP::get(value->getType(), amount),
2716 isInc ? "inc" : "dec");
2717 }
2718
2719 // Floating point.
2720 } else if (type->isRealFloatingType()) {
2721 // Add the inc/dec to the real part.
2722 llvm::Value *amt;
2723 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2724
2725 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2726 // Another special case: half FP increment should be done via float
2727 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2728 value = Builder.CreateCall(
2729 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2730 CGF.CGM.FloatTy),
2731 input, "incdec.conv");
2732 } else {
2733 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2734 }
2735 }
2736
2737 if (value->getType()->isFloatTy())
2738 amt = llvm::ConstantFP::get(VMContext,
2739 llvm::APFloat(static_cast<float>(amount)));
2740 else if (value->getType()->isDoubleTy())
2741 amt = llvm::ConstantFP::get(VMContext,
2742 llvm::APFloat(static_cast<double>(amount)));
2743 else {
2744 // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert
2745 // from float.
2746 llvm::APFloat F(static_cast<float>(amount));
2747 bool ignored;
2748 const llvm::fltSemantics *FS;
2749 // Don't use getFloatTypeSemantics because Half isn't
2750 // necessarily represented using the "half" LLVM type.
2751 if (value->getType()->isFP128Ty())
2752 FS = &CGF.getTarget().getFloat128Format();
2753 else if (value->getType()->isHalfTy())
2754 FS = &CGF.getTarget().getHalfFormat();
2755 else if (value->getType()->isPPC_FP128Ty())
2756 FS = &CGF.getTarget().getIbm128Format();
2757 else
2758 FS = &CGF.getTarget().getLongDoubleFormat();
2759 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2760 amt = llvm::ConstantFP::get(VMContext, F);
2761 }
2762 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2763
2764 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2765 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2766 value = Builder.CreateCall(
2767 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2768 CGF.CGM.FloatTy),
2769 value, "incdec.conv");
2770 } else {
2771 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2772 }
2773 }
2774
2775 // Fixed-point types.
2776 } else if (type->isFixedPointType()) {
2777 // Fixed-point types are tricky. In some cases, it isn't possible to
2778 // represent a 1 or a -1 in the type at all. Piggyback off of
2779 // EmitFixedPointBinOp to avoid having to reimplement saturation.
2780 BinOpInfo Info;
2781 Info.E = E;
2782 Info.Ty = E->getType();
2783 Info.Opcode = isInc ? BO_Add : BO_Sub;
2784 Info.LHS = value;
2785 Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2786 // If the type is signed, it's better to represent this as +(-1) or -(-1),
2787 // since -1 is guaranteed to be representable.
2788 if (type->isSignedFixedPointType()) {
2789 Info.Opcode = isInc ? BO_Sub : BO_Add;
2790 Info.RHS = Builder.CreateNeg(Info.RHS);
2791 }
2792 // Now, convert from our invented integer literal to the type of the unary
2793 // op. This will upscale and saturate if necessary. This value can become
2794 // undef in some cases.
2795 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2796 auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2797 Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2798 value = EmitFixedPointBinOp(Info);
2799
2800 // Objective-C pointer types.
2801 } else {
2802 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2803 value = CGF.EmitCastToVoidPtr(value);
2804
2805 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2806 if (!isInc) size = -size;
2807 llvm::Value *sizeValue =
2808 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2809
2810 if (CGF.getLangOpts().isSignedOverflowDefined())
2811 value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr");
2812 else
2813 value = CGF.EmitCheckedInBoundsGEP(
2814 CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction,
2815 E->getExprLoc(), "incdec.objptr");
2816 value = Builder.CreateBitCast(value, input->getType());
2817 }
2818
2819 if (atomicPHI) {
2820 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2821 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2822 auto Pair = CGF.EmitAtomicCompareExchange(
2823 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2824 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2825 llvm::Value *success = Pair.second;
2826 atomicPHI->addIncoming(old, curBlock);
2827 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2828 Builder.SetInsertPoint(contBB);
2829 return isPre ? value : input;
2830 }
2831
2832 // Store the updated result through the lvalue.
2833 if (LV.isBitField())
2834 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2835 else
2836 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2837
2838 // If this is a postinc, return the value read from memory, otherwise use the
2839 // updated value.
2840 return isPre ? value : input;
2841 }
2842
2843
VisitUnaryPlus(const UnaryOperator * E,QualType PromotionType)2844 Value *ScalarExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
2845 QualType PromotionType) {
2846 QualType promotionTy = PromotionType.isNull()
2847 ? getPromotionType(E->getSubExpr()->getType())
2848 : PromotionType;
2849 Value *result = VisitPlus(E, promotionTy);
2850 if (result && !promotionTy.isNull())
2851 result = EmitUnPromotedValue(result, E->getType());
2852 return result;
2853 }
2854
VisitPlus(const UnaryOperator * E,QualType PromotionType)2855 Value *ScalarExprEmitter::VisitPlus(const UnaryOperator *E,
2856 QualType PromotionType) {
2857 // This differs from gcc, though, most likely due to a bug in gcc.
2858 TestAndClearIgnoreResultAssign();
2859 if (!PromotionType.isNull())
2860 return CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
2861 return Visit(E->getSubExpr());
2862 }
2863
VisitUnaryMinus(const UnaryOperator * E,QualType PromotionType)2864 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
2865 QualType PromotionType) {
2866 QualType promotionTy = PromotionType.isNull()
2867 ? getPromotionType(E->getSubExpr()->getType())
2868 : PromotionType;
2869 Value *result = VisitMinus(E, promotionTy);
2870 if (result && !promotionTy.isNull())
2871 result = EmitUnPromotedValue(result, E->getType());
2872 return result;
2873 }
2874
VisitMinus(const UnaryOperator * E,QualType PromotionType)2875 Value *ScalarExprEmitter::VisitMinus(const UnaryOperator *E,
2876 QualType PromotionType) {
2877 TestAndClearIgnoreResultAssign();
2878 Value *Op;
2879 if (!PromotionType.isNull())
2880 Op = CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType);
2881 else
2882 Op = Visit(E->getSubExpr());
2883
2884 // Generate a unary FNeg for FP ops.
2885 if (Op->getType()->isFPOrFPVectorTy())
2886 return Builder.CreateFNeg(Op, "fneg");
2887
2888 // Emit unary minus with EmitSub so we handle overflow cases etc.
2889 BinOpInfo BinOp;
2890 BinOp.RHS = Op;
2891 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2892 BinOp.Ty = E->getType();
2893 BinOp.Opcode = BO_Sub;
2894 BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2895 BinOp.E = E;
2896 return EmitSub(BinOp);
2897 }
2898
VisitUnaryNot(const UnaryOperator * E)2899 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2900 TestAndClearIgnoreResultAssign();
2901 Value *Op = Visit(E->getSubExpr());
2902 return Builder.CreateNot(Op, "not");
2903 }
2904
VisitUnaryLNot(const UnaryOperator * E)2905 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2906 // Perform vector logical not on comparison with zero vector.
2907 if (E->getType()->isVectorType() &&
2908 E->getType()->castAs<VectorType>()->getVectorKind() ==
2909 VectorType::GenericVector) {
2910 Value *Oper = Visit(E->getSubExpr());
2911 Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2912 Value *Result;
2913 if (Oper->getType()->isFPOrFPVectorTy()) {
2914 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2915 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2916 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2917 } else
2918 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2919 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2920 }
2921
2922 // Compare operand to zero.
2923 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2924
2925 // Invert value.
2926 // TODO: Could dynamically modify easy computations here. For example, if
2927 // the operand is an icmp ne, turn into icmp eq.
2928 BoolVal = Builder.CreateNot(BoolVal, "lnot");
2929
2930 // ZExt result to the expr type.
2931 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2932 }
2933
VisitOffsetOfExpr(OffsetOfExpr * E)2934 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2935 // Try folding the offsetof to a constant.
2936 Expr::EvalResult EVResult;
2937 if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2938 llvm::APSInt Value = EVResult.Val.getInt();
2939 return Builder.getInt(Value);
2940 }
2941
2942 // Loop over the components of the offsetof to compute the value.
2943 unsigned n = E->getNumComponents();
2944 llvm::Type* ResultType = ConvertType(E->getType());
2945 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2946 QualType CurrentType = E->getTypeSourceInfo()->getType();
2947 for (unsigned i = 0; i != n; ++i) {
2948 OffsetOfNode ON = E->getComponent(i);
2949 llvm::Value *Offset = nullptr;
2950 switch (ON.getKind()) {
2951 case OffsetOfNode::Array: {
2952 // Compute the index
2953 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2954 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2955 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2956 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2957
2958 // Save the element type
2959 CurrentType =
2960 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2961
2962 // Compute the element size
2963 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2964 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2965
2966 // Multiply out to compute the result
2967 Offset = Builder.CreateMul(Idx, ElemSize);
2968 break;
2969 }
2970
2971 case OffsetOfNode::Field: {
2972 FieldDecl *MemberDecl = ON.getField();
2973 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2974 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2975
2976 // Compute the index of the field in its parent.
2977 unsigned i = 0;
2978 // FIXME: It would be nice if we didn't have to loop here!
2979 for (RecordDecl::field_iterator Field = RD->field_begin(),
2980 FieldEnd = RD->field_end();
2981 Field != FieldEnd; ++Field, ++i) {
2982 if (*Field == MemberDecl)
2983 break;
2984 }
2985 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2986
2987 // Compute the offset to the field
2988 int64_t OffsetInt = RL.getFieldOffset(i) /
2989 CGF.getContext().getCharWidth();
2990 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2991
2992 // Save the element type.
2993 CurrentType = MemberDecl->getType();
2994 break;
2995 }
2996
2997 case OffsetOfNode::Identifier:
2998 llvm_unreachable("dependent __builtin_offsetof");
2999
3000 case OffsetOfNode::Base: {
3001 if (ON.getBase()->isVirtual()) {
3002 CGF.ErrorUnsupported(E, "virtual base in offsetof");
3003 continue;
3004 }
3005
3006 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3007 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
3008
3009 // Save the element type.
3010 CurrentType = ON.getBase()->getType();
3011
3012 // Compute the offset to the base.
3013 auto *BaseRT = CurrentType->castAs<RecordType>();
3014 auto *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
3015 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
3016 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
3017 break;
3018 }
3019 }
3020 Result = Builder.CreateAdd(Result, Offset);
3021 }
3022 return Result;
3023 }
3024
3025 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
3026 /// argument of the sizeof expression as an integer.
3027 Value *
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)3028 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
3029 const UnaryExprOrTypeTraitExpr *E) {
3030 QualType TypeToSize = E->getTypeOfArgument();
3031 if (E->getKind() == UETT_SizeOf) {
3032 if (const VariableArrayType *VAT =
3033 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
3034 if (E->isArgumentType()) {
3035 // sizeof(type) - make sure to emit the VLA size.
3036 CGF.EmitVariablyModifiedType(TypeToSize);
3037 } else {
3038 // C99 6.5.3.4p2: If the argument is an expression of type
3039 // VLA, it is evaluated.
3040 CGF.EmitIgnoredExpr(E->getArgumentExpr());
3041 }
3042
3043 auto VlaSize = CGF.getVLASize(VAT);
3044 llvm::Value *size = VlaSize.NumElts;
3045
3046 // Scale the number of non-VLA elements by the non-VLA element size.
3047 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
3048 if (!eltSize.isOne())
3049 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
3050
3051 return size;
3052 }
3053 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
3054 auto Alignment =
3055 CGF.getContext()
3056 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
3057 E->getTypeOfArgument()->getPointeeType()))
3058 .getQuantity();
3059 return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
3060 }
3061
3062 // If this isn't sizeof(vla), the result must be constant; use the constant
3063 // folding logic so we don't have to duplicate it here.
3064 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
3065 }
3066
VisitUnaryReal(const UnaryOperator * E,QualType PromotionType)3067 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E,
3068 QualType PromotionType) {
3069 QualType promotionTy = PromotionType.isNull()
3070 ? getPromotionType(E->getSubExpr()->getType())
3071 : PromotionType;
3072 Value *result = VisitReal(E, promotionTy);
3073 if (result && !promotionTy.isNull())
3074 result = EmitUnPromotedValue(result, E->getType());
3075 return result;
3076 }
3077
VisitReal(const UnaryOperator * E,QualType PromotionType)3078 Value *ScalarExprEmitter::VisitReal(const UnaryOperator *E,
3079 QualType PromotionType) {
3080 Expr *Op = E->getSubExpr();
3081 if (Op->getType()->isAnyComplexType()) {
3082 // If it's an l-value, load through the appropriate subobject l-value.
3083 // Note that we have to ask E because Op might be an l-value that
3084 // this won't work for, e.g. an Obj-C property.
3085 if (E->isGLValue()) {
3086 if (!PromotionType.isNull()) {
3087 CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3088 Op, /*IgnoreReal*/ IgnoreResultAssign, /*IgnoreImag*/ true);
3089 if (result.first)
3090 result.first = CGF.EmitPromotedValue(result, PromotionType).first;
3091 return result.first;
3092 } else {
3093 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3094 .getScalarVal();
3095 }
3096 }
3097 // Otherwise, calculate and project.
3098 return CGF.EmitComplexExpr(Op, false, true).first;
3099 }
3100
3101 if (!PromotionType.isNull())
3102 return CGF.EmitPromotedScalarExpr(Op, PromotionType);
3103 return Visit(Op);
3104 }
3105
VisitUnaryImag(const UnaryOperator * E,QualType PromotionType)3106 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E,
3107 QualType PromotionType) {
3108 QualType promotionTy = PromotionType.isNull()
3109 ? getPromotionType(E->getSubExpr()->getType())
3110 : PromotionType;
3111 Value *result = VisitImag(E, promotionTy);
3112 if (result && !promotionTy.isNull())
3113 result = EmitUnPromotedValue(result, E->getType());
3114 return result;
3115 }
3116
VisitImag(const UnaryOperator * E,QualType PromotionType)3117 Value *ScalarExprEmitter::VisitImag(const UnaryOperator *E,
3118 QualType PromotionType) {
3119 Expr *Op = E->getSubExpr();
3120 if (Op->getType()->isAnyComplexType()) {
3121 // If it's an l-value, load through the appropriate subobject l-value.
3122 // Note that we have to ask E because Op might be an l-value that
3123 // this won't work for, e.g. an Obj-C property.
3124 if (Op->isGLValue()) {
3125 if (!PromotionType.isNull()) {
3126 CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3127 Op, /*IgnoreReal*/ true, /*IgnoreImag*/ IgnoreResultAssign);
3128 if (result.second)
3129 result.second = CGF.EmitPromotedValue(result, PromotionType).second;
3130 return result.second;
3131 } else {
3132 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc())
3133 .getScalarVal();
3134 }
3135 }
3136 // Otherwise, calculate and project.
3137 return CGF.EmitComplexExpr(Op, true, false).second;
3138 }
3139
3140 // __imag on a scalar returns zero. Emit the subexpr to ensure side
3141 // effects are evaluated, but not the actual value.
3142 if (Op->isGLValue())
3143 CGF.EmitLValue(Op);
3144 else if (!PromotionType.isNull())
3145 CGF.EmitPromotedScalarExpr(Op, PromotionType);
3146 else
3147 CGF.EmitScalarExpr(Op, true);
3148 if (!PromotionType.isNull())
3149 return llvm::Constant::getNullValue(ConvertType(PromotionType));
3150 return llvm::Constant::getNullValue(ConvertType(E->getType()));
3151 }
3152
3153 //===----------------------------------------------------------------------===//
3154 // Binary Operators
3155 //===----------------------------------------------------------------------===//
3156
EmitPromotedValue(Value * result,QualType PromotionType)3157 Value *ScalarExprEmitter::EmitPromotedValue(Value *result,
3158 QualType PromotionType) {
3159 return CGF.Builder.CreateFPExt(result, ConvertType(PromotionType), "ext");
3160 }
3161
EmitUnPromotedValue(Value * result,QualType ExprType)3162 Value *ScalarExprEmitter::EmitUnPromotedValue(Value *result,
3163 QualType ExprType) {
3164 return CGF.Builder.CreateFPTrunc(result, ConvertType(ExprType), "unpromotion");
3165 }
3166
EmitPromoted(const Expr * E,QualType PromotionType)3167 Value *ScalarExprEmitter::EmitPromoted(const Expr *E, QualType PromotionType) {
3168 E = E->IgnoreParens();
3169 if (auto BO = dyn_cast<BinaryOperator>(E)) {
3170 switch (BO->getOpcode()) {
3171 #define HANDLE_BINOP(OP) \
3172 case BO_##OP: \
3173 return Emit##OP(EmitBinOps(BO, PromotionType));
3174 HANDLE_BINOP(Add)
3175 HANDLE_BINOP(Sub)
3176 HANDLE_BINOP(Mul)
3177 HANDLE_BINOP(Div)
3178 #undef HANDLE_BINOP
3179 default:
3180 break;
3181 }
3182 } else if (auto UO = dyn_cast<UnaryOperator>(E)) {
3183 switch (UO->getOpcode()) {
3184 case UO_Imag:
3185 return VisitImag(UO, PromotionType);
3186 case UO_Real:
3187 return VisitReal(UO, PromotionType);
3188 case UO_Minus:
3189 return VisitMinus(UO, PromotionType);
3190 case UO_Plus:
3191 return VisitPlus(UO, PromotionType);
3192 default:
3193 break;
3194 }
3195 }
3196 auto result = Visit(const_cast<Expr *>(E));
3197 if (result) {
3198 if (!PromotionType.isNull())
3199 return EmitPromotedValue(result, PromotionType);
3200 else
3201 return EmitUnPromotedValue(result, E->getType());
3202 }
3203 return result;
3204 }
3205
EmitBinOps(const BinaryOperator * E,QualType PromotionType)3206 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E,
3207 QualType PromotionType) {
3208 TestAndClearIgnoreResultAssign();
3209 BinOpInfo Result;
3210 Result.LHS = CGF.EmitPromotedScalarExpr(E->getLHS(), PromotionType);
3211 Result.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionType);
3212 if (!PromotionType.isNull())
3213 Result.Ty = PromotionType;
3214 else
3215 Result.Ty = E->getType();
3216 Result.Opcode = E->getOpcode();
3217 Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3218 Result.E = E;
3219 return Result;
3220 }
3221
EmitCompoundAssignLValue(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &),Value * & Result)3222 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3223 const CompoundAssignOperator *E,
3224 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3225 Value *&Result) {
3226 QualType LHSTy = E->getLHS()->getType();
3227 BinOpInfo OpInfo;
3228
3229 if (E->getComputationResultType()->isAnyComplexType())
3230 return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3231
3232 // Emit the RHS first. __block variables need to have the rhs evaluated
3233 // first, plus this should improve codegen a little.
3234
3235 QualType PromotionTypeCR;
3236 PromotionTypeCR = getPromotionType(E->getComputationResultType());
3237 if (PromotionTypeCR.isNull())
3238 PromotionTypeCR = E->getComputationResultType();
3239 QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType());
3240 QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType());
3241 if (!PromotionTypeRHS.isNull())
3242 OpInfo.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS);
3243 else
3244 OpInfo.RHS = Visit(E->getRHS());
3245 OpInfo.Ty = PromotionTypeCR;
3246 OpInfo.Opcode = E->getOpcode();
3247 OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3248 OpInfo.E = E;
3249 // Load/convert the LHS.
3250 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3251
3252 llvm::PHINode *atomicPHI = nullptr;
3253 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3254 QualType type = atomicTy->getValueType();
3255 if (!type->isBooleanType() && type->isIntegerType() &&
3256 !(type->isUnsignedIntegerType() &&
3257 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3258 CGF.getLangOpts().getSignedOverflowBehavior() !=
3259 LangOptions::SOB_Trapping) {
3260 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3261 llvm::Instruction::BinaryOps Op;
3262 switch (OpInfo.Opcode) {
3263 // We don't have atomicrmw operands for *, %, /, <<, >>
3264 case BO_MulAssign: case BO_DivAssign:
3265 case BO_RemAssign:
3266 case BO_ShlAssign:
3267 case BO_ShrAssign:
3268 break;
3269 case BO_AddAssign:
3270 AtomicOp = llvm::AtomicRMWInst::Add;
3271 Op = llvm::Instruction::Add;
3272 break;
3273 case BO_SubAssign:
3274 AtomicOp = llvm::AtomicRMWInst::Sub;
3275 Op = llvm::Instruction::Sub;
3276 break;
3277 case BO_AndAssign:
3278 AtomicOp = llvm::AtomicRMWInst::And;
3279 Op = llvm::Instruction::And;
3280 break;
3281 case BO_XorAssign:
3282 AtomicOp = llvm::AtomicRMWInst::Xor;
3283 Op = llvm::Instruction::Xor;
3284 break;
3285 case BO_OrAssign:
3286 AtomicOp = llvm::AtomicRMWInst::Or;
3287 Op = llvm::Instruction::Or;
3288 break;
3289 default:
3290 llvm_unreachable("Invalid compound assignment type");
3291 }
3292 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3293 llvm::Value *Amt = CGF.EmitToMemory(
3294 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3295 E->getExprLoc()),
3296 LHSTy);
3297 Value *OldVal = Builder.CreateAtomicRMW(
3298 AtomicOp, LHSLV.getPointer(CGF), Amt,
3299 llvm::AtomicOrdering::SequentiallyConsistent);
3300
3301 // Since operation is atomic, the result type is guaranteed to be the
3302 // same as the input in LLVM terms.
3303 Result = Builder.CreateBinOp(Op, OldVal, Amt);
3304 return LHSLV;
3305 }
3306 }
3307 // FIXME: For floating point types, we should be saving and restoring the
3308 // floating point environment in the loop.
3309 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3310 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3311 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3312 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3313 Builder.CreateBr(opBB);
3314 Builder.SetInsertPoint(opBB);
3315 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3316 atomicPHI->addIncoming(OpInfo.LHS, startBB);
3317 OpInfo.LHS = atomicPHI;
3318 }
3319 else
3320 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3321
3322 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3323 SourceLocation Loc = E->getExprLoc();
3324 if (!PromotionTypeLHS.isNull())
3325 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, PromotionTypeLHS,
3326 E->getExprLoc());
3327 else
3328 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
3329 E->getComputationLHSType(), Loc);
3330
3331 // Expand the binary operator.
3332 Result = (this->*Func)(OpInfo);
3333
3334 // Convert the result back to the LHS type,
3335 // potentially with Implicit Conversion sanitizer check.
3336 Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc,
3337 ScalarConversionOpts(CGF.SanOpts));
3338
3339 if (atomicPHI) {
3340 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3341 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3342 auto Pair = CGF.EmitAtomicCompareExchange(
3343 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3344 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3345 llvm::Value *success = Pair.second;
3346 atomicPHI->addIncoming(old, curBlock);
3347 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3348 Builder.SetInsertPoint(contBB);
3349 return LHSLV;
3350 }
3351
3352 // Store the result value into the LHS lvalue. Bit-fields are handled
3353 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3354 // 'An assignment expression has the value of the left operand after the
3355 // assignment...'.
3356 if (LHSLV.isBitField())
3357 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3358 else
3359 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3360
3361 if (CGF.getLangOpts().OpenMP)
3362 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3363 E->getLHS());
3364 return LHSLV;
3365 }
3366
EmitCompoundAssign(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &))3367 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3368 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3369 bool Ignore = TestAndClearIgnoreResultAssign();
3370 Value *RHS = nullptr;
3371 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3372
3373 // If the result is clearly ignored, return now.
3374 if (Ignore)
3375 return nullptr;
3376
3377 // The result of an assignment in C is the assigned r-value.
3378 if (!CGF.getLangOpts().CPlusPlus)
3379 return RHS;
3380
3381 // If the lvalue is non-volatile, return the computed value of the assignment.
3382 if (!LHS.isVolatileQualified())
3383 return RHS;
3384
3385 // Otherwise, reload the value.
3386 return EmitLoadOfLValue(LHS, E->getExprLoc());
3387 }
3388
EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo & Ops,llvm::Value * Zero,bool isDiv)3389 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3390 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3391 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3392
3393 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3394 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3395 SanitizerKind::IntegerDivideByZero));
3396 }
3397
3398 const auto *BO = cast<BinaryOperator>(Ops.E);
3399 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3400 Ops.Ty->hasSignedIntegerRepresentation() &&
3401 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3402 Ops.mayHaveIntegerOverflow()) {
3403 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3404
3405 llvm::Value *IntMin =
3406 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3407 llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3408
3409 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3410 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3411 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3412 Checks.push_back(
3413 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3414 }
3415
3416 if (Checks.size() > 0)
3417 EmitBinOpCheck(Checks, Ops);
3418 }
3419
EmitDiv(const BinOpInfo & Ops)3420 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3421 {
3422 CodeGenFunction::SanitizerScope SanScope(&CGF);
3423 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3424 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3425 Ops.Ty->isIntegerType() &&
3426 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3427 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3428 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3429 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3430 Ops.Ty->isRealFloatingType() &&
3431 Ops.mayHaveFloatDivisionByZero()) {
3432 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3433 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3434 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3435 Ops);
3436 }
3437 }
3438
3439 if (Ops.Ty->isConstantMatrixType()) {
3440 llvm::MatrixBuilder MB(Builder);
3441 // We need to check the types of the operands of the operator to get the
3442 // correct matrix dimensions.
3443 auto *BO = cast<BinaryOperator>(Ops.E);
3444 (void)BO;
3445 assert(
3446 isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3447 "first operand must be a matrix");
3448 assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3449 "second operand must be an arithmetic type");
3450 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3451 return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3452 Ops.Ty->hasUnsignedIntegerRepresentation());
3453 }
3454
3455 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3456 llvm::Value *Val;
3457 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3458 Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3459 if ((CGF.getLangOpts().OpenCL &&
3460 !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
3461 (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice &&
3462 !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
3463 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3464 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3465 // build option allows an application to specify that single precision
3466 // floating-point divide (x/y and 1/x) and sqrt used in the program
3467 // source are correctly rounded.
3468 llvm::Type *ValTy = Val->getType();
3469 if (ValTy->isFloatTy() ||
3470 (isa<llvm::VectorType>(ValTy) &&
3471 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3472 CGF.SetFPAccuracy(Val, 2.5);
3473 }
3474 return Val;
3475 }
3476 else if (Ops.isFixedPointOp())
3477 return EmitFixedPointBinOp(Ops);
3478 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3479 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3480 else
3481 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3482 }
3483
EmitRem(const BinOpInfo & Ops)3484 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3485 // Rem in C can't be a floating point type: C99 6.5.5p2.
3486 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3487 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3488 Ops.Ty->isIntegerType() &&
3489 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3490 CodeGenFunction::SanitizerScope SanScope(&CGF);
3491 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3492 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3493 }
3494
3495 if (Ops.Ty->hasUnsignedIntegerRepresentation())
3496 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3497 else
3498 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3499 }
3500
EmitOverflowCheckedBinOp(const BinOpInfo & Ops)3501 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3502 unsigned IID;
3503 unsigned OpID = 0;
3504 SanitizerHandler OverflowKind;
3505
3506 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3507 switch (Ops.Opcode) {
3508 case BO_Add:
3509 case BO_AddAssign:
3510 OpID = 1;
3511 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3512 llvm::Intrinsic::uadd_with_overflow;
3513 OverflowKind = SanitizerHandler::AddOverflow;
3514 break;
3515 case BO_Sub:
3516 case BO_SubAssign:
3517 OpID = 2;
3518 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3519 llvm::Intrinsic::usub_with_overflow;
3520 OverflowKind = SanitizerHandler::SubOverflow;
3521 break;
3522 case BO_Mul:
3523 case BO_MulAssign:
3524 OpID = 3;
3525 IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3526 llvm::Intrinsic::umul_with_overflow;
3527 OverflowKind = SanitizerHandler::MulOverflow;
3528 break;
3529 default:
3530 llvm_unreachable("Unsupported operation for overflow detection");
3531 }
3532 OpID <<= 1;
3533 if (isSigned)
3534 OpID |= 1;
3535
3536 CodeGenFunction::SanitizerScope SanScope(&CGF);
3537 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3538
3539 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3540
3541 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3542 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3543 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3544
3545 // Handle overflow with llvm.trap if no custom handler has been specified.
3546 const std::string *handlerName =
3547 &CGF.getLangOpts().OverflowHandler;
3548 if (handlerName->empty()) {
3549 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3550 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3551 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3552 llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3553 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3554 : SanitizerKind::UnsignedIntegerOverflow;
3555 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3556 } else
3557 CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3558 return result;
3559 }
3560
3561 // Branch in case of overflow.
3562 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3563 llvm::BasicBlock *continueBB =
3564 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3565 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3566
3567 Builder.CreateCondBr(overflow, overflowBB, continueBB);
3568
3569 // If an overflow handler is set, then we want to call it and then use its
3570 // result, if it returns.
3571 Builder.SetInsertPoint(overflowBB);
3572
3573 // Get the overflow handler.
3574 llvm::Type *Int8Ty = CGF.Int8Ty;
3575 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3576 llvm::FunctionType *handlerTy =
3577 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3578 llvm::FunctionCallee handler =
3579 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3580
3581 // Sign extend the args to 64-bit, so that we can use the same handler for
3582 // all types of overflow.
3583 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3584 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3585
3586 // Call the handler with the two arguments, the operation, and the size of
3587 // the result.
3588 llvm::Value *handlerArgs[] = {
3589 lhs,
3590 rhs,
3591 Builder.getInt8(OpID),
3592 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3593 };
3594 llvm::Value *handlerResult =
3595 CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3596
3597 // Truncate the result back to the desired size.
3598 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3599 Builder.CreateBr(continueBB);
3600
3601 Builder.SetInsertPoint(continueBB);
3602 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3603 phi->addIncoming(result, initialBB);
3604 phi->addIncoming(handlerResult, overflowBB);
3605
3606 return phi;
3607 }
3608
3609 /// Emit pointer + index arithmetic.
emitPointerArithmetic(CodeGenFunction & CGF,const BinOpInfo & op,bool isSubtraction)3610 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3611 const BinOpInfo &op,
3612 bool isSubtraction) {
3613 // Must have binary (not unary) expr here. Unary pointer
3614 // increment/decrement doesn't use this path.
3615 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3616
3617 Value *pointer = op.LHS;
3618 Expr *pointerOperand = expr->getLHS();
3619 Value *index = op.RHS;
3620 Expr *indexOperand = expr->getRHS();
3621
3622 // In a subtraction, the LHS is always the pointer.
3623 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3624 std::swap(pointer, index);
3625 std::swap(pointerOperand, indexOperand);
3626 }
3627
3628 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3629
3630 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3631 auto &DL = CGF.CGM.getDataLayout();
3632 auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3633
3634 // Some versions of glibc and gcc use idioms (particularly in their malloc
3635 // routines) that add a pointer-sized integer (known to be a pointer value)
3636 // to a null pointer in order to cast the value back to an integer or as
3637 // part of a pointer alignment algorithm. This is undefined behavior, but
3638 // we'd like to be able to compile programs that use it.
3639 //
3640 // Normally, we'd generate a GEP with a null-pointer base here in response
3641 // to that code, but it's also UB to dereference a pointer created that
3642 // way. Instead (as an acknowledged hack to tolerate the idiom) we will
3643 // generate a direct cast of the integer value to a pointer.
3644 //
3645 // The idiom (p = nullptr + N) is not met if any of the following are true:
3646 //
3647 // The operation is subtraction.
3648 // The index is not pointer-sized.
3649 // The pointer type is not byte-sized.
3650 //
3651 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3652 op.Opcode,
3653 expr->getLHS(),
3654 expr->getRHS()))
3655 return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3656
3657 if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3658 // Zero-extend or sign-extend the pointer value according to
3659 // whether the index is signed or not.
3660 index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3661 "idx.ext");
3662 }
3663
3664 // If this is subtraction, negate the index.
3665 if (isSubtraction)
3666 index = CGF.Builder.CreateNeg(index, "idx.neg");
3667
3668 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3669 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3670 /*Accessed*/ false);
3671
3672 const PointerType *pointerType
3673 = pointerOperand->getType()->getAs<PointerType>();
3674 if (!pointerType) {
3675 QualType objectType = pointerOperand->getType()
3676 ->castAs<ObjCObjectPointerType>()
3677 ->getPointeeType();
3678 llvm::Value *objectSize
3679 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3680
3681 index = CGF.Builder.CreateMul(index, objectSize);
3682
3683 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3684 result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3685 return CGF.Builder.CreateBitCast(result, pointer->getType());
3686 }
3687
3688 QualType elementType = pointerType->getPointeeType();
3689 if (const VariableArrayType *vla
3690 = CGF.getContext().getAsVariableArrayType(elementType)) {
3691 // The element count here is the total number of non-VLA elements.
3692 llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3693
3694 // Effectively, the multiply by the VLA size is part of the GEP.
3695 // GEP indexes are signed, and scaling an index isn't permitted to
3696 // signed-overflow, so we use the same semantics for our explicit
3697 // multiply. We suppress this if overflow is not undefined behavior.
3698 llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType());
3699 if (CGF.getLangOpts().isSignedOverflowDefined()) {
3700 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3701 pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3702 } else {
3703 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3704 pointer = CGF.EmitCheckedInBoundsGEP(
3705 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3706 "add.ptr");
3707 }
3708 return pointer;
3709 }
3710
3711 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3712 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3713 // future proof.
3714 if (elementType->isVoidType() || elementType->isFunctionType()) {
3715 Value *result = CGF.EmitCastToVoidPtr(pointer);
3716 result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr");
3717 return CGF.Builder.CreateBitCast(result, pointer->getType());
3718 }
3719
3720 llvm::Type *elemTy = CGF.ConvertTypeForMem(elementType);
3721 if (CGF.getLangOpts().isSignedOverflowDefined())
3722 return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr");
3723
3724 return CGF.EmitCheckedInBoundsGEP(
3725 elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(),
3726 "add.ptr");
3727 }
3728
3729 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3730 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3731 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3732 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3733 // efficient operations.
buildFMulAdd(llvm::Instruction * MulOp,Value * Addend,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool negMul,bool negAdd)3734 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3735 const CodeGenFunction &CGF, CGBuilderTy &Builder,
3736 bool negMul, bool negAdd) {
3737 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3738
3739 Value *MulOp0 = MulOp->getOperand(0);
3740 Value *MulOp1 = MulOp->getOperand(1);
3741 if (negMul)
3742 MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3743 if (negAdd)
3744 Addend = Builder.CreateFNeg(Addend, "neg");
3745
3746 Value *FMulAdd = nullptr;
3747 if (Builder.getIsFPConstrained()) {
3748 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3749 "Only constrained operation should be created when Builder is in FP "
3750 "constrained mode");
3751 FMulAdd = Builder.CreateConstrainedFPCall(
3752 CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3753 Addend->getType()),
3754 {MulOp0, MulOp1, Addend});
3755 } else {
3756 FMulAdd = Builder.CreateCall(
3757 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3758 {MulOp0, MulOp1, Addend});
3759 }
3760 MulOp->eraseFromParent();
3761
3762 return FMulAdd;
3763 }
3764
3765 // Check whether it would be legal to emit an fmuladd intrinsic call to
3766 // represent op and if so, build the fmuladd.
3767 //
3768 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3769 // Does NOT check the type of the operation - it's assumed that this function
3770 // will be called from contexts where it's known that the type is contractable.
tryEmitFMulAdd(const BinOpInfo & op,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool isSub=false)3771 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3772 const CodeGenFunction &CGF, CGBuilderTy &Builder,
3773 bool isSub=false) {
3774
3775 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3776 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3777 "Only fadd/fsub can be the root of an fmuladd.");
3778
3779 // Check whether this op is marked as fusable.
3780 if (!op.FPFeatures.allowFPContractWithinStatement())
3781 return nullptr;
3782
3783 // We have a potentially fusable op. Look for a mul on one of the operands.
3784 // Also, make sure that the mul result isn't used directly. In that case,
3785 // there's no point creating a muladd operation.
3786 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3787 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3788 LHSBinOp->use_empty())
3789 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3790 }
3791 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3792 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3793 RHSBinOp->use_empty())
3794 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3795 }
3796
3797 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3798 if (LHSBinOp->getIntrinsicID() ==
3799 llvm::Intrinsic::experimental_constrained_fmul &&
3800 LHSBinOp->use_empty())
3801 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3802 }
3803 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3804 if (RHSBinOp->getIntrinsicID() ==
3805 llvm::Intrinsic::experimental_constrained_fmul &&
3806 RHSBinOp->use_empty())
3807 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3808 }
3809
3810 return nullptr;
3811 }
3812
EmitAdd(const BinOpInfo & op)3813 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3814 if (op.LHS->getType()->isPointerTy() ||
3815 op.RHS->getType()->isPointerTy())
3816 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3817
3818 if (op.Ty->isSignedIntegerOrEnumerationType()) {
3819 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3820 case LangOptions::SOB_Defined:
3821 return Builder.CreateAdd(op.LHS, op.RHS, "add");
3822 case LangOptions::SOB_Undefined:
3823 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3824 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3825 [[fallthrough]];
3826 case LangOptions::SOB_Trapping:
3827 if (CanElideOverflowCheck(CGF.getContext(), op))
3828 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3829 return EmitOverflowCheckedBinOp(op);
3830 }
3831 }
3832
3833 if (op.Ty->isConstantMatrixType()) {
3834 llvm::MatrixBuilder MB(Builder);
3835 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3836 return MB.CreateAdd(op.LHS, op.RHS);
3837 }
3838
3839 if (op.Ty->isUnsignedIntegerType() &&
3840 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3841 !CanElideOverflowCheck(CGF.getContext(), op))
3842 return EmitOverflowCheckedBinOp(op);
3843
3844 if (op.LHS->getType()->isFPOrFPVectorTy()) {
3845 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3846 // Try to form an fmuladd.
3847 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3848 return FMulAdd;
3849
3850 return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3851 }
3852
3853 if (op.isFixedPointOp())
3854 return EmitFixedPointBinOp(op);
3855
3856 return Builder.CreateAdd(op.LHS, op.RHS, "add");
3857 }
3858
3859 /// The resulting value must be calculated with exact precision, so the operands
3860 /// may not be the same type.
EmitFixedPointBinOp(const BinOpInfo & op)3861 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3862 using llvm::APSInt;
3863 using llvm::ConstantInt;
3864
3865 // This is either a binary operation where at least one of the operands is
3866 // a fixed-point type, or a unary operation where the operand is a fixed-point
3867 // type. The result type of a binary operation is determined by
3868 // Sema::handleFixedPointConversions().
3869 QualType ResultTy = op.Ty;
3870 QualType LHSTy, RHSTy;
3871 if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3872 RHSTy = BinOp->getRHS()->getType();
3873 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3874 // For compound assignment, the effective type of the LHS at this point
3875 // is the computation LHS type, not the actual LHS type, and the final
3876 // result type is not the type of the expression but rather the
3877 // computation result type.
3878 LHSTy = CAO->getComputationLHSType();
3879 ResultTy = CAO->getComputationResultType();
3880 } else
3881 LHSTy = BinOp->getLHS()->getType();
3882 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3883 LHSTy = UnOp->getSubExpr()->getType();
3884 RHSTy = UnOp->getSubExpr()->getType();
3885 }
3886 ASTContext &Ctx = CGF.getContext();
3887 Value *LHS = op.LHS;
3888 Value *RHS = op.RHS;
3889
3890 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3891 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3892 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3893 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3894
3895 // Perform the actual operation.
3896 Value *Result;
3897 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3898 switch (op.Opcode) {
3899 case BO_AddAssign:
3900 case BO_Add:
3901 Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3902 break;
3903 case BO_SubAssign:
3904 case BO_Sub:
3905 Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3906 break;
3907 case BO_MulAssign:
3908 case BO_Mul:
3909 Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3910 break;
3911 case BO_DivAssign:
3912 case BO_Div:
3913 Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3914 break;
3915 case BO_ShlAssign:
3916 case BO_Shl:
3917 Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3918 break;
3919 case BO_ShrAssign:
3920 case BO_Shr:
3921 Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3922 break;
3923 case BO_LT:
3924 return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3925 case BO_GT:
3926 return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3927 case BO_LE:
3928 return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3929 case BO_GE:
3930 return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3931 case BO_EQ:
3932 // For equality operations, we assume any padding bits on unsigned types are
3933 // zero'd out. They could be overwritten through non-saturating operations
3934 // that cause overflow, but this leads to undefined behavior.
3935 return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3936 case BO_NE:
3937 return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3938 case BO_Cmp:
3939 case BO_LAnd:
3940 case BO_LOr:
3941 llvm_unreachable("Found unimplemented fixed point binary operation");
3942 case BO_PtrMemD:
3943 case BO_PtrMemI:
3944 case BO_Rem:
3945 case BO_Xor:
3946 case BO_And:
3947 case BO_Or:
3948 case BO_Assign:
3949 case BO_RemAssign:
3950 case BO_AndAssign:
3951 case BO_XorAssign:
3952 case BO_OrAssign:
3953 case BO_Comma:
3954 llvm_unreachable("Found unsupported binary operation for fixed point types.");
3955 }
3956
3957 bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3958 BinaryOperator::isShiftAssignOp(op.Opcode);
3959 // Convert to the result type.
3960 return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3961 : CommonFixedSema,
3962 ResultFixedSema);
3963 }
3964
EmitSub(const BinOpInfo & op)3965 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3966 // The LHS is always a pointer if either side is.
3967 if (!op.LHS->getType()->isPointerTy()) {
3968 if (op.Ty->isSignedIntegerOrEnumerationType()) {
3969 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3970 case LangOptions::SOB_Defined:
3971 return Builder.CreateSub(op.LHS, op.RHS, "sub");
3972 case LangOptions::SOB_Undefined:
3973 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3974 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3975 [[fallthrough]];
3976 case LangOptions::SOB_Trapping:
3977 if (CanElideOverflowCheck(CGF.getContext(), op))
3978 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3979 return EmitOverflowCheckedBinOp(op);
3980 }
3981 }
3982
3983 if (op.Ty->isConstantMatrixType()) {
3984 llvm::MatrixBuilder MB(Builder);
3985 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3986 return MB.CreateSub(op.LHS, op.RHS);
3987 }
3988
3989 if (op.Ty->isUnsignedIntegerType() &&
3990 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3991 !CanElideOverflowCheck(CGF.getContext(), op))
3992 return EmitOverflowCheckedBinOp(op);
3993
3994 if (op.LHS->getType()->isFPOrFPVectorTy()) {
3995 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3996 // Try to form an fmuladd.
3997 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3998 return FMulAdd;
3999 return Builder.CreateFSub(op.LHS, op.RHS, "sub");
4000 }
4001
4002 if (op.isFixedPointOp())
4003 return EmitFixedPointBinOp(op);
4004
4005 return Builder.CreateSub(op.LHS, op.RHS, "sub");
4006 }
4007
4008 // If the RHS is not a pointer, then we have normal pointer
4009 // arithmetic.
4010 if (!op.RHS->getType()->isPointerTy())
4011 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
4012
4013 // Otherwise, this is a pointer subtraction.
4014
4015 // Do the raw subtraction part.
4016 llvm::Value *LHS
4017 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
4018 llvm::Value *RHS
4019 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
4020 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
4021
4022 // Okay, figure out the element size.
4023 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
4024 QualType elementType = expr->getLHS()->getType()->getPointeeType();
4025
4026 llvm::Value *divisor = nullptr;
4027
4028 // For a variable-length array, this is going to be non-constant.
4029 if (const VariableArrayType *vla
4030 = CGF.getContext().getAsVariableArrayType(elementType)) {
4031 auto VlaSize = CGF.getVLASize(vla);
4032 elementType = VlaSize.Type;
4033 divisor = VlaSize.NumElts;
4034
4035 // Scale the number of non-VLA elements by the non-VLA element size.
4036 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
4037 if (!eltSize.isOne())
4038 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
4039
4040 // For everything elese, we can just compute it, safe in the
4041 // assumption that Sema won't let anything through that we can't
4042 // safely compute the size of.
4043 } else {
4044 CharUnits elementSize;
4045 // Handle GCC extension for pointer arithmetic on void* and
4046 // function pointer types.
4047 if (elementType->isVoidType() || elementType->isFunctionType())
4048 elementSize = CharUnits::One();
4049 else
4050 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
4051
4052 // Don't even emit the divide for element size of 1.
4053 if (elementSize.isOne())
4054 return diffInChars;
4055
4056 divisor = CGF.CGM.getSize(elementSize);
4057 }
4058
4059 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
4060 // pointer difference in C is only defined in the case where both operands
4061 // are pointing to elements of an array.
4062 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
4063 }
4064
GetWidthMinusOneValue(Value * LHS,Value * RHS)4065 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
4066 llvm::IntegerType *Ty;
4067 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4068 Ty = cast<llvm::IntegerType>(VT->getElementType());
4069 else
4070 Ty = cast<llvm::IntegerType>(LHS->getType());
4071 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
4072 }
4073
ConstrainShiftValue(Value * LHS,Value * RHS,const Twine & Name)4074 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
4075 const Twine &Name) {
4076 llvm::IntegerType *Ty;
4077 if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
4078 Ty = cast<llvm::IntegerType>(VT->getElementType());
4079 else
4080 Ty = cast<llvm::IntegerType>(LHS->getType());
4081
4082 if (llvm::isPowerOf2_64(Ty->getBitWidth()))
4083 return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
4084
4085 return Builder.CreateURem(
4086 RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
4087 }
4088
EmitShl(const BinOpInfo & Ops)4089 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
4090 // TODO: This misses out on the sanitizer check below.
4091 if (Ops.isFixedPointOp())
4092 return EmitFixedPointBinOp(Ops);
4093
4094 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4095 // RHS to the same size as the LHS.
4096 Value *RHS = Ops.RHS;
4097 if (Ops.LHS->getType() != RHS->getType())
4098 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4099
4100 bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
4101 Ops.Ty->hasSignedIntegerRepresentation() &&
4102 !CGF.getLangOpts().isSignedOverflowDefined() &&
4103 !CGF.getLangOpts().CPlusPlus20;
4104 bool SanitizeUnsignedBase =
4105 CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
4106 Ops.Ty->hasUnsignedIntegerRepresentation();
4107 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
4108 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
4109 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4110 if (CGF.getLangOpts().OpenCL)
4111 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
4112 else if ((SanitizeBase || SanitizeExponent) &&
4113 isa<llvm::IntegerType>(Ops.LHS->getType())) {
4114 CodeGenFunction::SanitizerScope SanScope(&CGF);
4115 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
4116 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
4117 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
4118
4119 if (SanitizeExponent) {
4120 Checks.push_back(
4121 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
4122 }
4123
4124 if (SanitizeBase) {
4125 // Check whether we are shifting any non-zero bits off the top of the
4126 // integer. We only emit this check if exponent is valid - otherwise
4127 // instructions below will have undefined behavior themselves.
4128 llvm::BasicBlock *Orig = Builder.GetInsertBlock();
4129 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4130 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
4131 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
4132 llvm::Value *PromotedWidthMinusOne =
4133 (RHS == Ops.RHS) ? WidthMinusOne
4134 : GetWidthMinusOneValue(Ops.LHS, RHS);
4135 CGF.EmitBlock(CheckShiftBase);
4136 llvm::Value *BitsShiftedOff = Builder.CreateLShr(
4137 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
4138 /*NUW*/ true, /*NSW*/ true),
4139 "shl.check");
4140 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
4141 // In C99, we are not permitted to shift a 1 bit into the sign bit.
4142 // Under C++11's rules, shifting a 1 bit into the sign bit is
4143 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
4144 // define signed left shifts, so we use the C99 and C++11 rules there).
4145 // Unsigned shifts can always shift into the top bit.
4146 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
4147 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
4148 }
4149 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
4150 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
4151 CGF.EmitBlock(Cont);
4152 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
4153 BaseCheck->addIncoming(Builder.getTrue(), Orig);
4154 BaseCheck->addIncoming(ValidBase, CheckShiftBase);
4155 Checks.push_back(std::make_pair(
4156 BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
4157 : SanitizerKind::UnsignedShiftBase));
4158 }
4159
4160 assert(!Checks.empty());
4161 EmitBinOpCheck(Checks, Ops);
4162 }
4163
4164 return Builder.CreateShl(Ops.LHS, RHS, "shl");
4165 }
4166
EmitShr(const BinOpInfo & Ops)4167 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
4168 // TODO: This misses out on the sanitizer check below.
4169 if (Ops.isFixedPointOp())
4170 return EmitFixedPointBinOp(Ops);
4171
4172 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4173 // RHS to the same size as the LHS.
4174 Value *RHS = Ops.RHS;
4175 if (Ops.LHS->getType() != RHS->getType())
4176 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
4177
4178 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4179 if (CGF.getLangOpts().OpenCL)
4180 RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
4181 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
4182 isa<llvm::IntegerType>(Ops.LHS->getType())) {
4183 CodeGenFunction::SanitizerScope SanScope(&CGF);
4184 llvm::Value *Valid =
4185 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
4186 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
4187 }
4188
4189 if (Ops.Ty->hasUnsignedIntegerRepresentation())
4190 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
4191 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
4192 }
4193
4194 enum IntrinsicType { VCMPEQ, VCMPGT };
4195 // return corresponding comparison intrinsic for given vector type
GetIntrinsic(IntrinsicType IT,BuiltinType::Kind ElemKind)4196 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
4197 BuiltinType::Kind ElemKind) {
4198 switch (ElemKind) {
4199 default: llvm_unreachable("unexpected element type");
4200 case BuiltinType::Char_U:
4201 case BuiltinType::UChar:
4202 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4203 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4204 case BuiltinType::Char_S:
4205 case BuiltinType::SChar:
4206 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4207 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4208 case BuiltinType::UShort:
4209 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4210 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4211 case BuiltinType::Short:
4212 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4213 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4214 case BuiltinType::UInt:
4215 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4216 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4217 case BuiltinType::Int:
4218 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4219 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4220 case BuiltinType::ULong:
4221 case BuiltinType::ULongLong:
4222 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4223 llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4224 case BuiltinType::Long:
4225 case BuiltinType::LongLong:
4226 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4227 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4228 case BuiltinType::Float:
4229 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4230 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4231 case BuiltinType::Double:
4232 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4233 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4234 case BuiltinType::UInt128:
4235 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4236 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4237 case BuiltinType::Int128:
4238 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4239 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4240 }
4241 }
4242
EmitCompare(const BinaryOperator * E,llvm::CmpInst::Predicate UICmpOpc,llvm::CmpInst::Predicate SICmpOpc,llvm::CmpInst::Predicate FCmpOpc,bool IsSignaling)4243 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4244 llvm::CmpInst::Predicate UICmpOpc,
4245 llvm::CmpInst::Predicate SICmpOpc,
4246 llvm::CmpInst::Predicate FCmpOpc,
4247 bool IsSignaling) {
4248 TestAndClearIgnoreResultAssign();
4249 Value *Result;
4250 QualType LHSTy = E->getLHS()->getType();
4251 QualType RHSTy = E->getRHS()->getType();
4252 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4253 assert(E->getOpcode() == BO_EQ ||
4254 E->getOpcode() == BO_NE);
4255 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4256 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4257 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4258 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4259 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4260 BinOpInfo BOInfo = EmitBinOps(E);
4261 Value *LHS = BOInfo.LHS;
4262 Value *RHS = BOInfo.RHS;
4263
4264 // If AltiVec, the comparison results in a numeric type, so we use
4265 // intrinsics comparing vectors and giving 0 or 1 as a result
4266 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4267 // constants for mapping CR6 register bits to predicate result
4268 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4269
4270 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4271
4272 // in several cases vector arguments order will be reversed
4273 Value *FirstVecArg = LHS,
4274 *SecondVecArg = RHS;
4275
4276 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4277 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4278
4279 switch(E->getOpcode()) {
4280 default: llvm_unreachable("is not a comparison operation");
4281 case BO_EQ:
4282 CR6 = CR6_LT;
4283 ID = GetIntrinsic(VCMPEQ, ElementKind);
4284 break;
4285 case BO_NE:
4286 CR6 = CR6_EQ;
4287 ID = GetIntrinsic(VCMPEQ, ElementKind);
4288 break;
4289 case BO_LT:
4290 CR6 = CR6_LT;
4291 ID = GetIntrinsic(VCMPGT, ElementKind);
4292 std::swap(FirstVecArg, SecondVecArg);
4293 break;
4294 case BO_GT:
4295 CR6 = CR6_LT;
4296 ID = GetIntrinsic(VCMPGT, ElementKind);
4297 break;
4298 case BO_LE:
4299 if (ElementKind == BuiltinType::Float) {
4300 CR6 = CR6_LT;
4301 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4302 std::swap(FirstVecArg, SecondVecArg);
4303 }
4304 else {
4305 CR6 = CR6_EQ;
4306 ID = GetIntrinsic(VCMPGT, ElementKind);
4307 }
4308 break;
4309 case BO_GE:
4310 if (ElementKind == BuiltinType::Float) {
4311 CR6 = CR6_LT;
4312 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4313 }
4314 else {
4315 CR6 = CR6_EQ;
4316 ID = GetIntrinsic(VCMPGT, ElementKind);
4317 std::swap(FirstVecArg, SecondVecArg);
4318 }
4319 break;
4320 }
4321
4322 Value *CR6Param = Builder.getInt32(CR6);
4323 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4324 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4325
4326 // The result type of intrinsic may not be same as E->getType().
4327 // If E->getType() is not BoolTy, EmitScalarConversion will do the
4328 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4329 // do nothing, if ResultTy is not i1 at the same time, it will cause
4330 // crash later.
4331 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4332 if (ResultTy->getBitWidth() > 1 &&
4333 E->getType() == CGF.getContext().BoolTy)
4334 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4335 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4336 E->getExprLoc());
4337 }
4338
4339 if (BOInfo.isFixedPointOp()) {
4340 Result = EmitFixedPointBinOp(BOInfo);
4341 } else if (LHS->getType()->isFPOrFPVectorTy()) {
4342 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4343 if (!IsSignaling)
4344 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4345 else
4346 Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4347 } else if (LHSTy->hasSignedIntegerRepresentation()) {
4348 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4349 } else {
4350 // Unsigned integers and pointers.
4351
4352 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4353 !isa<llvm::ConstantPointerNull>(LHS) &&
4354 !isa<llvm::ConstantPointerNull>(RHS)) {
4355
4356 // Dynamic information is required to be stripped for comparisons,
4357 // because it could leak the dynamic information. Based on comparisons
4358 // of pointers to dynamic objects, the optimizer can replace one pointer
4359 // with another, which might be incorrect in presence of invariant
4360 // groups. Comparison with null is safe because null does not carry any
4361 // dynamic information.
4362 if (LHSTy.mayBeDynamicClass())
4363 LHS = Builder.CreateStripInvariantGroup(LHS);
4364 if (RHSTy.mayBeDynamicClass())
4365 RHS = Builder.CreateStripInvariantGroup(RHS);
4366 }
4367
4368 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4369 }
4370
4371 // If this is a vector comparison, sign extend the result to the appropriate
4372 // vector integer type and return it (don't convert to bool).
4373 if (LHSTy->isVectorType())
4374 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4375
4376 } else {
4377 // Complex Comparison: can only be an equality comparison.
4378 CodeGenFunction::ComplexPairTy LHS, RHS;
4379 QualType CETy;
4380 if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4381 LHS = CGF.EmitComplexExpr(E->getLHS());
4382 CETy = CTy->getElementType();
4383 } else {
4384 LHS.first = Visit(E->getLHS());
4385 LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4386 CETy = LHSTy;
4387 }
4388 if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4389 RHS = CGF.EmitComplexExpr(E->getRHS());
4390 assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4391 CTy->getElementType()) &&
4392 "The element types must always match.");
4393 (void)CTy;
4394 } else {
4395 RHS.first = Visit(E->getRHS());
4396 RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4397 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4398 "The element types must always match.");
4399 }
4400
4401 Value *ResultR, *ResultI;
4402 if (CETy->isRealFloatingType()) {
4403 // As complex comparisons can only be equality comparisons, they
4404 // are never signaling comparisons.
4405 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4406 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4407 } else {
4408 // Complex comparisons can only be equality comparisons. As such, signed
4409 // and unsigned opcodes are the same.
4410 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4411 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4412 }
4413
4414 if (E->getOpcode() == BO_EQ) {
4415 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4416 } else {
4417 assert(E->getOpcode() == BO_NE &&
4418 "Complex comparison other than == or != ?");
4419 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4420 }
4421 }
4422
4423 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4424 E->getExprLoc());
4425 }
4426
VisitBinAssign(const BinaryOperator * E)4427 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4428 bool Ignore = TestAndClearIgnoreResultAssign();
4429
4430 Value *RHS;
4431 LValue LHS;
4432
4433 switch (E->getLHS()->getType().getObjCLifetime()) {
4434 case Qualifiers::OCL_Strong:
4435 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4436 break;
4437
4438 case Qualifiers::OCL_Autoreleasing:
4439 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4440 break;
4441
4442 case Qualifiers::OCL_ExplicitNone:
4443 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4444 break;
4445
4446 case Qualifiers::OCL_Weak:
4447 RHS = Visit(E->getRHS());
4448 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4449 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4450 break;
4451
4452 case Qualifiers::OCL_None:
4453 // __block variables need to have the rhs evaluated first, plus
4454 // this should improve codegen just a little.
4455 RHS = Visit(E->getRHS());
4456 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4457
4458 // Store the value into the LHS. Bit-fields are handled specially
4459 // because the result is altered by the store, i.e., [C99 6.5.16p1]
4460 // 'An assignment expression has the value of the left operand after
4461 // the assignment...'.
4462 if (LHS.isBitField()) {
4463 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4464 } else {
4465 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4466 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4467 }
4468 }
4469
4470 // If the result is clearly ignored, return now.
4471 if (Ignore)
4472 return nullptr;
4473
4474 // The result of an assignment in C is the assigned r-value.
4475 if (!CGF.getLangOpts().CPlusPlus)
4476 return RHS;
4477
4478 // If the lvalue is non-volatile, return the computed value of the assignment.
4479 if (!LHS.isVolatileQualified())
4480 return RHS;
4481
4482 // Otherwise, reload the value.
4483 return EmitLoadOfLValue(LHS, E->getExprLoc());
4484 }
4485
VisitBinLAnd(const BinaryOperator * E)4486 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4487 // Perform vector logical and on comparisons with zero vectors.
4488 if (E->getType()->isVectorType()) {
4489 CGF.incrementProfileCounter(E);
4490
4491 Value *LHS = Visit(E->getLHS());
4492 Value *RHS = Visit(E->getRHS());
4493 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4494 if (LHS->getType()->isFPOrFPVectorTy()) {
4495 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4496 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4497 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4498 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4499 } else {
4500 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4501 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4502 }
4503 Value *And = Builder.CreateAnd(LHS, RHS);
4504 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4505 }
4506
4507 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4508 llvm::Type *ResTy = ConvertType(E->getType());
4509
4510 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4511 // If we have 1 && X, just emit X without inserting the control flow.
4512 bool LHSCondVal;
4513 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4514 if (LHSCondVal) { // If we have 1 && X, just emit X.
4515 CGF.incrementProfileCounter(E);
4516
4517 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4518
4519 // If we're generating for profiling or coverage, generate a branch to a
4520 // block that increments the RHS counter needed to track branch condition
4521 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4522 // "FalseBlock" after the increment is done.
4523 if (InstrumentRegions &&
4524 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4525 llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4526 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4527 Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4528 CGF.EmitBlock(RHSBlockCnt);
4529 CGF.incrementProfileCounter(E->getRHS());
4530 CGF.EmitBranch(FBlock);
4531 CGF.EmitBlock(FBlock);
4532 }
4533
4534 // ZExt result to int or bool.
4535 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4536 }
4537
4538 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4539 if (!CGF.ContainsLabel(E->getRHS()))
4540 return llvm::Constant::getNullValue(ResTy);
4541 }
4542
4543 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4544 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
4545
4546 CodeGenFunction::ConditionalEvaluation eval(CGF);
4547
4548 // Branch on the LHS first. If it is false, go to the failure (cont) block.
4549 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4550 CGF.getProfileCount(E->getRHS()));
4551
4552 // Any edges into the ContBlock are now from an (indeterminate number of)
4553 // edges from this first condition. All of these values will be false. Start
4554 // setting up the PHI node in the Cont Block for this.
4555 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4556 "", ContBlock);
4557 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4558 PI != PE; ++PI)
4559 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4560
4561 eval.begin(CGF);
4562 CGF.EmitBlock(RHSBlock);
4563 CGF.incrementProfileCounter(E);
4564 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4565 eval.end(CGF);
4566
4567 // Reaquire the RHS block, as there may be subblocks inserted.
4568 RHSBlock = Builder.GetInsertBlock();
4569
4570 // If we're generating for profiling or coverage, generate a branch on the
4571 // RHS to a block that increments the RHS true counter needed to track branch
4572 // condition coverage.
4573 if (InstrumentRegions &&
4574 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4575 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4576 Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4577 CGF.EmitBlock(RHSBlockCnt);
4578 CGF.incrementProfileCounter(E->getRHS());
4579 CGF.EmitBranch(ContBlock);
4580 PN->addIncoming(RHSCond, RHSBlockCnt);
4581 }
4582
4583 // Emit an unconditional branch from this block to ContBlock.
4584 {
4585 // There is no need to emit line number for unconditional branch.
4586 auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4587 CGF.EmitBlock(ContBlock);
4588 }
4589 // Insert an entry into the phi node for the edge with the value of RHSCond.
4590 PN->addIncoming(RHSCond, RHSBlock);
4591
4592 // Artificial location to preserve the scope information
4593 {
4594 auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4595 PN->setDebugLoc(Builder.getCurrentDebugLocation());
4596 }
4597
4598 // ZExt result to int.
4599 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4600 }
4601
VisitBinLOr(const BinaryOperator * E)4602 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4603 // Perform vector logical or on comparisons with zero vectors.
4604 if (E->getType()->isVectorType()) {
4605 CGF.incrementProfileCounter(E);
4606
4607 Value *LHS = Visit(E->getLHS());
4608 Value *RHS = Visit(E->getRHS());
4609 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4610 if (LHS->getType()->isFPOrFPVectorTy()) {
4611 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4612 CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4613 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4614 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4615 } else {
4616 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4617 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4618 }
4619 Value *Or = Builder.CreateOr(LHS, RHS);
4620 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4621 }
4622
4623 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4624 llvm::Type *ResTy = ConvertType(E->getType());
4625
4626 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4627 // If we have 0 || X, just emit X without inserting the control flow.
4628 bool LHSCondVal;
4629 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4630 if (!LHSCondVal) { // If we have 0 || X, just emit X.
4631 CGF.incrementProfileCounter(E);
4632
4633 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4634
4635 // If we're generating for profiling or coverage, generate a branch to a
4636 // block that increments the RHS counter need to track branch condition
4637 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4638 // "FalseBlock" after the increment is done.
4639 if (InstrumentRegions &&
4640 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4641 llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4642 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4643 Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4644 CGF.EmitBlock(RHSBlockCnt);
4645 CGF.incrementProfileCounter(E->getRHS());
4646 CGF.EmitBranch(FBlock);
4647 CGF.EmitBlock(FBlock);
4648 }
4649
4650 // ZExt result to int or bool.
4651 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4652 }
4653
4654 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4655 if (!CGF.ContainsLabel(E->getRHS()))
4656 return llvm::ConstantInt::get(ResTy, 1);
4657 }
4658
4659 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4660 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4661
4662 CodeGenFunction::ConditionalEvaluation eval(CGF);
4663
4664 // Branch on the LHS first. If it is true, go to the success (cont) block.
4665 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4666 CGF.getCurrentProfileCount() -
4667 CGF.getProfileCount(E->getRHS()));
4668
4669 // Any edges into the ContBlock are now from an (indeterminate number of)
4670 // edges from this first condition. All of these values will be true. Start
4671 // setting up the PHI node in the Cont Block for this.
4672 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4673 "", ContBlock);
4674 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4675 PI != PE; ++PI)
4676 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4677
4678 eval.begin(CGF);
4679
4680 // Emit the RHS condition as a bool value.
4681 CGF.EmitBlock(RHSBlock);
4682 CGF.incrementProfileCounter(E);
4683 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4684
4685 eval.end(CGF);
4686
4687 // Reaquire the RHS block, as there may be subblocks inserted.
4688 RHSBlock = Builder.GetInsertBlock();
4689
4690 // If we're generating for profiling or coverage, generate a branch on the
4691 // RHS to a block that increments the RHS true counter needed to track branch
4692 // condition coverage.
4693 if (InstrumentRegions &&
4694 CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4695 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4696 Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4697 CGF.EmitBlock(RHSBlockCnt);
4698 CGF.incrementProfileCounter(E->getRHS());
4699 CGF.EmitBranch(ContBlock);
4700 PN->addIncoming(RHSCond, RHSBlockCnt);
4701 }
4702
4703 // Emit an unconditional branch from this block to ContBlock. Insert an entry
4704 // into the phi node for the edge with the value of RHSCond.
4705 CGF.EmitBlock(ContBlock);
4706 PN->addIncoming(RHSCond, RHSBlock);
4707
4708 // ZExt result to int.
4709 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4710 }
4711
VisitBinComma(const BinaryOperator * E)4712 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4713 CGF.EmitIgnoredExpr(E->getLHS());
4714 CGF.EnsureInsertPoint();
4715 return Visit(E->getRHS());
4716 }
4717
4718 //===----------------------------------------------------------------------===//
4719 // Other Operators
4720 //===----------------------------------------------------------------------===//
4721
4722 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4723 /// expression is cheap enough and side-effect-free enough to evaluate
4724 /// unconditionally instead of conditionally. This is used to convert control
4725 /// flow into selects in some cases.
isCheapEnoughToEvaluateUnconditionally(const Expr * E,CodeGenFunction & CGF)4726 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4727 CodeGenFunction &CGF) {
4728 // Anything that is an integer or floating point constant is fine.
4729 return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4730
4731 // Even non-volatile automatic variables can't be evaluated unconditionally.
4732 // Referencing a thread_local may cause non-trivial initialization work to
4733 // occur. If we're inside a lambda and one of the variables is from the scope
4734 // outside the lambda, that function may have returned already. Reading its
4735 // locals is a bad idea. Also, these reads may introduce races there didn't
4736 // exist in the source-level program.
4737 }
4738
4739
4740 Value *ScalarExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)4741 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4742 TestAndClearIgnoreResultAssign();
4743
4744 // Bind the common expression if necessary.
4745 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4746
4747 Expr *condExpr = E->getCond();
4748 Expr *lhsExpr = E->getTrueExpr();
4749 Expr *rhsExpr = E->getFalseExpr();
4750
4751 // If the condition constant folds and can be elided, try to avoid emitting
4752 // the condition and the dead arm.
4753 bool CondExprBool;
4754 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4755 Expr *live = lhsExpr, *dead = rhsExpr;
4756 if (!CondExprBool) std::swap(live, dead);
4757
4758 // If the dead side doesn't have labels we need, just emit the Live part.
4759 if (!CGF.ContainsLabel(dead)) {
4760 if (CondExprBool)
4761 CGF.incrementProfileCounter(E);
4762 Value *Result = Visit(live);
4763
4764 // If the live part is a throw expression, it acts like it has a void
4765 // type, so evaluating it returns a null Value*. However, a conditional
4766 // with non-void type must return a non-null Value*.
4767 if (!Result && !E->getType()->isVoidType())
4768 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4769
4770 return Result;
4771 }
4772 }
4773
4774 // OpenCL: If the condition is a vector, we can treat this condition like
4775 // the select function.
4776 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4777 condExpr->getType()->isExtVectorType()) {
4778 CGF.incrementProfileCounter(E);
4779
4780 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4781 llvm::Value *LHS = Visit(lhsExpr);
4782 llvm::Value *RHS = Visit(rhsExpr);
4783
4784 llvm::Type *condType = ConvertType(condExpr->getType());
4785 auto *vecTy = cast<llvm::FixedVectorType>(condType);
4786
4787 unsigned numElem = vecTy->getNumElements();
4788 llvm::Type *elemType = vecTy->getElementType();
4789
4790 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4791 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4792 llvm::Value *tmp = Builder.CreateSExt(
4793 TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4794 llvm::Value *tmp2 = Builder.CreateNot(tmp);
4795
4796 // Cast float to int to perform ANDs if necessary.
4797 llvm::Value *RHSTmp = RHS;
4798 llvm::Value *LHSTmp = LHS;
4799 bool wasCast = false;
4800 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4801 if (rhsVTy->getElementType()->isFloatingPointTy()) {
4802 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4803 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4804 wasCast = true;
4805 }
4806
4807 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4808 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4809 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4810 if (wasCast)
4811 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4812
4813 return tmp5;
4814 }
4815
4816 if (condExpr->getType()->isVectorType() ||
4817 condExpr->getType()->isVLSTBuiltinType()) {
4818 CGF.incrementProfileCounter(E);
4819
4820 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4821 llvm::Value *LHS = Visit(lhsExpr);
4822 llvm::Value *RHS = Visit(rhsExpr);
4823
4824 llvm::Type *CondType = ConvertType(condExpr->getType());
4825 auto *VecTy = cast<llvm::VectorType>(CondType);
4826 llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4827
4828 CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4829 return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4830 }
4831
4832 // If this is a really simple expression (like x ? 4 : 5), emit this as a
4833 // select instead of as control flow. We can only do this if it is cheap and
4834 // safe to evaluate the LHS and RHS unconditionally.
4835 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4836 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4837 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4838 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4839
4840 CGF.incrementProfileCounter(E, StepV);
4841
4842 llvm::Value *LHS = Visit(lhsExpr);
4843 llvm::Value *RHS = Visit(rhsExpr);
4844 if (!LHS) {
4845 // If the conditional has void type, make sure we return a null Value*.
4846 assert(!RHS && "LHS and RHS types must match");
4847 return nullptr;
4848 }
4849 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4850 }
4851
4852 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4853 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4854 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4855
4856 CodeGenFunction::ConditionalEvaluation eval(CGF);
4857 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4858 CGF.getProfileCount(lhsExpr));
4859
4860 CGF.EmitBlock(LHSBlock);
4861 CGF.incrementProfileCounter(E);
4862 eval.begin(CGF);
4863 Value *LHS = Visit(lhsExpr);
4864 eval.end(CGF);
4865
4866 LHSBlock = Builder.GetInsertBlock();
4867 Builder.CreateBr(ContBlock);
4868
4869 CGF.EmitBlock(RHSBlock);
4870 eval.begin(CGF);
4871 Value *RHS = Visit(rhsExpr);
4872 eval.end(CGF);
4873
4874 RHSBlock = Builder.GetInsertBlock();
4875 CGF.EmitBlock(ContBlock);
4876
4877 // If the LHS or RHS is a throw expression, it will be legitimately null.
4878 if (!LHS)
4879 return RHS;
4880 if (!RHS)
4881 return LHS;
4882
4883 // Create a PHI node for the real part.
4884 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4885 PN->addIncoming(LHS, LHSBlock);
4886 PN->addIncoming(RHS, RHSBlock);
4887 return PN;
4888 }
4889
VisitChooseExpr(ChooseExpr * E)4890 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4891 return Visit(E->getChosenSubExpr());
4892 }
4893
VisitVAArgExpr(VAArgExpr * VE)4894 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4895 QualType Ty = VE->getType();
4896
4897 if (Ty->isVariablyModifiedType())
4898 CGF.EmitVariablyModifiedType(Ty);
4899
4900 Address ArgValue = Address::invalid();
4901 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4902
4903 llvm::Type *ArgTy = ConvertType(VE->getType());
4904
4905 // If EmitVAArg fails, emit an error.
4906 if (!ArgPtr.isValid()) {
4907 CGF.ErrorUnsupported(VE, "va_arg expression");
4908 return llvm::UndefValue::get(ArgTy);
4909 }
4910
4911 // FIXME Volatility.
4912 llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4913
4914 // If EmitVAArg promoted the type, we must truncate it.
4915 if (ArgTy != Val->getType()) {
4916 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4917 Val = Builder.CreateIntToPtr(Val, ArgTy);
4918 else
4919 Val = Builder.CreateTrunc(Val, ArgTy);
4920 }
4921
4922 return Val;
4923 }
4924
VisitBlockExpr(const BlockExpr * block)4925 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4926 return CGF.EmitBlockLiteral(block);
4927 }
4928
4929 // Convert a vec3 to vec4, or vice versa.
ConvertVec3AndVec4(CGBuilderTy & Builder,CodeGenFunction & CGF,Value * Src,unsigned NumElementsDst)4930 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4931 Value *Src, unsigned NumElementsDst) {
4932 static constexpr int Mask[] = {0, 1, 2, -1};
4933 return Builder.CreateShuffleVector(Src, llvm::ArrayRef(Mask, NumElementsDst));
4934 }
4935
4936 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4937 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4938 // but could be scalar or vectors of different lengths, and either can be
4939 // pointer.
4940 // There are 4 cases:
4941 // 1. non-pointer -> non-pointer : needs 1 bitcast
4942 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast
4943 // 3. pointer -> non-pointer
4944 // a) pointer -> intptr_t : needs 1 ptrtoint
4945 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
4946 // 4. non-pointer -> pointer
4947 // a) intptr_t -> pointer : needs 1 inttoptr
4948 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
4949 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4950 // allow casting directly between pointer types and non-integer non-pointer
4951 // types.
createCastsForTypeOfSameSize(CGBuilderTy & Builder,const llvm::DataLayout & DL,Value * Src,llvm::Type * DstTy,StringRef Name="")4952 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4953 const llvm::DataLayout &DL,
4954 Value *Src, llvm::Type *DstTy,
4955 StringRef Name = "") {
4956 auto SrcTy = Src->getType();
4957
4958 // Case 1.
4959 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4960 return Builder.CreateBitCast(Src, DstTy, Name);
4961
4962 // Case 2.
4963 if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4964 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4965
4966 // Case 3.
4967 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4968 // Case 3b.
4969 if (!DstTy->isIntegerTy())
4970 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4971 // Cases 3a and 3b.
4972 return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4973 }
4974
4975 // Case 4b.
4976 if (!SrcTy->isIntegerTy())
4977 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4978 // Cases 4a and 4b.
4979 return Builder.CreateIntToPtr(Src, DstTy, Name);
4980 }
4981
VisitAsTypeExpr(AsTypeExpr * E)4982 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4983 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
4984 llvm::Type *DstTy = ConvertType(E->getType());
4985
4986 llvm::Type *SrcTy = Src->getType();
4987 unsigned NumElementsSrc =
4988 isa<llvm::VectorType>(SrcTy)
4989 ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4990 : 0;
4991 unsigned NumElementsDst =
4992 isa<llvm::VectorType>(DstTy)
4993 ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4994 : 0;
4995
4996 // Use bit vector expansion for ext_vector_type boolean vectors.
4997 if (E->getType()->isExtVectorBoolType())
4998 return CGF.emitBoolVecConversion(Src, NumElementsDst, "astype");
4999
5000 // Going from vec3 to non-vec3 is a special case and requires a shuffle
5001 // vector to get a vec4, then a bitcast if the target type is different.
5002 if (NumElementsSrc == 3 && NumElementsDst != 3) {
5003 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
5004 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5005 DstTy);
5006
5007 Src->setName("astype");
5008 return Src;
5009 }
5010
5011 // Going from non-vec3 to vec3 is a special case and requires a bitcast
5012 // to vec4 if the original type is not vec4, then a shuffle vector to
5013 // get a vec3.
5014 if (NumElementsSrc != 3 && NumElementsDst == 3) {
5015 auto *Vec4Ty = llvm::FixedVectorType::get(
5016 cast<llvm::VectorType>(DstTy)->getElementType(), 4);
5017 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
5018 Vec4Ty);
5019
5020 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
5021 Src->setName("astype");
5022 return Src;
5023 }
5024
5025 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
5026 Src, DstTy, "astype");
5027 }
5028
VisitAtomicExpr(AtomicExpr * E)5029 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
5030 return CGF.EmitAtomicExpr(E).getScalarVal();
5031 }
5032
5033 //===----------------------------------------------------------------------===//
5034 // Entry Point into this File
5035 //===----------------------------------------------------------------------===//
5036
5037 /// Emit the computation of the specified expression of scalar type, ignoring
5038 /// the result.
EmitScalarExpr(const Expr * E,bool IgnoreResultAssign)5039 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
5040 assert(E && hasScalarEvaluationKind(E->getType()) &&
5041 "Invalid scalar expression to emit");
5042
5043 return ScalarExprEmitter(*this, IgnoreResultAssign)
5044 .Visit(const_cast<Expr *>(E));
5045 }
5046
5047 /// Emit a conversion from the specified type to the specified destination type,
5048 /// both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)5049 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
5050 QualType DstTy,
5051 SourceLocation Loc) {
5052 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
5053 "Invalid scalar expression to emit");
5054 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
5055 }
5056
5057 /// Emit a conversion from the specified complex type to the specified
5058 /// destination type, where the destination type is an LLVM scalar type.
EmitComplexToScalarConversion(ComplexPairTy Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)5059 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
5060 QualType SrcTy,
5061 QualType DstTy,
5062 SourceLocation Loc) {
5063 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
5064 "Invalid complex -> scalar conversion");
5065 return ScalarExprEmitter(*this)
5066 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
5067 }
5068
5069
5070 Value *
EmitPromotedScalarExpr(const Expr * E,QualType PromotionType)5071 CodeGenFunction::EmitPromotedScalarExpr(const Expr *E,
5072 QualType PromotionType) {
5073 if (!PromotionType.isNull())
5074 return ScalarExprEmitter(*this).EmitPromoted(E, PromotionType);
5075 else
5076 return ScalarExprEmitter(*this).Visit(const_cast<Expr *>(E));
5077 }
5078
5079
5080 llvm::Value *CodeGenFunction::
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)5081 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
5082 bool isInc, bool isPre) {
5083 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
5084 }
5085
EmitObjCIsaExpr(const ObjCIsaExpr * E)5086 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
5087 // object->isa or (*object).isa
5088 // Generate code as for: *(Class*)object
5089
5090 Expr *BaseExpr = E->getBase();
5091 Address Addr = Address::invalid();
5092 if (BaseExpr->isPRValue()) {
5093 llvm::Type *BaseTy =
5094 ConvertTypeForMem(BaseExpr->getType()->getPointeeType());
5095 Addr = Address(EmitScalarExpr(BaseExpr), BaseTy, getPointerAlign());
5096 } else {
5097 Addr = EmitLValue(BaseExpr).getAddress(*this);
5098 }
5099
5100 // Cast the address to Class*.
5101 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
5102 return MakeAddrLValue(Addr, E->getType());
5103 }
5104
5105
EmitCompoundAssignmentLValue(const CompoundAssignOperator * E)5106 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
5107 const CompoundAssignOperator *E) {
5108 ScalarExprEmitter Scalar(*this);
5109 Value *Result = nullptr;
5110 switch (E->getOpcode()) {
5111 #define COMPOUND_OP(Op) \
5112 case BO_##Op##Assign: \
5113 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
5114 Result)
5115 COMPOUND_OP(Mul);
5116 COMPOUND_OP(Div);
5117 COMPOUND_OP(Rem);
5118 COMPOUND_OP(Add);
5119 COMPOUND_OP(Sub);
5120 COMPOUND_OP(Shl);
5121 COMPOUND_OP(Shr);
5122 COMPOUND_OP(And);
5123 COMPOUND_OP(Xor);
5124 COMPOUND_OP(Or);
5125 #undef COMPOUND_OP
5126
5127 case BO_PtrMemD:
5128 case BO_PtrMemI:
5129 case BO_Mul:
5130 case BO_Div:
5131 case BO_Rem:
5132 case BO_Add:
5133 case BO_Sub:
5134 case BO_Shl:
5135 case BO_Shr:
5136 case BO_LT:
5137 case BO_GT:
5138 case BO_LE:
5139 case BO_GE:
5140 case BO_EQ:
5141 case BO_NE:
5142 case BO_Cmp:
5143 case BO_And:
5144 case BO_Xor:
5145 case BO_Or:
5146 case BO_LAnd:
5147 case BO_LOr:
5148 case BO_Assign:
5149 case BO_Comma:
5150 llvm_unreachable("Not valid compound assignment operators");
5151 }
5152
5153 llvm_unreachable("Unhandled compound assignment operator");
5154 }
5155
5156 struct GEPOffsetAndOverflow {
5157 // The total (signed) byte offset for the GEP.
5158 llvm::Value *TotalOffset;
5159 // The offset overflow flag - true if the total offset overflows.
5160 llvm::Value *OffsetOverflows;
5161 };
5162
5163 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
5164 /// and compute the total offset it applies from it's base pointer BasePtr.
5165 /// Returns offset in bytes and a boolean flag whether an overflow happened
5166 /// during evaluation.
EmitGEPOffsetInBytes(Value * BasePtr,Value * GEPVal,llvm::LLVMContext & VMContext,CodeGenModule & CGM,CGBuilderTy & Builder)5167 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
5168 llvm::LLVMContext &VMContext,
5169 CodeGenModule &CGM,
5170 CGBuilderTy &Builder) {
5171 const auto &DL = CGM.getDataLayout();
5172
5173 // The total (signed) byte offset for the GEP.
5174 llvm::Value *TotalOffset = nullptr;
5175
5176 // Was the GEP already reduced to a constant?
5177 if (isa<llvm::Constant>(GEPVal)) {
5178 // Compute the offset by casting both pointers to integers and subtracting:
5179 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
5180 Value *BasePtr_int =
5181 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
5182 Value *GEPVal_int =
5183 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
5184 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
5185 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
5186 }
5187
5188 auto *GEP = cast<llvm::GEPOperator>(GEPVal);
5189 assert(GEP->getPointerOperand() == BasePtr &&
5190 "BasePtr must be the base of the GEP.");
5191 assert(GEP->isInBounds() && "Expected inbounds GEP");
5192
5193 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
5194
5195 // Grab references to the signed add/mul overflow intrinsics for intptr_t.
5196 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5197 auto *SAddIntrinsic =
5198 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
5199 auto *SMulIntrinsic =
5200 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
5201
5202 // The offset overflow flag - true if the total offset overflows.
5203 llvm::Value *OffsetOverflows = Builder.getFalse();
5204
5205 /// Return the result of the given binary operation.
5206 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
5207 llvm::Value *RHS) -> llvm::Value * {
5208 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
5209
5210 // If the operands are constants, return a constant result.
5211 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
5212 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
5213 llvm::APInt N;
5214 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
5215 /*Signed=*/true, N);
5216 if (HasOverflow)
5217 OffsetOverflows = Builder.getTrue();
5218 return llvm::ConstantInt::get(VMContext, N);
5219 }
5220 }
5221
5222 // Otherwise, compute the result with checked arithmetic.
5223 auto *ResultAndOverflow = Builder.CreateCall(
5224 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
5225 OffsetOverflows = Builder.CreateOr(
5226 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
5227 return Builder.CreateExtractValue(ResultAndOverflow, 0);
5228 };
5229
5230 // Determine the total byte offset by looking at each GEP operand.
5231 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
5232 GTI != GTE; ++GTI) {
5233 llvm::Value *LocalOffset;
5234 auto *Index = GTI.getOperand();
5235 // Compute the local offset contributed by this indexing step:
5236 if (auto *STy = GTI.getStructTypeOrNull()) {
5237 // For struct indexing, the local offset is the byte position of the
5238 // specified field.
5239 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
5240 LocalOffset = llvm::ConstantInt::get(
5241 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
5242 } else {
5243 // Otherwise this is array-like indexing. The local offset is the index
5244 // multiplied by the element size.
5245 auto *ElementSize = llvm::ConstantInt::get(
5246 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
5247 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
5248 LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5249 }
5250
5251 // If this is the first offset, set it as the total offset. Otherwise, add
5252 // the local offset into the running total.
5253 if (!TotalOffset || TotalOffset == Zero)
5254 TotalOffset = LocalOffset;
5255 else
5256 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5257 }
5258
5259 return {TotalOffset, OffsetOverflows};
5260 }
5261
5262 Value *
EmitCheckedInBoundsGEP(llvm::Type * ElemTy,Value * Ptr,ArrayRef<Value * > IdxList,bool SignedIndices,bool IsSubtraction,SourceLocation Loc,const Twine & Name)5263 CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr,
5264 ArrayRef<Value *> IdxList,
5265 bool SignedIndices, bool IsSubtraction,
5266 SourceLocation Loc, const Twine &Name) {
5267 llvm::Type *PtrTy = Ptr->getType();
5268 Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name);
5269
5270 // If the pointer overflow sanitizer isn't enabled, do nothing.
5271 if (!SanOpts.has(SanitizerKind::PointerOverflow))
5272 return GEPVal;
5273
5274 // Perform nullptr-and-offset check unless the nullptr is defined.
5275 bool PerformNullCheck = !NullPointerIsDefined(
5276 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5277 // Check for overflows unless the GEP got constant-folded,
5278 // and only in the default address space
5279 bool PerformOverflowCheck =
5280 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5281
5282 if (!(PerformNullCheck || PerformOverflowCheck))
5283 return GEPVal;
5284
5285 const auto &DL = CGM.getDataLayout();
5286
5287 SanitizerScope SanScope(this);
5288 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5289
5290 GEPOffsetAndOverflow EvaluatedGEP =
5291 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5292
5293 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5294 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5295 "If the offset got constant-folded, we don't expect that there was an "
5296 "overflow.");
5297
5298 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5299
5300 // Common case: if the total offset is zero, and we are using C++ semantics,
5301 // where nullptr+0 is defined, don't emit a check.
5302 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5303 return GEPVal;
5304
5305 // Now that we've computed the total offset, add it to the base pointer (with
5306 // wrapping semantics).
5307 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5308 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5309
5310 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5311
5312 if (PerformNullCheck) {
5313 // In C++, if the base pointer evaluates to a null pointer value,
5314 // the only valid pointer this inbounds GEP can produce is also
5315 // a null pointer, so the offset must also evaluate to zero.
5316 // Likewise, if we have non-zero base pointer, we can not get null pointer
5317 // as a result, so the offset can not be -intptr_t(BasePtr).
5318 // In other words, both pointers are either null, or both are non-null,
5319 // or the behaviour is undefined.
5320 //
5321 // C, however, is more strict in this regard, and gives more
5322 // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5323 // So both the input to the 'gep inbounds' AND the output must not be null.
5324 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5325 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5326 auto *Valid =
5327 CGM.getLangOpts().CPlusPlus
5328 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5329 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5330 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5331 }
5332
5333 if (PerformOverflowCheck) {
5334 // The GEP is valid if:
5335 // 1) The total offset doesn't overflow, and
5336 // 2) The sign of the difference between the computed address and the base
5337 // pointer matches the sign of the total offset.
5338 llvm::Value *ValidGEP;
5339 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5340 if (SignedIndices) {
5341 // GEP is computed as `unsigned base + signed offset`, therefore:
5342 // * If offset was positive, then the computed pointer can not be
5343 // [unsigned] less than the base pointer, unless it overflowed.
5344 // * If offset was negative, then the computed pointer can not be
5345 // [unsigned] greater than the bas pointere, unless it overflowed.
5346 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5347 auto *PosOrZeroOffset =
5348 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5349 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5350 ValidGEP =
5351 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5352 } else if (!IsSubtraction) {
5353 // GEP is computed as `unsigned base + unsigned offset`, therefore the
5354 // computed pointer can not be [unsigned] less than base pointer,
5355 // unless there was an overflow.
5356 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5357 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5358 } else {
5359 // GEP is computed as `unsigned base - unsigned offset`, therefore the
5360 // computed pointer can not be [unsigned] greater than base pointer,
5361 // unless there was an overflow.
5362 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5363 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5364 }
5365 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5366 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5367 }
5368
5369 assert(!Checks.empty() && "Should have produced some checks.");
5370
5371 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5372 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5373 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5374 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5375
5376 return GEPVal;
5377 }
5378