1 /*
2  * This file is part of OpenTTD.
3  * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
4  * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
5  * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
6  */
7 
8 /** @file math_func.hpp Integer math functions */
9 
10 #ifndef MATH_FUNC_HPP
11 #define MATH_FUNC_HPP
12 
13 /**
14  * Returns the absolute value of (scalar) variable.
15  *
16  * @note assumes variable to be signed
17  * @param a The value we want to unsign
18  * @return The unsigned value
19  */
20 template <typename T>
abs(const T a)21 static inline T abs(const T a)
22 {
23 	return (a < (T)0) ? -a : a;
24 }
25 
26 /**
27  * Return the smallest multiple of n equal or greater than x
28  *
29  * @note n must be a power of 2
30  * @param x The min value
31  * @param n The base of the number we are searching
32  * @return The smallest multiple of n equal or greater than x
33  */
34 template <typename T>
Align(const T x,uint n)35 static inline T Align(const T x, uint n)
36 {
37 	assert((n & (n - 1)) == 0 && n != 0);
38 	n--;
39 	return (T)((x + n) & ~((T)n));
40 }
41 
42 /**
43  * Return the smallest multiple of n equal or greater than x
44  * Applies to pointers only
45  *
46  * @note n must be a power of 2
47  * @param x The min value
48  * @param n The base of the number we are searching
49  * @return The smallest multiple of n equal or greater than x
50  * @see Align()
51  */
52 template <typename T>
AlignPtr(T * x,uint n)53 static inline T *AlignPtr(T *x, uint n)
54 {
55 	static_assert(sizeof(size_t) == sizeof(void *));
56 	return reinterpret_cast<T *>(Align((size_t)x, n));
57 }
58 
59 /**
60  * Clamp a value between an interval.
61  *
62  * This function returns a value which is between the given interval of
63  * min and max. If the given value is in this interval the value itself
64  * is returned otherwise the border of the interval is returned, according
65  * which side of the interval was 'left'.
66  *
67  * @note The min value must be less or equal of max or you get some
68  *       unexpected results.
69  * @param a The value to clamp/truncate.
70  * @param min The minimum of the interval.
71  * @param max the maximum of the interval.
72  * @returns A value between min and max which is closest to a.
73  * @see ClampU(uint, uint, uint)
74  * @see Clamp(int, int, int)
75  */
76 template <typename T>
Clamp(const T a,const T min,const T max)77 static inline T Clamp(const T a, const T min, const T max)
78 {
79 	assert(min <= max);
80 	if (a <= min) return min;
81 	if (a >= max) return max;
82 	return a;
83 }
84 
85 /**
86  * Clamp an integer between an interval.
87  *
88  * This function returns a value which is between the given interval of
89  * min and max. If the given value is in this interval the value itself
90  * is returned otherwise the border of the interval is returned, according
91  * which side of the interval was 'left'.
92  *
93  * @note The min value must be less or equal of max or you get some
94  *       unexpected results.
95  * @param a The value to clamp/truncate.
96  * @param min The minimum of the interval.
97  * @param max the maximum of the interval.
98  * @returns A value between min and max which is closest to a.
99  * @see ClampU(uint, uint, uint)
100  */
Clamp(const int a,const int min,const int max)101 static inline int Clamp(const int a, const int min, const int max)
102 {
103 	return Clamp<int>(a, min, max);
104 }
105 
106 /**
107  * Clamp an unsigned integer between an interval.
108  *
109  * This function returns a value which is between the given interval of
110  * min and max. If the given value is in this interval the value itself
111  * is returned otherwise the border of the interval is returned, according
112  * which side of the interval was 'left'.
113  *
114  * @note The min value must be less or equal of max or you get some
115  *       unexpected results.
116  * @param a The value to clamp/truncate.
117  * @param min The minimum of the interval.
118  * @param max the maximum of the interval.
119  * @returns A value between min and max which is closest to a.
120  * @see Clamp(int, int, int)
121  */
ClampU(const uint a,const uint min,const uint max)122 static inline uint ClampU(const uint a, const uint min, const uint max)
123 {
124 	return Clamp<uint>(a, min, max);
125 }
126 
127 /**
128  * Reduce a signed 64-bit int to a signed 32-bit one
129  *
130  * This function clamps a 64-bit integer to a 32-bit integer.
131  * If the 64-bit value is smaller than the smallest 32-bit integer
132  * value 0x80000000 this value is returned (the left one bit is the sign bit).
133  * If the 64-bit value is greater than the greatest 32-bit integer value 0x7FFFFFFF
134  * this value is returned. In all other cases the 64-bit value 'fits' in a
135  * 32-bits integer field and so the value is casted to int32 and returned.
136  *
137  * @param a The 64-bit value to clamps
138  * @return The 64-bit value reduced to a 32-bit value
139  * @see Clamp(int, int, int)
140  */
ClampToI32(const int64 a)141 static inline int32 ClampToI32(const int64 a)
142 {
143 	return static_cast<int32>(Clamp<int64>(a, INT32_MIN, INT32_MAX));
144 }
145 
146 /**
147  * Reduce an unsigned 64-bit int to an unsigned 16-bit one
148  *
149  * @param a The 64-bit value to clamp
150  * @return The 64-bit value reduced to a 16-bit value
151  * @see ClampU(uint, uint, uint)
152  */
ClampToU16(const uint64 a)153 static inline uint16 ClampToU16(const uint64 a)
154 {
155 	/* MSVC thinks, in its infinite wisdom, that int min(int, int) is a better
156 	 * match for min(uint64, uint) than uint64 min(uint64, uint64). As such we
157 	 * need to cast the UINT16_MAX to prevent MSVC from displaying its
158 	 * infinite loads of warnings. */
159 	return static_cast<uint16>(std::min(a, static_cast<uint64>(UINT16_MAX)));
160 }
161 
162 /**
163  * Returns the (absolute) difference between two (scalar) variables
164  *
165  * @param a The first scalar
166  * @param b The second scalar
167  * @return The absolute difference between the given scalars
168  */
169 template <typename T>
Delta(const T a,const T b)170 static inline T Delta(const T a, const T b)
171 {
172 	return (a < b) ? b - a : a - b;
173 }
174 
175 /**
176  * Checks if a value is between a window started at some base point.
177  *
178  * This function checks if the value x is between the value of base
179  * and base+size. If x equals base this returns true. If x equals
180  * base+size this returns false.
181  *
182  * @param x The value to check
183  * @param base The base value of the interval
184  * @param size The size of the interval
185  * @return True if the value is in the interval, false else.
186  */
187 template <typename T>
IsInsideBS(const T x,const size_t base,const size_t size)188 static inline bool IsInsideBS(const T x, const size_t base, const size_t size)
189 {
190 	return (size_t)(x - base) < size;
191 }
192 
193 /**
194  * Checks if a value is in an interval.
195  *
196  * Returns true if a value is in the interval of [min, max).
197  *
198  * @param x The value to check
199  * @param min The minimum of the interval
200  * @param max The maximum of the interval
201  * @see IsInsideBS()
202  */
203 template <typename T>
IsInsideMM(const T x,const size_t min,const size_t max)204 static inline bool IsInsideMM(const T x, const size_t min, const size_t max)
205 {
206 	return (size_t)(x - min) < (max - min);
207 }
208 
209 /**
210  * Type safe swap operation
211  * @param a variable to swap with b
212  * @param b variable to swap with a
213  */
214 template <typename T>
Swap(T & a,T & b)215 static inline void Swap(T &a, T &b)
216 {
217 	T t = a;
218 	a = b;
219 	b = t;
220 }
221 
222 /**
223  * Converts a "fract" value 0..255 to "percent" value 0..100
224  * @param i value to convert, range 0..255
225  * @return value in range 0..100
226  */
ToPercent8(uint i)227 static inline uint ToPercent8(uint i)
228 {
229 	assert(i < 256);
230 	return i * 101 >> 8;
231 }
232 
233 /**
234  * Converts a "fract" value 0..65535 to "percent" value 0..100
235  * @param i value to convert, range 0..65535
236  * @return value in range 0..100
237  */
ToPercent16(uint i)238 static inline uint ToPercent16(uint i)
239 {
240 	assert(i < 65536);
241 	return i * 101 >> 16;
242 }
243 
244 int LeastCommonMultiple(int a, int b);
245 int GreatestCommonDivisor(int a, int b);
246 int DivideApprox(int a, int b);
247 
248 /**
249  * Computes ceil(a / b) for non-negative a and b.
250  * @param a Numerator
251  * @param b Denominator
252  * @return Quotient, rounded up
253  */
CeilDiv(uint a,uint b)254 static inline uint CeilDiv(uint a, uint b)
255 {
256 	return (a + b - 1) / b;
257 }
258 
259 /**
260  * Computes ceil(a / b) * b for non-negative a and b.
261  * @param a Numerator
262  * @param b Denominator
263  * @return a rounded up to the nearest multiple of b.
264  */
Ceil(uint a,uint b)265 static inline uint Ceil(uint a, uint b)
266 {
267 	return CeilDiv(a, b) * b;
268 }
269 
270 /**
271  * Computes round(a / b) for signed a and unsigned b.
272  * @param a Numerator
273  * @param b Denominator
274  * @return Quotient, rounded to nearest
275  */
RoundDivSU(int a,uint b)276 static inline int RoundDivSU(int a, uint b)
277 {
278 	if (a > 0) {
279 		/* 0.5 is rounded to 1 */
280 		return (a + static_cast<int>(b) / 2) / static_cast<int>(b);
281 	} else {
282 		/* -0.5 is rounded to 0 */
283 		return (a - (static_cast<int>(b) - 1) / 2) / static_cast<int>(b);
284 	}
285 }
286 
287 /**
288  * Computes (a / b) rounded away from zero.
289  * @param a Numerator
290  * @param b Denominator
291  * @return Quotient, rounded away from zero
292  */
DivAwayFromZero(int a,uint b)293 static inline int DivAwayFromZero(int a, uint b)
294 {
295 	const int _b = static_cast<int>(b);
296 	if (a > 0) {
297 		return (a + _b - 1) / _b;
298 	} else {
299 		/* Note: Behaviour of negative numerator division is truncation toward zero. */
300 		return (a - _b + 1) / _b;
301 	}
302 }
303 
304 uint32 IntSqrt(uint32 num);
305 
306 #endif /* MATH_FUNC_HPP */
307