1 /**********************************************************************
2   Dr_KumoF.c:
3 
4    Dr_KumoF.c is a subroutine to calculate the radial derivative of
5    an interpolated value of yv at x using the "Kumogata" interpolation.
6 
7   Log of Dr_KumoF.c:
8 
9      26/Feb./2012  Released by T.Ozaki
10 
11 ***********************************************************************/
12 
13 #include <stdio.h>
14 #include <math.h>
15 #include "openmx_common.h"
16 
17 #ifdef MAX
18 #undef MAX
19 #endif
20 #define MAX(a,b) ((a)>(b))?  (a):(b)
21 
22 #ifdef MIN
23 #undef MIN
24 #endif
25 #define MIN(a,b) ((a)<(b))?  (a):(b)
26 
Dr_KumoF(int N,double x,double r,double * xv,double * rv,double * yv)27 double Dr_KumoF(int N, double x, double r, double *xv, double *rv, double *yv)
28 {
29 
30   if (x<xv[0]){
31 
32     int m;
33     double rm,h1,h2,h3,f1,f2,f3,f4,a,b,r;
34     double g1,g2,x1,x2,y1,y2,y12,y22,f,df;
35 
36     r = exp(x);
37 
38     m = 4;
39     rm = rv[m];
40 
41     h1 = rv[m-1] - rv[m-2];
42     h2 = rv[m]   - rv[m-1];
43     h3 = rv[m+1] - rv[m];
44 
45     f1 = yv[m-2];
46     f2 = yv[m-1];
47     f3 = yv[m];
48     f4 = yv[m+1];
49 
50     g1 = ((f3-f2)*h1/h2 + (f2-f1)*h2/h1)/(h1+h2);
51     g2 = ((f4-f3)*h2/h3 + (f3-f2)*h3/h2)/(h2+h3);
52 
53     x1 = rm - rv[m-1];
54     x2 = rm - rv[m];
55     y1 = x1/h2;
56     y2 = x2/h2;
57     y12 = y1*y1;
58     y22 = y2*y2;
59 
60     f =  y22*(3.0*f2 + h2*g1 + (2.0*f2 + h2*g1)*y2)
61        + y12*(3.0*f3 - h2*g2 - (2.0*f3 - h2*g2)*y1);
62 
63     df = 2.0*y2/h2*(3.0*f2 + h2*g1 + (2.0*f2 + h2*g1)*y2)
64        + y22*(2.0*f2 + h2*g1)/h2
65        + 2.0*y1/h2*(3.0*f3 - h2*g2 - (2.0*f3 - h2*g2)*y1)
66        - y12*(2.0*f3 - h2*g2)/h2;
67 
68     a = 0.5*df/rm;
69     b = f - a*rm*rm;
70     return 2.0*a*r;
71   }
72 
73   else{
74 
75     int i;
76     double t,dt,y;
77     double xmin,xmax,tmp;
78 
79     xmin = xv[0];
80     xmax = xv[N-1];
81     x = MIN(x,xmax);
82     x = MAX(x,xmin);
83 
84     tmp = ((double)N-1.0)/(xmax-xmin);
85     t = (x-xmin)*tmp;
86     i = floor(t);
87     dt = t - (double)i;
88 
89     return 0.5*(( 3.0*(yv[i+3]-yv[i]-3.0*(yv[i+2]-yv[i+1]))*dt
90 		  +2.0*(-yv[i+3]+4.0*yv[i+2]-5.0*yv[i+1]+2.0*yv[i]))*dt
91 		  +(yv[i+2]-yv[i]))*tmp/r;
92   }
93 
94 }
95