1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides Sema routines for C++ exception specification testing.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/Sema/SemaInternal.h"
14 #include "clang/AST/ASTMutationListener.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/StmtObjC.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Basic/Diagnostic.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
24 #include <optional>
25
26 namespace clang {
27
GetUnderlyingFunction(QualType T)28 static const FunctionProtoType *GetUnderlyingFunction(QualType T)
29 {
30 if (const PointerType *PtrTy = T->getAs<PointerType>())
31 T = PtrTy->getPointeeType();
32 else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
33 T = RefTy->getPointeeType();
34 else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
35 T = MPTy->getPointeeType();
36 return T->getAs<FunctionProtoType>();
37 }
38
39 /// HACK: 2014-11-14 libstdc++ had a bug where it shadows std::swap with a
40 /// member swap function then tries to call std::swap unqualified from the
41 /// exception specification of that function. This function detects whether
42 /// we're in such a case and turns off delay-parsing of exception
43 /// specifications. Libstdc++ 6.1 (released 2016-04-27) appears to have
44 /// resolved it as side-effect of commit ddb63209a8d (2015-06-05).
isLibstdcxxEagerExceptionSpecHack(const Declarator & D)45 bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) {
46 auto *RD = dyn_cast<CXXRecordDecl>(CurContext);
47
48 // All the problem cases are member functions named "swap" within class
49 // templates declared directly within namespace std or std::__debug or
50 // std::__profile.
51 if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() ||
52 !D.getIdentifier() || !D.getIdentifier()->isStr("swap"))
53 return false;
54
55 auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext());
56 if (!ND)
57 return false;
58
59 bool IsInStd = ND->isStdNamespace();
60 if (!IsInStd) {
61 // This isn't a direct member of namespace std, but it might still be
62 // libstdc++'s std::__debug::array or std::__profile::array.
63 IdentifierInfo *II = ND->getIdentifier();
64 if (!II || !(II->isStr("__debug") || II->isStr("__profile")) ||
65 !ND->isInStdNamespace())
66 return false;
67 }
68
69 // Only apply this hack within a system header.
70 if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc()))
71 return false;
72
73 return llvm::StringSwitch<bool>(RD->getIdentifier()->getName())
74 .Case("array", true)
75 .Case("pair", IsInStd)
76 .Case("priority_queue", IsInStd)
77 .Case("stack", IsInStd)
78 .Case("queue", IsInStd)
79 .Default(false);
80 }
81
ActOnNoexceptSpec(Expr * NoexceptExpr,ExceptionSpecificationType & EST)82 ExprResult Sema::ActOnNoexceptSpec(Expr *NoexceptExpr,
83 ExceptionSpecificationType &EST) {
84
85 if (NoexceptExpr->isTypeDependent() ||
86 NoexceptExpr->containsUnexpandedParameterPack()) {
87 EST = EST_DependentNoexcept;
88 return NoexceptExpr;
89 }
90
91 llvm::APSInt Result;
92 ExprResult Converted = CheckConvertedConstantExpression(
93 NoexceptExpr, Context.BoolTy, Result, CCEK_Noexcept);
94
95 if (Converted.isInvalid()) {
96 EST = EST_NoexceptFalse;
97 // Fill in an expression of 'false' as a fixup.
98 auto *BoolExpr = new (Context)
99 CXXBoolLiteralExpr(false, Context.BoolTy, NoexceptExpr->getBeginLoc());
100 llvm::APSInt Value{1};
101 Value = 0;
102 return ConstantExpr::Create(Context, BoolExpr, APValue{Value});
103 }
104
105 if (Converted.get()->isValueDependent()) {
106 EST = EST_DependentNoexcept;
107 return Converted;
108 }
109
110 if (!Converted.isInvalid())
111 EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue;
112 return Converted;
113 }
114
115 /// CheckSpecifiedExceptionType - Check if the given type is valid in an
116 /// exception specification. Incomplete types, or pointers to incomplete types
117 /// other than void are not allowed.
118 ///
119 /// \param[in,out] T The exception type. This will be decayed to a pointer type
120 /// when the input is an array or a function type.
CheckSpecifiedExceptionType(QualType & T,SourceRange Range)121 bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) {
122 // C++11 [except.spec]p2:
123 // A type cv T, "array of T", or "function returning T" denoted
124 // in an exception-specification is adjusted to type T, "pointer to T", or
125 // "pointer to function returning T", respectively.
126 //
127 // We also apply this rule in C++98.
128 if (T->isArrayType())
129 T = Context.getArrayDecayedType(T);
130 else if (T->isFunctionType())
131 T = Context.getPointerType(T);
132
133 int Kind = 0;
134 QualType PointeeT = T;
135 if (const PointerType *PT = T->getAs<PointerType>()) {
136 PointeeT = PT->getPointeeType();
137 Kind = 1;
138
139 // cv void* is explicitly permitted, despite being a pointer to an
140 // incomplete type.
141 if (PointeeT->isVoidType())
142 return false;
143 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
144 PointeeT = RT->getPointeeType();
145 Kind = 2;
146
147 if (RT->isRValueReferenceType()) {
148 // C++11 [except.spec]p2:
149 // A type denoted in an exception-specification shall not denote [...]
150 // an rvalue reference type.
151 Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
152 << T << Range;
153 return true;
154 }
155 }
156
157 // C++11 [except.spec]p2:
158 // A type denoted in an exception-specification shall not denote an
159 // incomplete type other than a class currently being defined [...].
160 // A type denoted in an exception-specification shall not denote a
161 // pointer or reference to an incomplete type, other than (cv) void* or a
162 // pointer or reference to a class currently being defined.
163 // In Microsoft mode, downgrade this to a warning.
164 unsigned DiagID = diag::err_incomplete_in_exception_spec;
165 bool ReturnValueOnError = true;
166 if (getLangOpts().MSVCCompat) {
167 DiagID = diag::ext_incomplete_in_exception_spec;
168 ReturnValueOnError = false;
169 }
170 if (!(PointeeT->isRecordType() &&
171 PointeeT->castAs<RecordType>()->isBeingDefined()) &&
172 RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range))
173 return ReturnValueOnError;
174
175 // The MSVC compatibility mode doesn't extend to sizeless types,
176 // so diagnose them separately.
177 if (PointeeT->isSizelessType() && Kind != 1) {
178 Diag(Range.getBegin(), diag::err_sizeless_in_exception_spec)
179 << (Kind == 2 ? 1 : 0) << PointeeT << Range;
180 return true;
181 }
182
183 return false;
184 }
185
186 /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
187 /// to member to a function with an exception specification. This means that
188 /// it is invalid to add another level of indirection.
CheckDistantExceptionSpec(QualType T)189 bool Sema::CheckDistantExceptionSpec(QualType T) {
190 // C++17 removes this rule in favor of putting exception specifications into
191 // the type system.
192 if (getLangOpts().CPlusPlus17)
193 return false;
194
195 if (const PointerType *PT = T->getAs<PointerType>())
196 T = PT->getPointeeType();
197 else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
198 T = PT->getPointeeType();
199 else
200 return false;
201
202 const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
203 if (!FnT)
204 return false;
205
206 return FnT->hasExceptionSpec();
207 }
208
209 const FunctionProtoType *
ResolveExceptionSpec(SourceLocation Loc,const FunctionProtoType * FPT)210 Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
211 if (FPT->getExceptionSpecType() == EST_Unparsed) {
212 Diag(Loc, diag::err_exception_spec_not_parsed);
213 return nullptr;
214 }
215
216 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
217 return FPT;
218
219 FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
220 const FunctionProtoType *SourceFPT =
221 SourceDecl->getType()->castAs<FunctionProtoType>();
222
223 // If the exception specification has already been resolved, just return it.
224 if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
225 return SourceFPT;
226
227 // Compute or instantiate the exception specification now.
228 if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
229 EvaluateImplicitExceptionSpec(Loc, SourceDecl);
230 else
231 InstantiateExceptionSpec(Loc, SourceDecl);
232
233 const FunctionProtoType *Proto =
234 SourceDecl->getType()->castAs<FunctionProtoType>();
235 if (Proto->getExceptionSpecType() == clang::EST_Unparsed) {
236 Diag(Loc, diag::err_exception_spec_not_parsed);
237 Proto = nullptr;
238 }
239 return Proto;
240 }
241
242 void
UpdateExceptionSpec(FunctionDecl * FD,const FunctionProtoType::ExceptionSpecInfo & ESI)243 Sema::UpdateExceptionSpec(FunctionDecl *FD,
244 const FunctionProtoType::ExceptionSpecInfo &ESI) {
245 // If we've fully resolved the exception specification, notify listeners.
246 if (!isUnresolvedExceptionSpec(ESI.Type))
247 if (auto *Listener = getASTMutationListener())
248 Listener->ResolvedExceptionSpec(FD);
249
250 for (FunctionDecl *Redecl : FD->redecls())
251 Context.adjustExceptionSpec(Redecl, ESI);
252 }
253
exceptionSpecNotKnownYet(const FunctionDecl * FD)254 static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) {
255 auto *MD = dyn_cast<CXXMethodDecl>(FD);
256 if (!MD)
257 return false;
258
259 auto EST = MD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType();
260 return EST == EST_Unparsed ||
261 (EST == EST_Unevaluated && MD->getParent()->isBeingDefined());
262 }
263
264 static bool CheckEquivalentExceptionSpecImpl(
265 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
266 const FunctionProtoType *Old, SourceLocation OldLoc,
267 const FunctionProtoType *New, SourceLocation NewLoc,
268 bool *MissingExceptionSpecification = nullptr,
269 bool *MissingEmptyExceptionSpecification = nullptr,
270 bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false);
271
272 /// Determine whether a function has an implicitly-generated exception
273 /// specification.
hasImplicitExceptionSpec(FunctionDecl * Decl)274 static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
275 if (!isa<CXXDestructorDecl>(Decl) &&
276 Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
277 Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
278 return false;
279
280 // For a function that the user didn't declare:
281 // - if this is a destructor, its exception specification is implicit.
282 // - if this is 'operator delete' or 'operator delete[]', the exception
283 // specification is as-if an explicit exception specification was given
284 // (per [basic.stc.dynamic]p2).
285 if (!Decl->getTypeSourceInfo())
286 return isa<CXXDestructorDecl>(Decl);
287
288 auto *Ty = Decl->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
289 return !Ty->hasExceptionSpec();
290 }
291
CheckEquivalentExceptionSpec(FunctionDecl * Old,FunctionDecl * New)292 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
293 // Just completely ignore this under -fno-exceptions prior to C++17.
294 // In C++17 onwards, the exception specification is part of the type and
295 // we will diagnose mismatches anyway, so it's better to check for them here.
296 if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17)
297 return false;
298
299 OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
300 bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
301 bool MissingExceptionSpecification = false;
302 bool MissingEmptyExceptionSpecification = false;
303
304 unsigned DiagID = diag::err_mismatched_exception_spec;
305 bool ReturnValueOnError = true;
306 if (getLangOpts().MSVCCompat) {
307 DiagID = diag::ext_mismatched_exception_spec;
308 ReturnValueOnError = false;
309 }
310
311 // If we're befriending a member function of a class that's currently being
312 // defined, we might not be able to work out its exception specification yet.
313 // If not, defer the check until later.
314 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
315 DelayedEquivalentExceptionSpecChecks.push_back({New, Old});
316 return false;
317 }
318
319 // Check the types as written: they must match before any exception
320 // specification adjustment is applied.
321 if (!CheckEquivalentExceptionSpecImpl(
322 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
323 Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
324 New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
325 &MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
326 /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
327 // C++11 [except.spec]p4 [DR1492]:
328 // If a declaration of a function has an implicit
329 // exception-specification, other declarations of the function shall
330 // not specify an exception-specification.
331 if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions &&
332 hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
333 Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
334 << hasImplicitExceptionSpec(Old);
335 if (Old->getLocation().isValid())
336 Diag(Old->getLocation(), diag::note_previous_declaration);
337 }
338 return false;
339 }
340
341 // The failure was something other than an missing exception
342 // specification; return an error, except in MS mode where this is a warning.
343 if (!MissingExceptionSpecification)
344 return ReturnValueOnError;
345
346 const auto *NewProto = New->getType()->castAs<FunctionProtoType>();
347
348 // The new function declaration is only missing an empty exception
349 // specification "throw()". If the throw() specification came from a
350 // function in a system header that has C linkage, just add an empty
351 // exception specification to the "new" declaration. Note that C library
352 // implementations are permitted to add these nothrow exception
353 // specifications.
354 //
355 // Likewise if the old function is a builtin.
356 if (MissingEmptyExceptionSpecification &&
357 (Old->getLocation().isInvalid() ||
358 Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
359 Old->getBuiltinID()) &&
360 Old->isExternC()) {
361 New->setType(Context.getFunctionType(
362 NewProto->getReturnType(), NewProto->getParamTypes(),
363 NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone)));
364 return false;
365 }
366
367 const auto *OldProto = Old->getType()->castAs<FunctionProtoType>();
368
369 FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType();
370 if (ESI.Type == EST_Dynamic) {
371 // FIXME: What if the exceptions are described in terms of the old
372 // prototype's parameters?
373 ESI.Exceptions = OldProto->exceptions();
374 }
375
376 if (ESI.Type == EST_NoexceptFalse)
377 ESI.Type = EST_None;
378 if (ESI.Type == EST_NoexceptTrue)
379 ESI.Type = EST_BasicNoexcept;
380
381 // For dependent noexcept, we can't just take the expression from the old
382 // prototype. It likely contains references to the old prototype's parameters.
383 if (ESI.Type == EST_DependentNoexcept) {
384 New->setInvalidDecl();
385 } else {
386 // Update the type of the function with the appropriate exception
387 // specification.
388 New->setType(Context.getFunctionType(
389 NewProto->getReturnType(), NewProto->getParamTypes(),
390 NewProto->getExtProtoInfo().withExceptionSpec(ESI)));
391 }
392
393 if (getLangOpts().MSVCCompat && isDynamicExceptionSpec(ESI.Type)) {
394 DiagID = diag::ext_missing_exception_specification;
395 ReturnValueOnError = false;
396 } else if (New->isReplaceableGlobalAllocationFunction() &&
397 ESI.Type != EST_DependentNoexcept) {
398 // Allow missing exception specifications in redeclarations as an extension,
399 // when declaring a replaceable global allocation function.
400 DiagID = diag::ext_missing_exception_specification;
401 ReturnValueOnError = false;
402 } else if (ESI.Type == EST_NoThrow) {
403 // Don't emit any warning for missing 'nothrow' in MSVC.
404 if (getLangOpts().MSVCCompat) {
405 return false;
406 }
407 // Allow missing attribute 'nothrow' in redeclarations, since this is a very
408 // common omission.
409 DiagID = diag::ext_missing_exception_specification;
410 ReturnValueOnError = false;
411 } else {
412 DiagID = diag::err_missing_exception_specification;
413 ReturnValueOnError = true;
414 }
415
416 // Warn about the lack of exception specification.
417 SmallString<128> ExceptionSpecString;
418 llvm::raw_svector_ostream OS(ExceptionSpecString);
419 switch (OldProto->getExceptionSpecType()) {
420 case EST_DynamicNone:
421 OS << "throw()";
422 break;
423
424 case EST_Dynamic: {
425 OS << "throw(";
426 bool OnFirstException = true;
427 for (const auto &E : OldProto->exceptions()) {
428 if (OnFirstException)
429 OnFirstException = false;
430 else
431 OS << ", ";
432
433 OS << E.getAsString(getPrintingPolicy());
434 }
435 OS << ")";
436 break;
437 }
438
439 case EST_BasicNoexcept:
440 OS << "noexcept";
441 break;
442
443 case EST_DependentNoexcept:
444 case EST_NoexceptFalse:
445 case EST_NoexceptTrue:
446 OS << "noexcept(";
447 assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr");
448 OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy());
449 OS << ")";
450 break;
451 case EST_NoThrow:
452 OS <<"__attribute__((nothrow))";
453 break;
454 case EST_None:
455 case EST_MSAny:
456 case EST_Unevaluated:
457 case EST_Uninstantiated:
458 case EST_Unparsed:
459 llvm_unreachable("This spec type is compatible with none.");
460 }
461
462 SourceLocation FixItLoc;
463 if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
464 TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
465 // FIXME: Preserve enough information so that we can produce a correct fixit
466 // location when there is a trailing return type.
467 if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>())
468 if (!FTLoc.getTypePtr()->hasTrailingReturn())
469 FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd());
470 }
471
472 if (FixItLoc.isInvalid())
473 Diag(New->getLocation(), DiagID)
474 << New << OS.str();
475 else {
476 Diag(New->getLocation(), DiagID)
477 << New << OS.str()
478 << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
479 }
480
481 if (Old->getLocation().isValid())
482 Diag(Old->getLocation(), diag::note_previous_declaration);
483
484 return ReturnValueOnError;
485 }
486
487 /// CheckEquivalentExceptionSpec - Check if the two types have equivalent
488 /// exception specifications. Exception specifications are equivalent if
489 /// they allow exactly the same set of exception types. It does not matter how
490 /// that is achieved. See C++ [except.spec]p2.
CheckEquivalentExceptionSpec(const FunctionProtoType * Old,SourceLocation OldLoc,const FunctionProtoType * New,SourceLocation NewLoc)491 bool Sema::CheckEquivalentExceptionSpec(
492 const FunctionProtoType *Old, SourceLocation OldLoc,
493 const FunctionProtoType *New, SourceLocation NewLoc) {
494 if (!getLangOpts().CXXExceptions)
495 return false;
496
497 unsigned DiagID = diag::err_mismatched_exception_spec;
498 if (getLangOpts().MSVCCompat)
499 DiagID = diag::ext_mismatched_exception_spec;
500 bool Result = CheckEquivalentExceptionSpecImpl(
501 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
502 Old, OldLoc, New, NewLoc);
503
504 // In Microsoft mode, mismatching exception specifications just cause a warning.
505 if (getLangOpts().MSVCCompat)
506 return false;
507 return Result;
508 }
509
510 /// CheckEquivalentExceptionSpec - Check if the two types have compatible
511 /// exception specifications. See C++ [except.spec]p3.
512 ///
513 /// \return \c false if the exception specifications match, \c true if there is
514 /// a problem. If \c true is returned, either a diagnostic has already been
515 /// produced or \c *MissingExceptionSpecification is set to \c true.
CheckEquivalentExceptionSpecImpl(Sema & S,const PartialDiagnostic & DiagID,const PartialDiagnostic & NoteID,const FunctionProtoType * Old,SourceLocation OldLoc,const FunctionProtoType * New,SourceLocation NewLoc,bool * MissingExceptionSpecification,bool * MissingEmptyExceptionSpecification,bool AllowNoexceptAllMatchWithNoSpec,bool IsOperatorNew)516 static bool CheckEquivalentExceptionSpecImpl(
517 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
518 const FunctionProtoType *Old, SourceLocation OldLoc,
519 const FunctionProtoType *New, SourceLocation NewLoc,
520 bool *MissingExceptionSpecification,
521 bool *MissingEmptyExceptionSpecification,
522 bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) {
523 if (MissingExceptionSpecification)
524 *MissingExceptionSpecification = false;
525
526 if (MissingEmptyExceptionSpecification)
527 *MissingEmptyExceptionSpecification = false;
528
529 Old = S.ResolveExceptionSpec(NewLoc, Old);
530 if (!Old)
531 return false;
532 New = S.ResolveExceptionSpec(NewLoc, New);
533 if (!New)
534 return false;
535
536 // C++0x [except.spec]p3: Two exception-specifications are compatible if:
537 // - both are non-throwing, regardless of their form,
538 // - both have the form noexcept(constant-expression) and the constant-
539 // expressions are equivalent,
540 // - both are dynamic-exception-specifications that have the same set of
541 // adjusted types.
542 //
543 // C++0x [except.spec]p12: An exception-specification is non-throwing if it is
544 // of the form throw(), noexcept, or noexcept(constant-expression) where the
545 // constant-expression yields true.
546 //
547 // C++0x [except.spec]p4: If any declaration of a function has an exception-
548 // specifier that is not a noexcept-specification allowing all exceptions,
549 // all declarations [...] of that function shall have a compatible
550 // exception-specification.
551 //
552 // That last point basically means that noexcept(false) matches no spec.
553 // It's considered when AllowNoexceptAllMatchWithNoSpec is true.
554
555 ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
556 ExceptionSpecificationType NewEST = New->getExceptionSpecType();
557
558 assert(!isUnresolvedExceptionSpec(OldEST) &&
559 !isUnresolvedExceptionSpec(NewEST) &&
560 "Shouldn't see unknown exception specifications here");
561
562 CanThrowResult OldCanThrow = Old->canThrow();
563 CanThrowResult NewCanThrow = New->canThrow();
564
565 // Any non-throwing specifications are compatible.
566 if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot)
567 return false;
568
569 // Any throws-anything specifications are usually compatible.
570 if (OldCanThrow == CT_Can && OldEST != EST_Dynamic &&
571 NewCanThrow == CT_Can && NewEST != EST_Dynamic) {
572 // The exception is that the absence of an exception specification only
573 // matches noexcept(false) for functions, as described above.
574 if (!AllowNoexceptAllMatchWithNoSpec &&
575 ((OldEST == EST_None && NewEST == EST_NoexceptFalse) ||
576 (OldEST == EST_NoexceptFalse && NewEST == EST_None))) {
577 // This is the disallowed case.
578 } else {
579 return false;
580 }
581 }
582
583 // C++14 [except.spec]p3:
584 // Two exception-specifications are compatible if [...] both have the form
585 // noexcept(constant-expression) and the constant-expressions are equivalent
586 if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) {
587 llvm::FoldingSetNodeID OldFSN, NewFSN;
588 Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true);
589 New->getNoexceptExpr()->Profile(NewFSN, S.Context, true);
590 if (OldFSN == NewFSN)
591 return false;
592 }
593
594 // Dynamic exception specifications with the same set of adjusted types
595 // are compatible.
596 if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) {
597 bool Success = true;
598 // Both have a dynamic exception spec. Collect the first set, then compare
599 // to the second.
600 llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
601 for (const auto &I : Old->exceptions())
602 OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType());
603
604 for (const auto &I : New->exceptions()) {
605 CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType();
606 if (OldTypes.count(TypePtr))
607 NewTypes.insert(TypePtr);
608 else {
609 Success = false;
610 break;
611 }
612 }
613
614 if (Success && OldTypes.size() == NewTypes.size())
615 return false;
616 }
617
618 // As a special compatibility feature, under C++0x we accept no spec and
619 // throw(std::bad_alloc) as equivalent for operator new and operator new[].
620 // This is because the implicit declaration changed, but old code would break.
621 if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) {
622 const FunctionProtoType *WithExceptions = nullptr;
623 if (OldEST == EST_None && NewEST == EST_Dynamic)
624 WithExceptions = New;
625 else if (OldEST == EST_Dynamic && NewEST == EST_None)
626 WithExceptions = Old;
627 if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
628 // One has no spec, the other throw(something). If that something is
629 // std::bad_alloc, all conditions are met.
630 QualType Exception = *WithExceptions->exception_begin();
631 if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
632 IdentifierInfo* Name = ExRecord->getIdentifier();
633 if (Name && Name->getName() == "bad_alloc") {
634 // It's called bad_alloc, but is it in std?
635 if (ExRecord->isInStdNamespace()) {
636 return false;
637 }
638 }
639 }
640 }
641 }
642
643 // If the caller wants to handle the case that the new function is
644 // incompatible due to a missing exception specification, let it.
645 if (MissingExceptionSpecification && OldEST != EST_None &&
646 NewEST == EST_None) {
647 // The old type has an exception specification of some sort, but
648 // the new type does not.
649 *MissingExceptionSpecification = true;
650
651 if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) {
652 // The old type has a throw() or noexcept(true) exception specification
653 // and the new type has no exception specification, and the caller asked
654 // to handle this itself.
655 *MissingEmptyExceptionSpecification = true;
656 }
657
658 return true;
659 }
660
661 S.Diag(NewLoc, DiagID);
662 if (NoteID.getDiagID() != 0 && OldLoc.isValid())
663 S.Diag(OldLoc, NoteID);
664 return true;
665 }
666
CheckEquivalentExceptionSpec(const PartialDiagnostic & DiagID,const PartialDiagnostic & NoteID,const FunctionProtoType * Old,SourceLocation OldLoc,const FunctionProtoType * New,SourceLocation NewLoc)667 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
668 const PartialDiagnostic &NoteID,
669 const FunctionProtoType *Old,
670 SourceLocation OldLoc,
671 const FunctionProtoType *New,
672 SourceLocation NewLoc) {
673 if (!getLangOpts().CXXExceptions)
674 return false;
675 return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc,
676 New, NewLoc);
677 }
678
handlerCanCatch(QualType HandlerType,QualType ExceptionType)679 bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) {
680 // [except.handle]p3:
681 // A handler is a match for an exception object of type E if:
682
683 // HandlerType must be ExceptionType or derived from it, or pointer or
684 // reference to such types.
685 const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>();
686 if (RefTy)
687 HandlerType = RefTy->getPointeeType();
688
689 // -- the handler is of type cv T or cv T& and E and T are the same type
690 if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType))
691 return true;
692
693 // FIXME: ObjC pointer types?
694 if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) {
695 if (RefTy && (!HandlerType.isConstQualified() ||
696 HandlerType.isVolatileQualified()))
697 return false;
698
699 // -- the handler is of type cv T or const T& where T is a pointer or
700 // pointer to member type and E is std::nullptr_t
701 if (ExceptionType->isNullPtrType())
702 return true;
703
704 // -- the handler is of type cv T or const T& where T is a pointer or
705 // pointer to member type and E is a pointer or pointer to member type
706 // that can be converted to T by one or more of
707 // -- a qualification conversion
708 // -- a function pointer conversion
709 bool LifetimeConv;
710 QualType Result;
711 // FIXME: Should we treat the exception as catchable if a lifetime
712 // conversion is required?
713 if (IsQualificationConversion(ExceptionType, HandlerType, false,
714 LifetimeConv) ||
715 IsFunctionConversion(ExceptionType, HandlerType, Result))
716 return true;
717
718 // -- a standard pointer conversion [...]
719 if (!ExceptionType->isPointerType() || !HandlerType->isPointerType())
720 return false;
721
722 // Handle the "qualification conversion" portion.
723 Qualifiers EQuals, HQuals;
724 ExceptionType = Context.getUnqualifiedArrayType(
725 ExceptionType->getPointeeType(), EQuals);
726 HandlerType = Context.getUnqualifiedArrayType(
727 HandlerType->getPointeeType(), HQuals);
728 if (!HQuals.compatiblyIncludes(EQuals))
729 return false;
730
731 if (HandlerType->isVoidType() && ExceptionType->isObjectType())
732 return true;
733
734 // The only remaining case is a derived-to-base conversion.
735 }
736
737 // -- the handler is of type cg T or cv T& and T is an unambiguous public
738 // base class of E
739 if (!ExceptionType->isRecordType() || !HandlerType->isRecordType())
740 return false;
741 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
742 /*DetectVirtual=*/false);
743 if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) ||
744 Paths.isAmbiguous(Context.getCanonicalType(HandlerType)))
745 return false;
746
747 // Do this check from a context without privileges.
748 switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType,
749 Paths.front(),
750 /*Diagnostic*/ 0,
751 /*ForceCheck*/ true,
752 /*ForceUnprivileged*/ true)) {
753 case AR_accessible: return true;
754 case AR_inaccessible: return false;
755 case AR_dependent:
756 llvm_unreachable("access check dependent for unprivileged context");
757 case AR_delayed:
758 llvm_unreachable("access check delayed in non-declaration");
759 }
760 llvm_unreachable("unexpected access check result");
761 }
762
763 /// CheckExceptionSpecSubset - Check whether the second function type's
764 /// exception specification is a subset (or equivalent) of the first function
765 /// type. This is used by override and pointer assignment checks.
CheckExceptionSpecSubset(const PartialDiagnostic & DiagID,const PartialDiagnostic & NestedDiagID,const PartialDiagnostic & NoteID,const PartialDiagnostic & NoThrowDiagID,const FunctionProtoType * Superset,SourceLocation SuperLoc,const FunctionProtoType * Subset,SourceLocation SubLoc)766 bool Sema::CheckExceptionSpecSubset(const PartialDiagnostic &DiagID,
767 const PartialDiagnostic &NestedDiagID,
768 const PartialDiagnostic &NoteID,
769 const PartialDiagnostic &NoThrowDiagID,
770 const FunctionProtoType *Superset,
771 SourceLocation SuperLoc,
772 const FunctionProtoType *Subset,
773 SourceLocation SubLoc) {
774
775 // Just auto-succeed under -fno-exceptions.
776 if (!getLangOpts().CXXExceptions)
777 return false;
778
779 // FIXME: As usual, we could be more specific in our error messages, but
780 // that better waits until we've got types with source locations.
781
782 if (!SubLoc.isValid())
783 SubLoc = SuperLoc;
784
785 // Resolve the exception specifications, if needed.
786 Superset = ResolveExceptionSpec(SuperLoc, Superset);
787 if (!Superset)
788 return false;
789 Subset = ResolveExceptionSpec(SubLoc, Subset);
790 if (!Subset)
791 return false;
792
793 ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
794 ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
795 assert(!isUnresolvedExceptionSpec(SuperEST) &&
796 !isUnresolvedExceptionSpec(SubEST) &&
797 "Shouldn't see unknown exception specifications here");
798
799 // If there are dependent noexcept specs, assume everything is fine. Unlike
800 // with the equivalency check, this is safe in this case, because we don't
801 // want to merge declarations. Checks after instantiation will catch any
802 // omissions we make here.
803 if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept)
804 return false;
805
806 CanThrowResult SuperCanThrow = Superset->canThrow();
807 CanThrowResult SubCanThrow = Subset->canThrow();
808
809 // If the superset contains everything or the subset contains nothing, we're
810 // done.
811 if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) ||
812 SubCanThrow == CT_Cannot)
813 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
814 Subset, SubLoc);
815
816 // Allow __declspec(nothrow) to be missing on redeclaration as an extension in
817 // some cases.
818 if (NoThrowDiagID.getDiagID() != 0 && SubCanThrow == CT_Can &&
819 SuperCanThrow == CT_Cannot && SuperEST == EST_NoThrow) {
820 Diag(SubLoc, NoThrowDiagID);
821 if (NoteID.getDiagID() != 0)
822 Diag(SuperLoc, NoteID);
823 return true;
824 }
825
826 // If the subset contains everything or the superset contains nothing, we've
827 // failed.
828 if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) ||
829 SuperCanThrow == CT_Cannot) {
830 Diag(SubLoc, DiagID);
831 if (NoteID.getDiagID() != 0)
832 Diag(SuperLoc, NoteID);
833 return true;
834 }
835
836 assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
837 "Exception spec subset: non-dynamic case slipped through.");
838
839 // Neither contains everything or nothing. Do a proper comparison.
840 for (QualType SubI : Subset->exceptions()) {
841 if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>())
842 SubI = RefTy->getPointeeType();
843
844 // Make sure it's in the superset.
845 bool Contained = false;
846 for (QualType SuperI : Superset->exceptions()) {
847 // [except.spec]p5:
848 // the target entity shall allow at least the exceptions allowed by the
849 // source
850 //
851 // We interpret this as meaning that a handler for some target type would
852 // catch an exception of each source type.
853 if (handlerCanCatch(SuperI, SubI)) {
854 Contained = true;
855 break;
856 }
857 }
858 if (!Contained) {
859 Diag(SubLoc, DiagID);
860 if (NoteID.getDiagID() != 0)
861 Diag(SuperLoc, NoteID);
862 return true;
863 }
864 }
865 // We've run half the gauntlet.
866 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
867 Subset, SubLoc);
868 }
869
870 static bool
CheckSpecForTypesEquivalent(Sema & S,const PartialDiagnostic & DiagID,const PartialDiagnostic & NoteID,QualType Target,SourceLocation TargetLoc,QualType Source,SourceLocation SourceLoc)871 CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID,
872 const PartialDiagnostic &NoteID, QualType Target,
873 SourceLocation TargetLoc, QualType Source,
874 SourceLocation SourceLoc) {
875 const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
876 if (!TFunc)
877 return false;
878 const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
879 if (!SFunc)
880 return false;
881
882 return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
883 SFunc, SourceLoc);
884 }
885
886 /// CheckParamExceptionSpec - Check if the parameter and return types of the
887 /// two functions have equivalent exception specs. This is part of the
888 /// assignment and override compatibility check. We do not check the parameters
889 /// of parameter function pointers recursively, as no sane programmer would
890 /// even be able to write such a function type.
CheckParamExceptionSpec(const PartialDiagnostic & DiagID,const PartialDiagnostic & NoteID,const FunctionProtoType * Target,SourceLocation TargetLoc,const FunctionProtoType * Source,SourceLocation SourceLoc)891 bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &DiagID,
892 const PartialDiagnostic &NoteID,
893 const FunctionProtoType *Target,
894 SourceLocation TargetLoc,
895 const FunctionProtoType *Source,
896 SourceLocation SourceLoc) {
897 auto RetDiag = DiagID;
898 RetDiag << 0;
899 if (CheckSpecForTypesEquivalent(
900 *this, RetDiag, PDiag(),
901 Target->getReturnType(), TargetLoc, Source->getReturnType(),
902 SourceLoc))
903 return true;
904
905 // We shouldn't even be testing this unless the arguments are otherwise
906 // compatible.
907 assert(Target->getNumParams() == Source->getNumParams() &&
908 "Functions have different argument counts.");
909 for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) {
910 auto ParamDiag = DiagID;
911 ParamDiag << 1;
912 if (CheckSpecForTypesEquivalent(
913 *this, ParamDiag, PDiag(),
914 Target->getParamType(i), TargetLoc, Source->getParamType(i),
915 SourceLoc))
916 return true;
917 }
918 return false;
919 }
920
CheckExceptionSpecCompatibility(Expr * From,QualType ToType)921 bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) {
922 // First we check for applicability.
923 // Target type must be a function, function pointer or function reference.
924 const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
925 if (!ToFunc || ToFunc->hasDependentExceptionSpec())
926 return false;
927
928 // SourceType must be a function or function pointer.
929 const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
930 if (!FromFunc || FromFunc->hasDependentExceptionSpec())
931 return false;
932
933 unsigned DiagID = diag::err_incompatible_exception_specs;
934 unsigned NestedDiagID = diag::err_deep_exception_specs_differ;
935 // This is not an error in C++17 onwards, unless the noexceptness doesn't
936 // match, but in that case we have a full-on type mismatch, not just a
937 // type sugar mismatch.
938 if (getLangOpts().CPlusPlus17) {
939 DiagID = diag::warn_incompatible_exception_specs;
940 NestedDiagID = diag::warn_deep_exception_specs_differ;
941 }
942
943 // Now we've got the correct types on both sides, check their compatibility.
944 // This means that the source of the conversion can only throw a subset of
945 // the exceptions of the target, and any exception specs on arguments or
946 // return types must be equivalent.
947 //
948 // FIXME: If there is a nested dependent exception specification, we should
949 // not be checking it here. This is fine:
950 // template<typename T> void f() {
951 // void (*p)(void (*) throw(T));
952 // void (*q)(void (*) throw(int)) = p;
953 // }
954 // ... because it might be instantiated with T=int.
955 return CheckExceptionSpecSubset(
956 PDiag(DiagID), PDiag(NestedDiagID), PDiag(), PDiag(), ToFunc,
957 From->getSourceRange().getBegin(), FromFunc, SourceLocation()) &&
958 !getLangOpts().CPlusPlus17;
959 }
960
CheckOverridingFunctionExceptionSpec(const CXXMethodDecl * New,const CXXMethodDecl * Old)961 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
962 const CXXMethodDecl *Old) {
963 // If the new exception specification hasn't been parsed yet, skip the check.
964 // We'll get called again once it's been parsed.
965 if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() ==
966 EST_Unparsed)
967 return false;
968
969 // Don't check uninstantiated template destructors at all. We can only
970 // synthesize correct specs after the template is instantiated.
971 if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType())
972 return false;
973
974 // If the old exception specification hasn't been parsed yet, or the new
975 // exception specification can't be computed yet, remember that we need to
976 // perform this check when we get to the end of the outermost
977 // lexically-surrounding class.
978 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
979 DelayedOverridingExceptionSpecChecks.push_back({New, Old});
980 return false;
981 }
982
983 unsigned DiagID = diag::err_override_exception_spec;
984 if (getLangOpts().MSVCCompat)
985 DiagID = diag::ext_override_exception_spec;
986 return CheckExceptionSpecSubset(PDiag(DiagID),
987 PDiag(diag::err_deep_exception_specs_differ),
988 PDiag(diag::note_overridden_virtual_function),
989 PDiag(diag::ext_override_exception_spec),
990 Old->getType()->castAs<FunctionProtoType>(),
991 Old->getLocation(),
992 New->getType()->castAs<FunctionProtoType>(),
993 New->getLocation());
994 }
995
canSubStmtsThrow(Sema & Self,const Stmt * S)996 static CanThrowResult canSubStmtsThrow(Sema &Self, const Stmt *S) {
997 CanThrowResult R = CT_Cannot;
998 for (const Stmt *SubStmt : S->children()) {
999 if (!SubStmt)
1000 continue;
1001 R = mergeCanThrow(R, Self.canThrow(SubStmt));
1002 if (R == CT_Can)
1003 break;
1004 }
1005 return R;
1006 }
1007
canCalleeThrow(Sema & S,const Expr * E,const Decl * D,SourceLocation Loc)1008 CanThrowResult Sema::canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
1009 SourceLocation Loc) {
1010 // As an extension, we assume that __attribute__((nothrow)) functions don't
1011 // throw.
1012 if (D && isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1013 return CT_Cannot;
1014
1015 QualType T;
1016
1017 // In C++1z, just look at the function type of the callee.
1018 if (S.getLangOpts().CPlusPlus17 && E && isa<CallExpr>(E)) {
1019 E = cast<CallExpr>(E)->getCallee();
1020 T = E->getType();
1021 if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1022 // Sadly we don't preserve the actual type as part of the "bound member"
1023 // placeholder, so we need to reconstruct it.
1024 E = E->IgnoreParenImpCasts();
1025
1026 // Could be a call to a pointer-to-member or a plain member access.
1027 if (auto *Op = dyn_cast<BinaryOperator>(E)) {
1028 assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI);
1029 T = Op->getRHS()->getType()
1030 ->castAs<MemberPointerType>()->getPointeeType();
1031 } else {
1032 T = cast<MemberExpr>(E)->getMemberDecl()->getType();
1033 }
1034 }
1035 } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D))
1036 T = VD->getType();
1037 else
1038 // If we have no clue what we're calling, assume the worst.
1039 return CT_Can;
1040
1041 const FunctionProtoType *FT;
1042 if ((FT = T->getAs<FunctionProtoType>())) {
1043 } else if (const PointerType *PT = T->getAs<PointerType>())
1044 FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1045 else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1046 FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1047 else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1048 FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1049 else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1050 FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1051
1052 if (!FT)
1053 return CT_Can;
1054
1055 if (Loc.isValid() || (Loc.isInvalid() && E))
1056 FT = S.ResolveExceptionSpec(Loc.isInvalid() ? E->getBeginLoc() : Loc, FT);
1057 if (!FT)
1058 return CT_Can;
1059
1060 return FT->canThrow();
1061 }
1062
canVarDeclThrow(Sema & Self,const VarDecl * VD)1063 static CanThrowResult canVarDeclThrow(Sema &Self, const VarDecl *VD) {
1064 CanThrowResult CT = CT_Cannot;
1065
1066 // Initialization might throw.
1067 if (!VD->isUsableInConstantExpressions(Self.Context))
1068 if (const Expr *Init = VD->getInit())
1069 CT = mergeCanThrow(CT, Self.canThrow(Init));
1070
1071 // Destructor might throw.
1072 if (VD->needsDestruction(Self.Context) == QualType::DK_cxx_destructor) {
1073 if (auto *RD =
1074 VD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
1075 if (auto *Dtor = RD->getDestructor()) {
1076 CT = mergeCanThrow(
1077 CT, Sema::canCalleeThrow(Self, nullptr, Dtor, VD->getLocation()));
1078 }
1079 }
1080 }
1081
1082 // If this is a decomposition declaration, bindings might throw.
1083 if (auto *DD = dyn_cast<DecompositionDecl>(VD))
1084 for (auto *B : DD->bindings())
1085 if (auto *HD = B->getHoldingVar())
1086 CT = mergeCanThrow(CT, canVarDeclThrow(Self, HD));
1087
1088 return CT;
1089 }
1090
canDynamicCastThrow(const CXXDynamicCastExpr * DC)1091 static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1092 if (DC->isTypeDependent())
1093 return CT_Dependent;
1094
1095 if (!DC->getTypeAsWritten()->isReferenceType())
1096 return CT_Cannot;
1097
1098 if (DC->getSubExpr()->isTypeDependent())
1099 return CT_Dependent;
1100
1101 return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
1102 }
1103
canTypeidThrow(Sema & S,const CXXTypeidExpr * DC)1104 static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
1105 if (DC->isTypeOperand())
1106 return CT_Cannot;
1107
1108 Expr *Op = DC->getExprOperand();
1109 if (Op->isTypeDependent())
1110 return CT_Dependent;
1111
1112 const RecordType *RT = Op->getType()->getAs<RecordType>();
1113 if (!RT)
1114 return CT_Cannot;
1115
1116 if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
1117 return CT_Cannot;
1118
1119 if (Op->Classify(S.Context).isPRValue())
1120 return CT_Cannot;
1121
1122 return CT_Can;
1123 }
1124
canThrow(const Stmt * S)1125 CanThrowResult Sema::canThrow(const Stmt *S) {
1126 // C++ [expr.unary.noexcept]p3:
1127 // [Can throw] if in a potentially-evaluated context the expression would
1128 // contain:
1129 switch (S->getStmtClass()) {
1130 case Expr::ConstantExprClass:
1131 return canThrow(cast<ConstantExpr>(S)->getSubExpr());
1132
1133 case Expr::CXXThrowExprClass:
1134 // - a potentially evaluated throw-expression
1135 return CT_Can;
1136
1137 case Expr::CXXDynamicCastExprClass: {
1138 // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1139 // where T is a reference type, that requires a run-time check
1140 auto *CE = cast<CXXDynamicCastExpr>(S);
1141 // FIXME: Properly determine whether a variably-modified type can throw.
1142 if (CE->getType()->isVariablyModifiedType())
1143 return CT_Can;
1144 CanThrowResult CT = canDynamicCastThrow(CE);
1145 if (CT == CT_Can)
1146 return CT;
1147 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1148 }
1149
1150 case Expr::CXXTypeidExprClass:
1151 // - a potentially evaluated typeid expression applied to a glvalue
1152 // expression whose type is a polymorphic class type
1153 return canTypeidThrow(*this, cast<CXXTypeidExpr>(S));
1154
1155 // - a potentially evaluated call to a function, member function, function
1156 // pointer, or member function pointer that does not have a non-throwing
1157 // exception-specification
1158 case Expr::CallExprClass:
1159 case Expr::CXXMemberCallExprClass:
1160 case Expr::CXXOperatorCallExprClass:
1161 case Expr::UserDefinedLiteralClass: {
1162 const CallExpr *CE = cast<CallExpr>(S);
1163 CanThrowResult CT;
1164 if (CE->isTypeDependent())
1165 CT = CT_Dependent;
1166 else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
1167 CT = CT_Cannot;
1168 else
1169 CT = canCalleeThrow(*this, CE, CE->getCalleeDecl());
1170 if (CT == CT_Can)
1171 return CT;
1172 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1173 }
1174
1175 case Expr::CXXConstructExprClass:
1176 case Expr::CXXTemporaryObjectExprClass: {
1177 auto *CE = cast<CXXConstructExpr>(S);
1178 // FIXME: Properly determine whether a variably-modified type can throw.
1179 if (CE->getType()->isVariablyModifiedType())
1180 return CT_Can;
1181 CanThrowResult CT = canCalleeThrow(*this, CE, CE->getConstructor());
1182 if (CT == CT_Can)
1183 return CT;
1184 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1185 }
1186
1187 case Expr::CXXInheritedCtorInitExprClass: {
1188 auto *ICIE = cast<CXXInheritedCtorInitExpr>(S);
1189 return canCalleeThrow(*this, ICIE, ICIE->getConstructor());
1190 }
1191
1192 case Expr::LambdaExprClass: {
1193 const LambdaExpr *Lambda = cast<LambdaExpr>(S);
1194 CanThrowResult CT = CT_Cannot;
1195 for (LambdaExpr::const_capture_init_iterator
1196 Cap = Lambda->capture_init_begin(),
1197 CapEnd = Lambda->capture_init_end();
1198 Cap != CapEnd; ++Cap)
1199 CT = mergeCanThrow(CT, canThrow(*Cap));
1200 return CT;
1201 }
1202
1203 case Expr::CXXNewExprClass: {
1204 auto *NE = cast<CXXNewExpr>(S);
1205 CanThrowResult CT;
1206 if (NE->isTypeDependent())
1207 CT = CT_Dependent;
1208 else
1209 CT = canCalleeThrow(*this, NE, NE->getOperatorNew());
1210 if (CT == CT_Can)
1211 return CT;
1212 return mergeCanThrow(CT, canSubStmtsThrow(*this, NE));
1213 }
1214
1215 case Expr::CXXDeleteExprClass: {
1216 auto *DE = cast<CXXDeleteExpr>(S);
1217 CanThrowResult CT;
1218 QualType DTy = DE->getDestroyedType();
1219 if (DTy.isNull() || DTy->isDependentType()) {
1220 CT = CT_Dependent;
1221 } else {
1222 CT = canCalleeThrow(*this, DE, DE->getOperatorDelete());
1223 if (const RecordType *RT = DTy->getAs<RecordType>()) {
1224 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1225 const CXXDestructorDecl *DD = RD->getDestructor();
1226 if (DD)
1227 CT = mergeCanThrow(CT, canCalleeThrow(*this, DE, DD));
1228 }
1229 if (CT == CT_Can)
1230 return CT;
1231 }
1232 return mergeCanThrow(CT, canSubStmtsThrow(*this, DE));
1233 }
1234
1235 case Expr::CXXBindTemporaryExprClass: {
1236 auto *BTE = cast<CXXBindTemporaryExpr>(S);
1237 // The bound temporary has to be destroyed again, which might throw.
1238 CanThrowResult CT =
1239 canCalleeThrow(*this, BTE, BTE->getTemporary()->getDestructor());
1240 if (CT == CT_Can)
1241 return CT;
1242 return mergeCanThrow(CT, canSubStmtsThrow(*this, BTE));
1243 }
1244
1245 case Expr::PseudoObjectExprClass: {
1246 auto *POE = cast<PseudoObjectExpr>(S);
1247 CanThrowResult CT = CT_Cannot;
1248 for (const Expr *E : POE->semantics()) {
1249 CT = mergeCanThrow(CT, canThrow(E));
1250 if (CT == CT_Can)
1251 break;
1252 }
1253 return CT;
1254 }
1255
1256 // ObjC message sends are like function calls, but never have exception
1257 // specs.
1258 case Expr::ObjCMessageExprClass:
1259 case Expr::ObjCPropertyRefExprClass:
1260 case Expr::ObjCSubscriptRefExprClass:
1261 return CT_Can;
1262
1263 // All the ObjC literals that are implemented as calls are
1264 // potentially throwing unless we decide to close off that
1265 // possibility.
1266 case Expr::ObjCArrayLiteralClass:
1267 case Expr::ObjCDictionaryLiteralClass:
1268 case Expr::ObjCBoxedExprClass:
1269 return CT_Can;
1270
1271 // Many other things have subexpressions, so we have to test those.
1272 // Some are simple:
1273 case Expr::CoawaitExprClass:
1274 case Expr::ConditionalOperatorClass:
1275 case Expr::CoyieldExprClass:
1276 case Expr::CXXRewrittenBinaryOperatorClass:
1277 case Expr::CXXStdInitializerListExprClass:
1278 case Expr::DesignatedInitExprClass:
1279 case Expr::DesignatedInitUpdateExprClass:
1280 case Expr::ExprWithCleanupsClass:
1281 case Expr::ExtVectorElementExprClass:
1282 case Expr::InitListExprClass:
1283 case Expr::ArrayInitLoopExprClass:
1284 case Expr::MemberExprClass:
1285 case Expr::ObjCIsaExprClass:
1286 case Expr::ObjCIvarRefExprClass:
1287 case Expr::ParenExprClass:
1288 case Expr::ParenListExprClass:
1289 case Expr::ShuffleVectorExprClass:
1290 case Expr::StmtExprClass:
1291 case Expr::ConvertVectorExprClass:
1292 case Expr::VAArgExprClass:
1293 case Expr::CXXParenListInitExprClass:
1294 return canSubStmtsThrow(*this, S);
1295
1296 case Expr::CompoundLiteralExprClass:
1297 case Expr::CXXConstCastExprClass:
1298 case Expr::CXXAddrspaceCastExprClass:
1299 case Expr::CXXReinterpretCastExprClass:
1300 case Expr::BuiltinBitCastExprClass:
1301 // FIXME: Properly determine whether a variably-modified type can throw.
1302 if (cast<Expr>(S)->getType()->isVariablyModifiedType())
1303 return CT_Can;
1304 return canSubStmtsThrow(*this, S);
1305
1306 // Some might be dependent for other reasons.
1307 case Expr::ArraySubscriptExprClass:
1308 case Expr::MatrixSubscriptExprClass:
1309 case Expr::OMPArraySectionExprClass:
1310 case Expr::OMPArrayShapingExprClass:
1311 case Expr::OMPIteratorExprClass:
1312 case Expr::BinaryOperatorClass:
1313 case Expr::DependentCoawaitExprClass:
1314 case Expr::CompoundAssignOperatorClass:
1315 case Expr::CStyleCastExprClass:
1316 case Expr::CXXStaticCastExprClass:
1317 case Expr::CXXFunctionalCastExprClass:
1318 case Expr::ImplicitCastExprClass:
1319 case Expr::MaterializeTemporaryExprClass:
1320 case Expr::UnaryOperatorClass: {
1321 // FIXME: Properly determine whether a variably-modified type can throw.
1322 if (auto *CE = dyn_cast<CastExpr>(S))
1323 if (CE->getType()->isVariablyModifiedType())
1324 return CT_Can;
1325 CanThrowResult CT =
1326 cast<Expr>(S)->isTypeDependent() ? CT_Dependent : CT_Cannot;
1327 return mergeCanThrow(CT, canSubStmtsThrow(*this, S));
1328 }
1329
1330 case Expr::CXXDefaultArgExprClass:
1331 return canThrow(cast<CXXDefaultArgExpr>(S)->getExpr());
1332
1333 case Expr::CXXDefaultInitExprClass:
1334 return canThrow(cast<CXXDefaultInitExpr>(S)->getExpr());
1335
1336 case Expr::ChooseExprClass: {
1337 auto *CE = cast<ChooseExpr>(S);
1338 if (CE->isTypeDependent() || CE->isValueDependent())
1339 return CT_Dependent;
1340 return canThrow(CE->getChosenSubExpr());
1341 }
1342
1343 case Expr::GenericSelectionExprClass:
1344 if (cast<GenericSelectionExpr>(S)->isResultDependent())
1345 return CT_Dependent;
1346 return canThrow(cast<GenericSelectionExpr>(S)->getResultExpr());
1347
1348 // Some expressions are always dependent.
1349 case Expr::CXXDependentScopeMemberExprClass:
1350 case Expr::CXXUnresolvedConstructExprClass:
1351 case Expr::DependentScopeDeclRefExprClass:
1352 case Expr::CXXFoldExprClass:
1353 case Expr::RecoveryExprClass:
1354 return CT_Dependent;
1355
1356 case Expr::AsTypeExprClass:
1357 case Expr::BinaryConditionalOperatorClass:
1358 case Expr::BlockExprClass:
1359 case Expr::CUDAKernelCallExprClass:
1360 case Expr::DeclRefExprClass:
1361 case Expr::ObjCBridgedCastExprClass:
1362 case Expr::ObjCIndirectCopyRestoreExprClass:
1363 case Expr::ObjCProtocolExprClass:
1364 case Expr::ObjCSelectorExprClass:
1365 case Expr::ObjCAvailabilityCheckExprClass:
1366 case Expr::OffsetOfExprClass:
1367 case Expr::PackExpansionExprClass:
1368 case Expr::SubstNonTypeTemplateParmExprClass:
1369 case Expr::SubstNonTypeTemplateParmPackExprClass:
1370 case Expr::FunctionParmPackExprClass:
1371 case Expr::UnaryExprOrTypeTraitExprClass:
1372 case Expr::UnresolvedLookupExprClass:
1373 case Expr::UnresolvedMemberExprClass:
1374 case Expr::TypoExprClass:
1375 // FIXME: Many of the above can throw.
1376 return CT_Cannot;
1377
1378 case Expr::AddrLabelExprClass:
1379 case Expr::ArrayTypeTraitExprClass:
1380 case Expr::AtomicExprClass:
1381 case Expr::TypeTraitExprClass:
1382 case Expr::CXXBoolLiteralExprClass:
1383 case Expr::CXXNoexceptExprClass:
1384 case Expr::CXXNullPtrLiteralExprClass:
1385 case Expr::CXXPseudoDestructorExprClass:
1386 case Expr::CXXScalarValueInitExprClass:
1387 case Expr::CXXThisExprClass:
1388 case Expr::CXXUuidofExprClass:
1389 case Expr::CharacterLiteralClass:
1390 case Expr::ExpressionTraitExprClass:
1391 case Expr::FloatingLiteralClass:
1392 case Expr::GNUNullExprClass:
1393 case Expr::ImaginaryLiteralClass:
1394 case Expr::ImplicitValueInitExprClass:
1395 case Expr::IntegerLiteralClass:
1396 case Expr::FixedPointLiteralClass:
1397 case Expr::ArrayInitIndexExprClass:
1398 case Expr::NoInitExprClass:
1399 case Expr::ObjCEncodeExprClass:
1400 case Expr::ObjCStringLiteralClass:
1401 case Expr::ObjCBoolLiteralExprClass:
1402 case Expr::OpaqueValueExprClass:
1403 case Expr::PredefinedExprClass:
1404 case Expr::SizeOfPackExprClass:
1405 case Expr::StringLiteralClass:
1406 case Expr::SourceLocExprClass:
1407 case Expr::ConceptSpecializationExprClass:
1408 case Expr::RequiresExprClass:
1409 // These expressions can never throw.
1410 return CT_Cannot;
1411
1412 case Expr::MSPropertyRefExprClass:
1413 case Expr::MSPropertySubscriptExprClass:
1414 llvm_unreachable("Invalid class for expression");
1415
1416 // Most statements can throw if any substatement can throw.
1417 case Stmt::AttributedStmtClass:
1418 case Stmt::BreakStmtClass:
1419 case Stmt::CapturedStmtClass:
1420 case Stmt::CaseStmtClass:
1421 case Stmt::CompoundStmtClass:
1422 case Stmt::ContinueStmtClass:
1423 case Stmt::CoreturnStmtClass:
1424 case Stmt::CoroutineBodyStmtClass:
1425 case Stmt::CXXCatchStmtClass:
1426 case Stmt::CXXForRangeStmtClass:
1427 case Stmt::DefaultStmtClass:
1428 case Stmt::DoStmtClass:
1429 case Stmt::ForStmtClass:
1430 case Stmt::GCCAsmStmtClass:
1431 case Stmt::GotoStmtClass:
1432 case Stmt::IndirectGotoStmtClass:
1433 case Stmt::LabelStmtClass:
1434 case Stmt::MSAsmStmtClass:
1435 case Stmt::MSDependentExistsStmtClass:
1436 case Stmt::NullStmtClass:
1437 case Stmt::ObjCAtCatchStmtClass:
1438 case Stmt::ObjCAtFinallyStmtClass:
1439 case Stmt::ObjCAtSynchronizedStmtClass:
1440 case Stmt::ObjCAutoreleasePoolStmtClass:
1441 case Stmt::ObjCForCollectionStmtClass:
1442 case Stmt::OMPAtomicDirectiveClass:
1443 case Stmt::OMPBarrierDirectiveClass:
1444 case Stmt::OMPCancelDirectiveClass:
1445 case Stmt::OMPCancellationPointDirectiveClass:
1446 case Stmt::OMPCriticalDirectiveClass:
1447 case Stmt::OMPDistributeDirectiveClass:
1448 case Stmt::OMPDistributeParallelForDirectiveClass:
1449 case Stmt::OMPDistributeParallelForSimdDirectiveClass:
1450 case Stmt::OMPDistributeSimdDirectiveClass:
1451 case Stmt::OMPFlushDirectiveClass:
1452 case Stmt::OMPDepobjDirectiveClass:
1453 case Stmt::OMPScanDirectiveClass:
1454 case Stmt::OMPForDirectiveClass:
1455 case Stmt::OMPForSimdDirectiveClass:
1456 case Stmt::OMPMasterDirectiveClass:
1457 case Stmt::OMPMasterTaskLoopDirectiveClass:
1458 case Stmt::OMPMaskedTaskLoopDirectiveClass:
1459 case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
1460 case Stmt::OMPMaskedTaskLoopSimdDirectiveClass:
1461 case Stmt::OMPOrderedDirectiveClass:
1462 case Stmt::OMPCanonicalLoopClass:
1463 case Stmt::OMPParallelDirectiveClass:
1464 case Stmt::OMPParallelForDirectiveClass:
1465 case Stmt::OMPParallelForSimdDirectiveClass:
1466 case Stmt::OMPParallelMasterDirectiveClass:
1467 case Stmt::OMPParallelMaskedDirectiveClass:
1468 case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
1469 case Stmt::OMPParallelMaskedTaskLoopDirectiveClass:
1470 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
1471 case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass:
1472 case Stmt::OMPParallelSectionsDirectiveClass:
1473 case Stmt::OMPSectionDirectiveClass:
1474 case Stmt::OMPSectionsDirectiveClass:
1475 case Stmt::OMPSimdDirectiveClass:
1476 case Stmt::OMPTileDirectiveClass:
1477 case Stmt::OMPUnrollDirectiveClass:
1478 case Stmt::OMPSingleDirectiveClass:
1479 case Stmt::OMPTargetDataDirectiveClass:
1480 case Stmt::OMPTargetDirectiveClass:
1481 case Stmt::OMPTargetEnterDataDirectiveClass:
1482 case Stmt::OMPTargetExitDataDirectiveClass:
1483 case Stmt::OMPTargetParallelDirectiveClass:
1484 case Stmt::OMPTargetParallelForDirectiveClass:
1485 case Stmt::OMPTargetParallelForSimdDirectiveClass:
1486 case Stmt::OMPTargetSimdDirectiveClass:
1487 case Stmt::OMPTargetTeamsDirectiveClass:
1488 case Stmt::OMPTargetTeamsDistributeDirectiveClass:
1489 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
1490 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
1491 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
1492 case Stmt::OMPTargetUpdateDirectiveClass:
1493 case Stmt::OMPTaskDirectiveClass:
1494 case Stmt::OMPTaskgroupDirectiveClass:
1495 case Stmt::OMPTaskLoopDirectiveClass:
1496 case Stmt::OMPTaskLoopSimdDirectiveClass:
1497 case Stmt::OMPTaskwaitDirectiveClass:
1498 case Stmt::OMPTaskyieldDirectiveClass:
1499 case Stmt::OMPErrorDirectiveClass:
1500 case Stmt::OMPTeamsDirectiveClass:
1501 case Stmt::OMPTeamsDistributeDirectiveClass:
1502 case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
1503 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
1504 case Stmt::OMPTeamsDistributeSimdDirectiveClass:
1505 case Stmt::OMPInteropDirectiveClass:
1506 case Stmt::OMPDispatchDirectiveClass:
1507 case Stmt::OMPMaskedDirectiveClass:
1508 case Stmt::OMPMetaDirectiveClass:
1509 case Stmt::OMPGenericLoopDirectiveClass:
1510 case Stmt::OMPTeamsGenericLoopDirectiveClass:
1511 case Stmt::OMPTargetTeamsGenericLoopDirectiveClass:
1512 case Stmt::OMPParallelGenericLoopDirectiveClass:
1513 case Stmt::OMPTargetParallelGenericLoopDirectiveClass:
1514 case Stmt::ReturnStmtClass:
1515 case Stmt::SEHExceptStmtClass:
1516 case Stmt::SEHFinallyStmtClass:
1517 case Stmt::SEHLeaveStmtClass:
1518 case Stmt::SEHTryStmtClass:
1519 case Stmt::SwitchStmtClass:
1520 case Stmt::WhileStmtClass:
1521 return canSubStmtsThrow(*this, S);
1522
1523 case Stmt::DeclStmtClass: {
1524 CanThrowResult CT = CT_Cannot;
1525 for (const Decl *D : cast<DeclStmt>(S)->decls()) {
1526 if (auto *VD = dyn_cast<VarDecl>(D))
1527 CT = mergeCanThrow(CT, canVarDeclThrow(*this, VD));
1528
1529 // FIXME: Properly determine whether a variably-modified type can throw.
1530 if (auto *TND = dyn_cast<TypedefNameDecl>(D))
1531 if (TND->getUnderlyingType()->isVariablyModifiedType())
1532 return CT_Can;
1533 if (auto *VD = dyn_cast<ValueDecl>(D))
1534 if (VD->getType()->isVariablyModifiedType())
1535 return CT_Can;
1536 }
1537 return CT;
1538 }
1539
1540 case Stmt::IfStmtClass: {
1541 auto *IS = cast<IfStmt>(S);
1542 CanThrowResult CT = CT_Cannot;
1543 if (const Stmt *Init = IS->getInit())
1544 CT = mergeCanThrow(CT, canThrow(Init));
1545 if (const Stmt *CondDS = IS->getConditionVariableDeclStmt())
1546 CT = mergeCanThrow(CT, canThrow(CondDS));
1547 CT = mergeCanThrow(CT, canThrow(IS->getCond()));
1548
1549 // For 'if constexpr', consider only the non-discarded case.
1550 // FIXME: We should add a DiscardedStmt marker to the AST.
1551 if (std::optional<const Stmt *> Case = IS->getNondiscardedCase(Context))
1552 return *Case ? mergeCanThrow(CT, canThrow(*Case)) : CT;
1553
1554 CanThrowResult Then = canThrow(IS->getThen());
1555 CanThrowResult Else = IS->getElse() ? canThrow(IS->getElse()) : CT_Cannot;
1556 if (Then == Else)
1557 return mergeCanThrow(CT, Then);
1558
1559 // For a dependent 'if constexpr', the result is dependent if it depends on
1560 // the value of the condition.
1561 return mergeCanThrow(CT, IS->isConstexpr() ? CT_Dependent
1562 : mergeCanThrow(Then, Else));
1563 }
1564
1565 case Stmt::CXXTryStmtClass: {
1566 auto *TS = cast<CXXTryStmt>(S);
1567 // try /*...*/ catch (...) { H } can throw only if H can throw.
1568 // Any other try-catch can throw if any substatement can throw.
1569 const CXXCatchStmt *FinalHandler = TS->getHandler(TS->getNumHandlers() - 1);
1570 if (!FinalHandler->getExceptionDecl())
1571 return canThrow(FinalHandler->getHandlerBlock());
1572 return canSubStmtsThrow(*this, S);
1573 }
1574
1575 case Stmt::ObjCAtThrowStmtClass:
1576 return CT_Can;
1577
1578 case Stmt::ObjCAtTryStmtClass: {
1579 auto *TS = cast<ObjCAtTryStmt>(S);
1580
1581 // @catch(...) need not be last in Objective-C. Walk backwards until we
1582 // see one or hit the @try.
1583 CanThrowResult CT = CT_Cannot;
1584 if (const Stmt *Finally = TS->getFinallyStmt())
1585 CT = mergeCanThrow(CT, canThrow(Finally));
1586 for (unsigned I = TS->getNumCatchStmts(); I != 0; --I) {
1587 const ObjCAtCatchStmt *Catch = TS->getCatchStmt(I - 1);
1588 CT = mergeCanThrow(CT, canThrow(Catch));
1589 // If we reach a @catch(...), no earlier exceptions can escape.
1590 if (Catch->hasEllipsis())
1591 return CT;
1592 }
1593
1594 // Didn't find an @catch(...). Exceptions from the @try body can escape.
1595 return mergeCanThrow(CT, canThrow(TS->getTryBody()));
1596 }
1597
1598 case Stmt::SYCLUniqueStableNameExprClass:
1599 return CT_Cannot;
1600 case Stmt::NoStmtClass:
1601 llvm_unreachable("Invalid class for statement");
1602 }
1603 llvm_unreachable("Bogus StmtClass");
1604 }
1605
1606 } // end namespace clang
1607