1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "ABIInfoImpl.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/AttributeMask.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/InlineAsm.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <optional>
45 using namespace clang;
46 using namespace CodeGen;
47 
48 /***/
49 
ClangCallConvToLLVMCallConv(CallingConv CC)50 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
51   switch (CC) {
52   default: return llvm::CallingConv::C;
53   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
54   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
55   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
56   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
57   case CC_Win64: return llvm::CallingConv::Win64;
58   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
59   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
60   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
61   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
62   // TODO: Add support for __pascal to LLVM.
63   case CC_X86Pascal: return llvm::CallingConv::C;
64   // TODO: Add support for __vectorcall to LLVM.
65   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
66   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
67   case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall;
68   case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL;
69   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
70   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
71   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
72   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
73   case CC_Swift: return llvm::CallingConv::Swift;
74   case CC_SwiftAsync: return llvm::CallingConv::SwiftTail;
75   case CC_M68kRTD: return llvm::CallingConv::M68k_RTD;
76   }
77 }
78 
79 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
80 /// qualification. Either or both of RD and MD may be null. A null RD indicates
81 /// that there is no meaningful 'this' type, and a null MD can occur when
82 /// calling a method pointer.
DeriveThisType(const CXXRecordDecl * RD,const CXXMethodDecl * MD)83 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
84                                          const CXXMethodDecl *MD) {
85   QualType RecTy;
86   if (RD)
87     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
88   else
89     RecTy = Context.VoidTy;
90 
91   if (MD)
92     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
93   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
94 }
95 
96 /// Returns the canonical formal type of the given C++ method.
GetFormalType(const CXXMethodDecl * MD)97 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
98   return MD->getType()->getCanonicalTypeUnqualified()
99            .getAs<FunctionProtoType>();
100 }
101 
102 /// Returns the "extra-canonicalized" return type, which discards
103 /// qualifiers on the return type.  Codegen doesn't care about them,
104 /// and it makes ABI code a little easier to be able to assume that
105 /// all parameter and return types are top-level unqualified.
GetReturnType(QualType RetTy)106 static CanQualType GetReturnType(QualType RetTy) {
107   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
108 }
109 
110 /// Arrange the argument and result information for a value of the given
111 /// unprototyped freestanding function type.
112 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP)113 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
114   // When translating an unprototyped function type, always use a
115   // variadic type.
116   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
117                                  FnInfoOpts::None, std::nullopt,
118                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
119 }
120 
addExtParameterInfosForCall(llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> & paramInfos,const FunctionProtoType * proto,unsigned prefixArgs,unsigned totalArgs)121 static void addExtParameterInfosForCall(
122          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
123                                         const FunctionProtoType *proto,
124                                         unsigned prefixArgs,
125                                         unsigned totalArgs) {
126   assert(proto->hasExtParameterInfos());
127   assert(paramInfos.size() <= prefixArgs);
128   assert(proto->getNumParams() + prefixArgs <= totalArgs);
129 
130   paramInfos.reserve(totalArgs);
131 
132   // Add default infos for any prefix args that don't already have infos.
133   paramInfos.resize(prefixArgs);
134 
135   // Add infos for the prototype.
136   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
137     paramInfos.push_back(ParamInfo);
138     // pass_object_size params have no parameter info.
139     if (ParamInfo.hasPassObjectSize())
140       paramInfos.emplace_back();
141   }
142 
143   assert(paramInfos.size() <= totalArgs &&
144          "Did we forget to insert pass_object_size args?");
145   // Add default infos for the variadic and/or suffix arguments.
146   paramInfos.resize(totalArgs);
147 }
148 
149 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
150 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
appendParameterTypes(const CodeGenTypes & CGT,SmallVectorImpl<CanQualType> & prefix,SmallVectorImpl<FunctionProtoType::ExtParameterInfo> & paramInfos,CanQual<FunctionProtoType> FPT)151 static void appendParameterTypes(const CodeGenTypes &CGT,
152                                  SmallVectorImpl<CanQualType> &prefix,
153               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
154                                  CanQual<FunctionProtoType> FPT) {
155   // Fast path: don't touch param info if we don't need to.
156   if (!FPT->hasExtParameterInfos()) {
157     assert(paramInfos.empty() &&
158            "We have paramInfos, but the prototype doesn't?");
159     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
160     return;
161   }
162 
163   unsigned PrefixSize = prefix.size();
164   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
165   // parameters; the only thing that can change this is the presence of
166   // pass_object_size. So, we preallocate for the common case.
167   prefix.reserve(prefix.size() + FPT->getNumParams());
168 
169   auto ExtInfos = FPT->getExtParameterInfos();
170   assert(ExtInfos.size() == FPT->getNumParams());
171   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
172     prefix.push_back(FPT->getParamType(I));
173     if (ExtInfos[I].hasPassObjectSize())
174       prefix.push_back(CGT.getContext().getSizeType());
175   }
176 
177   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
178                               prefix.size());
179 }
180 
181 /// Arrange the LLVM function layout for a value of the given function
182 /// type, on top of any implicit parameters already stored.
183 static const CGFunctionInfo &
arrangeLLVMFunctionInfo(CodeGenTypes & CGT,bool instanceMethod,SmallVectorImpl<CanQualType> & prefix,CanQual<FunctionProtoType> FTP)184 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
185                         SmallVectorImpl<CanQualType> &prefix,
186                         CanQual<FunctionProtoType> FTP) {
187   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
188   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
189   // FIXME: Kill copy.
190   appendParameterTypes(CGT, prefix, paramInfos, FTP);
191   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
192 
193   FnInfoOpts opts =
194       instanceMethod ? FnInfoOpts::IsInstanceMethod : FnInfoOpts::None;
195   return CGT.arrangeLLVMFunctionInfo(resultType, opts, prefix,
196                                      FTP->getExtInfo(), paramInfos, Required);
197 }
198 
199 /// Arrange the argument and result information for a value of the
200 /// given freestanding function type.
201 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP)202 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
203   SmallVector<CanQualType, 16> argTypes;
204   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
205                                    FTP);
206 }
207 
getCallingConventionForDecl(const ObjCMethodDecl * D,bool IsWindows)208 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
209                                                bool IsWindows) {
210   // Set the appropriate calling convention for the Function.
211   if (D->hasAttr<StdCallAttr>())
212     return CC_X86StdCall;
213 
214   if (D->hasAttr<FastCallAttr>())
215     return CC_X86FastCall;
216 
217   if (D->hasAttr<RegCallAttr>())
218     return CC_X86RegCall;
219 
220   if (D->hasAttr<ThisCallAttr>())
221     return CC_X86ThisCall;
222 
223   if (D->hasAttr<VectorCallAttr>())
224     return CC_X86VectorCall;
225 
226   if (D->hasAttr<PascalAttr>())
227     return CC_X86Pascal;
228 
229   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
230     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
231 
232   if (D->hasAttr<AArch64VectorPcsAttr>())
233     return CC_AArch64VectorCall;
234 
235   if (D->hasAttr<AArch64SVEPcsAttr>())
236     return CC_AArch64SVEPCS;
237 
238   if (D->hasAttr<AMDGPUKernelCallAttr>())
239     return CC_AMDGPUKernelCall;
240 
241   if (D->hasAttr<IntelOclBiccAttr>())
242     return CC_IntelOclBicc;
243 
244   if (D->hasAttr<MSABIAttr>())
245     return IsWindows ? CC_C : CC_Win64;
246 
247   if (D->hasAttr<SysVABIAttr>())
248     return IsWindows ? CC_X86_64SysV : CC_C;
249 
250   if (D->hasAttr<PreserveMostAttr>())
251     return CC_PreserveMost;
252 
253   if (D->hasAttr<PreserveAllAttr>())
254     return CC_PreserveAll;
255 
256   if (D->hasAttr<M68kRTDAttr>())
257     return CC_M68kRTD;
258 
259   return CC_C;
260 }
261 
262 /// Arrange the argument and result information for a call to an
263 /// unknown C++ non-static member function of the given abstract type.
264 /// (A null RD means we don't have any meaningful "this" argument type,
265 ///  so fall back to a generic pointer type).
266 /// The member function must be an ordinary function, i.e. not a
267 /// constructor or destructor.
268 const CGFunctionInfo &
arrangeCXXMethodType(const CXXRecordDecl * RD,const FunctionProtoType * FTP,const CXXMethodDecl * MD)269 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
270                                    const FunctionProtoType *FTP,
271                                    const CXXMethodDecl *MD) {
272   SmallVector<CanQualType, 16> argTypes;
273 
274   // Add the 'this' pointer.
275   argTypes.push_back(DeriveThisType(RD, MD));
276 
277   return ::arrangeLLVMFunctionInfo(
278       *this, /*instanceMethod=*/true, argTypes,
279       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
280 }
281 
282 /// Set calling convention for CUDA/HIP kernel.
setCUDAKernelCallingConvention(CanQualType & FTy,CodeGenModule & CGM,const FunctionDecl * FD)283 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
284                                            const FunctionDecl *FD) {
285   if (FD->hasAttr<CUDAGlobalAttr>()) {
286     const FunctionType *FT = FTy->getAs<FunctionType>();
287     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
288     FTy = FT->getCanonicalTypeUnqualified();
289   }
290 }
291 
292 /// Arrange the argument and result information for a declaration or
293 /// definition of the given C++ non-static member function.  The
294 /// member function must be an ordinary function, i.e. not a
295 /// constructor or destructor.
296 const CGFunctionInfo &
arrangeCXXMethodDeclaration(const CXXMethodDecl * MD)297 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
298   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
299   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
300 
301   CanQualType FT = GetFormalType(MD).getAs<Type>();
302   setCUDAKernelCallingConvention(FT, CGM, MD);
303   auto prototype = FT.getAs<FunctionProtoType>();
304 
305   if (MD->isImplicitObjectMemberFunction()) {
306     // The abstract case is perfectly fine.
307     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
308     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
309   }
310 
311   return arrangeFreeFunctionType(prototype);
312 }
313 
inheritingCtorHasParams(const InheritedConstructor & Inherited,CXXCtorType Type)314 bool CodeGenTypes::inheritingCtorHasParams(
315     const InheritedConstructor &Inherited, CXXCtorType Type) {
316   // Parameters are unnecessary if we're constructing a base class subobject
317   // and the inherited constructor lives in a virtual base.
318   return Type == Ctor_Complete ||
319          !Inherited.getShadowDecl()->constructsVirtualBase() ||
320          !Target.getCXXABI().hasConstructorVariants();
321 }
322 
323 const CGFunctionInfo &
arrangeCXXStructorDeclaration(GlobalDecl GD)324 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
325   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
326 
327   SmallVector<CanQualType, 16> argTypes;
328   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
329 
330   const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(GD);
331   argTypes.push_back(DeriveThisType(ThisType, MD));
332 
333   bool PassParams = true;
334 
335   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
336     // A base class inheriting constructor doesn't get forwarded arguments
337     // needed to construct a virtual base (or base class thereof).
338     if (auto Inherited = CD->getInheritedConstructor())
339       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
340   }
341 
342   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
343 
344   // Add the formal parameters.
345   if (PassParams)
346     appendParameterTypes(*this, argTypes, paramInfos, FTP);
347 
348   CGCXXABI::AddedStructorArgCounts AddedArgs =
349       TheCXXABI.buildStructorSignature(GD, argTypes);
350   if (!paramInfos.empty()) {
351     // Note: prefix implies after the first param.
352     if (AddedArgs.Prefix)
353       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
354                         FunctionProtoType::ExtParameterInfo{});
355     if (AddedArgs.Suffix)
356       paramInfos.append(AddedArgs.Suffix,
357                         FunctionProtoType::ExtParameterInfo{});
358   }
359 
360   RequiredArgs required =
361       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
362                                       : RequiredArgs::All);
363 
364   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
365   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
366                                ? argTypes.front()
367                                : TheCXXABI.hasMostDerivedReturn(GD)
368                                      ? CGM.getContext().VoidPtrTy
369                                      : Context.VoidTy;
370   return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::IsInstanceMethod,
371                                  argTypes, extInfo, paramInfos, required);
372 }
373 
374 static SmallVector<CanQualType, 16>
getArgTypesForCall(ASTContext & ctx,const CallArgList & args)375 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
376   SmallVector<CanQualType, 16> argTypes;
377   for (auto &arg : args)
378     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
379   return argTypes;
380 }
381 
382 static SmallVector<CanQualType, 16>
getArgTypesForDeclaration(ASTContext & ctx,const FunctionArgList & args)383 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
384   SmallVector<CanQualType, 16> argTypes;
385   for (auto &arg : args)
386     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
387   return argTypes;
388 }
389 
390 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
getExtParameterInfosForCall(const FunctionProtoType * proto,unsigned prefixArgs,unsigned totalArgs)391 getExtParameterInfosForCall(const FunctionProtoType *proto,
392                             unsigned prefixArgs, unsigned totalArgs) {
393   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
394   if (proto->hasExtParameterInfos()) {
395     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
396   }
397   return result;
398 }
399 
400 /// Arrange a call to a C++ method, passing the given arguments.
401 ///
402 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
403 /// parameter.
404 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
405 /// args.
406 /// PassProtoArgs indicates whether `args` has args for the parameters in the
407 /// given CXXConstructorDecl.
408 const CGFunctionInfo &
arrangeCXXConstructorCall(const CallArgList & args,const CXXConstructorDecl * D,CXXCtorType CtorKind,unsigned ExtraPrefixArgs,unsigned ExtraSuffixArgs,bool PassProtoArgs)409 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
410                                         const CXXConstructorDecl *D,
411                                         CXXCtorType CtorKind,
412                                         unsigned ExtraPrefixArgs,
413                                         unsigned ExtraSuffixArgs,
414                                         bool PassProtoArgs) {
415   // FIXME: Kill copy.
416   SmallVector<CanQualType, 16> ArgTypes;
417   for (const auto &Arg : args)
418     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
419 
420   // +1 for implicit this, which should always be args[0].
421   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
422 
423   CanQual<FunctionProtoType> FPT = GetFormalType(D);
424   RequiredArgs Required = PassProtoArgs
425                               ? RequiredArgs::forPrototypePlus(
426                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
427                               : RequiredArgs::All;
428 
429   GlobalDecl GD(D, CtorKind);
430   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
431                                ? ArgTypes.front()
432                                : TheCXXABI.hasMostDerivedReturn(GD)
433                                      ? CGM.getContext().VoidPtrTy
434                                      : Context.VoidTy;
435 
436   FunctionType::ExtInfo Info = FPT->getExtInfo();
437   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
438   // If the prototype args are elided, we should only have ABI-specific args,
439   // which never have param info.
440   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
441     // ABI-specific suffix arguments are treated the same as variadic arguments.
442     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
443                                 ArgTypes.size());
444   }
445 
446   return arrangeLLVMFunctionInfo(ResultType, FnInfoOpts::IsInstanceMethod,
447                                  ArgTypes, Info, ParamInfos, Required);
448 }
449 
450 /// Arrange the argument and result information for the declaration or
451 /// definition of the given function.
452 const CGFunctionInfo &
arrangeFunctionDeclaration(const FunctionDecl * FD)453 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
454   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
455     if (MD->isImplicitObjectMemberFunction())
456       return arrangeCXXMethodDeclaration(MD);
457 
458   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
459 
460   assert(isa<FunctionType>(FTy));
461   setCUDAKernelCallingConvention(FTy, CGM, FD);
462 
463   // When declaring a function without a prototype, always use a
464   // non-variadic type.
465   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
466     return arrangeLLVMFunctionInfo(noProto->getReturnType(), FnInfoOpts::None,
467                                    std::nullopt, noProto->getExtInfo(), {},
468                                    RequiredArgs::All);
469   }
470 
471   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
472 }
473 
474 /// Arrange the argument and result information for the declaration or
475 /// definition of an Objective-C method.
476 const CGFunctionInfo &
arrangeObjCMethodDeclaration(const ObjCMethodDecl * MD)477 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
478   // It happens that this is the same as a call with no optional
479   // arguments, except also using the formal 'self' type.
480   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
481 }
482 
483 /// Arrange the argument and result information for the function type
484 /// through which to perform a send to the given Objective-C method,
485 /// using the given receiver type.  The receiver type is not always
486 /// the 'self' type of the method or even an Objective-C pointer type.
487 /// This is *not* the right method for actually performing such a
488 /// message send, due to the possibility of optional arguments.
489 const CGFunctionInfo &
arrangeObjCMessageSendSignature(const ObjCMethodDecl * MD,QualType receiverType)490 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
491                                               QualType receiverType) {
492   SmallVector<CanQualType, 16> argTys;
493   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(
494       MD->isDirectMethod() ? 1 : 2);
495   argTys.push_back(Context.getCanonicalParamType(receiverType));
496   if (!MD->isDirectMethod())
497     argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
498   // FIXME: Kill copy?
499   for (const auto *I : MD->parameters()) {
500     argTys.push_back(Context.getCanonicalParamType(I->getType()));
501     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
502         I->hasAttr<NoEscapeAttr>());
503     extParamInfos.push_back(extParamInfo);
504   }
505 
506   FunctionType::ExtInfo einfo;
507   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
508   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
509 
510   if (getContext().getLangOpts().ObjCAutoRefCount &&
511       MD->hasAttr<NSReturnsRetainedAttr>())
512     einfo = einfo.withProducesResult(true);
513 
514   RequiredArgs required =
515     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
516 
517   return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()),
518                                  FnInfoOpts::None, argTys, einfo, extParamInfos,
519                                  required);
520 }
521 
522 const CGFunctionInfo &
arrangeUnprototypedObjCMessageSend(QualType returnType,const CallArgList & args)523 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
524                                                  const CallArgList &args) {
525   auto argTypes = getArgTypesForCall(Context, args);
526   FunctionType::ExtInfo einfo;
527 
528   return arrangeLLVMFunctionInfo(GetReturnType(returnType), FnInfoOpts::None,
529                                  argTypes, einfo, {}, RequiredArgs::All);
530 }
531 
532 const CGFunctionInfo &
arrangeGlobalDeclaration(GlobalDecl GD)533 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
534   // FIXME: Do we need to handle ObjCMethodDecl?
535   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
536 
537   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
538       isa<CXXDestructorDecl>(GD.getDecl()))
539     return arrangeCXXStructorDeclaration(GD);
540 
541   return arrangeFunctionDeclaration(FD);
542 }
543 
544 /// Arrange a thunk that takes 'this' as the first parameter followed by
545 /// varargs.  Return a void pointer, regardless of the actual return type.
546 /// The body of the thunk will end in a musttail call to a function of the
547 /// correct type, and the caller will bitcast the function to the correct
548 /// prototype.
549 const CGFunctionInfo &
arrangeUnprototypedMustTailThunk(const CXXMethodDecl * MD)550 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
551   assert(MD->isVirtual() && "only methods have thunks");
552   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
553   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
554   return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::None, ArgTys,
555                                  FTP->getExtInfo(), {}, RequiredArgs(1));
556 }
557 
558 const CGFunctionInfo &
arrangeMSCtorClosure(const CXXConstructorDecl * CD,CXXCtorType CT)559 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
560                                    CXXCtorType CT) {
561   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
562 
563   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
564   SmallVector<CanQualType, 2> ArgTys;
565   const CXXRecordDecl *RD = CD->getParent();
566   ArgTys.push_back(DeriveThisType(RD, CD));
567   if (CT == Ctor_CopyingClosure)
568     ArgTys.push_back(*FTP->param_type_begin());
569   if (RD->getNumVBases() > 0)
570     ArgTys.push_back(Context.IntTy);
571   CallingConv CC = Context.getDefaultCallingConvention(
572       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
573   return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::IsInstanceMethod,
574                                  ArgTys, FunctionType::ExtInfo(CC), {},
575                                  RequiredArgs::All);
576 }
577 
578 /// Arrange a call as unto a free function, except possibly with an
579 /// additional number of formal parameters considered required.
580 static const CGFunctionInfo &
arrangeFreeFunctionLikeCall(CodeGenTypes & CGT,CodeGenModule & CGM,const CallArgList & args,const FunctionType * fnType,unsigned numExtraRequiredArgs,bool chainCall)581 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
582                             CodeGenModule &CGM,
583                             const CallArgList &args,
584                             const FunctionType *fnType,
585                             unsigned numExtraRequiredArgs,
586                             bool chainCall) {
587   assert(args.size() >= numExtraRequiredArgs);
588 
589   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
590 
591   // In most cases, there are no optional arguments.
592   RequiredArgs required = RequiredArgs::All;
593 
594   // If we have a variadic prototype, the required arguments are the
595   // extra prefix plus the arguments in the prototype.
596   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
597     if (proto->isVariadic())
598       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
599 
600     if (proto->hasExtParameterInfos())
601       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
602                                   args.size());
603 
604   // If we don't have a prototype at all, but we're supposed to
605   // explicitly use the variadic convention for unprototyped calls,
606   // treat all of the arguments as required but preserve the nominal
607   // possibility of variadics.
608   } else if (CGM.getTargetCodeGenInfo()
609                 .isNoProtoCallVariadic(args,
610                                        cast<FunctionNoProtoType>(fnType))) {
611     required = RequiredArgs(args.size());
612   }
613 
614   // FIXME: Kill copy.
615   SmallVector<CanQualType, 16> argTypes;
616   for (const auto &arg : args)
617     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
618   FnInfoOpts opts = chainCall ? FnInfoOpts::IsChainCall : FnInfoOpts::None;
619   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
620                                      opts, argTypes, fnType->getExtInfo(),
621                                      paramInfos, required);
622 }
623 
624 /// Figure out the rules for calling a function with the given formal
625 /// type using the given arguments.  The arguments are necessary
626 /// because the function might be unprototyped, in which case it's
627 /// target-dependent in crazy ways.
628 const CGFunctionInfo &
arrangeFreeFunctionCall(const CallArgList & args,const FunctionType * fnType,bool chainCall)629 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
630                                       const FunctionType *fnType,
631                                       bool chainCall) {
632   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
633                                      chainCall ? 1 : 0, chainCall);
634 }
635 
636 /// A block function is essentially a free function with an
637 /// extra implicit argument.
638 const CGFunctionInfo &
arrangeBlockFunctionCall(const CallArgList & args,const FunctionType * fnType)639 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
640                                        const FunctionType *fnType) {
641   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
642                                      /*chainCall=*/false);
643 }
644 
645 const CGFunctionInfo &
arrangeBlockFunctionDeclaration(const FunctionProtoType * proto,const FunctionArgList & params)646 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
647                                               const FunctionArgList &params) {
648   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
649   auto argTypes = getArgTypesForDeclaration(Context, params);
650 
651   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
652                                  FnInfoOpts::None, argTypes,
653                                  proto->getExtInfo(), paramInfos,
654                                  RequiredArgs::forPrototypePlus(proto, 1));
655 }
656 
657 const CGFunctionInfo &
arrangeBuiltinFunctionCall(QualType resultType,const CallArgList & args)658 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
659                                          const CallArgList &args) {
660   // FIXME: Kill copy.
661   SmallVector<CanQualType, 16> argTypes;
662   for (const auto &Arg : args)
663     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
664   return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None,
665                                  argTypes, FunctionType::ExtInfo(),
666                                  /*paramInfos=*/{}, RequiredArgs::All);
667 }
668 
669 const CGFunctionInfo &
arrangeBuiltinFunctionDeclaration(QualType resultType,const FunctionArgList & args)670 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
671                                                 const FunctionArgList &args) {
672   auto argTypes = getArgTypesForDeclaration(Context, args);
673 
674   return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None,
675                                  argTypes, FunctionType::ExtInfo(), {},
676                                  RequiredArgs::All);
677 }
678 
679 const CGFunctionInfo &
arrangeBuiltinFunctionDeclaration(CanQualType resultType,ArrayRef<CanQualType> argTypes)680 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
681                                               ArrayRef<CanQualType> argTypes) {
682   return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::None, argTypes,
683                                  FunctionType::ExtInfo(), {},
684                                  RequiredArgs::All);
685 }
686 
687 /// Arrange a call to a C++ method, passing the given arguments.
688 ///
689 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
690 /// does not count `this`.
691 const CGFunctionInfo &
arrangeCXXMethodCall(const CallArgList & args,const FunctionProtoType * proto,RequiredArgs required,unsigned numPrefixArgs)692 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
693                                    const FunctionProtoType *proto,
694                                    RequiredArgs required,
695                                    unsigned numPrefixArgs) {
696   assert(numPrefixArgs + 1 <= args.size() &&
697          "Emitting a call with less args than the required prefix?");
698   // Add one to account for `this`. It's a bit awkward here, but we don't count
699   // `this` in similar places elsewhere.
700   auto paramInfos =
701     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
702 
703   // FIXME: Kill copy.
704   auto argTypes = getArgTypesForCall(Context, args);
705 
706   FunctionType::ExtInfo info = proto->getExtInfo();
707   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
708                                  FnInfoOpts::IsInstanceMethod, argTypes, info,
709                                  paramInfos, required);
710 }
711 
arrangeNullaryFunction()712 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
713   return arrangeLLVMFunctionInfo(getContext().VoidTy, FnInfoOpts::None,
714                                  std::nullopt, FunctionType::ExtInfo(), {},
715                                  RequiredArgs::All);
716 }
717 
718 const CGFunctionInfo &
arrangeCall(const CGFunctionInfo & signature,const CallArgList & args)719 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
720                           const CallArgList &args) {
721   assert(signature.arg_size() <= args.size());
722   if (signature.arg_size() == args.size())
723     return signature;
724 
725   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
726   auto sigParamInfos = signature.getExtParameterInfos();
727   if (!sigParamInfos.empty()) {
728     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
729     paramInfos.resize(args.size());
730   }
731 
732   auto argTypes = getArgTypesForCall(Context, args);
733 
734   assert(signature.getRequiredArgs().allowsOptionalArgs());
735   FnInfoOpts opts = FnInfoOpts::None;
736   if (signature.isInstanceMethod())
737     opts |= FnInfoOpts::IsInstanceMethod;
738   if (signature.isChainCall())
739     opts |= FnInfoOpts::IsChainCall;
740   if (signature.isDelegateCall())
741     opts |= FnInfoOpts::IsDelegateCall;
742   return arrangeLLVMFunctionInfo(signature.getReturnType(), opts, argTypes,
743                                  signature.getExtInfo(), paramInfos,
744                                  signature.getRequiredArgs());
745 }
746 
747 namespace clang {
748 namespace CodeGen {
749 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
750 }
751 }
752 
753 /// Arrange the argument and result information for an abstract value
754 /// of a given function type.  This is the method which all of the
755 /// above functions ultimately defer to.
arrangeLLVMFunctionInfo(CanQualType resultType,FnInfoOpts opts,ArrayRef<CanQualType> argTypes,FunctionType::ExtInfo info,ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,RequiredArgs required)756 const CGFunctionInfo &CodeGenTypes::arrangeLLVMFunctionInfo(
757     CanQualType resultType, FnInfoOpts opts, ArrayRef<CanQualType> argTypes,
758     FunctionType::ExtInfo info,
759     ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
760     RequiredArgs required) {
761   assert(llvm::all_of(argTypes,
762                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
763 
764   // Lookup or create unique function info.
765   llvm::FoldingSetNodeID ID;
766   bool isInstanceMethod =
767       (opts & FnInfoOpts::IsInstanceMethod) == FnInfoOpts::IsInstanceMethod;
768   bool isChainCall =
769       (opts & FnInfoOpts::IsChainCall) == FnInfoOpts::IsChainCall;
770   bool isDelegateCall =
771       (opts & FnInfoOpts::IsDelegateCall) == FnInfoOpts::IsDelegateCall;
772   CGFunctionInfo::Profile(ID, isInstanceMethod, isChainCall, isDelegateCall,
773                           info, paramInfos, required, resultType, argTypes);
774 
775   void *insertPos = nullptr;
776   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
777   if (FI)
778     return *FI;
779 
780   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
781 
782   // Construct the function info.  We co-allocate the ArgInfos.
783   FI = CGFunctionInfo::create(CC, isInstanceMethod, isChainCall, isDelegateCall,
784                               info, paramInfos, resultType, argTypes, required);
785   FunctionInfos.InsertNode(FI, insertPos);
786 
787   bool inserted = FunctionsBeingProcessed.insert(FI).second;
788   (void)inserted;
789   assert(inserted && "Recursively being processed?");
790 
791   // Compute ABI information.
792   if (CC == llvm::CallingConv::SPIR_KERNEL) {
793     // Force target independent argument handling for the host visible
794     // kernel functions.
795     computeSPIRKernelABIInfo(CGM, *FI);
796   } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) {
797     swiftcall::computeABIInfo(CGM, *FI);
798   } else {
799     getABIInfo().computeInfo(*FI);
800   }
801 
802   // Loop over all of the computed argument and return value info.  If any of
803   // them are direct or extend without a specified coerce type, specify the
804   // default now.
805   ABIArgInfo &retInfo = FI->getReturnInfo();
806   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
807     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
808 
809   for (auto &I : FI->arguments())
810     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
811       I.info.setCoerceToType(ConvertType(I.type));
812 
813   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
814   assert(erased && "Not in set?");
815 
816   return *FI;
817 }
818 
create(unsigned llvmCC,bool instanceMethod,bool chainCall,bool delegateCall,const FunctionType::ExtInfo & info,ArrayRef<ExtParameterInfo> paramInfos,CanQualType resultType,ArrayRef<CanQualType> argTypes,RequiredArgs required)819 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, bool instanceMethod,
820                                        bool chainCall, bool delegateCall,
821                                        const FunctionType::ExtInfo &info,
822                                        ArrayRef<ExtParameterInfo> paramInfos,
823                                        CanQualType resultType,
824                                        ArrayRef<CanQualType> argTypes,
825                                        RequiredArgs required) {
826   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
827   assert(!required.allowsOptionalArgs() ||
828          required.getNumRequiredArgs() <= argTypes.size());
829 
830   void *buffer =
831     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
832                                   argTypes.size() + 1, paramInfos.size()));
833 
834   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
835   FI->CallingConvention = llvmCC;
836   FI->EffectiveCallingConvention = llvmCC;
837   FI->ASTCallingConvention = info.getCC();
838   FI->InstanceMethod = instanceMethod;
839   FI->ChainCall = chainCall;
840   FI->DelegateCall = delegateCall;
841   FI->CmseNSCall = info.getCmseNSCall();
842   FI->NoReturn = info.getNoReturn();
843   FI->ReturnsRetained = info.getProducesResult();
844   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
845   FI->NoCfCheck = info.getNoCfCheck();
846   FI->Required = required;
847   FI->HasRegParm = info.getHasRegParm();
848   FI->RegParm = info.getRegParm();
849   FI->ArgStruct = nullptr;
850   FI->ArgStructAlign = 0;
851   FI->NumArgs = argTypes.size();
852   FI->HasExtParameterInfos = !paramInfos.empty();
853   FI->getArgsBuffer()[0].type = resultType;
854   FI->MaxVectorWidth = 0;
855   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
856     FI->getArgsBuffer()[i + 1].type = argTypes[i];
857   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
858     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
859   return FI;
860 }
861 
862 /***/
863 
864 namespace {
865 // ABIArgInfo::Expand implementation.
866 
867 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
868 struct TypeExpansion {
869   enum TypeExpansionKind {
870     // Elements of constant arrays are expanded recursively.
871     TEK_ConstantArray,
872     // Record fields are expanded recursively (but if record is a union, only
873     // the field with the largest size is expanded).
874     TEK_Record,
875     // For complex types, real and imaginary parts are expanded recursively.
876     TEK_Complex,
877     // All other types are not expandable.
878     TEK_None
879   };
880 
881   const TypeExpansionKind Kind;
882 
TypeExpansion__anon8a34942c0211::TypeExpansion883   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
~TypeExpansion__anon8a34942c0211::TypeExpansion884   virtual ~TypeExpansion() {}
885 };
886 
887 struct ConstantArrayExpansion : TypeExpansion {
888   QualType EltTy;
889   uint64_t NumElts;
890 
ConstantArrayExpansion__anon8a34942c0211::ConstantArrayExpansion891   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
892       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
classof__anon8a34942c0211::ConstantArrayExpansion893   static bool classof(const TypeExpansion *TE) {
894     return TE->Kind == TEK_ConstantArray;
895   }
896 };
897 
898 struct RecordExpansion : TypeExpansion {
899   SmallVector<const CXXBaseSpecifier *, 1> Bases;
900 
901   SmallVector<const FieldDecl *, 1> Fields;
902 
RecordExpansion__anon8a34942c0211::RecordExpansion903   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
904                   SmallVector<const FieldDecl *, 1> &&Fields)
905       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
906         Fields(std::move(Fields)) {}
classof__anon8a34942c0211::RecordExpansion907   static bool classof(const TypeExpansion *TE) {
908     return TE->Kind == TEK_Record;
909   }
910 };
911 
912 struct ComplexExpansion : TypeExpansion {
913   QualType EltTy;
914 
ComplexExpansion__anon8a34942c0211::ComplexExpansion915   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
classof__anon8a34942c0211::ComplexExpansion916   static bool classof(const TypeExpansion *TE) {
917     return TE->Kind == TEK_Complex;
918   }
919 };
920 
921 struct NoExpansion : TypeExpansion {
NoExpansion__anon8a34942c0211::NoExpansion922   NoExpansion() : TypeExpansion(TEK_None) {}
classof__anon8a34942c0211::NoExpansion923   static bool classof(const TypeExpansion *TE) {
924     return TE->Kind == TEK_None;
925   }
926 };
927 }  // namespace
928 
929 static std::unique_ptr<TypeExpansion>
getTypeExpansion(QualType Ty,const ASTContext & Context)930 getTypeExpansion(QualType Ty, const ASTContext &Context) {
931   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
932     return std::make_unique<ConstantArrayExpansion>(
933         AT->getElementType(), AT->getSize().getZExtValue());
934   }
935   if (const RecordType *RT = Ty->getAs<RecordType>()) {
936     SmallVector<const CXXBaseSpecifier *, 1> Bases;
937     SmallVector<const FieldDecl *, 1> Fields;
938     const RecordDecl *RD = RT->getDecl();
939     assert(!RD->hasFlexibleArrayMember() &&
940            "Cannot expand structure with flexible array.");
941     if (RD->isUnion()) {
942       // Unions can be here only in degenerative cases - all the fields are same
943       // after flattening. Thus we have to use the "largest" field.
944       const FieldDecl *LargestFD = nullptr;
945       CharUnits UnionSize = CharUnits::Zero();
946 
947       for (const auto *FD : RD->fields()) {
948         if (FD->isZeroLengthBitField(Context))
949           continue;
950         assert(!FD->isBitField() &&
951                "Cannot expand structure with bit-field members.");
952         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
953         if (UnionSize < FieldSize) {
954           UnionSize = FieldSize;
955           LargestFD = FD;
956         }
957       }
958       if (LargestFD)
959         Fields.push_back(LargestFD);
960     } else {
961       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
962         assert(!CXXRD->isDynamicClass() &&
963                "cannot expand vtable pointers in dynamic classes");
964         llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases()));
965       }
966 
967       for (const auto *FD : RD->fields()) {
968         if (FD->isZeroLengthBitField(Context))
969           continue;
970         assert(!FD->isBitField() &&
971                "Cannot expand structure with bit-field members.");
972         Fields.push_back(FD);
973       }
974     }
975     return std::make_unique<RecordExpansion>(std::move(Bases),
976                                               std::move(Fields));
977   }
978   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
979     return std::make_unique<ComplexExpansion>(CT->getElementType());
980   }
981   return std::make_unique<NoExpansion>();
982 }
983 
getExpansionSize(QualType Ty,const ASTContext & Context)984 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
985   auto Exp = getTypeExpansion(Ty, Context);
986   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
987     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
988   }
989   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
990     int Res = 0;
991     for (auto BS : RExp->Bases)
992       Res += getExpansionSize(BS->getType(), Context);
993     for (auto FD : RExp->Fields)
994       Res += getExpansionSize(FD->getType(), Context);
995     return Res;
996   }
997   if (isa<ComplexExpansion>(Exp.get()))
998     return 2;
999   assert(isa<NoExpansion>(Exp.get()));
1000   return 1;
1001 }
1002 
1003 void
getExpandedTypes(QualType Ty,SmallVectorImpl<llvm::Type * >::iterator & TI)1004 CodeGenTypes::getExpandedTypes(QualType Ty,
1005                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
1006   auto Exp = getTypeExpansion(Ty, Context);
1007   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1008     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
1009       getExpandedTypes(CAExp->EltTy, TI);
1010     }
1011   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1012     for (auto BS : RExp->Bases)
1013       getExpandedTypes(BS->getType(), TI);
1014     for (auto FD : RExp->Fields)
1015       getExpandedTypes(FD->getType(), TI);
1016   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
1017     llvm::Type *EltTy = ConvertType(CExp->EltTy);
1018     *TI++ = EltTy;
1019     *TI++ = EltTy;
1020   } else {
1021     assert(isa<NoExpansion>(Exp.get()));
1022     *TI++ = ConvertType(Ty);
1023   }
1024 }
1025 
forConstantArrayExpansion(CodeGenFunction & CGF,ConstantArrayExpansion * CAE,Address BaseAddr,llvm::function_ref<void (Address)> Fn)1026 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1027                                       ConstantArrayExpansion *CAE,
1028                                       Address BaseAddr,
1029                                       llvm::function_ref<void(Address)> Fn) {
1030   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1031   CharUnits EltAlign =
1032     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1033   llvm::Type *EltTy = CGF.ConvertTypeForMem(CAE->EltTy);
1034 
1035   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1036     llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32(
1037         BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i);
1038     Fn(Address(EltAddr, EltTy, EltAlign));
1039   }
1040 }
1041 
ExpandTypeFromArgs(QualType Ty,LValue LV,llvm::Function::arg_iterator & AI)1042 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1043                                          llvm::Function::arg_iterator &AI) {
1044   assert(LV.isSimple() &&
1045          "Unexpected non-simple lvalue during struct expansion.");
1046 
1047   auto Exp = getTypeExpansion(Ty, getContext());
1048   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1049     forConstantArrayExpansion(
1050         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1051           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1052           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1053         });
1054   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1055     Address This = LV.getAddress(*this);
1056     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1057       // Perform a single step derived-to-base conversion.
1058       Address Base =
1059           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1060                                 /*NullCheckValue=*/false, SourceLocation());
1061       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1062 
1063       // Recurse onto bases.
1064       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1065     }
1066     for (auto FD : RExp->Fields) {
1067       // FIXME: What are the right qualifiers here?
1068       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1069       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1070     }
1071   } else if (isa<ComplexExpansion>(Exp.get())) {
1072     auto realValue = &*AI++;
1073     auto imagValue = &*AI++;
1074     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1075   } else {
1076     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1077     // primitive store.
1078     assert(isa<NoExpansion>(Exp.get()));
1079     llvm::Value *Arg = &*AI++;
1080     if (LV.isBitField()) {
1081       EmitStoreThroughLValue(RValue::get(Arg), LV);
1082     } else {
1083       // TODO: currently there are some places are inconsistent in what LLVM
1084       // pointer type they use (see D118744). Once clang uses opaque pointers
1085       // all LLVM pointer types will be the same and we can remove this check.
1086       if (Arg->getType()->isPointerTy()) {
1087         Address Addr = LV.getAddress(*this);
1088         Arg = Builder.CreateBitCast(Arg, Addr.getElementType());
1089       }
1090       EmitStoreOfScalar(Arg, LV);
1091     }
1092   }
1093 }
1094 
ExpandTypeToArgs(QualType Ty,CallArg Arg,llvm::FunctionType * IRFuncTy,SmallVectorImpl<llvm::Value * > & IRCallArgs,unsigned & IRCallArgPos)1095 void CodeGenFunction::ExpandTypeToArgs(
1096     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1097     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1098   auto Exp = getTypeExpansion(Ty, getContext());
1099   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1100     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1101                                    : Arg.getKnownRValue().getAggregateAddress();
1102     forConstantArrayExpansion(
1103         *this, CAExp, Addr, [&](Address EltAddr) {
1104           CallArg EltArg = CallArg(
1105               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1106               CAExp->EltTy);
1107           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1108                            IRCallArgPos);
1109         });
1110   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1111     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1112                                    : Arg.getKnownRValue().getAggregateAddress();
1113     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1114       // Perform a single step derived-to-base conversion.
1115       Address Base =
1116           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1117                                 /*NullCheckValue=*/false, SourceLocation());
1118       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1119 
1120       // Recurse onto bases.
1121       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1122                        IRCallArgPos);
1123     }
1124 
1125     LValue LV = MakeAddrLValue(This, Ty);
1126     for (auto FD : RExp->Fields) {
1127       CallArg FldArg =
1128           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1129       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1130                        IRCallArgPos);
1131     }
1132   } else if (isa<ComplexExpansion>(Exp.get())) {
1133     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1134     IRCallArgs[IRCallArgPos++] = CV.first;
1135     IRCallArgs[IRCallArgPos++] = CV.second;
1136   } else {
1137     assert(isa<NoExpansion>(Exp.get()));
1138     auto RV = Arg.getKnownRValue();
1139     assert(RV.isScalar() &&
1140            "Unexpected non-scalar rvalue during struct expansion.");
1141 
1142     // Insert a bitcast as needed.
1143     llvm::Value *V = RV.getScalarVal();
1144     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1145         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1146       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1147 
1148     IRCallArgs[IRCallArgPos++] = V;
1149   }
1150 }
1151 
1152 /// Create a temporary allocation for the purposes of coercion.
CreateTempAllocaForCoercion(CodeGenFunction & CGF,llvm::Type * Ty,CharUnits MinAlign,const Twine & Name="tmp")1153 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1154                                            CharUnits MinAlign,
1155                                            const Twine &Name = "tmp") {
1156   // Don't use an alignment that's worse than what LLVM would prefer.
1157   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(Ty);
1158   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1159 
1160   return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1161 }
1162 
1163 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1164 /// accessing some number of bytes out of it, try to gep into the struct to get
1165 /// at its inner goodness.  Dive as deep as possible without entering an element
1166 /// with an in-memory size smaller than DstSize.
1167 static Address
EnterStructPointerForCoercedAccess(Address SrcPtr,llvm::StructType * SrcSTy,uint64_t DstSize,CodeGenFunction & CGF)1168 EnterStructPointerForCoercedAccess(Address SrcPtr,
1169                                    llvm::StructType *SrcSTy,
1170                                    uint64_t DstSize, CodeGenFunction &CGF) {
1171   // We can't dive into a zero-element struct.
1172   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1173 
1174   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1175 
1176   // If the first elt is at least as large as what we're looking for, or if the
1177   // first element is the same size as the whole struct, we can enter it. The
1178   // comparison must be made on the store size and not the alloca size. Using
1179   // the alloca size may overstate the size of the load.
1180   uint64_t FirstEltSize =
1181     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1182   if (FirstEltSize < DstSize &&
1183       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1184     return SrcPtr;
1185 
1186   // GEP into the first element.
1187   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1188 
1189   // If the first element is a struct, recurse.
1190   llvm::Type *SrcTy = SrcPtr.getElementType();
1191   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1192     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1193 
1194   return SrcPtr;
1195 }
1196 
1197 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1198 /// are either integers or pointers.  This does a truncation of the value if it
1199 /// is too large or a zero extension if it is too small.
1200 ///
1201 /// This behaves as if the value were coerced through memory, so on big-endian
1202 /// targets the high bits are preserved in a truncation, while little-endian
1203 /// targets preserve the low bits.
CoerceIntOrPtrToIntOrPtr(llvm::Value * Val,llvm::Type * Ty,CodeGenFunction & CGF)1204 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1205                                              llvm::Type *Ty,
1206                                              CodeGenFunction &CGF) {
1207   if (Val->getType() == Ty)
1208     return Val;
1209 
1210   if (isa<llvm::PointerType>(Val->getType())) {
1211     // If this is Pointer->Pointer avoid conversion to and from int.
1212     if (isa<llvm::PointerType>(Ty))
1213       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1214 
1215     // Convert the pointer to an integer so we can play with its width.
1216     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1217   }
1218 
1219   llvm::Type *DestIntTy = Ty;
1220   if (isa<llvm::PointerType>(DestIntTy))
1221     DestIntTy = CGF.IntPtrTy;
1222 
1223   if (Val->getType() != DestIntTy) {
1224     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1225     if (DL.isBigEndian()) {
1226       // Preserve the high bits on big-endian targets.
1227       // That is what memory coercion does.
1228       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1229       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1230 
1231       if (SrcSize > DstSize) {
1232         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1233         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1234       } else {
1235         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1236         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1237       }
1238     } else {
1239       // Little-endian targets preserve the low bits. No shifts required.
1240       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1241     }
1242   }
1243 
1244   if (isa<llvm::PointerType>(Ty))
1245     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1246   return Val;
1247 }
1248 
1249 
1250 
1251 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1252 /// a pointer to an object of type \arg Ty, known to be aligned to
1253 /// \arg SrcAlign bytes.
1254 ///
1255 /// This safely handles the case when the src type is smaller than the
1256 /// destination type; in this situation the values of bits which not
1257 /// present in the src are undefined.
CreateCoercedLoad(Address Src,llvm::Type * Ty,CodeGenFunction & CGF)1258 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1259                                       CodeGenFunction &CGF) {
1260   llvm::Type *SrcTy = Src.getElementType();
1261 
1262   // If SrcTy and Ty are the same, just do a load.
1263   if (SrcTy == Ty)
1264     return CGF.Builder.CreateLoad(Src);
1265 
1266   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1267 
1268   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1269     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1270                                              DstSize.getFixedValue(), CGF);
1271     SrcTy = Src.getElementType();
1272   }
1273 
1274   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1275 
1276   // If the source and destination are integer or pointer types, just do an
1277   // extension or truncation to the desired type.
1278   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1279       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1280     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1281     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1282   }
1283 
1284   // If load is legal, just bitcast the src pointer.
1285   if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1286       SrcSize.getFixedValue() >= DstSize.getFixedValue()) {
1287     // Generally SrcSize is never greater than DstSize, since this means we are
1288     // losing bits. However, this can happen in cases where the structure has
1289     // additional padding, for example due to a user specified alignment.
1290     //
1291     // FIXME: Assert that we aren't truncating non-padding bits when have access
1292     // to that information.
1293     Src = Src.withElementType(Ty);
1294     return CGF.Builder.CreateLoad(Src);
1295   }
1296 
1297   // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1298   // the types match, use the llvm.vector.insert intrinsic to perform the
1299   // conversion.
1300   if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) {
1301     if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
1302       // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
1303       // vector, use a vector insert and bitcast the result.
1304       bool NeedsBitcast = false;
1305       auto PredType =
1306           llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16);
1307       llvm::Type *OrigType = Ty;
1308       if (ScalableDst == PredType &&
1309           FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) {
1310         ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2);
1311         NeedsBitcast = true;
1312       }
1313       if (ScalableDst->getElementType() == FixedSrc->getElementType()) {
1314         auto *Load = CGF.Builder.CreateLoad(Src);
1315         auto *UndefVec = llvm::UndefValue::get(ScalableDst);
1316         auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
1317         llvm::Value *Result = CGF.Builder.CreateInsertVector(
1318             ScalableDst, UndefVec, Load, Zero, "cast.scalable");
1319         if (NeedsBitcast)
1320           Result = CGF.Builder.CreateBitCast(Result, OrigType);
1321         return Result;
1322       }
1323     }
1324   }
1325 
1326   // Otherwise do coercion through memory. This is stupid, but simple.
1327   Address Tmp =
1328       CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1329   CGF.Builder.CreateMemCpy(
1330       Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1331       Src.getAlignment().getAsAlign(),
1332       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinValue()));
1333   return CGF.Builder.CreateLoad(Tmp);
1334 }
1335 
1336 // Function to store a first-class aggregate into memory.  We prefer to
1337 // store the elements rather than the aggregate to be more friendly to
1338 // fast-isel.
1339 // FIXME: Do we need to recurse here?
EmitAggregateStore(llvm::Value * Val,Address Dest,bool DestIsVolatile)1340 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1341                                          bool DestIsVolatile) {
1342   // Prefer scalar stores to first-class aggregate stores.
1343   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1344     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1345       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1346       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1347       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1348     }
1349   } else {
1350     Builder.CreateStore(Val, Dest, DestIsVolatile);
1351   }
1352 }
1353 
1354 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1355 /// where the source and destination may have different types.  The
1356 /// destination is known to be aligned to \arg DstAlign bytes.
1357 ///
1358 /// This safely handles the case when the src type is larger than the
1359 /// destination type; the upper bits of the src will be lost.
CreateCoercedStore(llvm::Value * Src,Address Dst,bool DstIsVolatile,CodeGenFunction & CGF)1360 static void CreateCoercedStore(llvm::Value *Src,
1361                                Address Dst,
1362                                bool DstIsVolatile,
1363                                CodeGenFunction &CGF) {
1364   llvm::Type *SrcTy = Src->getType();
1365   llvm::Type *DstTy = Dst.getElementType();
1366   if (SrcTy == DstTy) {
1367     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1368     return;
1369   }
1370 
1371   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1372 
1373   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1374     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1375                                              SrcSize.getFixedValue(), CGF);
1376     DstTy = Dst.getElementType();
1377   }
1378 
1379   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1380   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1381   if (SrcPtrTy && DstPtrTy &&
1382       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1383     Src = CGF.Builder.CreateAddrSpaceCast(Src, DstTy);
1384     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1385     return;
1386   }
1387 
1388   // If the source and destination are integer or pointer types, just do an
1389   // extension or truncation to the desired type.
1390   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1391       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1392     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1393     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1394     return;
1395   }
1396 
1397   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1398 
1399   // If store is legal, just bitcast the src pointer.
1400   if (isa<llvm::ScalableVectorType>(SrcTy) ||
1401       isa<llvm::ScalableVectorType>(DstTy) ||
1402       SrcSize.getFixedValue() <= DstSize.getFixedValue()) {
1403     Dst = Dst.withElementType(SrcTy);
1404     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1405   } else {
1406     // Otherwise do coercion through memory. This is stupid, but
1407     // simple.
1408 
1409     // Generally SrcSize is never greater than DstSize, since this means we are
1410     // losing bits. However, this can happen in cases where the structure has
1411     // additional padding, for example due to a user specified alignment.
1412     //
1413     // FIXME: Assert that we aren't truncating non-padding bits when have access
1414     // to that information.
1415     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1416     CGF.Builder.CreateStore(Src, Tmp);
1417     CGF.Builder.CreateMemCpy(
1418         Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1419         Tmp.getAlignment().getAsAlign(),
1420         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedValue()));
1421   }
1422 }
1423 
emitAddressAtOffset(CodeGenFunction & CGF,Address addr,const ABIArgInfo & info)1424 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1425                                    const ABIArgInfo &info) {
1426   if (unsigned offset = info.getDirectOffset()) {
1427     addr = addr.withElementType(CGF.Int8Ty);
1428     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1429                                              CharUnits::fromQuantity(offset));
1430     addr = addr.withElementType(info.getCoerceToType());
1431   }
1432   return addr;
1433 }
1434 
1435 namespace {
1436 
1437 /// Encapsulates information about the way function arguments from
1438 /// CGFunctionInfo should be passed to actual LLVM IR function.
1439 class ClangToLLVMArgMapping {
1440   static const unsigned InvalidIndex = ~0U;
1441   unsigned InallocaArgNo;
1442   unsigned SRetArgNo;
1443   unsigned TotalIRArgs;
1444 
1445   /// Arguments of LLVM IR function corresponding to single Clang argument.
1446   struct IRArgs {
1447     unsigned PaddingArgIndex;
1448     // Argument is expanded to IR arguments at positions
1449     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1450     unsigned FirstArgIndex;
1451     unsigned NumberOfArgs;
1452 
IRArgs__anon8a34942c0511::ClangToLLVMArgMapping::IRArgs1453     IRArgs()
1454         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1455           NumberOfArgs(0) {}
1456   };
1457 
1458   SmallVector<IRArgs, 8> ArgInfo;
1459 
1460 public:
ClangToLLVMArgMapping(const ASTContext & Context,const CGFunctionInfo & FI,bool OnlyRequiredArgs=false)1461   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1462                         bool OnlyRequiredArgs = false)
1463       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1464         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1465     construct(Context, FI, OnlyRequiredArgs);
1466   }
1467 
hasInallocaArg() const1468   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
getInallocaArgNo() const1469   unsigned getInallocaArgNo() const {
1470     assert(hasInallocaArg());
1471     return InallocaArgNo;
1472   }
1473 
hasSRetArg() const1474   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
getSRetArgNo() const1475   unsigned getSRetArgNo() const {
1476     assert(hasSRetArg());
1477     return SRetArgNo;
1478   }
1479 
totalIRArgs() const1480   unsigned totalIRArgs() const { return TotalIRArgs; }
1481 
hasPaddingArg(unsigned ArgNo) const1482   bool hasPaddingArg(unsigned ArgNo) const {
1483     assert(ArgNo < ArgInfo.size());
1484     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1485   }
getPaddingArgNo(unsigned ArgNo) const1486   unsigned getPaddingArgNo(unsigned ArgNo) const {
1487     assert(hasPaddingArg(ArgNo));
1488     return ArgInfo[ArgNo].PaddingArgIndex;
1489   }
1490 
1491   /// Returns index of first IR argument corresponding to ArgNo, and their
1492   /// quantity.
getIRArgs(unsigned ArgNo) const1493   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1494     assert(ArgNo < ArgInfo.size());
1495     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1496                           ArgInfo[ArgNo].NumberOfArgs);
1497   }
1498 
1499 private:
1500   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1501                  bool OnlyRequiredArgs);
1502 };
1503 
construct(const ASTContext & Context,const CGFunctionInfo & FI,bool OnlyRequiredArgs)1504 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1505                                       const CGFunctionInfo &FI,
1506                                       bool OnlyRequiredArgs) {
1507   unsigned IRArgNo = 0;
1508   bool SwapThisWithSRet = false;
1509   const ABIArgInfo &RetAI = FI.getReturnInfo();
1510 
1511   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1512     SwapThisWithSRet = RetAI.isSRetAfterThis();
1513     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1514   }
1515 
1516   unsigned ArgNo = 0;
1517   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1518   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1519        ++I, ++ArgNo) {
1520     assert(I != FI.arg_end());
1521     QualType ArgType = I->type;
1522     const ABIArgInfo &AI = I->info;
1523     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1524     auto &IRArgs = ArgInfo[ArgNo];
1525 
1526     if (AI.getPaddingType())
1527       IRArgs.PaddingArgIndex = IRArgNo++;
1528 
1529     switch (AI.getKind()) {
1530     case ABIArgInfo::Extend:
1531     case ABIArgInfo::Direct: {
1532       // FIXME: handle sseregparm someday...
1533       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1534       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1535         IRArgs.NumberOfArgs = STy->getNumElements();
1536       } else {
1537         IRArgs.NumberOfArgs = 1;
1538       }
1539       break;
1540     }
1541     case ABIArgInfo::Indirect:
1542     case ABIArgInfo::IndirectAliased:
1543       IRArgs.NumberOfArgs = 1;
1544       break;
1545     case ABIArgInfo::Ignore:
1546     case ABIArgInfo::InAlloca:
1547       // ignore and inalloca doesn't have matching LLVM parameters.
1548       IRArgs.NumberOfArgs = 0;
1549       break;
1550     case ABIArgInfo::CoerceAndExpand:
1551       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1552       break;
1553     case ABIArgInfo::Expand:
1554       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1555       break;
1556     }
1557 
1558     if (IRArgs.NumberOfArgs > 0) {
1559       IRArgs.FirstArgIndex = IRArgNo;
1560       IRArgNo += IRArgs.NumberOfArgs;
1561     }
1562 
1563     // Skip over the sret parameter when it comes second.  We already handled it
1564     // above.
1565     if (IRArgNo == 1 && SwapThisWithSRet)
1566       IRArgNo++;
1567   }
1568   assert(ArgNo == ArgInfo.size());
1569 
1570   if (FI.usesInAlloca())
1571     InallocaArgNo = IRArgNo++;
1572 
1573   TotalIRArgs = IRArgNo;
1574 }
1575 }  // namespace
1576 
1577 /***/
1578 
ReturnTypeUsesSRet(const CGFunctionInfo & FI)1579 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1580   const auto &RI = FI.getReturnInfo();
1581   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1582 }
1583 
ReturnTypeHasInReg(const CGFunctionInfo & FI)1584 bool CodeGenModule::ReturnTypeHasInReg(const CGFunctionInfo &FI) {
1585   const auto &RI = FI.getReturnInfo();
1586   return RI.getInReg();
1587 }
1588 
ReturnSlotInterferesWithArgs(const CGFunctionInfo & FI)1589 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1590   return ReturnTypeUsesSRet(FI) &&
1591          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1592 }
1593 
ReturnTypeUsesFPRet(QualType ResultType)1594 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1595   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1596     switch (BT->getKind()) {
1597     default:
1598       return false;
1599     case BuiltinType::Float:
1600       return getTarget().useObjCFPRetForRealType(FloatModeKind::Float);
1601     case BuiltinType::Double:
1602       return getTarget().useObjCFPRetForRealType(FloatModeKind::Double);
1603     case BuiltinType::LongDouble:
1604       return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble);
1605     }
1606   }
1607 
1608   return false;
1609 }
1610 
ReturnTypeUsesFP2Ret(QualType ResultType)1611 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1612   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1613     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1614       if (BT->getKind() == BuiltinType::LongDouble)
1615         return getTarget().useObjCFP2RetForComplexLongDouble();
1616     }
1617   }
1618 
1619   return false;
1620 }
1621 
GetFunctionType(GlobalDecl GD)1622 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1623   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1624   return GetFunctionType(FI);
1625 }
1626 
1627 llvm::FunctionType *
GetFunctionType(const CGFunctionInfo & FI)1628 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1629 
1630   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1631   (void)Inserted;
1632   assert(Inserted && "Recursively being processed?");
1633 
1634   llvm::Type *resultType = nullptr;
1635   const ABIArgInfo &retAI = FI.getReturnInfo();
1636   switch (retAI.getKind()) {
1637   case ABIArgInfo::Expand:
1638   case ABIArgInfo::IndirectAliased:
1639     llvm_unreachable("Invalid ABI kind for return argument");
1640 
1641   case ABIArgInfo::Extend:
1642   case ABIArgInfo::Direct:
1643     resultType = retAI.getCoerceToType();
1644     break;
1645 
1646   case ABIArgInfo::InAlloca:
1647     if (retAI.getInAllocaSRet()) {
1648       // sret things on win32 aren't void, they return the sret pointer.
1649       QualType ret = FI.getReturnType();
1650       unsigned addressSpace = CGM.getTypes().getTargetAddressSpace(ret);
1651       resultType = llvm::PointerType::get(getLLVMContext(), addressSpace);
1652     } else {
1653       resultType = llvm::Type::getVoidTy(getLLVMContext());
1654     }
1655     break;
1656 
1657   case ABIArgInfo::Indirect:
1658   case ABIArgInfo::Ignore:
1659     resultType = llvm::Type::getVoidTy(getLLVMContext());
1660     break;
1661 
1662   case ABIArgInfo::CoerceAndExpand:
1663     resultType = retAI.getUnpaddedCoerceAndExpandType();
1664     break;
1665   }
1666 
1667   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1668   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1669 
1670   // Add type for sret argument.
1671   if (IRFunctionArgs.hasSRetArg()) {
1672     QualType Ret = FI.getReturnType();
1673     unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(Ret);
1674     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1675         llvm::PointerType::get(getLLVMContext(), AddressSpace);
1676   }
1677 
1678   // Add type for inalloca argument.
1679   if (IRFunctionArgs.hasInallocaArg())
1680     ArgTypes[IRFunctionArgs.getInallocaArgNo()] =
1681         llvm::PointerType::getUnqual(getLLVMContext());
1682 
1683   // Add in all of the required arguments.
1684   unsigned ArgNo = 0;
1685   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1686                                      ie = it + FI.getNumRequiredArgs();
1687   for (; it != ie; ++it, ++ArgNo) {
1688     const ABIArgInfo &ArgInfo = it->info;
1689 
1690     // Insert a padding type to ensure proper alignment.
1691     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1692       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1693           ArgInfo.getPaddingType();
1694 
1695     unsigned FirstIRArg, NumIRArgs;
1696     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1697 
1698     switch (ArgInfo.getKind()) {
1699     case ABIArgInfo::Ignore:
1700     case ABIArgInfo::InAlloca:
1701       assert(NumIRArgs == 0);
1702       break;
1703 
1704     case ABIArgInfo::Indirect:
1705       assert(NumIRArgs == 1);
1706       // indirect arguments are always on the stack, which is alloca addr space.
1707       ArgTypes[FirstIRArg] = llvm::PointerType::get(
1708           getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace());
1709       break;
1710     case ABIArgInfo::IndirectAliased:
1711       assert(NumIRArgs == 1);
1712       ArgTypes[FirstIRArg] = llvm::PointerType::get(
1713           getLLVMContext(), ArgInfo.getIndirectAddrSpace());
1714       break;
1715     case ABIArgInfo::Extend:
1716     case ABIArgInfo::Direct: {
1717       // Fast-isel and the optimizer generally like scalar values better than
1718       // FCAs, so we flatten them if this is safe to do for this argument.
1719       llvm::Type *argType = ArgInfo.getCoerceToType();
1720       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1721       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1722         assert(NumIRArgs == st->getNumElements());
1723         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1724           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1725       } else {
1726         assert(NumIRArgs == 1);
1727         ArgTypes[FirstIRArg] = argType;
1728       }
1729       break;
1730     }
1731 
1732     case ABIArgInfo::CoerceAndExpand: {
1733       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1734       for (auto *EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1735         *ArgTypesIter++ = EltTy;
1736       }
1737       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1738       break;
1739     }
1740 
1741     case ABIArgInfo::Expand:
1742       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1743       getExpandedTypes(it->type, ArgTypesIter);
1744       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1745       break;
1746     }
1747   }
1748 
1749   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1750   assert(Erased && "Not in set?");
1751 
1752   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1753 }
1754 
GetFunctionTypeForVTable(GlobalDecl GD)1755 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1756   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1757   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1758 
1759   if (!isFuncTypeConvertible(FPT))
1760     return llvm::StructType::get(getLLVMContext());
1761 
1762   return GetFunctionType(GD);
1763 }
1764 
AddAttributesFromFunctionProtoType(ASTContext & Ctx,llvm::AttrBuilder & FuncAttrs,const FunctionProtoType * FPT)1765 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1766                                                llvm::AttrBuilder &FuncAttrs,
1767                                                const FunctionProtoType *FPT) {
1768   if (!FPT)
1769     return;
1770 
1771   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1772       FPT->isNothrow())
1773     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1774 
1775   unsigned SMEBits = FPT->getAArch64SMEAttributes();
1776   if (SMEBits & FunctionType::SME_PStateSMEnabledMask)
1777     FuncAttrs.addAttribute("aarch64_pstate_sm_enabled");
1778   if (SMEBits & FunctionType::SME_PStateSMCompatibleMask)
1779     FuncAttrs.addAttribute("aarch64_pstate_sm_compatible");
1780 
1781   // ZA
1782   if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Out ||
1783       FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_InOut)
1784     FuncAttrs.addAttribute("aarch64_pstate_za_shared");
1785   if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Preserves ||
1786       FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_In) {
1787     FuncAttrs.addAttribute("aarch64_pstate_za_shared");
1788     FuncAttrs.addAttribute("aarch64_pstate_za_preserved");
1789   }
1790 
1791   // ZT0
1792   if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Preserves)
1793     FuncAttrs.addAttribute("aarch64_preserves_zt0");
1794   if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_In)
1795     FuncAttrs.addAttribute("aarch64_in_zt0");
1796   if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Out)
1797     FuncAttrs.addAttribute("aarch64_out_zt0");
1798   if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_InOut)
1799     FuncAttrs.addAttribute("aarch64_inout_zt0");
1800 }
1801 
AddAttributesFromAssumes(llvm::AttrBuilder & FuncAttrs,const Decl * Callee)1802 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs,
1803                                      const Decl *Callee) {
1804   if (!Callee)
1805     return;
1806 
1807   SmallVector<StringRef, 4> Attrs;
1808 
1809   for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>())
1810     AA->getAssumption().split(Attrs, ",");
1811 
1812   if (!Attrs.empty())
1813     FuncAttrs.addAttribute(llvm::AssumptionAttrKey,
1814                            llvm::join(Attrs.begin(), Attrs.end(), ","));
1815 }
1816 
MayDropFunctionReturn(const ASTContext & Context,QualType ReturnType) const1817 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
1818                                           QualType ReturnType) const {
1819   // We can't just discard the return value for a record type with a
1820   // complex destructor or a non-trivially copyable type.
1821   if (const RecordType *RT =
1822           ReturnType.getCanonicalType()->getAs<RecordType>()) {
1823     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1824       return ClassDecl->hasTrivialDestructor();
1825   }
1826   return ReturnType.isTriviallyCopyableType(Context);
1827 }
1828 
HasStrictReturn(const CodeGenModule & Module,QualType RetTy,const Decl * TargetDecl)1829 static bool HasStrictReturn(const CodeGenModule &Module, QualType RetTy,
1830                             const Decl *TargetDecl) {
1831   // As-is msan can not tolerate noundef mismatch between caller and
1832   // implementation. Mismatch is possible for e.g. indirect calls from C-caller
1833   // into C++. Such mismatches lead to confusing false reports. To avoid
1834   // expensive workaround on msan we enforce initialization event in uncommon
1835   // cases where it's allowed.
1836   if (Module.getLangOpts().Sanitize.has(SanitizerKind::Memory))
1837     return true;
1838   // C++ explicitly makes returning undefined values UB. C's rule only applies
1839   // to used values, so we never mark them noundef for now.
1840   if (!Module.getLangOpts().CPlusPlus)
1841     return false;
1842   if (TargetDecl) {
1843     if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) {
1844       if (FDecl->isExternC())
1845         return false;
1846     } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) {
1847       // Function pointer.
1848       if (VDecl->isExternC())
1849         return false;
1850     }
1851   }
1852 
1853   // We don't want to be too aggressive with the return checking, unless
1854   // it's explicit in the code opts or we're using an appropriate sanitizer.
1855   // Try to respect what the programmer intended.
1856   return Module.getCodeGenOpts().StrictReturn ||
1857          !Module.MayDropFunctionReturn(Module.getContext(), RetTy) ||
1858          Module.getLangOpts().Sanitize.has(SanitizerKind::Return);
1859 }
1860 
1861 /// Add denormal-fp-math and denormal-fp-math-f32 as appropriate for the
1862 /// requested denormal behavior, accounting for the overriding behavior of the
1863 /// -f32 case.
addDenormalModeAttrs(llvm::DenormalMode FPDenormalMode,llvm::DenormalMode FP32DenormalMode,llvm::AttrBuilder & FuncAttrs)1864 static void addDenormalModeAttrs(llvm::DenormalMode FPDenormalMode,
1865                                  llvm::DenormalMode FP32DenormalMode,
1866                                  llvm::AttrBuilder &FuncAttrs) {
1867   if (FPDenormalMode != llvm::DenormalMode::getDefault())
1868     FuncAttrs.addAttribute("denormal-fp-math", FPDenormalMode.str());
1869 
1870   if (FP32DenormalMode != FPDenormalMode && FP32DenormalMode.isValid())
1871     FuncAttrs.addAttribute("denormal-fp-math-f32", FP32DenormalMode.str());
1872 }
1873 
1874 /// Add default attributes to a function, which have merge semantics under
1875 /// -mlink-builtin-bitcode and should not simply overwrite any existing
1876 /// attributes in the linked library.
1877 static void
addMergableDefaultFunctionAttributes(const CodeGenOptions & CodeGenOpts,llvm::AttrBuilder & FuncAttrs)1878 addMergableDefaultFunctionAttributes(const CodeGenOptions &CodeGenOpts,
1879                                      llvm::AttrBuilder &FuncAttrs) {
1880   addDenormalModeAttrs(CodeGenOpts.FPDenormalMode, CodeGenOpts.FP32DenormalMode,
1881                        FuncAttrs);
1882 }
1883 
getTrivialDefaultFunctionAttributes(StringRef Name,bool HasOptnone,const CodeGenOptions & CodeGenOpts,const LangOptions & LangOpts,bool AttrOnCallSite,llvm::AttrBuilder & FuncAttrs)1884 static void getTrivialDefaultFunctionAttributes(
1885     StringRef Name, bool HasOptnone, const CodeGenOptions &CodeGenOpts,
1886     const LangOptions &LangOpts, bool AttrOnCallSite,
1887     llvm::AttrBuilder &FuncAttrs) {
1888   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1889   if (!HasOptnone) {
1890     if (CodeGenOpts.OptimizeSize)
1891       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1892     if (CodeGenOpts.OptimizeSize == 2)
1893       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1894   }
1895 
1896   if (CodeGenOpts.DisableRedZone)
1897     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1898   if (CodeGenOpts.IndirectTlsSegRefs)
1899     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1900   if (CodeGenOpts.NoImplicitFloat)
1901     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1902 
1903   if (AttrOnCallSite) {
1904     // Attributes that should go on the call site only.
1905     // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking
1906     // the -fno-builtin-foo list.
1907     if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name))
1908       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1909     if (!CodeGenOpts.TrapFuncName.empty())
1910       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1911   } else {
1912     switch (CodeGenOpts.getFramePointer()) {
1913     case CodeGenOptions::FramePointerKind::None:
1914       // This is the default behavior.
1915       break;
1916     case CodeGenOptions::FramePointerKind::NonLeaf:
1917     case CodeGenOptions::FramePointerKind::All:
1918       FuncAttrs.addAttribute("frame-pointer",
1919                              CodeGenOptions::getFramePointerKindName(
1920                                  CodeGenOpts.getFramePointer()));
1921     }
1922 
1923     if (CodeGenOpts.LessPreciseFPMAD)
1924       FuncAttrs.addAttribute("less-precise-fpmad", "true");
1925 
1926     if (CodeGenOpts.NullPointerIsValid)
1927       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1928 
1929     if (LangOpts.getDefaultExceptionMode() == LangOptions::FPE_Ignore)
1930       FuncAttrs.addAttribute("no-trapping-math", "true");
1931 
1932     // TODO: Are these all needed?
1933     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1934     if (LangOpts.NoHonorInfs)
1935       FuncAttrs.addAttribute("no-infs-fp-math", "true");
1936     if (LangOpts.NoHonorNaNs)
1937       FuncAttrs.addAttribute("no-nans-fp-math", "true");
1938     if (LangOpts.ApproxFunc)
1939       FuncAttrs.addAttribute("approx-func-fp-math", "true");
1940     if (LangOpts.AllowFPReassoc && LangOpts.AllowRecip &&
1941         LangOpts.NoSignedZero && LangOpts.ApproxFunc &&
1942         (LangOpts.getDefaultFPContractMode() ==
1943              LangOptions::FPModeKind::FPM_Fast ||
1944          LangOpts.getDefaultFPContractMode() ==
1945              LangOptions::FPModeKind::FPM_FastHonorPragmas))
1946       FuncAttrs.addAttribute("unsafe-fp-math", "true");
1947     if (CodeGenOpts.SoftFloat)
1948       FuncAttrs.addAttribute("use-soft-float", "true");
1949     FuncAttrs.addAttribute("stack-protector-buffer-size",
1950                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1951     if (LangOpts.NoSignedZero)
1952       FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
1953 
1954     // TODO: Reciprocal estimate codegen options should apply to instructions?
1955     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1956     if (!Recips.empty())
1957       FuncAttrs.addAttribute("reciprocal-estimates",
1958                              llvm::join(Recips, ","));
1959 
1960     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1961         CodeGenOpts.PreferVectorWidth != "none")
1962       FuncAttrs.addAttribute("prefer-vector-width",
1963                              CodeGenOpts.PreferVectorWidth);
1964 
1965     if (CodeGenOpts.StackRealignment)
1966       FuncAttrs.addAttribute("stackrealign");
1967     if (CodeGenOpts.Backchain)
1968       FuncAttrs.addAttribute("backchain");
1969     if (CodeGenOpts.EnableSegmentedStacks)
1970       FuncAttrs.addAttribute("split-stack");
1971 
1972     if (CodeGenOpts.SpeculativeLoadHardening)
1973       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1974 
1975     // Add zero-call-used-regs attribute.
1976     switch (CodeGenOpts.getZeroCallUsedRegs()) {
1977     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip:
1978       FuncAttrs.removeAttribute("zero-call-used-regs");
1979       break;
1980     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg:
1981       FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg");
1982       break;
1983     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR:
1984       FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr");
1985       break;
1986     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg:
1987       FuncAttrs.addAttribute("zero-call-used-regs", "used-arg");
1988       break;
1989     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used:
1990       FuncAttrs.addAttribute("zero-call-used-regs", "used");
1991       break;
1992     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg:
1993       FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg");
1994       break;
1995     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR:
1996       FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr");
1997       break;
1998     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg:
1999       FuncAttrs.addAttribute("zero-call-used-regs", "all-arg");
2000       break;
2001     case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All:
2002       FuncAttrs.addAttribute("zero-call-used-regs", "all");
2003       break;
2004     }
2005   }
2006 
2007   if (LangOpts.assumeFunctionsAreConvergent()) {
2008     // Conservatively, mark all functions and calls in CUDA and OpenCL as
2009     // convergent (meaning, they may call an intrinsically convergent op, such
2010     // as __syncthreads() / barrier(), and so can't have certain optimizations
2011     // applied around them).  LLVM will remove this attribute where it safely
2012     // can.
2013     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2014   }
2015 
2016   // TODO: NoUnwind attribute should be added for other GPU modes HIP,
2017   // OpenMP offload. AFAIK, neither of them support exceptions in device code.
2018   if ((LangOpts.CUDA && LangOpts.CUDAIsDevice) || LangOpts.OpenCL ||
2019       LangOpts.SYCLIsDevice) {
2020     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2021   }
2022 
2023   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
2024     StringRef Var, Value;
2025     std::tie(Var, Value) = Attr.split('=');
2026     FuncAttrs.addAttribute(Var, Value);
2027   }
2028 }
2029 
2030 /// Merges `target-features` from \TargetOpts and \F, and sets the result in
2031 /// \FuncAttr
2032 /// * features from \F are always kept
2033 /// * a feature from \TargetOpts is kept if itself and its opposite are absent
2034 /// from \F
2035 static void
overrideFunctionFeaturesWithTargetFeatures(llvm::AttrBuilder & FuncAttr,const llvm::Function & F,const TargetOptions & TargetOpts)2036 overrideFunctionFeaturesWithTargetFeatures(llvm::AttrBuilder &FuncAttr,
2037                                            const llvm::Function &F,
2038                                            const TargetOptions &TargetOpts) {
2039   auto FFeatures = F.getFnAttribute("target-features");
2040 
2041   llvm::StringSet<> MergedNames;
2042   SmallVector<StringRef> MergedFeatures;
2043   MergedFeatures.reserve(TargetOpts.Features.size());
2044 
2045   auto AddUnmergedFeatures = [&](auto &&FeatureRange) {
2046     for (StringRef Feature : FeatureRange) {
2047       if (Feature.empty())
2048         continue;
2049       assert(Feature[0] == '+' || Feature[0] == '-');
2050       StringRef Name = Feature.drop_front(1);
2051       bool Merged = !MergedNames.insert(Name).second;
2052       if (!Merged)
2053         MergedFeatures.push_back(Feature);
2054     }
2055   };
2056 
2057   if (FFeatures.isValid())
2058     AddUnmergedFeatures(llvm::split(FFeatures.getValueAsString(), ','));
2059   AddUnmergedFeatures(TargetOpts.Features);
2060 
2061   if (!MergedFeatures.empty()) {
2062     llvm::sort(MergedFeatures);
2063     FuncAttr.addAttribute("target-features", llvm::join(MergedFeatures, ","));
2064   }
2065 }
2066 
mergeDefaultFunctionDefinitionAttributes(llvm::Function & F,const CodeGenOptions & CodeGenOpts,const LangOptions & LangOpts,const TargetOptions & TargetOpts,bool WillInternalize)2067 void CodeGen::mergeDefaultFunctionDefinitionAttributes(
2068     llvm::Function &F, const CodeGenOptions &CodeGenOpts,
2069     const LangOptions &LangOpts, const TargetOptions &TargetOpts,
2070     bool WillInternalize) {
2071 
2072   llvm::AttrBuilder FuncAttrs(F.getContext());
2073   // Here we only extract the options that are relevant compared to the version
2074   // from GetCPUAndFeaturesAttributes.
2075   if (!TargetOpts.CPU.empty())
2076     FuncAttrs.addAttribute("target-cpu", TargetOpts.CPU);
2077   if (!TargetOpts.TuneCPU.empty())
2078     FuncAttrs.addAttribute("tune-cpu", TargetOpts.TuneCPU);
2079 
2080   ::getTrivialDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
2081                                         CodeGenOpts, LangOpts,
2082                                         /*AttrOnCallSite=*/false, FuncAttrs);
2083 
2084   if (!WillInternalize && F.isInterposable()) {
2085     // Do not promote "dynamic" denormal-fp-math to this translation unit's
2086     // setting for weak functions that won't be internalized. The user has no
2087     // real control for how builtin bitcode is linked, so we shouldn't assume
2088     // later copies will use a consistent mode.
2089     F.addFnAttrs(FuncAttrs);
2090     return;
2091   }
2092 
2093   llvm::AttributeMask AttrsToRemove;
2094 
2095   llvm::DenormalMode DenormModeToMerge = F.getDenormalModeRaw();
2096   llvm::DenormalMode DenormModeToMergeF32 = F.getDenormalModeF32Raw();
2097   llvm::DenormalMode Merged =
2098       CodeGenOpts.FPDenormalMode.mergeCalleeMode(DenormModeToMerge);
2099   llvm::DenormalMode MergedF32 = CodeGenOpts.FP32DenormalMode;
2100 
2101   if (DenormModeToMergeF32.isValid()) {
2102     MergedF32 =
2103         CodeGenOpts.FP32DenormalMode.mergeCalleeMode(DenormModeToMergeF32);
2104   }
2105 
2106   if (Merged == llvm::DenormalMode::getDefault()) {
2107     AttrsToRemove.addAttribute("denormal-fp-math");
2108   } else if (Merged != DenormModeToMerge) {
2109     // Overwrite existing attribute
2110     FuncAttrs.addAttribute("denormal-fp-math",
2111                            CodeGenOpts.FPDenormalMode.str());
2112   }
2113 
2114   if (MergedF32 == llvm::DenormalMode::getDefault()) {
2115     AttrsToRemove.addAttribute("denormal-fp-math-f32");
2116   } else if (MergedF32 != DenormModeToMergeF32) {
2117     // Overwrite existing attribute
2118     FuncAttrs.addAttribute("denormal-fp-math-f32",
2119                            CodeGenOpts.FP32DenormalMode.str());
2120   }
2121 
2122   F.removeFnAttrs(AttrsToRemove);
2123   addDenormalModeAttrs(Merged, MergedF32, FuncAttrs);
2124 
2125   overrideFunctionFeaturesWithTargetFeatures(FuncAttrs, F, TargetOpts);
2126 
2127   F.addFnAttrs(FuncAttrs);
2128 }
2129 
getTrivialDefaultFunctionAttributes(StringRef Name,bool HasOptnone,bool AttrOnCallSite,llvm::AttrBuilder & FuncAttrs)2130 void CodeGenModule::getTrivialDefaultFunctionAttributes(
2131     StringRef Name, bool HasOptnone, bool AttrOnCallSite,
2132     llvm::AttrBuilder &FuncAttrs) {
2133   ::getTrivialDefaultFunctionAttributes(Name, HasOptnone, getCodeGenOpts(),
2134                                         getLangOpts(), AttrOnCallSite,
2135                                         FuncAttrs);
2136 }
2137 
getDefaultFunctionAttributes(StringRef Name,bool HasOptnone,bool AttrOnCallSite,llvm::AttrBuilder & FuncAttrs)2138 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
2139                                                  bool HasOptnone,
2140                                                  bool AttrOnCallSite,
2141                                                  llvm::AttrBuilder &FuncAttrs) {
2142   getTrivialDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite,
2143                                       FuncAttrs);
2144   // If we're just getting the default, get the default values for mergeable
2145   // attributes.
2146   if (!AttrOnCallSite)
2147     addMergableDefaultFunctionAttributes(CodeGenOpts, FuncAttrs);
2148 }
2149 
addDefaultFunctionDefinitionAttributes(llvm::AttrBuilder & attrs)2150 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
2151     llvm::AttrBuilder &attrs) {
2152   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
2153                                /*for call*/ false, attrs);
2154   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
2155 }
2156 
addNoBuiltinAttributes(llvm::AttrBuilder & FuncAttrs,const LangOptions & LangOpts,const NoBuiltinAttr * NBA=nullptr)2157 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
2158                                    const LangOptions &LangOpts,
2159                                    const NoBuiltinAttr *NBA = nullptr) {
2160   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
2161     SmallString<32> AttributeName;
2162     AttributeName += "no-builtin-";
2163     AttributeName += BuiltinName;
2164     FuncAttrs.addAttribute(AttributeName);
2165   };
2166 
2167   // First, handle the language options passed through -fno-builtin.
2168   if (LangOpts.NoBuiltin) {
2169     // -fno-builtin disables them all.
2170     FuncAttrs.addAttribute("no-builtins");
2171     return;
2172   }
2173 
2174   // Then, add attributes for builtins specified through -fno-builtin-<name>.
2175   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
2176 
2177   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
2178   // the source.
2179   if (!NBA)
2180     return;
2181 
2182   // If there is a wildcard in the builtin names specified through the
2183   // attribute, disable them all.
2184   if (llvm::is_contained(NBA->builtinNames(), "*")) {
2185     FuncAttrs.addAttribute("no-builtins");
2186     return;
2187   }
2188 
2189   // And last, add the rest of the builtin names.
2190   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
2191 }
2192 
DetermineNoUndef(QualType QTy,CodeGenTypes & Types,const llvm::DataLayout & DL,const ABIArgInfo & AI,bool CheckCoerce=true)2193 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
2194                              const llvm::DataLayout &DL, const ABIArgInfo &AI,
2195                              bool CheckCoerce = true) {
2196   llvm::Type *Ty = Types.ConvertTypeForMem(QTy);
2197   if (AI.getKind() == ABIArgInfo::Indirect ||
2198       AI.getKind() == ABIArgInfo::IndirectAliased)
2199     return true;
2200   if (AI.getKind() == ABIArgInfo::Extend)
2201     return true;
2202   if (!DL.typeSizeEqualsStoreSize(Ty))
2203     // TODO: This will result in a modest amount of values not marked noundef
2204     // when they could be. We care about values that *invisibly* contain undef
2205     // bits from the perspective of LLVM IR.
2206     return false;
2207   if (CheckCoerce && AI.canHaveCoerceToType()) {
2208     llvm::Type *CoerceTy = AI.getCoerceToType();
2209     if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy),
2210                                   DL.getTypeSizeInBits(Ty)))
2211       // If we're coercing to a type with a greater size than the canonical one,
2212       // we're introducing new undef bits.
2213       // Coercing to a type of smaller or equal size is ok, as we know that
2214       // there's no internal padding (typeSizeEqualsStoreSize).
2215       return false;
2216   }
2217   if (QTy->isBitIntType())
2218     return true;
2219   if (QTy->isReferenceType())
2220     return true;
2221   if (QTy->isNullPtrType())
2222     return false;
2223   if (QTy->isMemberPointerType())
2224     // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
2225     // now, never mark them.
2226     return false;
2227   if (QTy->isScalarType()) {
2228     if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy))
2229       return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false);
2230     return true;
2231   }
2232   if (const VectorType *Vector = dyn_cast<VectorType>(QTy))
2233     return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false);
2234   if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy))
2235     return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false);
2236   if (const ArrayType *Array = dyn_cast<ArrayType>(QTy))
2237     return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false);
2238 
2239   // TODO: Some structs may be `noundef`, in specific situations.
2240   return false;
2241 }
2242 
2243 /// Check if the argument of a function has maybe_undef attribute.
IsArgumentMaybeUndef(const Decl * TargetDecl,unsigned NumRequiredArgs,unsigned ArgNo)2244 static bool IsArgumentMaybeUndef(const Decl *TargetDecl,
2245                                  unsigned NumRequiredArgs, unsigned ArgNo) {
2246   const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
2247   if (!FD)
2248     return false;
2249 
2250   // Assume variadic arguments do not have maybe_undef attribute.
2251   if (ArgNo >= NumRequiredArgs)
2252     return false;
2253 
2254   // Check if argument has maybe_undef attribute.
2255   if (ArgNo < FD->getNumParams()) {
2256     const ParmVarDecl *Param = FD->getParamDecl(ArgNo);
2257     if (Param && Param->hasAttr<MaybeUndefAttr>())
2258       return true;
2259   }
2260 
2261   return false;
2262 }
2263 
2264 /// Test if it's legal to apply nofpclass for the given parameter type and it's
2265 /// lowered IR type.
canApplyNoFPClass(const ABIArgInfo & AI,QualType ParamType,bool IsReturn)2266 static bool canApplyNoFPClass(const ABIArgInfo &AI, QualType ParamType,
2267                               bool IsReturn) {
2268   // Should only apply to FP types in the source, not ABI promoted.
2269   if (!ParamType->hasFloatingRepresentation())
2270     return false;
2271 
2272   // The promoted-to IR type also needs to support nofpclass.
2273   llvm::Type *IRTy = AI.getCoerceToType();
2274   if (llvm::AttributeFuncs::isNoFPClassCompatibleType(IRTy))
2275     return true;
2276 
2277   if (llvm::StructType *ST = dyn_cast<llvm::StructType>(IRTy)) {
2278     return !IsReturn && AI.getCanBeFlattened() &&
2279            llvm::all_of(ST->elements(), [](llvm::Type *Ty) {
2280              return llvm::AttributeFuncs::isNoFPClassCompatibleType(Ty);
2281            });
2282   }
2283 
2284   return false;
2285 }
2286 
2287 /// Return the nofpclass mask that can be applied to floating-point parameters.
getNoFPClassTestMask(const LangOptions & LangOpts)2288 static llvm::FPClassTest getNoFPClassTestMask(const LangOptions &LangOpts) {
2289   llvm::FPClassTest Mask = llvm::fcNone;
2290   if (LangOpts.NoHonorInfs)
2291     Mask |= llvm::fcInf;
2292   if (LangOpts.NoHonorNaNs)
2293     Mask |= llvm::fcNan;
2294   return Mask;
2295 }
2296 
AdjustMemoryAttribute(StringRef Name,CGCalleeInfo CalleeInfo,llvm::AttributeList & Attrs)2297 void CodeGenModule::AdjustMemoryAttribute(StringRef Name,
2298                                           CGCalleeInfo CalleeInfo,
2299                                           llvm::AttributeList &Attrs) {
2300   if (Attrs.getMemoryEffects().getModRef() == llvm::ModRefInfo::NoModRef) {
2301     Attrs = Attrs.removeFnAttribute(getLLVMContext(), llvm::Attribute::Memory);
2302     llvm::Attribute MemoryAttr = llvm::Attribute::getWithMemoryEffects(
2303         getLLVMContext(), llvm::MemoryEffects::writeOnly());
2304     Attrs = Attrs.addFnAttribute(getLLVMContext(), MemoryAttr);
2305   }
2306 }
2307 
2308 /// Construct the IR attribute list of a function or call.
2309 ///
2310 /// When adding an attribute, please consider where it should be handled:
2311 ///
2312 ///   - getDefaultFunctionAttributes is for attributes that are essentially
2313 ///     part of the global target configuration (but perhaps can be
2314 ///     overridden on a per-function basis).  Adding attributes there
2315 ///     will cause them to also be set in frontends that build on Clang's
2316 ///     target-configuration logic, as well as for code defined in library
2317 ///     modules such as CUDA's libdevice.
2318 ///
2319 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
2320 ///     and adds declaration-specific, convention-specific, and
2321 ///     frontend-specific logic.  The last is of particular importance:
2322 ///     attributes that restrict how the frontend generates code must be
2323 ///     added here rather than getDefaultFunctionAttributes.
2324 ///
ConstructAttributeList(StringRef Name,const CGFunctionInfo & FI,CGCalleeInfo CalleeInfo,llvm::AttributeList & AttrList,unsigned & CallingConv,bool AttrOnCallSite,bool IsThunk)2325 void CodeGenModule::ConstructAttributeList(StringRef Name,
2326                                            const CGFunctionInfo &FI,
2327                                            CGCalleeInfo CalleeInfo,
2328                                            llvm::AttributeList &AttrList,
2329                                            unsigned &CallingConv,
2330                                            bool AttrOnCallSite, bool IsThunk) {
2331   llvm::AttrBuilder FuncAttrs(getLLVMContext());
2332   llvm::AttrBuilder RetAttrs(getLLVMContext());
2333 
2334   // Collect function IR attributes from the CC lowering.
2335   // We'll collect the paramete and result attributes later.
2336   CallingConv = FI.getEffectiveCallingConvention();
2337   if (FI.isNoReturn())
2338     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2339   if (FI.isCmseNSCall())
2340     FuncAttrs.addAttribute("cmse_nonsecure_call");
2341 
2342   // Collect function IR attributes from the callee prototype if we have one.
2343   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
2344                                      CalleeInfo.getCalleeFunctionProtoType());
2345 
2346   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
2347 
2348   // Attach assumption attributes to the declaration. If this is a call
2349   // site, attach assumptions from the caller to the call as well.
2350   AddAttributesFromAssumes(FuncAttrs, TargetDecl);
2351 
2352   bool HasOptnone = false;
2353   // The NoBuiltinAttr attached to the target FunctionDecl.
2354   const NoBuiltinAttr *NBA = nullptr;
2355 
2356   // Some ABIs may result in additional accesses to arguments that may
2357   // otherwise not be present.
2358   auto AddPotentialArgAccess = [&]() {
2359     llvm::Attribute A = FuncAttrs.getAttribute(llvm::Attribute::Memory);
2360     if (A.isValid())
2361       FuncAttrs.addMemoryAttr(A.getMemoryEffects() |
2362                               llvm::MemoryEffects::argMemOnly());
2363   };
2364 
2365   // Collect function IR attributes based on declaration-specific
2366   // information.
2367   // FIXME: handle sseregparm someday...
2368   if (TargetDecl) {
2369     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
2370       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
2371     if (TargetDecl->hasAttr<NoThrowAttr>())
2372       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2373     if (TargetDecl->hasAttr<NoReturnAttr>())
2374       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2375     if (TargetDecl->hasAttr<ColdAttr>())
2376       FuncAttrs.addAttribute(llvm::Attribute::Cold);
2377     if (TargetDecl->hasAttr<HotAttr>())
2378       FuncAttrs.addAttribute(llvm::Attribute::Hot);
2379     if (TargetDecl->hasAttr<NoDuplicateAttr>())
2380       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
2381     if (TargetDecl->hasAttr<ConvergentAttr>())
2382       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2383 
2384     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2385       AddAttributesFromFunctionProtoType(
2386           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
2387       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
2388         // A sane operator new returns a non-aliasing pointer.
2389         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
2390         if (getCodeGenOpts().AssumeSaneOperatorNew &&
2391             (Kind == OO_New || Kind == OO_Array_New))
2392           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2393       }
2394       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
2395       const bool IsVirtualCall = MD && MD->isVirtual();
2396       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2397       // virtual function. These attributes are not inherited by overloads.
2398       if (!(AttrOnCallSite && IsVirtualCall)) {
2399         if (Fn->isNoReturn())
2400           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2401         NBA = Fn->getAttr<NoBuiltinAttr>();
2402       }
2403     }
2404 
2405     if (isa<FunctionDecl>(TargetDecl) || isa<VarDecl>(TargetDecl)) {
2406       // Only place nomerge attribute on call sites, never functions. This
2407       // allows it to work on indirect virtual function calls.
2408       if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
2409         FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
2410     }
2411 
2412     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2413     if (TargetDecl->hasAttr<ConstAttr>()) {
2414       FuncAttrs.addMemoryAttr(llvm::MemoryEffects::none());
2415       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2416       // gcc specifies that 'const' functions have greater restrictions than
2417       // 'pure' functions, so they also cannot have infinite loops.
2418       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2419     } else if (TargetDecl->hasAttr<PureAttr>()) {
2420       FuncAttrs.addMemoryAttr(llvm::MemoryEffects::readOnly());
2421       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2422       // gcc specifies that 'pure' functions cannot have infinite loops.
2423       FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2424     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2425       FuncAttrs.addMemoryAttr(llvm::MemoryEffects::inaccessibleOrArgMemOnly());
2426       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2427     }
2428     if (TargetDecl->hasAttr<RestrictAttr>())
2429       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2430     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2431         !CodeGenOpts.NullPointerIsValid)
2432       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2433     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2434       FuncAttrs.addAttribute("no_caller_saved_registers");
2435     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2436       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
2437     if (TargetDecl->hasAttr<LeafAttr>())
2438       FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
2439 
2440     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2441     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2442       std::optional<unsigned> NumElemsParam;
2443       if (AllocSize->getNumElemsParam().isValid())
2444         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2445       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2446                                  NumElemsParam);
2447     }
2448 
2449     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2450       if (getLangOpts().OpenCLVersion <= 120) {
2451         // OpenCL v1.2 Work groups are always uniform
2452         FuncAttrs.addAttribute("uniform-work-group-size", "true");
2453       } else {
2454         // OpenCL v2.0 Work groups may be whether uniform or not.
2455         // '-cl-uniform-work-group-size' compile option gets a hint
2456         // to the compiler that the global work-size be a multiple of
2457         // the work-group size specified to clEnqueueNDRangeKernel
2458         // (i.e. work groups are uniform).
2459         FuncAttrs.addAttribute(
2460             "uniform-work-group-size",
2461             llvm::toStringRef(getLangOpts().OffloadUniformBlock));
2462       }
2463     }
2464 
2465     if (TargetDecl->hasAttr<CUDAGlobalAttr>() &&
2466         getLangOpts().OffloadUniformBlock)
2467       FuncAttrs.addAttribute("uniform-work-group-size", "true");
2468 
2469     if (TargetDecl->hasAttr<ArmLocallyStreamingAttr>())
2470       FuncAttrs.addAttribute("aarch64_pstate_sm_body");
2471   }
2472 
2473   // Attach "no-builtins" attributes to:
2474   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2475   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2476   // The attributes can come from:
2477   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2478   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2479   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2480 
2481   // Collect function IR attributes based on global settiings.
2482   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2483 
2484   // Override some default IR attributes based on declaration-specific
2485   // information.
2486   if (TargetDecl) {
2487     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2488       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2489     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2490       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2491     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2492       FuncAttrs.removeAttribute("split-stack");
2493     if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) {
2494       // A function "__attribute__((...))" overrides the command-line flag.
2495       auto Kind =
2496           TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs();
2497       FuncAttrs.removeAttribute("zero-call-used-regs");
2498       FuncAttrs.addAttribute(
2499           "zero-call-used-regs",
2500           ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind));
2501     }
2502 
2503     // Add NonLazyBind attribute to function declarations when -fno-plt
2504     // is used.
2505     // FIXME: what if we just haven't processed the function definition
2506     // yet, or if it's an external definition like C99 inline?
2507     if (CodeGenOpts.NoPLT) {
2508       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2509         if (!Fn->isDefined() && !AttrOnCallSite) {
2510           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2511         }
2512       }
2513     }
2514   }
2515 
2516   // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2517   // functions with -funique-internal-linkage-names.
2518   if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
2519     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2520       if (!FD->isExternallyVisible())
2521         FuncAttrs.addAttribute("sample-profile-suffix-elision-policy",
2522                                "selected");
2523     }
2524   }
2525 
2526   // Collect non-call-site function IR attributes from declaration-specific
2527   // information.
2528   if (!AttrOnCallSite) {
2529     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2530       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2531 
2532     // Whether tail calls are enabled.
2533     auto shouldDisableTailCalls = [&] {
2534       // Should this be honored in getDefaultFunctionAttributes?
2535       if (CodeGenOpts.DisableTailCalls)
2536         return true;
2537 
2538       if (!TargetDecl)
2539         return false;
2540 
2541       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2542           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2543         return true;
2544 
2545       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2546         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2547           if (!BD->doesNotEscape())
2548             return true;
2549       }
2550 
2551       return false;
2552     };
2553     if (shouldDisableTailCalls())
2554       FuncAttrs.addAttribute("disable-tail-calls", "true");
2555 
2556     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2557     // handles these separately to set them based on the global defaults.
2558     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2559   }
2560 
2561   // Collect attributes from arguments and return values.
2562   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2563 
2564   QualType RetTy = FI.getReturnType();
2565   const ABIArgInfo &RetAI = FI.getReturnInfo();
2566   const llvm::DataLayout &DL = getDataLayout();
2567 
2568   // Determine if the return type could be partially undef
2569   if (CodeGenOpts.EnableNoundefAttrs &&
2570       HasStrictReturn(*this, RetTy, TargetDecl)) {
2571     if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
2572         DetermineNoUndef(RetTy, getTypes(), DL, RetAI))
2573       RetAttrs.addAttribute(llvm::Attribute::NoUndef);
2574   }
2575 
2576   switch (RetAI.getKind()) {
2577   case ABIArgInfo::Extend:
2578     if (RetAI.isSignExt())
2579       RetAttrs.addAttribute(llvm::Attribute::SExt);
2580     else
2581       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2582     [[fallthrough]];
2583   case ABIArgInfo::Direct:
2584     if (RetAI.getInReg())
2585       RetAttrs.addAttribute(llvm::Attribute::InReg);
2586 
2587     if (canApplyNoFPClass(RetAI, RetTy, true))
2588       RetAttrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts()));
2589 
2590     break;
2591   case ABIArgInfo::Ignore:
2592     break;
2593 
2594   case ABIArgInfo::InAlloca:
2595   case ABIArgInfo::Indirect: {
2596     // inalloca and sret disable readnone and readonly
2597     AddPotentialArgAccess();
2598     break;
2599   }
2600 
2601   case ABIArgInfo::CoerceAndExpand:
2602     break;
2603 
2604   case ABIArgInfo::Expand:
2605   case ABIArgInfo::IndirectAliased:
2606     llvm_unreachable("Invalid ABI kind for return argument");
2607   }
2608 
2609   if (!IsThunk) {
2610     // FIXME: fix this properly, https://reviews.llvm.org/D100388
2611     if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2612       QualType PTy = RefTy->getPointeeType();
2613       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2614         RetAttrs.addDereferenceableAttr(
2615             getMinimumObjectSize(PTy).getQuantity());
2616       if (getTypes().getTargetAddressSpace(PTy) == 0 &&
2617           !CodeGenOpts.NullPointerIsValid)
2618         RetAttrs.addAttribute(llvm::Attribute::NonNull);
2619       if (PTy->isObjectType()) {
2620         llvm::Align Alignment =
2621             getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2622         RetAttrs.addAlignmentAttr(Alignment);
2623       }
2624     }
2625   }
2626 
2627   bool hasUsedSRet = false;
2628   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2629 
2630   // Attach attributes to sret.
2631   if (IRFunctionArgs.hasSRetArg()) {
2632     llvm::AttrBuilder SRETAttrs(getLLVMContext());
2633     SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2634     SRETAttrs.addAttribute(llvm::Attribute::Writable);
2635     SRETAttrs.addAttribute(llvm::Attribute::DeadOnUnwind);
2636     hasUsedSRet = true;
2637     if (RetAI.getInReg())
2638       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2639     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2640     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2641         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2642   }
2643 
2644   // Attach attributes to inalloca argument.
2645   if (IRFunctionArgs.hasInallocaArg()) {
2646     llvm::AttrBuilder Attrs(getLLVMContext());
2647     Attrs.addInAllocaAttr(FI.getArgStruct());
2648     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2649         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2650   }
2651 
2652   // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument,
2653   // unless this is a thunk function.
2654   // FIXME: fix this properly, https://reviews.llvm.org/D100388
2655   if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2656       !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) {
2657     auto IRArgs = IRFunctionArgs.getIRArgs(0);
2658 
2659     assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2660 
2661     llvm::AttrBuilder Attrs(getLLVMContext());
2662 
2663     QualType ThisTy =
2664         FI.arg_begin()->type.getTypePtr()->getPointeeType();
2665 
2666     if (!CodeGenOpts.NullPointerIsValid &&
2667         getTypes().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2668       Attrs.addAttribute(llvm::Attribute::NonNull);
2669       Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity());
2670     } else {
2671       // FIXME dereferenceable should be correct here, regardless of
2672       // NullPointerIsValid. However, dereferenceable currently does not always
2673       // respect NullPointerIsValid and may imply nonnull and break the program.
2674       // See https://reviews.llvm.org/D66618 for discussions.
2675       Attrs.addDereferenceableOrNullAttr(
2676           getMinimumObjectSize(
2677               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2678               .getQuantity());
2679     }
2680 
2681     llvm::Align Alignment =
2682         getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr,
2683                                 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true)
2684             .getAsAlign();
2685     Attrs.addAlignmentAttr(Alignment);
2686 
2687     ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2688   }
2689 
2690   unsigned ArgNo = 0;
2691   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2692                                           E = FI.arg_end();
2693        I != E; ++I, ++ArgNo) {
2694     QualType ParamType = I->type;
2695     const ABIArgInfo &AI = I->info;
2696     llvm::AttrBuilder Attrs(getLLVMContext());
2697 
2698     // Add attribute for padding argument, if necessary.
2699     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2700       if (AI.getPaddingInReg()) {
2701         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2702             llvm::AttributeSet::get(
2703                 getLLVMContext(),
2704                 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg));
2705       }
2706     }
2707 
2708     // Decide whether the argument we're handling could be partially undef
2709     if (CodeGenOpts.EnableNoundefAttrs &&
2710         DetermineNoUndef(ParamType, getTypes(), DL, AI)) {
2711       Attrs.addAttribute(llvm::Attribute::NoUndef);
2712     }
2713 
2714     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2715     // have the corresponding parameter variable.  It doesn't make
2716     // sense to do it here because parameters are so messed up.
2717     switch (AI.getKind()) {
2718     case ABIArgInfo::Extend:
2719       if (AI.isSignExt())
2720         Attrs.addAttribute(llvm::Attribute::SExt);
2721       else
2722         Attrs.addAttribute(llvm::Attribute::ZExt);
2723       [[fallthrough]];
2724     case ABIArgInfo::Direct:
2725       if (ArgNo == 0 && FI.isChainCall())
2726         Attrs.addAttribute(llvm::Attribute::Nest);
2727       else if (AI.getInReg())
2728         Attrs.addAttribute(llvm::Attribute::InReg);
2729       Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign()));
2730 
2731       if (canApplyNoFPClass(AI, ParamType, false))
2732         Attrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts()));
2733       break;
2734     case ABIArgInfo::Indirect: {
2735       if (AI.getInReg())
2736         Attrs.addAttribute(llvm::Attribute::InReg);
2737 
2738       if (AI.getIndirectByVal())
2739         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2740 
2741       auto *Decl = ParamType->getAsRecordDecl();
2742       if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2743           Decl->getArgPassingRestrictions() ==
2744               RecordArgPassingKind::CanPassInRegs)
2745         // When calling the function, the pointer passed in will be the only
2746         // reference to the underlying object. Mark it accordingly.
2747         Attrs.addAttribute(llvm::Attribute::NoAlias);
2748 
2749       // TODO: We could add the byref attribute if not byval, but it would
2750       // require updating many testcases.
2751 
2752       CharUnits Align = AI.getIndirectAlign();
2753 
2754       // In a byval argument, it is important that the required
2755       // alignment of the type is honored, as LLVM might be creating a
2756       // *new* stack object, and needs to know what alignment to give
2757       // it. (Sometimes it can deduce a sensible alignment on its own,
2758       // but not if clang decides it must emit a packed struct, or the
2759       // user specifies increased alignment requirements.)
2760       //
2761       // This is different from indirect *not* byval, where the object
2762       // exists already, and the align attribute is purely
2763       // informative.
2764       assert(!Align.isZero());
2765 
2766       // For now, only add this when we have a byval argument.
2767       // TODO: be less lazy about updating test cases.
2768       if (AI.getIndirectByVal())
2769         Attrs.addAlignmentAttr(Align.getQuantity());
2770 
2771       // byval disables readnone and readonly.
2772       AddPotentialArgAccess();
2773       break;
2774     }
2775     case ABIArgInfo::IndirectAliased: {
2776       CharUnits Align = AI.getIndirectAlign();
2777       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2778       Attrs.addAlignmentAttr(Align.getQuantity());
2779       break;
2780     }
2781     case ABIArgInfo::Ignore:
2782     case ABIArgInfo::Expand:
2783     case ABIArgInfo::CoerceAndExpand:
2784       break;
2785 
2786     case ABIArgInfo::InAlloca:
2787       // inalloca disables readnone and readonly.
2788       AddPotentialArgAccess();
2789       continue;
2790     }
2791 
2792     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2793       QualType PTy = RefTy->getPointeeType();
2794       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2795         Attrs.addDereferenceableAttr(
2796             getMinimumObjectSize(PTy).getQuantity());
2797       if (getTypes().getTargetAddressSpace(PTy) == 0 &&
2798           !CodeGenOpts.NullPointerIsValid)
2799         Attrs.addAttribute(llvm::Attribute::NonNull);
2800       if (PTy->isObjectType()) {
2801         llvm::Align Alignment =
2802             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2803         Attrs.addAlignmentAttr(Alignment);
2804       }
2805     }
2806 
2807     // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types:
2808     // > For arguments to a __kernel function declared to be a pointer to a
2809     // > data type, the OpenCL compiler can assume that the pointee is always
2810     // > appropriately aligned as required by the data type.
2811     if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() &&
2812         ParamType->isPointerType()) {
2813       QualType PTy = ParamType->getPointeeType();
2814       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2815         llvm::Align Alignment =
2816             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2817         Attrs.addAlignmentAttr(Alignment);
2818       }
2819     }
2820 
2821     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2822     case ParameterABI::Ordinary:
2823       break;
2824 
2825     case ParameterABI::SwiftIndirectResult: {
2826       // Add 'sret' if we haven't already used it for something, but
2827       // only if the result is void.
2828       if (!hasUsedSRet && RetTy->isVoidType()) {
2829         Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2830         hasUsedSRet = true;
2831       }
2832 
2833       // Add 'noalias' in either case.
2834       Attrs.addAttribute(llvm::Attribute::NoAlias);
2835 
2836       // Add 'dereferenceable' and 'alignment'.
2837       auto PTy = ParamType->getPointeeType();
2838       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2839         auto info = getContext().getTypeInfoInChars(PTy);
2840         Attrs.addDereferenceableAttr(info.Width.getQuantity());
2841         Attrs.addAlignmentAttr(info.Align.getAsAlign());
2842       }
2843       break;
2844     }
2845 
2846     case ParameterABI::SwiftErrorResult:
2847       Attrs.addAttribute(llvm::Attribute::SwiftError);
2848       break;
2849 
2850     case ParameterABI::SwiftContext:
2851       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2852       break;
2853 
2854     case ParameterABI::SwiftAsyncContext:
2855       Attrs.addAttribute(llvm::Attribute::SwiftAsync);
2856       break;
2857     }
2858 
2859     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2860       Attrs.addAttribute(llvm::Attribute::NoCapture);
2861 
2862     if (Attrs.hasAttributes()) {
2863       unsigned FirstIRArg, NumIRArgs;
2864       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2865       for (unsigned i = 0; i < NumIRArgs; i++)
2866         ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes(
2867             getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs));
2868     }
2869   }
2870   assert(ArgNo == FI.arg_size());
2871 
2872   AttrList = llvm::AttributeList::get(
2873       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2874       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2875 }
2876 
2877 /// An argument came in as a promoted argument; demote it back to its
2878 /// declared type.
emitArgumentDemotion(CodeGenFunction & CGF,const VarDecl * var,llvm::Value * value)2879 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2880                                          const VarDecl *var,
2881                                          llvm::Value *value) {
2882   llvm::Type *varType = CGF.ConvertType(var->getType());
2883 
2884   // This can happen with promotions that actually don't change the
2885   // underlying type, like the enum promotions.
2886   if (value->getType() == varType) return value;
2887 
2888   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2889          && "unexpected promotion type");
2890 
2891   if (isa<llvm::IntegerType>(varType))
2892     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2893 
2894   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2895 }
2896 
2897 /// Returns the attribute (either parameter attribute, or function
2898 /// attribute), which declares argument ArgNo to be non-null.
getNonNullAttr(const Decl * FD,const ParmVarDecl * PVD,QualType ArgType,unsigned ArgNo)2899 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2900                                          QualType ArgType, unsigned ArgNo) {
2901   // FIXME: __attribute__((nonnull)) can also be applied to:
2902   //   - references to pointers, where the pointee is known to be
2903   //     nonnull (apparently a Clang extension)
2904   //   - transparent unions containing pointers
2905   // In the former case, LLVM IR cannot represent the constraint. In
2906   // the latter case, we have no guarantee that the transparent union
2907   // is in fact passed as a pointer.
2908   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2909     return nullptr;
2910   // First, check attribute on parameter itself.
2911   if (PVD) {
2912     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2913       return ParmNNAttr;
2914   }
2915   // Check function attributes.
2916   if (!FD)
2917     return nullptr;
2918   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2919     if (NNAttr->isNonNull(ArgNo))
2920       return NNAttr;
2921   }
2922   return nullptr;
2923 }
2924 
2925 namespace {
2926   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2927     Address Temp;
2928     Address Arg;
CopyBackSwiftError__anon8a34942c0b11::CopyBackSwiftError2929     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
Emit__anon8a34942c0b11::CopyBackSwiftError2930     void Emit(CodeGenFunction &CGF, Flags flags) override {
2931       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2932       CGF.Builder.CreateStore(errorValue, Arg);
2933     }
2934   };
2935 }
2936 
EmitFunctionProlog(const CGFunctionInfo & FI,llvm::Function * Fn,const FunctionArgList & Args)2937 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2938                                          llvm::Function *Fn,
2939                                          const FunctionArgList &Args) {
2940   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2941     // Naked functions don't have prologues.
2942     return;
2943 
2944   // If this is an implicit-return-zero function, go ahead and
2945   // initialize the return value.  TODO: it might be nice to have
2946   // a more general mechanism for this that didn't require synthesized
2947   // return statements.
2948   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2949     if (FD->hasImplicitReturnZero()) {
2950       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2951       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2952       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2953       Builder.CreateStore(Zero, ReturnValue);
2954     }
2955   }
2956 
2957   // FIXME: We no longer need the types from FunctionArgList; lift up and
2958   // simplify.
2959 
2960   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2961   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2962 
2963   // If we're using inalloca, all the memory arguments are GEPs off of the last
2964   // parameter, which is a pointer to the complete memory area.
2965   Address ArgStruct = Address::invalid();
2966   if (IRFunctionArgs.hasInallocaArg())
2967     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2968                         FI.getArgStruct(), FI.getArgStructAlignment());
2969 
2970   // Name the struct return parameter.
2971   if (IRFunctionArgs.hasSRetArg()) {
2972     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2973     AI->setName("agg.result");
2974     AI->addAttr(llvm::Attribute::NoAlias);
2975   }
2976 
2977   // Track if we received the parameter as a pointer (indirect, byval, or
2978   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2979   // into a local alloca for us.
2980   SmallVector<ParamValue, 16> ArgVals;
2981   ArgVals.reserve(Args.size());
2982 
2983   // Create a pointer value for every parameter declaration.  This usually
2984   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2985   // any cleanups or do anything that might unwind.  We do that separately, so
2986   // we can push the cleanups in the correct order for the ABI.
2987   assert(FI.arg_size() == Args.size() &&
2988          "Mismatch between function signature & arguments.");
2989   unsigned ArgNo = 0;
2990   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2991   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2992        i != e; ++i, ++info_it, ++ArgNo) {
2993     const VarDecl *Arg = *i;
2994     const ABIArgInfo &ArgI = info_it->info;
2995 
2996     bool isPromoted =
2997       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2998     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2999     // the parameter is promoted. In this case we convert to
3000     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
3001     QualType Ty = isPromoted ? info_it->type : Arg->getType();
3002     assert(hasScalarEvaluationKind(Ty) ==
3003            hasScalarEvaluationKind(Arg->getType()));
3004 
3005     unsigned FirstIRArg, NumIRArgs;
3006     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3007 
3008     switch (ArgI.getKind()) {
3009     case ABIArgInfo::InAlloca: {
3010       assert(NumIRArgs == 0);
3011       auto FieldIndex = ArgI.getInAllocaFieldIndex();
3012       Address V =
3013           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
3014       if (ArgI.getInAllocaIndirect())
3015         V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty),
3016                     getContext().getTypeAlignInChars(Ty));
3017       ArgVals.push_back(ParamValue::forIndirect(V));
3018       break;
3019     }
3020 
3021     case ABIArgInfo::Indirect:
3022     case ABIArgInfo::IndirectAliased: {
3023       assert(NumIRArgs == 1);
3024       Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty),
3025                                   ArgI.getIndirectAlign(), KnownNonNull);
3026 
3027       if (!hasScalarEvaluationKind(Ty)) {
3028         // Aggregates and complex variables are accessed by reference. All we
3029         // need to do is realign the value, if requested. Also, if the address
3030         // may be aliased, copy it to ensure that the parameter variable is
3031         // mutable and has a unique adress, as C requires.
3032         Address V = ParamAddr;
3033         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
3034           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
3035 
3036           // Copy from the incoming argument pointer to the temporary with the
3037           // appropriate alignment.
3038           //
3039           // FIXME: We should have a common utility for generating an aggregate
3040           // copy.
3041           CharUnits Size = getContext().getTypeSizeInChars(Ty);
3042           Builder.CreateMemCpy(
3043               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
3044               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
3045               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
3046           V = AlignedTemp;
3047         }
3048         ArgVals.push_back(ParamValue::forIndirect(V));
3049       } else {
3050         // Load scalar value from indirect argument.
3051         llvm::Value *V =
3052             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
3053 
3054         if (isPromoted)
3055           V = emitArgumentDemotion(*this, Arg, V);
3056         ArgVals.push_back(ParamValue::forDirect(V));
3057       }
3058       break;
3059     }
3060 
3061     case ABIArgInfo::Extend:
3062     case ABIArgInfo::Direct: {
3063       auto AI = Fn->getArg(FirstIRArg);
3064       llvm::Type *LTy = ConvertType(Arg->getType());
3065 
3066       // Prepare parameter attributes. So far, only attributes for pointer
3067       // parameters are prepared. See
3068       // http://llvm.org/docs/LangRef.html#paramattrs.
3069       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
3070           ArgI.getCoerceToType()->isPointerTy()) {
3071         assert(NumIRArgs == 1);
3072 
3073         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
3074           // Set `nonnull` attribute if any.
3075           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
3076                              PVD->getFunctionScopeIndex()) &&
3077               !CGM.getCodeGenOpts().NullPointerIsValid)
3078             AI->addAttr(llvm::Attribute::NonNull);
3079 
3080           QualType OTy = PVD->getOriginalType();
3081           if (const auto *ArrTy =
3082               getContext().getAsConstantArrayType(OTy)) {
3083             // A C99 array parameter declaration with the static keyword also
3084             // indicates dereferenceability, and if the size is constant we can
3085             // use the dereferenceable attribute (which requires the size in
3086             // bytes).
3087             if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) {
3088               QualType ETy = ArrTy->getElementType();
3089               llvm::Align Alignment =
3090                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
3091               AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
3092               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
3093               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
3094                   ArrSize) {
3095                 llvm::AttrBuilder Attrs(getLLVMContext());
3096                 Attrs.addDereferenceableAttr(
3097                     getContext().getTypeSizeInChars(ETy).getQuantity() *
3098                     ArrSize);
3099                 AI->addAttrs(Attrs);
3100               } else if (getContext().getTargetInfo().getNullPointerValue(
3101                              ETy.getAddressSpace()) == 0 &&
3102                          !CGM.getCodeGenOpts().NullPointerIsValid) {
3103                 AI->addAttr(llvm::Attribute::NonNull);
3104               }
3105             }
3106           } else if (const auto *ArrTy =
3107                      getContext().getAsVariableArrayType(OTy)) {
3108             // For C99 VLAs with the static keyword, we don't know the size so
3109             // we can't use the dereferenceable attribute, but in addrspace(0)
3110             // we know that it must be nonnull.
3111             if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) {
3112               QualType ETy = ArrTy->getElementType();
3113               llvm::Align Alignment =
3114                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
3115               AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
3116               if (!getTypes().getTargetAddressSpace(ETy) &&
3117                   !CGM.getCodeGenOpts().NullPointerIsValid)
3118                 AI->addAttr(llvm::Attribute::NonNull);
3119             }
3120           }
3121 
3122           // Set `align` attribute if any.
3123           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
3124           if (!AVAttr)
3125             if (const auto *TOTy = OTy->getAs<TypedefType>())
3126               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
3127           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
3128             // If alignment-assumption sanitizer is enabled, we do *not* add
3129             // alignment attribute here, but emit normal alignment assumption,
3130             // so the UBSAN check could function.
3131             llvm::ConstantInt *AlignmentCI =
3132                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
3133             uint64_t AlignmentInt =
3134                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
3135             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
3136               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
3137               AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(
3138                   llvm::Align(AlignmentInt)));
3139             }
3140           }
3141         }
3142 
3143         // Set 'noalias' if an argument type has the `restrict` qualifier.
3144         if (Arg->getType().isRestrictQualified())
3145           AI->addAttr(llvm::Attribute::NoAlias);
3146       }
3147 
3148       // Prepare the argument value. If we have the trivial case, handle it
3149       // with no muss and fuss.
3150       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
3151           ArgI.getCoerceToType() == ConvertType(Ty) &&
3152           ArgI.getDirectOffset() == 0) {
3153         assert(NumIRArgs == 1);
3154 
3155         // LLVM expects swifterror parameters to be used in very restricted
3156         // ways.  Copy the value into a less-restricted temporary.
3157         llvm::Value *V = AI;
3158         if (FI.getExtParameterInfo(ArgNo).getABI()
3159               == ParameterABI::SwiftErrorResult) {
3160           QualType pointeeTy = Ty->getPointeeType();
3161           assert(pointeeTy->isPointerType());
3162           Address temp =
3163             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
3164           Address arg(V, ConvertTypeForMem(pointeeTy),
3165                       getContext().getTypeAlignInChars(pointeeTy));
3166           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
3167           Builder.CreateStore(incomingErrorValue, temp);
3168           V = temp.getPointer();
3169 
3170           // Push a cleanup to copy the value back at the end of the function.
3171           // The convention does not guarantee that the value will be written
3172           // back if the function exits with an unwind exception.
3173           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
3174         }
3175 
3176         // Ensure the argument is the correct type.
3177         if (V->getType() != ArgI.getCoerceToType())
3178           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
3179 
3180         if (isPromoted)
3181           V = emitArgumentDemotion(*this, Arg, V);
3182 
3183         // Because of merging of function types from multiple decls it is
3184         // possible for the type of an argument to not match the corresponding
3185         // type in the function type. Since we are codegening the callee
3186         // in here, add a cast to the argument type.
3187         llvm::Type *LTy = ConvertType(Arg->getType());
3188         if (V->getType() != LTy)
3189           V = Builder.CreateBitCast(V, LTy);
3190 
3191         ArgVals.push_back(ParamValue::forDirect(V));
3192         break;
3193       }
3194 
3195       // VLST arguments are coerced to VLATs at the function boundary for
3196       // ABI consistency. If this is a VLST that was coerced to
3197       // a VLAT at the function boundary and the types match up, use
3198       // llvm.vector.extract to convert back to the original VLST.
3199       if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
3200         llvm::Value *Coerced = Fn->getArg(FirstIRArg);
3201         if (auto *VecTyFrom =
3202                 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
3203           // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
3204           // vector, bitcast the source and use a vector extract.
3205           auto PredType =
3206               llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
3207           if (VecTyFrom == PredType &&
3208               VecTyTo->getElementType() == Builder.getInt8Ty()) {
3209             VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
3210             Coerced = Builder.CreateBitCast(Coerced, VecTyFrom);
3211           }
3212           if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
3213             llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
3214 
3215             assert(NumIRArgs == 1);
3216             Coerced->setName(Arg->getName() + ".coerce");
3217             ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
3218                 VecTyTo, Coerced, Zero, "cast.fixed")));
3219             break;
3220           }
3221         }
3222       }
3223 
3224       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
3225                                      Arg->getName());
3226 
3227       // Pointer to store into.
3228       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
3229 
3230       // Fast-isel and the optimizer generally like scalar values better than
3231       // FCAs, so we flatten them if this is safe to do for this argument.
3232       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
3233       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
3234           STy->getNumElements() > 1) {
3235         llvm::TypeSize StructSize = CGM.getDataLayout().getTypeAllocSize(STy);
3236         llvm::TypeSize PtrElementSize =
3237             CGM.getDataLayout().getTypeAllocSize(Ptr.getElementType());
3238         if (StructSize.isScalable()) {
3239           assert(STy->containsHomogeneousScalableVectorTypes() &&
3240                  "ABI only supports structure with homogeneous scalable vector "
3241                  "type");
3242           assert(StructSize == PtrElementSize &&
3243                  "Only allow non-fractional movement of structure with"
3244                  "homogeneous scalable vector type");
3245           assert(STy->getNumElements() == NumIRArgs);
3246 
3247           llvm::Value *LoadedStructValue = llvm::PoisonValue::get(STy);
3248           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3249             auto *AI = Fn->getArg(FirstIRArg + i);
3250             AI->setName(Arg->getName() + ".coerce" + Twine(i));
3251             LoadedStructValue =
3252                 Builder.CreateInsertValue(LoadedStructValue, AI, i);
3253           }
3254 
3255           Builder.CreateStore(LoadedStructValue, Ptr);
3256         } else {
3257           uint64_t SrcSize = StructSize.getFixedValue();
3258           uint64_t DstSize = PtrElementSize.getFixedValue();
3259 
3260           Address AddrToStoreInto = Address::invalid();
3261           if (SrcSize <= DstSize) {
3262             AddrToStoreInto = Ptr.withElementType(STy);
3263           } else {
3264             AddrToStoreInto =
3265                 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
3266           }
3267 
3268           assert(STy->getNumElements() == NumIRArgs);
3269           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3270             auto AI = Fn->getArg(FirstIRArg + i);
3271             AI->setName(Arg->getName() + ".coerce" + Twine(i));
3272             Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
3273             Builder.CreateStore(AI, EltPtr);
3274           }
3275 
3276           if (SrcSize > DstSize) {
3277             Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
3278           }
3279         }
3280       } else {
3281         // Simple case, just do a coerced store of the argument into the alloca.
3282         assert(NumIRArgs == 1);
3283         auto AI = Fn->getArg(FirstIRArg);
3284         AI->setName(Arg->getName() + ".coerce");
3285         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
3286       }
3287 
3288       // Match to what EmitParmDecl is expecting for this type.
3289       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
3290         llvm::Value *V =
3291             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
3292         if (isPromoted)
3293           V = emitArgumentDemotion(*this, Arg, V);
3294         ArgVals.push_back(ParamValue::forDirect(V));
3295       } else {
3296         ArgVals.push_back(ParamValue::forIndirect(Alloca));
3297       }
3298       break;
3299     }
3300 
3301     case ABIArgInfo::CoerceAndExpand: {
3302       // Reconstruct into a temporary.
3303       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3304       ArgVals.push_back(ParamValue::forIndirect(alloca));
3305 
3306       auto coercionType = ArgI.getCoerceAndExpandType();
3307       alloca = alloca.withElementType(coercionType);
3308 
3309       unsigned argIndex = FirstIRArg;
3310       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3311         llvm::Type *eltType = coercionType->getElementType(i);
3312         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
3313           continue;
3314 
3315         auto eltAddr = Builder.CreateStructGEP(alloca, i);
3316         auto elt = Fn->getArg(argIndex++);
3317         Builder.CreateStore(elt, eltAddr);
3318       }
3319       assert(argIndex == FirstIRArg + NumIRArgs);
3320       break;
3321     }
3322 
3323     case ABIArgInfo::Expand: {
3324       // If this structure was expanded into multiple arguments then
3325       // we need to create a temporary and reconstruct it from the
3326       // arguments.
3327       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3328       LValue LV = MakeAddrLValue(Alloca, Ty);
3329       ArgVals.push_back(ParamValue::forIndirect(Alloca));
3330 
3331       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
3332       ExpandTypeFromArgs(Ty, LV, FnArgIter);
3333       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
3334       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
3335         auto AI = Fn->getArg(FirstIRArg + i);
3336         AI->setName(Arg->getName() + "." + Twine(i));
3337       }
3338       break;
3339     }
3340 
3341     case ABIArgInfo::Ignore:
3342       assert(NumIRArgs == 0);
3343       // Initialize the local variable appropriately.
3344       if (!hasScalarEvaluationKind(Ty)) {
3345         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
3346       } else {
3347         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
3348         ArgVals.push_back(ParamValue::forDirect(U));
3349       }
3350       break;
3351     }
3352   }
3353 
3354   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3355     for (int I = Args.size() - 1; I >= 0; --I)
3356       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3357   } else {
3358     for (unsigned I = 0, E = Args.size(); I != E; ++I)
3359       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3360   }
3361 }
3362 
eraseUnusedBitCasts(llvm::Instruction * insn)3363 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
3364   while (insn->use_empty()) {
3365     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
3366     if (!bitcast) return;
3367 
3368     // This is "safe" because we would have used a ConstantExpr otherwise.
3369     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
3370     bitcast->eraseFromParent();
3371   }
3372 }
3373 
3374 /// Try to emit a fused autorelease of a return result.
tryEmitFusedAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)3375 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
3376                                                     llvm::Value *result) {
3377   // We must be immediately followed the cast.
3378   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
3379   if (BB->empty()) return nullptr;
3380   if (&BB->back() != result) return nullptr;
3381 
3382   llvm::Type *resultType = result->getType();
3383 
3384   // result is in a BasicBlock and is therefore an Instruction.
3385   llvm::Instruction *generator = cast<llvm::Instruction>(result);
3386 
3387   SmallVector<llvm::Instruction *, 4> InstsToKill;
3388 
3389   // Look for:
3390   //  %generator = bitcast %type1* %generator2 to %type2*
3391   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
3392     // We would have emitted this as a constant if the operand weren't
3393     // an Instruction.
3394     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
3395 
3396     // Require the generator to be immediately followed by the cast.
3397     if (generator->getNextNode() != bitcast)
3398       return nullptr;
3399 
3400     InstsToKill.push_back(bitcast);
3401   }
3402 
3403   // Look for:
3404   //   %generator = call i8* @objc_retain(i8* %originalResult)
3405   // or
3406   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
3407   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
3408   if (!call) return nullptr;
3409 
3410   bool doRetainAutorelease;
3411 
3412   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
3413     doRetainAutorelease = true;
3414   } else if (call->getCalledOperand() ==
3415              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
3416     doRetainAutorelease = false;
3417 
3418     // If we emitted an assembly marker for this call (and the
3419     // ARCEntrypoints field should have been set if so), go looking
3420     // for that call.  If we can't find it, we can't do this
3421     // optimization.  But it should always be the immediately previous
3422     // instruction, unless we needed bitcasts around the call.
3423     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
3424       llvm::Instruction *prev = call->getPrevNode();
3425       assert(prev);
3426       if (isa<llvm::BitCastInst>(prev)) {
3427         prev = prev->getPrevNode();
3428         assert(prev);
3429       }
3430       assert(isa<llvm::CallInst>(prev));
3431       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
3432              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
3433       InstsToKill.push_back(prev);
3434     }
3435   } else {
3436     return nullptr;
3437   }
3438 
3439   result = call->getArgOperand(0);
3440   InstsToKill.push_back(call);
3441 
3442   // Keep killing bitcasts, for sanity.  Note that we no longer care
3443   // about precise ordering as long as there's exactly one use.
3444   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
3445     if (!bitcast->hasOneUse()) break;
3446     InstsToKill.push_back(bitcast);
3447     result = bitcast->getOperand(0);
3448   }
3449 
3450   // Delete all the unnecessary instructions, from latest to earliest.
3451   for (auto *I : InstsToKill)
3452     I->eraseFromParent();
3453 
3454   // Do the fused retain/autorelease if we were asked to.
3455   if (doRetainAutorelease)
3456     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
3457 
3458   // Cast back to the result type.
3459   return CGF.Builder.CreateBitCast(result, resultType);
3460 }
3461 
3462 /// If this is a +1 of the value of an immutable 'self', remove it.
tryRemoveRetainOfSelf(CodeGenFunction & CGF,llvm::Value * result)3463 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
3464                                           llvm::Value *result) {
3465   // This is only applicable to a method with an immutable 'self'.
3466   const ObjCMethodDecl *method =
3467     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
3468   if (!method) return nullptr;
3469   const VarDecl *self = method->getSelfDecl();
3470   if (!self->getType().isConstQualified()) return nullptr;
3471 
3472   // Look for a retain call. Note: stripPointerCasts looks through returned arg
3473   // functions, which would cause us to miss the retain.
3474   llvm::CallInst *retainCall = dyn_cast<llvm::CallInst>(result);
3475   if (!retainCall || retainCall->getCalledOperand() !=
3476                          CGF.CGM.getObjCEntrypoints().objc_retain)
3477     return nullptr;
3478 
3479   // Look for an ordinary load of 'self'.
3480   llvm::Value *retainedValue = retainCall->getArgOperand(0);
3481   llvm::LoadInst *load =
3482     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
3483   if (!load || load->isAtomic() || load->isVolatile() ||
3484       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
3485     return nullptr;
3486 
3487   // Okay!  Burn it all down.  This relies for correctness on the
3488   // assumption that the retain is emitted as part of the return and
3489   // that thereafter everything is used "linearly".
3490   llvm::Type *resultType = result->getType();
3491   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
3492   assert(retainCall->use_empty());
3493   retainCall->eraseFromParent();
3494   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
3495 
3496   return CGF.Builder.CreateBitCast(load, resultType);
3497 }
3498 
3499 /// Emit an ARC autorelease of the result of a function.
3500 ///
3501 /// \return the value to actually return from the function
emitAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)3502 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
3503                                             llvm::Value *result) {
3504   // If we're returning 'self', kill the initial retain.  This is a
3505   // heuristic attempt to "encourage correctness" in the really unfortunate
3506   // case where we have a return of self during a dealloc and we desperately
3507   // need to avoid the possible autorelease.
3508   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
3509     return self;
3510 
3511   // At -O0, try to emit a fused retain/autorelease.
3512   if (CGF.shouldUseFusedARCCalls())
3513     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
3514       return fused;
3515 
3516   return CGF.EmitARCAutoreleaseReturnValue(result);
3517 }
3518 
3519 /// Heuristically search for a dominating store to the return-value slot.
findDominatingStoreToReturnValue(CodeGenFunction & CGF)3520 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3521   // Check if a User is a store which pointerOperand is the ReturnValue.
3522   // We are looking for stores to the ReturnValue, not for stores of the
3523   // ReturnValue to some other location.
3524   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
3525     auto *SI = dyn_cast<llvm::StoreInst>(U);
3526     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer() ||
3527         SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType())
3528       return nullptr;
3529     // These aren't actually possible for non-coerced returns, and we
3530     // only care about non-coerced returns on this code path.
3531     // All memory instructions inside __try block are volatile.
3532     assert(!SI->isAtomic() &&
3533            (!SI->isVolatile() || CGF.currentFunctionUsesSEHTry()));
3534     return SI;
3535   };
3536   // If there are multiple uses of the return-value slot, just check
3537   // for something immediately preceding the IP.  Sometimes this can
3538   // happen with how we generate implicit-returns; it can also happen
3539   // with noreturn cleanups.
3540   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
3541     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3542     if (IP->empty()) return nullptr;
3543 
3544     // Look at directly preceding instruction, skipping bitcasts and lifetime
3545     // markers.
3546     for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) {
3547       if (isa<llvm::BitCastInst>(&I))
3548         continue;
3549       if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I))
3550         if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end)
3551           continue;
3552 
3553       return GetStoreIfValid(&I);
3554     }
3555     return nullptr;
3556   }
3557 
3558   llvm::StoreInst *store =
3559       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
3560   if (!store) return nullptr;
3561 
3562   // Now do a first-and-dirty dominance check: just walk up the
3563   // single-predecessors chain from the current insertion point.
3564   llvm::BasicBlock *StoreBB = store->getParent();
3565   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3566   llvm::SmallPtrSet<llvm::BasicBlock *, 4> SeenBBs;
3567   while (IP != StoreBB) {
3568     if (!SeenBBs.insert(IP).second || !(IP = IP->getSinglePredecessor()))
3569       return nullptr;
3570   }
3571 
3572   // Okay, the store's basic block dominates the insertion point; we
3573   // can do our thing.
3574   return store;
3575 }
3576 
3577 // Helper functions for EmitCMSEClearRecord
3578 
3579 // Set the bits corresponding to a field having width `BitWidth` and located at
3580 // offset `BitOffset` (from the least significant bit) within a storage unit of
3581 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3582 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
setBitRange(SmallVectorImpl<uint64_t> & Bits,int BitOffset,int BitWidth,int CharWidth)3583 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3584                         int BitWidth, int CharWidth) {
3585   assert(CharWidth <= 64);
3586   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3587 
3588   int Pos = 0;
3589   if (BitOffset >= CharWidth) {
3590     Pos += BitOffset / CharWidth;
3591     BitOffset = BitOffset % CharWidth;
3592   }
3593 
3594   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3595   if (BitOffset + BitWidth >= CharWidth) {
3596     Bits[Pos++] |= (Used << BitOffset) & Used;
3597     BitWidth -= CharWidth - BitOffset;
3598     BitOffset = 0;
3599   }
3600 
3601   while (BitWidth >= CharWidth) {
3602     Bits[Pos++] = Used;
3603     BitWidth -= CharWidth;
3604   }
3605 
3606   if (BitWidth > 0)
3607     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3608 }
3609 
3610 // Set the bits corresponding to a field having width `BitWidth` and located at
3611 // offset `BitOffset` (from the least significant bit) within a storage unit of
3612 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3613 // `Bits` corresponds to one target byte. Use target endian layout.
setBitRange(SmallVectorImpl<uint64_t> & Bits,int StorageOffset,int StorageSize,int BitOffset,int BitWidth,int CharWidth,bool BigEndian)3614 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3615                         int StorageSize, int BitOffset, int BitWidth,
3616                         int CharWidth, bool BigEndian) {
3617 
3618   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3619   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3620 
3621   if (BigEndian)
3622     std::reverse(TmpBits.begin(), TmpBits.end());
3623 
3624   for (uint64_t V : TmpBits)
3625     Bits[StorageOffset++] |= V;
3626 }
3627 
3628 static void setUsedBits(CodeGenModule &, QualType, int,
3629                         SmallVectorImpl<uint64_t> &);
3630 
3631 // Set the bits in `Bits`, which correspond to the value representations of
3632 // the actual members of the record type `RTy`. Note that this function does
3633 // not handle base classes, virtual tables, etc, since they cannot happen in
3634 // CMSE function arguments or return. The bit mask corresponds to the target
3635 // memory layout, i.e. it's endian dependent.
setUsedBits(CodeGenModule & CGM,const RecordType * RTy,int Offset,SmallVectorImpl<uint64_t> & Bits)3636 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3637                         SmallVectorImpl<uint64_t> &Bits) {
3638   ASTContext &Context = CGM.getContext();
3639   int CharWidth = Context.getCharWidth();
3640   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3641   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3642   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3643 
3644   int Idx = 0;
3645   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3646     const FieldDecl *F = *I;
3647 
3648     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3649         F->getType()->isIncompleteArrayType())
3650       continue;
3651 
3652     if (F->isBitField()) {
3653       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3654       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3655                   BFI.StorageSize / CharWidth, BFI.Offset,
3656                   BFI.Size, CharWidth,
3657                   CGM.getDataLayout().isBigEndian());
3658       continue;
3659     }
3660 
3661     setUsedBits(CGM, F->getType(),
3662                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3663   }
3664 }
3665 
3666 // Set the bits in `Bits`, which correspond to the value representations of
3667 // the elements of an array type `ATy`.
setUsedBits(CodeGenModule & CGM,const ConstantArrayType * ATy,int Offset,SmallVectorImpl<uint64_t> & Bits)3668 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3669                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3670   const ASTContext &Context = CGM.getContext();
3671 
3672   QualType ETy = Context.getBaseElementType(ATy);
3673   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3674   SmallVector<uint64_t, 4> TmpBits(Size);
3675   setUsedBits(CGM, ETy, 0, TmpBits);
3676 
3677   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3678     auto Src = TmpBits.begin();
3679     auto Dst = Bits.begin() + Offset + I * Size;
3680     for (int J = 0; J < Size; ++J)
3681       *Dst++ |= *Src++;
3682   }
3683 }
3684 
3685 // Set the bits in `Bits`, which correspond to the value representations of
3686 // the type `QTy`.
setUsedBits(CodeGenModule & CGM,QualType QTy,int Offset,SmallVectorImpl<uint64_t> & Bits)3687 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3688                         SmallVectorImpl<uint64_t> &Bits) {
3689   if (const auto *RTy = QTy->getAs<RecordType>())
3690     return setUsedBits(CGM, RTy, Offset, Bits);
3691 
3692   ASTContext &Context = CGM.getContext();
3693   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3694     return setUsedBits(CGM, ATy, Offset, Bits);
3695 
3696   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3697   if (Size <= 0)
3698     return;
3699 
3700   std::fill_n(Bits.begin() + Offset, Size,
3701               (uint64_t(1) << Context.getCharWidth()) - 1);
3702 }
3703 
buildMultiCharMask(const SmallVectorImpl<uint64_t> & Bits,int Pos,int Size,int CharWidth,bool BigEndian)3704 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3705                                    int Pos, int Size, int CharWidth,
3706                                    bool BigEndian) {
3707   assert(Size > 0);
3708   uint64_t Mask = 0;
3709   if (BigEndian) {
3710     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3711          ++P)
3712       Mask = (Mask << CharWidth) | *P;
3713   } else {
3714     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3715     do
3716       Mask = (Mask << CharWidth) | *--P;
3717     while (P != End);
3718   }
3719   return Mask;
3720 }
3721 
3722 // Emit code to clear the bits in a record, which aren't a part of any user
3723 // declared member, when the record is a function return.
EmitCMSEClearRecord(llvm::Value * Src,llvm::IntegerType * ITy,QualType QTy)3724 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3725                                                   llvm::IntegerType *ITy,
3726                                                   QualType QTy) {
3727   assert(Src->getType() == ITy);
3728   assert(ITy->getScalarSizeInBits() <= 64);
3729 
3730   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3731   int Size = DataLayout.getTypeStoreSize(ITy);
3732   SmallVector<uint64_t, 4> Bits(Size);
3733   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3734 
3735   int CharWidth = CGM.getContext().getCharWidth();
3736   uint64_t Mask =
3737       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3738 
3739   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3740 }
3741 
3742 // Emit code to clear the bits in a record, which aren't a part of any user
3743 // declared member, when the record is a function argument.
EmitCMSEClearRecord(llvm::Value * Src,llvm::ArrayType * ATy,QualType QTy)3744 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3745                                                   llvm::ArrayType *ATy,
3746                                                   QualType QTy) {
3747   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3748   int Size = DataLayout.getTypeStoreSize(ATy);
3749   SmallVector<uint64_t, 16> Bits(Size);
3750   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3751 
3752   // Clear each element of the LLVM array.
3753   int CharWidth = CGM.getContext().getCharWidth();
3754   int CharsPerElt =
3755       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3756   int MaskIndex = 0;
3757   llvm::Value *R = llvm::PoisonValue::get(ATy);
3758   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3759     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3760                                        DataLayout.isBigEndian());
3761     MaskIndex += CharsPerElt;
3762     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3763     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3764     R = Builder.CreateInsertValue(R, T1, I);
3765   }
3766 
3767   return R;
3768 }
3769 
EmitFunctionEpilog(const CGFunctionInfo & FI,bool EmitRetDbgLoc,SourceLocation EndLoc)3770 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3771                                          bool EmitRetDbgLoc,
3772                                          SourceLocation EndLoc) {
3773   if (FI.isNoReturn()) {
3774     // Noreturn functions don't return.
3775     EmitUnreachable(EndLoc);
3776     return;
3777   }
3778 
3779   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3780     // Naked functions don't have epilogues.
3781     Builder.CreateUnreachable();
3782     return;
3783   }
3784 
3785   // Functions with no result always return void.
3786   if (!ReturnValue.isValid()) {
3787     Builder.CreateRetVoid();
3788     return;
3789   }
3790 
3791   llvm::DebugLoc RetDbgLoc;
3792   llvm::Value *RV = nullptr;
3793   QualType RetTy = FI.getReturnType();
3794   const ABIArgInfo &RetAI = FI.getReturnInfo();
3795 
3796   switch (RetAI.getKind()) {
3797   case ABIArgInfo::InAlloca:
3798     // Aggregates get evaluated directly into the destination.  Sometimes we
3799     // need to return the sret value in a register, though.
3800     assert(hasAggregateEvaluationKind(RetTy));
3801     if (RetAI.getInAllocaSRet()) {
3802       llvm::Function::arg_iterator EI = CurFn->arg_end();
3803       --EI;
3804       llvm::Value *ArgStruct = &*EI;
3805       llvm::Value *SRet = Builder.CreateStructGEP(
3806           FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex());
3807       llvm::Type *Ty =
3808           cast<llvm::GetElementPtrInst>(SRet)->getResultElementType();
3809       RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret");
3810     }
3811     break;
3812 
3813   case ABIArgInfo::Indirect: {
3814     auto AI = CurFn->arg_begin();
3815     if (RetAI.isSRetAfterThis())
3816       ++AI;
3817     switch (getEvaluationKind(RetTy)) {
3818     case TEK_Complex: {
3819       ComplexPairTy RT =
3820         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3821       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3822                          /*isInit*/ true);
3823       break;
3824     }
3825     case TEK_Aggregate:
3826       // Do nothing; aggregates get evaluated directly into the destination.
3827       break;
3828     case TEK_Scalar: {
3829       LValueBaseInfo BaseInfo;
3830       TBAAAccessInfo TBAAInfo;
3831       CharUnits Alignment =
3832           CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo);
3833       Address ArgAddr(&*AI, ConvertType(RetTy), Alignment);
3834       LValue ArgVal =
3835           LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo);
3836       EmitStoreOfScalar(
3837           Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true);
3838       break;
3839     }
3840     }
3841     break;
3842   }
3843 
3844   case ABIArgInfo::Extend:
3845   case ABIArgInfo::Direct:
3846     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3847         RetAI.getDirectOffset() == 0) {
3848       // The internal return value temp always will have pointer-to-return-type
3849       // type, just do a load.
3850 
3851       // If there is a dominating store to ReturnValue, we can elide
3852       // the load, zap the store, and usually zap the alloca.
3853       if (llvm::StoreInst *SI =
3854               findDominatingStoreToReturnValue(*this)) {
3855         // Reuse the debug location from the store unless there is
3856         // cleanup code to be emitted between the store and return
3857         // instruction.
3858         if (EmitRetDbgLoc && !AutoreleaseResult)
3859           RetDbgLoc = SI->getDebugLoc();
3860         // Get the stored value and nuke the now-dead store.
3861         RV = SI->getValueOperand();
3862         SI->eraseFromParent();
3863 
3864       // Otherwise, we have to do a simple load.
3865       } else {
3866         RV = Builder.CreateLoad(ReturnValue);
3867       }
3868     } else {
3869       // If the value is offset in memory, apply the offset now.
3870       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3871 
3872       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3873     }
3874 
3875     // In ARC, end functions that return a retainable type with a call
3876     // to objc_autoreleaseReturnValue.
3877     if (AutoreleaseResult) {
3878 #ifndef NDEBUG
3879       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3880       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3881       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3882       // CurCodeDecl or BlockInfo.
3883       QualType RT;
3884 
3885       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3886         RT = FD->getReturnType();
3887       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3888         RT = MD->getReturnType();
3889       else if (isa<BlockDecl>(CurCodeDecl))
3890         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3891       else
3892         llvm_unreachable("Unexpected function/method type");
3893 
3894       assert(getLangOpts().ObjCAutoRefCount &&
3895              !FI.isReturnsRetained() &&
3896              RT->isObjCRetainableType());
3897 #endif
3898       RV = emitAutoreleaseOfResult(*this, RV);
3899     }
3900 
3901     break;
3902 
3903   case ABIArgInfo::Ignore:
3904     break;
3905 
3906   case ABIArgInfo::CoerceAndExpand: {
3907     auto coercionType = RetAI.getCoerceAndExpandType();
3908 
3909     // Load all of the coerced elements out into results.
3910     llvm::SmallVector<llvm::Value*, 4> results;
3911     Address addr = ReturnValue.withElementType(coercionType);
3912     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3913       auto coercedEltType = coercionType->getElementType(i);
3914       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3915         continue;
3916 
3917       auto eltAddr = Builder.CreateStructGEP(addr, i);
3918       auto elt = Builder.CreateLoad(eltAddr);
3919       results.push_back(elt);
3920     }
3921 
3922     // If we have one result, it's the single direct result type.
3923     if (results.size() == 1) {
3924       RV = results[0];
3925 
3926     // Otherwise, we need to make a first-class aggregate.
3927     } else {
3928       // Construct a return type that lacks padding elements.
3929       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3930 
3931       RV = llvm::PoisonValue::get(returnType);
3932       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3933         RV = Builder.CreateInsertValue(RV, results[i], i);
3934       }
3935     }
3936     break;
3937   }
3938   case ABIArgInfo::Expand:
3939   case ABIArgInfo::IndirectAliased:
3940     llvm_unreachable("Invalid ABI kind for return argument");
3941   }
3942 
3943   llvm::Instruction *Ret;
3944   if (RV) {
3945     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3946       // For certain return types, clear padding bits, as they may reveal
3947       // sensitive information.
3948       // Small struct/union types are passed as integers.
3949       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3950       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3951         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3952     }
3953     EmitReturnValueCheck(RV);
3954     Ret = Builder.CreateRet(RV);
3955   } else {
3956     Ret = Builder.CreateRetVoid();
3957   }
3958 
3959   if (RetDbgLoc)
3960     Ret->setDebugLoc(std::move(RetDbgLoc));
3961 }
3962 
EmitReturnValueCheck(llvm::Value * RV)3963 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3964   // A current decl may not be available when emitting vtable thunks.
3965   if (!CurCodeDecl)
3966     return;
3967 
3968   // If the return block isn't reachable, neither is this check, so don't emit
3969   // it.
3970   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3971     return;
3972 
3973   ReturnsNonNullAttr *RetNNAttr = nullptr;
3974   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3975     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3976 
3977   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3978     return;
3979 
3980   // Prefer the returns_nonnull attribute if it's present.
3981   SourceLocation AttrLoc;
3982   SanitizerMask CheckKind;
3983   SanitizerHandler Handler;
3984   if (RetNNAttr) {
3985     assert(!requiresReturnValueNullabilityCheck() &&
3986            "Cannot check nullability and the nonnull attribute");
3987     AttrLoc = RetNNAttr->getLocation();
3988     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3989     Handler = SanitizerHandler::NonnullReturn;
3990   } else {
3991     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3992       if (auto *TSI = DD->getTypeSourceInfo())
3993         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3994           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3995     CheckKind = SanitizerKind::NullabilityReturn;
3996     Handler = SanitizerHandler::NullabilityReturn;
3997   }
3998 
3999   SanitizerScope SanScope(this);
4000 
4001   // Make sure the "return" source location is valid. If we're checking a
4002   // nullability annotation, make sure the preconditions for the check are met.
4003   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
4004   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
4005   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
4006   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
4007   if (requiresReturnValueNullabilityCheck())
4008     CanNullCheck =
4009         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
4010   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
4011   EmitBlock(Check);
4012 
4013   // Now do the null check.
4014   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
4015   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
4016   llvm::Value *DynamicData[] = {SLocPtr};
4017   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
4018 
4019   EmitBlock(NoCheck);
4020 
4021 #ifndef NDEBUG
4022   // The return location should not be used after the check has been emitted.
4023   ReturnLocation = Address::invalid();
4024 #endif
4025 }
4026 
isInAllocaArgument(CGCXXABI & ABI,QualType type)4027 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
4028   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
4029   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
4030 }
4031 
createPlaceholderSlot(CodeGenFunction & CGF,QualType Ty)4032 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
4033                                           QualType Ty) {
4034   // FIXME: Generate IR in one pass, rather than going back and fixing up these
4035   // placeholders.
4036   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
4037   llvm::Type *IRPtrTy = llvm::PointerType::getUnqual(CGF.getLLVMContext());
4038   llvm::Value *Placeholder = llvm::PoisonValue::get(IRPtrTy);
4039 
4040   // FIXME: When we generate this IR in one pass, we shouldn't need
4041   // this win32-specific alignment hack.
4042   CharUnits Align = CharUnits::fromQuantity(4);
4043   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
4044 
4045   return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align),
4046                                Ty.getQualifiers(),
4047                                AggValueSlot::IsNotDestructed,
4048                                AggValueSlot::DoesNotNeedGCBarriers,
4049                                AggValueSlot::IsNotAliased,
4050                                AggValueSlot::DoesNotOverlap);
4051 }
4052 
EmitDelegateCallArg(CallArgList & args,const VarDecl * param,SourceLocation loc)4053 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
4054                                           const VarDecl *param,
4055                                           SourceLocation loc) {
4056   // StartFunction converted the ABI-lowered parameter(s) into a
4057   // local alloca.  We need to turn that into an r-value suitable
4058   // for EmitCall.
4059   Address local = GetAddrOfLocalVar(param);
4060 
4061   QualType type = param->getType();
4062 
4063   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
4064   // but the argument needs to be the original pointer.
4065   if (type->isReferenceType()) {
4066     args.add(RValue::get(Builder.CreateLoad(local)), type);
4067 
4068   // In ARC, move out of consumed arguments so that the release cleanup
4069   // entered by StartFunction doesn't cause an over-release.  This isn't
4070   // optimal -O0 code generation, but it should get cleaned up when
4071   // optimization is enabled.  This also assumes that delegate calls are
4072   // performed exactly once for a set of arguments, but that should be safe.
4073   } else if (getLangOpts().ObjCAutoRefCount &&
4074              param->hasAttr<NSConsumedAttr>() &&
4075              type->isObjCRetainableType()) {
4076     llvm::Value *ptr = Builder.CreateLoad(local);
4077     auto null =
4078       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
4079     Builder.CreateStore(null, local);
4080     args.add(RValue::get(ptr), type);
4081 
4082   // For the most part, we just need to load the alloca, except that
4083   // aggregate r-values are actually pointers to temporaries.
4084   } else {
4085     args.add(convertTempToRValue(local, type, loc), type);
4086   }
4087 
4088   // Deactivate the cleanup for the callee-destructed param that was pushed.
4089   if (type->isRecordType() && !CurFuncIsThunk &&
4090       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
4091       param->needsDestruction(getContext())) {
4092     EHScopeStack::stable_iterator cleanup =
4093         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
4094     assert(cleanup.isValid() &&
4095            "cleanup for callee-destructed param not recorded");
4096     // This unreachable is a temporary marker which will be removed later.
4097     llvm::Instruction *isActive = Builder.CreateUnreachable();
4098     args.addArgCleanupDeactivation(cleanup, isActive);
4099   }
4100 }
4101 
isProvablyNull(llvm::Value * addr)4102 static bool isProvablyNull(llvm::Value *addr) {
4103   return isa<llvm::ConstantPointerNull>(addr);
4104 }
4105 
4106 /// Emit the actual writing-back of a writeback.
emitWriteback(CodeGenFunction & CGF,const CallArgList::Writeback & writeback)4107 static void emitWriteback(CodeGenFunction &CGF,
4108                           const CallArgList::Writeback &writeback) {
4109   const LValue &srcLV = writeback.Source;
4110   Address srcAddr = srcLV.getAddress(CGF);
4111   assert(!isProvablyNull(srcAddr.getPointer()) &&
4112          "shouldn't have writeback for provably null argument");
4113 
4114   llvm::BasicBlock *contBB = nullptr;
4115 
4116   // If the argument wasn't provably non-null, we need to null check
4117   // before doing the store.
4118   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
4119                                               CGF.CGM.getDataLayout());
4120   if (!provablyNonNull) {
4121     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
4122     contBB = CGF.createBasicBlock("icr.done");
4123 
4124     llvm::Value *isNull =
4125       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
4126     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
4127     CGF.EmitBlock(writebackBB);
4128   }
4129 
4130   // Load the value to writeback.
4131   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
4132 
4133   // Cast it back, in case we're writing an id to a Foo* or something.
4134   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
4135                                     "icr.writeback-cast");
4136 
4137   // Perform the writeback.
4138 
4139   // If we have a "to use" value, it's something we need to emit a use
4140   // of.  This has to be carefully threaded in: if it's done after the
4141   // release it's potentially undefined behavior (and the optimizer
4142   // will ignore it), and if it happens before the retain then the
4143   // optimizer could move the release there.
4144   if (writeback.ToUse) {
4145     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
4146 
4147     // Retain the new value.  No need to block-copy here:  the block's
4148     // being passed up the stack.
4149     value = CGF.EmitARCRetainNonBlock(value);
4150 
4151     // Emit the intrinsic use here.
4152     CGF.EmitARCIntrinsicUse(writeback.ToUse);
4153 
4154     // Load the old value (primitively).
4155     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
4156 
4157     // Put the new value in place (primitively).
4158     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
4159 
4160     // Release the old value.
4161     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
4162 
4163   // Otherwise, we can just do a normal lvalue store.
4164   } else {
4165     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
4166   }
4167 
4168   // Jump to the continuation block.
4169   if (!provablyNonNull)
4170     CGF.EmitBlock(contBB);
4171 }
4172 
emitWritebacks(CodeGenFunction & CGF,const CallArgList & args)4173 static void emitWritebacks(CodeGenFunction &CGF,
4174                            const CallArgList &args) {
4175   for (const auto &I : args.writebacks())
4176     emitWriteback(CGF, I);
4177 }
4178 
deactivateArgCleanupsBeforeCall(CodeGenFunction & CGF,const CallArgList & CallArgs)4179 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
4180                                             const CallArgList &CallArgs) {
4181   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
4182     CallArgs.getCleanupsToDeactivate();
4183   // Iterate in reverse to increase the likelihood of popping the cleanup.
4184   for (const auto &I : llvm::reverse(Cleanups)) {
4185     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
4186     I.IsActiveIP->eraseFromParent();
4187   }
4188 }
4189 
maybeGetUnaryAddrOfOperand(const Expr * E)4190 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
4191   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
4192     if (uop->getOpcode() == UO_AddrOf)
4193       return uop->getSubExpr();
4194   return nullptr;
4195 }
4196 
4197 /// Emit an argument that's being passed call-by-writeback.  That is,
4198 /// we are passing the address of an __autoreleased temporary; it
4199 /// might be copy-initialized with the current value of the given
4200 /// address, but it will definitely be copied out of after the call.
emitWritebackArg(CodeGenFunction & CGF,CallArgList & args,const ObjCIndirectCopyRestoreExpr * CRE)4201 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
4202                              const ObjCIndirectCopyRestoreExpr *CRE) {
4203   LValue srcLV;
4204 
4205   // Make an optimistic effort to emit the address as an l-value.
4206   // This can fail if the argument expression is more complicated.
4207   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
4208     srcLV = CGF.EmitLValue(lvExpr);
4209 
4210   // Otherwise, just emit it as a scalar.
4211   } else {
4212     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
4213 
4214     QualType srcAddrType =
4215       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
4216     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
4217   }
4218   Address srcAddr = srcLV.getAddress(CGF);
4219 
4220   // The dest and src types don't necessarily match in LLVM terms
4221   // because of the crazy ObjC compatibility rules.
4222 
4223   llvm::PointerType *destType =
4224       cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
4225   llvm::Type *destElemType =
4226       CGF.ConvertTypeForMem(CRE->getType()->getPointeeType());
4227 
4228   // If the address is a constant null, just pass the appropriate null.
4229   if (isProvablyNull(srcAddr.getPointer())) {
4230     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
4231              CRE->getType());
4232     return;
4233   }
4234 
4235   // Create the temporary.
4236   Address temp =
4237       CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp");
4238   // Loading an l-value can introduce a cleanup if the l-value is __weak,
4239   // and that cleanup will be conditional if we can't prove that the l-value
4240   // isn't null, so we need to register a dominating point so that the cleanups
4241   // system will make valid IR.
4242   CodeGenFunction::ConditionalEvaluation condEval(CGF);
4243 
4244   // Zero-initialize it if we're not doing a copy-initialization.
4245   bool shouldCopy = CRE->shouldCopy();
4246   if (!shouldCopy) {
4247     llvm::Value *null =
4248         llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType));
4249     CGF.Builder.CreateStore(null, temp);
4250   }
4251 
4252   llvm::BasicBlock *contBB = nullptr;
4253   llvm::BasicBlock *originBB = nullptr;
4254 
4255   // If the address is *not* known to be non-null, we need to switch.
4256   llvm::Value *finalArgument;
4257 
4258   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
4259                                               CGF.CGM.getDataLayout());
4260   if (provablyNonNull) {
4261     finalArgument = temp.getPointer();
4262   } else {
4263     llvm::Value *isNull =
4264       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
4265 
4266     finalArgument = CGF.Builder.CreateSelect(isNull,
4267                                    llvm::ConstantPointerNull::get(destType),
4268                                              temp.getPointer(), "icr.argument");
4269 
4270     // If we need to copy, then the load has to be conditional, which
4271     // means we need control flow.
4272     if (shouldCopy) {
4273       originBB = CGF.Builder.GetInsertBlock();
4274       contBB = CGF.createBasicBlock("icr.cont");
4275       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
4276       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
4277       CGF.EmitBlock(copyBB);
4278       condEval.begin(CGF);
4279     }
4280   }
4281 
4282   llvm::Value *valueToUse = nullptr;
4283 
4284   // Perform a copy if necessary.
4285   if (shouldCopy) {
4286     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
4287     assert(srcRV.isScalar());
4288 
4289     llvm::Value *src = srcRV.getScalarVal();
4290     src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast");
4291 
4292     // Use an ordinary store, not a store-to-lvalue.
4293     CGF.Builder.CreateStore(src, temp);
4294 
4295     // If optimization is enabled, and the value was held in a
4296     // __strong variable, we need to tell the optimizer that this
4297     // value has to stay alive until we're doing the store back.
4298     // This is because the temporary is effectively unretained,
4299     // and so otherwise we can violate the high-level semantics.
4300     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4301         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
4302       valueToUse = src;
4303     }
4304   }
4305 
4306   // Finish the control flow if we needed it.
4307   if (shouldCopy && !provablyNonNull) {
4308     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
4309     CGF.EmitBlock(contBB);
4310 
4311     // Make a phi for the value to intrinsically use.
4312     if (valueToUse) {
4313       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
4314                                                       "icr.to-use");
4315       phiToUse->addIncoming(valueToUse, copyBB);
4316       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
4317                             originBB);
4318       valueToUse = phiToUse;
4319     }
4320 
4321     condEval.end(CGF);
4322   }
4323 
4324   args.addWriteback(srcLV, temp, valueToUse);
4325   args.add(RValue::get(finalArgument), CRE->getType());
4326 }
4327 
allocateArgumentMemory(CodeGenFunction & CGF)4328 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
4329   assert(!StackBase);
4330 
4331   // Save the stack.
4332   StackBase = CGF.Builder.CreateStackSave("inalloca.save");
4333 }
4334 
freeArgumentMemory(CodeGenFunction & CGF) const4335 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
4336   if (StackBase) {
4337     // Restore the stack after the call.
4338     CGF.Builder.CreateStackRestore(StackBase);
4339   }
4340 }
4341 
EmitNonNullArgCheck(RValue RV,QualType ArgType,SourceLocation ArgLoc,AbstractCallee AC,unsigned ParmNum)4342 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
4343                                           SourceLocation ArgLoc,
4344                                           AbstractCallee AC,
4345                                           unsigned ParmNum) {
4346   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
4347                          SanOpts.has(SanitizerKind::NullabilityArg)))
4348     return;
4349 
4350   // The param decl may be missing in a variadic function.
4351   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
4352   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
4353 
4354   // Prefer the nonnull attribute if it's present.
4355   const NonNullAttr *NNAttr = nullptr;
4356   if (SanOpts.has(SanitizerKind::NonnullAttribute))
4357     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
4358 
4359   bool CanCheckNullability = false;
4360   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
4361     auto Nullability = PVD->getType()->getNullability();
4362     CanCheckNullability = Nullability &&
4363                           *Nullability == NullabilityKind::NonNull &&
4364                           PVD->getTypeSourceInfo();
4365   }
4366 
4367   if (!NNAttr && !CanCheckNullability)
4368     return;
4369 
4370   SourceLocation AttrLoc;
4371   SanitizerMask CheckKind;
4372   SanitizerHandler Handler;
4373   if (NNAttr) {
4374     AttrLoc = NNAttr->getLocation();
4375     CheckKind = SanitizerKind::NonnullAttribute;
4376     Handler = SanitizerHandler::NonnullArg;
4377   } else {
4378     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
4379     CheckKind = SanitizerKind::NullabilityArg;
4380     Handler = SanitizerHandler::NullabilityArg;
4381   }
4382 
4383   SanitizerScope SanScope(this);
4384   llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
4385   llvm::Constant *StaticData[] = {
4386       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
4387       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
4388   };
4389   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, std::nullopt);
4390 }
4391 
4392 // Check if the call is going to use the inalloca convention. This needs to
4393 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
4394 // later, so we can't check it directly.
hasInAllocaArgs(CodeGenModule & CGM,CallingConv ExplicitCC,ArrayRef<QualType> ArgTypes)4395 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
4396                             ArrayRef<QualType> ArgTypes) {
4397   // The Swift calling conventions don't go through the target-specific
4398   // argument classification, they never use inalloca.
4399   // TODO: Consider limiting inalloca use to only calling conventions supported
4400   // by MSVC.
4401   if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync)
4402     return false;
4403   if (!CGM.getTarget().getCXXABI().isMicrosoft())
4404     return false;
4405   return llvm::any_of(ArgTypes, [&](QualType Ty) {
4406     return isInAllocaArgument(CGM.getCXXABI(), Ty);
4407   });
4408 }
4409 
4410 #ifndef NDEBUG
4411 // Determine whether the given argument is an Objective-C method
4412 // that may have type parameters in its signature.
isObjCMethodWithTypeParams(const ObjCMethodDecl * method)4413 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4414   const DeclContext *dc = method->getDeclContext();
4415   if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
4416     return classDecl->getTypeParamListAsWritten();
4417   }
4418 
4419   if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4420     return catDecl->getTypeParamList();
4421   }
4422 
4423   return false;
4424 }
4425 #endif
4426 
4427 /// EmitCallArgs - Emit call arguments for a function.
EmitCallArgs(CallArgList & Args,PrototypeWrapper Prototype,llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,AbstractCallee AC,unsigned ParamsToSkip,EvaluationOrder Order)4428 void CodeGenFunction::EmitCallArgs(
4429     CallArgList &Args, PrototypeWrapper Prototype,
4430     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4431     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
4432   SmallVector<QualType, 16> ArgTypes;
4433 
4434   assert((ParamsToSkip == 0 || Prototype.P) &&
4435          "Can't skip parameters if type info is not provided");
4436 
4437   // This variable only captures *explicitly* written conventions, not those
4438   // applied by default via command line flags or target defaults, such as
4439   // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4440   // require knowing if this is a C++ instance method or being able to see
4441   // unprototyped FunctionTypes.
4442   CallingConv ExplicitCC = CC_C;
4443 
4444   // First, if a prototype was provided, use those argument types.
4445   bool IsVariadic = false;
4446   if (Prototype.P) {
4447     const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
4448     if (MD) {
4449       IsVariadic = MD->isVariadic();
4450       ExplicitCC = getCallingConventionForDecl(
4451           MD, CGM.getTarget().getTriple().isOSWindows());
4452       ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
4453                       MD->param_type_end());
4454     } else {
4455       const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
4456       IsVariadic = FPT->isVariadic();
4457       ExplicitCC = FPT->getExtInfo().getCC();
4458       ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
4459                       FPT->param_type_end());
4460     }
4461 
4462 #ifndef NDEBUG
4463     // Check that the prototyped types match the argument expression types.
4464     bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
4465     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4466     for (QualType Ty : ArgTypes) {
4467       assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4468       assert(
4469           (isGenericMethod || Ty->isVariablyModifiedType() ||
4470            Ty.getNonReferenceType()->isObjCRetainableType() ||
4471            getContext()
4472                    .getCanonicalType(Ty.getNonReferenceType())
4473                    .getTypePtr() ==
4474                getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
4475           "type mismatch in call argument!");
4476       ++Arg;
4477     }
4478 
4479     // Either we've emitted all the call args, or we have a call to variadic
4480     // function.
4481     assert((Arg == ArgRange.end() || IsVariadic) &&
4482            "Extra arguments in non-variadic function!");
4483 #endif
4484   }
4485 
4486   // If we still have any arguments, emit them using the type of the argument.
4487   for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size()))
4488     ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
4489   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
4490 
4491   // We must evaluate arguments from right to left in the MS C++ ABI,
4492   // because arguments are destroyed left to right in the callee. As a special
4493   // case, there are certain language constructs that require left-to-right
4494   // evaluation, and in those cases we consider the evaluation order requirement
4495   // to trump the "destruction order is reverse construction order" guarantee.
4496   bool LeftToRight =
4497       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4498           ? Order == EvaluationOrder::ForceLeftToRight
4499           : Order != EvaluationOrder::ForceRightToLeft;
4500 
4501   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
4502                                          RValue EmittedArg) {
4503     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
4504       return;
4505     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
4506     if (PS == nullptr)
4507       return;
4508 
4509     const auto &Context = getContext();
4510     auto SizeTy = Context.getSizeType();
4511     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4512     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4513     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
4514                                                      EmittedArg.getScalarVal(),
4515                                                      PS->isDynamic());
4516     Args.add(RValue::get(V), SizeTy);
4517     // If we're emitting args in reverse, be sure to do so with
4518     // pass_object_size, as well.
4519     if (!LeftToRight)
4520       std::swap(Args.back(), *(&Args.back() - 1));
4521   };
4522 
4523   // Insert a stack save if we're going to need any inalloca args.
4524   if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4525     assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4526            "inalloca only supported on x86");
4527     Args.allocateArgumentMemory(*this);
4528   }
4529 
4530   // Evaluate each argument in the appropriate order.
4531   size_t CallArgsStart = Args.size();
4532   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4533     unsigned Idx = LeftToRight ? I : E - I - 1;
4534     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4535     unsigned InitialArgSize = Args.size();
4536     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4537     // the argument and parameter match or the objc method is parameterized.
4538     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4539             getContext().hasSameUnqualifiedType((*Arg)->getType(),
4540                                                 ArgTypes[Idx]) ||
4541             (isa<ObjCMethodDecl>(AC.getDecl()) &&
4542              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4543            "Argument and parameter types don't match");
4544     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
4545     // In particular, we depend on it being the last arg in Args, and the
4546     // objectsize bits depend on there only being one arg if !LeftToRight.
4547     assert(InitialArgSize + 1 == Args.size() &&
4548            "The code below depends on only adding one arg per EmitCallArg");
4549     (void)InitialArgSize;
4550     // Since pointer argument are never emitted as LValue, it is safe to emit
4551     // non-null argument check for r-value only.
4552     if (!Args.back().hasLValue()) {
4553       RValue RVArg = Args.back().getKnownRValue();
4554       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
4555                           ParamsToSkip + Idx);
4556       // @llvm.objectsize should never have side-effects and shouldn't need
4557       // destruction/cleanups, so we can safely "emit" it after its arg,
4558       // regardless of right-to-leftness
4559       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4560     }
4561   }
4562 
4563   if (!LeftToRight) {
4564     // Un-reverse the arguments we just evaluated so they match up with the LLVM
4565     // IR function.
4566     std::reverse(Args.begin() + CallArgsStart, Args.end());
4567   }
4568 }
4569 
4570 namespace {
4571 
4572 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
DestroyUnpassedArg__anon8a34942c0f11::DestroyUnpassedArg4573   DestroyUnpassedArg(Address Addr, QualType Ty)
4574       : Addr(Addr), Ty(Ty) {}
4575 
4576   Address Addr;
4577   QualType Ty;
4578 
Emit__anon8a34942c0f11::DestroyUnpassedArg4579   void Emit(CodeGenFunction &CGF, Flags flags) override {
4580     QualType::DestructionKind DtorKind = Ty.isDestructedType();
4581     if (DtorKind == QualType::DK_cxx_destructor) {
4582       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4583       assert(!Dtor->isTrivial());
4584       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4585                                 /*Delegating=*/false, Addr, Ty);
4586     } else {
4587       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4588     }
4589   }
4590 };
4591 
4592 struct DisableDebugLocationUpdates {
4593   CodeGenFunction &CGF;
4594   bool disabledDebugInfo;
DisableDebugLocationUpdates__anon8a34942c0f11::DisableDebugLocationUpdates4595   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4596     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4597       CGF.disableDebugInfo();
4598   }
~DisableDebugLocationUpdates__anon8a34942c0f11::DisableDebugLocationUpdates4599   ~DisableDebugLocationUpdates() {
4600     if (disabledDebugInfo)
4601       CGF.enableDebugInfo();
4602   }
4603 };
4604 
4605 } // end anonymous namespace
4606 
getRValue(CodeGenFunction & CGF) const4607 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4608   if (!HasLV)
4609     return RV;
4610   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4611   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4612                         LV.isVolatile());
4613   IsUsed = true;
4614   return RValue::getAggregate(Copy.getAddress(CGF));
4615 }
4616 
copyInto(CodeGenFunction & CGF,Address Addr) const4617 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4618   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4619   if (!HasLV && RV.isScalar())
4620     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4621   else if (!HasLV && RV.isComplex())
4622     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4623   else {
4624     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
4625     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4626     // We assume that call args are never copied into subobjects.
4627     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4628                           HasLV ? LV.isVolatileQualified()
4629                                 : RV.isVolatileQualified());
4630   }
4631   IsUsed = true;
4632 }
4633 
EmitCallArg(CallArgList & args,const Expr * E,QualType type)4634 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4635                                   QualType type) {
4636   DisableDebugLocationUpdates Dis(*this, E);
4637   if (const ObjCIndirectCopyRestoreExpr *CRE
4638         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4639     assert(getLangOpts().ObjCAutoRefCount);
4640     return emitWritebackArg(*this, args, CRE);
4641   }
4642 
4643   assert(type->isReferenceType() == E->isGLValue() &&
4644          "reference binding to unmaterialized r-value!");
4645 
4646   if (E->isGLValue()) {
4647     assert(E->getObjectKind() == OK_Ordinary);
4648     return args.add(EmitReferenceBindingToExpr(E), type);
4649   }
4650 
4651   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4652 
4653   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4654   // However, we still have to push an EH-only cleanup in case we unwind before
4655   // we make it to the call.
4656   if (type->isRecordType() &&
4657       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4658     // If we're using inalloca, use the argument memory.  Otherwise, use a
4659     // temporary.
4660     AggValueSlot Slot = args.isUsingInAlloca()
4661         ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp");
4662 
4663     bool DestroyedInCallee = true, NeedsEHCleanup = true;
4664     if (const auto *RD = type->getAsCXXRecordDecl())
4665       DestroyedInCallee = RD->hasNonTrivialDestructor();
4666     else
4667       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
4668 
4669     if (DestroyedInCallee)
4670       Slot.setExternallyDestructed();
4671 
4672     EmitAggExpr(E, Slot);
4673     RValue RV = Slot.asRValue();
4674     args.add(RV, type);
4675 
4676     if (DestroyedInCallee && NeedsEHCleanup) {
4677       // Create a no-op GEP between the placeholder and the cleanup so we can
4678       // RAUW it successfully.  It also serves as a marker of the first
4679       // instruction where the cleanup is active.
4680       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4681                                               type);
4682       // This unreachable is a temporary marker which will be removed later.
4683       llvm::Instruction *IsActive = Builder.CreateUnreachable();
4684       args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive);
4685     }
4686     return;
4687   }
4688 
4689   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4690       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4691     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4692     assert(L.isSimple());
4693     args.addUncopiedAggregate(L, type);
4694     return;
4695   }
4696 
4697   args.add(EmitAnyExprToTemp(E), type);
4698 }
4699 
getVarArgType(const Expr * Arg)4700 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4701   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4702   // implicitly widens null pointer constants that are arguments to varargs
4703   // functions to pointer-sized ints.
4704   if (!getTarget().getTriple().isOSWindows())
4705     return Arg->getType();
4706 
4707   if (Arg->getType()->isIntegerType() &&
4708       getContext().getTypeSize(Arg->getType()) <
4709           getContext().getTargetInfo().getPointerWidth(LangAS::Default) &&
4710       Arg->isNullPointerConstant(getContext(),
4711                                  Expr::NPC_ValueDependentIsNotNull)) {
4712     return getContext().getIntPtrType();
4713   }
4714 
4715   return Arg->getType();
4716 }
4717 
4718 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4719 // optimizer it can aggressively ignore unwind edges.
4720 void
AddObjCARCExceptionMetadata(llvm::Instruction * Inst)4721 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4722   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4723       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4724     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4725                       CGM.getNoObjCARCExceptionsMetadata());
4726 }
4727 
4728 /// Emits a call to the given no-arguments nounwind runtime function.
4729 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::FunctionCallee callee,const llvm::Twine & name)4730 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4731                                          const llvm::Twine &name) {
4732   return EmitNounwindRuntimeCall(callee, std::nullopt, name);
4733 }
4734 
4735 /// Emits a call to the given nounwind runtime function.
4736 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::FunctionCallee callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)4737 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4738                                          ArrayRef<llvm::Value *> args,
4739                                          const llvm::Twine &name) {
4740   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4741   call->setDoesNotThrow();
4742   return call;
4743 }
4744 
4745 /// Emits a simple call (never an invoke) to the given no-arguments
4746 /// runtime function.
EmitRuntimeCall(llvm::FunctionCallee callee,const llvm::Twine & name)4747 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4748                                                  const llvm::Twine &name) {
4749   return EmitRuntimeCall(callee, std::nullopt, name);
4750 }
4751 
4752 // Calls which may throw must have operand bundles indicating which funclet
4753 // they are nested within.
4754 SmallVector<llvm::OperandBundleDef, 1>
getBundlesForFunclet(llvm::Value * Callee)4755 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4756   // There is no need for a funclet operand bundle if we aren't inside a
4757   // funclet.
4758   if (!CurrentFuncletPad)
4759     return (SmallVector<llvm::OperandBundleDef, 1>());
4760 
4761   // Skip intrinsics which cannot throw (as long as they don't lower into
4762   // regular function calls in the course of IR transformations).
4763   if (auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts())) {
4764     if (CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) {
4765       auto IID = CalleeFn->getIntrinsicID();
4766       if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID))
4767         return (SmallVector<llvm::OperandBundleDef, 1>());
4768     }
4769   }
4770 
4771   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4772   BundleList.emplace_back("funclet", CurrentFuncletPad);
4773   return BundleList;
4774 }
4775 
4776 /// Emits a simple call (never an invoke) to the given runtime function.
EmitRuntimeCall(llvm::FunctionCallee callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)4777 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4778                                                  ArrayRef<llvm::Value *> args,
4779                                                  const llvm::Twine &name) {
4780   llvm::CallInst *call = Builder.CreateCall(
4781       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4782   call->setCallingConv(getRuntimeCC());
4783   return call;
4784 }
4785 
4786 /// Emits a call or invoke to the given noreturn runtime function.
EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,ArrayRef<llvm::Value * > args)4787 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4788     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4789   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4790       getBundlesForFunclet(callee.getCallee());
4791 
4792   if (getInvokeDest()) {
4793     llvm::InvokeInst *invoke =
4794       Builder.CreateInvoke(callee,
4795                            getUnreachableBlock(),
4796                            getInvokeDest(),
4797                            args,
4798                            BundleList);
4799     invoke->setDoesNotReturn();
4800     invoke->setCallingConv(getRuntimeCC());
4801   } else {
4802     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4803     call->setDoesNotReturn();
4804     call->setCallingConv(getRuntimeCC());
4805     Builder.CreateUnreachable();
4806   }
4807 }
4808 
4809 /// Emits a call or invoke instruction to the given nullary runtime function.
4810 llvm::CallBase *
EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,const Twine & name)4811 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4812                                          const Twine &name) {
4813   return EmitRuntimeCallOrInvoke(callee, std::nullopt, name);
4814 }
4815 
4816 /// Emits a call or invoke instruction to the given runtime function.
4817 llvm::CallBase *
EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,ArrayRef<llvm::Value * > args,const Twine & name)4818 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4819                                          ArrayRef<llvm::Value *> args,
4820                                          const Twine &name) {
4821   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4822   call->setCallingConv(getRuntimeCC());
4823   return call;
4824 }
4825 
4826 /// Emits a call or invoke instruction to the given function, depending
4827 /// on the current state of the EH stack.
EmitCallOrInvoke(llvm::FunctionCallee Callee,ArrayRef<llvm::Value * > Args,const Twine & Name)4828 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4829                                                   ArrayRef<llvm::Value *> Args,
4830                                                   const Twine &Name) {
4831   llvm::BasicBlock *InvokeDest = getInvokeDest();
4832   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4833       getBundlesForFunclet(Callee.getCallee());
4834 
4835   llvm::CallBase *Inst;
4836   if (!InvokeDest)
4837     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4838   else {
4839     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4840     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4841                                 Name);
4842     EmitBlock(ContBB);
4843   }
4844 
4845   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4846   // optimizer it can aggressively ignore unwind edges.
4847   if (CGM.getLangOpts().ObjCAutoRefCount)
4848     AddObjCARCExceptionMetadata(Inst);
4849 
4850   return Inst;
4851 }
4852 
deferPlaceholderReplacement(llvm::Instruction * Old,llvm::Value * New)4853 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4854                                                   llvm::Value *New) {
4855   DeferredReplacements.push_back(
4856       std::make_pair(llvm::WeakTrackingVH(Old), New));
4857 }
4858 
4859 namespace {
4860 
4861 /// Specify given \p NewAlign as the alignment of return value attribute. If
4862 /// such attribute already exists, re-set it to the maximal one of two options.
4863 [[nodiscard]] llvm::AttributeList
maybeRaiseRetAlignmentAttribute(llvm::LLVMContext & Ctx,const llvm::AttributeList & Attrs,llvm::Align NewAlign)4864 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4865                                 const llvm::AttributeList &Attrs,
4866                                 llvm::Align NewAlign) {
4867   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4868   if (CurAlign >= NewAlign)
4869     return Attrs;
4870   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4871   return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment)
4872       .addRetAttribute(Ctx, AlignAttr);
4873 }
4874 
4875 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4876 protected:
4877   CodeGenFunction &CGF;
4878 
4879   /// We do nothing if this is, or becomes, nullptr.
4880   const AlignedAttrTy *AA = nullptr;
4881 
4882   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4883   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4884 
AbstractAssumeAlignedAttrEmitter(CodeGenFunction & CGF_,const Decl * FuncDecl)4885   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4886       : CGF(CGF_) {
4887     if (!FuncDecl)
4888       return;
4889     AA = FuncDecl->getAttr<AlignedAttrTy>();
4890   }
4891 
4892 public:
4893   /// If we can, materialize the alignment as an attribute on return value.
4894   [[nodiscard]] llvm::AttributeList
TryEmitAsCallSiteAttribute(const llvm::AttributeList & Attrs)4895   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4896     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4897       return Attrs;
4898     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4899     if (!AlignmentCI)
4900       return Attrs;
4901     // We may legitimately have non-power-of-2 alignment here.
4902     // If so, this is UB land, emit it via `@llvm.assume` instead.
4903     if (!AlignmentCI->getValue().isPowerOf2())
4904       return Attrs;
4905     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4906         CGF.getLLVMContext(), Attrs,
4907         llvm::Align(
4908             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4909     AA = nullptr; // We're done. Disallow doing anything else.
4910     return NewAttrs;
4911   }
4912 
4913   /// Emit alignment assumption.
4914   /// This is a general fallback that we take if either there is an offset,
4915   /// or the alignment is variable or we are sanitizing for alignment.
EmitAsAnAssumption(SourceLocation Loc,QualType RetTy,RValue & Ret)4916   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4917     if (!AA)
4918       return;
4919     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4920                                 AA->getLocation(), Alignment, OffsetCI);
4921     AA = nullptr; // We're done. Disallow doing anything else.
4922   }
4923 };
4924 
4925 /// Helper data structure to emit `AssumeAlignedAttr`.
4926 class AssumeAlignedAttrEmitter final
4927     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4928 public:
AssumeAlignedAttrEmitter(CodeGenFunction & CGF_,const Decl * FuncDecl)4929   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4930       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4931     if (!AA)
4932       return;
4933     // It is guaranteed that the alignment/offset are constants.
4934     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4935     if (Expr *Offset = AA->getOffset()) {
4936       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4937       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4938         OffsetCI = nullptr;
4939     }
4940   }
4941 };
4942 
4943 /// Helper data structure to emit `AllocAlignAttr`.
4944 class AllocAlignAttrEmitter final
4945     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4946 public:
AllocAlignAttrEmitter(CodeGenFunction & CGF_,const Decl * FuncDecl,const CallArgList & CallArgs)4947   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4948                         const CallArgList &CallArgs)
4949       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4950     if (!AA)
4951       return;
4952     // Alignment may or may not be a constant, and that is okay.
4953     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4954                     .getRValue(CGF)
4955                     .getScalarVal();
4956   }
4957 };
4958 
4959 } // namespace
4960 
getMaxVectorWidth(const llvm::Type * Ty)4961 static unsigned getMaxVectorWidth(const llvm::Type *Ty) {
4962   if (auto *VT = dyn_cast<llvm::VectorType>(Ty))
4963     return VT->getPrimitiveSizeInBits().getKnownMinValue();
4964   if (auto *AT = dyn_cast<llvm::ArrayType>(Ty))
4965     return getMaxVectorWidth(AT->getElementType());
4966 
4967   unsigned MaxVectorWidth = 0;
4968   if (auto *ST = dyn_cast<llvm::StructType>(Ty))
4969     for (auto *I : ST->elements())
4970       MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I));
4971   return MaxVectorWidth;
4972 }
4973 
EmitCall(const CGFunctionInfo & CallInfo,const CGCallee & Callee,ReturnValueSlot ReturnValue,const CallArgList & CallArgs,llvm::CallBase ** callOrInvoke,bool IsMustTail,SourceLocation Loc)4974 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4975                                  const CGCallee &Callee,
4976                                  ReturnValueSlot ReturnValue,
4977                                  const CallArgList &CallArgs,
4978                                  llvm::CallBase **callOrInvoke, bool IsMustTail,
4979                                  SourceLocation Loc) {
4980   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4981 
4982   assert(Callee.isOrdinary() || Callee.isVirtual());
4983 
4984   // Handle struct-return functions by passing a pointer to the
4985   // location that we would like to return into.
4986   QualType RetTy = CallInfo.getReturnType();
4987   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4988 
4989   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4990 
4991   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4992   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4993     // We can only guarantee that a function is called from the correct
4994     // context/function based on the appropriate target attributes,
4995     // so only check in the case where we have both always_inline and target
4996     // since otherwise we could be making a conditional call after a check for
4997     // the proper cpu features (and it won't cause code generation issues due to
4998     // function based code generation).
4999     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
5000         (TargetDecl->hasAttr<TargetAttr>() ||
5001          (CurFuncDecl && CurFuncDecl->hasAttr<TargetAttr>())))
5002       checkTargetFeatures(Loc, FD);
5003 
5004     // Some architectures (such as x86-64) have the ABI changed based on
5005     // attribute-target/features. Give them a chance to diagnose.
5006     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
5007         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
5008   }
5009 
5010   // 1. Set up the arguments.
5011 
5012   // If we're using inalloca, insert the allocation after the stack save.
5013   // FIXME: Do this earlier rather than hacking it in here!
5014   Address ArgMemory = Address::invalid();
5015   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
5016     const llvm::DataLayout &DL = CGM.getDataLayout();
5017     llvm::Instruction *IP = CallArgs.getStackBase();
5018     llvm::AllocaInst *AI;
5019     if (IP) {
5020       IP = IP->getNextNode();
5021       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
5022                                 "argmem", IP);
5023     } else {
5024       AI = CreateTempAlloca(ArgStruct, "argmem");
5025     }
5026     auto Align = CallInfo.getArgStructAlignment();
5027     AI->setAlignment(Align.getAsAlign());
5028     AI->setUsedWithInAlloca(true);
5029     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
5030     ArgMemory = Address(AI, ArgStruct, Align);
5031   }
5032 
5033   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
5034   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
5035 
5036   // If the call returns a temporary with struct return, create a temporary
5037   // alloca to hold the result, unless one is given to us.
5038   Address SRetPtr = Address::invalid();
5039   Address SRetAlloca = Address::invalid();
5040   llvm::Value *UnusedReturnSizePtr = nullptr;
5041   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
5042     if (!ReturnValue.isNull()) {
5043       SRetPtr = ReturnValue.getValue();
5044     } else {
5045       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
5046       if (HaveInsertPoint() && ReturnValue.isUnused()) {
5047         llvm::TypeSize size =
5048             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
5049         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
5050       }
5051     }
5052     if (IRFunctionArgs.hasSRetArg()) {
5053       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
5054     } else if (RetAI.isInAlloca()) {
5055       Address Addr =
5056           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
5057       Builder.CreateStore(SRetPtr.getPointer(), Addr);
5058     }
5059   }
5060 
5061   Address swiftErrorTemp = Address::invalid();
5062   Address swiftErrorArg = Address::invalid();
5063 
5064   // When passing arguments using temporary allocas, we need to add the
5065   // appropriate lifetime markers. This vector keeps track of all the lifetime
5066   // markers that need to be ended right after the call.
5067   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
5068 
5069   // Translate all of the arguments as necessary to match the IR lowering.
5070   assert(CallInfo.arg_size() == CallArgs.size() &&
5071          "Mismatch between function signature & arguments.");
5072   unsigned ArgNo = 0;
5073   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
5074   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
5075        I != E; ++I, ++info_it, ++ArgNo) {
5076     const ABIArgInfo &ArgInfo = info_it->info;
5077 
5078     // Insert a padding argument to ensure proper alignment.
5079     if (IRFunctionArgs.hasPaddingArg(ArgNo))
5080       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
5081           llvm::UndefValue::get(ArgInfo.getPaddingType());
5082 
5083     unsigned FirstIRArg, NumIRArgs;
5084     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
5085 
5086     bool ArgHasMaybeUndefAttr =
5087         IsArgumentMaybeUndef(TargetDecl, CallInfo.getNumRequiredArgs(), ArgNo);
5088 
5089     switch (ArgInfo.getKind()) {
5090     case ABIArgInfo::InAlloca: {
5091       assert(NumIRArgs == 0);
5092       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
5093       if (I->isAggregate()) {
5094         Address Addr = I->hasLValue()
5095                            ? I->getKnownLValue().getAddress(*this)
5096                            : I->getKnownRValue().getAggregateAddress();
5097         llvm::Instruction *Placeholder =
5098             cast<llvm::Instruction>(Addr.getPointer());
5099 
5100         if (!ArgInfo.getInAllocaIndirect()) {
5101           // Replace the placeholder with the appropriate argument slot GEP.
5102           CGBuilderTy::InsertPoint IP = Builder.saveIP();
5103           Builder.SetInsertPoint(Placeholder);
5104           Addr = Builder.CreateStructGEP(ArgMemory,
5105                                          ArgInfo.getInAllocaFieldIndex());
5106           Builder.restoreIP(IP);
5107         } else {
5108           // For indirect things such as overaligned structs, replace the
5109           // placeholder with a regular aggregate temporary alloca. Store the
5110           // address of this alloca into the struct.
5111           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
5112           Address ArgSlot = Builder.CreateStructGEP(
5113               ArgMemory, ArgInfo.getInAllocaFieldIndex());
5114           Builder.CreateStore(Addr.getPointer(), ArgSlot);
5115         }
5116         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
5117       } else if (ArgInfo.getInAllocaIndirect()) {
5118         // Make a temporary alloca and store the address of it into the argument
5119         // struct.
5120         Address Addr = CreateMemTempWithoutCast(
5121             I->Ty, getContext().getTypeAlignInChars(I->Ty),
5122             "indirect-arg-temp");
5123         I->copyInto(*this, Addr);
5124         Address ArgSlot =
5125             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
5126         Builder.CreateStore(Addr.getPointer(), ArgSlot);
5127       } else {
5128         // Store the RValue into the argument struct.
5129         Address Addr =
5130             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
5131         Addr = Addr.withElementType(ConvertTypeForMem(I->Ty));
5132         I->copyInto(*this, Addr);
5133       }
5134       break;
5135     }
5136 
5137     case ABIArgInfo::Indirect:
5138     case ABIArgInfo::IndirectAliased: {
5139       assert(NumIRArgs == 1);
5140       if (!I->isAggregate()) {
5141         // Make a temporary alloca to pass the argument.
5142         Address Addr = CreateMemTempWithoutCast(
5143             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
5144 
5145         llvm::Value *Val = Addr.getPointer();
5146         if (ArgHasMaybeUndefAttr)
5147           Val = Builder.CreateFreeze(Addr.getPointer());
5148         IRCallArgs[FirstIRArg] = Val;
5149 
5150         I->copyInto(*this, Addr);
5151       } else {
5152         // We want to avoid creating an unnecessary temporary+copy here;
5153         // however, we need one in three cases:
5154         // 1. If the argument is not byval, and we are required to copy the
5155         //    source.  (This case doesn't occur on any common architecture.)
5156         // 2. If the argument is byval, RV is not sufficiently aligned, and
5157         //    we cannot force it to be sufficiently aligned.
5158         // 3. If the argument is byval, but RV is not located in default
5159         //    or alloca address space.
5160         Address Addr = I->hasLValue()
5161                            ? I->getKnownLValue().getAddress(*this)
5162                            : I->getKnownRValue().getAggregateAddress();
5163         llvm::Value *V = Addr.getPointer();
5164         CharUnits Align = ArgInfo.getIndirectAlign();
5165         const llvm::DataLayout *TD = &CGM.getDataLayout();
5166 
5167         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
5168                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
5169                     TD->getAllocaAddrSpace()) &&
5170                "indirect argument must be in alloca address space");
5171 
5172         bool NeedCopy = false;
5173         if (Addr.getAlignment() < Align &&
5174             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
5175                 Align.getAsAlign()) {
5176           NeedCopy = true;
5177         } else if (I->hasLValue()) {
5178           auto LV = I->getKnownLValue();
5179           auto AS = LV.getAddressSpace();
5180 
5181           bool isByValOrRef =
5182               ArgInfo.isIndirectAliased() || ArgInfo.getIndirectByVal();
5183 
5184           if (!isByValOrRef ||
5185               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
5186             NeedCopy = true;
5187           }
5188           if (!getLangOpts().OpenCL) {
5189             if ((isByValOrRef &&
5190                 (AS != LangAS::Default &&
5191                  AS != CGM.getASTAllocaAddressSpace()))) {
5192               NeedCopy = true;
5193             }
5194           }
5195           // For OpenCL even if RV is located in default or alloca address space
5196           // we don't want to perform address space cast for it.
5197           else if ((isByValOrRef &&
5198                     Addr.getType()->getAddressSpace() != IRFuncTy->
5199                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
5200             NeedCopy = true;
5201           }
5202         }
5203 
5204         if (NeedCopy) {
5205           // Create an aligned temporary, and copy to it.
5206           Address AI = CreateMemTempWithoutCast(
5207               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
5208           llvm::Value *Val = AI.getPointer();
5209           if (ArgHasMaybeUndefAttr)
5210             Val = Builder.CreateFreeze(AI.getPointer());
5211           IRCallArgs[FirstIRArg] = Val;
5212 
5213           // Emit lifetime markers for the temporary alloca.
5214           llvm::TypeSize ByvalTempElementSize =
5215               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
5216           llvm::Value *LifetimeSize =
5217               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
5218 
5219           // Add cleanup code to emit the end lifetime marker after the call.
5220           if (LifetimeSize) // In case we disabled lifetime markers.
5221             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
5222 
5223           // Generate the copy.
5224           I->copyInto(*this, AI);
5225         } else {
5226           // Skip the extra memcpy call.
5227           auto *T = llvm::PointerType::get(
5228               CGM.getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace());
5229 
5230           llvm::Value *Val = getTargetHooks().performAddrSpaceCast(
5231               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
5232               true);
5233           if (ArgHasMaybeUndefAttr)
5234             Val = Builder.CreateFreeze(Val);
5235           IRCallArgs[FirstIRArg] = Val;
5236         }
5237       }
5238       break;
5239     }
5240 
5241     case ABIArgInfo::Ignore:
5242       assert(NumIRArgs == 0);
5243       break;
5244 
5245     case ABIArgInfo::Extend:
5246     case ABIArgInfo::Direct: {
5247       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
5248           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
5249           ArgInfo.getDirectOffset() == 0) {
5250         assert(NumIRArgs == 1);
5251         llvm::Value *V;
5252         if (!I->isAggregate())
5253           V = I->getKnownRValue().getScalarVal();
5254         else
5255           V = Builder.CreateLoad(
5256               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5257                              : I->getKnownRValue().getAggregateAddress());
5258 
5259         // Implement swifterror by copying into a new swifterror argument.
5260         // We'll write back in the normal path out of the call.
5261         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
5262               == ParameterABI::SwiftErrorResult) {
5263           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
5264 
5265           QualType pointeeTy = I->Ty->getPointeeType();
5266           swiftErrorArg = Address(V, ConvertTypeForMem(pointeeTy),
5267                                   getContext().getTypeAlignInChars(pointeeTy));
5268 
5269           swiftErrorTemp =
5270             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
5271           V = swiftErrorTemp.getPointer();
5272           cast<llvm::AllocaInst>(V)->setSwiftError(true);
5273 
5274           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
5275           Builder.CreateStore(errorValue, swiftErrorTemp);
5276         }
5277 
5278         // We might have to widen integers, but we should never truncate.
5279         if (ArgInfo.getCoerceToType() != V->getType() &&
5280             V->getType()->isIntegerTy())
5281           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
5282 
5283         // If the argument doesn't match, perform a bitcast to coerce it.  This
5284         // can happen due to trivial type mismatches.
5285         if (FirstIRArg < IRFuncTy->getNumParams() &&
5286             V->getType() != IRFuncTy->getParamType(FirstIRArg))
5287           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
5288 
5289         if (ArgHasMaybeUndefAttr)
5290           V = Builder.CreateFreeze(V);
5291         IRCallArgs[FirstIRArg] = V;
5292         break;
5293       }
5294 
5295       // FIXME: Avoid the conversion through memory if possible.
5296       Address Src = Address::invalid();
5297       if (!I->isAggregate()) {
5298         Src = CreateMemTemp(I->Ty, "coerce");
5299         I->copyInto(*this, Src);
5300       } else {
5301         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5302                              : I->getKnownRValue().getAggregateAddress();
5303       }
5304 
5305       // If the value is offset in memory, apply the offset now.
5306       Src = emitAddressAtOffset(*this, Src, ArgInfo);
5307 
5308       // Fast-isel and the optimizer generally like scalar values better than
5309       // FCAs, so we flatten them if this is safe to do for this argument.
5310       llvm::StructType *STy =
5311             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
5312       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
5313         llvm::Type *SrcTy = Src.getElementType();
5314         llvm::TypeSize SrcTypeSize =
5315             CGM.getDataLayout().getTypeAllocSize(SrcTy);
5316         llvm::TypeSize DstTypeSize = CGM.getDataLayout().getTypeAllocSize(STy);
5317         if (SrcTypeSize.isScalable()) {
5318           assert(STy->containsHomogeneousScalableVectorTypes() &&
5319                  "ABI only supports structure with homogeneous scalable vector "
5320                  "type");
5321           assert(SrcTypeSize == DstTypeSize &&
5322                  "Only allow non-fractional movement of structure with "
5323                  "homogeneous scalable vector type");
5324           assert(NumIRArgs == STy->getNumElements());
5325 
5326           llvm::Value *StoredStructValue =
5327               Builder.CreateLoad(Src, Src.getName() + ".tuple");
5328           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5329             llvm::Value *Extract = Builder.CreateExtractValue(
5330                 StoredStructValue, i, Src.getName() + ".extract" + Twine(i));
5331             IRCallArgs[FirstIRArg + i] = Extract;
5332           }
5333         } else {
5334           uint64_t SrcSize = SrcTypeSize.getFixedValue();
5335           uint64_t DstSize = DstTypeSize.getFixedValue();
5336 
5337           // If the source type is smaller than the destination type of the
5338           // coerce-to logic, copy the source value into a temp alloca the size
5339           // of the destination type to allow loading all of it. The bits past
5340           // the source value are left undef.
5341           if (SrcSize < DstSize) {
5342             Address TempAlloca = CreateTempAlloca(STy, Src.getAlignment(),
5343                                                   Src.getName() + ".coerce");
5344             Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
5345             Src = TempAlloca;
5346           } else {
5347             Src = Src.withElementType(STy);
5348           }
5349 
5350           assert(NumIRArgs == STy->getNumElements());
5351           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5352             Address EltPtr = Builder.CreateStructGEP(Src, i);
5353             llvm::Value *LI = Builder.CreateLoad(EltPtr);
5354             if (ArgHasMaybeUndefAttr)
5355               LI = Builder.CreateFreeze(LI);
5356             IRCallArgs[FirstIRArg + i] = LI;
5357           }
5358         }
5359       } else {
5360         // In the simple case, just pass the coerced loaded value.
5361         assert(NumIRArgs == 1);
5362         llvm::Value *Load =
5363             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
5364 
5365         if (CallInfo.isCmseNSCall()) {
5366           // For certain parameter types, clear padding bits, as they may reveal
5367           // sensitive information.
5368           // Small struct/union types are passed as integer arrays.
5369           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
5370           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
5371             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
5372         }
5373 
5374         if (ArgHasMaybeUndefAttr)
5375           Load = Builder.CreateFreeze(Load);
5376         IRCallArgs[FirstIRArg] = Load;
5377       }
5378 
5379       break;
5380     }
5381 
5382     case ABIArgInfo::CoerceAndExpand: {
5383       auto coercionType = ArgInfo.getCoerceAndExpandType();
5384       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
5385 
5386       llvm::Value *tempSize = nullptr;
5387       Address addr = Address::invalid();
5388       Address AllocaAddr = Address::invalid();
5389       if (I->isAggregate()) {
5390         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5391                               : I->getKnownRValue().getAggregateAddress();
5392 
5393       } else {
5394         RValue RV = I->getKnownRValue();
5395         assert(RV.isScalar()); // complex should always just be direct
5396 
5397         llvm::Type *scalarType = RV.getScalarVal()->getType();
5398         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
5399         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlign(scalarType);
5400 
5401         // Materialize to a temporary.
5402         addr = CreateTempAlloca(
5403             RV.getScalarVal()->getType(),
5404             CharUnits::fromQuantity(std::max(layout->getAlignment(), scalarAlign)),
5405             "tmp",
5406             /*ArraySize=*/nullptr, &AllocaAddr);
5407         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
5408 
5409         Builder.CreateStore(RV.getScalarVal(), addr);
5410       }
5411 
5412       addr = addr.withElementType(coercionType);
5413 
5414       unsigned IRArgPos = FirstIRArg;
5415       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5416         llvm::Type *eltType = coercionType->getElementType(i);
5417         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5418         Address eltAddr = Builder.CreateStructGEP(addr, i);
5419         llvm::Value *elt = Builder.CreateLoad(eltAddr);
5420         if (ArgHasMaybeUndefAttr)
5421           elt = Builder.CreateFreeze(elt);
5422         IRCallArgs[IRArgPos++] = elt;
5423       }
5424       assert(IRArgPos == FirstIRArg + NumIRArgs);
5425 
5426       if (tempSize) {
5427         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
5428       }
5429 
5430       break;
5431     }
5432 
5433     case ABIArgInfo::Expand: {
5434       unsigned IRArgPos = FirstIRArg;
5435       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
5436       assert(IRArgPos == FirstIRArg + NumIRArgs);
5437       break;
5438     }
5439     }
5440   }
5441 
5442   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
5443   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
5444 
5445   // If we're using inalloca, set up that argument.
5446   if (ArgMemory.isValid()) {
5447     llvm::Value *Arg = ArgMemory.getPointer();
5448     assert(IRFunctionArgs.hasInallocaArg());
5449     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
5450   }
5451 
5452   // 2. Prepare the function pointer.
5453 
5454   // If the callee is a bitcast of a non-variadic function to have a
5455   // variadic function pointer type, check to see if we can remove the
5456   // bitcast.  This comes up with unprototyped functions.
5457   //
5458   // This makes the IR nicer, but more importantly it ensures that we
5459   // can inline the function at -O0 if it is marked always_inline.
5460   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
5461                                    llvm::Value *Ptr) -> llvm::Function * {
5462     if (!CalleeFT->isVarArg())
5463       return nullptr;
5464 
5465     // Get underlying value if it's a bitcast
5466     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
5467       if (CE->getOpcode() == llvm::Instruction::BitCast)
5468         Ptr = CE->getOperand(0);
5469     }
5470 
5471     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
5472     if (!OrigFn)
5473       return nullptr;
5474 
5475     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
5476 
5477     // If the original type is variadic, or if any of the component types
5478     // disagree, we cannot remove the cast.
5479     if (OrigFT->isVarArg() ||
5480         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
5481         OrigFT->getReturnType() != CalleeFT->getReturnType())
5482       return nullptr;
5483 
5484     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
5485       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
5486         return nullptr;
5487 
5488     return OrigFn;
5489   };
5490 
5491   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
5492     CalleePtr = OrigFn;
5493     IRFuncTy = OrigFn->getFunctionType();
5494   }
5495 
5496   // 3. Perform the actual call.
5497 
5498   // Deactivate any cleanups that we're supposed to do immediately before
5499   // the call.
5500   if (!CallArgs.getCleanupsToDeactivate().empty())
5501     deactivateArgCleanupsBeforeCall(*this, CallArgs);
5502 
5503   // Assert that the arguments we computed match up.  The IR verifier
5504   // will catch this, but this is a common enough source of problems
5505   // during IRGen changes that it's way better for debugging to catch
5506   // it ourselves here.
5507 #ifndef NDEBUG
5508   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
5509   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5510     // Inalloca argument can have different type.
5511     if (IRFunctionArgs.hasInallocaArg() &&
5512         i == IRFunctionArgs.getInallocaArgNo())
5513       continue;
5514     if (i < IRFuncTy->getNumParams())
5515       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
5516   }
5517 #endif
5518 
5519   // Update the largest vector width if any arguments have vector types.
5520   for (unsigned i = 0; i < IRCallArgs.size(); ++i)
5521     LargestVectorWidth = std::max(LargestVectorWidth,
5522                                   getMaxVectorWidth(IRCallArgs[i]->getType()));
5523 
5524   // Compute the calling convention and attributes.
5525   unsigned CallingConv;
5526   llvm::AttributeList Attrs;
5527   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
5528                              Callee.getAbstractInfo(), Attrs, CallingConv,
5529                              /*AttrOnCallSite=*/true,
5530                              /*IsThunk=*/false);
5531 
5532   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5533     if (FD->hasAttr<StrictFPAttr>())
5534       // All calls within a strictfp function are marked strictfp
5535       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5536 
5537     // If -ffast-math is enabled and the function is guarded by an
5538     // '__attribute__((optnone)) adjust the memory attribute so the BE emits the
5539     // library call instead of the intrinsic.
5540     if (FD->hasAttr<OptimizeNoneAttr>() && getLangOpts().FastMath)
5541       CGM.AdjustMemoryAttribute(CalleePtr->getName(), Callee.getAbstractInfo(),
5542                                 Attrs);
5543   }
5544   // Add call-site nomerge attribute if exists.
5545   if (InNoMergeAttributedStmt)
5546     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge);
5547 
5548   // Add call-site noinline attribute if exists.
5549   if (InNoInlineAttributedStmt)
5550     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5551 
5552   // Add call-site always_inline attribute if exists.
5553   if (InAlwaysInlineAttributedStmt)
5554     Attrs =
5555         Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5556 
5557   // Apply some call-site-specific attributes.
5558   // TODO: work this into building the attribute set.
5559 
5560   // Apply always_inline to all calls within flatten functions.
5561   // FIXME: should this really take priority over __try, below?
5562   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5563       !InNoInlineAttributedStmt &&
5564       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5565     Attrs =
5566         Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5567   }
5568 
5569   // Disable inlining inside SEH __try blocks.
5570   if (isSEHTryScope()) {
5571     Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5572   }
5573 
5574   // Decide whether to use a call or an invoke.
5575   bool CannotThrow;
5576   if (currentFunctionUsesSEHTry()) {
5577     // SEH cares about asynchronous exceptions, so everything can "throw."
5578     CannotThrow = false;
5579   } else if (isCleanupPadScope() &&
5580              EHPersonality::get(*this).isMSVCXXPersonality()) {
5581     // The MSVC++ personality will implicitly terminate the program if an
5582     // exception is thrown during a cleanup outside of a try/catch.
5583     // We don't need to model anything in IR to get this behavior.
5584     CannotThrow = true;
5585   } else {
5586     // Otherwise, nounwind call sites will never throw.
5587     CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind);
5588 
5589     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5590       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5591         CannotThrow = true;
5592   }
5593 
5594   // If we made a temporary, be sure to clean up after ourselves. Note that we
5595   // can't depend on being inside of an ExprWithCleanups, so we need to manually
5596   // pop this cleanup later on. Being eager about this is OK, since this
5597   // temporary is 'invisible' outside of the callee.
5598   if (UnusedReturnSizePtr)
5599     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5600                                          UnusedReturnSizePtr);
5601 
5602   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5603 
5604   SmallVector<llvm::OperandBundleDef, 1> BundleList =
5605       getBundlesForFunclet(CalleePtr);
5606 
5607   if (SanOpts.has(SanitizerKind::KCFI) &&
5608       !isa_and_nonnull<FunctionDecl>(TargetDecl))
5609     EmitKCFIOperandBundle(ConcreteCallee, BundleList);
5610 
5611   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5612     if (FD->hasAttr<StrictFPAttr>())
5613       // All calls within a strictfp function are marked strictfp
5614       Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5615 
5616   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5617   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5618 
5619   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5620   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5621 
5622   // Emit the actual call/invoke instruction.
5623   llvm::CallBase *CI;
5624   if (!InvokeDest) {
5625     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5626   } else {
5627     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5628     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5629                               BundleList);
5630     EmitBlock(Cont);
5631   }
5632   if (CI->getCalledFunction() && CI->getCalledFunction()->hasName() &&
5633       CI->getCalledFunction()->getName().starts_with("_Z4sqrt")) {
5634     SetSqrtFPAccuracy(CI);
5635   }
5636   if (callOrInvoke)
5637     *callOrInvoke = CI;
5638 
5639   // If this is within a function that has the guard(nocf) attribute and is an
5640   // indirect call, add the "guard_nocf" attribute to this call to indicate that
5641   // Control Flow Guard checks should not be added, even if the call is inlined.
5642   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5643     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5644       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5645         Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf");
5646     }
5647   }
5648 
5649   // Apply the attributes and calling convention.
5650   CI->setAttributes(Attrs);
5651   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5652 
5653   // Apply various metadata.
5654 
5655   if (!CI->getType()->isVoidTy())
5656     CI->setName("call");
5657 
5658   // Update largest vector width from the return type.
5659   LargestVectorWidth =
5660       std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType()));
5661 
5662   // Insert instrumentation or attach profile metadata at indirect call sites.
5663   // For more details, see the comment before the definition of
5664   // IPVK_IndirectCallTarget in InstrProfData.inc.
5665   if (!CI->getCalledFunction())
5666     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5667                      CI, CalleePtr);
5668 
5669   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5670   // optimizer it can aggressively ignore unwind edges.
5671   if (CGM.getLangOpts().ObjCAutoRefCount)
5672     AddObjCARCExceptionMetadata(CI);
5673 
5674   // Set tail call kind if necessary.
5675   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5676     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5677       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5678     else if (IsMustTail)
5679       Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
5680   }
5681 
5682   // Add metadata for calls to MSAllocator functions
5683   if (getDebugInfo() && TargetDecl &&
5684       TargetDecl->hasAttr<MSAllocatorAttr>())
5685     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5686 
5687   // Add metadata if calling an __attribute__((error(""))) or warning fn.
5688   if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) {
5689     llvm::ConstantInt *Line =
5690         llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding());
5691     llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line);
5692     llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD});
5693     CI->setMetadata("srcloc", MDT);
5694   }
5695 
5696   // 4. Finish the call.
5697 
5698   // If the call doesn't return, finish the basic block and clear the
5699   // insertion point; this allows the rest of IRGen to discard
5700   // unreachable code.
5701   if (CI->doesNotReturn()) {
5702     if (UnusedReturnSizePtr)
5703       PopCleanupBlock();
5704 
5705     // Strip away the noreturn attribute to better diagnose unreachable UB.
5706     if (SanOpts.has(SanitizerKind::Unreachable)) {
5707       // Also remove from function since CallBase::hasFnAttr additionally checks
5708       // attributes of the called function.
5709       if (auto *F = CI->getCalledFunction())
5710         F->removeFnAttr(llvm::Attribute::NoReturn);
5711       CI->removeFnAttr(llvm::Attribute::NoReturn);
5712 
5713       // Avoid incompatibility with ASan which relies on the `noreturn`
5714       // attribute to insert handler calls.
5715       if (SanOpts.hasOneOf(SanitizerKind::Address |
5716                            SanitizerKind::KernelAddress)) {
5717         SanitizerScope SanScope(this);
5718         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5719         Builder.SetInsertPoint(CI);
5720         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5721         llvm::FunctionCallee Fn =
5722             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5723         EmitNounwindRuntimeCall(Fn);
5724       }
5725     }
5726 
5727     EmitUnreachable(Loc);
5728     Builder.ClearInsertionPoint();
5729 
5730     // FIXME: For now, emit a dummy basic block because expr emitters in
5731     // generally are not ready to handle emitting expressions at unreachable
5732     // points.
5733     EnsureInsertPoint();
5734 
5735     // Return a reasonable RValue.
5736     return GetUndefRValue(RetTy);
5737   }
5738 
5739   // If this is a musttail call, return immediately. We do not branch to the
5740   // epilogue in this case.
5741   if (IsMustTail) {
5742     for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end();
5743          ++it) {
5744       EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it);
5745       if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn()))
5746         CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups");
5747     }
5748     if (CI->getType()->isVoidTy())
5749       Builder.CreateRetVoid();
5750     else
5751       Builder.CreateRet(CI);
5752     Builder.ClearInsertionPoint();
5753     EnsureInsertPoint();
5754     return GetUndefRValue(RetTy);
5755   }
5756 
5757   // Perform the swifterror writeback.
5758   if (swiftErrorTemp.isValid()) {
5759     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5760     Builder.CreateStore(errorResult, swiftErrorArg);
5761   }
5762 
5763   // Emit any call-associated writebacks immediately.  Arguably this
5764   // should happen after any return-value munging.
5765   if (CallArgs.hasWritebacks())
5766     emitWritebacks(*this, CallArgs);
5767 
5768   // The stack cleanup for inalloca arguments has to run out of the normal
5769   // lexical order, so deactivate it and run it manually here.
5770   CallArgs.freeArgumentMemory(*this);
5771 
5772   // Extract the return value.
5773   RValue Ret = [&] {
5774     switch (RetAI.getKind()) {
5775     case ABIArgInfo::CoerceAndExpand: {
5776       auto coercionType = RetAI.getCoerceAndExpandType();
5777 
5778       Address addr = SRetPtr.withElementType(coercionType);
5779 
5780       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5781       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5782 
5783       unsigned unpaddedIndex = 0;
5784       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5785         llvm::Type *eltType = coercionType->getElementType(i);
5786         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5787         Address eltAddr = Builder.CreateStructGEP(addr, i);
5788         llvm::Value *elt = CI;
5789         if (requiresExtract)
5790           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5791         else
5792           assert(unpaddedIndex == 0);
5793         Builder.CreateStore(elt, eltAddr);
5794       }
5795       [[fallthrough]];
5796     }
5797 
5798     case ABIArgInfo::InAlloca:
5799     case ABIArgInfo::Indirect: {
5800       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5801       if (UnusedReturnSizePtr)
5802         PopCleanupBlock();
5803       return ret;
5804     }
5805 
5806     case ABIArgInfo::Ignore:
5807       // If we are ignoring an argument that had a result, make sure to
5808       // construct the appropriate return value for our caller.
5809       return GetUndefRValue(RetTy);
5810 
5811     case ABIArgInfo::Extend:
5812     case ABIArgInfo::Direct: {
5813       llvm::Type *RetIRTy = ConvertType(RetTy);
5814       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5815         switch (getEvaluationKind(RetTy)) {
5816         case TEK_Complex: {
5817           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5818           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5819           return RValue::getComplex(std::make_pair(Real, Imag));
5820         }
5821         case TEK_Aggregate: {
5822           Address DestPtr = ReturnValue.getValue();
5823           bool DestIsVolatile = ReturnValue.isVolatile();
5824 
5825           if (!DestPtr.isValid()) {
5826             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5827             DestIsVolatile = false;
5828           }
5829           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5830           return RValue::getAggregate(DestPtr);
5831         }
5832         case TEK_Scalar: {
5833           // If the argument doesn't match, perform a bitcast to coerce it.  This
5834           // can happen due to trivial type mismatches.
5835           llvm::Value *V = CI;
5836           if (V->getType() != RetIRTy)
5837             V = Builder.CreateBitCast(V, RetIRTy);
5838           return RValue::get(V);
5839         }
5840         }
5841         llvm_unreachable("bad evaluation kind");
5842       }
5843 
5844       // If coercing a fixed vector from a scalable vector for ABI
5845       // compatibility, and the types match, use the llvm.vector.extract
5846       // intrinsic to perform the conversion.
5847       if (auto *FixedDst = dyn_cast<llvm::FixedVectorType>(RetIRTy)) {
5848         llvm::Value *V = CI;
5849         if (auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(V->getType())) {
5850           if (FixedDst->getElementType() == ScalableSrc->getElementType()) {
5851             llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
5852             V = Builder.CreateExtractVector(FixedDst, V, Zero, "cast.fixed");
5853             return RValue::get(V);
5854           }
5855         }
5856       }
5857 
5858       Address DestPtr = ReturnValue.getValue();
5859       bool DestIsVolatile = ReturnValue.isVolatile();
5860 
5861       if (!DestPtr.isValid()) {
5862         DestPtr = CreateMemTemp(RetTy, "coerce");
5863         DestIsVolatile = false;
5864       }
5865 
5866       // An empty record can overlap other data (if declared with
5867       // no_unique_address); omit the store for such types - as there is no
5868       // actual data to store.
5869       if (!isEmptyRecord(getContext(), RetTy, true)) {
5870         // If the value is offset in memory, apply the offset now.
5871         Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5872         CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5873       }
5874 
5875       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5876     }
5877 
5878     case ABIArgInfo::Expand:
5879     case ABIArgInfo::IndirectAliased:
5880       llvm_unreachable("Invalid ABI kind for return argument");
5881     }
5882 
5883     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5884   } ();
5885 
5886   // Emit the assume_aligned check on the return value.
5887   if (Ret.isScalar() && TargetDecl) {
5888     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5889     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5890   }
5891 
5892   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5893   // we can't use the full cleanup mechanism.
5894   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5895     LifetimeEnd.Emit(*this, /*Flags=*/{});
5896 
5897   if (!ReturnValue.isExternallyDestructed() &&
5898       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5899     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5900                 RetTy);
5901 
5902   return Ret;
5903 }
5904 
prepareConcreteCallee(CodeGenFunction & CGF) const5905 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5906   if (isVirtual()) {
5907     const CallExpr *CE = getVirtualCallExpr();
5908     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5909         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5910         CE ? CE->getBeginLoc() : SourceLocation());
5911   }
5912 
5913   return *this;
5914 }
5915 
5916 /* VarArg handling */
5917 
EmitVAArg(VAArgExpr * VE,Address & VAListAddr)5918 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5919   VAListAddr = VE->isMicrosoftABI()
5920                  ? EmitMSVAListRef(VE->getSubExpr())
5921                  : EmitVAListRef(VE->getSubExpr());
5922   QualType Ty = VE->getType();
5923   if (VE->isMicrosoftABI())
5924     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5925   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5926 }
5927