1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 using namespace clang;
49 using namespace CodeGen;
50 
51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
52 /// markers.
shouldEmitLifetimeMarkers(const CodeGenOptions & CGOpts,const LangOptions & LangOpts)53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
54                                       const LangOptions &LangOpts) {
55   if (CGOpts.DisableLifetimeMarkers)
56     return false;
57 
58   // Sanitizers may use markers.
59   if (CGOpts.SanitizeAddressUseAfterScope ||
60       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
61       LangOpts.Sanitize.has(SanitizerKind::Memory))
62     return true;
63 
64   // For now, only in optimized builds.
65   return CGOpts.OptimizationLevel != 0;
66 }
67 
CodeGenFunction(CodeGenModule & cgm,bool suppressNewContext)68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
69     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
70       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
71               CGBuilderInserterTy(this)),
72       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
73       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
74       ShouldEmitLifetimeMarkers(
75           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
76   if (!suppressNewContext)
77     CGM.getCXXABI().getMangleContext().startNewFunction();
78   EHStack.setCGF(this);
79 
80   SetFastMathFlags(CurFPFeatures);
81   SetFPModel();
82 }
83 
~CodeGenFunction()84 CodeGenFunction::~CodeGenFunction() {
85   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
86 
87   if (getLangOpts().OpenMP && CurFn)
88     CGM.getOpenMPRuntime().functionFinished(*this);
89 
90   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
91   // outlining etc) at some point. Doing it once the function codegen is done
92   // seems to be a reasonable spot. We do it here, as opposed to the deletion
93   // time of the CodeGenModule, because we have to ensure the IR has not yet
94   // been "emitted" to the outside, thus, modifications are still sensible.
95   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
96     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
97 }
98 
99 // Map the LangOption for exception behavior into
100 // the corresponding enum in the IR.
101 llvm::fp::ExceptionBehavior
ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind)102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
103 
104   switch (Kind) {
105   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
106   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
107   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
108   }
109   llvm_unreachable("Unsupported FP Exception Behavior");
110 }
111 
SetFPModel()112 void CodeGenFunction::SetFPModel() {
113   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
114   auto fpExceptionBehavior = ToConstrainedExceptMD(
115                                getLangOpts().getFPExceptionMode());
116 
117   Builder.setDefaultConstrainedRounding(RM);
118   Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
119   Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore ||
120                              RM != llvm::RoundingMode::NearestTiesToEven);
121 }
122 
SetFastMathFlags(FPOptions FPFeatures)123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124   llvm::FastMathFlags FMF;
125   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
126   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
127   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
128   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
129   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
130   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
131   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132   Builder.setFastMathFlags(FMF);
133 }
134 
CGFPOptionsRAII(CodeGenFunction & CGF,const Expr * E)135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
136                                                   const Expr *E)
137     : CGF(CGF) {
138   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
139 }
140 
CGFPOptionsRAII(CodeGenFunction & CGF,FPOptions FPFeatures)141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
142                                                   FPOptions FPFeatures)
143     : CGF(CGF) {
144   ConstructorHelper(FPFeatures);
145 }
146 
ConstructorHelper(FPOptions FPFeatures)147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
148   OldFPFeatures = CGF.CurFPFeatures;
149   CGF.CurFPFeatures = FPFeatures;
150 
151   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
152   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
153 
154   if (OldFPFeatures == FPFeatures)
155     return;
156 
157   FMFGuard.emplace(CGF.Builder);
158 
159   llvm::RoundingMode NewRoundingBehavior =
160       static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
161   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
162   auto NewExceptionBehavior =
163       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
164           FPFeatures.getFPExceptionMode()));
165   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
166 
167   CGF.SetFastMathFlags(FPFeatures);
168 
169   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
170           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
171           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
172           (NewExceptionBehavior == llvm::fp::ebIgnore &&
173            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
174          "FPConstrained should be enabled on entire function");
175 
176   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
177     auto OldValue =
178         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
179     auto NewValue = OldValue & Value;
180     if (OldValue != NewValue)
181       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
182   };
183   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
184   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
185   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
186   mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
187                                          FPFeatures.getAllowReciprocal() &&
188                                          FPFeatures.getAllowApproxFunc() &&
189                                          FPFeatures.getNoSignedZero());
190 }
191 
~CGFPOptionsRAII()192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
193   CGF.CurFPFeatures = OldFPFeatures;
194   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
195   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
196 }
197 
MakeNaturalAlignAddrLValue(llvm::Value * V,QualType T)198 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
199   LValueBaseInfo BaseInfo;
200   TBAAAccessInfo TBAAInfo;
201   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
202   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
203                           TBAAInfo);
204 }
205 
206 /// Given a value of type T* that may not be to a complete object,
207 /// construct an l-value with the natural pointee alignment of T.
208 LValue
MakeNaturalAlignPointeeAddrLValue(llvm::Value * V,QualType T)209 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
210   LValueBaseInfo BaseInfo;
211   TBAAAccessInfo TBAAInfo;
212   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
213                                                 /* forPointeeType= */ true);
214   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
215 }
216 
217 
ConvertTypeForMem(QualType T)218 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
219   return CGM.getTypes().ConvertTypeForMem(T);
220 }
221 
ConvertType(QualType T)222 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
223   return CGM.getTypes().ConvertType(T);
224 }
225 
getEvaluationKind(QualType type)226 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
227   type = type.getCanonicalType();
228   while (true) {
229     switch (type->getTypeClass()) {
230 #define TYPE(name, parent)
231 #define ABSTRACT_TYPE(name, parent)
232 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
233 #define DEPENDENT_TYPE(name, parent) case Type::name:
234 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
235 #include "clang/AST/TypeNodes.inc"
236       llvm_unreachable("non-canonical or dependent type in IR-generation");
237 
238     case Type::Auto:
239     case Type::DeducedTemplateSpecialization:
240       llvm_unreachable("undeduced type in IR-generation");
241 
242     // Various scalar types.
243     case Type::Builtin:
244     case Type::Pointer:
245     case Type::BlockPointer:
246     case Type::LValueReference:
247     case Type::RValueReference:
248     case Type::MemberPointer:
249     case Type::Vector:
250     case Type::ExtVector:
251     case Type::ConstantMatrix:
252     case Type::FunctionProto:
253     case Type::FunctionNoProto:
254     case Type::Enum:
255     case Type::ObjCObjectPointer:
256     case Type::Pipe:
257     case Type::ExtInt:
258       return TEK_Scalar;
259 
260     // Complexes.
261     case Type::Complex:
262       return TEK_Complex;
263 
264     // Arrays, records, and Objective-C objects.
265     case Type::ConstantArray:
266     case Type::IncompleteArray:
267     case Type::VariableArray:
268     case Type::Record:
269     case Type::ObjCObject:
270     case Type::ObjCInterface:
271       return TEK_Aggregate;
272 
273     // We operate on atomic values according to their underlying type.
274     case Type::Atomic:
275       type = cast<AtomicType>(type)->getValueType();
276       continue;
277     }
278     llvm_unreachable("unknown type kind!");
279   }
280 }
281 
EmitReturnBlock()282 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
283   // For cleanliness, we try to avoid emitting the return block for
284   // simple cases.
285   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
286 
287   if (CurBB) {
288     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
289 
290     // We have a valid insert point, reuse it if it is empty or there are no
291     // explicit jumps to the return block.
292     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
293       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
294       delete ReturnBlock.getBlock();
295       ReturnBlock = JumpDest();
296     } else
297       EmitBlock(ReturnBlock.getBlock());
298     return llvm::DebugLoc();
299   }
300 
301   // Otherwise, if the return block is the target of a single direct
302   // branch then we can just put the code in that block instead. This
303   // cleans up functions which started with a unified return block.
304   if (ReturnBlock.getBlock()->hasOneUse()) {
305     llvm::BranchInst *BI =
306       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
307     if (BI && BI->isUnconditional() &&
308         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
309       // Record/return the DebugLoc of the simple 'return' expression to be used
310       // later by the actual 'ret' instruction.
311       llvm::DebugLoc Loc = BI->getDebugLoc();
312       Builder.SetInsertPoint(BI->getParent());
313       BI->eraseFromParent();
314       delete ReturnBlock.getBlock();
315       ReturnBlock = JumpDest();
316       return Loc;
317     }
318   }
319 
320   // FIXME: We are at an unreachable point, there is no reason to emit the block
321   // unless it has uses. However, we still need a place to put the debug
322   // region.end for now.
323 
324   EmitBlock(ReturnBlock.getBlock());
325   return llvm::DebugLoc();
326 }
327 
EmitIfUsed(CodeGenFunction & CGF,llvm::BasicBlock * BB)328 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
329   if (!BB) return;
330   if (!BB->use_empty())
331     return CGF.CurFn->getBasicBlockList().push_back(BB);
332   delete BB;
333 }
334 
FinishFunction(SourceLocation EndLoc)335 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
336   assert(BreakContinueStack.empty() &&
337          "mismatched push/pop in break/continue stack!");
338 
339   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
340     && NumSimpleReturnExprs == NumReturnExprs
341     && ReturnBlock.getBlock()->use_empty();
342   // Usually the return expression is evaluated before the cleanup
343   // code.  If the function contains only a simple return statement,
344   // such as a constant, the location before the cleanup code becomes
345   // the last useful breakpoint in the function, because the simple
346   // return expression will be evaluated after the cleanup code. To be
347   // safe, set the debug location for cleanup code to the location of
348   // the return statement.  Otherwise the cleanup code should be at the
349   // end of the function's lexical scope.
350   //
351   // If there are multiple branches to the return block, the branch
352   // instructions will get the location of the return statements and
353   // all will be fine.
354   if (CGDebugInfo *DI = getDebugInfo()) {
355     if (OnlySimpleReturnStmts)
356       DI->EmitLocation(Builder, LastStopPoint);
357     else
358       DI->EmitLocation(Builder, EndLoc);
359   }
360 
361   // Pop any cleanups that might have been associated with the
362   // parameters.  Do this in whatever block we're currently in; it's
363   // important to do this before we enter the return block or return
364   // edges will be *really* confused.
365   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
366   bool HasOnlyLifetimeMarkers =
367       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
368   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
369   if (HasCleanups) {
370     // Make sure the line table doesn't jump back into the body for
371     // the ret after it's been at EndLoc.
372     Optional<ApplyDebugLocation> AL;
373     if (CGDebugInfo *DI = getDebugInfo()) {
374       if (OnlySimpleReturnStmts)
375         DI->EmitLocation(Builder, EndLoc);
376       else
377         // We may not have a valid end location. Try to apply it anyway, and
378         // fall back to an artificial location if needed.
379         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
380     }
381 
382     PopCleanupBlocks(PrologueCleanupDepth);
383   }
384 
385   // Emit function epilog (to return).
386   llvm::DebugLoc Loc = EmitReturnBlock();
387 
388   if (ShouldInstrumentFunction()) {
389     if (CGM.getCodeGenOpts().InstrumentFunctions)
390       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
391     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
392       CurFn->addFnAttr("instrument-function-exit-inlined",
393                        "__cyg_profile_func_exit");
394   }
395 
396   // Emit debug descriptor for function end.
397   if (CGDebugInfo *DI = getDebugInfo())
398     DI->EmitFunctionEnd(Builder, CurFn);
399 
400   // Reset the debug location to that of the simple 'return' expression, if any
401   // rather than that of the end of the function's scope '}'.
402   ApplyDebugLocation AL(*this, Loc);
403   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
404   EmitEndEHSpec(CurCodeDecl);
405 
406   assert(EHStack.empty() &&
407          "did not remove all scopes from cleanup stack!");
408 
409   // If someone did an indirect goto, emit the indirect goto block at the end of
410   // the function.
411   if (IndirectBranch) {
412     EmitBlock(IndirectBranch->getParent());
413     Builder.ClearInsertionPoint();
414   }
415 
416   // If some of our locals escaped, insert a call to llvm.localescape in the
417   // entry block.
418   if (!EscapedLocals.empty()) {
419     // Invert the map from local to index into a simple vector. There should be
420     // no holes.
421     SmallVector<llvm::Value *, 4> EscapeArgs;
422     EscapeArgs.resize(EscapedLocals.size());
423     for (auto &Pair : EscapedLocals)
424       EscapeArgs[Pair.second] = Pair.first;
425     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
426         &CGM.getModule(), llvm::Intrinsic::localescape);
427     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
428   }
429 
430   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
431   llvm::Instruction *Ptr = AllocaInsertPt;
432   AllocaInsertPt = nullptr;
433   Ptr->eraseFromParent();
434 
435   // If someone took the address of a label but never did an indirect goto, we
436   // made a zero entry PHI node, which is illegal, zap it now.
437   if (IndirectBranch) {
438     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
439     if (PN->getNumIncomingValues() == 0) {
440       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
441       PN->eraseFromParent();
442     }
443   }
444 
445   EmitIfUsed(*this, EHResumeBlock);
446   EmitIfUsed(*this, TerminateLandingPad);
447   EmitIfUsed(*this, TerminateHandler);
448   EmitIfUsed(*this, UnreachableBlock);
449 
450   for (const auto &FuncletAndParent : TerminateFunclets)
451     EmitIfUsed(*this, FuncletAndParent.second);
452 
453   if (CGM.getCodeGenOpts().EmitDeclMetadata)
454     EmitDeclMetadata();
455 
456   for (const auto &R : DeferredReplacements) {
457     if (llvm::Value *Old = R.first) {
458       Old->replaceAllUsesWith(R.second);
459       cast<llvm::Instruction>(Old)->eraseFromParent();
460     }
461   }
462   DeferredReplacements.clear();
463 
464   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
465   // PHIs if the current function is a coroutine. We don't do it for all
466   // functions as it may result in slight increase in numbers of instructions
467   // if compiled with no optimizations. We do it for coroutine as the lifetime
468   // of CleanupDestSlot alloca make correct coroutine frame building very
469   // difficult.
470   if (NormalCleanupDest.isValid() && isCoroutine()) {
471     llvm::DominatorTree DT(*CurFn);
472     llvm::PromoteMemToReg(
473         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
474     NormalCleanupDest = Address::invalid();
475   }
476 
477   // Scan function arguments for vector width.
478   for (llvm::Argument &A : CurFn->args())
479     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
480       LargestVectorWidth =
481           std::max((uint64_t)LargestVectorWidth,
482                    VT->getPrimitiveSizeInBits().getKnownMinSize());
483 
484   // Update vector width based on return type.
485   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
486     LargestVectorWidth =
487         std::max((uint64_t)LargestVectorWidth,
488                  VT->getPrimitiveSizeInBits().getKnownMinSize());
489 
490   // Add the required-vector-width attribute. This contains the max width from:
491   // 1. min-vector-width attribute used in the source program.
492   // 2. Any builtins used that have a vector width specified.
493   // 3. Values passed in and out of inline assembly.
494   // 4. Width of vector arguments and return types for this function.
495   // 5. Width of vector aguments and return types for functions called by this
496   //    function.
497   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
498 
499   // Add vscale attribute if appropriate.
500   if (getLangOpts().ArmSveVectorBits) {
501     unsigned VScale = getLangOpts().ArmSveVectorBits / 128;
502     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(getLLVMContext(),
503                                                              VScale, VScale));
504   }
505 
506   // If we generated an unreachable return block, delete it now.
507   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
508     Builder.ClearInsertionPoint();
509     ReturnBlock.getBlock()->eraseFromParent();
510   }
511   if (ReturnValue.isValid()) {
512     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
513     if (RetAlloca && RetAlloca->use_empty()) {
514       RetAlloca->eraseFromParent();
515       ReturnValue = Address::invalid();
516     }
517   }
518 }
519 
520 /// ShouldInstrumentFunction - Return true if the current function should be
521 /// instrumented with __cyg_profile_func_* calls
ShouldInstrumentFunction()522 bool CodeGenFunction::ShouldInstrumentFunction() {
523   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
524       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
525       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
526     return false;
527   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
528     return false;
529   return true;
530 }
531 
532 /// ShouldXRayInstrument - Return true if the current function should be
533 /// instrumented with XRay nop sleds.
ShouldXRayInstrumentFunction() const534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
535   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
536 }
537 
538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
AlwaysEmitXRayCustomEvents() const540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
541   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
542          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
543           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
544               XRayInstrKind::Custom);
545 }
546 
AlwaysEmitXRayTypedEvents() const547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
548   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
549          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
550           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
551               XRayInstrKind::Typed);
552 }
553 
554 llvm::Constant *
EncodeAddrForUseInPrologue(llvm::Function * F,llvm::Constant * Addr)555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
556                                             llvm::Constant *Addr) {
557   // Addresses stored in prologue data can't require run-time fixups and must
558   // be PC-relative. Run-time fixups are undesirable because they necessitate
559   // writable text segments, which are unsafe. And absolute addresses are
560   // undesirable because they break PIE mode.
561 
562   // Add a layer of indirection through a private global. Taking its address
563   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
564   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
565                                       /*isConstant=*/true,
566                                       llvm::GlobalValue::PrivateLinkage, Addr);
567 
568   // Create a PC-relative address.
569   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
570   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
571   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
572   return (IntPtrTy == Int32Ty)
573              ? PCRelAsInt
574              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
575 }
576 
577 llvm::Value *
DecodeAddrUsedInPrologue(llvm::Value * F,llvm::Value * EncodedAddr)578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
579                                           llvm::Value *EncodedAddr) {
580   // Reconstruct the address of the global.
581   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
582   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
583   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
584   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
585 
586   // Load the original pointer through the global.
587   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
588                             "decoded_addr");
589 }
590 
EmitOpenCLKernelMetadata(const FunctionDecl * FD,llvm::Function * Fn)591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
592                                                llvm::Function *Fn)
593 {
594   if (!FD->hasAttr<OpenCLKernelAttr>())
595     return;
596 
597   llvm::LLVMContext &Context = getLLVMContext();
598 
599   CGM.GenOpenCLArgMetadata(Fn, FD, this);
600 
601   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
602     QualType HintQTy = A->getTypeHint();
603     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
604     bool IsSignedInteger =
605         HintQTy->isSignedIntegerType() ||
606         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
607     llvm::Metadata *AttrMDArgs[] = {
608         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
609             CGM.getTypes().ConvertType(A->getTypeHint()))),
610         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
611             llvm::IntegerType::get(Context, 32),
612             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
613     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
614   }
615 
616   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
617     llvm::Metadata *AttrMDArgs[] = {
618         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
619         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
620         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
621     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
622   }
623 
624   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
625     llvm::Metadata *AttrMDArgs[] = {
626         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
627         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
628         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
629     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
630   }
631 
632   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
633           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
634     llvm::Metadata *AttrMDArgs[] = {
635         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
636     Fn->setMetadata("intel_reqd_sub_group_size",
637                     llvm::MDNode::get(Context, AttrMDArgs));
638   }
639 }
640 
641 /// Determine whether the function F ends with a return stmt.
endsWithReturn(const Decl * F)642 static bool endsWithReturn(const Decl* F) {
643   const Stmt *Body = nullptr;
644   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
645     Body = FD->getBody();
646   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
647     Body = OMD->getBody();
648 
649   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
650     auto LastStmt = CS->body_rbegin();
651     if (LastStmt != CS->body_rend())
652       return isa<ReturnStmt>(*LastStmt);
653   }
654   return false;
655 }
656 
markAsIgnoreThreadCheckingAtRuntime(llvm::Function * Fn)657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
658   if (SanOpts.has(SanitizerKind::Thread)) {
659     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
660     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
661   }
662 }
663 
664 /// Check if the return value of this function requires sanitization.
requiresReturnValueCheck() const665 bool CodeGenFunction::requiresReturnValueCheck() const {
666   return requiresReturnValueNullabilityCheck() ||
667          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
668           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
669 }
670 
matchesStlAllocatorFn(const Decl * D,const ASTContext & Ctx)671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
672   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
673   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
674       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
675       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
676     return false;
677 
678   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
679     return false;
680 
681   if (MD->getNumParams() == 2) {
682     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
683     if (!PT || !PT->isVoidPointerType() ||
684         !PT->getPointeeType().isConstQualified())
685       return false;
686   }
687 
688   return true;
689 }
690 
691 /// Return the UBSan prologue signature for \p FD if one is available.
getPrologueSignature(CodeGenModule & CGM,const FunctionDecl * FD)692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
693                                             const FunctionDecl *FD) {
694   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
695     if (!MD->isStatic())
696       return nullptr;
697   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
698 }
699 
StartFunction(GlobalDecl GD,QualType RetTy,llvm::Function * Fn,const CGFunctionInfo & FnInfo,const FunctionArgList & Args,SourceLocation Loc,SourceLocation StartLoc)700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
701                                     llvm::Function *Fn,
702                                     const CGFunctionInfo &FnInfo,
703                                     const FunctionArgList &Args,
704                                     SourceLocation Loc,
705                                     SourceLocation StartLoc) {
706   assert(!CurFn &&
707          "Do not use a CodeGenFunction object for more than one function");
708 
709   const Decl *D = GD.getDecl();
710 
711   DidCallStackSave = false;
712   CurCodeDecl = D;
713   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
714     if (FD->usesSEHTry())
715       CurSEHParent = FD;
716   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
717   FnRetTy = RetTy;
718   CurFn = Fn;
719   CurFnInfo = &FnInfo;
720   assert(CurFn->isDeclaration() && "Function already has body?");
721 
722   // If this function is ignored for any of the enabled sanitizers,
723   // disable the sanitizer for the function.
724   do {
725 #define SANITIZER(NAME, ID)                                                    \
726   if (SanOpts.empty())                                                         \
727     break;                                                                     \
728   if (SanOpts.has(SanitizerKind::ID))                                          \
729     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
730       SanOpts.set(SanitizerKind::ID, false);
731 
732 #include "clang/Basic/Sanitizers.def"
733 #undef SANITIZER
734   } while (0);
735 
736   if (D) {
737     // Apply the no_sanitize* attributes to SanOpts.
738     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
739       SanitizerMask mask = Attr->getMask();
740       SanOpts.Mask &= ~mask;
741       if (mask & SanitizerKind::Address)
742         SanOpts.set(SanitizerKind::KernelAddress, false);
743       if (mask & SanitizerKind::KernelAddress)
744         SanOpts.set(SanitizerKind::Address, false);
745       if (mask & SanitizerKind::HWAddress)
746         SanOpts.set(SanitizerKind::KernelHWAddress, false);
747       if (mask & SanitizerKind::KernelHWAddress)
748         SanOpts.set(SanitizerKind::HWAddress, false);
749     }
750   }
751 
752   // Apply sanitizer attributes to the function.
753   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
754     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
755   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
756     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
757   if (SanOpts.has(SanitizerKind::MemTag))
758     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
759   if (SanOpts.has(SanitizerKind::Thread))
760     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
761   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
762     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
763   if (SanOpts.has(SanitizerKind::SafeStack))
764     Fn->addFnAttr(llvm::Attribute::SafeStack);
765   if (SanOpts.has(SanitizerKind::ShadowCallStack))
766     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
767 
768   // Apply fuzzing attribute to the function.
769   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
770     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
771 
772   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
773   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
774   if (SanOpts.has(SanitizerKind::Thread)) {
775     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
776       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
777       if (OMD->getMethodFamily() == OMF_dealloc ||
778           OMD->getMethodFamily() == OMF_initialize ||
779           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
780         markAsIgnoreThreadCheckingAtRuntime(Fn);
781       }
782     }
783   }
784 
785   // Ignore unrelated casts in STL allocate() since the allocator must cast
786   // from void* to T* before object initialization completes. Don't match on the
787   // namespace because not all allocators are in std::
788   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
789     if (matchesStlAllocatorFn(D, getContext()))
790       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
791   }
792 
793   // Ignore null checks in coroutine functions since the coroutines passes
794   // are not aware of how to move the extra UBSan instructions across the split
795   // coroutine boundaries.
796   if (D && SanOpts.has(SanitizerKind::Null))
797     if (const auto *FD = dyn_cast<FunctionDecl>(D))
798       if (FD->getBody() &&
799           FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
800         SanOpts.Mask &= ~SanitizerKind::Null;
801 
802   // Apply xray attributes to the function (as a string, for now)
803   bool AlwaysXRayAttr = false;
804   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
805     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
806             XRayInstrKind::FunctionEntry) ||
807         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
808             XRayInstrKind::FunctionExit)) {
809       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
810         Fn->addFnAttr("function-instrument", "xray-always");
811         AlwaysXRayAttr = true;
812       }
813       if (XRayAttr->neverXRayInstrument())
814         Fn->addFnAttr("function-instrument", "xray-never");
815       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
816         if (ShouldXRayInstrumentFunction())
817           Fn->addFnAttr("xray-log-args",
818                         llvm::utostr(LogArgs->getArgumentCount()));
819     }
820   } else {
821     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
822       Fn->addFnAttr(
823           "xray-instruction-threshold",
824           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
825   }
826 
827   if (ShouldXRayInstrumentFunction()) {
828     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
829       Fn->addFnAttr("xray-ignore-loops");
830 
831     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
832             XRayInstrKind::FunctionExit))
833       Fn->addFnAttr("xray-skip-exit");
834 
835     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
836             XRayInstrKind::FunctionEntry))
837       Fn->addFnAttr("xray-skip-entry");
838 
839     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
840     if (FuncGroups > 1) {
841       auto FuncName = llvm::makeArrayRef<uint8_t>(
842           CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
843       auto Group = crc32(FuncName) % FuncGroups;
844       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
845           !AlwaysXRayAttr)
846         Fn->addFnAttr("function-instrument", "xray-never");
847     }
848   }
849 
850   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
851     if (CGM.isProfileInstrExcluded(Fn, Loc))
852       Fn->addFnAttr(llvm::Attribute::NoProfile);
853 
854   unsigned Count, Offset;
855   if (const auto *Attr =
856           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
857     Count = Attr->getCount();
858     Offset = Attr->getOffset();
859   } else {
860     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
861     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
862   }
863   if (Count && Offset <= Count) {
864     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
865     if (Offset)
866       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
867   }
868 
869   // Add no-jump-tables value.
870   if (CGM.getCodeGenOpts().NoUseJumpTables)
871     Fn->addFnAttr("no-jump-tables", "true");
872 
873   // Add no-inline-line-tables value.
874   if (CGM.getCodeGenOpts().NoInlineLineTables)
875     Fn->addFnAttr("no-inline-line-tables");
876 
877   // Add profile-sample-accurate value.
878   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
879     Fn->addFnAttr("profile-sample-accurate");
880 
881   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
882     Fn->addFnAttr("use-sample-profile");
883 
884   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
885     Fn->addFnAttr("cfi-canonical-jump-table");
886 
887   if (getLangOpts().OpenCL) {
888     // Add metadata for a kernel function.
889     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
890       EmitOpenCLKernelMetadata(FD, Fn);
891   }
892 
893   // If we are checking function types, emit a function type signature as
894   // prologue data.
895   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
896     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
897       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
898         // Remove any (C++17) exception specifications, to allow calling e.g. a
899         // noexcept function through a non-noexcept pointer.
900         auto ProtoTy =
901           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
902                                                         EST_None);
903         llvm::Constant *FTRTTIConst =
904             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
905         llvm::Constant *FTRTTIConstEncoded =
906             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
907         llvm::Constant *PrologueStructElems[] = {PrologueSig,
908                                                  FTRTTIConstEncoded};
909         llvm::Constant *PrologueStructConst =
910             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
911         Fn->setPrologueData(PrologueStructConst);
912       }
913     }
914   }
915 
916   // If we're checking nullability, we need to know whether we can check the
917   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
918   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
919     auto Nullability = FnRetTy->getNullability(getContext());
920     if (Nullability && *Nullability == NullabilityKind::NonNull) {
921       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
922             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
923         RetValNullabilityPrecondition =
924             llvm::ConstantInt::getTrue(getLLVMContext());
925     }
926   }
927 
928   // If we're in C++ mode and the function name is "main", it is guaranteed
929   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
930   // used within a program").
931   //
932   // OpenCL C 2.0 v2.2-11 s6.9.i:
933   //     Recursion is not supported.
934   //
935   // SYCL v1.2.1 s3.10:
936   //     kernels cannot include RTTI information, exception classes,
937   //     recursive code, virtual functions or make use of C++ libraries that
938   //     are not compiled for the device.
939   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
940     if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
941         getLangOpts().SYCLIsDevice ||
942         (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))
943       Fn->addFnAttr(llvm::Attribute::NoRecurse);
944   }
945 
946   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
947     Builder.setIsFPConstrained(FD->hasAttr<StrictFPAttr>());
948     if (FD->hasAttr<StrictFPAttr>())
949       Fn->addFnAttr(llvm::Attribute::StrictFP);
950   }
951 
952   // If a custom alignment is used, force realigning to this alignment on
953   // any main function which certainly will need it.
954   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
955     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
956         CGM.getCodeGenOpts().StackAlignment)
957       Fn->addFnAttr("stackrealign");
958 
959   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
960 
961   // Create a marker to make it easy to insert allocas into the entryblock
962   // later.  Don't create this with the builder, because we don't want it
963   // folded.
964   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
965   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
966 
967   ReturnBlock = getJumpDestInCurrentScope("return");
968 
969   Builder.SetInsertPoint(EntryBB);
970 
971   // If we're checking the return value, allocate space for a pointer to a
972   // precise source location of the checked return statement.
973   if (requiresReturnValueCheck()) {
974     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
975     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
976   }
977 
978   // Emit subprogram debug descriptor.
979   if (CGDebugInfo *DI = getDebugInfo()) {
980     // Reconstruct the type from the argument list so that implicit parameters,
981     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
982     // convention.
983     CallingConv CC = CallingConv::CC_C;
984     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
985       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
986         CC = SrcFnTy->getCallConv();
987     SmallVector<QualType, 16> ArgTypes;
988     for (const VarDecl *VD : Args)
989       ArgTypes.push_back(VD->getType());
990     QualType FnType = getContext().getFunctionType(
991         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
992     DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk);
993   }
994 
995   if (ShouldInstrumentFunction()) {
996     if (CGM.getCodeGenOpts().InstrumentFunctions)
997       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
998     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
999       CurFn->addFnAttr("instrument-function-entry-inlined",
1000                        "__cyg_profile_func_enter");
1001     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1002       CurFn->addFnAttr("instrument-function-entry-inlined",
1003                        "__cyg_profile_func_enter_bare");
1004   }
1005 
1006   // Since emitting the mcount call here impacts optimizations such as function
1007   // inlining, we just add an attribute to insert a mcount call in backend.
1008   // The attribute "counting-function" is set to mcount function name which is
1009   // architecture dependent.
1010   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1011     // Calls to fentry/mcount should not be generated if function has
1012     // the no_instrument_function attribute.
1013     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1014       if (CGM.getCodeGenOpts().CallFEntry)
1015         Fn->addFnAttr("fentry-call", "true");
1016       else {
1017         Fn->addFnAttr("instrument-function-entry-inlined",
1018                       getTarget().getMCountName());
1019       }
1020       if (CGM.getCodeGenOpts().MNopMCount) {
1021         if (!CGM.getCodeGenOpts().CallFEntry)
1022           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1023             << "-mnop-mcount" << "-mfentry";
1024         Fn->addFnAttr("mnop-mcount");
1025       }
1026 
1027       if (CGM.getCodeGenOpts().RecordMCount) {
1028         if (!CGM.getCodeGenOpts().CallFEntry)
1029           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1030             << "-mrecord-mcount" << "-mfentry";
1031         Fn->addFnAttr("mrecord-mcount");
1032       }
1033     }
1034   }
1035 
1036   if (CGM.getCodeGenOpts().PackedStack) {
1037     if (getContext().getTargetInfo().getTriple().getArch() !=
1038         llvm::Triple::systemz)
1039       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1040         << "-mpacked-stack";
1041     Fn->addFnAttr("packed-stack");
1042   }
1043 
1044   if (RetTy->isVoidType()) {
1045     // Void type; nothing to return.
1046     ReturnValue = Address::invalid();
1047 
1048     // Count the implicit return.
1049     if (!endsWithReturn(D))
1050       ++NumReturnExprs;
1051   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1052     // Indirect return; emit returned value directly into sret slot.
1053     // This reduces code size, and affects correctness in C++.
1054     auto AI = CurFn->arg_begin();
1055     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1056       ++AI;
1057     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
1058     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1059       ReturnValuePointer =
1060           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1061       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1062                               ReturnValue.getPointer(), Int8PtrTy),
1063                           ReturnValuePointer);
1064     }
1065   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1066              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1067     // Load the sret pointer from the argument struct and return into that.
1068     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1069     llvm::Function::arg_iterator EI = CurFn->arg_end();
1070     --EI;
1071     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
1072     llvm::Type *Ty =
1073         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1074     ReturnValuePointer = Address(Addr, getPointerAlign());
1075     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1076     ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
1077   } else {
1078     ReturnValue = CreateIRTemp(RetTy, "retval");
1079 
1080     // Tell the epilog emitter to autorelease the result.  We do this
1081     // now so that various specialized functions can suppress it
1082     // during their IR-generation.
1083     if (getLangOpts().ObjCAutoRefCount &&
1084         !CurFnInfo->isReturnsRetained() &&
1085         RetTy->isObjCRetainableType())
1086       AutoreleaseResult = true;
1087   }
1088 
1089   EmitStartEHSpec(CurCodeDecl);
1090 
1091   PrologueCleanupDepth = EHStack.stable_begin();
1092 
1093   // Emit OpenMP specific initialization of the device functions.
1094   if (getLangOpts().OpenMP && CurCodeDecl)
1095     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1096 
1097   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1098 
1099   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1100     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1101     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1102     if (MD->getParent()->isLambda() &&
1103         MD->getOverloadedOperator() == OO_Call) {
1104       // We're in a lambda; figure out the captures.
1105       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1106                                         LambdaThisCaptureField);
1107       if (LambdaThisCaptureField) {
1108         // If the lambda captures the object referred to by '*this' - either by
1109         // value or by reference, make sure CXXThisValue points to the correct
1110         // object.
1111 
1112         // Get the lvalue for the field (which is a copy of the enclosing object
1113         // or contains the address of the enclosing object).
1114         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1115         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1116           // If the enclosing object was captured by value, just use its address.
1117           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1118         } else {
1119           // Load the lvalue pointed to by the field, since '*this' was captured
1120           // by reference.
1121           CXXThisValue =
1122               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1123         }
1124       }
1125       for (auto *FD : MD->getParent()->fields()) {
1126         if (FD->hasCapturedVLAType()) {
1127           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1128                                            SourceLocation()).getScalarVal();
1129           auto VAT = FD->getCapturedVLAType();
1130           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1131         }
1132       }
1133     } else {
1134       // Not in a lambda; just use 'this' from the method.
1135       // FIXME: Should we generate a new load for each use of 'this'?  The
1136       // fast register allocator would be happier...
1137       CXXThisValue = CXXABIThisValue;
1138     }
1139 
1140     // Check the 'this' pointer once per function, if it's available.
1141     if (CXXABIThisValue) {
1142       SanitizerSet SkippedChecks;
1143       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1144       QualType ThisTy = MD->getThisType();
1145 
1146       // If this is the call operator of a lambda with no capture-default, it
1147       // may have a static invoker function, which may call this operator with
1148       // a null 'this' pointer.
1149       if (isLambdaCallOperator(MD) &&
1150           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1151         SkippedChecks.set(SanitizerKind::Null, true);
1152 
1153       EmitTypeCheck(
1154           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1155           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1156     }
1157   }
1158 
1159   // If any of the arguments have a variably modified type, make sure to
1160   // emit the type size.
1161   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1162        i != e; ++i) {
1163     const VarDecl *VD = *i;
1164 
1165     // Dig out the type as written from ParmVarDecls; it's unclear whether
1166     // the standard (C99 6.9.1p10) requires this, but we're following the
1167     // precedent set by gcc.
1168     QualType Ty;
1169     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1170       Ty = PVD->getOriginalType();
1171     else
1172       Ty = VD->getType();
1173 
1174     if (Ty->isVariablyModifiedType())
1175       EmitVariablyModifiedType(Ty);
1176   }
1177   // Emit a location at the end of the prologue.
1178   if (CGDebugInfo *DI = getDebugInfo())
1179     DI->EmitLocation(Builder, StartLoc);
1180 
1181   // TODO: Do we need to handle this in two places like we do with
1182   // target-features/target-cpu?
1183   if (CurFuncDecl)
1184     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1185       LargestVectorWidth = VecWidth->getVectorWidth();
1186 }
1187 
EmitFunctionBody(const Stmt * Body)1188 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1189   incrementProfileCounter(Body);
1190   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1191     EmitCompoundStmtWithoutScope(*S);
1192   else
1193     EmitStmt(Body);
1194 
1195   // This is checked after emitting the function body so we know if there
1196   // are any permitted infinite loops.
1197   if (checkIfFunctionMustProgress())
1198     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1199 }
1200 
1201 /// When instrumenting to collect profile data, the counts for some blocks
1202 /// such as switch cases need to not include the fall-through counts, so
1203 /// emit a branch around the instrumentation code. When not instrumenting,
1204 /// this just calls EmitBlock().
EmitBlockWithFallThrough(llvm::BasicBlock * BB,const Stmt * S)1205 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1206                                                const Stmt *S) {
1207   llvm::BasicBlock *SkipCountBB = nullptr;
1208   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1209     // When instrumenting for profiling, the fallthrough to certain
1210     // statements needs to skip over the instrumentation code so that we
1211     // get an accurate count.
1212     SkipCountBB = createBasicBlock("skipcount");
1213     EmitBranch(SkipCountBB);
1214   }
1215   EmitBlock(BB);
1216   uint64_t CurrentCount = getCurrentProfileCount();
1217   incrementProfileCounter(S);
1218   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1219   if (SkipCountBB)
1220     EmitBlock(SkipCountBB);
1221 }
1222 
1223 /// Tries to mark the given function nounwind based on the
1224 /// non-existence of any throwing calls within it.  We believe this is
1225 /// lightweight enough to do at -O0.
TryMarkNoThrow(llvm::Function * F)1226 static void TryMarkNoThrow(llvm::Function *F) {
1227   // LLVM treats 'nounwind' on a function as part of the type, so we
1228   // can't do this on functions that can be overwritten.
1229   if (F->isInterposable()) return;
1230 
1231   for (llvm::BasicBlock &BB : *F)
1232     for (llvm::Instruction &I : BB)
1233       if (I.mayThrow())
1234         return;
1235 
1236   F->setDoesNotThrow();
1237 }
1238 
BuildFunctionArgList(GlobalDecl GD,FunctionArgList & Args)1239 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1240                                                FunctionArgList &Args) {
1241   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1242   QualType ResTy = FD->getReturnType();
1243 
1244   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1245   if (MD && MD->isInstance()) {
1246     if (CGM.getCXXABI().HasThisReturn(GD))
1247       ResTy = MD->getThisType();
1248     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1249       ResTy = CGM.getContext().VoidPtrTy;
1250     CGM.getCXXABI().buildThisParam(*this, Args);
1251   }
1252 
1253   // The base version of an inheriting constructor whose constructed base is a
1254   // virtual base is not passed any arguments (because it doesn't actually call
1255   // the inherited constructor).
1256   bool PassedParams = true;
1257   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1258     if (auto Inherited = CD->getInheritedConstructor())
1259       PassedParams =
1260           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1261 
1262   if (PassedParams) {
1263     for (auto *Param : FD->parameters()) {
1264       Args.push_back(Param);
1265       if (!Param->hasAttr<PassObjectSizeAttr>())
1266         continue;
1267 
1268       auto *Implicit = ImplicitParamDecl::Create(
1269           getContext(), Param->getDeclContext(), Param->getLocation(),
1270           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1271       SizeArguments[Param] = Implicit;
1272       Args.push_back(Implicit);
1273     }
1274   }
1275 
1276   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1277     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1278 
1279   return ResTy;
1280 }
1281 
GenerateCode(GlobalDecl GD,llvm::Function * Fn,const CGFunctionInfo & FnInfo)1282 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1283                                    const CGFunctionInfo &FnInfo) {
1284   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1285   CurGD = GD;
1286 
1287   FunctionArgList Args;
1288   QualType ResTy = BuildFunctionArgList(GD, Args);
1289 
1290   // Check if we should generate debug info for this function.
1291   if (FD->hasAttr<NoDebugAttr>())
1292     DebugInfo = nullptr; // disable debug info indefinitely for this function
1293 
1294   // The function might not have a body if we're generating thunks for a
1295   // function declaration.
1296   SourceRange BodyRange;
1297   if (Stmt *Body = FD->getBody())
1298     BodyRange = Body->getSourceRange();
1299   else
1300     BodyRange = FD->getLocation();
1301   CurEHLocation = BodyRange.getEnd();
1302 
1303   // Use the location of the start of the function to determine where
1304   // the function definition is located. By default use the location
1305   // of the declaration as the location for the subprogram. A function
1306   // may lack a declaration in the source code if it is created by code
1307   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1308   SourceLocation Loc = FD->getLocation();
1309 
1310   // If this is a function specialization then use the pattern body
1311   // as the location for the function.
1312   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1313     if (SpecDecl->hasBody(SpecDecl))
1314       Loc = SpecDecl->getLocation();
1315 
1316   Stmt *Body = FD->getBody();
1317 
1318   if (Body) {
1319     // Coroutines always emit lifetime markers.
1320     if (isa<CoroutineBodyStmt>(Body))
1321       ShouldEmitLifetimeMarkers = true;
1322 
1323     // Initialize helper which will detect jumps which can cause invalid
1324     // lifetime markers.
1325     if (ShouldEmitLifetimeMarkers)
1326       Bypasses.Init(Body);
1327   }
1328 
1329   // Emit the standard function prologue.
1330   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1331 
1332   // Save parameters for coroutine function.
1333   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1334     for (const auto *ParamDecl : FD->parameters())
1335       FnArgs.push_back(ParamDecl);
1336 
1337   // Generate the body of the function.
1338   PGO.assignRegionCounters(GD, CurFn);
1339   if (isa<CXXDestructorDecl>(FD))
1340     EmitDestructorBody(Args);
1341   else if (isa<CXXConstructorDecl>(FD))
1342     EmitConstructorBody(Args);
1343   else if (getLangOpts().CUDA &&
1344            !getLangOpts().CUDAIsDevice &&
1345            FD->hasAttr<CUDAGlobalAttr>())
1346     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1347   else if (isa<CXXMethodDecl>(FD) &&
1348            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1349     // The lambda static invoker function is special, because it forwards or
1350     // clones the body of the function call operator (but is actually static).
1351     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1352   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1353              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1354               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1355     // Implicit copy-assignment gets the same special treatment as implicit
1356     // copy-constructors.
1357     emitImplicitAssignmentOperatorBody(Args);
1358   } else if (Body) {
1359     EmitFunctionBody(Body);
1360   } else
1361     llvm_unreachable("no definition for emitted function");
1362 
1363   // C++11 [stmt.return]p2:
1364   //   Flowing off the end of a function [...] results in undefined behavior in
1365   //   a value-returning function.
1366   // C11 6.9.1p12:
1367   //   If the '}' that terminates a function is reached, and the value of the
1368   //   function call is used by the caller, the behavior is undefined.
1369   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1370       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1371     bool ShouldEmitUnreachable =
1372         CGM.getCodeGenOpts().StrictReturn ||
1373         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1374     if (SanOpts.has(SanitizerKind::Return)) {
1375       SanitizerScope SanScope(this);
1376       llvm::Value *IsFalse = Builder.getFalse();
1377       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1378                 SanitizerHandler::MissingReturn,
1379                 EmitCheckSourceLocation(FD->getLocation()), None);
1380     } else if (ShouldEmitUnreachable) {
1381       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1382         EmitTrapCall(llvm::Intrinsic::trap);
1383     }
1384     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1385       Builder.CreateUnreachable();
1386       Builder.ClearInsertionPoint();
1387     }
1388   }
1389 
1390   // Emit the standard function epilogue.
1391   FinishFunction(BodyRange.getEnd());
1392 
1393   // If we haven't marked the function nothrow through other means, do
1394   // a quick pass now to see if we can.
1395   if (!CurFn->doesNotThrow())
1396     TryMarkNoThrow(CurFn);
1397 }
1398 
1399 /// ContainsLabel - Return true if the statement contains a label in it.  If
1400 /// this statement is not executed normally, it not containing a label means
1401 /// that we can just remove the code.
ContainsLabel(const Stmt * S,bool IgnoreCaseStmts)1402 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1403   // Null statement, not a label!
1404   if (!S) return false;
1405 
1406   // If this is a label, we have to emit the code, consider something like:
1407   // if (0) {  ...  foo:  bar(); }  goto foo;
1408   //
1409   // TODO: If anyone cared, we could track __label__'s, since we know that you
1410   // can't jump to one from outside their declared region.
1411   if (isa<LabelStmt>(S))
1412     return true;
1413 
1414   // If this is a case/default statement, and we haven't seen a switch, we have
1415   // to emit the code.
1416   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1417     return true;
1418 
1419   // If this is a switch statement, we want to ignore cases below it.
1420   if (isa<SwitchStmt>(S))
1421     IgnoreCaseStmts = true;
1422 
1423   // Scan subexpressions for verboten labels.
1424   for (const Stmt *SubStmt : S->children())
1425     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1426       return true;
1427 
1428   return false;
1429 }
1430 
1431 /// containsBreak - Return true if the statement contains a break out of it.
1432 /// If the statement (recursively) contains a switch or loop with a break
1433 /// inside of it, this is fine.
containsBreak(const Stmt * S)1434 bool CodeGenFunction::containsBreak(const Stmt *S) {
1435   // Null statement, not a label!
1436   if (!S) return false;
1437 
1438   // If this is a switch or loop that defines its own break scope, then we can
1439   // include it and anything inside of it.
1440   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1441       isa<ForStmt>(S))
1442     return false;
1443 
1444   if (isa<BreakStmt>(S))
1445     return true;
1446 
1447   // Scan subexpressions for verboten breaks.
1448   for (const Stmt *SubStmt : S->children())
1449     if (containsBreak(SubStmt))
1450       return true;
1451 
1452   return false;
1453 }
1454 
mightAddDeclToScope(const Stmt * S)1455 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1456   if (!S) return false;
1457 
1458   // Some statement kinds add a scope and thus never add a decl to the current
1459   // scope. Note, this list is longer than the list of statements that might
1460   // have an unscoped decl nested within them, but this way is conservatively
1461   // correct even if more statement kinds are added.
1462   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1463       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1464       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1465       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1466     return false;
1467 
1468   if (isa<DeclStmt>(S))
1469     return true;
1470 
1471   for (const Stmt *SubStmt : S->children())
1472     if (mightAddDeclToScope(SubStmt))
1473       return true;
1474 
1475   return false;
1476 }
1477 
1478 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1479 /// to a constant, or if it does but contains a label, return false.  If it
1480 /// constant folds return true and set the boolean result in Result.
ConstantFoldsToSimpleInteger(const Expr * Cond,bool & ResultBool,bool AllowLabels)1481 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1482                                                    bool &ResultBool,
1483                                                    bool AllowLabels) {
1484   llvm::APSInt ResultInt;
1485   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1486     return false;
1487 
1488   ResultBool = ResultInt.getBoolValue();
1489   return true;
1490 }
1491 
1492 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1493 /// to a constant, or if it does but contains a label, return false.  If it
1494 /// constant folds return true and set the folded value.
ConstantFoldsToSimpleInteger(const Expr * Cond,llvm::APSInt & ResultInt,bool AllowLabels)1495 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1496                                                    llvm::APSInt &ResultInt,
1497                                                    bool AllowLabels) {
1498   // FIXME: Rename and handle conversion of other evaluatable things
1499   // to bool.
1500   Expr::EvalResult Result;
1501   if (!Cond->EvaluateAsInt(Result, getContext()))
1502     return false;  // Not foldable, not integer or not fully evaluatable.
1503 
1504   llvm::APSInt Int = Result.Val.getInt();
1505   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1506     return false;  // Contains a label.
1507 
1508   ResultInt = Int;
1509   return true;
1510 }
1511 
1512 /// Determine whether the given condition is an instrumentable condition
1513 /// (i.e. no "&&" or "||").
isInstrumentedCondition(const Expr * C)1514 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1515   // Bypass simplistic logical-NOT operator before determining whether the
1516   // condition contains any other logical operator.
1517   if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1518     if (UnOp->getOpcode() == UO_LNot)
1519       C = UnOp->getSubExpr();
1520 
1521   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1522   return (!BOp || !BOp->isLogicalOp());
1523 }
1524 
1525 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1526 /// increments a profile counter based on the semantics of the given logical
1527 /// operator opcode.  This is used to instrument branch condition coverage for
1528 /// logical operators.
EmitBranchToCounterBlock(const Expr * Cond,BinaryOperator::Opcode LOp,llvm::BasicBlock * TrueBlock,llvm::BasicBlock * FalseBlock,uint64_t TrueCount,Stmt::Likelihood LH,const Expr * CntrIdx)1529 void CodeGenFunction::EmitBranchToCounterBlock(
1530     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1531     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1532     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1533   // If not instrumenting, just emit a branch.
1534   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1535   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1536     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1537 
1538   llvm::BasicBlock *ThenBlock = NULL;
1539   llvm::BasicBlock *ElseBlock = NULL;
1540   llvm::BasicBlock *NextBlock = NULL;
1541 
1542   // Create the block we'll use to increment the appropriate counter.
1543   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1544 
1545   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1546   // means we need to evaluate the condition and increment the counter on TRUE:
1547   //
1548   // if (Cond)
1549   //   goto CounterIncrBlock;
1550   // else
1551   //   goto FalseBlock;
1552   //
1553   // CounterIncrBlock:
1554   //   Counter++;
1555   //   goto TrueBlock;
1556 
1557   if (LOp == BO_LAnd) {
1558     ThenBlock = CounterIncrBlock;
1559     ElseBlock = FalseBlock;
1560     NextBlock = TrueBlock;
1561   }
1562 
1563   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1564   // we need to evaluate the condition and increment the counter on FALSE:
1565   //
1566   // if (Cond)
1567   //   goto TrueBlock;
1568   // else
1569   //   goto CounterIncrBlock;
1570   //
1571   // CounterIncrBlock:
1572   //   Counter++;
1573   //   goto FalseBlock;
1574 
1575   else if (LOp == BO_LOr) {
1576     ThenBlock = TrueBlock;
1577     ElseBlock = CounterIncrBlock;
1578     NextBlock = FalseBlock;
1579   } else {
1580     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1581   }
1582 
1583   // Emit Branch based on condition.
1584   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1585 
1586   // Emit the block containing the counter increment(s).
1587   EmitBlock(CounterIncrBlock);
1588 
1589   // Increment corresponding counter; if index not provided, use Cond as index.
1590   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1591 
1592   // Go to the next block.
1593   EmitBranch(NextBlock);
1594 }
1595 
1596 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1597 /// statement) to the specified blocks.  Based on the condition, this might try
1598 /// to simplify the codegen of the conditional based on the branch.
1599 /// \param LH The value of the likelihood attribute on the True branch.
EmitBranchOnBoolExpr(const Expr * Cond,llvm::BasicBlock * TrueBlock,llvm::BasicBlock * FalseBlock,uint64_t TrueCount,Stmt::Likelihood LH)1600 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1601                                            llvm::BasicBlock *TrueBlock,
1602                                            llvm::BasicBlock *FalseBlock,
1603                                            uint64_t TrueCount,
1604                                            Stmt::Likelihood LH) {
1605   Cond = Cond->IgnoreParens();
1606 
1607   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1608 
1609     // Handle X && Y in a condition.
1610     if (CondBOp->getOpcode() == BO_LAnd) {
1611       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1612       // folded if the case was simple enough.
1613       bool ConstantBool = false;
1614       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1615           ConstantBool) {
1616         // br(1 && X) -> br(X).
1617         incrementProfileCounter(CondBOp);
1618         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1619                                         FalseBlock, TrueCount, LH);
1620       }
1621 
1622       // If we have "X && 1", simplify the code to use an uncond branch.
1623       // "X && 0" would have been constant folded to 0.
1624       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1625           ConstantBool) {
1626         // br(X && 1) -> br(X).
1627         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1628                                         FalseBlock, TrueCount, LH, CondBOp);
1629       }
1630 
1631       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1632       // want to jump to the FalseBlock.
1633       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1634       // The counter tells us how often we evaluate RHS, and all of TrueCount
1635       // can be propagated to that branch.
1636       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1637 
1638       ConditionalEvaluation eval(*this);
1639       {
1640         ApplyDebugLocation DL(*this, Cond);
1641         // Propagate the likelihood attribute like __builtin_expect
1642         // __builtin_expect(X && Y, 1) -> X and Y are likely
1643         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1644         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1645                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1646         EmitBlock(LHSTrue);
1647       }
1648 
1649       incrementProfileCounter(CondBOp);
1650       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1651 
1652       // Any temporaries created here are conditional.
1653       eval.begin(*this);
1654       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1655                                FalseBlock, TrueCount, LH);
1656       eval.end(*this);
1657 
1658       return;
1659     }
1660 
1661     if (CondBOp->getOpcode() == BO_LOr) {
1662       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1663       // folded if the case was simple enough.
1664       bool ConstantBool = false;
1665       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1666           !ConstantBool) {
1667         // br(0 || X) -> br(X).
1668         incrementProfileCounter(CondBOp);
1669         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1670                                         FalseBlock, TrueCount, LH);
1671       }
1672 
1673       // If we have "X || 0", simplify the code to use an uncond branch.
1674       // "X || 1" would have been constant folded to 1.
1675       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1676           !ConstantBool) {
1677         // br(X || 0) -> br(X).
1678         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1679                                         FalseBlock, TrueCount, LH, CondBOp);
1680       }
1681 
1682       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1683       // want to jump to the TrueBlock.
1684       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1685       // We have the count for entry to the RHS and for the whole expression
1686       // being true, so we can divy up True count between the short circuit and
1687       // the RHS.
1688       uint64_t LHSCount =
1689           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1690       uint64_t RHSCount = TrueCount - LHSCount;
1691 
1692       ConditionalEvaluation eval(*this);
1693       {
1694         // Propagate the likelihood attribute like __builtin_expect
1695         // __builtin_expect(X || Y, 1) -> only Y is likely
1696         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1697         ApplyDebugLocation DL(*this, Cond);
1698         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1699                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1700         EmitBlock(LHSFalse);
1701       }
1702 
1703       incrementProfileCounter(CondBOp);
1704       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1705 
1706       // Any temporaries created here are conditional.
1707       eval.begin(*this);
1708       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1709                                RHSCount, LH);
1710 
1711       eval.end(*this);
1712 
1713       return;
1714     }
1715   }
1716 
1717   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1718     // br(!x, t, f) -> br(x, f, t)
1719     if (CondUOp->getOpcode() == UO_LNot) {
1720       // Negate the count.
1721       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1722       // The values of the enum are chosen to make this negation possible.
1723       LH = static_cast<Stmt::Likelihood>(-LH);
1724       // Negate the condition and swap the destination blocks.
1725       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1726                                   FalseCount, LH);
1727     }
1728   }
1729 
1730   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1731     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1732     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1733     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1734 
1735     // The ConditionalOperator itself has no likelihood information for its
1736     // true and false branches. This matches the behavior of __builtin_expect.
1737     ConditionalEvaluation cond(*this);
1738     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1739                          getProfileCount(CondOp), Stmt::LH_None);
1740 
1741     // When computing PGO branch weights, we only know the overall count for
1742     // the true block. This code is essentially doing tail duplication of the
1743     // naive code-gen, introducing new edges for which counts are not
1744     // available. Divide the counts proportionally between the LHS and RHS of
1745     // the conditional operator.
1746     uint64_t LHSScaledTrueCount = 0;
1747     if (TrueCount) {
1748       double LHSRatio =
1749           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1750       LHSScaledTrueCount = TrueCount * LHSRatio;
1751     }
1752 
1753     cond.begin(*this);
1754     EmitBlock(LHSBlock);
1755     incrementProfileCounter(CondOp);
1756     {
1757       ApplyDebugLocation DL(*this, Cond);
1758       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1759                            LHSScaledTrueCount, LH);
1760     }
1761     cond.end(*this);
1762 
1763     cond.begin(*this);
1764     EmitBlock(RHSBlock);
1765     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1766                          TrueCount - LHSScaledTrueCount, LH);
1767     cond.end(*this);
1768 
1769     return;
1770   }
1771 
1772   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1773     // Conditional operator handling can give us a throw expression as a
1774     // condition for a case like:
1775     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1776     // Fold this to:
1777     //   br(c, throw x, br(y, t, f))
1778     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1779     return;
1780   }
1781 
1782   // Emit the code with the fully general case.
1783   llvm::Value *CondV;
1784   {
1785     ApplyDebugLocation DL(*this, Cond);
1786     CondV = EvaluateExprAsBool(Cond);
1787   }
1788 
1789   llvm::MDNode *Weights = nullptr;
1790   llvm::MDNode *Unpredictable = nullptr;
1791 
1792   // If the branch has a condition wrapped by __builtin_unpredictable,
1793   // create metadata that specifies that the branch is unpredictable.
1794   // Don't bother if not optimizing because that metadata would not be used.
1795   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1796   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1797     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1798     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1799       llvm::MDBuilder MDHelper(getLLVMContext());
1800       Unpredictable = MDHelper.createUnpredictable();
1801     }
1802   }
1803 
1804   // If there is a Likelihood knowledge for the cond, lower it.
1805   // Note that if not optimizing this won't emit anything.
1806   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1807   if (CondV != NewCondV)
1808     CondV = NewCondV;
1809   else {
1810     // Otherwise, lower profile counts. Note that we do this even at -O0.
1811     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1812     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1813   }
1814 
1815   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1816 }
1817 
1818 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1819 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type)1820 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1821   CGM.ErrorUnsupported(S, Type);
1822 }
1823 
1824 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1825 /// variable-length array whose elements have a non-zero bit-pattern.
1826 ///
1827 /// \param baseType the inner-most element type of the array
1828 /// \param src - a char* pointing to the bit-pattern for a single
1829 /// base element of the array
1830 /// \param sizeInChars - the total size of the VLA, in chars
emitNonZeroVLAInit(CodeGenFunction & CGF,QualType baseType,Address dest,Address src,llvm::Value * sizeInChars)1831 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1832                                Address dest, Address src,
1833                                llvm::Value *sizeInChars) {
1834   CGBuilderTy &Builder = CGF.Builder;
1835 
1836   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1837   llvm::Value *baseSizeInChars
1838     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1839 
1840   Address begin =
1841     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1842   llvm::Value *end = Builder.CreateInBoundsGEP(
1843       begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1844 
1845   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1846   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1847   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1848 
1849   // Make a loop over the VLA.  C99 guarantees that the VLA element
1850   // count must be nonzero.
1851   CGF.EmitBlock(loopBB);
1852 
1853   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1854   cur->addIncoming(begin.getPointer(), originBB);
1855 
1856   CharUnits curAlign =
1857     dest.getAlignment().alignmentOfArrayElement(baseSize);
1858 
1859   // memcpy the individual element bit-pattern.
1860   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1861                        /*volatile*/ false);
1862 
1863   // Go to the next element.
1864   llvm::Value *next =
1865     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1866 
1867   // Leave if that's the end of the VLA.
1868   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1869   Builder.CreateCondBr(done, contBB, loopBB);
1870   cur->addIncoming(next, loopBB);
1871 
1872   CGF.EmitBlock(contBB);
1873 }
1874 
1875 void
EmitNullInitialization(Address DestPtr,QualType Ty)1876 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1877   // Ignore empty classes in C++.
1878   if (getLangOpts().CPlusPlus) {
1879     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1880       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1881         return;
1882     }
1883   }
1884 
1885   // Cast the dest ptr to the appropriate i8 pointer type.
1886   if (DestPtr.getElementType() != Int8Ty)
1887     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1888 
1889   // Get size and alignment info for this aggregate.
1890   CharUnits size = getContext().getTypeSizeInChars(Ty);
1891 
1892   llvm::Value *SizeVal;
1893   const VariableArrayType *vla;
1894 
1895   // Don't bother emitting a zero-byte memset.
1896   if (size.isZero()) {
1897     // But note that getTypeInfo returns 0 for a VLA.
1898     if (const VariableArrayType *vlaType =
1899           dyn_cast_or_null<VariableArrayType>(
1900                                           getContext().getAsArrayType(Ty))) {
1901       auto VlaSize = getVLASize(vlaType);
1902       SizeVal = VlaSize.NumElts;
1903       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1904       if (!eltSize.isOne())
1905         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1906       vla = vlaType;
1907     } else {
1908       return;
1909     }
1910   } else {
1911     SizeVal = CGM.getSize(size);
1912     vla = nullptr;
1913   }
1914 
1915   // If the type contains a pointer to data member we can't memset it to zero.
1916   // Instead, create a null constant and copy it to the destination.
1917   // TODO: there are other patterns besides zero that we can usefully memset,
1918   // like -1, which happens to be the pattern used by member-pointers.
1919   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1920     // For a VLA, emit a single element, then splat that over the VLA.
1921     if (vla) Ty = getContext().getBaseElementType(vla);
1922 
1923     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1924 
1925     llvm::GlobalVariable *NullVariable =
1926       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1927                                /*isConstant=*/true,
1928                                llvm::GlobalVariable::PrivateLinkage,
1929                                NullConstant, Twine());
1930     CharUnits NullAlign = DestPtr.getAlignment();
1931     NullVariable->setAlignment(NullAlign.getAsAlign());
1932     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1933                    NullAlign);
1934 
1935     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1936 
1937     // Get and call the appropriate llvm.memcpy overload.
1938     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1939     return;
1940   }
1941 
1942   // Otherwise, just memset the whole thing to zero.  This is legal
1943   // because in LLVM, all default initializers (other than the ones we just
1944   // handled above) are guaranteed to have a bit pattern of all zeros.
1945   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1946 }
1947 
GetAddrOfLabel(const LabelDecl * L)1948 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1949   // Make sure that there is a block for the indirect goto.
1950   if (!IndirectBranch)
1951     GetIndirectGotoBlock();
1952 
1953   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1954 
1955   // Make sure the indirect branch includes all of the address-taken blocks.
1956   IndirectBranch->addDestination(BB);
1957   return llvm::BlockAddress::get(CurFn, BB);
1958 }
1959 
GetIndirectGotoBlock()1960 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1961   // If we already made the indirect branch for indirect goto, return its block.
1962   if (IndirectBranch) return IndirectBranch->getParent();
1963 
1964   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1965 
1966   // Create the PHI node that indirect gotos will add entries to.
1967   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1968                                               "indirect.goto.dest");
1969 
1970   // Create the indirect branch instruction.
1971   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1972   return IndirectBranch->getParent();
1973 }
1974 
1975 /// Computes the length of an array in elements, as well as the base
1976 /// element type and a properly-typed first element pointer.
emitArrayLength(const ArrayType * origArrayType,QualType & baseType,Address & addr)1977 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1978                                               QualType &baseType,
1979                                               Address &addr) {
1980   const ArrayType *arrayType = origArrayType;
1981 
1982   // If it's a VLA, we have to load the stored size.  Note that
1983   // this is the size of the VLA in bytes, not its size in elements.
1984   llvm::Value *numVLAElements = nullptr;
1985   if (isa<VariableArrayType>(arrayType)) {
1986     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1987 
1988     // Walk into all VLAs.  This doesn't require changes to addr,
1989     // which has type T* where T is the first non-VLA element type.
1990     do {
1991       QualType elementType = arrayType->getElementType();
1992       arrayType = getContext().getAsArrayType(elementType);
1993 
1994       // If we only have VLA components, 'addr' requires no adjustment.
1995       if (!arrayType) {
1996         baseType = elementType;
1997         return numVLAElements;
1998       }
1999     } while (isa<VariableArrayType>(arrayType));
2000 
2001     // We get out here only if we find a constant array type
2002     // inside the VLA.
2003   }
2004 
2005   // We have some number of constant-length arrays, so addr should
2006   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2007   // down to the first element of addr.
2008   SmallVector<llvm::Value*, 8> gepIndices;
2009 
2010   // GEP down to the array type.
2011   llvm::ConstantInt *zero = Builder.getInt32(0);
2012   gepIndices.push_back(zero);
2013 
2014   uint64_t countFromCLAs = 1;
2015   QualType eltType;
2016 
2017   llvm::ArrayType *llvmArrayType =
2018     dyn_cast<llvm::ArrayType>(addr.getElementType());
2019   while (llvmArrayType) {
2020     assert(isa<ConstantArrayType>(arrayType));
2021     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2022              == llvmArrayType->getNumElements());
2023 
2024     gepIndices.push_back(zero);
2025     countFromCLAs *= llvmArrayType->getNumElements();
2026     eltType = arrayType->getElementType();
2027 
2028     llvmArrayType =
2029       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2030     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2031     assert((!llvmArrayType || arrayType) &&
2032            "LLVM and Clang types are out-of-synch");
2033   }
2034 
2035   if (arrayType) {
2036     // From this point onwards, the Clang array type has been emitted
2037     // as some other type (probably a packed struct). Compute the array
2038     // size, and just emit the 'begin' expression as a bitcast.
2039     while (arrayType) {
2040       countFromCLAs *=
2041           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2042       eltType = arrayType->getElementType();
2043       arrayType = getContext().getAsArrayType(eltType);
2044     }
2045 
2046     llvm::Type *baseType = ConvertType(eltType);
2047     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2048   } else {
2049     // Create the actual GEP.
2050     addr = Address(Builder.CreateInBoundsGEP(
2051         addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2052         addr.getAlignment());
2053   }
2054 
2055   baseType = eltType;
2056 
2057   llvm::Value *numElements
2058     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2059 
2060   // If we had any VLA dimensions, factor them in.
2061   if (numVLAElements)
2062     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2063 
2064   return numElements;
2065 }
2066 
getVLASize(QualType type)2067 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2068   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2069   assert(vla && "type was not a variable array type!");
2070   return getVLASize(vla);
2071 }
2072 
2073 CodeGenFunction::VlaSizePair
getVLASize(const VariableArrayType * type)2074 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2075   // The number of elements so far; always size_t.
2076   llvm::Value *numElements = nullptr;
2077 
2078   QualType elementType;
2079   do {
2080     elementType = type->getElementType();
2081     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2082     assert(vlaSize && "no size for VLA!");
2083     assert(vlaSize->getType() == SizeTy);
2084 
2085     if (!numElements) {
2086       numElements = vlaSize;
2087     } else {
2088       // It's undefined behavior if this wraps around, so mark it that way.
2089       // FIXME: Teach -fsanitize=undefined to trap this.
2090       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2091     }
2092   } while ((type = getContext().getAsVariableArrayType(elementType)));
2093 
2094   return { numElements, elementType };
2095 }
2096 
2097 CodeGenFunction::VlaSizePair
getVLAElements1D(QualType type)2098 CodeGenFunction::getVLAElements1D(QualType type) {
2099   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2100   assert(vla && "type was not a variable array type!");
2101   return getVLAElements1D(vla);
2102 }
2103 
2104 CodeGenFunction::VlaSizePair
getVLAElements1D(const VariableArrayType * Vla)2105 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2106   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2107   assert(VlaSize && "no size for VLA!");
2108   assert(VlaSize->getType() == SizeTy);
2109   return { VlaSize, Vla->getElementType() };
2110 }
2111 
EmitVariablyModifiedType(QualType type)2112 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2113   assert(type->isVariablyModifiedType() &&
2114          "Must pass variably modified type to EmitVLASizes!");
2115 
2116   EnsureInsertPoint();
2117 
2118   // We're going to walk down into the type and look for VLA
2119   // expressions.
2120   do {
2121     assert(type->isVariablyModifiedType());
2122 
2123     const Type *ty = type.getTypePtr();
2124     switch (ty->getTypeClass()) {
2125 
2126 #define TYPE(Class, Base)
2127 #define ABSTRACT_TYPE(Class, Base)
2128 #define NON_CANONICAL_TYPE(Class, Base)
2129 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2130 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2131 #include "clang/AST/TypeNodes.inc"
2132       llvm_unreachable("unexpected dependent type!");
2133 
2134     // These types are never variably-modified.
2135     case Type::Builtin:
2136     case Type::Complex:
2137     case Type::Vector:
2138     case Type::ExtVector:
2139     case Type::ConstantMatrix:
2140     case Type::Record:
2141     case Type::Enum:
2142     case Type::Elaborated:
2143     case Type::TemplateSpecialization:
2144     case Type::ObjCTypeParam:
2145     case Type::ObjCObject:
2146     case Type::ObjCInterface:
2147     case Type::ObjCObjectPointer:
2148     case Type::ExtInt:
2149       llvm_unreachable("type class is never variably-modified!");
2150 
2151     case Type::Adjusted:
2152       type = cast<AdjustedType>(ty)->getAdjustedType();
2153       break;
2154 
2155     case Type::Decayed:
2156       type = cast<DecayedType>(ty)->getPointeeType();
2157       break;
2158 
2159     case Type::Pointer:
2160       type = cast<PointerType>(ty)->getPointeeType();
2161       break;
2162 
2163     case Type::BlockPointer:
2164       type = cast<BlockPointerType>(ty)->getPointeeType();
2165       break;
2166 
2167     case Type::LValueReference:
2168     case Type::RValueReference:
2169       type = cast<ReferenceType>(ty)->getPointeeType();
2170       break;
2171 
2172     case Type::MemberPointer:
2173       type = cast<MemberPointerType>(ty)->getPointeeType();
2174       break;
2175 
2176     case Type::ConstantArray:
2177     case Type::IncompleteArray:
2178       // Losing element qualification here is fine.
2179       type = cast<ArrayType>(ty)->getElementType();
2180       break;
2181 
2182     case Type::VariableArray: {
2183       // Losing element qualification here is fine.
2184       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2185 
2186       // Unknown size indication requires no size computation.
2187       // Otherwise, evaluate and record it.
2188       if (const Expr *size = vat->getSizeExpr()) {
2189         // It's possible that we might have emitted this already,
2190         // e.g. with a typedef and a pointer to it.
2191         llvm::Value *&entry = VLASizeMap[size];
2192         if (!entry) {
2193           llvm::Value *Size = EmitScalarExpr(size);
2194 
2195           // C11 6.7.6.2p5:
2196           //   If the size is an expression that is not an integer constant
2197           //   expression [...] each time it is evaluated it shall have a value
2198           //   greater than zero.
2199           if (SanOpts.has(SanitizerKind::VLABound) &&
2200               size->getType()->isSignedIntegerType()) {
2201             SanitizerScope SanScope(this);
2202             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2203             llvm::Constant *StaticArgs[] = {
2204                 EmitCheckSourceLocation(size->getBeginLoc()),
2205                 EmitCheckTypeDescriptor(size->getType())};
2206             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2207                                      SanitizerKind::VLABound),
2208                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2209           }
2210 
2211           // Always zexting here would be wrong if it weren't
2212           // undefined behavior to have a negative bound.
2213           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2214         }
2215       }
2216       type = vat->getElementType();
2217       break;
2218     }
2219 
2220     case Type::FunctionProto:
2221     case Type::FunctionNoProto:
2222       type = cast<FunctionType>(ty)->getReturnType();
2223       break;
2224 
2225     case Type::Paren:
2226     case Type::TypeOf:
2227     case Type::UnaryTransform:
2228     case Type::Attributed:
2229     case Type::SubstTemplateTypeParm:
2230     case Type::MacroQualified:
2231       // Keep walking after single level desugaring.
2232       type = type.getSingleStepDesugaredType(getContext());
2233       break;
2234 
2235     case Type::Typedef:
2236     case Type::Decltype:
2237     case Type::Auto:
2238     case Type::DeducedTemplateSpecialization:
2239       // Stop walking: nothing to do.
2240       return;
2241 
2242     case Type::TypeOfExpr:
2243       // Stop walking: emit typeof expression.
2244       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2245       return;
2246 
2247     case Type::Atomic:
2248       type = cast<AtomicType>(ty)->getValueType();
2249       break;
2250 
2251     case Type::Pipe:
2252       type = cast<PipeType>(ty)->getElementType();
2253       break;
2254     }
2255   } while (type->isVariablyModifiedType());
2256 }
2257 
EmitVAListRef(const Expr * E)2258 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2259   if (getContext().getBuiltinVaListType()->isArrayType())
2260     return EmitPointerWithAlignment(E);
2261   return EmitLValue(E).getAddress(*this);
2262 }
2263 
EmitMSVAListRef(const Expr * E)2264 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2265   return EmitLValue(E).getAddress(*this);
2266 }
2267 
EmitDeclRefExprDbgValue(const DeclRefExpr * E,const APValue & Init)2268 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2269                                               const APValue &Init) {
2270   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2271   if (CGDebugInfo *Dbg = getDebugInfo())
2272     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2273       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2274 }
2275 
2276 CodeGenFunction::PeepholeProtection
protectFromPeepholes(RValue rvalue)2277 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2278   // At the moment, the only aggressive peephole we do in IR gen
2279   // is trunc(zext) folding, but if we add more, we can easily
2280   // extend this protection.
2281 
2282   if (!rvalue.isScalar()) return PeepholeProtection();
2283   llvm::Value *value = rvalue.getScalarVal();
2284   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2285 
2286   // Just make an extra bitcast.
2287   assert(HaveInsertPoint());
2288   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2289                                                   Builder.GetInsertBlock());
2290 
2291   PeepholeProtection protection;
2292   protection.Inst = inst;
2293   return protection;
2294 }
2295 
unprotectFromPeepholes(PeepholeProtection protection)2296 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2297   if (!protection.Inst) return;
2298 
2299   // In theory, we could try to duplicate the peepholes now, but whatever.
2300   protection.Inst->eraseFromParent();
2301 }
2302 
emitAlignmentAssumption(llvm::Value * PtrValue,QualType Ty,SourceLocation Loc,SourceLocation AssumptionLoc,llvm::Value * Alignment,llvm::Value * OffsetValue)2303 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2304                                               QualType Ty, SourceLocation Loc,
2305                                               SourceLocation AssumptionLoc,
2306                                               llvm::Value *Alignment,
2307                                               llvm::Value *OffsetValue) {
2308   if (Alignment->getType() != IntPtrTy)
2309     Alignment =
2310         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2311   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2312     OffsetValue =
2313         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2314   llvm::Value *TheCheck = nullptr;
2315   if (SanOpts.has(SanitizerKind::Alignment)) {
2316     llvm::Value *PtrIntValue =
2317         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2318 
2319     if (OffsetValue) {
2320       bool IsOffsetZero = false;
2321       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2322         IsOffsetZero = CI->isZero();
2323 
2324       if (!IsOffsetZero)
2325         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2326     }
2327 
2328     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2329     llvm::Value *Mask =
2330         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2331     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2332     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2333   }
2334   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2335       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2336 
2337   if (!SanOpts.has(SanitizerKind::Alignment))
2338     return;
2339   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2340                                OffsetValue, TheCheck, Assumption);
2341 }
2342 
emitAlignmentAssumption(llvm::Value * PtrValue,const Expr * E,SourceLocation AssumptionLoc,llvm::Value * Alignment,llvm::Value * OffsetValue)2343 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2344                                               const Expr *E,
2345                                               SourceLocation AssumptionLoc,
2346                                               llvm::Value *Alignment,
2347                                               llvm::Value *OffsetValue) {
2348   if (auto *CE = dyn_cast<CastExpr>(E))
2349     E = CE->getSubExprAsWritten();
2350   QualType Ty = E->getType();
2351   SourceLocation Loc = E->getExprLoc();
2352 
2353   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2354                           OffsetValue);
2355 }
2356 
EmitAnnotationCall(llvm::Function * AnnotationFn,llvm::Value * AnnotatedVal,StringRef AnnotationStr,SourceLocation Location,const AnnotateAttr * Attr)2357 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2358                                                  llvm::Value *AnnotatedVal,
2359                                                  StringRef AnnotationStr,
2360                                                  SourceLocation Location,
2361                                                  const AnnotateAttr *Attr) {
2362   SmallVector<llvm::Value *, 5> Args = {
2363       AnnotatedVal,
2364       Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2365       Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2366       CGM.EmitAnnotationLineNo(Location),
2367   };
2368   if (Attr)
2369     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2370   return Builder.CreateCall(AnnotationFn, Args);
2371 }
2372 
EmitVarAnnotations(const VarDecl * D,llvm::Value * V)2373 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2374   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2375   // FIXME We create a new bitcast for every annotation because that's what
2376   // llvm-gcc was doing.
2377   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2378     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2379                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2380                        I->getAnnotation(), D->getLocation(), I);
2381 }
2382 
EmitFieldAnnotations(const FieldDecl * D,Address Addr)2383 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2384                                               Address Addr) {
2385   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2386   llvm::Value *V = Addr.getPointer();
2387   llvm::Type *VTy = V->getType();
2388   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2389                                     CGM.Int8PtrTy);
2390 
2391   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2392     // FIXME Always emit the cast inst so we can differentiate between
2393     // annotation on the first field of a struct and annotation on the struct
2394     // itself.
2395     if (VTy != CGM.Int8PtrTy)
2396       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2397     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2398     V = Builder.CreateBitCast(V, VTy);
2399   }
2400 
2401   return Address(V, Addr.getAlignment());
2402 }
2403 
~CGCapturedStmtInfo()2404 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2405 
SanitizerScope(CodeGenFunction * CGF)2406 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2407     : CGF(CGF) {
2408   assert(!CGF->IsSanitizerScope);
2409   CGF->IsSanitizerScope = true;
2410 }
2411 
~SanitizerScope()2412 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2413   CGF->IsSanitizerScope = false;
2414 }
2415 
InsertHelper(llvm::Instruction * I,const llvm::Twine & Name,llvm::BasicBlock * BB,llvm::BasicBlock::iterator InsertPt) const2416 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2417                                    const llvm::Twine &Name,
2418                                    llvm::BasicBlock *BB,
2419                                    llvm::BasicBlock::iterator InsertPt) const {
2420   LoopStack.InsertHelper(I);
2421   if (IsSanitizerScope)
2422     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2423 }
2424 
InsertHelper(llvm::Instruction * I,const llvm::Twine & Name,llvm::BasicBlock * BB,llvm::BasicBlock::iterator InsertPt) const2425 void CGBuilderInserter::InsertHelper(
2426     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2427     llvm::BasicBlock::iterator InsertPt) const {
2428   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2429   if (CGF)
2430     CGF->InsertHelper(I, Name, BB, InsertPt);
2431 }
2432 
2433 // Emits an error if we don't have a valid set of target features for the
2434 // called function.
checkTargetFeatures(const CallExpr * E,const FunctionDecl * TargetDecl)2435 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2436                                           const FunctionDecl *TargetDecl) {
2437   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2438 }
2439 
2440 // Emits an error if we don't have a valid set of target features for the
2441 // called function.
checkTargetFeatures(SourceLocation Loc,const FunctionDecl * TargetDecl)2442 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2443                                           const FunctionDecl *TargetDecl) {
2444   // Early exit if this is an indirect call.
2445   if (!TargetDecl)
2446     return;
2447 
2448   // Get the current enclosing function if it exists. If it doesn't
2449   // we can't check the target features anyhow.
2450   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2451   if (!FD)
2452     return;
2453 
2454   // Grab the required features for the call. For a builtin this is listed in
2455   // the td file with the default cpu, for an always_inline function this is any
2456   // listed cpu and any listed features.
2457   unsigned BuiltinID = TargetDecl->getBuiltinID();
2458   std::string MissingFeature;
2459   llvm::StringMap<bool> CallerFeatureMap;
2460   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2461   if (BuiltinID) {
2462     StringRef FeatureList(
2463         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2464     // Return if the builtin doesn't have any required features.
2465     if (FeatureList.empty())
2466       return;
2467     assert(FeatureList.find(' ') == StringRef::npos &&
2468            "Space in feature list");
2469     TargetFeatures TF(CallerFeatureMap);
2470     if (!TF.hasRequiredFeatures(FeatureList))
2471       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2472           << TargetDecl->getDeclName() << FeatureList;
2473   } else if (!TargetDecl->isMultiVersion() &&
2474              TargetDecl->hasAttr<TargetAttr>()) {
2475     // Get the required features for the callee.
2476 
2477     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2478     ParsedTargetAttr ParsedAttr =
2479         CGM.getContext().filterFunctionTargetAttrs(TD);
2480 
2481     SmallVector<StringRef, 1> ReqFeatures;
2482     llvm::StringMap<bool> CalleeFeatureMap;
2483     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2484 
2485     for (const auto &F : ParsedAttr.Features) {
2486       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2487         ReqFeatures.push_back(StringRef(F).substr(1));
2488     }
2489 
2490     for (const auto &F : CalleeFeatureMap) {
2491       // Only positive features are "required".
2492       if (F.getValue())
2493         ReqFeatures.push_back(F.getKey());
2494     }
2495     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2496       if (!CallerFeatureMap.lookup(Feature)) {
2497         MissingFeature = Feature.str();
2498         return false;
2499       }
2500       return true;
2501     }))
2502       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2503           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2504   }
2505 }
2506 
EmitSanitizerStatReport(llvm::SanitizerStatKind SSK)2507 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2508   if (!CGM.getCodeGenOpts().SanitizeStats)
2509     return;
2510 
2511   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2512   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2513   CGM.getSanStats().create(IRB, SSK);
2514 }
2515 
2516 llvm::Value *
FormResolverCondition(const MultiVersionResolverOption & RO)2517 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2518   llvm::Value *Condition = nullptr;
2519 
2520   if (!RO.Conditions.Architecture.empty())
2521     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2522 
2523   if (!RO.Conditions.Features.empty()) {
2524     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2525     Condition =
2526         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2527   }
2528   return Condition;
2529 }
2530 
CreateMultiVersionResolverReturn(CodeGenModule & CGM,llvm::Function * Resolver,CGBuilderTy & Builder,llvm::Function * FuncToReturn,bool SupportsIFunc)2531 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2532                                              llvm::Function *Resolver,
2533                                              CGBuilderTy &Builder,
2534                                              llvm::Function *FuncToReturn,
2535                                              bool SupportsIFunc) {
2536   if (SupportsIFunc) {
2537     Builder.CreateRet(FuncToReturn);
2538     return;
2539   }
2540 
2541   llvm::SmallVector<llvm::Value *, 10> Args;
2542   llvm::for_each(Resolver->args(),
2543                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2544 
2545   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2546   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2547 
2548   if (Resolver->getReturnType()->isVoidTy())
2549     Builder.CreateRetVoid();
2550   else
2551     Builder.CreateRet(Result);
2552 }
2553 
EmitMultiVersionResolver(llvm::Function * Resolver,ArrayRef<MultiVersionResolverOption> Options)2554 void CodeGenFunction::EmitMultiVersionResolver(
2555     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2556   assert(getContext().getTargetInfo().getTriple().isX86() &&
2557          "Only implemented for x86 targets");
2558 
2559   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2560 
2561   // Main function's basic block.
2562   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2563   Builder.SetInsertPoint(CurBlock);
2564   EmitX86CpuInit();
2565 
2566   for (const MultiVersionResolverOption &RO : Options) {
2567     Builder.SetInsertPoint(CurBlock);
2568     llvm::Value *Condition = FormResolverCondition(RO);
2569 
2570     // The 'default' or 'generic' case.
2571     if (!Condition) {
2572       assert(&RO == Options.end() - 1 &&
2573              "Default or Generic case must be last");
2574       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2575                                        SupportsIFunc);
2576       return;
2577     }
2578 
2579     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2580     CGBuilderTy RetBuilder(*this, RetBlock);
2581     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2582                                      SupportsIFunc);
2583     CurBlock = createBasicBlock("resolver_else", Resolver);
2584     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2585   }
2586 
2587   // If no generic/default, emit an unreachable.
2588   Builder.SetInsertPoint(CurBlock);
2589   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2590   TrapCall->setDoesNotReturn();
2591   TrapCall->setDoesNotThrow();
2592   Builder.CreateUnreachable();
2593   Builder.ClearInsertionPoint();
2594 }
2595 
2596 // Loc - where the diagnostic will point, where in the source code this
2597 //  alignment has failed.
2598 // SecondaryLoc - if present (will be present if sufficiently different from
2599 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2600 //  It should be the location where the __attribute__((assume_aligned))
2601 //  was written e.g.
emitAlignmentAssumptionCheck(llvm::Value * Ptr,QualType Ty,SourceLocation Loc,SourceLocation SecondaryLoc,llvm::Value * Alignment,llvm::Value * OffsetValue,llvm::Value * TheCheck,llvm::Instruction * Assumption)2602 void CodeGenFunction::emitAlignmentAssumptionCheck(
2603     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2604     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2605     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2606     llvm::Instruction *Assumption) {
2607   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2608          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2609              llvm::Intrinsic::getDeclaration(
2610                  Builder.GetInsertBlock()->getParent()->getParent(),
2611                  llvm::Intrinsic::assume) &&
2612          "Assumption should be a call to llvm.assume().");
2613   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2614          "Assumption should be the last instruction of the basic block, "
2615          "since the basic block is still being generated.");
2616 
2617   if (!SanOpts.has(SanitizerKind::Alignment))
2618     return;
2619 
2620   // Don't check pointers to volatile data. The behavior here is implementation-
2621   // defined.
2622   if (Ty->getPointeeType().isVolatileQualified())
2623     return;
2624 
2625   // We need to temorairly remove the assumption so we can insert the
2626   // sanitizer check before it, else the check will be dropped by optimizations.
2627   Assumption->removeFromParent();
2628 
2629   {
2630     SanitizerScope SanScope(this);
2631 
2632     if (!OffsetValue)
2633       OffsetValue = Builder.getInt1(0); // no offset.
2634 
2635     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2636                                     EmitCheckSourceLocation(SecondaryLoc),
2637                                     EmitCheckTypeDescriptor(Ty)};
2638     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2639                                   EmitCheckValue(Alignment),
2640                                   EmitCheckValue(OffsetValue)};
2641     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2642               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2643   }
2644 
2645   // We are now in the (new, empty) "cont" basic block.
2646   // Reintroduce the assumption.
2647   Builder.Insert(Assumption);
2648   // FIXME: Assumption still has it's original basic block as it's Parent.
2649 }
2650 
SourceLocToDebugLoc(SourceLocation Location)2651 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2652   if (CGDebugInfo *DI = getDebugInfo())
2653     return DI->SourceLocToDebugLoc(Location);
2654 
2655   return llvm::DebugLoc();
2656 }
2657 
2658 llvm::Value *
emitCondLikelihoodViaExpectIntrinsic(llvm::Value * Cond,Stmt::Likelihood LH)2659 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2660                                                       Stmt::Likelihood LH) {
2661   switch (LH) {
2662   case Stmt::LH_None:
2663     return Cond;
2664   case Stmt::LH_Likely:
2665   case Stmt::LH_Unlikely:
2666     // Don't generate llvm.expect on -O0 as the backend won't use it for
2667     // anything.
2668     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2669       return Cond;
2670     llvm::Type *CondTy = Cond->getType();
2671     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2672     llvm::Function *FnExpect =
2673         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2674     llvm::Value *ExpectedValueOfCond =
2675         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2676     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2677                               Cond->getName() + ".expval");
2678   }
2679   llvm_unreachable("Unknown Likelihood");
2680 }
2681