1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
10 //
11 // This SMS implementation is a target-independent back-end pass. When enabled,
12 // the pass runs just prior to the register allocation pass, while the machine
13 // IR is in SSA form. If software pipelining is successful, then the original
14 // loop is replaced by the optimized loop. The optimized loop contains one or
15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16 // the instructions cannot be scheduled in a given MII, we increase the MII by
17 // one and try again.
18 //
19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20 // represent loop carried dependences in the DAG as order edges to the Phi
21 // nodes. We also perform several passes over the DAG to eliminate unnecessary
22 // edges that inhibit the ability to pipeline. The implementation uses the
23 // DFAPacketizer class to compute the minimum initiation interval and the check
24 // where an instruction may be inserted in the pipelined schedule.
25 //
26 // In order for the SMS pass to work, several target specific hooks need to be
27 // implemented to get information about the loop structure and to rewrite
28 // instructions.
29 //
30 //===----------------------------------------------------------------------===//
31
32 #include "llvm/CodeGen/MachinePipeliner.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/BitVector.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/MapVector.h"
37 #include "llvm/ADT/PriorityQueue.h"
38 #include "llvm/ADT/SetOperations.h"
39 #include "llvm/ADT/SetVector.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallSet.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/ADT/Statistic.h"
44 #include "llvm/ADT/iterator_range.h"
45 #include "llvm/Analysis/AliasAnalysis.h"
46 #include "llvm/Analysis/CycleAnalysis.h"
47 #include "llvm/Analysis/MemoryLocation.h"
48 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
49 #include "llvm/Analysis/ValueTracking.h"
50 #include "llvm/CodeGen/DFAPacketizer.h"
51 #include "llvm/CodeGen/LiveIntervals.h"
52 #include "llvm/CodeGen/MachineBasicBlock.h"
53 #include "llvm/CodeGen/MachineDominators.h"
54 #include "llvm/CodeGen/MachineFunction.h"
55 #include "llvm/CodeGen/MachineFunctionPass.h"
56 #include "llvm/CodeGen/MachineInstr.h"
57 #include "llvm/CodeGen/MachineInstrBuilder.h"
58 #include "llvm/CodeGen/MachineLoopInfo.h"
59 #include "llvm/CodeGen/MachineMemOperand.h"
60 #include "llvm/CodeGen/MachineOperand.h"
61 #include "llvm/CodeGen/MachineRegisterInfo.h"
62 #include "llvm/CodeGen/ModuloSchedule.h"
63 #include "llvm/CodeGen/RegisterPressure.h"
64 #include "llvm/CodeGen/ScheduleDAG.h"
65 #include "llvm/CodeGen/ScheduleDAGMutation.h"
66 #include "llvm/CodeGen/TargetOpcodes.h"
67 #include "llvm/CodeGen/TargetRegisterInfo.h"
68 #include "llvm/CodeGen/TargetSubtargetInfo.h"
69 #include "llvm/Config/llvm-config.h"
70 #include "llvm/IR/Attributes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/MC/LaneBitmask.h"
73 #include "llvm/MC/MCInstrDesc.h"
74 #include "llvm/MC/MCInstrItineraries.h"
75 #include "llvm/MC/MCRegisterInfo.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/MathExtras.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include <algorithm>
83 #include <cassert>
84 #include <climits>
85 #include <cstdint>
86 #include <deque>
87 #include <functional>
88 #include <iomanip>
89 #include <iterator>
90 #include <map>
91 #include <memory>
92 #include <sstream>
93 #include <tuple>
94 #include <utility>
95 #include <vector>
96
97 using namespace llvm;
98
99 #define DEBUG_TYPE "pipeliner"
100
101 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
102 STATISTIC(NumPipelined, "Number of loops software pipelined");
103 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
104 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
105 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
106 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
107 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
108 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
109 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
110 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
111 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
112
113 /// A command line option to turn software pipelining on or off.
114 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
115 cl::desc("Enable Software Pipelining"));
116
117 /// A command line option to enable SWP at -Os.
118 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
119 cl::desc("Enable SWP at Os."), cl::Hidden,
120 cl::init(false));
121
122 /// A command line argument to limit minimum initial interval for pipelining.
123 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
124 cl::desc("Size limit for the MII."),
125 cl::Hidden, cl::init(27));
126
127 /// A command line argument to force pipeliner to use specified initial
128 /// interval.
129 static cl::opt<int> SwpForceII("pipeliner-force-ii",
130 cl::desc("Force pipeliner to use specified II."),
131 cl::Hidden, cl::init(-1));
132
133 /// A command line argument to limit the number of stages in the pipeline.
134 static cl::opt<int>
135 SwpMaxStages("pipeliner-max-stages",
136 cl::desc("Maximum stages allowed in the generated scheduled."),
137 cl::Hidden, cl::init(3));
138
139 /// A command line option to disable the pruning of chain dependences due to
140 /// an unrelated Phi.
141 static cl::opt<bool>
142 SwpPruneDeps("pipeliner-prune-deps",
143 cl::desc("Prune dependences between unrelated Phi nodes."),
144 cl::Hidden, cl::init(true));
145
146 /// A command line option to disable the pruning of loop carried order
147 /// dependences.
148 static cl::opt<bool>
149 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
150 cl::desc("Prune loop carried order dependences."),
151 cl::Hidden, cl::init(true));
152
153 #ifndef NDEBUG
154 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
155 #endif
156
157 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
158 cl::ReallyHidden,
159 cl::desc("Ignore RecMII"));
160
161 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
162 cl::init(false));
163 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
164 cl::init(false));
165
166 static cl::opt<bool> EmitTestAnnotations(
167 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
168 cl::desc("Instead of emitting the pipelined code, annotate instructions "
169 "with the generated schedule for feeding into the "
170 "-modulo-schedule-test pass"));
171
172 static cl::opt<bool> ExperimentalCodeGen(
173 "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
174 cl::desc(
175 "Use the experimental peeling code generator for software pipelining"));
176
177 namespace llvm {
178
179 // A command line option to enable the CopyToPhi DAG mutation.
180 cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
181 cl::init(true),
182 cl::desc("Enable CopyToPhi DAG Mutation"));
183
184 /// A command line argument to force pipeliner to use specified issue
185 /// width.
186 cl::opt<int> SwpForceIssueWidth(
187 "pipeliner-force-issue-width",
188 cl::desc("Force pipeliner to use specified issue width."), cl::Hidden,
189 cl::init(-1));
190
191 } // end namespace llvm
192
193 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
194 char MachinePipeliner::ID = 0;
195 #ifndef NDEBUG
196 int MachinePipeliner::NumTries = 0;
197 #endif
198 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
199
200 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
201 "Modulo Software Pipelining", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)202 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
203 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
204 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
205 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
206 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
207 "Modulo Software Pipelining", false, false)
208
209 /// The "main" function for implementing Swing Modulo Scheduling.
210 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
211 if (skipFunction(mf.getFunction()))
212 return false;
213
214 if (!EnableSWP)
215 return false;
216
217 if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) &&
218 !EnableSWPOptSize.getPosition())
219 return false;
220
221 if (!mf.getSubtarget().enableMachinePipeliner())
222 return false;
223
224 // Cannot pipeline loops without instruction itineraries if we are using
225 // DFA for the pipeliner.
226 if (mf.getSubtarget().useDFAforSMS() &&
227 (!mf.getSubtarget().getInstrItineraryData() ||
228 mf.getSubtarget().getInstrItineraryData()->isEmpty()))
229 return false;
230
231 MF = &mf;
232 MLI = &getAnalysis<MachineLoopInfo>();
233 MDT = &getAnalysis<MachineDominatorTree>();
234 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
235 TII = MF->getSubtarget().getInstrInfo();
236 RegClassInfo.runOnMachineFunction(*MF);
237
238 for (const auto &L : *MLI)
239 scheduleLoop(*L);
240
241 return false;
242 }
243
244 /// Attempt to perform the SMS algorithm on the specified loop. This function is
245 /// the main entry point for the algorithm. The function identifies candidate
246 /// loops, calculates the minimum initiation interval, and attempts to schedule
247 /// the loop.
scheduleLoop(MachineLoop & L)248 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
249 bool Changed = false;
250 for (const auto &InnerLoop : L)
251 Changed |= scheduleLoop(*InnerLoop);
252
253 #ifndef NDEBUG
254 // Stop trying after reaching the limit (if any).
255 int Limit = SwpLoopLimit;
256 if (Limit >= 0) {
257 if (NumTries >= SwpLoopLimit)
258 return Changed;
259 NumTries++;
260 }
261 #endif
262
263 setPragmaPipelineOptions(L);
264 if (!canPipelineLoop(L)) {
265 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
266 ORE->emit([&]() {
267 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
268 L.getStartLoc(), L.getHeader())
269 << "Failed to pipeline loop";
270 });
271
272 LI.LoopPipelinerInfo.reset();
273 return Changed;
274 }
275
276 ++NumTrytoPipeline;
277
278 Changed = swingModuloScheduler(L);
279
280 LI.LoopPipelinerInfo.reset();
281 return Changed;
282 }
283
setPragmaPipelineOptions(MachineLoop & L)284 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
285 // Reset the pragma for the next loop in iteration.
286 disabledByPragma = false;
287 II_setByPragma = 0;
288
289 MachineBasicBlock *LBLK = L.getTopBlock();
290
291 if (LBLK == nullptr)
292 return;
293
294 const BasicBlock *BBLK = LBLK->getBasicBlock();
295 if (BBLK == nullptr)
296 return;
297
298 const Instruction *TI = BBLK->getTerminator();
299 if (TI == nullptr)
300 return;
301
302 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
303 if (LoopID == nullptr)
304 return;
305
306 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
307 assert(LoopID->getOperand(0) == LoopID && "invalid loop");
308
309 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
310 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
311
312 if (MD == nullptr)
313 continue;
314
315 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
316
317 if (S == nullptr)
318 continue;
319
320 if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
321 assert(MD->getNumOperands() == 2 &&
322 "Pipeline initiation interval hint metadata should have two operands.");
323 II_setByPragma =
324 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
325 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
326 } else if (S->getString() == "llvm.loop.pipeline.disable") {
327 disabledByPragma = true;
328 }
329 }
330 }
331
332 /// Return true if the loop can be software pipelined. The algorithm is
333 /// restricted to loops with a single basic block. Make sure that the
334 /// branch in the loop can be analyzed.
canPipelineLoop(MachineLoop & L)335 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
336 if (L.getNumBlocks() != 1) {
337 ORE->emit([&]() {
338 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
339 L.getStartLoc(), L.getHeader())
340 << "Not a single basic block: "
341 << ore::NV("NumBlocks", L.getNumBlocks());
342 });
343 return false;
344 }
345
346 if (disabledByPragma) {
347 ORE->emit([&]() {
348 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
349 L.getStartLoc(), L.getHeader())
350 << "Disabled by Pragma.";
351 });
352 return false;
353 }
354
355 // Check if the branch can't be understood because we can't do pipelining
356 // if that's the case.
357 LI.TBB = nullptr;
358 LI.FBB = nullptr;
359 LI.BrCond.clear();
360 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
361 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
362 NumFailBranch++;
363 ORE->emit([&]() {
364 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
365 L.getStartLoc(), L.getHeader())
366 << "The branch can't be understood";
367 });
368 return false;
369 }
370
371 LI.LoopInductionVar = nullptr;
372 LI.LoopCompare = nullptr;
373 LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock());
374 if (!LI.LoopPipelinerInfo) {
375 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
376 NumFailLoop++;
377 ORE->emit([&]() {
378 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
379 L.getStartLoc(), L.getHeader())
380 << "The loop structure is not supported";
381 });
382 return false;
383 }
384
385 if (!L.getLoopPreheader()) {
386 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
387 NumFailPreheader++;
388 ORE->emit([&]() {
389 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
390 L.getStartLoc(), L.getHeader())
391 << "No loop preheader found";
392 });
393 return false;
394 }
395
396 // Remove any subregisters from inputs to phi nodes.
397 preprocessPhiNodes(*L.getHeader());
398 return true;
399 }
400
preprocessPhiNodes(MachineBasicBlock & B)401 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
402 MachineRegisterInfo &MRI = MF->getRegInfo();
403 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
404
405 for (MachineInstr &PI : B.phis()) {
406 MachineOperand &DefOp = PI.getOperand(0);
407 assert(DefOp.getSubReg() == 0);
408 auto *RC = MRI.getRegClass(DefOp.getReg());
409
410 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
411 MachineOperand &RegOp = PI.getOperand(i);
412 if (RegOp.getSubReg() == 0)
413 continue;
414
415 // If the operand uses a subregister, replace it with a new register
416 // without subregisters, and generate a copy to the new register.
417 Register NewReg = MRI.createVirtualRegister(RC);
418 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
419 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
420 const DebugLoc &DL = PredB.findDebugLoc(At);
421 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
422 .addReg(RegOp.getReg(), getRegState(RegOp),
423 RegOp.getSubReg());
424 Slots.insertMachineInstrInMaps(*Copy);
425 RegOp.setReg(NewReg);
426 RegOp.setSubReg(0);
427 }
428 }
429 }
430
431 /// The SMS algorithm consists of the following main steps:
432 /// 1. Computation and analysis of the dependence graph.
433 /// 2. Ordering of the nodes (instructions).
434 /// 3. Attempt to Schedule the loop.
swingModuloScheduler(MachineLoop & L)435 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
436 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
437
438 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
439 II_setByPragma, LI.LoopPipelinerInfo.get());
440
441 MachineBasicBlock *MBB = L.getHeader();
442 // The kernel should not include any terminator instructions. These
443 // will be added back later.
444 SMS.startBlock(MBB);
445
446 // Compute the number of 'real' instructions in the basic block by
447 // ignoring terminators.
448 unsigned size = MBB->size();
449 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
450 E = MBB->instr_end();
451 I != E; ++I, --size)
452 ;
453
454 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
455 SMS.schedule();
456 SMS.exitRegion();
457
458 SMS.finishBlock();
459 return SMS.hasNewSchedule();
460 }
461
getAnalysisUsage(AnalysisUsage & AU) const462 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
463 AU.addRequired<AAResultsWrapperPass>();
464 AU.addPreserved<AAResultsWrapperPass>();
465 AU.addRequired<MachineLoopInfo>();
466 AU.addRequired<MachineDominatorTree>();
467 AU.addRequired<LiveIntervals>();
468 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
469 MachineFunctionPass::getAnalysisUsage(AU);
470 }
471
setMII(unsigned ResMII,unsigned RecMII)472 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
473 if (SwpForceII > 0)
474 MII = SwpForceII;
475 else if (II_setByPragma > 0)
476 MII = II_setByPragma;
477 else
478 MII = std::max(ResMII, RecMII);
479 }
480
setMAX_II()481 void SwingSchedulerDAG::setMAX_II() {
482 if (SwpForceII > 0)
483 MAX_II = SwpForceII;
484 else if (II_setByPragma > 0)
485 MAX_II = II_setByPragma;
486 else
487 MAX_II = MII + 10;
488 }
489
490 /// We override the schedule function in ScheduleDAGInstrs to implement the
491 /// scheduling part of the Swing Modulo Scheduling algorithm.
schedule()492 void SwingSchedulerDAG::schedule() {
493 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
494 buildSchedGraph(AA);
495 addLoopCarriedDependences(AA);
496 updatePhiDependences();
497 Topo.InitDAGTopologicalSorting();
498 changeDependences();
499 postprocessDAG();
500 LLVM_DEBUG(dump());
501
502 NodeSetType NodeSets;
503 findCircuits(NodeSets);
504 NodeSetType Circuits = NodeSets;
505
506 // Calculate the MII.
507 unsigned ResMII = calculateResMII();
508 unsigned RecMII = calculateRecMII(NodeSets);
509
510 fuseRecs(NodeSets);
511
512 // This flag is used for testing and can cause correctness problems.
513 if (SwpIgnoreRecMII)
514 RecMII = 0;
515
516 setMII(ResMII, RecMII);
517 setMAX_II();
518
519 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
520 << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
521
522 // Can't schedule a loop without a valid MII.
523 if (MII == 0) {
524 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
525 NumFailZeroMII++;
526 Pass.ORE->emit([&]() {
527 return MachineOptimizationRemarkAnalysis(
528 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
529 << "Invalid Minimal Initiation Interval: 0";
530 });
531 return;
532 }
533
534 // Don't pipeline large loops.
535 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
536 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
537 << ", we don't pipeline large loops\n");
538 NumFailLargeMaxMII++;
539 Pass.ORE->emit([&]() {
540 return MachineOptimizationRemarkAnalysis(
541 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
542 << "Minimal Initiation Interval too large: "
543 << ore::NV("MII", (int)MII) << " > "
544 << ore::NV("SwpMaxMii", SwpMaxMii) << "."
545 << "Refer to -pipeliner-max-mii.";
546 });
547 return;
548 }
549
550 computeNodeFunctions(NodeSets);
551
552 registerPressureFilter(NodeSets);
553
554 colocateNodeSets(NodeSets);
555
556 checkNodeSets(NodeSets);
557
558 LLVM_DEBUG({
559 for (auto &I : NodeSets) {
560 dbgs() << " Rec NodeSet ";
561 I.dump();
562 }
563 });
564
565 llvm::stable_sort(NodeSets, std::greater<NodeSet>());
566
567 groupRemainingNodes(NodeSets);
568
569 removeDuplicateNodes(NodeSets);
570
571 LLVM_DEBUG({
572 for (auto &I : NodeSets) {
573 dbgs() << " NodeSet ";
574 I.dump();
575 }
576 });
577
578 computeNodeOrder(NodeSets);
579
580 // check for node order issues
581 checkValidNodeOrder(Circuits);
582
583 SMSchedule Schedule(Pass.MF, this);
584 Scheduled = schedulePipeline(Schedule);
585
586 if (!Scheduled){
587 LLVM_DEBUG(dbgs() << "No schedule found, return\n");
588 NumFailNoSchedule++;
589 Pass.ORE->emit([&]() {
590 return MachineOptimizationRemarkAnalysis(
591 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
592 << "Unable to find schedule";
593 });
594 return;
595 }
596
597 unsigned numStages = Schedule.getMaxStageCount();
598 // No need to generate pipeline if there are no overlapped iterations.
599 if (numStages == 0) {
600 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
601 NumFailZeroStage++;
602 Pass.ORE->emit([&]() {
603 return MachineOptimizationRemarkAnalysis(
604 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
605 << "No need to pipeline - no overlapped iterations in schedule.";
606 });
607 return;
608 }
609 // Check that the maximum stage count is less than user-defined limit.
610 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
611 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
612 << " : too many stages, abort\n");
613 NumFailLargeMaxStage++;
614 Pass.ORE->emit([&]() {
615 return MachineOptimizationRemarkAnalysis(
616 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
617 << "Too many stages in schedule: "
618 << ore::NV("numStages", (int)numStages) << " > "
619 << ore::NV("SwpMaxStages", SwpMaxStages)
620 << ". Refer to -pipeliner-max-stages.";
621 });
622 return;
623 }
624
625 Pass.ORE->emit([&]() {
626 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
627 Loop.getHeader())
628 << "Pipelined succesfully!";
629 });
630
631 // Generate the schedule as a ModuloSchedule.
632 DenseMap<MachineInstr *, int> Cycles, Stages;
633 std::vector<MachineInstr *> OrderedInsts;
634 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
635 ++Cycle) {
636 for (SUnit *SU : Schedule.getInstructions(Cycle)) {
637 OrderedInsts.push_back(SU->getInstr());
638 Cycles[SU->getInstr()] = Cycle;
639 Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
640 }
641 }
642 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
643 for (auto &KV : NewMIs) {
644 Cycles[KV.first] = Cycles[KV.second];
645 Stages[KV.first] = Stages[KV.second];
646 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
647 }
648
649 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
650 std::move(Stages));
651 if (EmitTestAnnotations) {
652 assert(NewInstrChanges.empty() &&
653 "Cannot serialize a schedule with InstrChanges!");
654 ModuloScheduleTestAnnotater MSTI(MF, MS);
655 MSTI.annotate();
656 return;
657 }
658 // The experimental code generator can't work if there are InstChanges.
659 if (ExperimentalCodeGen && NewInstrChanges.empty()) {
660 PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
661 MSE.expand();
662 } else {
663 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
664 MSE.expand();
665 MSE.cleanup();
666 }
667 ++NumPipelined;
668 }
669
670 /// Clean up after the software pipeliner runs.
finishBlock()671 void SwingSchedulerDAG::finishBlock() {
672 for (auto &KV : NewMIs)
673 MF.deleteMachineInstr(KV.second);
674 NewMIs.clear();
675
676 // Call the superclass.
677 ScheduleDAGInstrs::finishBlock();
678 }
679
680 /// Return the register values for the operands of a Phi instruction.
681 /// This function assume the instruction is a Phi.
getPhiRegs(MachineInstr & Phi,MachineBasicBlock * Loop,unsigned & InitVal,unsigned & LoopVal)682 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
683 unsigned &InitVal, unsigned &LoopVal) {
684 assert(Phi.isPHI() && "Expecting a Phi.");
685
686 InitVal = 0;
687 LoopVal = 0;
688 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
689 if (Phi.getOperand(i + 1).getMBB() != Loop)
690 InitVal = Phi.getOperand(i).getReg();
691 else
692 LoopVal = Phi.getOperand(i).getReg();
693
694 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
695 }
696
697 /// Return the Phi register value that comes the loop block.
getLoopPhiReg(MachineInstr & Phi,MachineBasicBlock * LoopBB)698 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
699 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
700 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
701 return Phi.getOperand(i).getReg();
702 return 0;
703 }
704
705 /// Return true if SUb can be reached from SUa following the chain edges.
isSuccOrder(SUnit * SUa,SUnit * SUb)706 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
707 SmallPtrSet<SUnit *, 8> Visited;
708 SmallVector<SUnit *, 8> Worklist;
709 Worklist.push_back(SUa);
710 while (!Worklist.empty()) {
711 const SUnit *SU = Worklist.pop_back_val();
712 for (const auto &SI : SU->Succs) {
713 SUnit *SuccSU = SI.getSUnit();
714 if (SI.getKind() == SDep::Order) {
715 if (Visited.count(SuccSU))
716 continue;
717 if (SuccSU == SUb)
718 return true;
719 Worklist.push_back(SuccSU);
720 Visited.insert(SuccSU);
721 }
722 }
723 }
724 return false;
725 }
726
727 /// Return true if the instruction causes a chain between memory
728 /// references before and after it.
isDependenceBarrier(MachineInstr & MI)729 static bool isDependenceBarrier(MachineInstr &MI) {
730 return MI.isCall() || MI.mayRaiseFPException() ||
731 MI.hasUnmodeledSideEffects() ||
732 (MI.hasOrderedMemoryRef() &&
733 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad()));
734 }
735
736 /// Return the underlying objects for the memory references of an instruction.
737 /// This function calls the code in ValueTracking, but first checks that the
738 /// instruction has a memory operand.
getUnderlyingObjects(const MachineInstr * MI,SmallVectorImpl<const Value * > & Objs)739 static void getUnderlyingObjects(const MachineInstr *MI,
740 SmallVectorImpl<const Value *> &Objs) {
741 if (!MI->hasOneMemOperand())
742 return;
743 MachineMemOperand *MM = *MI->memoperands_begin();
744 if (!MM->getValue())
745 return;
746 getUnderlyingObjects(MM->getValue(), Objs);
747 for (const Value *V : Objs) {
748 if (!isIdentifiedObject(V)) {
749 Objs.clear();
750 return;
751 }
752 Objs.push_back(V);
753 }
754 }
755
756 /// Add a chain edge between a load and store if the store can be an
757 /// alias of the load on a subsequent iteration, i.e., a loop carried
758 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
759 /// but that code doesn't create loop carried dependences.
addLoopCarriedDependences(AliasAnalysis * AA)760 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
761 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
762 Value *UnknownValue =
763 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
764 for (auto &SU : SUnits) {
765 MachineInstr &MI = *SU.getInstr();
766 if (isDependenceBarrier(MI))
767 PendingLoads.clear();
768 else if (MI.mayLoad()) {
769 SmallVector<const Value *, 4> Objs;
770 ::getUnderlyingObjects(&MI, Objs);
771 if (Objs.empty())
772 Objs.push_back(UnknownValue);
773 for (const auto *V : Objs) {
774 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
775 SUs.push_back(&SU);
776 }
777 } else if (MI.mayStore()) {
778 SmallVector<const Value *, 4> Objs;
779 ::getUnderlyingObjects(&MI, Objs);
780 if (Objs.empty())
781 Objs.push_back(UnknownValue);
782 for (const auto *V : Objs) {
783 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
784 PendingLoads.find(V);
785 if (I == PendingLoads.end())
786 continue;
787 for (auto *Load : I->second) {
788 if (isSuccOrder(Load, &SU))
789 continue;
790 MachineInstr &LdMI = *Load->getInstr();
791 // First, perform the cheaper check that compares the base register.
792 // If they are the same and the load offset is less than the store
793 // offset, then mark the dependence as loop carried potentially.
794 const MachineOperand *BaseOp1, *BaseOp2;
795 int64_t Offset1, Offset2;
796 bool Offset1IsScalable, Offset2IsScalable;
797 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
798 Offset1IsScalable, TRI) &&
799 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
800 Offset2IsScalable, TRI)) {
801 if (BaseOp1->isIdenticalTo(*BaseOp2) &&
802 Offset1IsScalable == Offset2IsScalable &&
803 (int)Offset1 < (int)Offset2) {
804 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
805 "What happened to the chain edge?");
806 SDep Dep(Load, SDep::Barrier);
807 Dep.setLatency(1);
808 SU.addPred(Dep);
809 continue;
810 }
811 }
812 // Second, the more expensive check that uses alias analysis on the
813 // base registers. If they alias, and the load offset is less than
814 // the store offset, the mark the dependence as loop carried.
815 if (!AA) {
816 SDep Dep(Load, SDep::Barrier);
817 Dep.setLatency(1);
818 SU.addPred(Dep);
819 continue;
820 }
821 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
822 MachineMemOperand *MMO2 = *MI.memoperands_begin();
823 if (!MMO1->getValue() || !MMO2->getValue()) {
824 SDep Dep(Load, SDep::Barrier);
825 Dep.setLatency(1);
826 SU.addPred(Dep);
827 continue;
828 }
829 if (MMO1->getValue() == MMO2->getValue() &&
830 MMO1->getOffset() <= MMO2->getOffset()) {
831 SDep Dep(Load, SDep::Barrier);
832 Dep.setLatency(1);
833 SU.addPred(Dep);
834 continue;
835 }
836 if (!AA->isNoAlias(
837 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
838 MemoryLocation::getAfter(MMO2->getValue(),
839 MMO2->getAAInfo()))) {
840 SDep Dep(Load, SDep::Barrier);
841 Dep.setLatency(1);
842 SU.addPred(Dep);
843 }
844 }
845 }
846 }
847 }
848 }
849
850 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
851 /// processes dependences for PHIs. This function adds true dependences
852 /// from a PHI to a use, and a loop carried dependence from the use to the
853 /// PHI. The loop carried dependence is represented as an anti dependence
854 /// edge. This function also removes chain dependences between unrelated
855 /// PHIs.
updatePhiDependences()856 void SwingSchedulerDAG::updatePhiDependences() {
857 SmallVector<SDep, 4> RemoveDeps;
858 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
859
860 // Iterate over each DAG node.
861 for (SUnit &I : SUnits) {
862 RemoveDeps.clear();
863 // Set to true if the instruction has an operand defined by a Phi.
864 unsigned HasPhiUse = 0;
865 unsigned HasPhiDef = 0;
866 MachineInstr *MI = I.getInstr();
867 // Iterate over each operand, and we process the definitions.
868 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
869 MOE = MI->operands_end();
870 MOI != MOE; ++MOI) {
871 if (!MOI->isReg())
872 continue;
873 Register Reg = MOI->getReg();
874 if (MOI->isDef()) {
875 // If the register is used by a Phi, then create an anti dependence.
876 for (MachineRegisterInfo::use_instr_iterator
877 UI = MRI.use_instr_begin(Reg),
878 UE = MRI.use_instr_end();
879 UI != UE; ++UI) {
880 MachineInstr *UseMI = &*UI;
881 SUnit *SU = getSUnit(UseMI);
882 if (SU != nullptr && UseMI->isPHI()) {
883 if (!MI->isPHI()) {
884 SDep Dep(SU, SDep::Anti, Reg);
885 Dep.setLatency(1);
886 I.addPred(Dep);
887 } else {
888 HasPhiDef = Reg;
889 // Add a chain edge to a dependent Phi that isn't an existing
890 // predecessor.
891 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
892 I.addPred(SDep(SU, SDep::Barrier));
893 }
894 }
895 }
896 } else if (MOI->isUse()) {
897 // If the register is defined by a Phi, then create a true dependence.
898 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
899 if (DefMI == nullptr)
900 continue;
901 SUnit *SU = getSUnit(DefMI);
902 if (SU != nullptr && DefMI->isPHI()) {
903 if (!MI->isPHI()) {
904 SDep Dep(SU, SDep::Data, Reg);
905 Dep.setLatency(0);
906 ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep);
907 I.addPred(Dep);
908 } else {
909 HasPhiUse = Reg;
910 // Add a chain edge to a dependent Phi that isn't an existing
911 // predecessor.
912 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
913 I.addPred(SDep(SU, SDep::Barrier));
914 }
915 }
916 }
917 }
918 // Remove order dependences from an unrelated Phi.
919 if (!SwpPruneDeps)
920 continue;
921 for (auto &PI : I.Preds) {
922 MachineInstr *PMI = PI.getSUnit()->getInstr();
923 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
924 if (I.getInstr()->isPHI()) {
925 if (PMI->getOperand(0).getReg() == HasPhiUse)
926 continue;
927 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
928 continue;
929 }
930 RemoveDeps.push_back(PI);
931 }
932 }
933 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
934 I.removePred(RemoveDeps[i]);
935 }
936 }
937
938 /// Iterate over each DAG node and see if we can change any dependences
939 /// in order to reduce the recurrence MII.
changeDependences()940 void SwingSchedulerDAG::changeDependences() {
941 // See if an instruction can use a value from the previous iteration.
942 // If so, we update the base and offset of the instruction and change
943 // the dependences.
944 for (SUnit &I : SUnits) {
945 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
946 int64_t NewOffset = 0;
947 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
948 NewOffset))
949 continue;
950
951 // Get the MI and SUnit for the instruction that defines the original base.
952 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
953 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
954 if (!DefMI)
955 continue;
956 SUnit *DefSU = getSUnit(DefMI);
957 if (!DefSU)
958 continue;
959 // Get the MI and SUnit for the instruction that defins the new base.
960 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
961 if (!LastMI)
962 continue;
963 SUnit *LastSU = getSUnit(LastMI);
964 if (!LastSU)
965 continue;
966
967 if (Topo.IsReachable(&I, LastSU))
968 continue;
969
970 // Remove the dependence. The value now depends on a prior iteration.
971 SmallVector<SDep, 4> Deps;
972 for (const SDep &P : I.Preds)
973 if (P.getSUnit() == DefSU)
974 Deps.push_back(P);
975 for (int i = 0, e = Deps.size(); i != e; i++) {
976 Topo.RemovePred(&I, Deps[i].getSUnit());
977 I.removePred(Deps[i]);
978 }
979 // Remove the chain dependence between the instructions.
980 Deps.clear();
981 for (auto &P : LastSU->Preds)
982 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
983 Deps.push_back(P);
984 for (int i = 0, e = Deps.size(); i != e; i++) {
985 Topo.RemovePred(LastSU, Deps[i].getSUnit());
986 LastSU->removePred(Deps[i]);
987 }
988
989 // Add a dependence between the new instruction and the instruction
990 // that defines the new base.
991 SDep Dep(&I, SDep::Anti, NewBase);
992 Topo.AddPred(LastSU, &I);
993 LastSU->addPred(Dep);
994
995 // Remember the base and offset information so that we can update the
996 // instruction during code generation.
997 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
998 }
999 }
1000
1001 namespace {
1002
1003 // FuncUnitSorter - Comparison operator used to sort instructions by
1004 // the number of functional unit choices.
1005 struct FuncUnitSorter {
1006 const InstrItineraryData *InstrItins;
1007 const MCSubtargetInfo *STI;
1008 DenseMap<InstrStage::FuncUnits, unsigned> Resources;
1009
FuncUnitSorter__anonfbe71c1e0d11::FuncUnitSorter1010 FuncUnitSorter(const TargetSubtargetInfo &TSI)
1011 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
1012
1013 // Compute the number of functional unit alternatives needed
1014 // at each stage, and take the minimum value. We prioritize the
1015 // instructions by the least number of choices first.
minFuncUnits__anonfbe71c1e0d11::FuncUnitSorter1016 unsigned minFuncUnits(const MachineInstr *Inst,
1017 InstrStage::FuncUnits &F) const {
1018 unsigned SchedClass = Inst->getDesc().getSchedClass();
1019 unsigned min = UINT_MAX;
1020 if (InstrItins && !InstrItins->isEmpty()) {
1021 for (const InstrStage &IS :
1022 make_range(InstrItins->beginStage(SchedClass),
1023 InstrItins->endStage(SchedClass))) {
1024 InstrStage::FuncUnits funcUnits = IS.getUnits();
1025 unsigned numAlternatives = llvm::popcount(funcUnits);
1026 if (numAlternatives < min) {
1027 min = numAlternatives;
1028 F = funcUnits;
1029 }
1030 }
1031 return min;
1032 }
1033 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1034 const MCSchedClassDesc *SCDesc =
1035 STI->getSchedModel().getSchedClassDesc(SchedClass);
1036 if (!SCDesc->isValid())
1037 // No valid Schedule Class Desc for schedClass, should be
1038 // Pseudo/PostRAPseudo
1039 return min;
1040
1041 for (const MCWriteProcResEntry &PRE :
1042 make_range(STI->getWriteProcResBegin(SCDesc),
1043 STI->getWriteProcResEnd(SCDesc))) {
1044 if (!PRE.Cycles)
1045 continue;
1046 const MCProcResourceDesc *ProcResource =
1047 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
1048 unsigned NumUnits = ProcResource->NumUnits;
1049 if (NumUnits < min) {
1050 min = NumUnits;
1051 F = PRE.ProcResourceIdx;
1052 }
1053 }
1054 return min;
1055 }
1056 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1057 }
1058
1059 // Compute the critical resources needed by the instruction. This
1060 // function records the functional units needed by instructions that
1061 // must use only one functional unit. We use this as a tie breaker
1062 // for computing the resource MII. The instrutions that require
1063 // the same, highly used, functional unit have high priority.
calcCriticalResources__anonfbe71c1e0d11::FuncUnitSorter1064 void calcCriticalResources(MachineInstr &MI) {
1065 unsigned SchedClass = MI.getDesc().getSchedClass();
1066 if (InstrItins && !InstrItins->isEmpty()) {
1067 for (const InstrStage &IS :
1068 make_range(InstrItins->beginStage(SchedClass),
1069 InstrItins->endStage(SchedClass))) {
1070 InstrStage::FuncUnits FuncUnits = IS.getUnits();
1071 if (llvm::popcount(FuncUnits) == 1)
1072 Resources[FuncUnits]++;
1073 }
1074 return;
1075 }
1076 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1077 const MCSchedClassDesc *SCDesc =
1078 STI->getSchedModel().getSchedClassDesc(SchedClass);
1079 if (!SCDesc->isValid())
1080 // No valid Schedule Class Desc for schedClass, should be
1081 // Pseudo/PostRAPseudo
1082 return;
1083
1084 for (const MCWriteProcResEntry &PRE :
1085 make_range(STI->getWriteProcResBegin(SCDesc),
1086 STI->getWriteProcResEnd(SCDesc))) {
1087 if (!PRE.Cycles)
1088 continue;
1089 Resources[PRE.ProcResourceIdx]++;
1090 }
1091 return;
1092 }
1093 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1094 }
1095
1096 /// Return true if IS1 has less priority than IS2.
operator ()__anonfbe71c1e0d11::FuncUnitSorter1097 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1098 InstrStage::FuncUnits F1 = 0, F2 = 0;
1099 unsigned MFUs1 = minFuncUnits(IS1, F1);
1100 unsigned MFUs2 = minFuncUnits(IS2, F2);
1101 if (MFUs1 == MFUs2)
1102 return Resources.lookup(F1) < Resources.lookup(F2);
1103 return MFUs1 > MFUs2;
1104 }
1105 };
1106
1107 } // end anonymous namespace
1108
1109 /// Calculate the resource constrained minimum initiation interval for the
1110 /// specified loop. We use the DFA to model the resources needed for
1111 /// each instruction, and we ignore dependences. A different DFA is created
1112 /// for each cycle that is required. When adding a new instruction, we attempt
1113 /// to add it to each existing DFA, until a legal space is found. If the
1114 /// instruction cannot be reserved in an existing DFA, we create a new one.
calculateResMII()1115 unsigned SwingSchedulerDAG::calculateResMII() {
1116 LLVM_DEBUG(dbgs() << "calculateResMII:\n");
1117 ResourceManager RM(&MF.getSubtarget(), this);
1118 return RM.calculateResMII();
1119 }
1120
1121 /// Calculate the recurrence-constrainted minimum initiation interval.
1122 /// Iterate over each circuit. Compute the delay(c) and distance(c)
1123 /// for each circuit. The II needs to satisfy the inequality
1124 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1125 /// II that satisfies the inequality, and the RecMII is the maximum
1126 /// of those values.
calculateRecMII(NodeSetType & NodeSets)1127 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1128 unsigned RecMII = 0;
1129
1130 for (NodeSet &Nodes : NodeSets) {
1131 if (Nodes.empty())
1132 continue;
1133
1134 unsigned Delay = Nodes.getLatency();
1135 unsigned Distance = 1;
1136
1137 // ii = ceil(delay / distance)
1138 unsigned CurMII = (Delay + Distance - 1) / Distance;
1139 Nodes.setRecMII(CurMII);
1140 if (CurMII > RecMII)
1141 RecMII = CurMII;
1142 }
1143
1144 return RecMII;
1145 }
1146
1147 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1148 /// but we do this to find the circuits, and then change them back.
swapAntiDependences(std::vector<SUnit> & SUnits)1149 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1150 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1151 for (SUnit &SU : SUnits) {
1152 for (SDep &Pred : SU.Preds)
1153 if (Pred.getKind() == SDep::Anti)
1154 DepsAdded.push_back(std::make_pair(&SU, Pred));
1155 }
1156 for (std::pair<SUnit *, SDep> &P : DepsAdded) {
1157 // Remove this anti dependency and add one in the reverse direction.
1158 SUnit *SU = P.first;
1159 SDep &D = P.second;
1160 SUnit *TargetSU = D.getSUnit();
1161 unsigned Reg = D.getReg();
1162 unsigned Lat = D.getLatency();
1163 SU->removePred(D);
1164 SDep Dep(SU, SDep::Anti, Reg);
1165 Dep.setLatency(Lat);
1166 TargetSU->addPred(Dep);
1167 }
1168 }
1169
1170 /// Create the adjacency structure of the nodes in the graph.
createAdjacencyStructure(SwingSchedulerDAG * DAG)1171 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1172 SwingSchedulerDAG *DAG) {
1173 BitVector Added(SUnits.size());
1174 DenseMap<int, int> OutputDeps;
1175 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1176 Added.reset();
1177 // Add any successor to the adjacency matrix and exclude duplicates.
1178 for (auto &SI : SUnits[i].Succs) {
1179 // Only create a back-edge on the first and last nodes of a dependence
1180 // chain. This records any chains and adds them later.
1181 if (SI.getKind() == SDep::Output) {
1182 int N = SI.getSUnit()->NodeNum;
1183 int BackEdge = i;
1184 auto Dep = OutputDeps.find(BackEdge);
1185 if (Dep != OutputDeps.end()) {
1186 BackEdge = Dep->second;
1187 OutputDeps.erase(Dep);
1188 }
1189 OutputDeps[N] = BackEdge;
1190 }
1191 // Do not process a boundary node, an artificial node.
1192 // A back-edge is processed only if it goes to a Phi.
1193 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1194 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1195 continue;
1196 int N = SI.getSUnit()->NodeNum;
1197 if (!Added.test(N)) {
1198 AdjK[i].push_back(N);
1199 Added.set(N);
1200 }
1201 }
1202 // A chain edge between a store and a load is treated as a back-edge in the
1203 // adjacency matrix.
1204 for (auto &PI : SUnits[i].Preds) {
1205 if (!SUnits[i].getInstr()->mayStore() ||
1206 !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1207 continue;
1208 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1209 int N = PI.getSUnit()->NodeNum;
1210 if (!Added.test(N)) {
1211 AdjK[i].push_back(N);
1212 Added.set(N);
1213 }
1214 }
1215 }
1216 }
1217 // Add back-edges in the adjacency matrix for the output dependences.
1218 for (auto &OD : OutputDeps)
1219 if (!Added.test(OD.second)) {
1220 AdjK[OD.first].push_back(OD.second);
1221 Added.set(OD.second);
1222 }
1223 }
1224
1225 /// Identify an elementary circuit in the dependence graph starting at the
1226 /// specified node.
circuit(int V,int S,NodeSetType & NodeSets,bool HasBackedge)1227 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1228 bool HasBackedge) {
1229 SUnit *SV = &SUnits[V];
1230 bool F = false;
1231 Stack.insert(SV);
1232 Blocked.set(V);
1233
1234 for (auto W : AdjK[V]) {
1235 if (NumPaths > MaxPaths)
1236 break;
1237 if (W < S)
1238 continue;
1239 if (W == S) {
1240 if (!HasBackedge)
1241 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1242 F = true;
1243 ++NumPaths;
1244 break;
1245 } else if (!Blocked.test(W)) {
1246 if (circuit(W, S, NodeSets,
1247 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1248 F = true;
1249 }
1250 }
1251
1252 if (F)
1253 unblock(V);
1254 else {
1255 for (auto W : AdjK[V]) {
1256 if (W < S)
1257 continue;
1258 B[W].insert(SV);
1259 }
1260 }
1261 Stack.pop_back();
1262 return F;
1263 }
1264
1265 /// Unblock a node in the circuit finding algorithm.
unblock(int U)1266 void SwingSchedulerDAG::Circuits::unblock(int U) {
1267 Blocked.reset(U);
1268 SmallPtrSet<SUnit *, 4> &BU = B[U];
1269 while (!BU.empty()) {
1270 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1271 assert(SI != BU.end() && "Invalid B set.");
1272 SUnit *W = *SI;
1273 BU.erase(W);
1274 if (Blocked.test(W->NodeNum))
1275 unblock(W->NodeNum);
1276 }
1277 }
1278
1279 /// Identify all the elementary circuits in the dependence graph using
1280 /// Johnson's circuit algorithm.
findCircuits(NodeSetType & NodeSets)1281 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1282 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1283 // but we do this to find the circuits, and then change them back.
1284 swapAntiDependences(SUnits);
1285
1286 Circuits Cir(SUnits, Topo);
1287 // Create the adjacency structure.
1288 Cir.createAdjacencyStructure(this);
1289 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1290 Cir.reset();
1291 Cir.circuit(i, i, NodeSets);
1292 }
1293
1294 // Change the dependences back so that we've created a DAG again.
1295 swapAntiDependences(SUnits);
1296 }
1297
1298 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1299 // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1300 // additional copies that are needed across iterations. An artificial dependence
1301 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1302
1303 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1304 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1305 // PHI-------True-Dep------> USEOfPhi
1306
1307 // The mutation creates
1308 // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1309
1310 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1311 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1312 // late to avoid additional copies across iterations. The possible scheduling
1313 // order would be
1314 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
1315
apply(ScheduleDAGInstrs * DAG)1316 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1317 for (SUnit &SU : DAG->SUnits) {
1318 // Find the COPY/REG_SEQUENCE instruction.
1319 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1320 continue;
1321
1322 // Record the loop carried PHIs.
1323 SmallVector<SUnit *, 4> PHISUs;
1324 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1325 SmallVector<SUnit *, 4> SrcSUs;
1326
1327 for (auto &Dep : SU.Preds) {
1328 SUnit *TmpSU = Dep.getSUnit();
1329 MachineInstr *TmpMI = TmpSU->getInstr();
1330 SDep::Kind DepKind = Dep.getKind();
1331 // Save the loop carried PHI.
1332 if (DepKind == SDep::Anti && TmpMI->isPHI())
1333 PHISUs.push_back(TmpSU);
1334 // Save the source of COPY/REG_SEQUENCE.
1335 // If the source has no pre-decessors, we will end up creating cycles.
1336 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1337 SrcSUs.push_back(TmpSU);
1338 }
1339
1340 if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1341 continue;
1342
1343 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1344 // SUnit to the container.
1345 SmallVector<SUnit *, 8> UseSUs;
1346 // Do not use iterator based loop here as we are updating the container.
1347 for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
1348 for (auto &Dep : PHISUs[Index]->Succs) {
1349 if (Dep.getKind() != SDep::Data)
1350 continue;
1351
1352 SUnit *TmpSU = Dep.getSUnit();
1353 MachineInstr *TmpMI = TmpSU->getInstr();
1354 if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1355 PHISUs.push_back(TmpSU);
1356 continue;
1357 }
1358 UseSUs.push_back(TmpSU);
1359 }
1360 }
1361
1362 if (UseSUs.size() == 0)
1363 continue;
1364
1365 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1366 // Add the artificial dependencies if it does not form a cycle.
1367 for (auto *I : UseSUs) {
1368 for (auto *Src : SrcSUs) {
1369 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1370 Src->addPred(SDep(I, SDep::Artificial));
1371 SDAG->Topo.AddPred(Src, I);
1372 }
1373 }
1374 }
1375 }
1376 }
1377
1378 /// Return true for DAG nodes that we ignore when computing the cost functions.
1379 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1380 /// in the calculation of the ASAP, ALAP, etc functions.
ignoreDependence(const SDep & D,bool isPred)1381 static bool ignoreDependence(const SDep &D, bool isPred) {
1382 if (D.isArtificial() || D.getSUnit()->isBoundaryNode())
1383 return true;
1384 return D.getKind() == SDep::Anti && isPred;
1385 }
1386
1387 /// Compute several functions need to order the nodes for scheduling.
1388 /// ASAP - Earliest time to schedule a node.
1389 /// ALAP - Latest time to schedule a node.
1390 /// MOV - Mobility function, difference between ALAP and ASAP.
1391 /// D - Depth of each node.
1392 /// H - Height of each node.
computeNodeFunctions(NodeSetType & NodeSets)1393 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1394 ScheduleInfo.resize(SUnits.size());
1395
1396 LLVM_DEBUG({
1397 for (int I : Topo) {
1398 const SUnit &SU = SUnits[I];
1399 dumpNode(SU);
1400 }
1401 });
1402
1403 int maxASAP = 0;
1404 // Compute ASAP and ZeroLatencyDepth.
1405 for (int I : Topo) {
1406 int asap = 0;
1407 int zeroLatencyDepth = 0;
1408 SUnit *SU = &SUnits[I];
1409 for (const SDep &P : SU->Preds) {
1410 SUnit *pred = P.getSUnit();
1411 if (P.getLatency() == 0)
1412 zeroLatencyDepth =
1413 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1414 if (ignoreDependence(P, true))
1415 continue;
1416 asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() -
1417 getDistance(pred, SU, P) * MII));
1418 }
1419 maxASAP = std::max(maxASAP, asap);
1420 ScheduleInfo[I].ASAP = asap;
1421 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth;
1422 }
1423
1424 // Compute ALAP, ZeroLatencyHeight, and MOV.
1425 for (int I : llvm::reverse(Topo)) {
1426 int alap = maxASAP;
1427 int zeroLatencyHeight = 0;
1428 SUnit *SU = &SUnits[I];
1429 for (const SDep &S : SU->Succs) {
1430 SUnit *succ = S.getSUnit();
1431 if (succ->isBoundaryNode())
1432 continue;
1433 if (S.getLatency() == 0)
1434 zeroLatencyHeight =
1435 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1436 if (ignoreDependence(S, true))
1437 continue;
1438 alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() +
1439 getDistance(SU, succ, S) * MII));
1440 }
1441
1442 ScheduleInfo[I].ALAP = alap;
1443 ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight;
1444 }
1445
1446 // After computing the node functions, compute the summary for each node set.
1447 for (NodeSet &I : NodeSets)
1448 I.computeNodeSetInfo(this);
1449
1450 LLVM_DEBUG({
1451 for (unsigned i = 0; i < SUnits.size(); i++) {
1452 dbgs() << "\tNode " << i << ":\n";
1453 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1454 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1455 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1456 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1457 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
1458 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1459 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1460 }
1461 });
1462 }
1463
1464 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1465 /// as the predecessors of the elements of NodeOrder that are not also in
1466 /// NodeOrder.
pred_L(SetVector<SUnit * > & NodeOrder,SmallSetVector<SUnit *,8> & Preds,const NodeSet * S=nullptr)1467 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1468 SmallSetVector<SUnit *, 8> &Preds,
1469 const NodeSet *S = nullptr) {
1470 Preds.clear();
1471 for (const SUnit *SU : NodeOrder) {
1472 for (const SDep &Pred : SU->Preds) {
1473 if (S && S->count(Pred.getSUnit()) == 0)
1474 continue;
1475 if (ignoreDependence(Pred, true))
1476 continue;
1477 if (NodeOrder.count(Pred.getSUnit()) == 0)
1478 Preds.insert(Pred.getSUnit());
1479 }
1480 // Back-edges are predecessors with an anti-dependence.
1481 for (const SDep &Succ : SU->Succs) {
1482 if (Succ.getKind() != SDep::Anti)
1483 continue;
1484 if (S && S->count(Succ.getSUnit()) == 0)
1485 continue;
1486 if (NodeOrder.count(Succ.getSUnit()) == 0)
1487 Preds.insert(Succ.getSUnit());
1488 }
1489 }
1490 return !Preds.empty();
1491 }
1492
1493 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1494 /// as the successors of the elements of NodeOrder that are not also in
1495 /// NodeOrder.
succ_L(SetVector<SUnit * > & NodeOrder,SmallSetVector<SUnit *,8> & Succs,const NodeSet * S=nullptr)1496 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1497 SmallSetVector<SUnit *, 8> &Succs,
1498 const NodeSet *S = nullptr) {
1499 Succs.clear();
1500 for (const SUnit *SU : NodeOrder) {
1501 for (const SDep &Succ : SU->Succs) {
1502 if (S && S->count(Succ.getSUnit()) == 0)
1503 continue;
1504 if (ignoreDependence(Succ, false))
1505 continue;
1506 if (NodeOrder.count(Succ.getSUnit()) == 0)
1507 Succs.insert(Succ.getSUnit());
1508 }
1509 for (const SDep &Pred : SU->Preds) {
1510 if (Pred.getKind() != SDep::Anti)
1511 continue;
1512 if (S && S->count(Pred.getSUnit()) == 0)
1513 continue;
1514 if (NodeOrder.count(Pred.getSUnit()) == 0)
1515 Succs.insert(Pred.getSUnit());
1516 }
1517 }
1518 return !Succs.empty();
1519 }
1520
1521 /// Return true if there is a path from the specified node to any of the nodes
1522 /// in DestNodes. Keep track and return the nodes in any path.
computePath(SUnit * Cur,SetVector<SUnit * > & Path,SetVector<SUnit * > & DestNodes,SetVector<SUnit * > & Exclude,SmallPtrSet<SUnit *,8> & Visited)1523 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1524 SetVector<SUnit *> &DestNodes,
1525 SetVector<SUnit *> &Exclude,
1526 SmallPtrSet<SUnit *, 8> &Visited) {
1527 if (Cur->isBoundaryNode())
1528 return false;
1529 if (Exclude.contains(Cur))
1530 return false;
1531 if (DestNodes.contains(Cur))
1532 return true;
1533 if (!Visited.insert(Cur).second)
1534 return Path.contains(Cur);
1535 bool FoundPath = false;
1536 for (auto &SI : Cur->Succs)
1537 if (!ignoreDependence(SI, false))
1538 FoundPath |=
1539 computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1540 for (auto &PI : Cur->Preds)
1541 if (PI.getKind() == SDep::Anti)
1542 FoundPath |=
1543 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1544 if (FoundPath)
1545 Path.insert(Cur);
1546 return FoundPath;
1547 }
1548
1549 /// Compute the live-out registers for the instructions in a node-set.
1550 /// The live-out registers are those that are defined in the node-set,
1551 /// but not used. Except for use operands of Phis.
computeLiveOuts(MachineFunction & MF,RegPressureTracker & RPTracker,NodeSet & NS)1552 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1553 NodeSet &NS) {
1554 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1555 MachineRegisterInfo &MRI = MF.getRegInfo();
1556 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1557 SmallSet<unsigned, 4> Uses;
1558 for (SUnit *SU : NS) {
1559 const MachineInstr *MI = SU->getInstr();
1560 if (MI->isPHI())
1561 continue;
1562 for (const MachineOperand &MO : MI->operands())
1563 if (MO.isReg() && MO.isUse()) {
1564 Register Reg = MO.getReg();
1565 if (Reg.isVirtual())
1566 Uses.insert(Reg);
1567 else if (MRI.isAllocatable(Reg))
1568 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1569 ++Units)
1570 Uses.insert(*Units);
1571 }
1572 }
1573 for (SUnit *SU : NS)
1574 for (const MachineOperand &MO : SU->getInstr()->operands())
1575 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1576 Register Reg = MO.getReg();
1577 if (Reg.isVirtual()) {
1578 if (!Uses.count(Reg))
1579 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1580 LaneBitmask::getNone()));
1581 } else if (MRI.isAllocatable(Reg)) {
1582 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1583 ++Units)
1584 if (!Uses.count(*Units))
1585 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1586 LaneBitmask::getNone()));
1587 }
1588 }
1589 RPTracker.addLiveRegs(LiveOutRegs);
1590 }
1591
1592 /// A heuristic to filter nodes in recurrent node-sets if the register
1593 /// pressure of a set is too high.
registerPressureFilter(NodeSetType & NodeSets)1594 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1595 for (auto &NS : NodeSets) {
1596 // Skip small node-sets since they won't cause register pressure problems.
1597 if (NS.size() <= 2)
1598 continue;
1599 IntervalPressure RecRegPressure;
1600 RegPressureTracker RecRPTracker(RecRegPressure);
1601 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1602 computeLiveOuts(MF, RecRPTracker, NS);
1603 RecRPTracker.closeBottom();
1604
1605 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1606 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
1607 return A->NodeNum > B->NodeNum;
1608 });
1609
1610 for (auto &SU : SUnits) {
1611 // Since we're computing the register pressure for a subset of the
1612 // instructions in a block, we need to set the tracker for each
1613 // instruction in the node-set. The tracker is set to the instruction
1614 // just after the one we're interested in.
1615 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1616 RecRPTracker.setPos(std::next(CurInstI));
1617
1618 RegPressureDelta RPDelta;
1619 ArrayRef<PressureChange> CriticalPSets;
1620 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1621 CriticalPSets,
1622 RecRegPressure.MaxSetPressure);
1623 if (RPDelta.Excess.isValid()) {
1624 LLVM_DEBUG(
1625 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1626 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1627 << ":" << RPDelta.Excess.getUnitInc() << "\n");
1628 NS.setExceedPressure(SU);
1629 break;
1630 }
1631 RecRPTracker.recede();
1632 }
1633 }
1634 }
1635
1636 /// A heuristic to colocate node sets that have the same set of
1637 /// successors.
colocateNodeSets(NodeSetType & NodeSets)1638 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1639 unsigned Colocate = 0;
1640 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1641 NodeSet &N1 = NodeSets[i];
1642 SmallSetVector<SUnit *, 8> S1;
1643 if (N1.empty() || !succ_L(N1, S1))
1644 continue;
1645 for (int j = i + 1; j < e; ++j) {
1646 NodeSet &N2 = NodeSets[j];
1647 if (N1.compareRecMII(N2) != 0)
1648 continue;
1649 SmallSetVector<SUnit *, 8> S2;
1650 if (N2.empty() || !succ_L(N2, S2))
1651 continue;
1652 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) {
1653 N1.setColocate(++Colocate);
1654 N2.setColocate(Colocate);
1655 break;
1656 }
1657 }
1658 }
1659 }
1660
1661 /// Check if the existing node-sets are profitable. If not, then ignore the
1662 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1663 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
1664 /// then it's best to try to schedule all instructions together instead of
1665 /// starting with the recurrent node-sets.
checkNodeSets(NodeSetType & NodeSets)1666 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1667 // Look for loops with a large MII.
1668 if (MII < 17)
1669 return;
1670 // Check if the node-set contains only a simple add recurrence.
1671 for (auto &NS : NodeSets) {
1672 if (NS.getRecMII() > 2)
1673 return;
1674 if (NS.getMaxDepth() > MII)
1675 return;
1676 }
1677 NodeSets.clear();
1678 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
1679 }
1680
1681 /// Add the nodes that do not belong to a recurrence set into groups
1682 /// based upon connected components.
groupRemainingNodes(NodeSetType & NodeSets)1683 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1684 SetVector<SUnit *> NodesAdded;
1685 SmallPtrSet<SUnit *, 8> Visited;
1686 // Add the nodes that are on a path between the previous node sets and
1687 // the current node set.
1688 for (NodeSet &I : NodeSets) {
1689 SmallSetVector<SUnit *, 8> N;
1690 // Add the nodes from the current node set to the previous node set.
1691 if (succ_L(I, N)) {
1692 SetVector<SUnit *> Path;
1693 for (SUnit *NI : N) {
1694 Visited.clear();
1695 computePath(NI, Path, NodesAdded, I, Visited);
1696 }
1697 if (!Path.empty())
1698 I.insert(Path.begin(), Path.end());
1699 }
1700 // Add the nodes from the previous node set to the current node set.
1701 N.clear();
1702 if (succ_L(NodesAdded, N)) {
1703 SetVector<SUnit *> Path;
1704 for (SUnit *NI : N) {
1705 Visited.clear();
1706 computePath(NI, Path, I, NodesAdded, Visited);
1707 }
1708 if (!Path.empty())
1709 I.insert(Path.begin(), Path.end());
1710 }
1711 NodesAdded.insert(I.begin(), I.end());
1712 }
1713
1714 // Create a new node set with the connected nodes of any successor of a node
1715 // in a recurrent set.
1716 NodeSet NewSet;
1717 SmallSetVector<SUnit *, 8> N;
1718 if (succ_L(NodesAdded, N))
1719 for (SUnit *I : N)
1720 addConnectedNodes(I, NewSet, NodesAdded);
1721 if (!NewSet.empty())
1722 NodeSets.push_back(NewSet);
1723
1724 // Create a new node set with the connected nodes of any predecessor of a node
1725 // in a recurrent set.
1726 NewSet.clear();
1727 if (pred_L(NodesAdded, N))
1728 for (SUnit *I : N)
1729 addConnectedNodes(I, NewSet, NodesAdded);
1730 if (!NewSet.empty())
1731 NodeSets.push_back(NewSet);
1732
1733 // Create new nodes sets with the connected nodes any remaining node that
1734 // has no predecessor.
1735 for (SUnit &SU : SUnits) {
1736 if (NodesAdded.count(&SU) == 0) {
1737 NewSet.clear();
1738 addConnectedNodes(&SU, NewSet, NodesAdded);
1739 if (!NewSet.empty())
1740 NodeSets.push_back(NewSet);
1741 }
1742 }
1743 }
1744
1745 /// Add the node to the set, and add all of its connected nodes to the set.
addConnectedNodes(SUnit * SU,NodeSet & NewSet,SetVector<SUnit * > & NodesAdded)1746 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1747 SetVector<SUnit *> &NodesAdded) {
1748 NewSet.insert(SU);
1749 NodesAdded.insert(SU);
1750 for (auto &SI : SU->Succs) {
1751 SUnit *Successor = SI.getSUnit();
1752 if (!SI.isArtificial() && !Successor->isBoundaryNode() &&
1753 NodesAdded.count(Successor) == 0)
1754 addConnectedNodes(Successor, NewSet, NodesAdded);
1755 }
1756 for (auto &PI : SU->Preds) {
1757 SUnit *Predecessor = PI.getSUnit();
1758 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1759 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1760 }
1761 }
1762
1763 /// Return true if Set1 contains elements in Set2. The elements in common
1764 /// are returned in a different container.
isIntersect(SmallSetVector<SUnit *,8> & Set1,const NodeSet & Set2,SmallSetVector<SUnit *,8> & Result)1765 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1766 SmallSetVector<SUnit *, 8> &Result) {
1767 Result.clear();
1768 for (SUnit *SU : Set1) {
1769 if (Set2.count(SU) != 0)
1770 Result.insert(SU);
1771 }
1772 return !Result.empty();
1773 }
1774
1775 /// Merge the recurrence node sets that have the same initial node.
fuseRecs(NodeSetType & NodeSets)1776 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1777 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1778 ++I) {
1779 NodeSet &NI = *I;
1780 for (NodeSetType::iterator J = I + 1; J != E;) {
1781 NodeSet &NJ = *J;
1782 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1783 if (NJ.compareRecMII(NI) > 0)
1784 NI.setRecMII(NJ.getRecMII());
1785 for (SUnit *SU : *J)
1786 I->insert(SU);
1787 NodeSets.erase(J);
1788 E = NodeSets.end();
1789 } else {
1790 ++J;
1791 }
1792 }
1793 }
1794 }
1795
1796 /// Remove nodes that have been scheduled in previous NodeSets.
removeDuplicateNodes(NodeSetType & NodeSets)1797 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1798 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1799 ++I)
1800 for (NodeSetType::iterator J = I + 1; J != E;) {
1801 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1802
1803 if (J->empty()) {
1804 NodeSets.erase(J);
1805 E = NodeSets.end();
1806 } else {
1807 ++J;
1808 }
1809 }
1810 }
1811
1812 /// Compute an ordered list of the dependence graph nodes, which
1813 /// indicates the order that the nodes will be scheduled. This is a
1814 /// two-level algorithm. First, a partial order is created, which
1815 /// consists of a list of sets ordered from highest to lowest priority.
computeNodeOrder(NodeSetType & NodeSets)1816 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1817 SmallSetVector<SUnit *, 8> R;
1818 NodeOrder.clear();
1819
1820 for (auto &Nodes : NodeSets) {
1821 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1822 OrderKind Order;
1823 SmallSetVector<SUnit *, 8> N;
1824 if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1825 R.insert(N.begin(), N.end());
1826 Order = BottomUp;
1827 LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
1828 } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1829 R.insert(N.begin(), N.end());
1830 Order = TopDown;
1831 LLVM_DEBUG(dbgs() << " Top down (succs) ");
1832 } else if (isIntersect(N, Nodes, R)) {
1833 // If some of the successors are in the existing node-set, then use the
1834 // top-down ordering.
1835 Order = TopDown;
1836 LLVM_DEBUG(dbgs() << " Top down (intersect) ");
1837 } else if (NodeSets.size() == 1) {
1838 for (const auto &N : Nodes)
1839 if (N->Succs.size() == 0)
1840 R.insert(N);
1841 Order = BottomUp;
1842 LLVM_DEBUG(dbgs() << " Bottom up (all) ");
1843 } else {
1844 // Find the node with the highest ASAP.
1845 SUnit *maxASAP = nullptr;
1846 for (SUnit *SU : Nodes) {
1847 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
1848 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
1849 maxASAP = SU;
1850 }
1851 R.insert(maxASAP);
1852 Order = BottomUp;
1853 LLVM_DEBUG(dbgs() << " Bottom up (default) ");
1854 }
1855
1856 while (!R.empty()) {
1857 if (Order == TopDown) {
1858 // Choose the node with the maximum height. If more than one, choose
1859 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
1860 // choose the node with the lowest MOV.
1861 while (!R.empty()) {
1862 SUnit *maxHeight = nullptr;
1863 for (SUnit *I : R) {
1864 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
1865 maxHeight = I;
1866 else if (getHeight(I) == getHeight(maxHeight) &&
1867 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
1868 maxHeight = I;
1869 else if (getHeight(I) == getHeight(maxHeight) &&
1870 getZeroLatencyHeight(I) ==
1871 getZeroLatencyHeight(maxHeight) &&
1872 getMOV(I) < getMOV(maxHeight))
1873 maxHeight = I;
1874 }
1875 NodeOrder.insert(maxHeight);
1876 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
1877 R.remove(maxHeight);
1878 for (const auto &I : maxHeight->Succs) {
1879 if (Nodes.count(I.getSUnit()) == 0)
1880 continue;
1881 if (NodeOrder.contains(I.getSUnit()))
1882 continue;
1883 if (ignoreDependence(I, false))
1884 continue;
1885 R.insert(I.getSUnit());
1886 }
1887 // Back-edges are predecessors with an anti-dependence.
1888 for (const auto &I : maxHeight->Preds) {
1889 if (I.getKind() != SDep::Anti)
1890 continue;
1891 if (Nodes.count(I.getSUnit()) == 0)
1892 continue;
1893 if (NodeOrder.contains(I.getSUnit()))
1894 continue;
1895 R.insert(I.getSUnit());
1896 }
1897 }
1898 Order = BottomUp;
1899 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
1900 SmallSetVector<SUnit *, 8> N;
1901 if (pred_L(NodeOrder, N, &Nodes))
1902 R.insert(N.begin(), N.end());
1903 } else {
1904 // Choose the node with the maximum depth. If more than one, choose
1905 // the node with the maximum ZeroLatencyDepth. If still more than one,
1906 // choose the node with the lowest MOV.
1907 while (!R.empty()) {
1908 SUnit *maxDepth = nullptr;
1909 for (SUnit *I : R) {
1910 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
1911 maxDepth = I;
1912 else if (getDepth(I) == getDepth(maxDepth) &&
1913 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
1914 maxDepth = I;
1915 else if (getDepth(I) == getDepth(maxDepth) &&
1916 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
1917 getMOV(I) < getMOV(maxDepth))
1918 maxDepth = I;
1919 }
1920 NodeOrder.insert(maxDepth);
1921 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
1922 R.remove(maxDepth);
1923 if (Nodes.isExceedSU(maxDepth)) {
1924 Order = TopDown;
1925 R.clear();
1926 R.insert(Nodes.getNode(0));
1927 break;
1928 }
1929 for (const auto &I : maxDepth->Preds) {
1930 if (Nodes.count(I.getSUnit()) == 0)
1931 continue;
1932 if (NodeOrder.contains(I.getSUnit()))
1933 continue;
1934 R.insert(I.getSUnit());
1935 }
1936 // Back-edges are predecessors with an anti-dependence.
1937 for (const auto &I : maxDepth->Succs) {
1938 if (I.getKind() != SDep::Anti)
1939 continue;
1940 if (Nodes.count(I.getSUnit()) == 0)
1941 continue;
1942 if (NodeOrder.contains(I.getSUnit()))
1943 continue;
1944 R.insert(I.getSUnit());
1945 }
1946 }
1947 Order = TopDown;
1948 LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
1949 SmallSetVector<SUnit *, 8> N;
1950 if (succ_L(NodeOrder, N, &Nodes))
1951 R.insert(N.begin(), N.end());
1952 }
1953 }
1954 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
1955 }
1956
1957 LLVM_DEBUG({
1958 dbgs() << "Node order: ";
1959 for (SUnit *I : NodeOrder)
1960 dbgs() << " " << I->NodeNum << " ";
1961 dbgs() << "\n";
1962 });
1963 }
1964
1965 /// Process the nodes in the computed order and create the pipelined schedule
1966 /// of the instructions, if possible. Return true if a schedule is found.
schedulePipeline(SMSchedule & Schedule)1967 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
1968
1969 if (NodeOrder.empty()){
1970 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
1971 return false;
1972 }
1973
1974 bool scheduleFound = false;
1975 // Keep increasing II until a valid schedule is found.
1976 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) {
1977 Schedule.reset();
1978 Schedule.setInitiationInterval(II);
1979 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
1980
1981 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
1982 SetVector<SUnit *>::iterator NE = NodeOrder.end();
1983 do {
1984 SUnit *SU = *NI;
1985
1986 // Compute the schedule time for the instruction, which is based
1987 // upon the scheduled time for any predecessors/successors.
1988 int EarlyStart = INT_MIN;
1989 int LateStart = INT_MAX;
1990 // These values are set when the size of the schedule window is limited
1991 // due to chain dependences.
1992 int SchedEnd = INT_MAX;
1993 int SchedStart = INT_MIN;
1994 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
1995 II, this);
1996 LLVM_DEBUG({
1997 dbgs() << "\n";
1998 dbgs() << "Inst (" << SU->NodeNum << ") ";
1999 SU->getInstr()->dump();
2000 dbgs() << "\n";
2001 });
2002 LLVM_DEBUG({
2003 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
2004 LateStart, SchedEnd, SchedStart);
2005 });
2006
2007 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2008 SchedStart > LateStart)
2009 scheduleFound = false;
2010 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2011 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2012 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2013 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2014 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2015 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2016 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2017 SchedEnd =
2018 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2019 // When scheduling a Phi it is better to start at the late cycle and go
2020 // backwards. The default order may insert the Phi too far away from
2021 // its first dependence.
2022 if (SU->getInstr()->isPHI())
2023 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2024 else
2025 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2026 } else {
2027 int FirstCycle = Schedule.getFirstCycle();
2028 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2029 FirstCycle + getASAP(SU) + II - 1, II);
2030 }
2031 // Even if we find a schedule, make sure the schedule doesn't exceed the
2032 // allowable number of stages. We keep trying if this happens.
2033 if (scheduleFound)
2034 if (SwpMaxStages > -1 &&
2035 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2036 scheduleFound = false;
2037
2038 LLVM_DEBUG({
2039 if (!scheduleFound)
2040 dbgs() << "\tCan't schedule\n";
2041 });
2042 } while (++NI != NE && scheduleFound);
2043
2044 // If a schedule is found, ensure non-pipelined instructions are in stage 0
2045 if (scheduleFound)
2046 scheduleFound =
2047 Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo);
2048
2049 // If a schedule is found, check if it is a valid schedule too.
2050 if (scheduleFound)
2051 scheduleFound = Schedule.isValidSchedule(this);
2052 }
2053
2054 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound
2055 << " (II=" << Schedule.getInitiationInterval()
2056 << ")\n");
2057
2058 if (scheduleFound) {
2059 scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule);
2060 if (!scheduleFound)
2061 LLVM_DEBUG(dbgs() << "Target rejected schedule\n");
2062 }
2063
2064 if (scheduleFound) {
2065 Schedule.finalizeSchedule(this);
2066 Pass.ORE->emit([&]() {
2067 return MachineOptimizationRemarkAnalysis(
2068 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
2069 << "Schedule found with Initiation Interval: "
2070 << ore::NV("II", Schedule.getInitiationInterval())
2071 << ", MaxStageCount: "
2072 << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
2073 });
2074 } else
2075 Schedule.reset();
2076
2077 return scheduleFound && Schedule.getMaxStageCount() > 0;
2078 }
2079
2080 /// Return true if we can compute the amount the instruction changes
2081 /// during each iteration. Set Delta to the amount of the change.
computeDelta(MachineInstr & MI,unsigned & Delta)2082 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2083 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2084 const MachineOperand *BaseOp;
2085 int64_t Offset;
2086 bool OffsetIsScalable;
2087 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
2088 return false;
2089
2090 // FIXME: This algorithm assumes instructions have fixed-size offsets.
2091 if (OffsetIsScalable)
2092 return false;
2093
2094 if (!BaseOp->isReg())
2095 return false;
2096
2097 Register BaseReg = BaseOp->getReg();
2098
2099 MachineRegisterInfo &MRI = MF.getRegInfo();
2100 // Check if there is a Phi. If so, get the definition in the loop.
2101 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2102 if (BaseDef && BaseDef->isPHI()) {
2103 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2104 BaseDef = MRI.getVRegDef(BaseReg);
2105 }
2106 if (!BaseDef)
2107 return false;
2108
2109 int D = 0;
2110 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2111 return false;
2112
2113 Delta = D;
2114 return true;
2115 }
2116
2117 /// Check if we can change the instruction to use an offset value from the
2118 /// previous iteration. If so, return true and set the base and offset values
2119 /// so that we can rewrite the load, if necessary.
2120 /// v1 = Phi(v0, v3)
2121 /// v2 = load v1, 0
2122 /// v3 = post_store v1, 4, x
2123 /// This function enables the load to be rewritten as v2 = load v3, 4.
canUseLastOffsetValue(MachineInstr * MI,unsigned & BasePos,unsigned & OffsetPos,unsigned & NewBase,int64_t & Offset)2124 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
2125 unsigned &BasePos,
2126 unsigned &OffsetPos,
2127 unsigned &NewBase,
2128 int64_t &Offset) {
2129 // Get the load instruction.
2130 if (TII->isPostIncrement(*MI))
2131 return false;
2132 unsigned BasePosLd, OffsetPosLd;
2133 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
2134 return false;
2135 Register BaseReg = MI->getOperand(BasePosLd).getReg();
2136
2137 // Look for the Phi instruction.
2138 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
2139 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
2140 if (!Phi || !Phi->isPHI())
2141 return false;
2142 // Get the register defined in the loop block.
2143 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
2144 if (!PrevReg)
2145 return false;
2146
2147 // Check for the post-increment load/store instruction.
2148 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
2149 if (!PrevDef || PrevDef == MI)
2150 return false;
2151
2152 if (!TII->isPostIncrement(*PrevDef))
2153 return false;
2154
2155 unsigned BasePos1 = 0, OffsetPos1 = 0;
2156 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
2157 return false;
2158
2159 // Make sure that the instructions do not access the same memory location in
2160 // the next iteration.
2161 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
2162 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
2163 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2164 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
2165 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
2166 MF.deleteMachineInstr(NewMI);
2167 if (!Disjoint)
2168 return false;
2169
2170 // Set the return value once we determine that we return true.
2171 BasePos = BasePosLd;
2172 OffsetPos = OffsetPosLd;
2173 NewBase = PrevReg;
2174 Offset = StoreOffset;
2175 return true;
2176 }
2177
2178 /// Apply changes to the instruction if needed. The changes are need
2179 /// to improve the scheduling and depend up on the final schedule.
applyInstrChange(MachineInstr * MI,SMSchedule & Schedule)2180 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
2181 SMSchedule &Schedule) {
2182 SUnit *SU = getSUnit(MI);
2183 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2184 InstrChanges.find(SU);
2185 if (It != InstrChanges.end()) {
2186 std::pair<unsigned, int64_t> RegAndOffset = It->second;
2187 unsigned BasePos, OffsetPos;
2188 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2189 return;
2190 Register BaseReg = MI->getOperand(BasePos).getReg();
2191 MachineInstr *LoopDef = findDefInLoop(BaseReg);
2192 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
2193 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
2194 int BaseStageNum = Schedule.stageScheduled(SU);
2195 int BaseCycleNum = Schedule.cycleScheduled(SU);
2196 if (BaseStageNum < DefStageNum) {
2197 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2198 int OffsetDiff = DefStageNum - BaseStageNum;
2199 if (DefCycleNum < BaseCycleNum) {
2200 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
2201 if (OffsetDiff > 0)
2202 --OffsetDiff;
2203 }
2204 int64_t NewOffset =
2205 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
2206 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2207 SU->setInstr(NewMI);
2208 MISUnitMap[NewMI] = SU;
2209 NewMIs[MI] = NewMI;
2210 }
2211 }
2212 }
2213
2214 /// Return the instruction in the loop that defines the register.
2215 /// If the definition is a Phi, then follow the Phi operand to
2216 /// the instruction in the loop.
findDefInLoop(Register Reg)2217 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
2218 SmallPtrSet<MachineInstr *, 8> Visited;
2219 MachineInstr *Def = MRI.getVRegDef(Reg);
2220 while (Def->isPHI()) {
2221 if (!Visited.insert(Def).second)
2222 break;
2223 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2224 if (Def->getOperand(i + 1).getMBB() == BB) {
2225 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2226 break;
2227 }
2228 }
2229 return Def;
2230 }
2231
2232 /// Return true for an order or output dependence that is loop carried
2233 /// potentially. A dependence is loop carried if the destination defines a valu
2234 /// that may be used or defined by the source in a subsequent iteration.
isLoopCarriedDep(SUnit * Source,const SDep & Dep,bool isSucc)2235 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
2236 bool isSucc) {
2237 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
2238 Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode())
2239 return false;
2240
2241 if (!SwpPruneLoopCarried)
2242 return true;
2243
2244 if (Dep.getKind() == SDep::Output)
2245 return true;
2246
2247 MachineInstr *SI = Source->getInstr();
2248 MachineInstr *DI = Dep.getSUnit()->getInstr();
2249 if (!isSucc)
2250 std::swap(SI, DI);
2251 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
2252
2253 // Assume ordered loads and stores may have a loop carried dependence.
2254 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
2255 SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
2256 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
2257 return true;
2258
2259 // Only chain dependences between a load and store can be loop carried.
2260 if (!DI->mayStore() || !SI->mayLoad())
2261 return false;
2262
2263 unsigned DeltaS, DeltaD;
2264 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
2265 return true;
2266
2267 const MachineOperand *BaseOpS, *BaseOpD;
2268 int64_t OffsetS, OffsetD;
2269 bool OffsetSIsScalable, OffsetDIsScalable;
2270 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2271 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
2272 TRI) ||
2273 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
2274 TRI))
2275 return true;
2276
2277 assert(!OffsetSIsScalable && !OffsetDIsScalable &&
2278 "Expected offsets to be byte offsets");
2279
2280 MachineInstr *DefS = MRI.getVRegDef(BaseOpS->getReg());
2281 MachineInstr *DefD = MRI.getVRegDef(BaseOpD->getReg());
2282 if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI())
2283 return true;
2284
2285 unsigned InitValS = 0;
2286 unsigned LoopValS = 0;
2287 unsigned InitValD = 0;
2288 unsigned LoopValD = 0;
2289 getPhiRegs(*DefS, BB, InitValS, LoopValS);
2290 getPhiRegs(*DefD, BB, InitValD, LoopValD);
2291 MachineInstr *InitDefS = MRI.getVRegDef(InitValS);
2292 MachineInstr *InitDefD = MRI.getVRegDef(InitValD);
2293
2294 if (!InitDefS->isIdenticalTo(*InitDefD))
2295 return true;
2296
2297 // Check that the base register is incremented by a constant value for each
2298 // iteration.
2299 MachineInstr *LoopDefS = MRI.getVRegDef(LoopValS);
2300 int D = 0;
2301 if (!LoopDefS || !TII->getIncrementValue(*LoopDefS, D))
2302 return true;
2303
2304 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
2305 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
2306
2307 // This is the main test, which checks the offset values and the loop
2308 // increment value to determine if the accesses may be loop carried.
2309 if (AccessSizeS == MemoryLocation::UnknownSize ||
2310 AccessSizeD == MemoryLocation::UnknownSize)
2311 return true;
2312
2313 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
2314 return true;
2315
2316 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
2317 }
2318
postprocessDAG()2319 void SwingSchedulerDAG::postprocessDAG() {
2320 for (auto &M : Mutations)
2321 M->apply(this);
2322 }
2323
2324 /// Try to schedule the node at the specified StartCycle and continue
2325 /// until the node is schedule or the EndCycle is reached. This function
2326 /// returns true if the node is scheduled. This routine may search either
2327 /// forward or backward for a place to insert the instruction based upon
2328 /// the relative values of StartCycle and EndCycle.
insert(SUnit * SU,int StartCycle,int EndCycle,int II)2329 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
2330 bool forward = true;
2331 LLVM_DEBUG({
2332 dbgs() << "Trying to insert node between " << StartCycle << " and "
2333 << EndCycle << " II: " << II << "\n";
2334 });
2335 if (StartCycle > EndCycle)
2336 forward = false;
2337
2338 // The terminating condition depends on the direction.
2339 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
2340 for (int curCycle = StartCycle; curCycle != termCycle;
2341 forward ? ++curCycle : --curCycle) {
2342
2343 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
2344 ProcItinResources.canReserveResources(*SU, curCycle)) {
2345 LLVM_DEBUG({
2346 dbgs() << "\tinsert at cycle " << curCycle << " ";
2347 SU->getInstr()->dump();
2348 });
2349
2350 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
2351 ProcItinResources.reserveResources(*SU, curCycle);
2352 ScheduledInstrs[curCycle].push_back(SU);
2353 InstrToCycle.insert(std::make_pair(SU, curCycle));
2354 if (curCycle > LastCycle)
2355 LastCycle = curCycle;
2356 if (curCycle < FirstCycle)
2357 FirstCycle = curCycle;
2358 return true;
2359 }
2360 LLVM_DEBUG({
2361 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
2362 SU->getInstr()->dump();
2363 });
2364 }
2365 return false;
2366 }
2367
2368 // Return the cycle of the earliest scheduled instruction in the chain.
earliestCycleInChain(const SDep & Dep)2369 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
2370 SmallPtrSet<SUnit *, 8> Visited;
2371 SmallVector<SDep, 8> Worklist;
2372 Worklist.push_back(Dep);
2373 int EarlyCycle = INT_MAX;
2374 while (!Worklist.empty()) {
2375 const SDep &Cur = Worklist.pop_back_val();
2376 SUnit *PrevSU = Cur.getSUnit();
2377 if (Visited.count(PrevSU))
2378 continue;
2379 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
2380 if (it == InstrToCycle.end())
2381 continue;
2382 EarlyCycle = std::min(EarlyCycle, it->second);
2383 for (const auto &PI : PrevSU->Preds)
2384 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
2385 Worklist.push_back(PI);
2386 Visited.insert(PrevSU);
2387 }
2388 return EarlyCycle;
2389 }
2390
2391 // Return the cycle of the latest scheduled instruction in the chain.
latestCycleInChain(const SDep & Dep)2392 int SMSchedule::latestCycleInChain(const SDep &Dep) {
2393 SmallPtrSet<SUnit *, 8> Visited;
2394 SmallVector<SDep, 8> Worklist;
2395 Worklist.push_back(Dep);
2396 int LateCycle = INT_MIN;
2397 while (!Worklist.empty()) {
2398 const SDep &Cur = Worklist.pop_back_val();
2399 SUnit *SuccSU = Cur.getSUnit();
2400 if (Visited.count(SuccSU) || SuccSU->isBoundaryNode())
2401 continue;
2402 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
2403 if (it == InstrToCycle.end())
2404 continue;
2405 LateCycle = std::max(LateCycle, it->second);
2406 for (const auto &SI : SuccSU->Succs)
2407 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
2408 Worklist.push_back(SI);
2409 Visited.insert(SuccSU);
2410 }
2411 return LateCycle;
2412 }
2413
2414 /// If an instruction has a use that spans multiple iterations, then
2415 /// return true. These instructions are characterized by having a back-ege
2416 /// to a Phi, which contains a reference to another Phi.
multipleIterations(SUnit * SU,SwingSchedulerDAG * DAG)2417 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
2418 for (auto &P : SU->Preds)
2419 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
2420 for (auto &S : P.getSUnit()->Succs)
2421 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
2422 return P.getSUnit();
2423 return nullptr;
2424 }
2425
2426 /// Compute the scheduling start slot for the instruction. The start slot
2427 /// depends on any predecessor or successor nodes scheduled already.
computeStart(SUnit * SU,int * MaxEarlyStart,int * MinLateStart,int * MinEnd,int * MaxStart,int II,SwingSchedulerDAG * DAG)2428 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
2429 int *MinEnd, int *MaxStart, int II,
2430 SwingSchedulerDAG *DAG) {
2431 // Iterate over each instruction that has been scheduled already. The start
2432 // slot computation depends on whether the previously scheduled instruction
2433 // is a predecessor or successor of the specified instruction.
2434 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
2435
2436 // Iterate over each instruction in the current cycle.
2437 for (SUnit *I : getInstructions(cycle)) {
2438 // Because we're processing a DAG for the dependences, we recognize
2439 // the back-edge in recurrences by anti dependences.
2440 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
2441 const SDep &Dep = SU->Preds[i];
2442 if (Dep.getSUnit() == I) {
2443 if (!DAG->isBackedge(SU, Dep)) {
2444 int EarlyStart = cycle + Dep.getLatency() -
2445 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2446 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2447 if (DAG->isLoopCarriedDep(SU, Dep, false)) {
2448 int End = earliestCycleInChain(Dep) + (II - 1);
2449 *MinEnd = std::min(*MinEnd, End);
2450 }
2451 } else {
2452 int LateStart = cycle - Dep.getLatency() +
2453 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2454 *MinLateStart = std::min(*MinLateStart, LateStart);
2455 }
2456 }
2457 // For instruction that requires multiple iterations, make sure that
2458 // the dependent instruction is not scheduled past the definition.
2459 SUnit *BE = multipleIterations(I, DAG);
2460 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
2461 !SU->isPred(I))
2462 *MinLateStart = std::min(*MinLateStart, cycle);
2463 }
2464 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
2465 if (SU->Succs[i].getSUnit() == I) {
2466 const SDep &Dep = SU->Succs[i];
2467 if (!DAG->isBackedge(SU, Dep)) {
2468 int LateStart = cycle - Dep.getLatency() +
2469 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2470 *MinLateStart = std::min(*MinLateStart, LateStart);
2471 if (DAG->isLoopCarriedDep(SU, Dep)) {
2472 int Start = latestCycleInChain(Dep) + 1 - II;
2473 *MaxStart = std::max(*MaxStart, Start);
2474 }
2475 } else {
2476 int EarlyStart = cycle + Dep.getLatency() -
2477 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2478 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2479 }
2480 }
2481 }
2482 }
2483 }
2484 }
2485
2486 /// Order the instructions within a cycle so that the definitions occur
2487 /// before the uses. Returns true if the instruction is added to the start
2488 /// of the list, or false if added to the end.
orderDependence(SwingSchedulerDAG * SSD,SUnit * SU,std::deque<SUnit * > & Insts)2489 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
2490 std::deque<SUnit *> &Insts) {
2491 MachineInstr *MI = SU->getInstr();
2492 bool OrderBeforeUse = false;
2493 bool OrderAfterDef = false;
2494 bool OrderBeforeDef = false;
2495 unsigned MoveDef = 0;
2496 unsigned MoveUse = 0;
2497 int StageInst1 = stageScheduled(SU);
2498
2499 unsigned Pos = 0;
2500 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
2501 ++I, ++Pos) {
2502 for (MachineOperand &MO : MI->operands()) {
2503 if (!MO.isReg() || !MO.getReg().isVirtual())
2504 continue;
2505
2506 Register Reg = MO.getReg();
2507 unsigned BasePos, OffsetPos;
2508 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2509 if (MI->getOperand(BasePos).getReg() == Reg)
2510 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
2511 Reg = NewReg;
2512 bool Reads, Writes;
2513 std::tie(Reads, Writes) =
2514 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
2515 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
2516 OrderBeforeUse = true;
2517 if (MoveUse == 0)
2518 MoveUse = Pos;
2519 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
2520 // Add the instruction after the scheduled instruction.
2521 OrderAfterDef = true;
2522 MoveDef = Pos;
2523 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
2524 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
2525 OrderBeforeUse = true;
2526 if (MoveUse == 0)
2527 MoveUse = Pos;
2528 } else {
2529 OrderAfterDef = true;
2530 MoveDef = Pos;
2531 }
2532 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
2533 OrderBeforeUse = true;
2534 if (MoveUse == 0)
2535 MoveUse = Pos;
2536 if (MoveUse != 0) {
2537 OrderAfterDef = true;
2538 MoveDef = Pos - 1;
2539 }
2540 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
2541 // Add the instruction before the scheduled instruction.
2542 OrderBeforeUse = true;
2543 if (MoveUse == 0)
2544 MoveUse = Pos;
2545 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
2546 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
2547 if (MoveUse == 0) {
2548 OrderBeforeDef = true;
2549 MoveUse = Pos;
2550 }
2551 }
2552 }
2553 // Check for order dependences between instructions. Make sure the source
2554 // is ordered before the destination.
2555 for (auto &S : SU->Succs) {
2556 if (S.getSUnit() != *I)
2557 continue;
2558 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2559 OrderBeforeUse = true;
2560 if (Pos < MoveUse)
2561 MoveUse = Pos;
2562 }
2563 // We did not handle HW dependences in previous for loop,
2564 // and we normally set Latency = 0 for Anti deps,
2565 // so may have nodes in same cycle with Anti denpendent on HW regs.
2566 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
2567 OrderBeforeUse = true;
2568 if ((MoveUse == 0) || (Pos < MoveUse))
2569 MoveUse = Pos;
2570 }
2571 }
2572 for (auto &P : SU->Preds) {
2573 if (P.getSUnit() != *I)
2574 continue;
2575 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2576 OrderAfterDef = true;
2577 MoveDef = Pos;
2578 }
2579 }
2580 }
2581
2582 // A circular dependence.
2583 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
2584 OrderBeforeUse = false;
2585
2586 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
2587 // to a loop-carried dependence.
2588 if (OrderBeforeDef)
2589 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
2590
2591 // The uncommon case when the instruction order needs to be updated because
2592 // there is both a use and def.
2593 if (OrderBeforeUse && OrderAfterDef) {
2594 SUnit *UseSU = Insts.at(MoveUse);
2595 SUnit *DefSU = Insts.at(MoveDef);
2596 if (MoveUse > MoveDef) {
2597 Insts.erase(Insts.begin() + MoveUse);
2598 Insts.erase(Insts.begin() + MoveDef);
2599 } else {
2600 Insts.erase(Insts.begin() + MoveDef);
2601 Insts.erase(Insts.begin() + MoveUse);
2602 }
2603 orderDependence(SSD, UseSU, Insts);
2604 orderDependence(SSD, SU, Insts);
2605 orderDependence(SSD, DefSU, Insts);
2606 return;
2607 }
2608 // Put the new instruction first if there is a use in the list. Otherwise,
2609 // put it at the end of the list.
2610 if (OrderBeforeUse)
2611 Insts.push_front(SU);
2612 else
2613 Insts.push_back(SU);
2614 }
2615
2616 /// Return true if the scheduled Phi has a loop carried operand.
isLoopCarried(SwingSchedulerDAG * SSD,MachineInstr & Phi)2617 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
2618 if (!Phi.isPHI())
2619 return false;
2620 assert(Phi.isPHI() && "Expecting a Phi.");
2621 SUnit *DefSU = SSD->getSUnit(&Phi);
2622 unsigned DefCycle = cycleScheduled(DefSU);
2623 int DefStage = stageScheduled(DefSU);
2624
2625 unsigned InitVal = 0;
2626 unsigned LoopVal = 0;
2627 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
2628 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
2629 if (!UseSU)
2630 return true;
2631 if (UseSU->getInstr()->isPHI())
2632 return true;
2633 unsigned LoopCycle = cycleScheduled(UseSU);
2634 int LoopStage = stageScheduled(UseSU);
2635 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
2636 }
2637
2638 /// Return true if the instruction is a definition that is loop carried
2639 /// and defines the use on the next iteration.
2640 /// v1 = phi(v2, v3)
2641 /// (Def) v3 = op v1
2642 /// (MO) = v1
2643 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
2644 /// register.
isLoopCarriedDefOfUse(SwingSchedulerDAG * SSD,MachineInstr * Def,MachineOperand & MO)2645 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
2646 MachineInstr *Def, MachineOperand &MO) {
2647 if (!MO.isReg())
2648 return false;
2649 if (Def->isPHI())
2650 return false;
2651 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
2652 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
2653 return false;
2654 if (!isLoopCarried(SSD, *Phi))
2655 return false;
2656 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
2657 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
2658 MachineOperand &DMO = Def->getOperand(i);
2659 if (!DMO.isReg() || !DMO.isDef())
2660 continue;
2661 if (DMO.getReg() == LoopReg)
2662 return true;
2663 }
2664 return false;
2665 }
2666
2667 /// Determine transitive dependences of unpipelineable instructions
computeUnpipelineableNodes(SwingSchedulerDAG * SSD,TargetInstrInfo::PipelinerLoopInfo * PLI)2668 SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes(
2669 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
2670 SmallSet<SUnit *, 8> DoNotPipeline;
2671 SmallVector<SUnit *, 8> Worklist;
2672
2673 for (auto &SU : SSD->SUnits)
2674 if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr()))
2675 Worklist.push_back(&SU);
2676
2677 while (!Worklist.empty()) {
2678 auto SU = Worklist.pop_back_val();
2679 if (DoNotPipeline.count(SU))
2680 continue;
2681 LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n");
2682 DoNotPipeline.insert(SU);
2683 for (auto &Dep : SU->Preds)
2684 Worklist.push_back(Dep.getSUnit());
2685 if (SU->getInstr()->isPHI())
2686 for (auto &Dep : SU->Succs)
2687 if (Dep.getKind() == SDep::Anti)
2688 Worklist.push_back(Dep.getSUnit());
2689 }
2690 return DoNotPipeline;
2691 }
2692
2693 // Determine all instructions upon which any unpipelineable instruction depends
2694 // and ensure that they are in stage 0. If unable to do so, return false.
normalizeNonPipelinedInstructions(SwingSchedulerDAG * SSD,TargetInstrInfo::PipelinerLoopInfo * PLI)2695 bool SMSchedule::normalizeNonPipelinedInstructions(
2696 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
2697 SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI);
2698
2699 int NewLastCycle = INT_MIN;
2700 for (SUnit &SU : SSD->SUnits) {
2701 if (!SU.isInstr())
2702 continue;
2703 if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) {
2704 NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]);
2705 continue;
2706 }
2707
2708 // Put the non-pipelined instruction as early as possible in the schedule
2709 int NewCycle = getFirstCycle();
2710 for (auto &Dep : SU.Preds)
2711 NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle);
2712
2713 int OldCycle = InstrToCycle[&SU];
2714 if (OldCycle != NewCycle) {
2715 InstrToCycle[&SU] = NewCycle;
2716 auto &OldS = getInstructions(OldCycle);
2717 llvm::erase_value(OldS, &SU);
2718 getInstructions(NewCycle).emplace_back(&SU);
2719 LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum
2720 << ") is not pipelined; moving from cycle " << OldCycle
2721 << " to " << NewCycle << " Instr:" << *SU.getInstr());
2722 }
2723 NewLastCycle = std::max(NewLastCycle, NewCycle);
2724 }
2725 LastCycle = NewLastCycle;
2726 return true;
2727 }
2728
2729 // Check if the generated schedule is valid. This function checks if
2730 // an instruction that uses a physical register is scheduled in a
2731 // different stage than the definition. The pipeliner does not handle
2732 // physical register values that may cross a basic block boundary.
2733 // Furthermore, if a physical def/use pair is assigned to the same
2734 // cycle, orderDependence does not guarantee def/use ordering, so that
2735 // case should be considered invalid. (The test checks for both
2736 // earlier and same-cycle use to be more robust.)
isValidSchedule(SwingSchedulerDAG * SSD)2737 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
2738 for (SUnit &SU : SSD->SUnits) {
2739 if (!SU.hasPhysRegDefs)
2740 continue;
2741 int StageDef = stageScheduled(&SU);
2742 int CycleDef = InstrToCycle[&SU];
2743 assert(StageDef != -1 && "Instruction should have been scheduled.");
2744 for (auto &SI : SU.Succs)
2745 if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode())
2746 if (Register::isPhysicalRegister(SI.getReg())) {
2747 if (stageScheduled(SI.getSUnit()) != StageDef)
2748 return false;
2749 if (InstrToCycle[SI.getSUnit()] <= CycleDef)
2750 return false;
2751 }
2752 }
2753 return true;
2754 }
2755
2756 /// A property of the node order in swing-modulo-scheduling is
2757 /// that for nodes outside circuits the following holds:
2758 /// none of them is scheduled after both a successor and a
2759 /// predecessor.
2760 /// The method below checks whether the property is met.
2761 /// If not, debug information is printed and statistics information updated.
2762 /// Note that we do not use an assert statement.
2763 /// The reason is that although an invalid node oder may prevent
2764 /// the pipeliner from finding a pipelined schedule for arbitrary II,
2765 /// it does not lead to the generation of incorrect code.
checkValidNodeOrder(const NodeSetType & Circuits) const2766 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
2767
2768 // a sorted vector that maps each SUnit to its index in the NodeOrder
2769 typedef std::pair<SUnit *, unsigned> UnitIndex;
2770 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
2771
2772 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
2773 Indices.push_back(std::make_pair(NodeOrder[i], i));
2774
2775 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
2776 return std::get<0>(i1) < std::get<0>(i2);
2777 };
2778
2779 // sort, so that we can perform a binary search
2780 llvm::sort(Indices, CompareKey);
2781
2782 bool Valid = true;
2783 (void)Valid;
2784 // for each SUnit in the NodeOrder, check whether
2785 // it appears after both a successor and a predecessor
2786 // of the SUnit. If this is the case, and the SUnit
2787 // is not part of circuit, then the NodeOrder is not
2788 // valid.
2789 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
2790 SUnit *SU = NodeOrder[i];
2791 unsigned Index = i;
2792
2793 bool PredBefore = false;
2794 bool SuccBefore = false;
2795
2796 SUnit *Succ;
2797 SUnit *Pred;
2798 (void)Succ;
2799 (void)Pred;
2800
2801 for (SDep &PredEdge : SU->Preds) {
2802 SUnit *PredSU = PredEdge.getSUnit();
2803 unsigned PredIndex = std::get<1>(
2804 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
2805 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
2806 PredBefore = true;
2807 Pred = PredSU;
2808 break;
2809 }
2810 }
2811
2812 for (SDep &SuccEdge : SU->Succs) {
2813 SUnit *SuccSU = SuccEdge.getSUnit();
2814 // Do not process a boundary node, it was not included in NodeOrder,
2815 // hence not in Indices either, call to std::lower_bound() below will
2816 // return Indices.end().
2817 if (SuccSU->isBoundaryNode())
2818 continue;
2819 unsigned SuccIndex = std::get<1>(
2820 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
2821 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
2822 SuccBefore = true;
2823 Succ = SuccSU;
2824 break;
2825 }
2826 }
2827
2828 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
2829 // instructions in circuits are allowed to be scheduled
2830 // after both a successor and predecessor.
2831 bool InCircuit = llvm::any_of(
2832 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
2833 if (InCircuit)
2834 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
2835 else {
2836 Valid = false;
2837 NumNodeOrderIssues++;
2838 LLVM_DEBUG(dbgs() << "Predecessor ";);
2839 }
2840 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
2841 << " are scheduled before node " << SU->NodeNum
2842 << "\n";);
2843 }
2844 }
2845
2846 LLVM_DEBUG({
2847 if (!Valid)
2848 dbgs() << "Invalid node order found!\n";
2849 });
2850 }
2851
2852 /// Attempt to fix the degenerate cases when the instruction serialization
2853 /// causes the register lifetimes to overlap. For example,
2854 /// p' = store_pi(p, b)
2855 /// = load p, offset
2856 /// In this case p and p' overlap, which means that two registers are needed.
2857 /// Instead, this function changes the load to use p' and updates the offset.
fixupRegisterOverlaps(std::deque<SUnit * > & Instrs)2858 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
2859 unsigned OverlapReg = 0;
2860 unsigned NewBaseReg = 0;
2861 for (SUnit *SU : Instrs) {
2862 MachineInstr *MI = SU->getInstr();
2863 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2864 const MachineOperand &MO = MI->getOperand(i);
2865 // Look for an instruction that uses p. The instruction occurs in the
2866 // same cycle but occurs later in the serialized order.
2867 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
2868 // Check that the instruction appears in the InstrChanges structure,
2869 // which contains instructions that can have the offset updated.
2870 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2871 InstrChanges.find(SU);
2872 if (It != InstrChanges.end()) {
2873 unsigned BasePos, OffsetPos;
2874 // Update the base register and adjust the offset.
2875 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
2876 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2877 NewMI->getOperand(BasePos).setReg(NewBaseReg);
2878 int64_t NewOffset =
2879 MI->getOperand(OffsetPos).getImm() - It->second.second;
2880 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2881 SU->setInstr(NewMI);
2882 MISUnitMap[NewMI] = SU;
2883 NewMIs[MI] = NewMI;
2884 }
2885 }
2886 OverlapReg = 0;
2887 NewBaseReg = 0;
2888 break;
2889 }
2890 // Look for an instruction of the form p' = op(p), which uses and defines
2891 // two virtual registers that get allocated to the same physical register.
2892 unsigned TiedUseIdx = 0;
2893 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
2894 // OverlapReg is p in the example above.
2895 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
2896 // NewBaseReg is p' in the example above.
2897 NewBaseReg = MI->getOperand(i).getReg();
2898 break;
2899 }
2900 }
2901 }
2902 }
2903
2904 /// After the schedule has been formed, call this function to combine
2905 /// the instructions from the different stages/cycles. That is, this
2906 /// function creates a schedule that represents a single iteration.
finalizeSchedule(SwingSchedulerDAG * SSD)2907 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
2908 // Move all instructions to the first stage from later stages.
2909 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2910 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
2911 ++stage) {
2912 std::deque<SUnit *> &cycleInstrs =
2913 ScheduledInstrs[cycle + (stage * InitiationInterval)];
2914 for (SUnit *SU : llvm::reverse(cycleInstrs))
2915 ScheduledInstrs[cycle].push_front(SU);
2916 }
2917 }
2918
2919 // Erase all the elements in the later stages. Only one iteration should
2920 // remain in the scheduled list, and it contains all the instructions.
2921 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
2922 ScheduledInstrs.erase(cycle);
2923
2924 // Change the registers in instruction as specified in the InstrChanges
2925 // map. We need to use the new registers to create the correct order.
2926 for (const SUnit &SU : SSD->SUnits)
2927 SSD->applyInstrChange(SU.getInstr(), *this);
2928
2929 // Reorder the instructions in each cycle to fix and improve the
2930 // generated code.
2931 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
2932 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
2933 std::deque<SUnit *> newOrderPhi;
2934 for (SUnit *SU : cycleInstrs) {
2935 if (SU->getInstr()->isPHI())
2936 newOrderPhi.push_back(SU);
2937 }
2938 std::deque<SUnit *> newOrderI;
2939 for (SUnit *SU : cycleInstrs) {
2940 if (!SU->getInstr()->isPHI())
2941 orderDependence(SSD, SU, newOrderI);
2942 }
2943 // Replace the old order with the new order.
2944 cycleInstrs.swap(newOrderPhi);
2945 llvm::append_range(cycleInstrs, newOrderI);
2946 SSD->fixupRegisterOverlaps(cycleInstrs);
2947 }
2948
2949 LLVM_DEBUG(dump(););
2950 }
2951
print(raw_ostream & os) const2952 void NodeSet::print(raw_ostream &os) const {
2953 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
2954 << " depth " << MaxDepth << " col " << Colocate << "\n";
2955 for (const auto &I : Nodes)
2956 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
2957 os << "\n";
2958 }
2959
2960 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2961 /// Print the schedule information to the given output.
print(raw_ostream & os) const2962 void SMSchedule::print(raw_ostream &os) const {
2963 // Iterate over each cycle.
2964 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2965 // Iterate over each instruction in the cycle.
2966 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
2967 for (SUnit *CI : cycleInstrs->second) {
2968 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
2969 os << "(" << CI->NodeNum << ") ";
2970 CI->getInstr()->print(os);
2971 os << "\n";
2972 }
2973 }
2974 }
2975
2976 /// Utility function used for debugging to print the schedule.
dump() const2977 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
dump() const2978 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
2979
dumpMRT() const2980 void ResourceManager::dumpMRT() const {
2981 LLVM_DEBUG({
2982 if (UseDFA)
2983 return;
2984 std::stringstream SS;
2985 SS << "MRT:\n";
2986 SS << std::setw(4) << "Slot";
2987 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I)
2988 SS << std::setw(3) << I;
2989 SS << std::setw(7) << "#Mops"
2990 << "\n";
2991 for (int Slot = 0; Slot < InitiationInterval; ++Slot) {
2992 SS << std::setw(4) << Slot;
2993 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I)
2994 SS << std::setw(3) << MRT[Slot][I];
2995 SS << std::setw(7) << NumScheduledMops[Slot] << "\n";
2996 }
2997 dbgs() << SS.str();
2998 });
2999 }
3000 #endif
3001
initProcResourceVectors(const MCSchedModel & SM,SmallVectorImpl<uint64_t> & Masks)3002 void ResourceManager::initProcResourceVectors(
3003 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
3004 unsigned ProcResourceID = 0;
3005
3006 // We currently limit the resource kinds to 64 and below so that we can use
3007 // uint64_t for Masks
3008 assert(SM.getNumProcResourceKinds() < 64 &&
3009 "Too many kinds of resources, unsupported");
3010 // Create a unique bitmask for every processor resource unit.
3011 // Skip resource at index 0, since it always references 'InvalidUnit'.
3012 Masks.resize(SM.getNumProcResourceKinds());
3013 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3014 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3015 if (Desc.SubUnitsIdxBegin)
3016 continue;
3017 Masks[I] = 1ULL << ProcResourceID;
3018 ProcResourceID++;
3019 }
3020 // Create a unique bitmask for every processor resource group.
3021 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3022 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3023 if (!Desc.SubUnitsIdxBegin)
3024 continue;
3025 Masks[I] = 1ULL << ProcResourceID;
3026 for (unsigned U = 0; U < Desc.NumUnits; ++U)
3027 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
3028 ProcResourceID++;
3029 }
3030 LLVM_DEBUG({
3031 if (SwpShowResMask) {
3032 dbgs() << "ProcResourceDesc:\n";
3033 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3034 const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
3035 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
3036 ProcResource->Name, I, Masks[I],
3037 ProcResource->NumUnits);
3038 }
3039 dbgs() << " -----------------\n";
3040 }
3041 });
3042 }
3043
canReserveResources(SUnit & SU,int Cycle)3044 bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) {
3045 LLVM_DEBUG({
3046 if (SwpDebugResource)
3047 dbgs() << "canReserveResources:\n";
3048 });
3049 if (UseDFA)
3050 return DFAResources[positiveModulo(Cycle, InitiationInterval)]
3051 ->canReserveResources(&SU.getInstr()->getDesc());
3052
3053 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
3054 if (!SCDesc->isValid()) {
3055 LLVM_DEBUG({
3056 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3057 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n";
3058 });
3059 return true;
3060 }
3061
3062 reserveResources(SCDesc, Cycle);
3063 bool Result = !isOverbooked();
3064 unreserveResources(SCDesc, Cycle);
3065
3066 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n";);
3067 return Result;
3068 }
3069
reserveResources(SUnit & SU,int Cycle)3070 void ResourceManager::reserveResources(SUnit &SU, int Cycle) {
3071 LLVM_DEBUG({
3072 if (SwpDebugResource)
3073 dbgs() << "reserveResources:\n";
3074 });
3075 if (UseDFA)
3076 return DFAResources[positiveModulo(Cycle, InitiationInterval)]
3077 ->reserveResources(&SU.getInstr()->getDesc());
3078
3079 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
3080 if (!SCDesc->isValid()) {
3081 LLVM_DEBUG({
3082 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3083 dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n";
3084 });
3085 return;
3086 }
3087
3088 reserveResources(SCDesc, Cycle);
3089
3090 LLVM_DEBUG({
3091 if (SwpDebugResource) {
3092 dumpMRT();
3093 dbgs() << "reserveResources: done!\n\n";
3094 }
3095 });
3096 }
3097
reserveResources(const MCSchedClassDesc * SCDesc,int Cycle)3098 void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc,
3099 int Cycle) {
3100 assert(!UseDFA);
3101 for (const MCWriteProcResEntry &PRE : make_range(
3102 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc)))
3103 for (int C = Cycle; C < Cycle + PRE.Cycles; ++C)
3104 ++MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx];
3105
3106 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C)
3107 ++NumScheduledMops[positiveModulo(C, InitiationInterval)];
3108 }
3109
unreserveResources(const MCSchedClassDesc * SCDesc,int Cycle)3110 void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc,
3111 int Cycle) {
3112 assert(!UseDFA);
3113 for (const MCWriteProcResEntry &PRE : make_range(
3114 STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc)))
3115 for (int C = Cycle; C < Cycle + PRE.Cycles; ++C)
3116 --MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx];
3117
3118 for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C)
3119 --NumScheduledMops[positiveModulo(C, InitiationInterval)];
3120 }
3121
isOverbooked() const3122 bool ResourceManager::isOverbooked() const {
3123 assert(!UseDFA);
3124 for (int Slot = 0; Slot < InitiationInterval; ++Slot) {
3125 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3126 const MCProcResourceDesc *Desc = SM.getProcResource(I);
3127 if (MRT[Slot][I] > Desc->NumUnits)
3128 return true;
3129 }
3130 if (NumScheduledMops[Slot] > IssueWidth)
3131 return true;
3132 }
3133 return false;
3134 }
3135
calculateResMIIDFA() const3136 int ResourceManager::calculateResMIIDFA() const {
3137 assert(UseDFA);
3138
3139 // Sort the instructions by the number of available choices for scheduling,
3140 // least to most. Use the number of critical resources as the tie breaker.
3141 FuncUnitSorter FUS = FuncUnitSorter(*ST);
3142 for (SUnit &SU : DAG->SUnits)
3143 FUS.calcCriticalResources(*SU.getInstr());
3144 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
3145 FuncUnitOrder(FUS);
3146
3147 for (SUnit &SU : DAG->SUnits)
3148 FuncUnitOrder.push(SU.getInstr());
3149
3150 SmallVector<std::unique_ptr<DFAPacketizer>, 8> Resources;
3151 Resources.push_back(
3152 std::unique_ptr<DFAPacketizer>(TII->CreateTargetScheduleState(*ST)));
3153
3154 while (!FuncUnitOrder.empty()) {
3155 MachineInstr *MI = FuncUnitOrder.top();
3156 FuncUnitOrder.pop();
3157 if (TII->isZeroCost(MI->getOpcode()))
3158 continue;
3159
3160 // Attempt to reserve the instruction in an existing DFA. At least one
3161 // DFA is needed for each cycle.
3162 unsigned NumCycles = DAG->getSUnit(MI)->Latency;
3163 unsigned ReservedCycles = 0;
3164 auto *RI = Resources.begin();
3165 auto *RE = Resources.end();
3166 LLVM_DEBUG({
3167 dbgs() << "Trying to reserve resource for " << NumCycles
3168 << " cycles for \n";
3169 MI->dump();
3170 });
3171 for (unsigned C = 0; C < NumCycles; ++C)
3172 while (RI != RE) {
3173 if ((*RI)->canReserveResources(*MI)) {
3174 (*RI)->reserveResources(*MI);
3175 ++ReservedCycles;
3176 break;
3177 }
3178 RI++;
3179 }
3180 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
3181 << ", NumCycles:" << NumCycles << "\n");
3182 // Add new DFAs, if needed, to reserve resources.
3183 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
3184 LLVM_DEBUG(if (SwpDebugResource) dbgs()
3185 << "NewResource created to reserve resources"
3186 << "\n");
3187 auto *NewResource = TII->CreateTargetScheduleState(*ST);
3188 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
3189 NewResource->reserveResources(*MI);
3190 Resources.push_back(std::unique_ptr<DFAPacketizer>(NewResource));
3191 }
3192 }
3193
3194 int Resmii = Resources.size();
3195 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
3196 return Resmii;
3197 }
3198
calculateResMII() const3199 int ResourceManager::calculateResMII() const {
3200 if (UseDFA)
3201 return calculateResMIIDFA();
3202
3203 // Count each resource consumption and divide it by the number of units.
3204 // ResMII is the max value among them.
3205
3206 int NumMops = 0;
3207 SmallVector<uint64_t> ResourceCount(SM.getNumProcResourceKinds());
3208 for (SUnit &SU : DAG->SUnits) {
3209 if (TII->isZeroCost(SU.getInstr()->getOpcode()))
3210 continue;
3211
3212 const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
3213 if (!SCDesc->isValid())
3214 continue;
3215
3216 LLVM_DEBUG({
3217 if (SwpDebugResource) {
3218 DAG->dumpNode(SU);
3219 dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n"
3220 << " WriteProcRes: ";
3221 }
3222 });
3223 NumMops += SCDesc->NumMicroOps;
3224 for (const MCWriteProcResEntry &PRE :
3225 make_range(STI->getWriteProcResBegin(SCDesc),
3226 STI->getWriteProcResEnd(SCDesc))) {
3227 LLVM_DEBUG({
3228 if (SwpDebugResource) {
3229 const MCProcResourceDesc *Desc =
3230 SM.getProcResource(PRE.ProcResourceIdx);
3231 dbgs() << Desc->Name << ": " << PRE.Cycles << ", ";
3232 }
3233 });
3234 ResourceCount[PRE.ProcResourceIdx] += PRE.Cycles;
3235 }
3236 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n");
3237 }
3238
3239 int Result = (NumMops + IssueWidth - 1) / IssueWidth;
3240 LLVM_DEBUG({
3241 if (SwpDebugResource)
3242 dbgs() << "#Mops: " << NumMops << ", "
3243 << "IssueWidth: " << IssueWidth << ", "
3244 << "Cycles: " << Result << "\n";
3245 });
3246
3247 LLVM_DEBUG({
3248 if (SwpDebugResource) {
3249 std::stringstream SS;
3250 SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10)
3251 << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles"
3252 << "\n";
3253 dbgs() << SS.str();
3254 }
3255 });
3256 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3257 const MCProcResourceDesc *Desc = SM.getProcResource(I);
3258 int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits;
3259 LLVM_DEBUG({
3260 if (SwpDebugResource) {
3261 std::stringstream SS;
3262 SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10)
3263 << Desc->NumUnits << std::setw(10) << ResourceCount[I]
3264 << std::setw(10) << Cycles << "\n";
3265 dbgs() << SS.str();
3266 }
3267 });
3268 if (Cycles > Result)
3269 Result = Cycles;
3270 }
3271 return Result;
3272 }
3273
init(int II)3274 void ResourceManager::init(int II) {
3275 InitiationInterval = II;
3276 DFAResources.clear();
3277 DFAResources.resize(II);
3278 for (auto &I : DFAResources)
3279 I.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST));
3280 MRT.clear();
3281 MRT.resize(II, SmallVector<uint64_t>(SM.getNumProcResourceKinds()));
3282 NumScheduledMops.clear();
3283 NumScheduledMops.resize(II);
3284 }
3285