1 /*	$NetBSD: ipmi.c,v 1.64 2016/07/07 06:55:40 msaitoh Exp $ */
2 
3 /*
4  * Copyright (c) 2006 Manuel Bouyer.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  */
27 
28 /*
29  * Copyright (c) 2005 Jordan Hargrave
30  * All rights reserved.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions
34  * are met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
45  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  */
53 
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: ipmi.c,v 1.64 2016/07/07 06:55:40 msaitoh Exp $");
56 
57 #include <sys/types.h>
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/kernel.h>
61 #include <sys/device.h>
62 #include <sys/extent.h>
63 #include <sys/callout.h>
64 #include <sys/envsys.h>
65 #include <sys/malloc.h>
66 #include <sys/kthread.h>
67 #include <sys/bus.h>
68 #include <sys/intr.h>
69 
70 #include <x86/smbiosvar.h>
71 
72 #include <dev/isa/isareg.h>
73 #include <dev/isa/isavar.h>
74 
75 #include <x86/ipmivar.h>
76 
77 #include <uvm/uvm_extern.h>
78 
79 struct ipmi_sensor {
80 	uint8_t	*i_sdr;
81 	int		i_num;
82 	int		i_stype;
83 	int		i_etype;
84 	char		i_envdesc[64];
85 	int 		i_envtype; /* envsys compatible type */
86 	int		i_envnum; /* envsys index */
87 	sysmon_envsys_lim_t i_limits, i_deflims;
88 	uint32_t	i_props, i_defprops;
89 	SLIST_ENTRY(ipmi_sensor) i_list;
90 	int32_t		i_prevval;	/* feed rnd source on change */
91 };
92 
93 int	ipmi_nintr;
94 int	ipmi_dbg = 0;
95 int	ipmi_enabled = 0;
96 
97 #define SENSOR_REFRESH_RATE (hz / 2)
98 
99 #define SMBIOS_TYPE_IPMI	0x26
100 
101 /*
102  * Format of SMBIOS IPMI Flags
103  *
104  * bit0: interrupt trigger mode (1=level, 0=edge)
105  * bit1: interrupt polarity (1=active high, 0=active low)
106  * bit2: reserved
107  * bit3: address LSB (1=odd,0=even)
108  * bit4: interrupt (1=specified, 0=not specified)
109  * bit5: reserved
110  * bit6/7: register spacing (1,4,2,err)
111  */
112 #define SMIPMI_FLAG_IRQLVL		(1L << 0)
113 #define SMIPMI_FLAG_IRQEN		(1L << 3)
114 #define SMIPMI_FLAG_ODDOFFSET		(1L << 4)
115 #define SMIPMI_FLAG_IFSPACING(x)	(((x)>>6)&0x3)
116 #define	 IPMI_IOSPACING_BYTE		 0
117 #define	 IPMI_IOSPACING_WORD		 2
118 #define	 IPMI_IOSPACING_DWORD		 1
119 
120 #define IPMI_BTMSG_LEN			0
121 #define IPMI_BTMSG_NFLN			1
122 #define IPMI_BTMSG_SEQ			2
123 #define IPMI_BTMSG_CMD			3
124 #define IPMI_BTMSG_CCODE		4
125 #define IPMI_BTMSG_DATASND		4
126 #define IPMI_BTMSG_DATARCV		5
127 
128 #define IPMI_MSG_NFLN			0
129 #define IPMI_MSG_CMD			1
130 #define IPMI_MSG_CCODE			2
131 #define IPMI_MSG_DATASND		2
132 #define IPMI_MSG_DATARCV		3
133 
134 #define IPMI_SENSOR_TYPE_TEMP		0x0101
135 #define IPMI_SENSOR_TYPE_VOLT		0x0102
136 #define IPMI_SENSOR_TYPE_FAN		0x0104
137 #define IPMI_SENSOR_TYPE_INTRUSION	0x6F05
138 #define IPMI_SENSOR_TYPE_PWRSUPPLY	0x6F08
139 
140 #define IPMI_NAME_UNICODE		0x00
141 #define IPMI_NAME_BCDPLUS		0x01
142 #define IPMI_NAME_ASCII6BIT		0x02
143 #define IPMI_NAME_ASCII8BIT		0x03
144 
145 #define IPMI_ENTITY_PWRSUPPLY		0x0A
146 
147 #define IPMI_SENSOR_SCANNING_ENABLED	(1L << 6)
148 #define IPMI_SENSOR_UNAVAILABLE		(1L << 5)
149 #define IPMI_INVALID_SENSOR_P(x) \
150 	(((x) & (IPMI_SENSOR_SCANNING_ENABLED|IPMI_SENSOR_UNAVAILABLE)) \
151 	!= IPMI_SENSOR_SCANNING_ENABLED)
152 
153 #define IPMI_SDR_TYPEFULL		1
154 #define IPMI_SDR_TYPECOMPACT		2
155 
156 #define byteof(x) ((x) >> 3)
157 #define bitof(x)  (1L << ((x) & 0x7))
158 #define TB(b,m)	  (data[2+byteof(b)] & bitof(b))
159 
160 #define dbg_printf(lvl, fmt...) \
161 	if (ipmi_dbg >= lvl) \
162 		printf(fmt);
163 #define dbg_dump(lvl, msg, len, buf) \
164 	if (len && ipmi_dbg >= lvl) \
165 		dumpb(msg, len, (const uint8_t *)(buf));
166 
167 long signextend(unsigned long, int);
168 
169 SLIST_HEAD(ipmi_sensors_head, ipmi_sensor);
170 struct ipmi_sensors_head ipmi_sensor_list =
171     SLIST_HEAD_INITIALIZER(&ipmi_sensor_list);
172 
173 void	dumpb(const char *, int, const uint8_t *);
174 
175 int	read_sensor(struct ipmi_softc *, struct ipmi_sensor *);
176 int	add_sdr_sensor(struct ipmi_softc *, uint8_t *);
177 int	get_sdr_partial(struct ipmi_softc *, uint16_t, uint16_t,
178 	    uint8_t, uint8_t, void *, uint16_t *);
179 int	get_sdr(struct ipmi_softc *, uint16_t, uint16_t *);
180 
181 char	*ipmi_buf_acquire(struct ipmi_softc *, size_t);
182 void	ipmi_buf_release(struct ipmi_softc *, char *);
183 int	ipmi_sendcmd(struct ipmi_softc *, int, int, int, int, int, const void*);
184 int	ipmi_recvcmd(struct ipmi_softc *, int, int *, void *);
185 void	ipmi_delay(struct ipmi_softc *, int);
186 
187 int	ipmi_watchdog_setmode(struct sysmon_wdog *);
188 int	ipmi_watchdog_tickle(struct sysmon_wdog *);
189 void	ipmi_dotickle(struct ipmi_softc *);
190 
191 int	ipmi_intr(void *);
192 int	ipmi_match(device_t, cfdata_t, void *);
193 void	ipmi_attach(device_t, device_t, void *);
194 static int ipmi_detach(device_t, int);
195 
196 long	ipmi_convert(uint8_t, struct sdrtype1 *, long);
197 void	ipmi_sensor_name(char *, int, uint8_t, uint8_t *);
198 
199 /* BMC Helper Functions */
200 uint8_t bmc_read(struct ipmi_softc *, int);
201 void	bmc_write(struct ipmi_softc *, int, uint8_t);
202 int	bmc_io_wait(struct ipmi_softc *, int, uint8_t, uint8_t, const char *);
203 int	bmc_io_wait_spin(struct ipmi_softc *, int, uint8_t, uint8_t);
204 int	bmc_io_wait_sleep(struct ipmi_softc *, int, uint8_t, uint8_t);
205 
206 void	*bt_buildmsg(struct ipmi_softc *, int, int, int, const void *, int *);
207 void	*cmn_buildmsg(struct ipmi_softc *, int, int, int, const void *, int *);
208 
209 int	getbits(uint8_t *, int, int);
210 int	ipmi_sensor_type(int, int, int);
211 
212 void	ipmi_smbios_probe(struct smbios_ipmi *, struct ipmi_attach_args *);
213 void	ipmi_refresh_sensors(struct ipmi_softc *);
214 int	ipmi_map_regs(struct ipmi_softc *, struct ipmi_attach_args *);
215 void	ipmi_unmap_regs(struct ipmi_softc *);
216 
217 void	*scan_sig(long, long, int, int, const void *);
218 
219 int32_t	ipmi_convert_sensor(uint8_t *, struct ipmi_sensor *);
220 void	ipmi_set_limits(struct sysmon_envsys *, envsys_data_t *,
221 			sysmon_envsys_lim_t *, uint32_t *);
222 void	ipmi_get_limits(struct sysmon_envsys *, envsys_data_t *,
223 			sysmon_envsys_lim_t *, uint32_t *);
224 void	ipmi_get_sensor_limits(struct ipmi_softc *, struct ipmi_sensor *,
225 			       sysmon_envsys_lim_t *, uint32_t *);
226 int	ipmi_sensor_status(struct ipmi_softc *, struct ipmi_sensor *,
227 			   envsys_data_t *, uint8_t *);
228 
229 int	 add_child_sensors(struct ipmi_softc *, uint8_t *, int, int, int,
230     int, int, int, const char *);
231 
232 bool	ipmi_suspend(device_t, const pmf_qual_t *);
233 
234 struct ipmi_if kcs_if = {
235 	"KCS",
236 	IPMI_IF_KCS_NREGS,
237 	cmn_buildmsg,
238 	kcs_sendmsg,
239 	kcs_recvmsg,
240 	kcs_reset,
241 	kcs_probe,
242 };
243 
244 struct ipmi_if smic_if = {
245 	"SMIC",
246 	IPMI_IF_SMIC_NREGS,
247 	cmn_buildmsg,
248 	smic_sendmsg,
249 	smic_recvmsg,
250 	smic_reset,
251 	smic_probe,
252 };
253 
254 struct ipmi_if bt_if = {
255 	"BT",
256 	IPMI_IF_BT_NREGS,
257 	bt_buildmsg,
258 	bt_sendmsg,
259 	bt_recvmsg,
260 	bt_reset,
261 	bt_probe,
262 };
263 
264 struct ipmi_if *ipmi_get_if(int);
265 
266 struct ipmi_if *
ipmi_get_if(int iftype)267 ipmi_get_if(int iftype)
268 {
269 	switch (iftype) {
270 	case IPMI_IF_KCS:
271 		return (&kcs_if);
272 	case IPMI_IF_SMIC:
273 		return (&smic_if);
274 	case IPMI_IF_BT:
275 		return (&bt_if);
276 	}
277 
278 	return (NULL);
279 }
280 
281 /*
282  * BMC Helper Functions
283  */
284 uint8_t
bmc_read(struct ipmi_softc * sc,int offset)285 bmc_read(struct ipmi_softc *sc, int offset)
286 {
287 	return (bus_space_read_1(sc->sc_iot, sc->sc_ioh,
288 	    offset * sc->sc_if_iospacing));
289 }
290 
291 void
bmc_write(struct ipmi_softc * sc,int offset,uint8_t val)292 bmc_write(struct ipmi_softc *sc, int offset, uint8_t val)
293 {
294 	bus_space_write_1(sc->sc_iot, sc->sc_ioh,
295 	    offset * sc->sc_if_iospacing, val);
296 }
297 
298 int
bmc_io_wait_sleep(struct ipmi_softc * sc,int offset,uint8_t mask,uint8_t value)299 bmc_io_wait_sleep(struct ipmi_softc *sc, int offset, uint8_t mask,
300     uint8_t value)
301 {
302 	int retries;
303 	uint8_t v;
304 
305 	KASSERT(mutex_owned(&sc->sc_cmd_mtx));
306 
307 	for (retries = 0; retries < sc->sc_max_retries; retries++) {
308 		v = bmc_read(sc, offset);
309 		if ((v & mask) == value)
310 			return v;
311 		mutex_enter(&sc->sc_sleep_mtx);
312 		cv_timedwait(&sc->sc_cmd_sleep, &sc->sc_sleep_mtx, 1);
313 		mutex_exit(&sc->sc_sleep_mtx);
314 	}
315 	return -1;
316 }
317 
318 int
bmc_io_wait(struct ipmi_softc * sc,int offset,uint8_t mask,uint8_t value,const char * lbl)319 bmc_io_wait(struct ipmi_softc *sc, int offset, uint8_t mask, uint8_t value,
320     const char *lbl)
321 {
322 	int v;
323 
324 	v = bmc_io_wait_spin(sc, offset, mask, value);
325 	if (cold || v != -1)
326 		return v;
327 
328 	return bmc_io_wait_sleep(sc, offset, mask, value);
329 }
330 
331 int
bmc_io_wait_spin(struct ipmi_softc * sc,int offset,uint8_t mask,uint8_t value)332 bmc_io_wait_spin(struct ipmi_softc *sc, int offset, uint8_t mask,
333     uint8_t value)
334 {
335 	uint8_t	v;
336 	int			count = cold ? 15000 : 500;
337 	/* ~us */
338 
339 	while (count--) {
340 		v = bmc_read(sc, offset);
341 		if ((v & mask) == value)
342 			return v;
343 
344 		delay(1);
345 	}
346 
347 	return (-1);
348 
349 }
350 
351 #define NETFN_LUN(nf,ln) (((nf) << 2) | ((ln) & 0x3))
352 
353 /*
354  * BT interface
355  */
356 #define _BT_CTRL_REG			0
357 #define	  BT_CLR_WR_PTR			(1L << 0)
358 #define	  BT_CLR_RD_PTR			(1L << 1)
359 #define	  BT_HOST2BMC_ATN		(1L << 2)
360 #define	  BT_BMC2HOST_ATN		(1L << 3)
361 #define	  BT_EVT_ATN			(1L << 4)
362 #define	  BT_HOST_BUSY			(1L << 6)
363 #define	  BT_BMC_BUSY			(1L << 7)
364 
365 #define	  BT_READY	(BT_HOST_BUSY|BT_HOST2BMC_ATN|BT_BMC2HOST_ATN)
366 
367 #define _BT_DATAIN_REG			1
368 #define _BT_DATAOUT_REG			1
369 
370 #define _BT_INTMASK_REG			2
371 #define	 BT_IM_HIRQ_PEND		(1L << 1)
372 #define	 BT_IM_SCI_EN			(1L << 2)
373 #define	 BT_IM_SMI_EN			(1L << 3)
374 #define	 BT_IM_NMI2SMI			(1L << 4)
375 
376 int bt_read(struct ipmi_softc *, int);
377 int bt_write(struct ipmi_softc *, int, uint8_t);
378 
379 int
bt_read(struct ipmi_softc * sc,int reg)380 bt_read(struct ipmi_softc *sc, int reg)
381 {
382 	return bmc_read(sc, reg);
383 }
384 
385 int
bt_write(struct ipmi_softc * sc,int reg,uint8_t data)386 bt_write(struct ipmi_softc *sc, int reg, uint8_t data)
387 {
388 	if (bmc_io_wait(sc, _BT_CTRL_REG, BT_BMC_BUSY, 0, "bt_write") < 0)
389 		return (-1);
390 
391 	bmc_write(sc, reg, data);
392 	return (0);
393 }
394 
395 int
bt_sendmsg(struct ipmi_softc * sc,int len,const uint8_t * data)396 bt_sendmsg(struct ipmi_softc *sc, int len, const uint8_t *data)
397 {
398 	int i;
399 
400 	bt_write(sc, _BT_CTRL_REG, BT_CLR_WR_PTR);
401 	for (i = 0; i < len; i++)
402 		bt_write(sc, _BT_DATAOUT_REG, data[i]);
403 
404 	bt_write(sc, _BT_CTRL_REG, BT_HOST2BMC_ATN);
405 	if (bmc_io_wait(sc, _BT_CTRL_REG, BT_HOST2BMC_ATN | BT_BMC_BUSY, 0,
406 	    "bt_sendwait") < 0)
407 		return (-1);
408 
409 	return (0);
410 }
411 
412 int
bt_recvmsg(struct ipmi_softc * sc,int maxlen,int * rxlen,uint8_t * data)413 bt_recvmsg(struct ipmi_softc *sc, int maxlen, int *rxlen, uint8_t *data)
414 {
415 	uint8_t len, v, i;
416 
417 	if (bmc_io_wait(sc, _BT_CTRL_REG, BT_BMC2HOST_ATN, BT_BMC2HOST_ATN,
418 	    "bt_recvwait") < 0)
419 		return (-1);
420 
421 	bt_write(sc, _BT_CTRL_REG, BT_HOST_BUSY);
422 	bt_write(sc, _BT_CTRL_REG, BT_BMC2HOST_ATN);
423 	bt_write(sc, _BT_CTRL_REG, BT_CLR_RD_PTR);
424 	len = bt_read(sc, _BT_DATAIN_REG);
425 	for (i = IPMI_BTMSG_NFLN; i <= len; i++) {
426 		v = bt_read(sc, _BT_DATAIN_REG);
427 		if (i != IPMI_BTMSG_SEQ)
428 			*(data++) = v;
429 	}
430 	bt_write(sc, _BT_CTRL_REG, BT_HOST_BUSY);
431 	*rxlen = len - 1;
432 
433 	return (0);
434 }
435 
436 int
bt_reset(struct ipmi_softc * sc)437 bt_reset(struct ipmi_softc *sc)
438 {
439 	return (-1);
440 }
441 
442 int
bt_probe(struct ipmi_softc * sc)443 bt_probe(struct ipmi_softc *sc)
444 {
445 	uint8_t rv;
446 
447 	rv = bmc_read(sc, _BT_CTRL_REG);
448 	rv &= BT_HOST_BUSY;
449 	rv |= BT_CLR_WR_PTR|BT_CLR_RD_PTR|BT_BMC2HOST_ATN|BT_HOST2BMC_ATN;
450 	bmc_write(sc, _BT_CTRL_REG, rv);
451 
452 	rv = bmc_read(sc, _BT_INTMASK_REG);
453 	rv &= BT_IM_SCI_EN|BT_IM_SMI_EN|BT_IM_NMI2SMI;
454 	rv |= BT_IM_HIRQ_PEND;
455 	bmc_write(sc, _BT_INTMASK_REG, rv);
456 
457 #if 0
458 	printf("bt_probe: %2x\n", v);
459 	printf(" WR    : %2x\n", v & BT_CLR_WR_PTR);
460 	printf(" RD    : %2x\n", v & BT_CLR_RD_PTR);
461 	printf(" H2B   : %2x\n", v & BT_HOST2BMC_ATN);
462 	printf(" B2H   : %2x\n", v & BT_BMC2HOST_ATN);
463 	printf(" EVT   : %2x\n", v & BT_EVT_ATN);
464 	printf(" HBSY  : %2x\n", v & BT_HOST_BUSY);
465 	printf(" BBSY  : %2x\n", v & BT_BMC_BUSY);
466 #endif
467 	return (0);
468 }
469 
470 /*
471  * SMIC interface
472  */
473 #define _SMIC_DATAIN_REG		0
474 #define _SMIC_DATAOUT_REG		0
475 
476 #define _SMIC_CTRL_REG			1
477 #define	  SMS_CC_GET_STATUS		 0x40
478 #define	  SMS_CC_START_TRANSFER		 0x41
479 #define	  SMS_CC_NEXT_TRANSFER		 0x42
480 #define	  SMS_CC_END_TRANSFER		 0x43
481 #define	  SMS_CC_START_RECEIVE		 0x44
482 #define	  SMS_CC_NEXT_RECEIVE		 0x45
483 #define	  SMS_CC_END_RECEIVE		 0x46
484 #define	  SMS_CC_TRANSFER_ABORT		 0x47
485 
486 #define	  SMS_SC_READY			 0xc0
487 #define	  SMS_SC_WRITE_START		 0xc1
488 #define	  SMS_SC_WRITE_NEXT		 0xc2
489 #define	  SMS_SC_WRITE_END		 0xc3
490 #define	  SMS_SC_READ_START		 0xc4
491 #define	  SMS_SC_READ_NEXT		 0xc5
492 #define	  SMS_SC_READ_END		 0xc6
493 
494 #define _SMIC_FLAG_REG			2
495 #define	  SMIC_BUSY			(1L << 0)
496 #define	  SMIC_SMS_ATN			(1L << 2)
497 #define	  SMIC_EVT_ATN			(1L << 3)
498 #define	  SMIC_SMI			(1L << 4)
499 #define	  SMIC_TX_DATA_RDY		(1L << 6)
500 #define	  SMIC_RX_DATA_RDY		(1L << 7)
501 
502 int	smic_wait(struct ipmi_softc *, uint8_t, uint8_t, const char *);
503 int	smic_write_cmd_data(struct ipmi_softc *, uint8_t, const uint8_t *);
504 int	smic_read_data(struct ipmi_softc *, uint8_t *);
505 
506 int
smic_wait(struct ipmi_softc * sc,uint8_t mask,uint8_t val,const char * lbl)507 smic_wait(struct ipmi_softc *sc, uint8_t mask, uint8_t val, const char *lbl)
508 {
509 	int v;
510 
511 	/* Wait for expected flag bits */
512 	v = bmc_io_wait(sc, _SMIC_FLAG_REG, mask, val, "smicwait");
513 	if (v < 0)
514 		return (-1);
515 
516 	/* Return current status */
517 	v = bmc_read(sc, _SMIC_CTRL_REG);
518 	dbg_printf(99, "smic_wait(%s) = %.2x\n", lbl, v);
519 	return (v);
520 }
521 
522 int
smic_write_cmd_data(struct ipmi_softc * sc,uint8_t cmd,const uint8_t * data)523 smic_write_cmd_data(struct ipmi_softc *sc, uint8_t cmd, const uint8_t *data)
524 {
525 	int	sts, v;
526 
527 	dbg_printf(50, "smic_wcd: %.2x %.2x\n", cmd, data ? *data : -1);
528 	sts = smic_wait(sc, SMIC_TX_DATA_RDY | SMIC_BUSY, SMIC_TX_DATA_RDY,
529 	    "smic_write_cmd_data ready");
530 	if (sts < 0)
531 		return (sts);
532 
533 	bmc_write(sc, _SMIC_CTRL_REG, cmd);
534 	if (data)
535 		bmc_write(sc, _SMIC_DATAOUT_REG, *data);
536 
537 	/* Toggle BUSY bit, then wait for busy bit to clear */
538 	v = bmc_read(sc, _SMIC_FLAG_REG);
539 	bmc_write(sc, _SMIC_FLAG_REG, v | SMIC_BUSY);
540 
541 	return (smic_wait(sc, SMIC_BUSY, 0, "smic_write_cmd_data busy"));
542 }
543 
544 int
smic_read_data(struct ipmi_softc * sc,uint8_t * data)545 smic_read_data(struct ipmi_softc *sc, uint8_t *data)
546 {
547 	int sts;
548 
549 	sts = smic_wait(sc, SMIC_RX_DATA_RDY | SMIC_BUSY, SMIC_RX_DATA_RDY,
550 	    "smic_read_data");
551 	if (sts >= 0) {
552 		*data = bmc_read(sc, _SMIC_DATAIN_REG);
553 		dbg_printf(50, "smic_readdata: %.2x\n", *data);
554 	}
555 	return (sts);
556 }
557 
558 #define ErrStat(a,b) if (a) printf(b);
559 
560 int
smic_sendmsg(struct ipmi_softc * sc,int len,const uint8_t * data)561 smic_sendmsg(struct ipmi_softc *sc, int len, const uint8_t *data)
562 {
563 	int sts, idx;
564 
565 	sts = smic_write_cmd_data(sc, SMS_CC_START_TRANSFER, &data[0]);
566 	ErrStat(sts != SMS_SC_WRITE_START, "smic_sendmsg: wstart");
567 	for (idx = 1; idx < len - 1; idx++) {
568 		sts = smic_write_cmd_data(sc, SMS_CC_NEXT_TRANSFER,
569 		    &data[idx]);
570 		ErrStat(sts != SMS_SC_WRITE_NEXT, "smic_sendmsg: write");
571 	}
572 	sts = smic_write_cmd_data(sc, SMS_CC_END_TRANSFER, &data[idx]);
573 	if (sts != SMS_SC_WRITE_END) {
574 		dbg_printf(50, "smic_sendmsg %d/%d = %.2x\n", idx, len, sts);
575 		return (-1);
576 	}
577 
578 	return (0);
579 }
580 
581 int
smic_recvmsg(struct ipmi_softc * sc,int maxlen,int * len,uint8_t * data)582 smic_recvmsg(struct ipmi_softc *sc, int maxlen, int *len, uint8_t *data)
583 {
584 	int sts, idx;
585 
586 	*len = 0;
587 	sts = smic_wait(sc, SMIC_RX_DATA_RDY, SMIC_RX_DATA_RDY, "smic_recvmsg");
588 	if (sts < 0)
589 		return (-1);
590 
591 	sts = smic_write_cmd_data(sc, SMS_CC_START_RECEIVE, NULL);
592 	ErrStat(sts != SMS_SC_READ_START, "smic_recvmsg: rstart");
593 	for (idx = 0;; ) {
594 		sts = smic_read_data(sc, &data[idx++]);
595 		if (sts != SMS_SC_READ_START && sts != SMS_SC_READ_NEXT)
596 			break;
597 		smic_write_cmd_data(sc, SMS_CC_NEXT_RECEIVE, NULL);
598 	}
599 	ErrStat(sts != SMS_SC_READ_END, "smic_recvmsg: rend");
600 
601 	*len = idx;
602 
603 	sts = smic_write_cmd_data(sc, SMS_CC_END_RECEIVE, NULL);
604 	if (sts != SMS_SC_READY) {
605 		dbg_printf(50, "smic_recvmsg %d/%d = %.2x\n", idx, maxlen, sts);
606 		return (-1);
607 	}
608 
609 	return (0);
610 }
611 
612 int
smic_reset(struct ipmi_softc * sc)613 smic_reset(struct ipmi_softc *sc)
614 {
615 	return (-1);
616 }
617 
618 int
smic_probe(struct ipmi_softc * sc)619 smic_probe(struct ipmi_softc *sc)
620 {
621 	/* Flag register should not be 0xFF on a good system */
622 	if (bmc_read(sc, _SMIC_FLAG_REG) == 0xFF)
623 		return (-1);
624 
625 	return (0);
626 }
627 
628 /*
629  * KCS interface
630  */
631 #define _KCS_DATAIN_REGISTER		0
632 #define _KCS_DATAOUT_REGISTER		0
633 #define	  KCS_READ_NEXT			0x68
634 
635 #define _KCS_COMMAND_REGISTER		1
636 #define	  KCS_GET_STATUS		0x60
637 #define	  KCS_WRITE_START		0x61
638 #define	  KCS_WRITE_END			0x62
639 
640 #define _KCS_STATUS_REGISTER		1
641 #define	  KCS_OBF			(1L << 0)
642 #define	  KCS_IBF			(1L << 1)
643 #define	  KCS_SMS_ATN			(1L << 2)
644 #define	  KCS_CD			(1L << 3)
645 #define	  KCS_OEM1			(1L << 4)
646 #define	  KCS_OEM2			(1L << 5)
647 #define	  KCS_STATE_MASK		0xc0
648 #define	    KCS_IDLE_STATE		0x00
649 #define	    KCS_READ_STATE		0x40
650 #define	    KCS_WRITE_STATE		0x80
651 #define	    KCS_ERROR_STATE		0xC0
652 
653 int	kcs_wait(struct ipmi_softc *, uint8_t, uint8_t, const char *);
654 int	kcs_write_cmd(struct ipmi_softc *, uint8_t);
655 int	kcs_write_data(struct ipmi_softc *, uint8_t);
656 int	kcs_read_data(struct ipmi_softc *, uint8_t *);
657 
658 int
kcs_wait(struct ipmi_softc * sc,uint8_t mask,uint8_t value,const char * lbl)659 kcs_wait(struct ipmi_softc *sc, uint8_t mask, uint8_t value, const char *lbl)
660 {
661 	int v;
662 
663 	v = bmc_io_wait(sc, _KCS_STATUS_REGISTER, mask, value, lbl);
664 	if (v < 0)
665 		return (v);
666 
667 	/* Check if output buffer full, read dummy byte	 */
668 	if ((v & (KCS_OBF | KCS_STATE_MASK)) == (KCS_OBF | KCS_WRITE_STATE))
669 		bmc_read(sc, _KCS_DATAIN_REGISTER);
670 
671 	/* Check for error state */
672 	if ((v & KCS_STATE_MASK) == KCS_ERROR_STATE) {
673 		bmc_write(sc, _KCS_COMMAND_REGISTER, KCS_GET_STATUS);
674 		while (bmc_read(sc, _KCS_STATUS_REGISTER) & KCS_IBF)
675 			;
676 		aprint_error("ipmi: error code: %x\n",
677 		    bmc_read(sc, _KCS_DATAIN_REGISTER));
678 	}
679 
680 	return (v & KCS_STATE_MASK);
681 }
682 
683 int
kcs_write_cmd(struct ipmi_softc * sc,uint8_t cmd)684 kcs_write_cmd(struct ipmi_softc *sc, uint8_t cmd)
685 {
686 	/* ASSERT: IBF and OBF are clear */
687 	dbg_printf(50, "kcswritecmd: %.2x\n", cmd);
688 	bmc_write(sc, _KCS_COMMAND_REGISTER, cmd);
689 
690 	return (kcs_wait(sc, KCS_IBF, 0, "write_cmd"));
691 }
692 
693 int
kcs_write_data(struct ipmi_softc * sc,uint8_t data)694 kcs_write_data(struct ipmi_softc *sc, uint8_t data)
695 {
696 	/* ASSERT: IBF and OBF are clear */
697 	dbg_printf(50, "kcswritedata: %.2x\n", data);
698 	bmc_write(sc, _KCS_DATAOUT_REGISTER, data);
699 
700 	return (kcs_wait(sc, KCS_IBF, 0, "write_data"));
701 }
702 
703 int
kcs_read_data(struct ipmi_softc * sc,uint8_t * data)704 kcs_read_data(struct ipmi_softc *sc, uint8_t * data)
705 {
706 	int sts;
707 
708 	sts = kcs_wait(sc, KCS_IBF | KCS_OBF, KCS_OBF, "read_data");
709 	if (sts != KCS_READ_STATE)
710 		return (sts);
711 
712 	/* ASSERT: OBF is set read data, request next byte */
713 	*data = bmc_read(sc, _KCS_DATAIN_REGISTER);
714 	bmc_write(sc, _KCS_DATAOUT_REGISTER, KCS_READ_NEXT);
715 
716 	dbg_printf(50, "kcsreaddata: %.2x\n", *data);
717 
718 	return (sts);
719 }
720 
721 /* Exported KCS functions */
722 int
kcs_sendmsg(struct ipmi_softc * sc,int len,const uint8_t * data)723 kcs_sendmsg(struct ipmi_softc *sc, int len, const uint8_t * data)
724 {
725 	int idx, sts;
726 
727 	/* ASSERT: IBF is clear */
728 	dbg_dump(50, "kcs sendmsg", len, data);
729 	sts = kcs_write_cmd(sc, KCS_WRITE_START);
730 	for (idx = 0; idx < len; idx++) {
731 		if (idx == len - 1)
732 			sts = kcs_write_cmd(sc, KCS_WRITE_END);
733 
734 		if (sts != KCS_WRITE_STATE)
735 			break;
736 
737 		sts = kcs_write_data(sc, data[idx]);
738 	}
739 	if (sts != KCS_READ_STATE) {
740 		dbg_printf(1, "kcs sendmsg = %d/%d <%.2x>\n", idx, len, sts);
741 		dbg_dump(1, "kcs_sendmsg", len, data);
742 		return (-1);
743 	}
744 
745 	return (0);
746 }
747 
748 int
kcs_recvmsg(struct ipmi_softc * sc,int maxlen,int * rxlen,uint8_t * data)749 kcs_recvmsg(struct ipmi_softc *sc, int maxlen, int *rxlen, uint8_t * data)
750 {
751 	int idx, sts;
752 
753 	for (idx = 0; idx < maxlen; idx++) {
754 		sts = kcs_read_data(sc, &data[idx]);
755 		if (sts != KCS_READ_STATE)
756 			break;
757 	}
758 	sts = kcs_wait(sc, KCS_IBF, 0, "recv");
759 	*rxlen = idx;
760 	if (sts != KCS_IDLE_STATE) {
761 		dbg_printf(1, "kcs read = %d/%d <%.2x>\n", idx, maxlen, sts);
762 		return (-1);
763 	}
764 
765 	dbg_dump(50, "kcs recvmsg", idx, data);
766 
767 	return (0);
768 }
769 
770 int
kcs_reset(struct ipmi_softc * sc)771 kcs_reset(struct ipmi_softc *sc)
772 {
773 	return (-1);
774 }
775 
776 int
kcs_probe(struct ipmi_softc * sc)777 kcs_probe(struct ipmi_softc *sc)
778 {
779 	uint8_t v;
780 
781 	v = bmc_read(sc, _KCS_STATUS_REGISTER);
782 #if 0
783 	printf("kcs_probe: %2x\n", v);
784 	printf(" STS: %2x\n", v & KCS_STATE_MASK);
785 	printf(" ATN: %2x\n", v & KCS_SMS_ATN);
786 	printf(" C/D: %2x\n", v & KCS_CD);
787 	printf(" IBF: %2x\n", v & KCS_IBF);
788 	printf(" OBF: %2x\n", v & KCS_OBF);
789 #else
790 	__USE(v);
791 #endif
792 	return (0);
793 }
794 
795 /*
796  * IPMI code
797  */
798 #define READ_SMS_BUFFER		0x37
799 #define WRITE_I2C		0x50
800 
801 #define GET_MESSAGE_CMD		0x33
802 #define SEND_MESSAGE_CMD	0x34
803 
804 #define IPMB_CHANNEL_NUMBER	0
805 
806 #define PUBLIC_BUS		0
807 
808 #define MIN_I2C_PACKET_SIZE	3
809 #define MIN_IMB_PACKET_SIZE	7	/* one byte for cksum */
810 
811 #define MIN_BTBMC_REQ_SIZE	4
812 #define MIN_BTBMC_RSP_SIZE	5
813 #define MIN_BMC_REQ_SIZE	2
814 #define MIN_BMC_RSP_SIZE	3
815 
816 #define BMC_SA			0x20	/* BMC/ESM3 */
817 #define FPC_SA			0x22	/* front panel */
818 #define BP_SA			0xC0	/* Primary Backplane */
819 #define BP2_SA			0xC2	/* Secondary Backplane */
820 #define PBP_SA			0xC4	/* Peripheral Backplane */
821 #define DRAC_SA			0x28	/* DRAC-III */
822 #define DRAC3_SA		0x30	/* DRAC-III */
823 #define BMC_LUN			0
824 #define SMS_LUN			2
825 
826 struct ipmi_request {
827 	uint8_t	rsSa;
828 	uint8_t	rsLun;
829 	uint8_t	netFn;
830 	uint8_t	cmd;
831 	uint8_t	data_len;
832 	uint8_t	*data;
833 };
834 
835 struct ipmi_response {
836 	uint8_t	cCode;
837 	uint8_t	data_len;
838 	uint8_t	*data;
839 };
840 
841 struct ipmi_bmc_request {
842 	uint8_t	bmc_nfLn;
843 	uint8_t	bmc_cmd;
844 	uint8_t	bmc_data_len;
845 	uint8_t	bmc_data[1];
846 };
847 
848 struct ipmi_bmc_response {
849 	uint8_t	bmc_nfLn;
850 	uint8_t	bmc_cmd;
851 	uint8_t	bmc_cCode;
852 	uint8_t	bmc_data_len;
853 	uint8_t	bmc_data[1];
854 };
855 
856 
857 CFATTACH_DECL2_NEW(ipmi, sizeof(struct ipmi_softc),
858     ipmi_match, ipmi_attach, ipmi_detach, NULL, NULL, NULL);
859 
860 /* Scan memory for signature */
861 void *
scan_sig(long start,long end,int skip,int len,const void * data)862 scan_sig(long start, long end, int skip, int len, const void *data)
863 {
864 	void *va;
865 
866 	while (start < end) {
867 		va = ISA_HOLE_VADDR(start);
868 		if (memcmp(va, data, len) == 0)
869 			return (va);
870 
871 		start += skip;
872 	}
873 
874 	return (NULL);
875 }
876 
877 void
dumpb(const char * lbl,int len,const uint8_t * data)878 dumpb(const char *lbl, int len, const uint8_t *data)
879 {
880 	int idx;
881 
882 	printf("%s: ", lbl);
883 	for (idx = 0; idx < len; idx++)
884 		printf("%.2x ", data[idx]);
885 
886 	printf("\n");
887 }
888 
889 void
ipmi_smbios_probe(struct smbios_ipmi * pipmi,struct ipmi_attach_args * ia)890 ipmi_smbios_probe(struct smbios_ipmi *pipmi, struct ipmi_attach_args *ia)
891 {
892 	const char *platform;
893 
894 	dbg_printf(1, "ipmi_smbios_probe: %02x %02x %02x %02x "
895 	    "%08" PRIx64 " %02x %02x\n",
896 	    pipmi->smipmi_if_type,
897 	    pipmi->smipmi_if_rev,
898 	    pipmi->smipmi_i2c_address,
899 	    pipmi->smipmi_nvram_address,
900 	    pipmi->smipmi_base_address,
901 	    pipmi->smipmi_base_flags,
902 	    pipmi->smipmi_irq);
903 
904 	ia->iaa_if_type = pipmi->smipmi_if_type;
905 	ia->iaa_if_rev = pipmi->smipmi_if_rev;
906 	ia->iaa_if_irq = (pipmi->smipmi_base_flags & SMIPMI_FLAG_IRQEN) ?
907 	    pipmi->smipmi_irq : -1;
908 	ia->iaa_if_irqlvl = (pipmi->smipmi_base_flags & SMIPMI_FLAG_IRQLVL) ?
909 	    IST_LEVEL : IST_EDGE;
910 
911 	switch (SMIPMI_FLAG_IFSPACING(pipmi->smipmi_base_flags)) {
912 	case IPMI_IOSPACING_BYTE:
913 		ia->iaa_if_iospacing = 1;
914 		break;
915 
916 	case IPMI_IOSPACING_DWORD:
917 		ia->iaa_if_iospacing = 4;
918 		break;
919 
920 	case IPMI_IOSPACING_WORD:
921 		ia->iaa_if_iospacing = 2;
922 		break;
923 
924 	default:
925 		ia->iaa_if_iospacing = 1;
926 		aprint_error("ipmi: unknown register spacing\n");
927 	}
928 
929 	/* Calculate base address (PCI BAR format) */
930 	if (pipmi->smipmi_base_address & 0x1) {
931 		ia->iaa_if_iotype = 'i';
932 		ia->iaa_if_iobase = pipmi->smipmi_base_address & ~0x1;
933 	} else {
934 		ia->iaa_if_iotype = 'm';
935 		ia->iaa_if_iobase = pipmi->smipmi_base_address & ~0xF;
936 	}
937 	if (pipmi->smipmi_base_flags & SMIPMI_FLAG_ODDOFFSET)
938 		ia->iaa_if_iobase++;
939 
940 	platform = pmf_get_platform("system-product");
941 	if (platform != NULL &&
942 	    strcmp(platform, "ProLiant MicroServer") == 0 &&
943 	    pipmi->smipmi_base_address != 0) {
944                 ia->iaa_if_iospacing = 1;
945                 ia->iaa_if_iobase = pipmi->smipmi_base_address & ~0x7;
946                 ia->iaa_if_iotype = 'i';
947                 return;
948         }
949 
950 	if (pipmi->smipmi_base_flags == 0x7f) {
951 		/* IBM 325 eServer workaround */
952 		ia->iaa_if_iospacing = 1;
953 		ia->iaa_if_iobase = pipmi->smipmi_base_address;
954 		ia->iaa_if_iotype = 'i';
955 		return;
956 	}
957 }
958 
959 /*
960  * bt_buildmsg builds an IPMI message from a nfLun, cmd, and data
961  * This is used by BT protocol
962  *
963  * Returns a buffer to an allocated message, txlen contains length
964  *   of allocated message
965  */
966 void *
bt_buildmsg(struct ipmi_softc * sc,int nfLun,int cmd,int len,const void * data,int * txlen)967 bt_buildmsg(struct ipmi_softc *sc, int nfLun, int cmd, int len,
968     const void *data, int *txlen)
969 {
970 	uint8_t *buf;
971 
972 	/* Block transfer needs 4 extra bytes: length/netfn/seq/cmd + data */
973 	*txlen = len + 4;
974 	buf = ipmi_buf_acquire(sc, *txlen);
975 	if (buf == NULL)
976 		return (NULL);
977 
978 	buf[IPMI_BTMSG_LEN] = len + 3;
979 	buf[IPMI_BTMSG_NFLN] = nfLun;
980 	buf[IPMI_BTMSG_SEQ] = sc->sc_btseq++;
981 	buf[IPMI_BTMSG_CMD] = cmd;
982 	if (len && data)
983 		memcpy(buf + IPMI_BTMSG_DATASND, data, len);
984 
985 	return (buf);
986 }
987 
988 /*
989  * cmn_buildmsg builds an IPMI message from a nfLun, cmd, and data
990  * This is used by both SMIC and KCS protocols
991  *
992  * Returns a buffer to an allocated message, txlen contains length
993  *   of allocated message
994  */
995 void *
cmn_buildmsg(struct ipmi_softc * sc,int nfLun,int cmd,int len,const void * data,int * txlen)996 cmn_buildmsg(struct ipmi_softc *sc, int nfLun, int cmd, int len,
997     const void *data, int *txlen)
998 {
999 	uint8_t *buf;
1000 
1001 	/* Common needs two extra bytes: nfLun/cmd + data */
1002 	*txlen = len + 2;
1003 	buf = ipmi_buf_acquire(sc, *txlen);
1004 	if (buf == NULL)
1005 		return (NULL);
1006 
1007 	buf[IPMI_MSG_NFLN] = nfLun;
1008 	buf[IPMI_MSG_CMD] = cmd;
1009 	if (len && data)
1010 		memcpy(buf + IPMI_MSG_DATASND, data, len);
1011 
1012 	return (buf);
1013 }
1014 
1015 /*
1016  * ipmi_sendcmd: caller must hold sc_cmd_mtx.
1017  *
1018  * Send an IPMI command
1019  */
1020 int
ipmi_sendcmd(struct ipmi_softc * sc,int rssa,int rslun,int netfn,int cmd,int txlen,const void * data)1021 ipmi_sendcmd(struct ipmi_softc *sc, int rssa, int rslun, int netfn, int cmd,
1022     int txlen, const void *data)
1023 {
1024 	uint8_t	*buf;
1025 	int		rc = -1;
1026 
1027 	dbg_printf(50, "ipmi_sendcmd: rssa=%.2x nfln=%.2x cmd=%.2x len=%.2x\n",
1028 	    rssa, NETFN_LUN(netfn, rslun), cmd, txlen);
1029 	dbg_dump(10, " send", txlen, data);
1030 	if (rssa != BMC_SA) {
1031 #if 0
1032 		buf = sc->sc_if->buildmsg(sc, NETFN_LUN(APP_NETFN, BMC_LUN),
1033 		    APP_SEND_MESSAGE, 7 + txlen, NULL, &txlen);
1034 		pI2C->bus = (sc->if_ver == 0x09) ?
1035 		    PUBLIC_BUS :
1036 		    IPMB_CHANNEL_NUMBER;
1037 
1038 		imbreq->rsSa = rssa;
1039 		imbreq->nfLn = NETFN_LUN(netfn, rslun);
1040 		imbreq->cSum1 = -(imbreq->rsSa + imbreq->nfLn);
1041 		imbreq->rqSa = BMC_SA;
1042 		imbreq->seqLn = NETFN_LUN(sc->imb_seq++, SMS_LUN);
1043 		imbreq->cmd = cmd;
1044 		if (txlen)
1045 			memcpy(imbreq->data, data, txlen);
1046 		/* Set message checksum */
1047 		imbreq->data[txlen] = cksum8(&imbreq->rqSa, txlen + 3);
1048 #endif
1049 		goto done;
1050 	} else
1051 		buf = sc->sc_if->buildmsg(sc, NETFN_LUN(netfn, rslun), cmd,
1052 		    txlen, data, &txlen);
1053 
1054 	if (buf == NULL) {
1055 		printf("ipmi: sendcmd buffer busy\n");
1056 		goto done;
1057 	}
1058 	rc = sc->sc_if->sendmsg(sc, txlen, buf);
1059 	ipmi_buf_release(sc, buf);
1060 
1061 	ipmi_delay(sc, 50); /* give bmc chance to digest command */
1062 
1063 done:
1064 	return (rc);
1065 }
1066 
1067 void
ipmi_buf_release(struct ipmi_softc * sc,char * buf)1068 ipmi_buf_release(struct ipmi_softc *sc, char *buf)
1069 {
1070 	KASSERT(sc->sc_buf_rsvd);
1071 	KASSERT(sc->sc_buf == buf);
1072 	sc->sc_buf_rsvd = false;
1073 }
1074 
1075 char *
ipmi_buf_acquire(struct ipmi_softc * sc,size_t len)1076 ipmi_buf_acquire(struct ipmi_softc *sc, size_t len)
1077 {
1078 	KASSERT(len <= sizeof(sc->sc_buf));
1079 
1080 	if (sc->sc_buf_rsvd || len > sizeof(sc->sc_buf))
1081 		return NULL;
1082 	sc->sc_buf_rsvd = true;
1083 	return sc->sc_buf;
1084 }
1085 
1086 /*
1087  * ipmi_recvcmd: caller must hold sc_cmd_mtx.
1088  */
1089 int
ipmi_recvcmd(struct ipmi_softc * sc,int maxlen,int * rxlen,void * data)1090 ipmi_recvcmd(struct ipmi_softc *sc, int maxlen, int *rxlen, void *data)
1091 {
1092 	uint8_t	*buf, rc = 0;
1093 	int		rawlen;
1094 
1095 	/* Need three extra bytes: netfn/cmd/ccode + data */
1096 	buf = ipmi_buf_acquire(sc, maxlen + 3);
1097 	if (buf == NULL) {
1098 		printf("ipmi: ipmi_recvcmd: malloc fails\n");
1099 		return (-1);
1100 	}
1101 	/* Receive message from interface, copy out result data */
1102 	if (sc->sc_if->recvmsg(sc, maxlen + 3, &rawlen, buf)) {
1103 		ipmi_buf_release(sc, buf);
1104 		return (-1);
1105 	}
1106 
1107 	*rxlen = rawlen - IPMI_MSG_DATARCV;
1108 	if (*rxlen > 0 && data)
1109 		memcpy(data, buf + IPMI_MSG_DATARCV, *rxlen);
1110 
1111 	if ((rc = buf[IPMI_MSG_CCODE]) != 0)
1112 		dbg_printf(1, "ipmi_recvmsg: nfln=%.2x cmd=%.2x err=%.2x\n",
1113 		    buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD], buf[IPMI_MSG_CCODE]);
1114 
1115 	dbg_printf(50, "ipmi_recvcmd: nfln=%.2x cmd=%.2x err=%.2x len=%.2x\n",
1116 	    buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD], buf[IPMI_MSG_CCODE],
1117 	    *rxlen);
1118 	dbg_dump(10, " recv", *rxlen, data);
1119 
1120 	ipmi_buf_release(sc, buf);
1121 
1122 	return (rc);
1123 }
1124 
1125 /*
1126  * ipmi_delay: caller must hold sc_cmd_mtx.
1127  */
1128 void
ipmi_delay(struct ipmi_softc * sc,int ms)1129 ipmi_delay(struct ipmi_softc *sc, int ms)
1130 {
1131 	if (cold)
1132 		delay(ms * 1000);
1133 	else {
1134 		mutex_enter(&sc->sc_sleep_mtx);
1135 		cv_timedwait(&sc->sc_cmd_sleep, &sc->sc_sleep_mtx, mstohz(ms));
1136 		mutex_exit(&sc->sc_sleep_mtx);
1137 	}
1138 }
1139 
1140 /* Read a partial SDR entry */
1141 int
get_sdr_partial(struct ipmi_softc * sc,uint16_t recordId,uint16_t reserveId,uint8_t offset,uint8_t length,void * buffer,uint16_t * nxtRecordId)1142 get_sdr_partial(struct ipmi_softc *sc, uint16_t recordId, uint16_t reserveId,
1143     uint8_t offset, uint8_t length, void *buffer, uint16_t *nxtRecordId)
1144 {
1145 	uint8_t	cmd[256 + 8];
1146 	int		len;
1147 
1148 	((uint16_t *) cmd)[0] = reserveId;
1149 	((uint16_t *) cmd)[1] = recordId;
1150 	cmd[4] = offset;
1151 	cmd[5] = length;
1152 	mutex_enter(&sc->sc_cmd_mtx);
1153 	if (ipmi_sendcmd(sc, BMC_SA, 0, STORAGE_NETFN, STORAGE_GET_SDR, 6,
1154 	    cmd)) {
1155 		mutex_exit(&sc->sc_cmd_mtx);
1156 		printf("ipmi: sendcmd fails\n");
1157 		return (-1);
1158 	}
1159 	if (ipmi_recvcmd(sc, 8 + length, &len, cmd)) {
1160 		mutex_exit(&sc->sc_cmd_mtx);
1161 		printf("ipmi: getSdrPartial: recvcmd fails\n");
1162 		return (-1);
1163 	}
1164 	mutex_exit(&sc->sc_cmd_mtx);
1165 	if (nxtRecordId)
1166 		*nxtRecordId = *(uint16_t *) cmd;
1167 	memcpy(buffer, cmd + 2, len - 2);
1168 
1169 	return (0);
1170 }
1171 
1172 int maxsdrlen = 0x10;
1173 
1174 /* Read an entire SDR; pass to add sensor */
1175 int
get_sdr(struct ipmi_softc * sc,uint16_t recid,uint16_t * nxtrec)1176 get_sdr(struct ipmi_softc *sc, uint16_t recid, uint16_t *nxtrec)
1177 {
1178 	uint16_t	resid = 0;
1179 	int		len, sdrlen, offset;
1180 	uint8_t	*psdr;
1181 	struct sdrhdr	shdr;
1182 
1183 	mutex_enter(&sc->sc_cmd_mtx);
1184 	/* Reserve SDR */
1185 	if (ipmi_sendcmd(sc, BMC_SA, 0, STORAGE_NETFN, STORAGE_RESERVE_SDR,
1186 	    0, NULL)) {
1187 		mutex_exit(&sc->sc_cmd_mtx);
1188 		printf("ipmi: reserve send fails\n");
1189 		return (-1);
1190 	}
1191 	if (ipmi_recvcmd(sc, sizeof(resid), &len, &resid)) {
1192 		mutex_exit(&sc->sc_cmd_mtx);
1193 		printf("ipmi: reserve recv fails\n");
1194 		return (-1);
1195 	}
1196 	mutex_exit(&sc->sc_cmd_mtx);
1197 	/* Get SDR Header */
1198 	if (get_sdr_partial(sc, recid, resid, 0, sizeof shdr, &shdr, nxtrec)) {
1199 		printf("ipmi: get header fails\n");
1200 		return (-1);
1201 	}
1202 	/* Allocate space for entire SDR Length of SDR in header does not
1203 	 * include header length */
1204 	sdrlen = sizeof(shdr) + shdr.record_length;
1205 	psdr = malloc(sdrlen, M_DEVBUF, M_WAITOK|M_CANFAIL);
1206 	if (psdr == NULL)
1207 		return -1;
1208 
1209 	memcpy(psdr, &shdr, sizeof(shdr));
1210 
1211 	/* Read SDR Data maxsdrlen bytes at a time */
1212 	for (offset = sizeof(shdr); offset < sdrlen; offset += maxsdrlen) {
1213 		len = sdrlen - offset;
1214 		if (len > maxsdrlen)
1215 			len = maxsdrlen;
1216 
1217 		if (get_sdr_partial(sc, recid, resid, offset, len,
1218 		    psdr + offset, NULL)) {
1219 			printf("ipmi: get chunk : %d,%d fails\n",
1220 			    offset, len);
1221 			free(psdr, M_DEVBUF);
1222 			return (-1);
1223 		}
1224 	}
1225 
1226 	/* Add SDR to sensor list, if not wanted, free buffer */
1227 	if (add_sdr_sensor(sc, psdr) == 0)
1228 		free(psdr, M_DEVBUF);
1229 
1230 	return (0);
1231 }
1232 
1233 int
getbits(uint8_t * bytes,int bitpos,int bitlen)1234 getbits(uint8_t *bytes, int bitpos, int bitlen)
1235 {
1236 	int	v;
1237 	int	mask;
1238 
1239 	bitpos += bitlen - 1;
1240 	for (v = 0; bitlen--;) {
1241 		v <<= 1;
1242 		mask = 1L << (bitpos & 7);
1243 		if (bytes[bitpos >> 3] & mask)
1244 			v |= 1;
1245 		bitpos--;
1246 	}
1247 
1248 	return (v);
1249 }
1250 
1251 /* Decode IPMI sensor name */
1252 void
ipmi_sensor_name(char * name,int len,uint8_t typelen,uint8_t * bits)1253 ipmi_sensor_name(char *name, int len, uint8_t typelen, uint8_t *bits)
1254 {
1255 	int	i, slen;
1256 	char	bcdplus[] = "0123456789 -.:,_";
1257 
1258 	slen = typelen & 0x1F;
1259 	switch (typelen >> 6) {
1260 	case IPMI_NAME_UNICODE:
1261 		//unicode
1262 		break;
1263 
1264 	case IPMI_NAME_BCDPLUS:
1265 		/* Characters are encoded in 4-bit BCDPLUS */
1266 		if (len < slen * 2 + 1)
1267 			slen = (len >> 1) - 1;
1268 		for (i = 0; i < slen; i++) {
1269 			*(name++) = bcdplus[bits[i] >> 4];
1270 			*(name++) = bcdplus[bits[i] & 0xF];
1271 		}
1272 		break;
1273 
1274 	case IPMI_NAME_ASCII6BIT:
1275 		/* Characters are encoded in 6-bit ASCII
1276 		 *   0x00 - 0x3F maps to 0x20 - 0x5F */
1277 		/* XXX: need to calculate max len: slen = 3/4 * len */
1278 		if (len < slen + 1)
1279 			slen = len - 1;
1280 		for (i = 0; i < slen * 8; i += 6)
1281 			*(name++) = getbits(bits, i, 6) + ' ';
1282 		break;
1283 
1284 	case IPMI_NAME_ASCII8BIT:
1285 		/* Characters are 8-bit ascii */
1286 		if (len < slen + 1)
1287 			slen = len - 1;
1288 		while (slen--)
1289 			*(name++) = *(bits++);
1290 		break;
1291 	}
1292 	*name = 0;
1293 }
1294 
1295 /* Sign extend a n-bit value */
1296 long
signextend(unsigned long val,int bits)1297 signextend(unsigned long val, int bits)
1298 {
1299 	long msk = (1L << (bits-1))-1;
1300 
1301 	return (-(val & ~msk) | val);
1302 }
1303 
1304 
1305 /* fixpoint arithmetic */
1306 #define FIX2INT(x)   ((int64_t)((x) >> 32))
1307 #define INT2FIX(x)   ((int64_t)((uint64_t)(x) << 32))
1308 
1309 #define FIX2            0x0000000200000000ll /* 2.0 */
1310 #define FIX3            0x0000000300000000ll /* 3.0 */
1311 #define FIXE            0x00000002b7e15163ll /* 2.71828182845904523536 */
1312 #define FIX10           0x0000000a00000000ll /* 10.0 */
1313 #define FIXMONE         0xffffffff00000000ll /* -1.0 */
1314 #define FIXHALF         0x0000000080000000ll /* 0.5 */
1315 #define FIXTHIRD        0x0000000055555555ll /* 0.33333333333333333333 */
1316 
1317 #define FIX1LOG2        0x0000000171547653ll /* 1.0/log(2) */
1318 #define FIX1LOGE        0x0000000100000000ll /* 1.0/log(2.71828182845904523536) */
1319 #define FIX1LOG10       0x000000006F2DEC55ll /* 1.0/log(10) */
1320 
1321 #define FIX1E           0x000000005E2D58D9ll /* 1.0/2.71828182845904523536 */
1322 
1323 static int64_t fixlog_a[] = {
1324 	0x0000000100000000ll /* 1.0/1.0 */,
1325 	0xffffffff80000000ll /* -1.0/2.0 */,
1326 	0x0000000055555555ll /* 1.0/3.0 */,
1327 	0xffffffffc0000000ll /* -1.0/4.0 */,
1328 	0x0000000033333333ll /* 1.0/5.0 */,
1329 	0x000000002aaaaaabll /* -1.0/6.0 */,
1330 	0x0000000024924925ll /* 1.0/7.0 */,
1331 	0x0000000020000000ll /* -1.0/8.0 */,
1332 	0x000000001c71c71cll /* 1.0/9.0 */
1333 };
1334 
1335 static int64_t fixexp_a[] = {
1336 	0x0000000100000000ll /* 1.0/1.0 */,
1337 	0x0000000100000000ll /* 1.0/1.0 */,
1338 	0x0000000080000000ll /* 1.0/2.0 */,
1339 	0x000000002aaaaaabll /* 1.0/6.0 */,
1340 	0x000000000aaaaaabll /* 1.0/24.0 */,
1341 	0x0000000002222222ll /* 1.0/120.0 */,
1342 	0x00000000005b05b0ll /* 1.0/720.0 */,
1343 	0x00000000000d00d0ll /* 1.0/5040.0 */,
1344 	0x000000000001a01all /* 1.0/40320.0 */
1345 };
1346 
1347 static int64_t
fixmul(int64_t x,int64_t y)1348 fixmul(int64_t x, int64_t y)
1349 {
1350 	int64_t z;
1351 	int64_t a,b,c,d;
1352 	int neg;
1353 
1354 	neg = 0;
1355 	if (x < 0) {
1356 		x = -x;
1357 		neg = !neg;
1358 	}
1359 	if (y < 0) {
1360 		y = -y;
1361 		neg = !neg;
1362 	}
1363 
1364 	a = FIX2INT(x);
1365 	b = x - INT2FIX(a);
1366 	c = FIX2INT(y);
1367 	d = y - INT2FIX(c);
1368 
1369 	z = INT2FIX(a*c) + a * d + b * c + (b/2 * d/2 >> 30);
1370 
1371 	return neg ? -z : z;
1372 }
1373 
1374 static int64_t
poly(int64_t x0,int64_t x,int64_t a[],int n)1375 poly(int64_t x0, int64_t x, int64_t a[], int n)
1376 {
1377 	int64_t z;
1378 	int i;
1379 
1380 	z  = fixmul(x0, a[0]);
1381 	for (i=1; i<n; ++i) {
1382 		x0 = fixmul(x0, x);
1383 		z  = fixmul(x0, a[i]) + z;
1384 	}
1385 	return z;
1386 }
1387 
1388 static int64_t
logx(int64_t x,int64_t y)1389 logx(int64_t x, int64_t y)
1390 {
1391 	int64_t z;
1392 
1393 	if (x <= INT2FIX(0)) {
1394 		z = INT2FIX(-99999);
1395 		goto done;
1396 	}
1397 
1398 	z = INT2FIX(0);
1399 	while (x >= FIXE) {
1400 		x = fixmul(x, FIX1E);
1401 		z += INT2FIX(1);
1402 	}
1403 	while (x < INT2FIX(1)) {
1404 		x = fixmul(x, FIXE);
1405 		z -= INT2FIX(1);
1406 	}
1407 
1408 	x -= INT2FIX(1);
1409 	z += poly(x, x, fixlog_a, sizeof(fixlog_a)/sizeof(fixlog_a[0]));
1410 	z  = fixmul(z, y);
1411 
1412 done:
1413 	return z;
1414 }
1415 
1416 static int64_t
powx(int64_t x,int64_t y)1417 powx(int64_t x, int64_t y)
1418 {
1419 	int64_t k;
1420 
1421 	if (x == INT2FIX(0))
1422 		goto done;
1423 
1424 	x = logx(x,y);
1425 
1426 	if (x < INT2FIX(0)) {
1427 		x = INT2FIX(0) - x;
1428 		k = -FIX2INT(x);
1429 		x = INT2FIX(-k) - x;
1430 	} else {
1431 		k = FIX2INT(x);
1432 		x = x - INT2FIX(k);
1433 	}
1434 
1435 	x = poly(INT2FIX(1), x, fixexp_a, sizeof(fixexp_a)/sizeof(fixexp_a[0]));
1436 
1437 	while (k < 0) {
1438 		x = fixmul(x, FIX1E);
1439 		++k;
1440 	}
1441 	while (k > 0) {
1442 		x = fixmul(x, FIXE);
1443 		--k;
1444 	}
1445 
1446 done:
1447 	return x;
1448 }
1449 
1450 /* Convert IPMI reading from sensor factors */
1451 long
ipmi_convert(uint8_t v,struct sdrtype1 * s1,long adj)1452 ipmi_convert(uint8_t v, struct sdrtype1 *s1, long adj)
1453 {
1454 	int64_t	M, B;
1455 	char	K1, K2;
1456 	int64_t	val, v1, v2, vs;
1457 	int sign = (s1->units1 >> 6) & 0x3;
1458 
1459 	vs = (sign == 0x1 || sign == 0x2) ? (int8_t)v : v;
1460 	if ((vs < 0) && (sign == 0x1))
1461 		vs++;
1462 
1463 	/* Calculate linear reading variables */
1464 	M  = signextend((((short)(s1->m_tolerance & 0xC0)) << 2) + s1->m, 10);
1465 	B  = signextend((((short)(s1->b_accuracy & 0xC0)) << 2) + s1->b, 10);
1466 	K1 = signextend(s1->rbexp & 0xF, 4);
1467 	K2 = signextend(s1->rbexp >> 4, 4);
1468 
1469 	/* Calculate sensor reading:
1470 	 *  y = L((M * v + (B * 10^K1)) * 10^(K2+adj)
1471 	 *
1472 	 * This commutes out to:
1473 	 *  y = L(M*v * 10^(K2+adj) + B * 10^(K1+K2+adj)); */
1474 	v1 = powx(FIX10, INT2FIX(K2 + adj));
1475 	v2 = powx(FIX10, INT2FIX(K1 + K2 + adj));
1476 	val = M * vs * v1 + B * v2;
1477 
1478 	/* Linearization function: y = f(x) 0 : y = x 1 : y = ln(x) 2 : y =
1479 	 * log10(x) 3 : y = log2(x) 4 : y = e^x 5 : y = 10^x 6 : y = 2^x 7 : y
1480 	 * = 1/x 8 : y = x^2 9 : y = x^3 10 : y = square root(x) 11 : y = cube
1481 	 * root(x) */
1482 	switch (s1->linear & 0x7f) {
1483 	case 0: break;
1484 	case 1: val = logx(val,FIX1LOGE); break;
1485 	case 2: val = logx(val,FIX1LOG10); break;
1486 	case 3: val = logx(val,FIX1LOG2); break;
1487 	case 4: val = powx(FIXE,val); break;
1488 	case 5: val = powx(FIX10,val); break;
1489 	case 6: val = powx(FIX2,val); break;
1490 	case 7: val = powx(val,FIXMONE); break;
1491 	case 8: val = powx(val,FIX2); break;
1492 	case 9: val = powx(val,FIX3); break;
1493 	case 10: val = powx(val,FIXHALF); break;
1494 	case 11: val = powx(val,FIXTHIRD); break;
1495 	}
1496 
1497 	return FIX2INT(val);
1498 }
1499 
1500 int32_t
ipmi_convert_sensor(uint8_t * reading,struct ipmi_sensor * psensor)1501 ipmi_convert_sensor(uint8_t *reading, struct ipmi_sensor *psensor)
1502 {
1503 	struct sdrtype1	*s1 = (struct sdrtype1 *)psensor->i_sdr;
1504 	int32_t val;
1505 
1506 	switch (psensor->i_envtype) {
1507 	case ENVSYS_STEMP:
1508 		val = ipmi_convert(reading[0], s1, 6) + 273150000;
1509 		break;
1510 
1511 	case ENVSYS_SVOLTS_DC:
1512 		val = ipmi_convert(reading[0], s1, 6);
1513 		break;
1514 
1515 	case ENVSYS_SFANRPM:
1516 		val = ipmi_convert(reading[0], s1, 0);
1517 		if (((s1->units1>>3)&0x7) == 0x3)
1518 			val *= 60; /* RPS -> RPM */
1519 		break;
1520 	default:
1521 		val = 0;
1522 		break;
1523 	}
1524 	return val;
1525 }
1526 
1527 void
ipmi_set_limits(struct sysmon_envsys * sme,envsys_data_t * edata,sysmon_envsys_lim_t * limits,uint32_t * props)1528 ipmi_set_limits(struct sysmon_envsys *sme, envsys_data_t *edata,
1529 		sysmon_envsys_lim_t *limits, uint32_t *props)
1530 {
1531 	struct ipmi_sensor *ipmi_s;
1532 
1533 	/* Find the ipmi_sensor corresponding to this edata */
1534 	SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
1535 		if (ipmi_s->i_envnum == edata->sensor) {
1536 			if (limits == NULL) {
1537 				limits = &ipmi_s->i_deflims;
1538 				props  = &ipmi_s->i_defprops;
1539 			}
1540 			*props |= PROP_DRIVER_LIMITS;
1541 			ipmi_s->i_limits = *limits;
1542 			ipmi_s->i_props  = *props;
1543 			return;
1544 		}
1545 	}
1546 	return;
1547 }
1548 
1549 void
ipmi_get_limits(struct sysmon_envsys * sme,envsys_data_t * edata,sysmon_envsys_lim_t * limits,uint32_t * props)1550 ipmi_get_limits(struct sysmon_envsys *sme, envsys_data_t *edata,
1551 		sysmon_envsys_lim_t *limits, uint32_t *props)
1552 {
1553 	struct ipmi_sensor *ipmi_s;
1554 	struct ipmi_softc *sc = sme->sme_cookie;
1555 
1556 	/* Find the ipmi_sensor corresponding to this edata */
1557 	SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
1558 		if (ipmi_s->i_envnum == edata->sensor) {
1559 			ipmi_get_sensor_limits(sc, ipmi_s, limits, props);
1560 			ipmi_s->i_limits = *limits;
1561 			ipmi_s->i_props  = *props;
1562 			if (ipmi_s->i_defprops == 0) {
1563 				ipmi_s->i_defprops = *props;
1564 				ipmi_s->i_deflims  = *limits;
1565 			}
1566 			return;
1567 		}
1568 	}
1569 	return;
1570 }
1571 
1572 void
ipmi_get_sensor_limits(struct ipmi_softc * sc,struct ipmi_sensor * psensor,sysmon_envsys_lim_t * limits,uint32_t * props)1573 ipmi_get_sensor_limits(struct ipmi_softc *sc, struct ipmi_sensor *psensor,
1574 		       sysmon_envsys_lim_t *limits, uint32_t *props)
1575 {
1576 	struct sdrtype1	*s1 = (struct sdrtype1 *)psensor->i_sdr;
1577 	bool failure;
1578 	int	rxlen;
1579 	uint8_t	data[32];
1580 	uint32_t prop_critmax, prop_warnmax, prop_critmin, prop_warnmin;
1581 	int32_t *pcritmax, *pwarnmax, *pcritmin, *pwarnmin;
1582 
1583 	*props &= ~(PROP_CRITMIN | PROP_CRITMAX | PROP_WARNMIN | PROP_WARNMAX);
1584 	data[0] = psensor->i_num;
1585 	mutex_enter(&sc->sc_cmd_mtx);
1586 	failure =
1587 	    ipmi_sendcmd(sc, s1->owner_id, s1->owner_lun,
1588 			 SE_NETFN, SE_GET_SENSOR_THRESHOLD, 1, data) ||
1589 	    ipmi_recvcmd(sc, sizeof(data), &rxlen, data);
1590 	mutex_exit(&sc->sc_cmd_mtx);
1591 	if (failure)
1592 		return;
1593 
1594 	dbg_printf(25, "recvdata: %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n",
1595 	    data[0], data[1], data[2], data[3], data[4], data[5], data[6]);
1596 
1597 	switch (s1->linear & 0x7f) {
1598 	case 7: /* 1/x sensor, exchange upper and lower limits */
1599 		prop_critmax = PROP_CRITMIN;
1600 		prop_warnmax = PROP_WARNMIN;
1601 		prop_critmin = PROP_CRITMAX;
1602 		prop_warnmin = PROP_WARNMAX;
1603 		pcritmax = &limits->sel_critmin;
1604 		pwarnmax = &limits->sel_warnmin;
1605 		pcritmin = &limits->sel_critmax;
1606 		pwarnmin = &limits->sel_warnmax;
1607 		break;
1608 	default:
1609 		prop_critmax = PROP_CRITMAX;
1610 		prop_warnmax = PROP_WARNMAX;
1611 		prop_critmin = PROP_CRITMIN;
1612 		prop_warnmin = PROP_WARNMIN;
1613 		pcritmax = &limits->sel_critmax;
1614 		pwarnmax = &limits->sel_warnmax;
1615 		pcritmin = &limits->sel_critmin;
1616 		pwarnmin = &limits->sel_warnmin;
1617 		break;
1618 	}
1619 
1620 	if (data[0] & 0x20 && data[6] != 0xff) {
1621 		*pcritmax = ipmi_convert_sensor(&data[6], psensor);
1622 		*props |= prop_critmax;
1623 	}
1624 	if (data[0] & 0x10 && data[5] != 0xff) {
1625 		*pcritmax = ipmi_convert_sensor(&data[5], psensor);
1626 		*props |= prop_critmax;
1627 	}
1628 	if (data[0] & 0x08 && data[4] != 0xff) {
1629 		*pwarnmax = ipmi_convert_sensor(&data[4], psensor);
1630 		*props |= prop_warnmax;
1631 	}
1632 	if (data[0] & 0x04 && data[3] != 0x00) {
1633 		*pcritmin = ipmi_convert_sensor(&data[3], psensor);
1634 		*props |= prop_critmin;
1635 	}
1636 	if (data[0] & 0x02 && data[2] != 0x00) {
1637 		*pcritmin = ipmi_convert_sensor(&data[2], psensor);
1638 		*props |= prop_critmin;
1639 	}
1640 	if (data[0] & 0x01 && data[1] != 0x00) {
1641 		*pwarnmin = ipmi_convert_sensor(&data[1], psensor);
1642 		*props |= prop_warnmin;
1643 	}
1644 	return;
1645 }
1646 
1647 int
ipmi_sensor_status(struct ipmi_softc * sc,struct ipmi_sensor * psensor,envsys_data_t * edata,uint8_t * reading)1648 ipmi_sensor_status(struct ipmi_softc *sc, struct ipmi_sensor *psensor,
1649     envsys_data_t *edata, uint8_t *reading)
1650 {
1651 	int	etype;
1652 
1653 	/* Get reading of sensor */
1654 	edata->value_cur = ipmi_convert_sensor(reading, psensor);
1655 
1656 	/* Return Sensor Status */
1657 	etype = (psensor->i_etype << 8) + psensor->i_stype;
1658 	switch (etype) {
1659 	case IPMI_SENSOR_TYPE_TEMP:
1660 	case IPMI_SENSOR_TYPE_VOLT:
1661 	case IPMI_SENSOR_TYPE_FAN:
1662 		if (psensor->i_props & PROP_CRITMAX &&
1663 		    edata->value_cur > psensor->i_limits.sel_critmax)
1664 			return ENVSYS_SCRITOVER;
1665 
1666 		if (psensor->i_props & PROP_WARNMAX &&
1667 		    edata->value_cur > psensor->i_limits.sel_warnmax)
1668 			return ENVSYS_SWARNOVER;
1669 
1670 		if (psensor->i_props & PROP_WARNMIN &&
1671 		    edata->value_cur < psensor->i_limits.sel_warnmin)
1672 			return ENVSYS_SWARNUNDER;
1673 
1674 		if (psensor->i_props & PROP_CRITMIN &&
1675 		    edata->value_cur < psensor->i_limits.sel_critmin)
1676 			return ENVSYS_SCRITUNDER;
1677 
1678 		break;
1679 
1680 	case IPMI_SENSOR_TYPE_INTRUSION:
1681 		edata->value_cur = (reading[2] & 1) ? 0 : 1;
1682 		if (reading[2] & 0x1)
1683 			return ENVSYS_SCRITICAL;
1684 		break;
1685 
1686 	case IPMI_SENSOR_TYPE_PWRSUPPLY:
1687 		/* Reading: 1 = present+powered, 0 = otherwise */
1688 		edata->value_cur = (reading[2] & 1) ? 0 : 1;
1689 		if (reading[2] & 0x10) {
1690 			/* XXX: Need envsys type for Power Supply types
1691 			 *   ok: power supply installed && powered
1692 			 * warn: power supply installed && !powered
1693 			 * crit: power supply !installed
1694 			 */
1695 			return ENVSYS_SCRITICAL;
1696 		}
1697 		if (reading[2] & 0x08) {
1698 			/* Power supply AC lost */
1699 			return ENVSYS_SWARNOVER;
1700 		}
1701 		break;
1702 	}
1703 
1704 	return ENVSYS_SVALID;
1705 }
1706 
1707 int
read_sensor(struct ipmi_softc * sc,struct ipmi_sensor * psensor)1708 read_sensor(struct ipmi_softc *sc, struct ipmi_sensor *psensor)
1709 {
1710 	struct sdrtype1	*s1 = (struct sdrtype1 *) psensor->i_sdr;
1711 	uint8_t	data[8];
1712 	int		rxlen;
1713 	envsys_data_t *edata = &sc->sc_sensor[psensor->i_envnum];
1714 
1715 	memset(data, 0, sizeof(data));
1716 	data[0] = psensor->i_num;
1717 
1718 	mutex_enter(&sc->sc_cmd_mtx);
1719 	if (ipmi_sendcmd(sc, s1->owner_id, s1->owner_lun, SE_NETFN,
1720 	    SE_GET_SENSOR_READING, 1, data))
1721 		goto err;
1722 
1723 	if (ipmi_recvcmd(sc, sizeof(data), &rxlen, data))
1724 		goto err;
1725 	mutex_exit(&sc->sc_cmd_mtx);
1726 
1727 	dbg_printf(10, "m=%u, m_tolerance=%u, b=%u, b_accuracy=%u, rbexp=%u, linear=%d\n",
1728 	    s1->m, s1->m_tolerance, s1->b, s1->b_accuracy, s1->rbexp, s1->linear);
1729 	dbg_printf(10, "values=%.2x %.2x %.2x %.2x %s\n",
1730 	    data[0],data[1],data[2],data[3], edata->desc);
1731 	if (IPMI_INVALID_SENSOR_P(data[1])) {
1732 		/* Check if sensor is valid */
1733 		edata->state = ENVSYS_SINVALID;
1734 	} else {
1735 		edata->state = ipmi_sensor_status(sc, psensor, edata, data);
1736 	}
1737 	return 0;
1738 err:
1739 	mutex_exit(&sc->sc_cmd_mtx);
1740 	return -1;
1741 }
1742 
1743 int
ipmi_sensor_type(int type,int ext_type,int entity)1744 ipmi_sensor_type(int type, int ext_type, int entity)
1745 {
1746 	switch (ext_type << 8L | type) {
1747 	case IPMI_SENSOR_TYPE_TEMP:
1748 		return (ENVSYS_STEMP);
1749 
1750 	case IPMI_SENSOR_TYPE_VOLT:
1751 		return (ENVSYS_SVOLTS_DC);
1752 
1753 	case IPMI_SENSOR_TYPE_FAN:
1754 		return (ENVSYS_SFANRPM);
1755 
1756 	case IPMI_SENSOR_TYPE_PWRSUPPLY:
1757 		if (entity == IPMI_ENTITY_PWRSUPPLY)
1758 			return (ENVSYS_INDICATOR);
1759 		break;
1760 
1761 	case IPMI_SENSOR_TYPE_INTRUSION:
1762 		return (ENVSYS_INDICATOR);
1763 	}
1764 
1765 	return (-1);
1766 }
1767 
1768 /* Add Sensor to BSD Sysctl interface */
1769 int
add_sdr_sensor(struct ipmi_softc * sc,uint8_t * psdr)1770 add_sdr_sensor(struct ipmi_softc *sc, uint8_t *psdr)
1771 {
1772 	int			rc;
1773 	struct sdrtype1		*s1 = (struct sdrtype1 *)psdr;
1774 	struct sdrtype2		*s2 = (struct sdrtype2 *)psdr;
1775 	char			name[64];
1776 
1777 	switch (s1->sdrhdr.record_type) {
1778 	case IPMI_SDR_TYPEFULL:
1779 		ipmi_sensor_name(name, sizeof(name), s1->typelen, s1->name);
1780 		rc = add_child_sensors(sc, psdr, 1, s1->sensor_num,
1781 		    s1->sensor_type, s1->event_code, 0, s1->entity_id, name);
1782 		break;
1783 
1784 	case IPMI_SDR_TYPECOMPACT:
1785 		ipmi_sensor_name(name, sizeof(name), s2->typelen, s2->name);
1786 		rc = add_child_sensors(sc, psdr, s2->share1 & 0xF,
1787 		    s2->sensor_num, s2->sensor_type, s2->event_code,
1788 		    s2->share2 & 0x7F, s2->entity_id, name);
1789 		break;
1790 
1791 	default:
1792 		return (0);
1793 	}
1794 
1795 	return rc;
1796 }
1797 
1798 static int
ipmi_is_dupname(char * name)1799 ipmi_is_dupname(char *name)
1800 {
1801 	struct ipmi_sensor *ipmi_s;
1802 
1803 	SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
1804 		if (strcmp(ipmi_s->i_envdesc, name) == 0) {
1805 			return 1;
1806 		}
1807 	}
1808 	return 0;
1809 }
1810 
1811 int
add_child_sensors(struct ipmi_softc * sc,uint8_t * psdr,int count,int sensor_num,int sensor_type,int ext_type,int sensor_base,int entity,const char * name)1812 add_child_sensors(struct ipmi_softc *sc, uint8_t *psdr, int count,
1813     int sensor_num, int sensor_type, int ext_type, int sensor_base,
1814     int entity, const char *name)
1815 {
1816 	int			typ, idx, dupcnt, c;
1817 	char			*e;
1818 	struct ipmi_sensor	*psensor;
1819 	struct sdrtype1		*s1 = (struct sdrtype1 *)psdr;
1820 
1821 	typ = ipmi_sensor_type(sensor_type, ext_type, entity);
1822 	if (typ == -1) {
1823 		dbg_printf(5, "Unknown sensor type:%.2x et:%.2x sn:%.2x "
1824 		    "name:%s\n", sensor_type, ext_type, sensor_num, name);
1825 		return 0;
1826 	}
1827 	dupcnt = 0;
1828 	sc->sc_nsensors += count;
1829 	for (idx = 0; idx < count; idx++) {
1830 		psensor = malloc(sizeof(struct ipmi_sensor), M_DEVBUF,
1831 		    M_WAITOK|M_CANFAIL);
1832 		if (psensor == NULL)
1833 			break;
1834 
1835 		memset(psensor, 0, sizeof(struct ipmi_sensor));
1836 
1837 		/* Initialize BSD Sensor info */
1838 		psensor->i_sdr = psdr;
1839 		psensor->i_num = sensor_num + idx;
1840 		psensor->i_stype = sensor_type;
1841 		psensor->i_etype = ext_type;
1842 		psensor->i_envtype = typ;
1843 		if (count > 1)
1844 			snprintf(psensor->i_envdesc,
1845 			    sizeof(psensor->i_envdesc),
1846 			    "%s - %d", name, sensor_base + idx);
1847 		else
1848 			strlcpy(psensor->i_envdesc, name,
1849 			    sizeof(psensor->i_envdesc));
1850 
1851 		/*
1852 		 * Check for duplicates.  If there are duplicates,
1853 		 * make sure there is space in the name (if not,
1854 		 * truncate to make space) for a count (1-99) to
1855 		 * add to make the name unique.  If we run the
1856 		 * counter out, just accept the duplicate (@name99)
1857 		 * for now.
1858 		 */
1859 		if (ipmi_is_dupname(psensor->i_envdesc)) {
1860 			if (strlen(psensor->i_envdesc) >=
1861 			    sizeof(psensor->i_envdesc) - 3) {
1862 				e = psensor->i_envdesc +
1863 				    sizeof(psensor->i_envdesc) - 3;
1864 			} else {
1865 				e = psensor->i_envdesc +
1866 				    strlen(psensor->i_envdesc);
1867 			}
1868 			c = psensor->i_envdesc +
1869 			    sizeof(psensor->i_envdesc) - e;
1870 			do {
1871 				dupcnt++;
1872 				snprintf(e, c, "%d", dupcnt);
1873 			} while (dupcnt < 100 &&
1874 			         ipmi_is_dupname(psensor->i_envdesc));
1875 		}
1876 
1877 		dbg_printf(5, "add sensor:%.4x %.2x:%d ent:%.2x:%.2x %s\n",
1878 		    s1->sdrhdr.record_id, s1->sensor_type,
1879 		    typ, s1->entity_id, s1->entity_instance,
1880 		    psensor->i_envdesc);
1881 		SLIST_INSERT_HEAD(&ipmi_sensor_list, psensor, i_list);
1882 	}
1883 
1884 	return (1);
1885 }
1886 
1887 /* Interrupt handler */
1888 int
ipmi_intr(void * arg)1889 ipmi_intr(void *arg)
1890 {
1891 	struct ipmi_softc	*sc = (struct ipmi_softc *)arg;
1892 	int			v;
1893 
1894 	v = bmc_read(sc, _KCS_STATUS_REGISTER);
1895 	if (v & KCS_OBF)
1896 		++ipmi_nintr;
1897 
1898 	return (0);
1899 }
1900 
1901 /* Handle IPMI Timer - reread sensor values */
1902 void
ipmi_refresh_sensors(struct ipmi_softc * sc)1903 ipmi_refresh_sensors(struct ipmi_softc *sc)
1904 {
1905 
1906 	if (SLIST_EMPTY(&ipmi_sensor_list))
1907 		return;
1908 
1909 	sc->current_sensor = SLIST_NEXT(sc->current_sensor, i_list);
1910 	if (sc->current_sensor == NULL)
1911 		sc->current_sensor = SLIST_FIRST(&ipmi_sensor_list);
1912 
1913 	if (read_sensor(sc, sc->current_sensor)) {
1914 		dbg_printf(1, "ipmi: error reading\n");
1915 	}
1916 }
1917 
1918 int
ipmi_map_regs(struct ipmi_softc * sc,struct ipmi_attach_args * ia)1919 ipmi_map_regs(struct ipmi_softc *sc, struct ipmi_attach_args *ia)
1920 {
1921 	sc->sc_if = ipmi_get_if(ia->iaa_if_type);
1922 	if (sc->sc_if == NULL)
1923 		return (-1);
1924 
1925 	if (ia->iaa_if_iotype == 'i')
1926 		sc->sc_iot = ia->iaa_iot;
1927 	else
1928 		sc->sc_iot = ia->iaa_memt;
1929 
1930 	sc->sc_if_rev = ia->iaa_if_rev;
1931 	sc->sc_if_iospacing = ia->iaa_if_iospacing;
1932 	if (bus_space_map(sc->sc_iot, ia->iaa_if_iobase,
1933 	    sc->sc_if->nregs * sc->sc_if_iospacing,
1934 	    0, &sc->sc_ioh)) {
1935 		printf("ipmi: bus_space_map(..., %x, %x, 0, %p) failed\n",
1936 		    ia->iaa_if_iobase,
1937 		    sc->sc_if->nregs * sc->sc_if_iospacing, &sc->sc_ioh);
1938 		return (-1);
1939 	}
1940 #if 0
1941 	if (iaa->if_if_irq != -1)
1942 		sc->ih = isa_intr_establish(-1, iaa->if_if_irq,
1943 		    iaa->if_irqlvl, IPL_BIO, ipmi_intr, sc,
1944 		    device_xname(sc->sc_dev);
1945 #endif
1946 	return (0);
1947 }
1948 
1949 void
ipmi_unmap_regs(struct ipmi_softc * sc)1950 ipmi_unmap_regs(struct ipmi_softc *sc)
1951 {
1952 	bus_space_unmap(sc->sc_iot, sc->sc_ioh,
1953 	    sc->sc_if->nregs * sc->sc_if_iospacing);
1954 }
1955 
1956 int
ipmi_probe(struct ipmi_attach_args * ia)1957 ipmi_probe(struct ipmi_attach_args *ia)
1958 {
1959 	struct dmd_ipmi *pipmi;
1960 	struct smbtable tbl;
1961 
1962 	tbl.cookie = 0;
1963 
1964 	if (smbios_find_table(SMBIOS_TYPE_IPMIDEV, &tbl))
1965 		ipmi_smbios_probe(tbl.tblhdr, ia);
1966 	else {
1967 		pipmi = (struct dmd_ipmi *)scan_sig(0xC0000L, 0xFFFFFL, 16, 4,
1968 		    "IPMI");
1969 		/* XXX hack to find Dell PowerEdge 8450 */
1970 		if (pipmi == NULL) {
1971 			/* no IPMI found */
1972 			return (0);
1973 		}
1974 
1975 		/* we have an IPMI signature, fill in attach arg structure */
1976 		ia->iaa_if_type = pipmi->dmd_if_type;
1977 		ia->iaa_if_rev = pipmi->dmd_if_rev;
1978 	}
1979 
1980 	return (1);
1981 }
1982 
1983 int
ipmi_match(device_t parent,cfdata_t cf,void * aux)1984 ipmi_match(device_t parent, cfdata_t cf, void *aux)
1985 {
1986 	struct ipmi_softc sc;
1987 	struct ipmi_attach_args *ia = aux;
1988 	uint8_t		cmd[32];
1989 	int			len;
1990 	int			rv = 0;
1991 
1992 	memset(&sc, 0, sizeof(sc));
1993 
1994 	/* Map registers */
1995 	if (ipmi_map_regs(&sc, ia) != 0)
1996 		return 0;
1997 
1998 	sc.sc_if->probe(&sc);
1999 
2000 	mutex_init(&sc.sc_cmd_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
2001 	cv_init(&sc.sc_cmd_sleep, "ipmimtch");
2002 	mutex_enter(&sc.sc_cmd_mtx);
2003 	/* Identify BMC device early to detect lying bios */
2004 	if (ipmi_sendcmd(&sc, BMC_SA, 0, APP_NETFN, APP_GET_DEVICE_ID,
2005 	    0, NULL)) {
2006 		mutex_exit(&sc.sc_cmd_mtx);
2007 		dbg_printf(1, ": unable to send get device id "
2008 		    "command\n");
2009 		goto unmap;
2010 	}
2011 	if (ipmi_recvcmd(&sc, sizeof(cmd), &len, cmd)) {
2012 		mutex_exit(&sc.sc_cmd_mtx);
2013 		dbg_printf(1, ": unable to retrieve device id\n");
2014 		goto unmap;
2015 	}
2016 	mutex_exit(&sc.sc_cmd_mtx);
2017 
2018 	dbg_dump(1, "bmc data", len, cmd);
2019 	rv = 1; /* GETID worked, we got IPMI */
2020 unmap:
2021 	cv_destroy(&sc.sc_cmd_sleep);
2022 	mutex_destroy(&sc.sc_cmd_mtx);
2023 	ipmi_unmap_regs(&sc);
2024 
2025 	return rv;
2026 }
2027 
2028 static void
ipmi_thread(void * cookie)2029 ipmi_thread(void *cookie)
2030 {
2031 	device_t		self = cookie;
2032 	struct ipmi_softc	*sc = device_private(self);
2033 	struct ipmi_attach_args *ia = &sc->sc_ia;
2034 	uint16_t		rec;
2035 	struct ipmi_sensor *ipmi_s;
2036 	int i;
2037 
2038 	sc->sc_thread_running = true;
2039 
2040 	/* setup ticker */
2041 	sc->sc_max_retries = hz * 90; /* 90 seconds max */
2042 
2043 	/* Map registers */
2044 	ipmi_map_regs(sc, ia);
2045 
2046 	/* Scan SDRs, add sensors to list */
2047 	for (rec = 0; rec != 0xFFFF;)
2048 		if (get_sdr(sc, rec, &rec))
2049 			break;
2050 
2051 	/* allocate and fill sensor arrays */
2052 	sc->sc_sensor =
2053 	    malloc(sizeof(envsys_data_t) * sc->sc_nsensors,
2054 	        M_DEVBUF, M_WAITOK | M_ZERO);
2055 	if (sc->sc_sensor == NULL) {
2056 		aprint_error("ipmi: can't allocate envsys_data_t\n");
2057 		kthread_exit(0);
2058 	}
2059 
2060 	sc->sc_envsys = sysmon_envsys_create();
2061 	sc->sc_envsys->sme_cookie = sc;
2062 	sc->sc_envsys->sme_get_limits = ipmi_get_limits;
2063 	sc->sc_envsys->sme_set_limits = ipmi_set_limits;
2064 
2065 	i = 0;
2066 	SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
2067 		ipmi_s->i_props = 0;
2068 		ipmi_s->i_envnum = -1;
2069 		sc->sc_sensor[i].units = ipmi_s->i_envtype;
2070 		sc->sc_sensor[i].state = ENVSYS_SINVALID;
2071 		sc->sc_sensor[i].flags |= ENVSYS_FHAS_ENTROPY;
2072 		/*
2073 		 * Monitor threshold limits in the sensors.
2074 		 */
2075 		switch (sc->sc_sensor[i].units) {
2076 		case ENVSYS_STEMP:
2077 		case ENVSYS_SVOLTS_DC:
2078 		case ENVSYS_SFANRPM:
2079 			sc->sc_sensor[i].flags |= ENVSYS_FMONLIMITS;
2080 			break;
2081 		default:
2082 			sc->sc_sensor[i].flags |= ENVSYS_FMONCRITICAL;
2083 		}
2084 		(void)strlcpy(sc->sc_sensor[i].desc, ipmi_s->i_envdesc,
2085 		    sizeof(sc->sc_sensor[i].desc));
2086 		++i;
2087 
2088 		if (sysmon_envsys_sensor_attach(sc->sc_envsys,
2089 						&sc->sc_sensor[i-1]))
2090 			continue;
2091 
2092 		/* get reference number from envsys */
2093 		ipmi_s->i_envnum = sc->sc_sensor[i-1].sensor;
2094 	}
2095 
2096 	sc->sc_envsys->sme_name = device_xname(sc->sc_dev);
2097 	sc->sc_envsys->sme_flags = SME_DISABLE_REFRESH;
2098 
2099 	if (sysmon_envsys_register(sc->sc_envsys)) {
2100 		aprint_error("ipmi: unable to register with sysmon\n");
2101 		sysmon_envsys_destroy(sc->sc_envsys);
2102 	}
2103 
2104 	/* initialize sensor list for thread */
2105 	if (!SLIST_EMPTY(&ipmi_sensor_list))
2106 		sc->current_sensor = SLIST_FIRST(&ipmi_sensor_list);
2107 
2108 	aprint_verbose_dev(self, "version %d.%d interface %s %sbase "
2109 	    "0x%x/%x spacing %d\n",
2110 	    ia->iaa_if_rev >> 4, ia->iaa_if_rev & 0xF, sc->sc_if->name,
2111 	    ia->iaa_if_iotype == 'i' ? "io" : "mem", ia->iaa_if_iobase,
2112 	    ia->iaa_if_iospacing * sc->sc_if->nregs, ia->iaa_if_iospacing);
2113 	if (ia->iaa_if_irq != -1)
2114 		aprint_verbose_dev(self, " irq %d\n", ia->iaa_if_irq);
2115 
2116 	/* setup flag to exclude iic */
2117 	ipmi_enabled = 1;
2118 
2119 	/* Setup Watchdog timer */
2120 	sc->sc_wdog.smw_name = device_xname(sc->sc_dev);
2121 	sc->sc_wdog.smw_cookie = sc;
2122 	sc->sc_wdog.smw_setmode = ipmi_watchdog_setmode;
2123 	sc->sc_wdog.smw_tickle = ipmi_watchdog_tickle;
2124 	sysmon_wdog_register(&sc->sc_wdog);
2125 
2126 	/* Set up a power handler so we can possibly sleep */
2127 	if (!pmf_device_register(self, ipmi_suspend, NULL))
2128                 aprint_error_dev(self, "couldn't establish a power handler\n");
2129 
2130 	mutex_enter(&sc->sc_poll_mtx);
2131 	while (sc->sc_thread_running) {
2132 		ipmi_refresh_sensors(sc);
2133 		cv_timedwait(&sc->sc_poll_cv, &sc->sc_poll_mtx,
2134 		    SENSOR_REFRESH_RATE);
2135 		if (sc->sc_tickle_due) {
2136 			ipmi_dotickle(sc);
2137 			sc->sc_tickle_due = false;
2138 		}
2139 	}
2140 	mutex_exit(&sc->sc_poll_mtx);
2141 	kthread_exit(0);
2142 }
2143 
2144 void
ipmi_attach(device_t parent,device_t self,void * aux)2145 ipmi_attach(device_t parent, device_t self, void *aux)
2146 {
2147 	struct ipmi_softc	*sc = device_private(self);
2148 
2149 	sc->sc_ia = *(struct ipmi_attach_args *)aux;
2150 	sc->sc_dev = self;
2151 	aprint_naive("\n");
2152 	aprint_normal("\n");
2153 
2154 	/* lock around read_sensor so that no one messes with the bmc regs */
2155 	mutex_init(&sc->sc_cmd_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
2156 	mutex_init(&sc->sc_sleep_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
2157 	cv_init(&sc->sc_cmd_sleep, "ipmicmd");
2158 
2159 	mutex_init(&sc->sc_poll_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
2160 	cv_init(&sc->sc_poll_cv, "ipmipoll");
2161 
2162 	if (kthread_create(PRI_NONE, 0, NULL, ipmi_thread, self,
2163 	    &sc->sc_kthread, "ipmi") != 0) {
2164 		aprint_error("ipmi: unable to create thread, disabled\n");
2165 	}
2166 }
2167 
2168 static int
ipmi_detach(device_t self,int flags)2169 ipmi_detach(device_t self, int flags)
2170 {
2171 	struct ipmi_sensor *i;
2172 	int rc;
2173 	struct ipmi_softc *sc = device_private(self);
2174 
2175 	mutex_enter(&sc->sc_poll_mtx);
2176 	sc->sc_thread_running = false;
2177 	cv_signal(&sc->sc_poll_cv);
2178 	mutex_exit(&sc->sc_poll_mtx);
2179 
2180 	if ((rc = sysmon_wdog_unregister(&sc->sc_wdog)) != 0) {
2181 		if (rc == ERESTART)
2182 			rc = EINTR;
2183 		return rc;
2184 	}
2185 
2186 	/* cancel any pending countdown */
2187 	sc->sc_wdog.smw_mode &= ~WDOG_MODE_MASK;
2188 	sc->sc_wdog.smw_mode |= WDOG_MODE_DISARMED;
2189 	sc->sc_wdog.smw_period = WDOG_PERIOD_DEFAULT;
2190 
2191 	if ((rc = ipmi_watchdog_setmode(&sc->sc_wdog)) != 0)
2192 		return rc;
2193 
2194 	ipmi_enabled = 0;
2195 
2196 	if (sc->sc_envsys != NULL) {
2197 		/* _unregister also destroys */
2198 		sysmon_envsys_unregister(sc->sc_envsys);
2199 		sc->sc_envsys = NULL;
2200 	}
2201 
2202 	while ((i = SLIST_FIRST(&ipmi_sensor_list)) != NULL) {
2203 		SLIST_REMOVE_HEAD(&ipmi_sensor_list, i_list);
2204 		free(i, M_DEVBUF);
2205 	}
2206 
2207 	if (sc->sc_sensor != NULL) {
2208 		free(sc->sc_sensor, M_DEVBUF);
2209 		sc->sc_sensor = NULL;
2210 	}
2211 
2212 	ipmi_unmap_regs(sc);
2213 
2214 	cv_destroy(&sc->sc_poll_cv);
2215 	mutex_destroy(&sc->sc_poll_mtx);
2216 	cv_destroy(&sc->sc_cmd_sleep);
2217 	mutex_destroy(&sc->sc_sleep_mtx);
2218 	mutex_destroy(&sc->sc_cmd_mtx);
2219 
2220 	return 0;
2221 }
2222 
2223 int
ipmi_watchdog_setmode(struct sysmon_wdog * smwdog)2224 ipmi_watchdog_setmode(struct sysmon_wdog *smwdog)
2225 {
2226 	struct ipmi_softc	*sc = smwdog->smw_cookie;
2227 	struct ipmi_get_watchdog gwdog;
2228 	struct ipmi_set_watchdog swdog;
2229 	int			rc, len;
2230 
2231 	if (smwdog->smw_period < 10)
2232 		return EINVAL;
2233 	if (smwdog->smw_period == WDOG_PERIOD_DEFAULT)
2234 		sc->sc_wdog.smw_period = 10;
2235 	else
2236 		sc->sc_wdog.smw_period = smwdog->smw_period;
2237 
2238 	mutex_enter(&sc->sc_cmd_mtx);
2239 	/* see if we can properly task to the watchdog */
2240 	rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN,
2241 	    APP_GET_WATCHDOG_TIMER, 0, NULL);
2242 	rc = ipmi_recvcmd(sc, sizeof(gwdog), &len, &gwdog);
2243 	mutex_exit(&sc->sc_cmd_mtx);
2244 	if (rc) {
2245 		printf("ipmi: APP_GET_WATCHDOG_TIMER returned 0x%x\n", rc);
2246 		return EIO;
2247 	}
2248 
2249 	memset(&swdog, 0, sizeof(swdog));
2250 	/* Period is 10ths/sec */
2251 	swdog.wdog_timeout = htole16(sc->sc_wdog.smw_period * 10);
2252 	if ((smwdog->smw_mode & WDOG_MODE_MASK) == WDOG_MODE_DISARMED)
2253 		swdog.wdog_action = IPMI_WDOG_ACT_DISABLED;
2254 	else
2255 		swdog.wdog_action = IPMI_WDOG_ACT_RESET;
2256 	swdog.wdog_use = IPMI_WDOG_USE_USE_OS;
2257 
2258 	mutex_enter(&sc->sc_cmd_mtx);
2259 	if ((rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN,
2260 	    APP_SET_WATCHDOG_TIMER, sizeof(swdog), &swdog)) == 0)
2261 		rc = ipmi_recvcmd(sc, 0, &len, NULL);
2262 	mutex_exit(&sc->sc_cmd_mtx);
2263 	if (rc) {
2264 		printf("ipmi: APP_SET_WATCHDOG_TIMER returned 0x%x\n", rc);
2265 		return EIO;
2266 	}
2267 
2268 	return (0);
2269 }
2270 
2271 int
ipmi_watchdog_tickle(struct sysmon_wdog * smwdog)2272 ipmi_watchdog_tickle(struct sysmon_wdog *smwdog)
2273 {
2274 	struct ipmi_softc	*sc = smwdog->smw_cookie;
2275 
2276 	mutex_enter(&sc->sc_poll_mtx);
2277 	sc->sc_tickle_due = true;
2278 	cv_signal(&sc->sc_poll_cv);
2279 	mutex_exit(&sc->sc_poll_mtx);
2280 	return 0;
2281 }
2282 
2283 void
ipmi_dotickle(struct ipmi_softc * sc)2284 ipmi_dotickle(struct ipmi_softc *sc)
2285 {
2286 	int			rc, len;
2287 
2288 	mutex_enter(&sc->sc_cmd_mtx);
2289 	/* tickle the watchdog */
2290 	if ((rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN,
2291 	    APP_RESET_WATCHDOG, 0, NULL)) == 0)
2292 		rc = ipmi_recvcmd(sc, 0, &len, NULL);
2293 	mutex_exit(&sc->sc_cmd_mtx);
2294 	if (rc != 0) {
2295 		printf("%s: watchdog tickle returned 0x%x\n",
2296 		    device_xname(sc->sc_dev), rc);
2297 	}
2298 }
2299 
2300 bool
ipmi_suspend(device_t dev,const pmf_qual_t * qual)2301 ipmi_suspend(device_t dev, const pmf_qual_t *qual)
2302 {
2303 	struct ipmi_softc *sc = device_private(dev);
2304 
2305 	/* Don't allow suspend if watchdog is armed */
2306 	if ((sc->sc_wdog.smw_mode & WDOG_MODE_MASK) != WDOG_MODE_DISARMED)
2307 		return false;
2308 	return true;
2309 }
2310