1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TreeTransform.h"
14 #include "UsedDeclVisitor.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/ExprOpenMP.h"
27 #include "clang/AST/OperationKinds.h"
28 #include "clang/AST/RecursiveASTVisitor.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/PartialDiagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Lex/LiteralSupport.h"
35 #include "clang/Lex/Preprocessor.h"
36 #include "clang/Sema/AnalysisBasedWarnings.h"
37 #include "clang/Sema/DeclSpec.h"
38 #include "clang/Sema/DelayedDiagnostic.h"
39 #include "clang/Sema/Designator.h"
40 #include "clang/Sema/Initialization.h"
41 #include "clang/Sema/Lookup.h"
42 #include "clang/Sema/Overload.h"
43 #include "clang/Sema/ParsedTemplate.h"
44 #include "clang/Sema/Scope.h"
45 #include "clang/Sema/ScopeInfo.h"
46 #include "clang/Sema/SemaFixItUtils.h"
47 #include "clang/Sema/SemaInternal.h"
48 #include "clang/Sema/Template.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/Support/ConvertUTF.h"
51 #include "llvm/Support/SaveAndRestore.h"
52 using namespace clang;
53 using namespace sema;
54 using llvm::RoundingMode;
55 
56 /// Determine whether the use of this declaration is valid, without
57 /// emitting diagnostics.
CanUseDecl(NamedDecl * D,bool TreatUnavailableAsInvalid)58 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
59   // See if this is an auto-typed variable whose initializer we are parsing.
60   if (ParsingInitForAutoVars.count(D))
61     return false;
62 
63   // See if this is a deleted function.
64   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
65     if (FD->isDeleted())
66       return false;
67 
68     // If the function has a deduced return type, and we can't deduce it,
69     // then we can't use it either.
70     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
71         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
72       return false;
73 
74     // See if this is an aligned allocation/deallocation function that is
75     // unavailable.
76     if (TreatUnavailableAsInvalid &&
77         isUnavailableAlignedAllocationFunction(*FD))
78       return false;
79   }
80 
81   // See if this function is unavailable.
82   if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
83       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
84     return false;
85 
86   return true;
87 }
88 
DiagnoseUnusedOfDecl(Sema & S,NamedDecl * D,SourceLocation Loc)89 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
90   // Warn if this is used but marked unused.
91   if (const auto *A = D->getAttr<UnusedAttr>()) {
92     // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
93     // should diagnose them.
94     if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
95         A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
96       const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
97       if (DC && !DC->hasAttr<UnusedAttr>())
98         S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
99     }
100   }
101 }
102 
103 /// Emit a note explaining that this function is deleted.
NoteDeletedFunction(FunctionDecl * Decl)104 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
105   assert(Decl && Decl->isDeleted());
106 
107   if (Decl->isDefaulted()) {
108     // If the method was explicitly defaulted, point at that declaration.
109     if (!Decl->isImplicit())
110       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
111 
112     // Try to diagnose why this special member function was implicitly
113     // deleted. This might fail, if that reason no longer applies.
114     DiagnoseDeletedDefaultedFunction(Decl);
115     return;
116   }
117 
118   auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
119   if (Ctor && Ctor->isInheritingConstructor())
120     return NoteDeletedInheritingConstructor(Ctor);
121 
122   Diag(Decl->getLocation(), diag::note_availability_specified_here)
123     << Decl << 1;
124 }
125 
126 /// Determine whether a FunctionDecl was ever declared with an
127 /// explicit storage class.
hasAnyExplicitStorageClass(const FunctionDecl * D)128 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
129   for (auto I : D->redecls()) {
130     if (I->getStorageClass() != SC_None)
131       return true;
132   }
133   return false;
134 }
135 
136 /// Check whether we're in an extern inline function and referring to a
137 /// variable or function with internal linkage (C11 6.7.4p3).
138 ///
139 /// This is only a warning because we used to silently accept this code, but
140 /// in many cases it will not behave correctly. This is not enabled in C++ mode
141 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
142 /// and so while there may still be user mistakes, most of the time we can't
143 /// prove that there are errors.
diagnoseUseOfInternalDeclInInlineFunction(Sema & S,const NamedDecl * D,SourceLocation Loc)144 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
145                                                       const NamedDecl *D,
146                                                       SourceLocation Loc) {
147   // This is disabled under C++; there are too many ways for this to fire in
148   // contexts where the warning is a false positive, or where it is technically
149   // correct but benign.
150   if (S.getLangOpts().CPlusPlus)
151     return;
152 
153   // Check if this is an inlined function or method.
154   FunctionDecl *Current = S.getCurFunctionDecl();
155   if (!Current)
156     return;
157   if (!Current->isInlined())
158     return;
159   if (!Current->isExternallyVisible())
160     return;
161 
162   // Check if the decl has internal linkage.
163   if (D->getFormalLinkage() != InternalLinkage)
164     return;
165 
166   // Downgrade from ExtWarn to Extension if
167   //  (1) the supposedly external inline function is in the main file,
168   //      and probably won't be included anywhere else.
169   //  (2) the thing we're referencing is a pure function.
170   //  (3) the thing we're referencing is another inline function.
171   // This last can give us false negatives, but it's better than warning on
172   // wrappers for simple C library functions.
173   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
174   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
175   if (!DowngradeWarning && UsedFn)
176     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
177 
178   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
179                                : diag::ext_internal_in_extern_inline)
180     << /*IsVar=*/!UsedFn << D;
181 
182   S.MaybeSuggestAddingStaticToDecl(Current);
183 
184   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
185       << D;
186 }
187 
MaybeSuggestAddingStaticToDecl(const FunctionDecl * Cur)188 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
189   const FunctionDecl *First = Cur->getFirstDecl();
190 
191   // Suggest "static" on the function, if possible.
192   if (!hasAnyExplicitStorageClass(First)) {
193     SourceLocation DeclBegin = First->getSourceRange().getBegin();
194     Diag(DeclBegin, diag::note_convert_inline_to_static)
195       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
196   }
197 }
198 
199 /// Determine whether the use of this declaration is valid, and
200 /// emit any corresponding diagnostics.
201 ///
202 /// This routine diagnoses various problems with referencing
203 /// declarations that can occur when using a declaration. For example,
204 /// it might warn if a deprecated or unavailable declaration is being
205 /// used, or produce an error (and return true) if a C++0x deleted
206 /// function is being used.
207 ///
208 /// \returns true if there was an error (this declaration cannot be
209 /// referenced), false otherwise.
210 ///
DiagnoseUseOfDecl(NamedDecl * D,ArrayRef<SourceLocation> Locs,const ObjCInterfaceDecl * UnknownObjCClass,bool ObjCPropertyAccess,bool AvoidPartialAvailabilityChecks,ObjCInterfaceDecl * ClassReceiver)211 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
212                              const ObjCInterfaceDecl *UnknownObjCClass,
213                              bool ObjCPropertyAccess,
214                              bool AvoidPartialAvailabilityChecks,
215                              ObjCInterfaceDecl *ClassReceiver) {
216   SourceLocation Loc = Locs.front();
217   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
218     // If there were any diagnostics suppressed by template argument deduction,
219     // emit them now.
220     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
221     if (Pos != SuppressedDiagnostics.end()) {
222       for (const PartialDiagnosticAt &Suppressed : Pos->second)
223         Diag(Suppressed.first, Suppressed.second);
224 
225       // Clear out the list of suppressed diagnostics, so that we don't emit
226       // them again for this specialization. However, we don't obsolete this
227       // entry from the table, because we want to avoid ever emitting these
228       // diagnostics again.
229       Pos->second.clear();
230     }
231 
232     // C++ [basic.start.main]p3:
233     //   The function 'main' shall not be used within a program.
234     if (cast<FunctionDecl>(D)->isMain())
235       Diag(Loc, diag::ext_main_used);
236 
237     diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
238   }
239 
240   // See if this is an auto-typed variable whose initializer we are parsing.
241   if (ParsingInitForAutoVars.count(D)) {
242     if (isa<BindingDecl>(D)) {
243       Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
244         << D->getDeclName();
245     } else {
246       Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
247         << D->getDeclName() << cast<VarDecl>(D)->getType();
248     }
249     return true;
250   }
251 
252   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
253     // See if this is a deleted function.
254     if (FD->isDeleted()) {
255       auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
256       if (Ctor && Ctor->isInheritingConstructor())
257         Diag(Loc, diag::err_deleted_inherited_ctor_use)
258             << Ctor->getParent()
259             << Ctor->getInheritedConstructor().getConstructor()->getParent();
260       else
261         Diag(Loc, diag::err_deleted_function_use);
262       NoteDeletedFunction(FD);
263       return true;
264     }
265 
266     // [expr.prim.id]p4
267     //   A program that refers explicitly or implicitly to a function with a
268     //   trailing requires-clause whose constraint-expression is not satisfied,
269     //   other than to declare it, is ill-formed. [...]
270     //
271     // See if this is a function with constraints that need to be satisfied.
272     // Check this before deducing the return type, as it might instantiate the
273     // definition.
274     if (FD->getTrailingRequiresClause()) {
275       ConstraintSatisfaction Satisfaction;
276       if (CheckFunctionConstraints(FD, Satisfaction, Loc))
277         // A diagnostic will have already been generated (non-constant
278         // constraint expression, for example)
279         return true;
280       if (!Satisfaction.IsSatisfied) {
281         Diag(Loc,
282              diag::err_reference_to_function_with_unsatisfied_constraints)
283             << D;
284         DiagnoseUnsatisfiedConstraint(Satisfaction);
285         return true;
286       }
287     }
288 
289     // If the function has a deduced return type, and we can't deduce it,
290     // then we can't use it either.
291     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
292         DeduceReturnType(FD, Loc))
293       return true;
294 
295     if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
296       return true;
297 
298     if (getLangOpts().SYCLIsDevice && !checkSYCLDeviceFunction(Loc, FD))
299       return true;
300   }
301 
302   if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
303     // Lambdas are only default-constructible or assignable in C++2a onwards.
304     if (MD->getParent()->isLambda() &&
305         ((isa<CXXConstructorDecl>(MD) &&
306           cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
307          MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
308       Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
309         << !isa<CXXConstructorDecl>(MD);
310     }
311   }
312 
313   auto getReferencedObjCProp = [](const NamedDecl *D) ->
314                                       const ObjCPropertyDecl * {
315     if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
316       return MD->findPropertyDecl();
317     return nullptr;
318   };
319   if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
320     if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
321       return true;
322   } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
323       return true;
324   }
325 
326   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
327   // Only the variables omp_in and omp_out are allowed in the combiner.
328   // Only the variables omp_priv and omp_orig are allowed in the
329   // initializer-clause.
330   auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
331   if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
332       isa<VarDecl>(D)) {
333     Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
334         << getCurFunction()->HasOMPDeclareReductionCombiner;
335     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
336     return true;
337   }
338 
339   // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
340   //  List-items in map clauses on this construct may only refer to the declared
341   //  variable var and entities that could be referenced by a procedure defined
342   //  at the same location
343   if (LangOpts.OpenMP && isa<VarDecl>(D) &&
344       !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
345     Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
346         << getOpenMPDeclareMapperVarName();
347     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
348     return true;
349   }
350 
351   DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
352                              AvoidPartialAvailabilityChecks, ClassReceiver);
353 
354   DiagnoseUnusedOfDecl(*this, D, Loc);
355 
356   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
357 
358   if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) {
359     if (auto *VD = dyn_cast<ValueDecl>(D))
360       checkDeviceDecl(VD, Loc);
361 
362     if (!Context.getTargetInfo().isTLSSupported())
363       if (const auto *VD = dyn_cast<VarDecl>(D))
364         if (VD->getTLSKind() != VarDecl::TLS_None)
365           targetDiag(*Locs.begin(), diag::err_thread_unsupported);
366   }
367 
368   if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
369       !isUnevaluatedContext()) {
370     // C++ [expr.prim.req.nested] p3
371     //   A local parameter shall only appear as an unevaluated operand
372     //   (Clause 8) within the constraint-expression.
373     Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
374         << D;
375     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
376     return true;
377   }
378 
379   return false;
380 }
381 
382 /// DiagnoseSentinelCalls - This routine checks whether a call or
383 /// message-send is to a declaration with the sentinel attribute, and
384 /// if so, it checks that the requirements of the sentinel are
385 /// satisfied.
DiagnoseSentinelCalls(NamedDecl * D,SourceLocation Loc,ArrayRef<Expr * > Args)386 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
387                                  ArrayRef<Expr *> Args) {
388   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
389   if (!attr)
390     return;
391 
392   // The number of formal parameters of the declaration.
393   unsigned numFormalParams;
394 
395   // The kind of declaration.  This is also an index into a %select in
396   // the diagnostic.
397   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
398 
399   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
400     numFormalParams = MD->param_size();
401     calleeType = CT_Method;
402   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
403     numFormalParams = FD->param_size();
404     calleeType = CT_Function;
405   } else if (isa<VarDecl>(D)) {
406     QualType type = cast<ValueDecl>(D)->getType();
407     const FunctionType *fn = nullptr;
408     if (const PointerType *ptr = type->getAs<PointerType>()) {
409       fn = ptr->getPointeeType()->getAs<FunctionType>();
410       if (!fn) return;
411       calleeType = CT_Function;
412     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
413       fn = ptr->getPointeeType()->castAs<FunctionType>();
414       calleeType = CT_Block;
415     } else {
416       return;
417     }
418 
419     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
420       numFormalParams = proto->getNumParams();
421     } else {
422       numFormalParams = 0;
423     }
424   } else {
425     return;
426   }
427 
428   // "nullPos" is the number of formal parameters at the end which
429   // effectively count as part of the variadic arguments.  This is
430   // useful if you would prefer to not have *any* formal parameters,
431   // but the language forces you to have at least one.
432   unsigned nullPos = attr->getNullPos();
433   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
434   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
435 
436   // The number of arguments which should follow the sentinel.
437   unsigned numArgsAfterSentinel = attr->getSentinel();
438 
439   // If there aren't enough arguments for all the formal parameters,
440   // the sentinel, and the args after the sentinel, complain.
441   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
442     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
443     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
444     return;
445   }
446 
447   // Otherwise, find the sentinel expression.
448   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
449   if (!sentinelExpr) return;
450   if (sentinelExpr->isValueDependent()) return;
451   if (Context.isSentinelNullExpr(sentinelExpr)) return;
452 
453   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
454   // or 'NULL' if those are actually defined in the context.  Only use
455   // 'nil' for ObjC methods, where it's much more likely that the
456   // variadic arguments form a list of object pointers.
457   SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
458   std::string NullValue;
459   if (calleeType == CT_Method && PP.isMacroDefined("nil"))
460     NullValue = "nil";
461   else if (getLangOpts().CPlusPlus11)
462     NullValue = "nullptr";
463   else if (PP.isMacroDefined("NULL"))
464     NullValue = "NULL";
465   else
466     NullValue = "(void*) 0";
467 
468   if (MissingNilLoc.isInvalid())
469     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
470   else
471     Diag(MissingNilLoc, diag::warn_missing_sentinel)
472       << int(calleeType)
473       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
474   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
475 }
476 
getExprRange(Expr * E) const477 SourceRange Sema::getExprRange(Expr *E) const {
478   return E ? E->getSourceRange() : SourceRange();
479 }
480 
481 //===----------------------------------------------------------------------===//
482 //  Standard Promotions and Conversions
483 //===----------------------------------------------------------------------===//
484 
485 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
DefaultFunctionArrayConversion(Expr * E,bool Diagnose)486 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
487   // Handle any placeholder expressions which made it here.
488   if (E->getType()->isPlaceholderType()) {
489     ExprResult result = CheckPlaceholderExpr(E);
490     if (result.isInvalid()) return ExprError();
491     E = result.get();
492   }
493 
494   QualType Ty = E->getType();
495   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
496 
497   if (Ty->isFunctionType()) {
498     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
499       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
500         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
501           return ExprError();
502 
503     E = ImpCastExprToType(E, Context.getPointerType(Ty),
504                           CK_FunctionToPointerDecay).get();
505   } else if (Ty->isArrayType()) {
506     // In C90 mode, arrays only promote to pointers if the array expression is
507     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
508     // type 'array of type' is converted to an expression that has type 'pointer
509     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
510     // that has type 'array of type' ...".  The relevant change is "an lvalue"
511     // (C90) to "an expression" (C99).
512     //
513     // C++ 4.2p1:
514     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
515     // T" can be converted to an rvalue of type "pointer to T".
516     //
517     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
518       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
519                             CK_ArrayToPointerDecay).get();
520   }
521   return E;
522 }
523 
CheckForNullPointerDereference(Sema & S,Expr * E)524 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
525   // Check to see if we are dereferencing a null pointer.  If so,
526   // and if not volatile-qualified, this is undefined behavior that the
527   // optimizer will delete, so warn about it.  People sometimes try to use this
528   // to get a deterministic trap and are surprised by clang's behavior.  This
529   // only handles the pattern "*null", which is a very syntactic check.
530   const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
531   if (UO && UO->getOpcode() == UO_Deref &&
532       UO->getSubExpr()->getType()->isPointerType()) {
533     const LangAS AS =
534         UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
535     if ((!isTargetAddressSpace(AS) ||
536          (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
537         UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
538             S.Context, Expr::NPC_ValueDependentIsNotNull) &&
539         !UO->getType().isVolatileQualified()) {
540       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
541                             S.PDiag(diag::warn_indirection_through_null)
542                                 << UO->getSubExpr()->getSourceRange());
543       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
544                             S.PDiag(diag::note_indirection_through_null));
545     }
546   }
547 }
548 
DiagnoseDirectIsaAccess(Sema & S,const ObjCIvarRefExpr * OIRE,SourceLocation AssignLoc,const Expr * RHS)549 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
550                                     SourceLocation AssignLoc,
551                                     const Expr* RHS) {
552   const ObjCIvarDecl *IV = OIRE->getDecl();
553   if (!IV)
554     return;
555 
556   DeclarationName MemberName = IV->getDeclName();
557   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
558   if (!Member || !Member->isStr("isa"))
559     return;
560 
561   const Expr *Base = OIRE->getBase();
562   QualType BaseType = Base->getType();
563   if (OIRE->isArrow())
564     BaseType = BaseType->getPointeeType();
565   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
566     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
567       ObjCInterfaceDecl *ClassDeclared = nullptr;
568       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
569       if (!ClassDeclared->getSuperClass()
570           && (*ClassDeclared->ivar_begin()) == IV) {
571         if (RHS) {
572           NamedDecl *ObjectSetClass =
573             S.LookupSingleName(S.TUScope,
574                                &S.Context.Idents.get("object_setClass"),
575                                SourceLocation(), S.LookupOrdinaryName);
576           if (ObjectSetClass) {
577             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
578             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
579                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
580                                               "object_setClass(")
581                 << FixItHint::CreateReplacement(
582                        SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
583                 << FixItHint::CreateInsertion(RHSLocEnd, ")");
584           }
585           else
586             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
587         } else {
588           NamedDecl *ObjectGetClass =
589             S.LookupSingleName(S.TUScope,
590                                &S.Context.Idents.get("object_getClass"),
591                                SourceLocation(), S.LookupOrdinaryName);
592           if (ObjectGetClass)
593             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
594                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
595                                               "object_getClass(")
596                 << FixItHint::CreateReplacement(
597                        SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
598           else
599             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
600         }
601         S.Diag(IV->getLocation(), diag::note_ivar_decl);
602       }
603     }
604 }
605 
DefaultLvalueConversion(Expr * E)606 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
607   // Handle any placeholder expressions which made it here.
608   if (E->getType()->isPlaceholderType()) {
609     ExprResult result = CheckPlaceholderExpr(E);
610     if (result.isInvalid()) return ExprError();
611     E = result.get();
612   }
613 
614   // C++ [conv.lval]p1:
615   //   A glvalue of a non-function, non-array type T can be
616   //   converted to a prvalue.
617   if (!E->isGLValue()) return E;
618 
619   QualType T = E->getType();
620   assert(!T.isNull() && "r-value conversion on typeless expression?");
621 
622   // lvalue-to-rvalue conversion cannot be applied to function or array types.
623   if (T->isFunctionType() || T->isArrayType())
624     return E;
625 
626   // We don't want to throw lvalue-to-rvalue casts on top of
627   // expressions of certain types in C++.
628   if (getLangOpts().CPlusPlus &&
629       (E->getType() == Context.OverloadTy ||
630        T->isDependentType() ||
631        T->isRecordType()))
632     return E;
633 
634   // The C standard is actually really unclear on this point, and
635   // DR106 tells us what the result should be but not why.  It's
636   // generally best to say that void types just doesn't undergo
637   // lvalue-to-rvalue at all.  Note that expressions of unqualified
638   // 'void' type are never l-values, but qualified void can be.
639   if (T->isVoidType())
640     return E;
641 
642   // OpenCL usually rejects direct accesses to values of 'half' type.
643   if (getLangOpts().OpenCL &&
644       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
645       T->isHalfType()) {
646     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
647       << 0 << T;
648     return ExprError();
649   }
650 
651   CheckForNullPointerDereference(*this, E);
652   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
653     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
654                                      &Context.Idents.get("object_getClass"),
655                                      SourceLocation(), LookupOrdinaryName);
656     if (ObjectGetClass)
657       Diag(E->getExprLoc(), diag::warn_objc_isa_use)
658           << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
659           << FixItHint::CreateReplacement(
660                  SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
661     else
662       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
663   }
664   else if (const ObjCIvarRefExpr *OIRE =
665             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
666     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
667 
668   // C++ [conv.lval]p1:
669   //   [...] If T is a non-class type, the type of the prvalue is the
670   //   cv-unqualified version of T. Otherwise, the type of the
671   //   rvalue is T.
672   //
673   // C99 6.3.2.1p2:
674   //   If the lvalue has qualified type, the value has the unqualified
675   //   version of the type of the lvalue; otherwise, the value has the
676   //   type of the lvalue.
677   if (T.hasQualifiers())
678     T = T.getUnqualifiedType();
679 
680   // Under the MS ABI, lock down the inheritance model now.
681   if (T->isMemberPointerType() &&
682       Context.getTargetInfo().getCXXABI().isMicrosoft())
683     (void)isCompleteType(E->getExprLoc(), T);
684 
685   ExprResult Res = CheckLValueToRValueConversionOperand(E);
686   if (Res.isInvalid())
687     return Res;
688   E = Res.get();
689 
690   // Loading a __weak object implicitly retains the value, so we need a cleanup to
691   // balance that.
692   if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
693     Cleanup.setExprNeedsCleanups(true);
694 
695   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
696     Cleanup.setExprNeedsCleanups(true);
697 
698   // C++ [conv.lval]p3:
699   //   If T is cv std::nullptr_t, the result is a null pointer constant.
700   CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
701   Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_RValue,
702                                  CurFPFeatureOverrides());
703 
704   // C11 6.3.2.1p2:
705   //   ... if the lvalue has atomic type, the value has the non-atomic version
706   //   of the type of the lvalue ...
707   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
708     T = Atomic->getValueType().getUnqualifiedType();
709     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
710                                    nullptr, VK_RValue, FPOptionsOverride());
711   }
712 
713   return Res;
714 }
715 
DefaultFunctionArrayLvalueConversion(Expr * E,bool Diagnose)716 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
717   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
718   if (Res.isInvalid())
719     return ExprError();
720   Res = DefaultLvalueConversion(Res.get());
721   if (Res.isInvalid())
722     return ExprError();
723   return Res;
724 }
725 
726 /// CallExprUnaryConversions - a special case of an unary conversion
727 /// performed on a function designator of a call expression.
CallExprUnaryConversions(Expr * E)728 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
729   QualType Ty = E->getType();
730   ExprResult Res = E;
731   // Only do implicit cast for a function type, but not for a pointer
732   // to function type.
733   if (Ty->isFunctionType()) {
734     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
735                             CK_FunctionToPointerDecay);
736     if (Res.isInvalid())
737       return ExprError();
738   }
739   Res = DefaultLvalueConversion(Res.get());
740   if (Res.isInvalid())
741     return ExprError();
742   return Res.get();
743 }
744 
745 /// UsualUnaryConversions - Performs various conversions that are common to most
746 /// operators (C99 6.3). The conversions of array and function types are
747 /// sometimes suppressed. For example, the array->pointer conversion doesn't
748 /// apply if the array is an argument to the sizeof or address (&) operators.
749 /// In these instances, this routine should *not* be called.
UsualUnaryConversions(Expr * E)750 ExprResult Sema::UsualUnaryConversions(Expr *E) {
751   // First, convert to an r-value.
752   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
753   if (Res.isInvalid())
754     return ExprError();
755   E = Res.get();
756 
757   QualType Ty = E->getType();
758   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
759 
760   // Half FP have to be promoted to float unless it is natively supported
761   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
762     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
763 
764   // Try to perform integral promotions if the object has a theoretically
765   // promotable type.
766   if (Ty->isIntegralOrUnscopedEnumerationType()) {
767     // C99 6.3.1.1p2:
768     //
769     //   The following may be used in an expression wherever an int or
770     //   unsigned int may be used:
771     //     - an object or expression with an integer type whose integer
772     //       conversion rank is less than or equal to the rank of int
773     //       and unsigned int.
774     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
775     //
776     //   If an int can represent all values of the original type, the
777     //   value is converted to an int; otherwise, it is converted to an
778     //   unsigned int. These are called the integer promotions. All
779     //   other types are unchanged by the integer promotions.
780 
781     QualType PTy = Context.isPromotableBitField(E);
782     if (!PTy.isNull()) {
783       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
784       return E;
785     }
786     if (Ty->isPromotableIntegerType()) {
787       QualType PT = Context.getPromotedIntegerType(Ty);
788       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
789       return E;
790     }
791   }
792   return E;
793 }
794 
795 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
796 /// do not have a prototype. Arguments that have type float or __fp16
797 /// are promoted to double. All other argument types are converted by
798 /// UsualUnaryConversions().
DefaultArgumentPromotion(Expr * E)799 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
800   QualType Ty = E->getType();
801   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
802 
803   ExprResult Res = UsualUnaryConversions(E);
804   if (Res.isInvalid())
805     return ExprError();
806   E = Res.get();
807 
808   // If this is a 'float'  or '__fp16' (CVR qualified or typedef)
809   // promote to double.
810   // Note that default argument promotion applies only to float (and
811   // half/fp16); it does not apply to _Float16.
812   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
813   if (BTy && (BTy->getKind() == BuiltinType::Half ||
814               BTy->getKind() == BuiltinType::Float)) {
815     if (getLangOpts().OpenCL &&
816         !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
817       if (BTy->getKind() == BuiltinType::Half) {
818         E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
819       }
820     } else {
821       E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
822     }
823   }
824   if (BTy &&
825       getLangOpts().getExtendIntArgs() ==
826           LangOptions::ExtendArgsKind::ExtendTo64 &&
827       Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
828       Context.getTypeSizeInChars(BTy) <
829           Context.getTypeSizeInChars(Context.LongLongTy)) {
830     E = (Ty->isUnsignedIntegerType())
831             ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
832                   .get()
833             : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
834     assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
835            "Unexpected typesize for LongLongTy");
836   }
837 
838   // C++ performs lvalue-to-rvalue conversion as a default argument
839   // promotion, even on class types, but note:
840   //   C++11 [conv.lval]p2:
841   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
842   //     operand or a subexpression thereof the value contained in the
843   //     referenced object is not accessed. Otherwise, if the glvalue
844   //     has a class type, the conversion copy-initializes a temporary
845   //     of type T from the glvalue and the result of the conversion
846   //     is a prvalue for the temporary.
847   // FIXME: add some way to gate this entire thing for correctness in
848   // potentially potentially evaluated contexts.
849   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
850     ExprResult Temp = PerformCopyInitialization(
851                        InitializedEntity::InitializeTemporary(E->getType()),
852                                                 E->getExprLoc(), E);
853     if (Temp.isInvalid())
854       return ExprError();
855     E = Temp.get();
856   }
857 
858   return E;
859 }
860 
861 /// Determine the degree of POD-ness for an expression.
862 /// Incomplete types are considered POD, since this check can be performed
863 /// when we're in an unevaluated context.
isValidVarArgType(const QualType & Ty)864 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
865   if (Ty->isIncompleteType()) {
866     // C++11 [expr.call]p7:
867     //   After these conversions, if the argument does not have arithmetic,
868     //   enumeration, pointer, pointer to member, or class type, the program
869     //   is ill-formed.
870     //
871     // Since we've already performed array-to-pointer and function-to-pointer
872     // decay, the only such type in C++ is cv void. This also handles
873     // initializer lists as variadic arguments.
874     if (Ty->isVoidType())
875       return VAK_Invalid;
876 
877     if (Ty->isObjCObjectType())
878       return VAK_Invalid;
879     return VAK_Valid;
880   }
881 
882   if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
883     return VAK_Invalid;
884 
885   if (Ty.isCXX98PODType(Context))
886     return VAK_Valid;
887 
888   // C++11 [expr.call]p7:
889   //   Passing a potentially-evaluated argument of class type (Clause 9)
890   //   having a non-trivial copy constructor, a non-trivial move constructor,
891   //   or a non-trivial destructor, with no corresponding parameter,
892   //   is conditionally-supported with implementation-defined semantics.
893   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
894     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
895       if (!Record->hasNonTrivialCopyConstructor() &&
896           !Record->hasNonTrivialMoveConstructor() &&
897           !Record->hasNonTrivialDestructor())
898         return VAK_ValidInCXX11;
899 
900   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
901     return VAK_Valid;
902 
903   if (Ty->isObjCObjectType())
904     return VAK_Invalid;
905 
906   if (getLangOpts().MSVCCompat)
907     return VAK_MSVCUndefined;
908 
909   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
910   // permitted to reject them. We should consider doing so.
911   return VAK_Undefined;
912 }
913 
checkVariadicArgument(const Expr * E,VariadicCallType CT)914 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
915   // Don't allow one to pass an Objective-C interface to a vararg.
916   const QualType &Ty = E->getType();
917   VarArgKind VAK = isValidVarArgType(Ty);
918 
919   // Complain about passing non-POD types through varargs.
920   switch (VAK) {
921   case VAK_ValidInCXX11:
922     DiagRuntimeBehavior(
923         E->getBeginLoc(), nullptr,
924         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
925     LLVM_FALLTHROUGH;
926   case VAK_Valid:
927     if (Ty->isRecordType()) {
928       // This is unlikely to be what the user intended. If the class has a
929       // 'c_str' member function, the user probably meant to call that.
930       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
931                           PDiag(diag::warn_pass_class_arg_to_vararg)
932                               << Ty << CT << hasCStrMethod(E) << ".c_str()");
933     }
934     break;
935 
936   case VAK_Undefined:
937   case VAK_MSVCUndefined:
938     DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
939                         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
940                             << getLangOpts().CPlusPlus11 << Ty << CT);
941     break;
942 
943   case VAK_Invalid:
944     if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
945       Diag(E->getBeginLoc(),
946            diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
947           << Ty << CT;
948     else if (Ty->isObjCObjectType())
949       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
950                           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
951                               << Ty << CT);
952     else
953       Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
954           << isa<InitListExpr>(E) << Ty << CT;
955     break;
956   }
957 }
958 
959 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
960 /// will create a trap if the resulting type is not a POD type.
DefaultVariadicArgumentPromotion(Expr * E,VariadicCallType CT,FunctionDecl * FDecl)961 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
962                                                   FunctionDecl *FDecl) {
963   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
964     // Strip the unbridged-cast placeholder expression off, if applicable.
965     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
966         (CT == VariadicMethod ||
967          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
968       E = stripARCUnbridgedCast(E);
969 
970     // Otherwise, do normal placeholder checking.
971     } else {
972       ExprResult ExprRes = CheckPlaceholderExpr(E);
973       if (ExprRes.isInvalid())
974         return ExprError();
975       E = ExprRes.get();
976     }
977   }
978 
979   ExprResult ExprRes = DefaultArgumentPromotion(E);
980   if (ExprRes.isInvalid())
981     return ExprError();
982 
983   // Copy blocks to the heap.
984   if (ExprRes.get()->getType()->isBlockPointerType())
985     maybeExtendBlockObject(ExprRes);
986 
987   E = ExprRes.get();
988 
989   // Diagnostics regarding non-POD argument types are
990   // emitted along with format string checking in Sema::CheckFunctionCall().
991   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
992     // Turn this into a trap.
993     CXXScopeSpec SS;
994     SourceLocation TemplateKWLoc;
995     UnqualifiedId Name;
996     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
997                        E->getBeginLoc());
998     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
999                                           /*HasTrailingLParen=*/true,
1000                                           /*IsAddressOfOperand=*/false);
1001     if (TrapFn.isInvalid())
1002       return ExprError();
1003 
1004     ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
1005                                     None, E->getEndLoc());
1006     if (Call.isInvalid())
1007       return ExprError();
1008 
1009     ExprResult Comma =
1010         ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1011     if (Comma.isInvalid())
1012       return ExprError();
1013     return Comma.get();
1014   }
1015 
1016   if (!getLangOpts().CPlusPlus &&
1017       RequireCompleteType(E->getExprLoc(), E->getType(),
1018                           diag::err_call_incomplete_argument))
1019     return ExprError();
1020 
1021   return E;
1022 }
1023 
1024 /// Converts an integer to complex float type.  Helper function of
1025 /// UsualArithmeticConversions()
1026 ///
1027 /// \return false if the integer expression is an integer type and is
1028 /// successfully converted to the complex type.
handleIntegerToComplexFloatConversion(Sema & S,ExprResult & IntExpr,ExprResult & ComplexExpr,QualType IntTy,QualType ComplexTy,bool SkipCast)1029 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1030                                                   ExprResult &ComplexExpr,
1031                                                   QualType IntTy,
1032                                                   QualType ComplexTy,
1033                                                   bool SkipCast) {
1034   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1035   if (SkipCast) return false;
1036   if (IntTy->isIntegerType()) {
1037     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
1038     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1039     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1040                                   CK_FloatingRealToComplex);
1041   } else {
1042     assert(IntTy->isComplexIntegerType());
1043     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1044                                   CK_IntegralComplexToFloatingComplex);
1045   }
1046   return false;
1047 }
1048 
1049 /// Handle arithmetic conversion with complex types.  Helper function of
1050 /// UsualArithmeticConversions()
handleComplexFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1051 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
1052                                              ExprResult &RHS, QualType LHSType,
1053                                              QualType RHSType,
1054                                              bool IsCompAssign) {
1055   // if we have an integer operand, the result is the complex type.
1056   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1057                                              /*skipCast*/false))
1058     return LHSType;
1059   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1060                                              /*skipCast*/IsCompAssign))
1061     return RHSType;
1062 
1063   // This handles complex/complex, complex/float, or float/complex.
1064   // When both operands are complex, the shorter operand is converted to the
1065   // type of the longer, and that is the type of the result. This corresponds
1066   // to what is done when combining two real floating-point operands.
1067   // The fun begins when size promotion occur across type domains.
1068   // From H&S 6.3.4: When one operand is complex and the other is a real
1069   // floating-point type, the less precise type is converted, within it's
1070   // real or complex domain, to the precision of the other type. For example,
1071   // when combining a "long double" with a "double _Complex", the
1072   // "double _Complex" is promoted to "long double _Complex".
1073 
1074   // Compute the rank of the two types, regardless of whether they are complex.
1075   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1076 
1077   auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
1078   auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
1079   QualType LHSElementType =
1080       LHSComplexType ? LHSComplexType->getElementType() : LHSType;
1081   QualType RHSElementType =
1082       RHSComplexType ? RHSComplexType->getElementType() : RHSType;
1083 
1084   QualType ResultType = S.Context.getComplexType(LHSElementType);
1085   if (Order < 0) {
1086     // Promote the precision of the LHS if not an assignment.
1087     ResultType = S.Context.getComplexType(RHSElementType);
1088     if (!IsCompAssign) {
1089       if (LHSComplexType)
1090         LHS =
1091             S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
1092       else
1093         LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
1094     }
1095   } else if (Order > 0) {
1096     // Promote the precision of the RHS.
1097     if (RHSComplexType)
1098       RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
1099     else
1100       RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
1101   }
1102   return ResultType;
1103 }
1104 
1105 /// Handle arithmetic conversion from integer to float.  Helper function
1106 /// of UsualArithmeticConversions()
handleIntToFloatConversion(Sema & S,ExprResult & FloatExpr,ExprResult & IntExpr,QualType FloatTy,QualType IntTy,bool ConvertFloat,bool ConvertInt)1107 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1108                                            ExprResult &IntExpr,
1109                                            QualType FloatTy, QualType IntTy,
1110                                            bool ConvertFloat, bool ConvertInt) {
1111   if (IntTy->isIntegerType()) {
1112     if (ConvertInt)
1113       // Convert intExpr to the lhs floating point type.
1114       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1115                                     CK_IntegralToFloating);
1116     return FloatTy;
1117   }
1118 
1119   // Convert both sides to the appropriate complex float.
1120   assert(IntTy->isComplexIntegerType());
1121   QualType result = S.Context.getComplexType(FloatTy);
1122 
1123   // _Complex int -> _Complex float
1124   if (ConvertInt)
1125     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1126                                   CK_IntegralComplexToFloatingComplex);
1127 
1128   // float -> _Complex float
1129   if (ConvertFloat)
1130     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1131                                     CK_FloatingRealToComplex);
1132 
1133   return result;
1134 }
1135 
1136 /// Handle arithmethic conversion with floating point types.  Helper
1137 /// function of UsualArithmeticConversions()
handleFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1138 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1139                                       ExprResult &RHS, QualType LHSType,
1140                                       QualType RHSType, bool IsCompAssign) {
1141   bool LHSFloat = LHSType->isRealFloatingType();
1142   bool RHSFloat = RHSType->isRealFloatingType();
1143 
1144   // N1169 4.1.4: If one of the operands has a floating type and the other
1145   //              operand has a fixed-point type, the fixed-point operand
1146   //              is converted to the floating type [...]
1147   if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1148     if (LHSFloat)
1149       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1150     else if (!IsCompAssign)
1151       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1152     return LHSFloat ? LHSType : RHSType;
1153   }
1154 
1155   // If we have two real floating types, convert the smaller operand
1156   // to the bigger result.
1157   if (LHSFloat && RHSFloat) {
1158     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1159     if (order > 0) {
1160       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1161       return LHSType;
1162     }
1163 
1164     assert(order < 0 && "illegal float comparison");
1165     if (!IsCompAssign)
1166       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1167     return RHSType;
1168   }
1169 
1170   if (LHSFloat) {
1171     // Half FP has to be promoted to float unless it is natively supported
1172     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1173       LHSType = S.Context.FloatTy;
1174 
1175     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1176                                       /*ConvertFloat=*/!IsCompAssign,
1177                                       /*ConvertInt=*/ true);
1178   }
1179   assert(RHSFloat);
1180   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1181                                     /*ConvertFloat=*/ true,
1182                                     /*ConvertInt=*/!IsCompAssign);
1183 }
1184 
1185 /// Diagnose attempts to convert between __float128 and long double if
1186 /// there is no support for such conversion. Helper function of
1187 /// UsualArithmeticConversions().
unsupportedTypeConversion(const Sema & S,QualType LHSType,QualType RHSType)1188 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1189                                       QualType RHSType) {
1190   /*  No issue converting if at least one of the types is not a floating point
1191       type or the two types have the same rank.
1192   */
1193   if (!LHSType->isFloatingType() || !RHSType->isFloatingType() ||
1194       S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0)
1195     return false;
1196 
1197   assert(LHSType->isFloatingType() && RHSType->isFloatingType() &&
1198          "The remaining types must be floating point types.");
1199 
1200   auto *LHSComplex = LHSType->getAs<ComplexType>();
1201   auto *RHSComplex = RHSType->getAs<ComplexType>();
1202 
1203   QualType LHSElemType = LHSComplex ?
1204     LHSComplex->getElementType() : LHSType;
1205   QualType RHSElemType = RHSComplex ?
1206     RHSComplex->getElementType() : RHSType;
1207 
1208   // No issue if the two types have the same representation
1209   if (&S.Context.getFloatTypeSemantics(LHSElemType) ==
1210       &S.Context.getFloatTypeSemantics(RHSElemType))
1211     return false;
1212 
1213   bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty &&
1214                                 RHSElemType == S.Context.LongDoubleTy);
1215   Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy &&
1216                             RHSElemType == S.Context.Float128Ty);
1217 
1218   // We've handled the situation where __float128 and long double have the same
1219   // representation. We allow all conversions for all possible long double types
1220   // except PPC's double double.
1221   return Float128AndLongDouble &&
1222     (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1223      &llvm::APFloat::PPCDoubleDouble());
1224 }
1225 
1226 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1227 
1228 namespace {
1229 /// These helper callbacks are placed in an anonymous namespace to
1230 /// permit their use as function template parameters.
doIntegralCast(Sema & S,Expr * op,QualType toType)1231 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1232   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1233 }
1234 
doComplexIntegralCast(Sema & S,Expr * op,QualType toType)1235 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1236   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1237                              CK_IntegralComplexCast);
1238 }
1239 }
1240 
1241 /// Handle integer arithmetic conversions.  Helper function of
1242 /// UsualArithmeticConversions()
1243 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
handleIntegerConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1244 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1245                                         ExprResult &RHS, QualType LHSType,
1246                                         QualType RHSType, bool IsCompAssign) {
1247   // The rules for this case are in C99 6.3.1.8
1248   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1249   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1250   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1251   if (LHSSigned == RHSSigned) {
1252     // Same signedness; use the higher-ranked type
1253     if (order >= 0) {
1254       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1255       return LHSType;
1256     } else if (!IsCompAssign)
1257       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1258     return RHSType;
1259   } else if (order != (LHSSigned ? 1 : -1)) {
1260     // The unsigned type has greater than or equal rank to the
1261     // signed type, so use the unsigned type
1262     if (RHSSigned) {
1263       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1264       return LHSType;
1265     } else if (!IsCompAssign)
1266       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1267     return RHSType;
1268   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1269     // The two types are different widths; if we are here, that
1270     // means the signed type is larger than the unsigned type, so
1271     // use the signed type.
1272     if (LHSSigned) {
1273       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1274       return LHSType;
1275     } else if (!IsCompAssign)
1276       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1277     return RHSType;
1278   } else {
1279     // The signed type is higher-ranked than the unsigned type,
1280     // but isn't actually any bigger (like unsigned int and long
1281     // on most 32-bit systems).  Use the unsigned type corresponding
1282     // to the signed type.
1283     QualType result =
1284       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1285     RHS = (*doRHSCast)(S, RHS.get(), result);
1286     if (!IsCompAssign)
1287       LHS = (*doLHSCast)(S, LHS.get(), result);
1288     return result;
1289   }
1290 }
1291 
1292 /// Handle conversions with GCC complex int extension.  Helper function
1293 /// of UsualArithmeticConversions()
handleComplexIntConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1294 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1295                                            ExprResult &RHS, QualType LHSType,
1296                                            QualType RHSType,
1297                                            bool IsCompAssign) {
1298   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1299   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1300 
1301   if (LHSComplexInt && RHSComplexInt) {
1302     QualType LHSEltType = LHSComplexInt->getElementType();
1303     QualType RHSEltType = RHSComplexInt->getElementType();
1304     QualType ScalarType =
1305       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1306         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1307 
1308     return S.Context.getComplexType(ScalarType);
1309   }
1310 
1311   if (LHSComplexInt) {
1312     QualType LHSEltType = LHSComplexInt->getElementType();
1313     QualType ScalarType =
1314       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1315         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1316     QualType ComplexType = S.Context.getComplexType(ScalarType);
1317     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1318                               CK_IntegralRealToComplex);
1319 
1320     return ComplexType;
1321   }
1322 
1323   assert(RHSComplexInt);
1324 
1325   QualType RHSEltType = RHSComplexInt->getElementType();
1326   QualType ScalarType =
1327     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1328       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1329   QualType ComplexType = S.Context.getComplexType(ScalarType);
1330 
1331   if (!IsCompAssign)
1332     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1333                               CK_IntegralRealToComplex);
1334   return ComplexType;
1335 }
1336 
1337 /// Return the rank of a given fixed point or integer type. The value itself
1338 /// doesn't matter, but the values must be increasing with proper increasing
1339 /// rank as described in N1169 4.1.1.
GetFixedPointRank(QualType Ty)1340 static unsigned GetFixedPointRank(QualType Ty) {
1341   const auto *BTy = Ty->getAs<BuiltinType>();
1342   assert(BTy && "Expected a builtin type.");
1343 
1344   switch (BTy->getKind()) {
1345   case BuiltinType::ShortFract:
1346   case BuiltinType::UShortFract:
1347   case BuiltinType::SatShortFract:
1348   case BuiltinType::SatUShortFract:
1349     return 1;
1350   case BuiltinType::Fract:
1351   case BuiltinType::UFract:
1352   case BuiltinType::SatFract:
1353   case BuiltinType::SatUFract:
1354     return 2;
1355   case BuiltinType::LongFract:
1356   case BuiltinType::ULongFract:
1357   case BuiltinType::SatLongFract:
1358   case BuiltinType::SatULongFract:
1359     return 3;
1360   case BuiltinType::ShortAccum:
1361   case BuiltinType::UShortAccum:
1362   case BuiltinType::SatShortAccum:
1363   case BuiltinType::SatUShortAccum:
1364     return 4;
1365   case BuiltinType::Accum:
1366   case BuiltinType::UAccum:
1367   case BuiltinType::SatAccum:
1368   case BuiltinType::SatUAccum:
1369     return 5;
1370   case BuiltinType::LongAccum:
1371   case BuiltinType::ULongAccum:
1372   case BuiltinType::SatLongAccum:
1373   case BuiltinType::SatULongAccum:
1374     return 6;
1375   default:
1376     if (BTy->isInteger())
1377       return 0;
1378     llvm_unreachable("Unexpected fixed point or integer type");
1379   }
1380 }
1381 
1382 /// handleFixedPointConversion - Fixed point operations between fixed
1383 /// point types and integers or other fixed point types do not fall under
1384 /// usual arithmetic conversion since these conversions could result in loss
1385 /// of precsision (N1169 4.1.4). These operations should be calculated with
1386 /// the full precision of their result type (N1169 4.1.6.2.1).
handleFixedPointConversion(Sema & S,QualType LHSTy,QualType RHSTy)1387 static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1388                                            QualType RHSTy) {
1389   assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1390          "Expected at least one of the operands to be a fixed point type");
1391   assert((LHSTy->isFixedPointOrIntegerType() ||
1392           RHSTy->isFixedPointOrIntegerType()) &&
1393          "Special fixed point arithmetic operation conversions are only "
1394          "applied to ints or other fixed point types");
1395 
1396   // If one operand has signed fixed-point type and the other operand has
1397   // unsigned fixed-point type, then the unsigned fixed-point operand is
1398   // converted to its corresponding signed fixed-point type and the resulting
1399   // type is the type of the converted operand.
1400   if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1401     LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1402   else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1403     RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1404 
1405   // The result type is the type with the highest rank, whereby a fixed-point
1406   // conversion rank is always greater than an integer conversion rank; if the
1407   // type of either of the operands is a saturating fixedpoint type, the result
1408   // type shall be the saturating fixed-point type corresponding to the type
1409   // with the highest rank; the resulting value is converted (taking into
1410   // account rounding and overflow) to the precision of the resulting type.
1411   // Same ranks between signed and unsigned types are resolved earlier, so both
1412   // types are either signed or both unsigned at this point.
1413   unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1414   unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1415 
1416   QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1417 
1418   if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1419     ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1420 
1421   return ResultTy;
1422 }
1423 
1424 /// Check that the usual arithmetic conversions can be performed on this pair of
1425 /// expressions that might be of enumeration type.
checkEnumArithmeticConversions(Sema & S,Expr * LHS,Expr * RHS,SourceLocation Loc,Sema::ArithConvKind ACK)1426 static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1427                                            SourceLocation Loc,
1428                                            Sema::ArithConvKind ACK) {
1429   // C++2a [expr.arith.conv]p1:
1430   //   If one operand is of enumeration type and the other operand is of a
1431   //   different enumeration type or a floating-point type, this behavior is
1432   //   deprecated ([depr.arith.conv.enum]).
1433   //
1434   // Warn on this in all language modes. Produce a deprecation warning in C++20.
1435   // Eventually we will presumably reject these cases (in C++23 onwards?).
1436   QualType L = LHS->getType(), R = RHS->getType();
1437   bool LEnum = L->isUnscopedEnumerationType(),
1438        REnum = R->isUnscopedEnumerationType();
1439   bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1440   if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1441       (REnum && L->isFloatingType())) {
1442     S.Diag(Loc, S.getLangOpts().CPlusPlus20
1443                     ? diag::warn_arith_conv_enum_float_cxx20
1444                     : diag::warn_arith_conv_enum_float)
1445         << LHS->getSourceRange() << RHS->getSourceRange()
1446         << (int)ACK << LEnum << L << R;
1447   } else if (!IsCompAssign && LEnum && REnum &&
1448              !S.Context.hasSameUnqualifiedType(L, R)) {
1449     unsigned DiagID;
1450     if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1451         !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1452       // If either enumeration type is unnamed, it's less likely that the
1453       // user cares about this, but this situation is still deprecated in
1454       // C++2a. Use a different warning group.
1455       DiagID = S.getLangOpts().CPlusPlus20
1456                     ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1457                     : diag::warn_arith_conv_mixed_anon_enum_types;
1458     } else if (ACK == Sema::ACK_Conditional) {
1459       // Conditional expressions are separated out because they have
1460       // historically had a different warning flag.
1461       DiagID = S.getLangOpts().CPlusPlus20
1462                    ? diag::warn_conditional_mixed_enum_types_cxx20
1463                    : diag::warn_conditional_mixed_enum_types;
1464     } else if (ACK == Sema::ACK_Comparison) {
1465       // Comparison expressions are separated out because they have
1466       // historically had a different warning flag.
1467       DiagID = S.getLangOpts().CPlusPlus20
1468                    ? diag::warn_comparison_mixed_enum_types_cxx20
1469                    : diag::warn_comparison_mixed_enum_types;
1470     } else {
1471       DiagID = S.getLangOpts().CPlusPlus20
1472                    ? diag::warn_arith_conv_mixed_enum_types_cxx20
1473                    : diag::warn_arith_conv_mixed_enum_types;
1474     }
1475     S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1476                         << (int)ACK << L << R;
1477   }
1478 }
1479 
1480 /// UsualArithmeticConversions - Performs various conversions that are common to
1481 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1482 /// routine returns the first non-arithmetic type found. The client is
1483 /// responsible for emitting appropriate error diagnostics.
UsualArithmeticConversions(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,ArithConvKind ACK)1484 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1485                                           SourceLocation Loc,
1486                                           ArithConvKind ACK) {
1487   checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1488 
1489   if (ACK != ACK_CompAssign) {
1490     LHS = UsualUnaryConversions(LHS.get());
1491     if (LHS.isInvalid())
1492       return QualType();
1493   }
1494 
1495   RHS = UsualUnaryConversions(RHS.get());
1496   if (RHS.isInvalid())
1497     return QualType();
1498 
1499   // For conversion purposes, we ignore any qualifiers.
1500   // For example, "const float" and "float" are equivalent.
1501   QualType LHSType =
1502     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1503   QualType RHSType =
1504     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1505 
1506   // For conversion purposes, we ignore any atomic qualifier on the LHS.
1507   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1508     LHSType = AtomicLHS->getValueType();
1509 
1510   // If both types are identical, no conversion is needed.
1511   if (LHSType == RHSType)
1512     return LHSType;
1513 
1514   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1515   // The caller can deal with this (e.g. pointer + int).
1516   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1517     return QualType();
1518 
1519   // Apply unary and bitfield promotions to the LHS's type.
1520   QualType LHSUnpromotedType = LHSType;
1521   if (LHSType->isPromotableIntegerType())
1522     LHSType = Context.getPromotedIntegerType(LHSType);
1523   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1524   if (!LHSBitfieldPromoteTy.isNull())
1525     LHSType = LHSBitfieldPromoteTy;
1526   if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1527     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1528 
1529   // If both types are identical, no conversion is needed.
1530   if (LHSType == RHSType)
1531     return LHSType;
1532 
1533   // ExtInt types aren't subject to conversions between them or normal integers,
1534   // so this fails.
1535   if(LHSType->isExtIntType() || RHSType->isExtIntType())
1536     return QualType();
1537 
1538   // At this point, we have two different arithmetic types.
1539 
1540   // Diagnose attempts to convert between __float128 and long double where
1541   // such conversions currently can't be handled.
1542   if (unsupportedTypeConversion(*this, LHSType, RHSType))
1543     return QualType();
1544 
1545   // Handle complex types first (C99 6.3.1.8p1).
1546   if (LHSType->isComplexType() || RHSType->isComplexType())
1547     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1548                                         ACK == ACK_CompAssign);
1549 
1550   // Now handle "real" floating types (i.e. float, double, long double).
1551   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1552     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1553                                  ACK == ACK_CompAssign);
1554 
1555   // Handle GCC complex int extension.
1556   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1557     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1558                                       ACK == ACK_CompAssign);
1559 
1560   if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1561     return handleFixedPointConversion(*this, LHSType, RHSType);
1562 
1563   // Finally, we have two differing integer types.
1564   return handleIntegerConversion<doIntegralCast, doIntegralCast>
1565            (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1566 }
1567 
1568 //===----------------------------------------------------------------------===//
1569 //  Semantic Analysis for various Expression Types
1570 //===----------------------------------------------------------------------===//
1571 
1572 
1573 ExprResult
ActOnGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,ArrayRef<ParsedType> ArgTypes,ArrayRef<Expr * > ArgExprs)1574 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1575                                 SourceLocation DefaultLoc,
1576                                 SourceLocation RParenLoc,
1577                                 Expr *ControllingExpr,
1578                                 ArrayRef<ParsedType> ArgTypes,
1579                                 ArrayRef<Expr *> ArgExprs) {
1580   unsigned NumAssocs = ArgTypes.size();
1581   assert(NumAssocs == ArgExprs.size());
1582 
1583   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1584   for (unsigned i = 0; i < NumAssocs; ++i) {
1585     if (ArgTypes[i])
1586       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1587     else
1588       Types[i] = nullptr;
1589   }
1590 
1591   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1592                                              ControllingExpr,
1593                                              llvm::makeArrayRef(Types, NumAssocs),
1594                                              ArgExprs);
1595   delete [] Types;
1596   return ER;
1597 }
1598 
1599 ExprResult
CreateGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > Types,ArrayRef<Expr * > Exprs)1600 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1601                                  SourceLocation DefaultLoc,
1602                                  SourceLocation RParenLoc,
1603                                  Expr *ControllingExpr,
1604                                  ArrayRef<TypeSourceInfo *> Types,
1605                                  ArrayRef<Expr *> Exprs) {
1606   unsigned NumAssocs = Types.size();
1607   assert(NumAssocs == Exprs.size());
1608 
1609   // Decay and strip qualifiers for the controlling expression type, and handle
1610   // placeholder type replacement. See committee discussion from WG14 DR423.
1611   {
1612     EnterExpressionEvaluationContext Unevaluated(
1613         *this, Sema::ExpressionEvaluationContext::Unevaluated);
1614     ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1615     if (R.isInvalid())
1616       return ExprError();
1617     ControllingExpr = R.get();
1618   }
1619 
1620   // The controlling expression is an unevaluated operand, so side effects are
1621   // likely unintended.
1622   if (!inTemplateInstantiation() &&
1623       ControllingExpr->HasSideEffects(Context, false))
1624     Diag(ControllingExpr->getExprLoc(),
1625          diag::warn_side_effects_unevaluated_context);
1626 
1627   bool TypeErrorFound = false,
1628        IsResultDependent = ControllingExpr->isTypeDependent(),
1629        ContainsUnexpandedParameterPack
1630          = ControllingExpr->containsUnexpandedParameterPack();
1631 
1632   for (unsigned i = 0; i < NumAssocs; ++i) {
1633     if (Exprs[i]->containsUnexpandedParameterPack())
1634       ContainsUnexpandedParameterPack = true;
1635 
1636     if (Types[i]) {
1637       if (Types[i]->getType()->containsUnexpandedParameterPack())
1638         ContainsUnexpandedParameterPack = true;
1639 
1640       if (Types[i]->getType()->isDependentType()) {
1641         IsResultDependent = true;
1642       } else {
1643         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1644         // complete object type other than a variably modified type."
1645         unsigned D = 0;
1646         if (Types[i]->getType()->isIncompleteType())
1647           D = diag::err_assoc_type_incomplete;
1648         else if (!Types[i]->getType()->isObjectType())
1649           D = diag::err_assoc_type_nonobject;
1650         else if (Types[i]->getType()->isVariablyModifiedType())
1651           D = diag::err_assoc_type_variably_modified;
1652 
1653         if (D != 0) {
1654           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1655             << Types[i]->getTypeLoc().getSourceRange()
1656             << Types[i]->getType();
1657           TypeErrorFound = true;
1658         }
1659 
1660         // C11 6.5.1.1p2 "No two generic associations in the same generic
1661         // selection shall specify compatible types."
1662         for (unsigned j = i+1; j < NumAssocs; ++j)
1663           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1664               Context.typesAreCompatible(Types[i]->getType(),
1665                                          Types[j]->getType())) {
1666             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1667                  diag::err_assoc_compatible_types)
1668               << Types[j]->getTypeLoc().getSourceRange()
1669               << Types[j]->getType()
1670               << Types[i]->getType();
1671             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1672                  diag::note_compat_assoc)
1673               << Types[i]->getTypeLoc().getSourceRange()
1674               << Types[i]->getType();
1675             TypeErrorFound = true;
1676           }
1677       }
1678     }
1679   }
1680   if (TypeErrorFound)
1681     return ExprError();
1682 
1683   // If we determined that the generic selection is result-dependent, don't
1684   // try to compute the result expression.
1685   if (IsResultDependent)
1686     return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
1687                                         Exprs, DefaultLoc, RParenLoc,
1688                                         ContainsUnexpandedParameterPack);
1689 
1690   SmallVector<unsigned, 1> CompatIndices;
1691   unsigned DefaultIndex = -1U;
1692   for (unsigned i = 0; i < NumAssocs; ++i) {
1693     if (!Types[i])
1694       DefaultIndex = i;
1695     else if (Context.typesAreCompatible(ControllingExpr->getType(),
1696                                         Types[i]->getType()))
1697       CompatIndices.push_back(i);
1698   }
1699 
1700   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1701   // type compatible with at most one of the types named in its generic
1702   // association list."
1703   if (CompatIndices.size() > 1) {
1704     // We strip parens here because the controlling expression is typically
1705     // parenthesized in macro definitions.
1706     ControllingExpr = ControllingExpr->IgnoreParens();
1707     Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
1708         << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1709         << (unsigned)CompatIndices.size();
1710     for (unsigned I : CompatIndices) {
1711       Diag(Types[I]->getTypeLoc().getBeginLoc(),
1712            diag::note_compat_assoc)
1713         << Types[I]->getTypeLoc().getSourceRange()
1714         << Types[I]->getType();
1715     }
1716     return ExprError();
1717   }
1718 
1719   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1720   // its controlling expression shall have type compatible with exactly one of
1721   // the types named in its generic association list."
1722   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1723     // We strip parens here because the controlling expression is typically
1724     // parenthesized in macro definitions.
1725     ControllingExpr = ControllingExpr->IgnoreParens();
1726     Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
1727         << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1728     return ExprError();
1729   }
1730 
1731   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1732   // type name that is compatible with the type of the controlling expression,
1733   // then the result expression of the generic selection is the expression
1734   // in that generic association. Otherwise, the result expression of the
1735   // generic selection is the expression in the default generic association."
1736   unsigned ResultIndex =
1737     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1738 
1739   return GenericSelectionExpr::Create(
1740       Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1741       ContainsUnexpandedParameterPack, ResultIndex);
1742 }
1743 
1744 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1745 /// location of the token and the offset of the ud-suffix within it.
getUDSuffixLoc(Sema & S,SourceLocation TokLoc,unsigned Offset)1746 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1747                                      unsigned Offset) {
1748   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1749                                         S.getLangOpts());
1750 }
1751 
1752 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1753 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
BuildCookedLiteralOperatorCall(Sema & S,Scope * Scope,IdentifierInfo * UDSuffix,SourceLocation UDSuffixLoc,ArrayRef<Expr * > Args,SourceLocation LitEndLoc)1754 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1755                                                  IdentifierInfo *UDSuffix,
1756                                                  SourceLocation UDSuffixLoc,
1757                                                  ArrayRef<Expr*> Args,
1758                                                  SourceLocation LitEndLoc) {
1759   assert(Args.size() <= 2 && "too many arguments for literal operator");
1760 
1761   QualType ArgTy[2];
1762   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1763     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1764     if (ArgTy[ArgIdx]->isArrayType())
1765       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1766   }
1767 
1768   DeclarationName OpName =
1769     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1770   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1771   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1772 
1773   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1774   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1775                               /*AllowRaw*/ false, /*AllowTemplate*/ false,
1776                               /*AllowStringTemplatePack*/ false,
1777                               /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1778     return ExprError();
1779 
1780   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1781 }
1782 
1783 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1784 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1785 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1786 /// multiple tokens.  However, the common case is that StringToks points to one
1787 /// string.
1788 ///
1789 ExprResult
ActOnStringLiteral(ArrayRef<Token> StringToks,Scope * UDLScope)1790 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1791   assert(!StringToks.empty() && "Must have at least one string!");
1792 
1793   StringLiteralParser Literal(StringToks, PP);
1794   if (Literal.hadError)
1795     return ExprError();
1796 
1797   SmallVector<SourceLocation, 4> StringTokLocs;
1798   for (const Token &Tok : StringToks)
1799     StringTokLocs.push_back(Tok.getLocation());
1800 
1801   QualType CharTy = Context.CharTy;
1802   StringLiteral::StringKind Kind = StringLiteral::Ascii;
1803   if (Literal.isWide()) {
1804     CharTy = Context.getWideCharType();
1805     Kind = StringLiteral::Wide;
1806   } else if (Literal.isUTF8()) {
1807     if (getLangOpts().Char8)
1808       CharTy = Context.Char8Ty;
1809     Kind = StringLiteral::UTF8;
1810   } else if (Literal.isUTF16()) {
1811     CharTy = Context.Char16Ty;
1812     Kind = StringLiteral::UTF16;
1813   } else if (Literal.isUTF32()) {
1814     CharTy = Context.Char32Ty;
1815     Kind = StringLiteral::UTF32;
1816   } else if (Literal.isPascal()) {
1817     CharTy = Context.UnsignedCharTy;
1818   }
1819 
1820   // Warn on initializing an array of char from a u8 string literal; this
1821   // becomes ill-formed in C++2a.
1822   if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
1823       !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
1824     Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
1825 
1826     // Create removals for all 'u8' prefixes in the string literal(s). This
1827     // ensures C++2a compatibility (but may change the program behavior when
1828     // built by non-Clang compilers for which the execution character set is
1829     // not always UTF-8).
1830     auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
1831     SourceLocation RemovalDiagLoc;
1832     for (const Token &Tok : StringToks) {
1833       if (Tok.getKind() == tok::utf8_string_literal) {
1834         if (RemovalDiagLoc.isInvalid())
1835           RemovalDiagLoc = Tok.getLocation();
1836         RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
1837             Tok.getLocation(),
1838             Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
1839                                            getSourceManager(), getLangOpts())));
1840       }
1841     }
1842     Diag(RemovalDiagLoc, RemovalDiag);
1843   }
1844 
1845   QualType StrTy =
1846       Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
1847 
1848   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1849   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1850                                              Kind, Literal.Pascal, StrTy,
1851                                              &StringTokLocs[0],
1852                                              StringTokLocs.size());
1853   if (Literal.getUDSuffix().empty())
1854     return Lit;
1855 
1856   // We're building a user-defined literal.
1857   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1858   SourceLocation UDSuffixLoc =
1859     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1860                    Literal.getUDSuffixOffset());
1861 
1862   // Make sure we're allowed user-defined literals here.
1863   if (!UDLScope)
1864     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1865 
1866   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1867   //   operator "" X (str, len)
1868   QualType SizeType = Context.getSizeType();
1869 
1870   DeclarationName OpName =
1871     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1872   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1873   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1874 
1875   QualType ArgTy[] = {
1876     Context.getArrayDecayedType(StrTy), SizeType
1877   };
1878 
1879   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1880   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1881                                 /*AllowRaw*/ false, /*AllowTemplate*/ true,
1882                                 /*AllowStringTemplatePack*/ true,
1883                                 /*DiagnoseMissing*/ true, Lit)) {
1884 
1885   case LOLR_Cooked: {
1886     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1887     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1888                                                     StringTokLocs[0]);
1889     Expr *Args[] = { Lit, LenArg };
1890 
1891     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1892   }
1893 
1894   case LOLR_Template: {
1895     TemplateArgumentListInfo ExplicitArgs;
1896     TemplateArgument Arg(Lit);
1897     TemplateArgumentLocInfo ArgInfo(Lit);
1898     ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1899     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1900                                     &ExplicitArgs);
1901   }
1902 
1903   case LOLR_StringTemplatePack: {
1904     TemplateArgumentListInfo ExplicitArgs;
1905 
1906     unsigned CharBits = Context.getIntWidth(CharTy);
1907     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1908     llvm::APSInt Value(CharBits, CharIsUnsigned);
1909 
1910     TemplateArgument TypeArg(CharTy);
1911     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1912     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1913 
1914     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1915       Value = Lit->getCodeUnit(I);
1916       TemplateArgument Arg(Context, Value, CharTy);
1917       TemplateArgumentLocInfo ArgInfo;
1918       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1919     }
1920     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1921                                     &ExplicitArgs);
1922   }
1923   case LOLR_Raw:
1924   case LOLR_ErrorNoDiagnostic:
1925     llvm_unreachable("unexpected literal operator lookup result");
1926   case LOLR_Error:
1927     return ExprError();
1928   }
1929   llvm_unreachable("unexpected literal operator lookup result");
1930 }
1931 
1932 DeclRefExpr *
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,SourceLocation Loc,const CXXScopeSpec * SS)1933 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1934                        SourceLocation Loc,
1935                        const CXXScopeSpec *SS) {
1936   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1937   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1938 }
1939 
1940 DeclRefExpr *
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,const DeclarationNameInfo & NameInfo,const CXXScopeSpec * SS,NamedDecl * FoundD,SourceLocation TemplateKWLoc,const TemplateArgumentListInfo * TemplateArgs)1941 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1942                        const DeclarationNameInfo &NameInfo,
1943                        const CXXScopeSpec *SS, NamedDecl *FoundD,
1944                        SourceLocation TemplateKWLoc,
1945                        const TemplateArgumentListInfo *TemplateArgs) {
1946   NestedNameSpecifierLoc NNS =
1947       SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
1948   return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
1949                           TemplateArgs);
1950 }
1951 
1952 // CUDA/HIP: Check whether a captured reference variable is referencing a
1953 // host variable in a device or host device lambda.
isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema & S,VarDecl * VD)1954 static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
1955                                                             VarDecl *VD) {
1956   if (!S.getLangOpts().CUDA || !VD->hasInit())
1957     return false;
1958   assert(VD->getType()->isReferenceType());
1959 
1960   // Check whether the reference variable is referencing a host variable.
1961   auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
1962   if (!DRE)
1963     return false;
1964   auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
1965   if (!Referee || !Referee->hasGlobalStorage() ||
1966       Referee->hasAttr<CUDADeviceAttr>())
1967     return false;
1968 
1969   // Check whether the current function is a device or host device lambda.
1970   // Check whether the reference variable is a capture by getDeclContext()
1971   // since refersToEnclosingVariableOrCapture() is not ready at this point.
1972   auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
1973   if (MD && MD->getParent()->isLambda() &&
1974       MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
1975       VD->getDeclContext() != MD)
1976     return true;
1977 
1978   return false;
1979 }
1980 
getNonOdrUseReasonInCurrentContext(ValueDecl * D)1981 NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
1982   // A declaration named in an unevaluated operand never constitutes an odr-use.
1983   if (isUnevaluatedContext())
1984     return NOUR_Unevaluated;
1985 
1986   // C++2a [basic.def.odr]p4:
1987   //   A variable x whose name appears as a potentially-evaluated expression e
1988   //   is odr-used by e unless [...] x is a reference that is usable in
1989   //   constant expressions.
1990   // CUDA/HIP:
1991   //   If a reference variable referencing a host variable is captured in a
1992   //   device or host device lambda, the value of the referee must be copied
1993   //   to the capture and the reference variable must be treated as odr-use
1994   //   since the value of the referee is not known at compile time and must
1995   //   be loaded from the captured.
1996   if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
1997     if (VD->getType()->isReferenceType() &&
1998         !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
1999         !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
2000         VD->isUsableInConstantExpressions(Context))
2001       return NOUR_Constant;
2002   }
2003 
2004   // All remaining non-variable cases constitute an odr-use. For variables, we
2005   // need to wait and see how the expression is used.
2006   return NOUR_None;
2007 }
2008 
2009 /// BuildDeclRefExpr - Build an expression that references a
2010 /// declaration that does not require a closure capture.
2011 DeclRefExpr *
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,const DeclarationNameInfo & NameInfo,NestedNameSpecifierLoc NNS,NamedDecl * FoundD,SourceLocation TemplateKWLoc,const TemplateArgumentListInfo * TemplateArgs)2012 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2013                        const DeclarationNameInfo &NameInfo,
2014                        NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2015                        SourceLocation TemplateKWLoc,
2016                        const TemplateArgumentListInfo *TemplateArgs) {
2017   bool RefersToCapturedVariable =
2018       isa<VarDecl>(D) &&
2019       NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
2020 
2021   DeclRefExpr *E = DeclRefExpr::Create(
2022       Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2023       VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2024   MarkDeclRefReferenced(E);
2025 
2026   // C++ [except.spec]p17:
2027   //   An exception-specification is considered to be needed when:
2028   //   - in an expression, the function is the unique lookup result or
2029   //     the selected member of a set of overloaded functions.
2030   //
2031   // We delay doing this until after we've built the function reference and
2032   // marked it as used so that:
2033   //  a) if the function is defaulted, we get errors from defining it before /
2034   //     instead of errors from computing its exception specification, and
2035   //  b) if the function is a defaulted comparison, we can use the body we
2036   //     build when defining it as input to the exception specification
2037   //     computation rather than computing a new body.
2038   if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
2039     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2040       if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2041         E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2042     }
2043   }
2044 
2045   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2046       Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2047       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2048     getCurFunction()->recordUseOfWeak(E);
2049 
2050   FieldDecl *FD = dyn_cast<FieldDecl>(D);
2051   if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
2052     FD = IFD->getAnonField();
2053   if (FD) {
2054     UnusedPrivateFields.remove(FD);
2055     // Just in case we're building an illegal pointer-to-member.
2056     if (FD->isBitField())
2057       E->setObjectKind(OK_BitField);
2058   }
2059 
2060   // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2061   // designates a bit-field.
2062   if (auto *BD = dyn_cast<BindingDecl>(D))
2063     if (auto *BE = BD->getBinding())
2064       E->setObjectKind(BE->getObjectKind());
2065 
2066   return E;
2067 }
2068 
2069 /// Decomposes the given name into a DeclarationNameInfo, its location, and
2070 /// possibly a list of template arguments.
2071 ///
2072 /// If this produces template arguments, it is permitted to call
2073 /// DecomposeTemplateName.
2074 ///
2075 /// This actually loses a lot of source location information for
2076 /// non-standard name kinds; we should consider preserving that in
2077 /// some way.
2078 void
DecomposeUnqualifiedId(const UnqualifiedId & Id,TemplateArgumentListInfo & Buffer,DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * & TemplateArgs)2079 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2080                              TemplateArgumentListInfo &Buffer,
2081                              DeclarationNameInfo &NameInfo,
2082                              const TemplateArgumentListInfo *&TemplateArgs) {
2083   if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2084     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2085     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2086 
2087     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2088                                        Id.TemplateId->NumArgs);
2089     translateTemplateArguments(TemplateArgsPtr, Buffer);
2090 
2091     TemplateName TName = Id.TemplateId->Template.get();
2092     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2093     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2094     TemplateArgs = &Buffer;
2095   } else {
2096     NameInfo = GetNameFromUnqualifiedId(Id);
2097     TemplateArgs = nullptr;
2098   }
2099 }
2100 
emitEmptyLookupTypoDiagnostic(const TypoCorrection & TC,Sema & SemaRef,const CXXScopeSpec & SS,DeclarationName Typo,SourceLocation TypoLoc,ArrayRef<Expr * > Args,unsigned DiagnosticID,unsigned DiagnosticSuggestID)2101 static void emitEmptyLookupTypoDiagnostic(
2102     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2103     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2104     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2105   DeclContext *Ctx =
2106       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2107   if (!TC) {
2108     // Emit a special diagnostic for failed member lookups.
2109     // FIXME: computing the declaration context might fail here (?)
2110     if (Ctx)
2111       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2112                                                  << SS.getRange();
2113     else
2114       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2115     return;
2116   }
2117 
2118   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2119   bool DroppedSpecifier =
2120       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2121   unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2122                         ? diag::note_implicit_param_decl
2123                         : diag::note_previous_decl;
2124   if (!Ctx)
2125     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2126                          SemaRef.PDiag(NoteID));
2127   else
2128     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2129                                  << Typo << Ctx << DroppedSpecifier
2130                                  << SS.getRange(),
2131                          SemaRef.PDiag(NoteID));
2132 }
2133 
2134 /// Diagnose a lookup that found results in an enclosing class during error
2135 /// recovery. This usually indicates that the results were found in a dependent
2136 /// base class that could not be searched as part of a template definition.
2137 /// Always issues a diagnostic (though this may be only a warning in MS
2138 /// compatibility mode).
2139 ///
2140 /// Return \c true if the error is unrecoverable, or \c false if the caller
2141 /// should attempt to recover using these lookup results.
DiagnoseDependentMemberLookup(LookupResult & R)2142 bool Sema::DiagnoseDependentMemberLookup(LookupResult &R) {
2143   // During a default argument instantiation the CurContext points
2144   // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2145   // function parameter list, hence add an explicit check.
2146   bool isDefaultArgument =
2147       !CodeSynthesisContexts.empty() &&
2148       CodeSynthesisContexts.back().Kind ==
2149           CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2150   CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2151   bool isInstance = CurMethod && CurMethod->isInstance() &&
2152                     R.getNamingClass() == CurMethod->getParent() &&
2153                     !isDefaultArgument;
2154 
2155   // There are two ways we can find a class-scope declaration during template
2156   // instantiation that we did not find in the template definition: if it is a
2157   // member of a dependent base class, or if it is declared after the point of
2158   // use in the same class. Distinguish these by comparing the class in which
2159   // the member was found to the naming class of the lookup.
2160   unsigned DiagID = diag::err_found_in_dependent_base;
2161   unsigned NoteID = diag::note_member_declared_at;
2162   if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2163     DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2164                                       : diag::err_found_later_in_class;
2165   } else if (getLangOpts().MSVCCompat) {
2166     DiagID = diag::ext_found_in_dependent_base;
2167     NoteID = diag::note_dependent_member_use;
2168   }
2169 
2170   if (isInstance) {
2171     // Give a code modification hint to insert 'this->'.
2172     Diag(R.getNameLoc(), DiagID)
2173         << R.getLookupName()
2174         << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2175     CheckCXXThisCapture(R.getNameLoc());
2176   } else {
2177     // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2178     // they're not shadowed).
2179     Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2180   }
2181 
2182   for (NamedDecl *D : R)
2183     Diag(D->getLocation(), NoteID);
2184 
2185   // Return true if we are inside a default argument instantiation
2186   // and the found name refers to an instance member function, otherwise
2187   // the caller will try to create an implicit member call and this is wrong
2188   // for default arguments.
2189   //
2190   // FIXME: Is this special case necessary? We could allow the caller to
2191   // diagnose this.
2192   if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2193     Diag(R.getNameLoc(), diag::err_member_call_without_object);
2194     return true;
2195   }
2196 
2197   // Tell the callee to try to recover.
2198   return false;
2199 }
2200 
2201 /// Diagnose an empty lookup.
2202 ///
2203 /// \return false if new lookup candidates were found
DiagnoseEmptyLookup(Scope * S,CXXScopeSpec & SS,LookupResult & R,CorrectionCandidateCallback & CCC,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,TypoExpr ** Out)2204 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2205                                CorrectionCandidateCallback &CCC,
2206                                TemplateArgumentListInfo *ExplicitTemplateArgs,
2207                                ArrayRef<Expr *> Args, TypoExpr **Out) {
2208   DeclarationName Name = R.getLookupName();
2209 
2210   unsigned diagnostic = diag::err_undeclared_var_use;
2211   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2212   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2213       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2214       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2215     diagnostic = diag::err_undeclared_use;
2216     diagnostic_suggest = diag::err_undeclared_use_suggest;
2217   }
2218 
2219   // If the original lookup was an unqualified lookup, fake an
2220   // unqualified lookup.  This is useful when (for example) the
2221   // original lookup would not have found something because it was a
2222   // dependent name.
2223   DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
2224   while (DC) {
2225     if (isa<CXXRecordDecl>(DC)) {
2226       LookupQualifiedName(R, DC);
2227 
2228       if (!R.empty()) {
2229         // Don't give errors about ambiguities in this lookup.
2230         R.suppressDiagnostics();
2231 
2232         // If there's a best viable function among the results, only mention
2233         // that one in the notes.
2234         OverloadCandidateSet Candidates(R.getNameLoc(),
2235                                         OverloadCandidateSet::CSK_Normal);
2236         AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2237         OverloadCandidateSet::iterator Best;
2238         if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2239             OR_Success) {
2240           R.clear();
2241           R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2242           R.resolveKind();
2243         }
2244 
2245         return DiagnoseDependentMemberLookup(R);
2246       }
2247 
2248       R.clear();
2249     }
2250 
2251     DC = DC->getLookupParent();
2252   }
2253 
2254   // We didn't find anything, so try to correct for a typo.
2255   TypoCorrection Corrected;
2256   if (S && Out) {
2257     SourceLocation TypoLoc = R.getNameLoc();
2258     assert(!ExplicitTemplateArgs &&
2259            "Diagnosing an empty lookup with explicit template args!");
2260     *Out = CorrectTypoDelayed(
2261         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2262         [=](const TypoCorrection &TC) {
2263           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2264                                         diagnostic, diagnostic_suggest);
2265         },
2266         nullptr, CTK_ErrorRecovery);
2267     if (*Out)
2268       return true;
2269   } else if (S &&
2270              (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
2271                                       S, &SS, CCC, CTK_ErrorRecovery))) {
2272     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2273     bool DroppedSpecifier =
2274         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2275     R.setLookupName(Corrected.getCorrection());
2276 
2277     bool AcceptableWithRecovery = false;
2278     bool AcceptableWithoutRecovery = false;
2279     NamedDecl *ND = Corrected.getFoundDecl();
2280     if (ND) {
2281       if (Corrected.isOverloaded()) {
2282         OverloadCandidateSet OCS(R.getNameLoc(),
2283                                  OverloadCandidateSet::CSK_Normal);
2284         OverloadCandidateSet::iterator Best;
2285         for (NamedDecl *CD : Corrected) {
2286           if (FunctionTemplateDecl *FTD =
2287                    dyn_cast<FunctionTemplateDecl>(CD))
2288             AddTemplateOverloadCandidate(
2289                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2290                 Args, OCS);
2291           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2292             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2293               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2294                                    Args, OCS);
2295         }
2296         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2297         case OR_Success:
2298           ND = Best->FoundDecl;
2299           Corrected.setCorrectionDecl(ND);
2300           break;
2301         default:
2302           // FIXME: Arbitrarily pick the first declaration for the note.
2303           Corrected.setCorrectionDecl(ND);
2304           break;
2305         }
2306       }
2307       R.addDecl(ND);
2308       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2309         CXXRecordDecl *Record = nullptr;
2310         if (Corrected.getCorrectionSpecifier()) {
2311           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2312           Record = Ty->getAsCXXRecordDecl();
2313         }
2314         if (!Record)
2315           Record = cast<CXXRecordDecl>(
2316               ND->getDeclContext()->getRedeclContext());
2317         R.setNamingClass(Record);
2318       }
2319 
2320       auto *UnderlyingND = ND->getUnderlyingDecl();
2321       AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2322                                isa<FunctionTemplateDecl>(UnderlyingND);
2323       // FIXME: If we ended up with a typo for a type name or
2324       // Objective-C class name, we're in trouble because the parser
2325       // is in the wrong place to recover. Suggest the typo
2326       // correction, but don't make it a fix-it since we're not going
2327       // to recover well anyway.
2328       AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2329                                   getAsTypeTemplateDecl(UnderlyingND) ||
2330                                   isa<ObjCInterfaceDecl>(UnderlyingND);
2331     } else {
2332       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2333       // because we aren't able to recover.
2334       AcceptableWithoutRecovery = true;
2335     }
2336 
2337     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2338       unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2339                             ? diag::note_implicit_param_decl
2340                             : diag::note_previous_decl;
2341       if (SS.isEmpty())
2342         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2343                      PDiag(NoteID), AcceptableWithRecovery);
2344       else
2345         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2346                                   << Name << computeDeclContext(SS, false)
2347                                   << DroppedSpecifier << SS.getRange(),
2348                      PDiag(NoteID), AcceptableWithRecovery);
2349 
2350       // Tell the callee whether to try to recover.
2351       return !AcceptableWithRecovery;
2352     }
2353   }
2354   R.clear();
2355 
2356   // Emit a special diagnostic for failed member lookups.
2357   // FIXME: computing the declaration context might fail here (?)
2358   if (!SS.isEmpty()) {
2359     Diag(R.getNameLoc(), diag::err_no_member)
2360       << Name << computeDeclContext(SS, false)
2361       << SS.getRange();
2362     return true;
2363   }
2364 
2365   // Give up, we can't recover.
2366   Diag(R.getNameLoc(), diagnostic) << Name;
2367   return true;
2368 }
2369 
2370 /// In Microsoft mode, if we are inside a template class whose parent class has
2371 /// dependent base classes, and we can't resolve an unqualified identifier, then
2372 /// assume the identifier is a member of a dependent base class.  We can only
2373 /// recover successfully in static methods, instance methods, and other contexts
2374 /// where 'this' is available.  This doesn't precisely match MSVC's
2375 /// instantiation model, but it's close enough.
2376 static Expr *
recoverFromMSUnqualifiedLookup(Sema & S,ASTContext & Context,DeclarationNameInfo & NameInfo,SourceLocation TemplateKWLoc,const TemplateArgumentListInfo * TemplateArgs)2377 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2378                                DeclarationNameInfo &NameInfo,
2379                                SourceLocation TemplateKWLoc,
2380                                const TemplateArgumentListInfo *TemplateArgs) {
2381   // Only try to recover from lookup into dependent bases in static methods or
2382   // contexts where 'this' is available.
2383   QualType ThisType = S.getCurrentThisType();
2384   const CXXRecordDecl *RD = nullptr;
2385   if (!ThisType.isNull())
2386     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2387   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2388     RD = MD->getParent();
2389   if (!RD || !RD->hasAnyDependentBases())
2390     return nullptr;
2391 
2392   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2393   // is available, suggest inserting 'this->' as a fixit.
2394   SourceLocation Loc = NameInfo.getLoc();
2395   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2396   DB << NameInfo.getName() << RD;
2397 
2398   if (!ThisType.isNull()) {
2399     DB << FixItHint::CreateInsertion(Loc, "this->");
2400     return CXXDependentScopeMemberExpr::Create(
2401         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2402         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2403         /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2404   }
2405 
2406   // Synthesize a fake NNS that points to the derived class.  This will
2407   // perform name lookup during template instantiation.
2408   CXXScopeSpec SS;
2409   auto *NNS =
2410       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2411   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2412   return DependentScopeDeclRefExpr::Create(
2413       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2414       TemplateArgs);
2415 }
2416 
2417 ExprResult
ActOnIdExpression(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,bool HasTrailingLParen,bool IsAddressOfOperand,CorrectionCandidateCallback * CCC,bool IsInlineAsmIdentifier,Token * KeywordReplacement)2418 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2419                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2420                         bool HasTrailingLParen, bool IsAddressOfOperand,
2421                         CorrectionCandidateCallback *CCC,
2422                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2423   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2424          "cannot be direct & operand and have a trailing lparen");
2425   if (SS.isInvalid())
2426     return ExprError();
2427 
2428   TemplateArgumentListInfo TemplateArgsBuffer;
2429 
2430   // Decompose the UnqualifiedId into the following data.
2431   DeclarationNameInfo NameInfo;
2432   const TemplateArgumentListInfo *TemplateArgs;
2433   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2434 
2435   DeclarationName Name = NameInfo.getName();
2436   IdentifierInfo *II = Name.getAsIdentifierInfo();
2437   SourceLocation NameLoc = NameInfo.getLoc();
2438 
2439   if (II && II->isEditorPlaceholder()) {
2440     // FIXME: When typed placeholders are supported we can create a typed
2441     // placeholder expression node.
2442     return ExprError();
2443   }
2444 
2445   // C++ [temp.dep.expr]p3:
2446   //   An id-expression is type-dependent if it contains:
2447   //     -- an identifier that was declared with a dependent type,
2448   //        (note: handled after lookup)
2449   //     -- a template-id that is dependent,
2450   //        (note: handled in BuildTemplateIdExpr)
2451   //     -- a conversion-function-id that specifies a dependent type,
2452   //     -- a nested-name-specifier that contains a class-name that
2453   //        names a dependent type.
2454   // Determine whether this is a member of an unknown specialization;
2455   // we need to handle these differently.
2456   bool DependentID = false;
2457   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2458       Name.getCXXNameType()->isDependentType()) {
2459     DependentID = true;
2460   } else if (SS.isSet()) {
2461     if (DeclContext *DC = computeDeclContext(SS, false)) {
2462       if (RequireCompleteDeclContext(SS, DC))
2463         return ExprError();
2464     } else {
2465       DependentID = true;
2466     }
2467   }
2468 
2469   if (DependentID)
2470     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2471                                       IsAddressOfOperand, TemplateArgs);
2472 
2473   // Perform the required lookup.
2474   LookupResult R(*this, NameInfo,
2475                  (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2476                      ? LookupObjCImplicitSelfParam
2477                      : LookupOrdinaryName);
2478   if (TemplateKWLoc.isValid() || TemplateArgs) {
2479     // Lookup the template name again to correctly establish the context in
2480     // which it was found. This is really unfortunate as we already did the
2481     // lookup to determine that it was a template name in the first place. If
2482     // this becomes a performance hit, we can work harder to preserve those
2483     // results until we get here but it's likely not worth it.
2484     bool MemberOfUnknownSpecialization;
2485     AssumedTemplateKind AssumedTemplate;
2486     if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2487                            MemberOfUnknownSpecialization, TemplateKWLoc,
2488                            &AssumedTemplate))
2489       return ExprError();
2490 
2491     if (MemberOfUnknownSpecialization ||
2492         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2493       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2494                                         IsAddressOfOperand, TemplateArgs);
2495   } else {
2496     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2497     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2498 
2499     // If the result might be in a dependent base class, this is a dependent
2500     // id-expression.
2501     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2502       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2503                                         IsAddressOfOperand, TemplateArgs);
2504 
2505     // If this reference is in an Objective-C method, then we need to do
2506     // some special Objective-C lookup, too.
2507     if (IvarLookupFollowUp) {
2508       ExprResult E(LookupInObjCMethod(R, S, II, true));
2509       if (E.isInvalid())
2510         return ExprError();
2511 
2512       if (Expr *Ex = E.getAs<Expr>())
2513         return Ex;
2514     }
2515   }
2516 
2517   if (R.isAmbiguous())
2518     return ExprError();
2519 
2520   // This could be an implicitly declared function reference (legal in C90,
2521   // extension in C99, forbidden in C++).
2522   if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
2523     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2524     if (D) R.addDecl(D);
2525   }
2526 
2527   // Determine whether this name might be a candidate for
2528   // argument-dependent lookup.
2529   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2530 
2531   if (R.empty() && !ADL) {
2532     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2533       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2534                                                    TemplateKWLoc, TemplateArgs))
2535         return E;
2536     }
2537 
2538     // Don't diagnose an empty lookup for inline assembly.
2539     if (IsInlineAsmIdentifier)
2540       return ExprError();
2541 
2542     // If this name wasn't predeclared and if this is not a function
2543     // call, diagnose the problem.
2544     TypoExpr *TE = nullptr;
2545     DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2546                                                        : nullptr);
2547     DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2548     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2549            "Typo correction callback misconfigured");
2550     if (CCC) {
2551       // Make sure the callback knows what the typo being diagnosed is.
2552       CCC->setTypoName(II);
2553       if (SS.isValid())
2554         CCC->setTypoNNS(SS.getScopeRep());
2555     }
2556     // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2557     // a template name, but we happen to have always already looked up the name
2558     // before we get here if it must be a template name.
2559     if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2560                             None, &TE)) {
2561       if (TE && KeywordReplacement) {
2562         auto &State = getTypoExprState(TE);
2563         auto BestTC = State.Consumer->getNextCorrection();
2564         if (BestTC.isKeyword()) {
2565           auto *II = BestTC.getCorrectionAsIdentifierInfo();
2566           if (State.DiagHandler)
2567             State.DiagHandler(BestTC);
2568           KeywordReplacement->startToken();
2569           KeywordReplacement->setKind(II->getTokenID());
2570           KeywordReplacement->setIdentifierInfo(II);
2571           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2572           // Clean up the state associated with the TypoExpr, since it has
2573           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2574           clearDelayedTypo(TE);
2575           // Signal that a correction to a keyword was performed by returning a
2576           // valid-but-null ExprResult.
2577           return (Expr*)nullptr;
2578         }
2579         State.Consumer->resetCorrectionStream();
2580       }
2581       return TE ? TE : ExprError();
2582     }
2583 
2584     assert(!R.empty() &&
2585            "DiagnoseEmptyLookup returned false but added no results");
2586 
2587     // If we found an Objective-C instance variable, let
2588     // LookupInObjCMethod build the appropriate expression to
2589     // reference the ivar.
2590     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2591       R.clear();
2592       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2593       // In a hopelessly buggy code, Objective-C instance variable
2594       // lookup fails and no expression will be built to reference it.
2595       if (!E.isInvalid() && !E.get())
2596         return ExprError();
2597       return E;
2598     }
2599   }
2600 
2601   // This is guaranteed from this point on.
2602   assert(!R.empty() || ADL);
2603 
2604   // Check whether this might be a C++ implicit instance member access.
2605   // C++ [class.mfct.non-static]p3:
2606   //   When an id-expression that is not part of a class member access
2607   //   syntax and not used to form a pointer to member is used in the
2608   //   body of a non-static member function of class X, if name lookup
2609   //   resolves the name in the id-expression to a non-static non-type
2610   //   member of some class C, the id-expression is transformed into a
2611   //   class member access expression using (*this) as the
2612   //   postfix-expression to the left of the . operator.
2613   //
2614   // But we don't actually need to do this for '&' operands if R
2615   // resolved to a function or overloaded function set, because the
2616   // expression is ill-formed if it actually works out to be a
2617   // non-static member function:
2618   //
2619   // C++ [expr.ref]p4:
2620   //   Otherwise, if E1.E2 refers to a non-static member function. . .
2621   //   [t]he expression can be used only as the left-hand operand of a
2622   //   member function call.
2623   //
2624   // There are other safeguards against such uses, but it's important
2625   // to get this right here so that we don't end up making a
2626   // spuriously dependent expression if we're inside a dependent
2627   // instance method.
2628   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2629     bool MightBeImplicitMember;
2630     if (!IsAddressOfOperand)
2631       MightBeImplicitMember = true;
2632     else if (!SS.isEmpty())
2633       MightBeImplicitMember = false;
2634     else if (R.isOverloadedResult())
2635       MightBeImplicitMember = false;
2636     else if (R.isUnresolvableResult())
2637       MightBeImplicitMember = true;
2638     else
2639       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2640                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2641                               isa<MSPropertyDecl>(R.getFoundDecl());
2642 
2643     if (MightBeImplicitMember)
2644       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2645                                              R, TemplateArgs, S);
2646   }
2647 
2648   if (TemplateArgs || TemplateKWLoc.isValid()) {
2649 
2650     // In C++1y, if this is a variable template id, then check it
2651     // in BuildTemplateIdExpr().
2652     // The single lookup result must be a variable template declaration.
2653     if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2654         Id.TemplateId->Kind == TNK_Var_template) {
2655       assert(R.getAsSingle<VarTemplateDecl>() &&
2656              "There should only be one declaration found.");
2657     }
2658 
2659     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2660   }
2661 
2662   return BuildDeclarationNameExpr(SS, R, ADL);
2663 }
2664 
2665 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2666 /// declaration name, generally during template instantiation.
2667 /// There's a large number of things which don't need to be done along
2668 /// this path.
BuildQualifiedDeclarationNameExpr(CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,bool IsAddressOfOperand,const Scope * S,TypeSourceInfo ** RecoveryTSI)2669 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2670     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2671     bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2672   DeclContext *DC = computeDeclContext(SS, false);
2673   if (!DC)
2674     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2675                                      NameInfo, /*TemplateArgs=*/nullptr);
2676 
2677   if (RequireCompleteDeclContext(SS, DC))
2678     return ExprError();
2679 
2680   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2681   LookupQualifiedName(R, DC);
2682 
2683   if (R.isAmbiguous())
2684     return ExprError();
2685 
2686   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2687     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2688                                      NameInfo, /*TemplateArgs=*/nullptr);
2689 
2690   if (R.empty()) {
2691     // Don't diagnose problems with invalid record decl, the secondary no_member
2692     // diagnostic during template instantiation is likely bogus, e.g. if a class
2693     // is invalid because it's derived from an invalid base class, then missing
2694     // members were likely supposed to be inherited.
2695     if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2696       if (CD->isInvalidDecl())
2697         return ExprError();
2698     Diag(NameInfo.getLoc(), diag::err_no_member)
2699       << NameInfo.getName() << DC << SS.getRange();
2700     return ExprError();
2701   }
2702 
2703   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2704     // Diagnose a missing typename if this resolved unambiguously to a type in
2705     // a dependent context.  If we can recover with a type, downgrade this to
2706     // a warning in Microsoft compatibility mode.
2707     unsigned DiagID = diag::err_typename_missing;
2708     if (RecoveryTSI && getLangOpts().MSVCCompat)
2709       DiagID = diag::ext_typename_missing;
2710     SourceLocation Loc = SS.getBeginLoc();
2711     auto D = Diag(Loc, DiagID);
2712     D << SS.getScopeRep() << NameInfo.getName().getAsString()
2713       << SourceRange(Loc, NameInfo.getEndLoc());
2714 
2715     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2716     // context.
2717     if (!RecoveryTSI)
2718       return ExprError();
2719 
2720     // Only issue the fixit if we're prepared to recover.
2721     D << FixItHint::CreateInsertion(Loc, "typename ");
2722 
2723     // Recover by pretending this was an elaborated type.
2724     QualType Ty = Context.getTypeDeclType(TD);
2725     TypeLocBuilder TLB;
2726     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2727 
2728     QualType ET = getElaboratedType(ETK_None, SS, Ty);
2729     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2730     QTL.setElaboratedKeywordLoc(SourceLocation());
2731     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2732 
2733     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2734 
2735     return ExprEmpty();
2736   }
2737 
2738   // Defend against this resolving to an implicit member access. We usually
2739   // won't get here if this might be a legitimate a class member (we end up in
2740   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2741   // a pointer-to-member or in an unevaluated context in C++11.
2742   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2743     return BuildPossibleImplicitMemberExpr(SS,
2744                                            /*TemplateKWLoc=*/SourceLocation(),
2745                                            R, /*TemplateArgs=*/nullptr, S);
2746 
2747   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2748 }
2749 
2750 /// The parser has read a name in, and Sema has detected that we're currently
2751 /// inside an ObjC method. Perform some additional checks and determine if we
2752 /// should form a reference to an ivar.
2753 ///
2754 /// Ideally, most of this would be done by lookup, but there's
2755 /// actually quite a lot of extra work involved.
LookupIvarInObjCMethod(LookupResult & Lookup,Scope * S,IdentifierInfo * II)2756 DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
2757                                         IdentifierInfo *II) {
2758   SourceLocation Loc = Lookup.getNameLoc();
2759   ObjCMethodDecl *CurMethod = getCurMethodDecl();
2760 
2761   // Check for error condition which is already reported.
2762   if (!CurMethod)
2763     return DeclResult(true);
2764 
2765   // There are two cases to handle here.  1) scoped lookup could have failed,
2766   // in which case we should look for an ivar.  2) scoped lookup could have
2767   // found a decl, but that decl is outside the current instance method (i.e.
2768   // a global variable).  In these two cases, we do a lookup for an ivar with
2769   // this name, if the lookup sucedes, we replace it our current decl.
2770 
2771   // If we're in a class method, we don't normally want to look for
2772   // ivars.  But if we don't find anything else, and there's an
2773   // ivar, that's an error.
2774   bool IsClassMethod = CurMethod->isClassMethod();
2775 
2776   bool LookForIvars;
2777   if (Lookup.empty())
2778     LookForIvars = true;
2779   else if (IsClassMethod)
2780     LookForIvars = false;
2781   else
2782     LookForIvars = (Lookup.isSingleResult() &&
2783                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2784   ObjCInterfaceDecl *IFace = nullptr;
2785   if (LookForIvars) {
2786     IFace = CurMethod->getClassInterface();
2787     ObjCInterfaceDecl *ClassDeclared;
2788     ObjCIvarDecl *IV = nullptr;
2789     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2790       // Diagnose using an ivar in a class method.
2791       if (IsClassMethod) {
2792         Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2793         return DeclResult(true);
2794       }
2795 
2796       // Diagnose the use of an ivar outside of the declaring class.
2797       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2798           !declaresSameEntity(ClassDeclared, IFace) &&
2799           !getLangOpts().DebuggerSupport)
2800         Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
2801 
2802       // Success.
2803       return IV;
2804     }
2805   } else if (CurMethod->isInstanceMethod()) {
2806     // We should warn if a local variable hides an ivar.
2807     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2808       ObjCInterfaceDecl *ClassDeclared;
2809       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2810         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2811             declaresSameEntity(IFace, ClassDeclared))
2812           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2813       }
2814     }
2815   } else if (Lookup.isSingleResult() &&
2816              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2817     // If accessing a stand-alone ivar in a class method, this is an error.
2818     if (const ObjCIvarDecl *IV =
2819             dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
2820       Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2821       return DeclResult(true);
2822     }
2823   }
2824 
2825   // Didn't encounter an error, didn't find an ivar.
2826   return DeclResult(false);
2827 }
2828 
BuildIvarRefExpr(Scope * S,SourceLocation Loc,ObjCIvarDecl * IV)2829 ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
2830                                   ObjCIvarDecl *IV) {
2831   ObjCMethodDecl *CurMethod = getCurMethodDecl();
2832   assert(CurMethod && CurMethod->isInstanceMethod() &&
2833          "should not reference ivar from this context");
2834 
2835   ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
2836   assert(IFace && "should not reference ivar from this context");
2837 
2838   // If we're referencing an invalid decl, just return this as a silent
2839   // error node.  The error diagnostic was already emitted on the decl.
2840   if (IV->isInvalidDecl())
2841     return ExprError();
2842 
2843   // Check if referencing a field with __attribute__((deprecated)).
2844   if (DiagnoseUseOfDecl(IV, Loc))
2845     return ExprError();
2846 
2847   // FIXME: This should use a new expr for a direct reference, don't
2848   // turn this into Self->ivar, just return a BareIVarExpr or something.
2849   IdentifierInfo &II = Context.Idents.get("self");
2850   UnqualifiedId SelfName;
2851   SelfName.setImplicitSelfParam(&II);
2852   CXXScopeSpec SelfScopeSpec;
2853   SourceLocation TemplateKWLoc;
2854   ExprResult SelfExpr =
2855       ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
2856                         /*HasTrailingLParen=*/false,
2857                         /*IsAddressOfOperand=*/false);
2858   if (SelfExpr.isInvalid())
2859     return ExprError();
2860 
2861   SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2862   if (SelfExpr.isInvalid())
2863     return ExprError();
2864 
2865   MarkAnyDeclReferenced(Loc, IV, true);
2866 
2867   ObjCMethodFamily MF = CurMethod->getMethodFamily();
2868   if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2869       !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2870     Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2871 
2872   ObjCIvarRefExpr *Result = new (Context)
2873       ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2874                       IV->getLocation(), SelfExpr.get(), true, true);
2875 
2876   if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2877     if (!isUnevaluatedContext() &&
2878         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2879       getCurFunction()->recordUseOfWeak(Result);
2880   }
2881   if (getLangOpts().ObjCAutoRefCount)
2882     if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
2883       ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
2884 
2885   return Result;
2886 }
2887 
2888 /// The parser has read a name in, and Sema has detected that we're currently
2889 /// inside an ObjC method. Perform some additional checks and determine if we
2890 /// should form a reference to an ivar. If so, build an expression referencing
2891 /// that ivar.
2892 ExprResult
LookupInObjCMethod(LookupResult & Lookup,Scope * S,IdentifierInfo * II,bool AllowBuiltinCreation)2893 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2894                          IdentifierInfo *II, bool AllowBuiltinCreation) {
2895   // FIXME: Integrate this lookup step into LookupParsedName.
2896   DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
2897   if (Ivar.isInvalid())
2898     return ExprError();
2899   if (Ivar.isUsable())
2900     return BuildIvarRefExpr(S, Lookup.getNameLoc(),
2901                             cast<ObjCIvarDecl>(Ivar.get()));
2902 
2903   if (Lookup.empty() && II && AllowBuiltinCreation)
2904     LookupBuiltin(Lookup);
2905 
2906   // Sentinel value saying that we didn't do anything special.
2907   return ExprResult(false);
2908 }
2909 
2910 /// Cast a base object to a member's actual type.
2911 ///
2912 /// There are two relevant checks:
2913 ///
2914 /// C++ [class.access.base]p7:
2915 ///
2916 ///   If a class member access operator [...] is used to access a non-static
2917 ///   data member or non-static member function, the reference is ill-formed if
2918 ///   the left operand [...] cannot be implicitly converted to a pointer to the
2919 ///   naming class of the right operand.
2920 ///
2921 /// C++ [expr.ref]p7:
2922 ///
2923 ///   If E2 is a non-static data member or a non-static member function, the
2924 ///   program is ill-formed if the class of which E2 is directly a member is an
2925 ///   ambiguous base (11.8) of the naming class (11.9.3) of E2.
2926 ///
2927 /// Note that the latter check does not consider access; the access of the
2928 /// "real" base class is checked as appropriate when checking the access of the
2929 /// member name.
2930 ExprResult
PerformObjectMemberConversion(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,NamedDecl * Member)2931 Sema::PerformObjectMemberConversion(Expr *From,
2932                                     NestedNameSpecifier *Qualifier,
2933                                     NamedDecl *FoundDecl,
2934                                     NamedDecl *Member) {
2935   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2936   if (!RD)
2937     return From;
2938 
2939   QualType DestRecordType;
2940   QualType DestType;
2941   QualType FromRecordType;
2942   QualType FromType = From->getType();
2943   bool PointerConversions = false;
2944   if (isa<FieldDecl>(Member)) {
2945     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2946     auto FromPtrType = FromType->getAs<PointerType>();
2947     DestRecordType = Context.getAddrSpaceQualType(
2948         DestRecordType, FromPtrType
2949                             ? FromType->getPointeeType().getAddressSpace()
2950                             : FromType.getAddressSpace());
2951 
2952     if (FromPtrType) {
2953       DestType = Context.getPointerType(DestRecordType);
2954       FromRecordType = FromPtrType->getPointeeType();
2955       PointerConversions = true;
2956     } else {
2957       DestType = DestRecordType;
2958       FromRecordType = FromType;
2959     }
2960   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2961     if (Method->isStatic())
2962       return From;
2963 
2964     DestType = Method->getThisType();
2965     DestRecordType = DestType->getPointeeType();
2966 
2967     if (FromType->getAs<PointerType>()) {
2968       FromRecordType = FromType->getPointeeType();
2969       PointerConversions = true;
2970     } else {
2971       FromRecordType = FromType;
2972       DestType = DestRecordType;
2973     }
2974 
2975     LangAS FromAS = FromRecordType.getAddressSpace();
2976     LangAS DestAS = DestRecordType.getAddressSpace();
2977     if (FromAS != DestAS) {
2978       QualType FromRecordTypeWithoutAS =
2979           Context.removeAddrSpaceQualType(FromRecordType);
2980       QualType FromTypeWithDestAS =
2981           Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
2982       if (PointerConversions)
2983         FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
2984       From = ImpCastExprToType(From, FromTypeWithDestAS,
2985                                CK_AddressSpaceConversion, From->getValueKind())
2986                  .get();
2987     }
2988   } else {
2989     // No conversion necessary.
2990     return From;
2991   }
2992 
2993   if (DestType->isDependentType() || FromType->isDependentType())
2994     return From;
2995 
2996   // If the unqualified types are the same, no conversion is necessary.
2997   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2998     return From;
2999 
3000   SourceRange FromRange = From->getSourceRange();
3001   SourceLocation FromLoc = FromRange.getBegin();
3002 
3003   ExprValueKind VK = From->getValueKind();
3004 
3005   // C++ [class.member.lookup]p8:
3006   //   [...] Ambiguities can often be resolved by qualifying a name with its
3007   //   class name.
3008   //
3009   // If the member was a qualified name and the qualified referred to a
3010   // specific base subobject type, we'll cast to that intermediate type
3011   // first and then to the object in which the member is declared. That allows
3012   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3013   //
3014   //   class Base { public: int x; };
3015   //   class Derived1 : public Base { };
3016   //   class Derived2 : public Base { };
3017   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
3018   //
3019   //   void VeryDerived::f() {
3020   //     x = 17; // error: ambiguous base subobjects
3021   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
3022   //   }
3023   if (Qualifier && Qualifier->getAsType()) {
3024     QualType QType = QualType(Qualifier->getAsType(), 0);
3025     assert(QType->isRecordType() && "lookup done with non-record type");
3026 
3027     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
3028 
3029     // In C++98, the qualifier type doesn't actually have to be a base
3030     // type of the object type, in which case we just ignore it.
3031     // Otherwise build the appropriate casts.
3032     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3033       CXXCastPath BasePath;
3034       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3035                                        FromLoc, FromRange, &BasePath))
3036         return ExprError();
3037 
3038       if (PointerConversions)
3039         QType = Context.getPointerType(QType);
3040       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3041                                VK, &BasePath).get();
3042 
3043       FromType = QType;
3044       FromRecordType = QRecordType;
3045 
3046       // If the qualifier type was the same as the destination type,
3047       // we're done.
3048       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3049         return From;
3050     }
3051   }
3052 
3053   CXXCastPath BasePath;
3054   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3055                                    FromLoc, FromRange, &BasePath,
3056                                    /*IgnoreAccess=*/true))
3057     return ExprError();
3058 
3059   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3060                            VK, &BasePath);
3061 }
3062 
UseArgumentDependentLookup(const CXXScopeSpec & SS,const LookupResult & R,bool HasTrailingLParen)3063 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3064                                       const LookupResult &R,
3065                                       bool HasTrailingLParen) {
3066   // Only when used directly as the postfix-expression of a call.
3067   if (!HasTrailingLParen)
3068     return false;
3069 
3070   // Never if a scope specifier was provided.
3071   if (SS.isSet())
3072     return false;
3073 
3074   // Only in C++ or ObjC++.
3075   if (!getLangOpts().CPlusPlus)
3076     return false;
3077 
3078   // Turn off ADL when we find certain kinds of declarations during
3079   // normal lookup:
3080   for (NamedDecl *D : R) {
3081     // C++0x [basic.lookup.argdep]p3:
3082     //     -- a declaration of a class member
3083     // Since using decls preserve this property, we check this on the
3084     // original decl.
3085     if (D->isCXXClassMember())
3086       return false;
3087 
3088     // C++0x [basic.lookup.argdep]p3:
3089     //     -- a block-scope function declaration that is not a
3090     //        using-declaration
3091     // NOTE: we also trigger this for function templates (in fact, we
3092     // don't check the decl type at all, since all other decl types
3093     // turn off ADL anyway).
3094     if (isa<UsingShadowDecl>(D))
3095       D = cast<UsingShadowDecl>(D)->getTargetDecl();
3096     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3097       return false;
3098 
3099     // C++0x [basic.lookup.argdep]p3:
3100     //     -- a declaration that is neither a function or a function
3101     //        template
3102     // And also for builtin functions.
3103     if (isa<FunctionDecl>(D)) {
3104       FunctionDecl *FDecl = cast<FunctionDecl>(D);
3105 
3106       // But also builtin functions.
3107       if (FDecl->getBuiltinID() && FDecl->isImplicit())
3108         return false;
3109     } else if (!isa<FunctionTemplateDecl>(D))
3110       return false;
3111   }
3112 
3113   return true;
3114 }
3115 
3116 
3117 /// Diagnoses obvious problems with the use of the given declaration
3118 /// as an expression.  This is only actually called for lookups that
3119 /// were not overloaded, and it doesn't promise that the declaration
3120 /// will in fact be used.
CheckDeclInExpr(Sema & S,SourceLocation Loc,NamedDecl * D)3121 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
3122   if (D->isInvalidDecl())
3123     return true;
3124 
3125   if (isa<TypedefNameDecl>(D)) {
3126     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3127     return true;
3128   }
3129 
3130   if (isa<ObjCInterfaceDecl>(D)) {
3131     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3132     return true;
3133   }
3134 
3135   if (isa<NamespaceDecl>(D)) {
3136     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3137     return true;
3138   }
3139 
3140   return false;
3141 }
3142 
3143 // Certain multiversion types should be treated as overloaded even when there is
3144 // only one result.
ShouldLookupResultBeMultiVersionOverload(const LookupResult & R)3145 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3146   assert(R.isSingleResult() && "Expected only a single result");
3147   const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3148   return FD &&
3149          (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3150 }
3151 
BuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool NeedsADL,bool AcceptInvalidDecl)3152 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3153                                           LookupResult &R, bool NeedsADL,
3154                                           bool AcceptInvalidDecl) {
3155   // If this is a single, fully-resolved result and we don't need ADL,
3156   // just build an ordinary singleton decl ref.
3157   if (!NeedsADL && R.isSingleResult() &&
3158       !R.getAsSingle<FunctionTemplateDecl>() &&
3159       !ShouldLookupResultBeMultiVersionOverload(R))
3160     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3161                                     R.getRepresentativeDecl(), nullptr,
3162                                     AcceptInvalidDecl);
3163 
3164   // We only need to check the declaration if there's exactly one
3165   // result, because in the overloaded case the results can only be
3166   // functions and function templates.
3167   if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3168       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
3169     return ExprError();
3170 
3171   // Otherwise, just build an unresolved lookup expression.  Suppress
3172   // any lookup-related diagnostics; we'll hash these out later, when
3173   // we've picked a target.
3174   R.suppressDiagnostics();
3175 
3176   UnresolvedLookupExpr *ULE
3177     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3178                                    SS.getWithLocInContext(Context),
3179                                    R.getLookupNameInfo(),
3180                                    NeedsADL, R.isOverloadedResult(),
3181                                    R.begin(), R.end());
3182 
3183   return ULE;
3184 }
3185 
3186 static void
3187 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
3188                                    ValueDecl *var, DeclContext *DC);
3189 
3190 /// Complete semantic analysis for a reference to the given declaration.
BuildDeclarationNameExpr(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,NamedDecl * D,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,bool AcceptInvalidDecl)3191 ExprResult Sema::BuildDeclarationNameExpr(
3192     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3193     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3194     bool AcceptInvalidDecl) {
3195   assert(D && "Cannot refer to a NULL declaration");
3196   assert(!isa<FunctionTemplateDecl>(D) &&
3197          "Cannot refer unambiguously to a function template");
3198 
3199   SourceLocation Loc = NameInfo.getLoc();
3200   if (CheckDeclInExpr(*this, Loc, D))
3201     return ExprError();
3202 
3203   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3204     // Specifically diagnose references to class templates that are missing
3205     // a template argument list.
3206     diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3207     return ExprError();
3208   }
3209 
3210   // Make sure that we're referring to a value.
3211   ValueDecl *VD = dyn_cast<ValueDecl>(D);
3212   if (!VD) {
3213     Diag(Loc, diag::err_ref_non_value)
3214       << D << SS.getRange();
3215     Diag(D->getLocation(), diag::note_declared_at);
3216     return ExprError();
3217   }
3218 
3219   // Check whether this declaration can be used. Note that we suppress
3220   // this check when we're going to perform argument-dependent lookup
3221   // on this function name, because this might not be the function
3222   // that overload resolution actually selects.
3223   if (DiagnoseUseOfDecl(VD, Loc))
3224     return ExprError();
3225 
3226   // Only create DeclRefExpr's for valid Decl's.
3227   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3228     return ExprError();
3229 
3230   // Handle members of anonymous structs and unions.  If we got here,
3231   // and the reference is to a class member indirect field, then this
3232   // must be the subject of a pointer-to-member expression.
3233   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
3234     if (!indirectField->isCXXClassMember())
3235       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3236                                                       indirectField);
3237 
3238   {
3239     QualType type = VD->getType();
3240     if (type.isNull())
3241       return ExprError();
3242     ExprValueKind valueKind = VK_RValue;
3243 
3244     // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3245     // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3246     // is expanded by some outer '...' in the context of the use.
3247     type = type.getNonPackExpansionType();
3248 
3249     switch (D->getKind()) {
3250     // Ignore all the non-ValueDecl kinds.
3251 #define ABSTRACT_DECL(kind)
3252 #define VALUE(type, base)
3253 #define DECL(type, base) \
3254     case Decl::type:
3255 #include "clang/AST/DeclNodes.inc"
3256       llvm_unreachable("invalid value decl kind");
3257 
3258     // These shouldn't make it here.
3259     case Decl::ObjCAtDefsField:
3260       llvm_unreachable("forming non-member reference to ivar?");
3261 
3262     // Enum constants are always r-values and never references.
3263     // Unresolved using declarations are dependent.
3264     case Decl::EnumConstant:
3265     case Decl::UnresolvedUsingValue:
3266     case Decl::OMPDeclareReduction:
3267     case Decl::OMPDeclareMapper:
3268       valueKind = VK_RValue;
3269       break;
3270 
3271     // Fields and indirect fields that got here must be for
3272     // pointer-to-member expressions; we just call them l-values for
3273     // internal consistency, because this subexpression doesn't really
3274     // exist in the high-level semantics.
3275     case Decl::Field:
3276     case Decl::IndirectField:
3277     case Decl::ObjCIvar:
3278       assert(getLangOpts().CPlusPlus &&
3279              "building reference to field in C?");
3280 
3281       // These can't have reference type in well-formed programs, but
3282       // for internal consistency we do this anyway.
3283       type = type.getNonReferenceType();
3284       valueKind = VK_LValue;
3285       break;
3286 
3287     // Non-type template parameters are either l-values or r-values
3288     // depending on the type.
3289     case Decl::NonTypeTemplateParm: {
3290       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3291         type = reftype->getPointeeType();
3292         valueKind = VK_LValue; // even if the parameter is an r-value reference
3293         break;
3294       }
3295 
3296       // [expr.prim.id.unqual]p2:
3297       //   If the entity is a template parameter object for a template
3298       //   parameter of type T, the type of the expression is const T.
3299       //   [...] The expression is an lvalue if the entity is a [...] template
3300       //   parameter object.
3301       if (type->isRecordType()) {
3302         type = type.getUnqualifiedType().withConst();
3303         valueKind = VK_LValue;
3304         break;
3305       }
3306 
3307       // For non-references, we need to strip qualifiers just in case
3308       // the template parameter was declared as 'const int' or whatever.
3309       valueKind = VK_RValue;
3310       type = type.getUnqualifiedType();
3311       break;
3312     }
3313 
3314     case Decl::Var:
3315     case Decl::VarTemplateSpecialization:
3316     case Decl::VarTemplatePartialSpecialization:
3317     case Decl::Decomposition:
3318     case Decl::OMPCapturedExpr:
3319       // In C, "extern void blah;" is valid and is an r-value.
3320       if (!getLangOpts().CPlusPlus &&
3321           !type.hasQualifiers() &&
3322           type->isVoidType()) {
3323         valueKind = VK_RValue;
3324         break;
3325       }
3326       LLVM_FALLTHROUGH;
3327 
3328     case Decl::ImplicitParam:
3329     case Decl::ParmVar: {
3330       // These are always l-values.
3331       valueKind = VK_LValue;
3332       type = type.getNonReferenceType();
3333 
3334       // FIXME: Does the addition of const really only apply in
3335       // potentially-evaluated contexts? Since the variable isn't actually
3336       // captured in an unevaluated context, it seems that the answer is no.
3337       if (!isUnevaluatedContext()) {
3338         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3339         if (!CapturedType.isNull())
3340           type = CapturedType;
3341       }
3342 
3343       break;
3344     }
3345 
3346     case Decl::Binding: {
3347       // These are always lvalues.
3348       valueKind = VK_LValue;
3349       type = type.getNonReferenceType();
3350       // FIXME: Support lambda-capture of BindingDecls, once CWG actually
3351       // decides how that's supposed to work.
3352       auto *BD = cast<BindingDecl>(VD);
3353       if (BD->getDeclContext() != CurContext) {
3354         auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl());
3355         if (DD && DD->hasLocalStorage())
3356           diagnoseUncapturableValueReference(*this, Loc, BD, CurContext);
3357       }
3358       break;
3359     }
3360 
3361     case Decl::Function: {
3362       if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3363         if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
3364           type = Context.BuiltinFnTy;
3365           valueKind = VK_RValue;
3366           break;
3367         }
3368       }
3369 
3370       const FunctionType *fty = type->castAs<FunctionType>();
3371 
3372       // If we're referring to a function with an __unknown_anytype
3373       // result type, make the entire expression __unknown_anytype.
3374       if (fty->getReturnType() == Context.UnknownAnyTy) {
3375         type = Context.UnknownAnyTy;
3376         valueKind = VK_RValue;
3377         break;
3378       }
3379 
3380       // Functions are l-values in C++.
3381       if (getLangOpts().CPlusPlus) {
3382         valueKind = VK_LValue;
3383         break;
3384       }
3385 
3386       // C99 DR 316 says that, if a function type comes from a
3387       // function definition (without a prototype), that type is only
3388       // used for checking compatibility. Therefore, when referencing
3389       // the function, we pretend that we don't have the full function
3390       // type.
3391       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
3392           isa<FunctionProtoType>(fty))
3393         type = Context.getFunctionNoProtoType(fty->getReturnType(),
3394                                               fty->getExtInfo());
3395 
3396       // Functions are r-values in C.
3397       valueKind = VK_RValue;
3398       break;
3399     }
3400 
3401     case Decl::CXXDeductionGuide:
3402       llvm_unreachable("building reference to deduction guide");
3403 
3404     case Decl::MSProperty:
3405     case Decl::MSGuid:
3406     case Decl::TemplateParamObject:
3407       // FIXME: Should MSGuidDecl and template parameter objects be subject to
3408       // capture in OpenMP, or duplicated between host and device?
3409       valueKind = VK_LValue;
3410       break;
3411 
3412     case Decl::CXXMethod:
3413       // If we're referring to a method with an __unknown_anytype
3414       // result type, make the entire expression __unknown_anytype.
3415       // This should only be possible with a type written directly.
3416       if (const FunctionProtoType *proto
3417             = dyn_cast<FunctionProtoType>(VD->getType()))
3418         if (proto->getReturnType() == Context.UnknownAnyTy) {
3419           type = Context.UnknownAnyTy;
3420           valueKind = VK_RValue;
3421           break;
3422         }
3423 
3424       // C++ methods are l-values if static, r-values if non-static.
3425       if (cast<CXXMethodDecl>(VD)->isStatic()) {
3426         valueKind = VK_LValue;
3427         break;
3428       }
3429       LLVM_FALLTHROUGH;
3430 
3431     case Decl::CXXConversion:
3432     case Decl::CXXDestructor:
3433     case Decl::CXXConstructor:
3434       valueKind = VK_RValue;
3435       break;
3436     }
3437 
3438     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3439                             /*FIXME: TemplateKWLoc*/ SourceLocation(),
3440                             TemplateArgs);
3441   }
3442 }
3443 
ConvertUTF8ToWideString(unsigned CharByteWidth,StringRef Source,SmallString<32> & Target)3444 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3445                                     SmallString<32> &Target) {
3446   Target.resize(CharByteWidth * (Source.size() + 1));
3447   char *ResultPtr = &Target[0];
3448   const llvm::UTF8 *ErrorPtr;
3449   bool success =
3450       llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3451   (void)success;
3452   assert(success);
3453   Target.resize(ResultPtr - &Target[0]);
3454 }
3455 
BuildPredefinedExpr(SourceLocation Loc,PredefinedExpr::IdentKind IK)3456 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3457                                      PredefinedExpr::IdentKind IK) {
3458   // Pick the current block, lambda, captured statement or function.
3459   Decl *currentDecl = nullptr;
3460   if (const BlockScopeInfo *BSI = getCurBlock())
3461     currentDecl = BSI->TheDecl;
3462   else if (const LambdaScopeInfo *LSI = getCurLambda())
3463     currentDecl = LSI->CallOperator;
3464   else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3465     currentDecl = CSI->TheCapturedDecl;
3466   else
3467     currentDecl = getCurFunctionOrMethodDecl();
3468 
3469   if (!currentDecl) {
3470     Diag(Loc, diag::ext_predef_outside_function);
3471     currentDecl = Context.getTranslationUnitDecl();
3472   }
3473 
3474   QualType ResTy;
3475   StringLiteral *SL = nullptr;
3476   if (cast<DeclContext>(currentDecl)->isDependentContext())
3477     ResTy = Context.DependentTy;
3478   else {
3479     // Pre-defined identifiers are of type char[x], where x is the length of
3480     // the string.
3481     auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3482     unsigned Length = Str.length();
3483 
3484     llvm::APInt LengthI(32, Length + 1);
3485     if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
3486       ResTy =
3487           Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3488       SmallString<32> RawChars;
3489       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3490                               Str, RawChars);
3491       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3492                                            ArrayType::Normal,
3493                                            /*IndexTypeQuals*/ 0);
3494       SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3495                                  /*Pascal*/ false, ResTy, Loc);
3496     } else {
3497       ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3498       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3499                                            ArrayType::Normal,
3500                                            /*IndexTypeQuals*/ 0);
3501       SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
3502                                  /*Pascal*/ false, ResTy, Loc);
3503     }
3504   }
3505 
3506   return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
3507 }
3508 
ActOnPredefinedExpr(SourceLocation Loc,tok::TokenKind Kind)3509 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3510   PredefinedExpr::IdentKind IK;
3511 
3512   switch (Kind) {
3513   default: llvm_unreachable("Unknown simple primary expr!");
3514   case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3515   case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
3516   case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
3517   case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
3518   case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
3519   case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
3520   case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
3521   }
3522 
3523   return BuildPredefinedExpr(Loc, IK);
3524 }
3525 
ActOnCharacterConstant(const Token & Tok,Scope * UDLScope)3526 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3527   SmallString<16> CharBuffer;
3528   bool Invalid = false;
3529   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3530   if (Invalid)
3531     return ExprError();
3532 
3533   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3534                             PP, Tok.getKind());
3535   if (Literal.hadError())
3536     return ExprError();
3537 
3538   QualType Ty;
3539   if (Literal.isWide())
3540     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3541   else if (Literal.isUTF8() && getLangOpts().Char8)
3542     Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3543   else if (Literal.isUTF16())
3544     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3545   else if (Literal.isUTF32())
3546     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3547   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3548     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3549   else
3550     Ty = Context.CharTy;  // 'x' -> char in C++
3551 
3552   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3553   if (Literal.isWide())
3554     Kind = CharacterLiteral::Wide;
3555   else if (Literal.isUTF16())
3556     Kind = CharacterLiteral::UTF16;
3557   else if (Literal.isUTF32())
3558     Kind = CharacterLiteral::UTF32;
3559   else if (Literal.isUTF8())
3560     Kind = CharacterLiteral::UTF8;
3561 
3562   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3563                                              Tok.getLocation());
3564 
3565   if (Literal.getUDSuffix().empty())
3566     return Lit;
3567 
3568   // We're building a user-defined literal.
3569   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3570   SourceLocation UDSuffixLoc =
3571     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3572 
3573   // Make sure we're allowed user-defined literals here.
3574   if (!UDLScope)
3575     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3576 
3577   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3578   //   operator "" X (ch)
3579   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3580                                         Lit, Tok.getLocation());
3581 }
3582 
ActOnIntegerConstant(SourceLocation Loc,uint64_t Val)3583 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3584   unsigned IntSize = Context.getTargetInfo().getIntWidth();
3585   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3586                                 Context.IntTy, Loc);
3587 }
3588 
BuildFloatingLiteral(Sema & S,NumericLiteralParser & Literal,QualType Ty,SourceLocation Loc)3589 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3590                                   QualType Ty, SourceLocation Loc) {
3591   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3592 
3593   using llvm::APFloat;
3594   APFloat Val(Format);
3595 
3596   APFloat::opStatus result = Literal.GetFloatValue(Val);
3597 
3598   // Overflow is always an error, but underflow is only an error if
3599   // we underflowed to zero (APFloat reports denormals as underflow).
3600   if ((result & APFloat::opOverflow) ||
3601       ((result & APFloat::opUnderflow) && Val.isZero())) {
3602     unsigned diagnostic;
3603     SmallString<20> buffer;
3604     if (result & APFloat::opOverflow) {
3605       diagnostic = diag::warn_float_overflow;
3606       APFloat::getLargest(Format).toString(buffer);
3607     } else {
3608       diagnostic = diag::warn_float_underflow;
3609       APFloat::getSmallest(Format).toString(buffer);
3610     }
3611 
3612     S.Diag(Loc, diagnostic)
3613       << Ty
3614       << StringRef(buffer.data(), buffer.size());
3615   }
3616 
3617   bool isExact = (result == APFloat::opOK);
3618   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3619 }
3620 
CheckLoopHintExpr(Expr * E,SourceLocation Loc)3621 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3622   assert(E && "Invalid expression");
3623 
3624   if (E->isValueDependent())
3625     return false;
3626 
3627   QualType QT = E->getType();
3628   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3629     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3630     return true;
3631   }
3632 
3633   llvm::APSInt ValueAPS;
3634   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3635 
3636   if (R.isInvalid())
3637     return true;
3638 
3639   bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3640   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3641     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3642         << ValueAPS.toString(10) << ValueIsPositive;
3643     return true;
3644   }
3645 
3646   return false;
3647 }
3648 
ActOnNumericConstant(const Token & Tok,Scope * UDLScope)3649 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3650   // Fast path for a single digit (which is quite common).  A single digit
3651   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3652   if (Tok.getLength() == 1) {
3653     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3654     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3655   }
3656 
3657   SmallString<128> SpellingBuffer;
3658   // NumericLiteralParser wants to overread by one character.  Add padding to
3659   // the buffer in case the token is copied to the buffer.  If getSpelling()
3660   // returns a StringRef to the memory buffer, it should have a null char at
3661   // the EOF, so it is also safe.
3662   SpellingBuffer.resize(Tok.getLength() + 1);
3663 
3664   // Get the spelling of the token, which eliminates trigraphs, etc.
3665   bool Invalid = false;
3666   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3667   if (Invalid)
3668     return ExprError();
3669 
3670   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3671                                PP.getSourceManager(), PP.getLangOpts(),
3672                                PP.getTargetInfo(), PP.getDiagnostics());
3673   if (Literal.hadError)
3674     return ExprError();
3675 
3676   if (Literal.hasUDSuffix()) {
3677     // We're building a user-defined literal.
3678     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3679     SourceLocation UDSuffixLoc =
3680       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3681 
3682     // Make sure we're allowed user-defined literals here.
3683     if (!UDLScope)
3684       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3685 
3686     QualType CookedTy;
3687     if (Literal.isFloatingLiteral()) {
3688       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3689       // long double, the literal is treated as a call of the form
3690       //   operator "" X (f L)
3691       CookedTy = Context.LongDoubleTy;
3692     } else {
3693       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3694       // unsigned long long, the literal is treated as a call of the form
3695       //   operator "" X (n ULL)
3696       CookedTy = Context.UnsignedLongLongTy;
3697     }
3698 
3699     DeclarationName OpName =
3700       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3701     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3702     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3703 
3704     SourceLocation TokLoc = Tok.getLocation();
3705 
3706     // Perform literal operator lookup to determine if we're building a raw
3707     // literal or a cooked one.
3708     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3709     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3710                                   /*AllowRaw*/ true, /*AllowTemplate*/ true,
3711                                   /*AllowStringTemplatePack*/ false,
3712                                   /*DiagnoseMissing*/ !Literal.isImaginary)) {
3713     case LOLR_ErrorNoDiagnostic:
3714       // Lookup failure for imaginary constants isn't fatal, there's still the
3715       // GNU extension producing _Complex types.
3716       break;
3717     case LOLR_Error:
3718       return ExprError();
3719     case LOLR_Cooked: {
3720       Expr *Lit;
3721       if (Literal.isFloatingLiteral()) {
3722         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3723       } else {
3724         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3725         if (Literal.GetIntegerValue(ResultVal))
3726           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3727               << /* Unsigned */ 1;
3728         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3729                                      Tok.getLocation());
3730       }
3731       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3732     }
3733 
3734     case LOLR_Raw: {
3735       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3736       // literal is treated as a call of the form
3737       //   operator "" X ("n")
3738       unsigned Length = Literal.getUDSuffixOffset();
3739       QualType StrTy = Context.getConstantArrayType(
3740           Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3741           llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0);
3742       Expr *Lit = StringLiteral::Create(
3743           Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
3744           /*Pascal*/false, StrTy, &TokLoc, 1);
3745       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3746     }
3747 
3748     case LOLR_Template: {
3749       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3750       // template), L is treated as a call fo the form
3751       //   operator "" X <'c1', 'c2', ... 'ck'>()
3752       // where n is the source character sequence c1 c2 ... ck.
3753       TemplateArgumentListInfo ExplicitArgs;
3754       unsigned CharBits = Context.getIntWidth(Context.CharTy);
3755       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3756       llvm::APSInt Value(CharBits, CharIsUnsigned);
3757       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3758         Value = TokSpelling[I];
3759         TemplateArgument Arg(Context, Value, Context.CharTy);
3760         TemplateArgumentLocInfo ArgInfo;
3761         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3762       }
3763       return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3764                                       &ExplicitArgs);
3765     }
3766     case LOLR_StringTemplatePack:
3767       llvm_unreachable("unexpected literal operator lookup result");
3768     }
3769   }
3770 
3771   Expr *Res;
3772 
3773   if (Literal.isFixedPointLiteral()) {
3774     QualType Ty;
3775 
3776     if (Literal.isAccum) {
3777       if (Literal.isHalf) {
3778         Ty = Context.ShortAccumTy;
3779       } else if (Literal.isLong) {
3780         Ty = Context.LongAccumTy;
3781       } else {
3782         Ty = Context.AccumTy;
3783       }
3784     } else if (Literal.isFract) {
3785       if (Literal.isHalf) {
3786         Ty = Context.ShortFractTy;
3787       } else if (Literal.isLong) {
3788         Ty = Context.LongFractTy;
3789       } else {
3790         Ty = Context.FractTy;
3791       }
3792     }
3793 
3794     if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3795 
3796     bool isSigned = !Literal.isUnsigned;
3797     unsigned scale = Context.getFixedPointScale(Ty);
3798     unsigned bit_width = Context.getTypeInfo(Ty).Width;
3799 
3800     llvm::APInt Val(bit_width, 0, isSigned);
3801     bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3802     bool ValIsZero = Val.isNullValue() && !Overflowed;
3803 
3804     auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3805     if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3806       // Clause 6.4.4 - The value of a constant shall be in the range of
3807       // representable values for its type, with exception for constants of a
3808       // fract type with a value of exactly 1; such a constant shall denote
3809       // the maximal value for the type.
3810       --Val;
3811     else if (Val.ugt(MaxVal) || Overflowed)
3812       Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3813 
3814     Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3815                                               Tok.getLocation(), scale);
3816   } else if (Literal.isFloatingLiteral()) {
3817     QualType Ty;
3818     if (Literal.isHalf){
3819       if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
3820         Ty = Context.HalfTy;
3821       else {
3822         Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3823         return ExprError();
3824       }
3825     } else if (Literal.isFloat)
3826       Ty = Context.FloatTy;
3827     else if (Literal.isLong)
3828       Ty = Context.LongDoubleTy;
3829     else if (Literal.isFloat16)
3830       Ty = Context.Float16Ty;
3831     else if (Literal.isFloat128)
3832       Ty = Context.Float128Ty;
3833     else
3834       Ty = Context.DoubleTy;
3835 
3836     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3837 
3838     if (Ty == Context.DoubleTy) {
3839       if (getLangOpts().SinglePrecisionConstants) {
3840         if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
3841           Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3842         }
3843       } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
3844                                              "cl_khr_fp64", getLangOpts())) {
3845         // Impose single-precision float type when cl_khr_fp64 is not enabled.
3846         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
3847             << (getLangOpts().OpenCLVersion >= 300);
3848         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3849       }
3850     }
3851   } else if (!Literal.isIntegerLiteral()) {
3852     return ExprError();
3853   } else {
3854     QualType Ty;
3855 
3856     // 'long long' is a C99 or C++11 feature.
3857     if (!getLangOpts().C99 && Literal.isLongLong) {
3858       if (getLangOpts().CPlusPlus)
3859         Diag(Tok.getLocation(),
3860              getLangOpts().CPlusPlus11 ?
3861              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3862       else
3863         Diag(Tok.getLocation(), diag::ext_c99_longlong);
3864     }
3865 
3866     // 'z/uz' literals are a C++2b feature.
3867     if (Literal.isSizeT)
3868       Diag(Tok.getLocation(), getLangOpts().CPlusPlus
3869                                   ? getLangOpts().CPlusPlus2b
3870                                         ? diag::warn_cxx20_compat_size_t_suffix
3871                                         : diag::ext_cxx2b_size_t_suffix
3872                                   : diag::err_cxx2b_size_t_suffix);
3873 
3874     // Get the value in the widest-possible width.
3875     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3876     llvm::APInt ResultVal(MaxWidth, 0);
3877 
3878     if (Literal.GetIntegerValue(ResultVal)) {
3879       // If this value didn't fit into uintmax_t, error and force to ull.
3880       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3881           << /* Unsigned */ 1;
3882       Ty = Context.UnsignedLongLongTy;
3883       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3884              "long long is not intmax_t?");
3885     } else {
3886       // If this value fits into a ULL, try to figure out what else it fits into
3887       // according to the rules of C99 6.4.4.1p5.
3888 
3889       // Octal, Hexadecimal, and integers with a U suffix are allowed to
3890       // be an unsigned int.
3891       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3892 
3893       // Check from smallest to largest, picking the smallest type we can.
3894       unsigned Width = 0;
3895 
3896       // Microsoft specific integer suffixes are explicitly sized.
3897       if (Literal.MicrosoftInteger) {
3898         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3899           Width = 8;
3900           Ty = Context.CharTy;
3901         } else {
3902           Width = Literal.MicrosoftInteger;
3903           Ty = Context.getIntTypeForBitwidth(Width,
3904                                              /*Signed=*/!Literal.isUnsigned);
3905         }
3906       }
3907 
3908       // Check C++2b size_t literals.
3909       if (Literal.isSizeT) {
3910         assert(!Literal.MicrosoftInteger &&
3911                "size_t literals can't be Microsoft literals");
3912         unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
3913             Context.getTargetInfo().getSizeType());
3914 
3915         // Does it fit in size_t?
3916         if (ResultVal.isIntN(SizeTSize)) {
3917           // Does it fit in ssize_t?
3918           if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
3919             Ty = Context.getSignedSizeType();
3920           else if (AllowUnsigned)
3921             Ty = Context.getSizeType();
3922           Width = SizeTSize;
3923         }
3924       }
3925 
3926       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
3927           !Literal.isSizeT) {
3928         // Are int/unsigned possibilities?
3929         unsigned IntSize = Context.getTargetInfo().getIntWidth();
3930 
3931         // Does it fit in a unsigned int?
3932         if (ResultVal.isIntN(IntSize)) {
3933           // Does it fit in a signed int?
3934           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3935             Ty = Context.IntTy;
3936           else if (AllowUnsigned)
3937             Ty = Context.UnsignedIntTy;
3938           Width = IntSize;
3939         }
3940       }
3941 
3942       // Are long/unsigned long possibilities?
3943       if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
3944         unsigned LongSize = Context.getTargetInfo().getLongWidth();
3945 
3946         // Does it fit in a unsigned long?
3947         if (ResultVal.isIntN(LongSize)) {
3948           // Does it fit in a signed long?
3949           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3950             Ty = Context.LongTy;
3951           else if (AllowUnsigned)
3952             Ty = Context.UnsignedLongTy;
3953           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
3954           // is compatible.
3955           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
3956             const unsigned LongLongSize =
3957                 Context.getTargetInfo().getLongLongWidth();
3958             Diag(Tok.getLocation(),
3959                  getLangOpts().CPlusPlus
3960                      ? Literal.isLong
3961                            ? diag::warn_old_implicitly_unsigned_long_cxx
3962                            : /*C++98 UB*/ diag::
3963                                  ext_old_implicitly_unsigned_long_cxx
3964                      : diag::warn_old_implicitly_unsigned_long)
3965                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
3966                                             : /*will be ill-formed*/ 1);
3967             Ty = Context.UnsignedLongTy;
3968           }
3969           Width = LongSize;
3970         }
3971       }
3972 
3973       // Check long long if needed.
3974       if (Ty.isNull() && !Literal.isSizeT) {
3975         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3976 
3977         // Does it fit in a unsigned long long?
3978         if (ResultVal.isIntN(LongLongSize)) {
3979           // Does it fit in a signed long long?
3980           // To be compatible with MSVC, hex integer literals ending with the
3981           // LL or i64 suffix are always signed in Microsoft mode.
3982           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3983               (getLangOpts().MSVCCompat && Literal.isLongLong)))
3984             Ty = Context.LongLongTy;
3985           else if (AllowUnsigned)
3986             Ty = Context.UnsignedLongLongTy;
3987           Width = LongLongSize;
3988         }
3989       }
3990 
3991       // If we still couldn't decide a type, we either have 'size_t' literal
3992       // that is out of range, or a decimal literal that does not fit in a
3993       // signed long long and has no U suffix.
3994       if (Ty.isNull()) {
3995         if (Literal.isSizeT)
3996           Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
3997               << Literal.isUnsigned;
3998         else
3999           Diag(Tok.getLocation(),
4000                diag::ext_integer_literal_too_large_for_signed);
4001         Ty = Context.UnsignedLongLongTy;
4002         Width = Context.getTargetInfo().getLongLongWidth();
4003       }
4004 
4005       if (ResultVal.getBitWidth() != Width)
4006         ResultVal = ResultVal.trunc(Width);
4007     }
4008     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
4009   }
4010 
4011   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4012   if (Literal.isImaginary) {
4013     Res = new (Context) ImaginaryLiteral(Res,
4014                                         Context.getComplexType(Res->getType()));
4015 
4016     Diag(Tok.getLocation(), diag::ext_imaginary_constant);
4017   }
4018   return Res;
4019 }
4020 
ActOnParenExpr(SourceLocation L,SourceLocation R,Expr * E)4021 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4022   assert(E && "ActOnParenExpr() missing expr");
4023   return new (Context) ParenExpr(L, R, E);
4024 }
4025 
CheckVecStepTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange)4026 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4027                                          SourceLocation Loc,
4028                                          SourceRange ArgRange) {
4029   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4030   // scalar or vector data type argument..."
4031   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4032   // type (C99 6.2.5p18) or void.
4033   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4034     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4035       << T << ArgRange;
4036     return true;
4037   }
4038 
4039   assert((T->isVoidType() || !T->isIncompleteType()) &&
4040          "Scalar types should always be complete");
4041   return false;
4042 }
4043 
CheckExtensionTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)4044 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4045                                            SourceLocation Loc,
4046                                            SourceRange ArgRange,
4047                                            UnaryExprOrTypeTrait TraitKind) {
4048   // Invalid types must be hard errors for SFINAE in C++.
4049   if (S.LangOpts.CPlusPlus)
4050     return true;
4051 
4052   // C99 6.5.3.4p1:
4053   if (T->isFunctionType() &&
4054       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4055        TraitKind == UETT_PreferredAlignOf)) {
4056     // sizeof(function)/alignof(function) is allowed as an extension.
4057     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4058         << getTraitSpelling(TraitKind) << ArgRange;
4059     return false;
4060   }
4061 
4062   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4063   // this is an error (OpenCL v1.1 s6.3.k)
4064   if (T->isVoidType()) {
4065     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4066                                         : diag::ext_sizeof_alignof_void_type;
4067     S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4068     return false;
4069   }
4070 
4071   return true;
4072 }
4073 
CheckObjCTraitOperandConstraints(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)4074 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4075                                              SourceLocation Loc,
4076                                              SourceRange ArgRange,
4077                                              UnaryExprOrTypeTrait TraitKind) {
4078   // Reject sizeof(interface) and sizeof(interface<proto>) if the
4079   // runtime doesn't allow it.
4080   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4081     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4082       << T << (TraitKind == UETT_SizeOf)
4083       << ArgRange;
4084     return true;
4085   }
4086 
4087   return false;
4088 }
4089 
4090 /// Check whether E is a pointer from a decayed array type (the decayed
4091 /// pointer type is equal to T) and emit a warning if it is.
warnOnSizeofOnArrayDecay(Sema & S,SourceLocation Loc,QualType T,Expr * E)4092 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4093                                      Expr *E) {
4094   // Don't warn if the operation changed the type.
4095   if (T != E->getType())
4096     return;
4097 
4098   // Now look for array decays.
4099   ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
4100   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4101     return;
4102 
4103   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4104                                              << ICE->getType()
4105                                              << ICE->getSubExpr()->getType();
4106 }
4107 
4108 /// Check the constraints on expression operands to unary type expression
4109 /// and type traits.
4110 ///
4111 /// Completes any types necessary and validates the constraints on the operand
4112 /// expression. The logic mostly mirrors the type-based overload, but may modify
4113 /// the expression as it completes the type for that expression through template
4114 /// instantiation, etc.
CheckUnaryExprOrTypeTraitOperand(Expr * E,UnaryExprOrTypeTrait ExprKind)4115 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4116                                             UnaryExprOrTypeTrait ExprKind) {
4117   QualType ExprTy = E->getType();
4118   assert(!ExprTy->isReferenceType());
4119 
4120   bool IsUnevaluatedOperand =
4121       (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
4122        ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_VecStep);
4123   if (IsUnevaluatedOperand) {
4124     ExprResult Result = CheckUnevaluatedOperand(E);
4125     if (Result.isInvalid())
4126       return true;
4127     E = Result.get();
4128   }
4129 
4130   // The operand for sizeof and alignof is in an unevaluated expression context,
4131   // so side effects could result in unintended consequences.
4132   // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4133   // used to build SFINAE gadgets.
4134   // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4135   if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4136       !E->isInstantiationDependent() &&
4137       E->HasSideEffects(Context, false))
4138     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4139 
4140   if (ExprKind == UETT_VecStep)
4141     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4142                                         E->getSourceRange());
4143 
4144   // Explicitly list some types as extensions.
4145   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4146                                       E->getSourceRange(), ExprKind))
4147     return false;
4148 
4149   // 'alignof' applied to an expression only requires the base element type of
4150   // the expression to be complete. 'sizeof' requires the expression's type to
4151   // be complete (and will attempt to complete it if it's an array of unknown
4152   // bound).
4153   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4154     if (RequireCompleteSizedType(
4155             E->getExprLoc(), Context.getBaseElementType(E->getType()),
4156             diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4157             getTraitSpelling(ExprKind), E->getSourceRange()))
4158       return true;
4159   } else {
4160     if (RequireCompleteSizedExprType(
4161             E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4162             getTraitSpelling(ExprKind), E->getSourceRange()))
4163       return true;
4164   }
4165 
4166   // Completing the expression's type may have changed it.
4167   ExprTy = E->getType();
4168   assert(!ExprTy->isReferenceType());
4169 
4170   if (ExprTy->isFunctionType()) {
4171     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4172         << getTraitSpelling(ExprKind) << E->getSourceRange();
4173     return true;
4174   }
4175 
4176   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4177                                        E->getSourceRange(), ExprKind))
4178     return true;
4179 
4180   if (ExprKind == UETT_SizeOf) {
4181     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4182       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4183         QualType OType = PVD->getOriginalType();
4184         QualType Type = PVD->getType();
4185         if (Type->isPointerType() && OType->isArrayType()) {
4186           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4187             << Type << OType;
4188           Diag(PVD->getLocation(), diag::note_declared_at);
4189         }
4190       }
4191     }
4192 
4193     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4194     // decays into a pointer and returns an unintended result. This is most
4195     // likely a typo for "sizeof(array) op x".
4196     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4197       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4198                                BO->getLHS());
4199       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4200                                BO->getRHS());
4201     }
4202   }
4203 
4204   return false;
4205 }
4206 
4207 /// Check the constraints on operands to unary expression and type
4208 /// traits.
4209 ///
4210 /// This will complete any types necessary, and validate the various constraints
4211 /// on those operands.
4212 ///
4213 /// The UsualUnaryConversions() function is *not* called by this routine.
4214 /// C99 6.3.2.1p[2-4] all state:
4215 ///   Except when it is the operand of the sizeof operator ...
4216 ///
4217 /// C++ [expr.sizeof]p4
4218 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4219 ///   standard conversions are not applied to the operand of sizeof.
4220 ///
4221 /// This policy is followed for all of the unary trait expressions.
CheckUnaryExprOrTypeTraitOperand(QualType ExprType,SourceLocation OpLoc,SourceRange ExprRange,UnaryExprOrTypeTrait ExprKind)4222 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4223                                             SourceLocation OpLoc,
4224                                             SourceRange ExprRange,
4225                                             UnaryExprOrTypeTrait ExprKind) {
4226   if (ExprType->isDependentType())
4227     return false;
4228 
4229   // C++ [expr.sizeof]p2:
4230   //     When applied to a reference or a reference type, the result
4231   //     is the size of the referenced type.
4232   // C++11 [expr.alignof]p3:
4233   //     When alignof is applied to a reference type, the result
4234   //     shall be the alignment of the referenced type.
4235   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4236     ExprType = Ref->getPointeeType();
4237 
4238   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4239   //   When alignof or _Alignof is applied to an array type, the result
4240   //   is the alignment of the element type.
4241   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4242       ExprKind == UETT_OpenMPRequiredSimdAlign)
4243     ExprType = Context.getBaseElementType(ExprType);
4244 
4245   if (ExprKind == UETT_VecStep)
4246     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4247 
4248   // Explicitly list some types as extensions.
4249   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4250                                       ExprKind))
4251     return false;
4252 
4253   if (RequireCompleteSizedType(
4254           OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4255           getTraitSpelling(ExprKind), ExprRange))
4256     return true;
4257 
4258   if (ExprType->isFunctionType()) {
4259     Diag(OpLoc, diag::err_sizeof_alignof_function_type)
4260         << getTraitSpelling(ExprKind) << ExprRange;
4261     return true;
4262   }
4263 
4264   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4265                                        ExprKind))
4266     return true;
4267 
4268   return false;
4269 }
4270 
CheckAlignOfExpr(Sema & S,Expr * E,UnaryExprOrTypeTrait ExprKind)4271 static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4272   // Cannot know anything else if the expression is dependent.
4273   if (E->isTypeDependent())
4274     return false;
4275 
4276   if (E->getObjectKind() == OK_BitField) {
4277     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4278        << 1 << E->getSourceRange();
4279     return true;
4280   }
4281 
4282   ValueDecl *D = nullptr;
4283   Expr *Inner = E->IgnoreParens();
4284   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4285     D = DRE->getDecl();
4286   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4287     D = ME->getMemberDecl();
4288   }
4289 
4290   // If it's a field, require the containing struct to have a
4291   // complete definition so that we can compute the layout.
4292   //
4293   // This can happen in C++11 onwards, either by naming the member
4294   // in a way that is not transformed into a member access expression
4295   // (in an unevaluated operand, for instance), or by naming the member
4296   // in a trailing-return-type.
4297   //
4298   // For the record, since __alignof__ on expressions is a GCC
4299   // extension, GCC seems to permit this but always gives the
4300   // nonsensical answer 0.
4301   //
4302   // We don't really need the layout here --- we could instead just
4303   // directly check for all the appropriate alignment-lowing
4304   // attributes --- but that would require duplicating a lot of
4305   // logic that just isn't worth duplicating for such a marginal
4306   // use-case.
4307   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4308     // Fast path this check, since we at least know the record has a
4309     // definition if we can find a member of it.
4310     if (!FD->getParent()->isCompleteDefinition()) {
4311       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4312         << E->getSourceRange();
4313       return true;
4314     }
4315 
4316     // Otherwise, if it's a field, and the field doesn't have
4317     // reference type, then it must have a complete type (or be a
4318     // flexible array member, which we explicitly want to
4319     // white-list anyway), which makes the following checks trivial.
4320     if (!FD->getType()->isReferenceType())
4321       return false;
4322   }
4323 
4324   return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4325 }
4326 
CheckVecStepExpr(Expr * E)4327 bool Sema::CheckVecStepExpr(Expr *E) {
4328   E = E->IgnoreParens();
4329 
4330   // Cannot know anything else if the expression is dependent.
4331   if (E->isTypeDependent())
4332     return false;
4333 
4334   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4335 }
4336 
captureVariablyModifiedType(ASTContext & Context,QualType T,CapturingScopeInfo * CSI)4337 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4338                                         CapturingScopeInfo *CSI) {
4339   assert(T->isVariablyModifiedType());
4340   assert(CSI != nullptr);
4341 
4342   // We're going to walk down into the type and look for VLA expressions.
4343   do {
4344     const Type *Ty = T.getTypePtr();
4345     switch (Ty->getTypeClass()) {
4346 #define TYPE(Class, Base)
4347 #define ABSTRACT_TYPE(Class, Base)
4348 #define NON_CANONICAL_TYPE(Class, Base)
4349 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4350 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4351 #include "clang/AST/TypeNodes.inc"
4352       T = QualType();
4353       break;
4354     // These types are never variably-modified.
4355     case Type::Builtin:
4356     case Type::Complex:
4357     case Type::Vector:
4358     case Type::ExtVector:
4359     case Type::ConstantMatrix:
4360     case Type::Record:
4361     case Type::Enum:
4362     case Type::Elaborated:
4363     case Type::TemplateSpecialization:
4364     case Type::ObjCObject:
4365     case Type::ObjCInterface:
4366     case Type::ObjCObjectPointer:
4367     case Type::ObjCTypeParam:
4368     case Type::Pipe:
4369     case Type::ExtInt:
4370       llvm_unreachable("type class is never variably-modified!");
4371     case Type::Adjusted:
4372       T = cast<AdjustedType>(Ty)->getOriginalType();
4373       break;
4374     case Type::Decayed:
4375       T = cast<DecayedType>(Ty)->getPointeeType();
4376       break;
4377     case Type::Pointer:
4378       T = cast<PointerType>(Ty)->getPointeeType();
4379       break;
4380     case Type::BlockPointer:
4381       T = cast<BlockPointerType>(Ty)->getPointeeType();
4382       break;
4383     case Type::LValueReference:
4384     case Type::RValueReference:
4385       T = cast<ReferenceType>(Ty)->getPointeeType();
4386       break;
4387     case Type::MemberPointer:
4388       T = cast<MemberPointerType>(Ty)->getPointeeType();
4389       break;
4390     case Type::ConstantArray:
4391     case Type::IncompleteArray:
4392       // Losing element qualification here is fine.
4393       T = cast<ArrayType>(Ty)->getElementType();
4394       break;
4395     case Type::VariableArray: {
4396       // Losing element qualification here is fine.
4397       const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4398 
4399       // Unknown size indication requires no size computation.
4400       // Otherwise, evaluate and record it.
4401       auto Size = VAT->getSizeExpr();
4402       if (Size && !CSI->isVLATypeCaptured(VAT) &&
4403           (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4404         CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4405 
4406       T = VAT->getElementType();
4407       break;
4408     }
4409     case Type::FunctionProto:
4410     case Type::FunctionNoProto:
4411       T = cast<FunctionType>(Ty)->getReturnType();
4412       break;
4413     case Type::Paren:
4414     case Type::TypeOf:
4415     case Type::UnaryTransform:
4416     case Type::Attributed:
4417     case Type::SubstTemplateTypeParm:
4418     case Type::MacroQualified:
4419       // Keep walking after single level desugaring.
4420       T = T.getSingleStepDesugaredType(Context);
4421       break;
4422     case Type::Typedef:
4423       T = cast<TypedefType>(Ty)->desugar();
4424       break;
4425     case Type::Decltype:
4426       T = cast<DecltypeType>(Ty)->desugar();
4427       break;
4428     case Type::Auto:
4429     case Type::DeducedTemplateSpecialization:
4430       T = cast<DeducedType>(Ty)->getDeducedType();
4431       break;
4432     case Type::TypeOfExpr:
4433       T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4434       break;
4435     case Type::Atomic:
4436       T = cast<AtomicType>(Ty)->getValueType();
4437       break;
4438     }
4439   } while (!T.isNull() && T->isVariablyModifiedType());
4440 }
4441 
4442 /// Build a sizeof or alignof expression given a type operand.
4443 ExprResult
CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)4444 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4445                                      SourceLocation OpLoc,
4446                                      UnaryExprOrTypeTrait ExprKind,
4447                                      SourceRange R) {
4448   if (!TInfo)
4449     return ExprError();
4450 
4451   QualType T = TInfo->getType();
4452 
4453   if (!T->isDependentType() &&
4454       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
4455     return ExprError();
4456 
4457   if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4458     if (auto *TT = T->getAs<TypedefType>()) {
4459       for (auto I = FunctionScopes.rbegin(),
4460                 E = std::prev(FunctionScopes.rend());
4461            I != E; ++I) {
4462         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4463         if (CSI == nullptr)
4464           break;
4465         DeclContext *DC = nullptr;
4466         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4467           DC = LSI->CallOperator;
4468         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4469           DC = CRSI->TheCapturedDecl;
4470         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4471           DC = BSI->TheDecl;
4472         if (DC) {
4473           if (DC->containsDecl(TT->getDecl()))
4474             break;
4475           captureVariablyModifiedType(Context, T, CSI);
4476         }
4477       }
4478     }
4479   }
4480 
4481   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4482   return new (Context) UnaryExprOrTypeTraitExpr(
4483       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4484 }
4485 
4486 /// Build a sizeof or alignof expression given an expression
4487 /// operand.
4488 ExprResult
CreateUnaryExprOrTypeTraitExpr(Expr * E,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind)4489 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4490                                      UnaryExprOrTypeTrait ExprKind) {
4491   ExprResult PE = CheckPlaceholderExpr(E);
4492   if (PE.isInvalid())
4493     return ExprError();
4494 
4495   E = PE.get();
4496 
4497   // Verify that the operand is valid.
4498   bool isInvalid = false;
4499   if (E->isTypeDependent()) {
4500     // Delay type-checking for type-dependent expressions.
4501   } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4502     isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4503   } else if (ExprKind == UETT_VecStep) {
4504     isInvalid = CheckVecStepExpr(E);
4505   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4506       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4507       isInvalid = true;
4508   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
4509     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4510     isInvalid = true;
4511   } else {
4512     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4513   }
4514 
4515   if (isInvalid)
4516     return ExprError();
4517 
4518   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4519     PE = TransformToPotentiallyEvaluated(E);
4520     if (PE.isInvalid()) return ExprError();
4521     E = PE.get();
4522   }
4523 
4524   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4525   return new (Context) UnaryExprOrTypeTraitExpr(
4526       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4527 }
4528 
4529 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4530 /// expr and the same for @c alignof and @c __alignof
4531 /// Note that the ArgRange is invalid if isType is false.
4532 ExprResult
ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,bool IsType,void * TyOrEx,SourceRange ArgRange)4533 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4534                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
4535                                     void *TyOrEx, SourceRange ArgRange) {
4536   // If error parsing type, ignore.
4537   if (!TyOrEx) return ExprError();
4538 
4539   if (IsType) {
4540     TypeSourceInfo *TInfo;
4541     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4542     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4543   }
4544 
4545   Expr *ArgEx = (Expr *)TyOrEx;
4546   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4547   return Result;
4548 }
4549 
CheckRealImagOperand(Sema & S,ExprResult & V,SourceLocation Loc,bool IsReal)4550 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4551                                      bool IsReal) {
4552   if (V.get()->isTypeDependent())
4553     return S.Context.DependentTy;
4554 
4555   // _Real and _Imag are only l-values for normal l-values.
4556   if (V.get()->getObjectKind() != OK_Ordinary) {
4557     V = S.DefaultLvalueConversion(V.get());
4558     if (V.isInvalid())
4559       return QualType();
4560   }
4561 
4562   // These operators return the element type of a complex type.
4563   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4564     return CT->getElementType();
4565 
4566   // Otherwise they pass through real integer and floating point types here.
4567   if (V.get()->getType()->isArithmeticType())
4568     return V.get()->getType();
4569 
4570   // Test for placeholders.
4571   ExprResult PR = S.CheckPlaceholderExpr(V.get());
4572   if (PR.isInvalid()) return QualType();
4573   if (PR.get() != V.get()) {
4574     V = PR;
4575     return CheckRealImagOperand(S, V, Loc, IsReal);
4576   }
4577 
4578   // Reject anything else.
4579   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4580     << (IsReal ? "__real" : "__imag");
4581   return QualType();
4582 }
4583 
4584 
4585 
4586 ExprResult
ActOnPostfixUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Kind,Expr * Input)4587 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4588                           tok::TokenKind Kind, Expr *Input) {
4589   UnaryOperatorKind Opc;
4590   switch (Kind) {
4591   default: llvm_unreachable("Unknown unary op!");
4592   case tok::plusplus:   Opc = UO_PostInc; break;
4593   case tok::minusminus: Opc = UO_PostDec; break;
4594   }
4595 
4596   // Since this might is a postfix expression, get rid of ParenListExprs.
4597   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4598   if (Result.isInvalid()) return ExprError();
4599   Input = Result.get();
4600 
4601   return BuildUnaryOp(S, OpLoc, Opc, Input);
4602 }
4603 
4604 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
4605 ///
4606 /// \return true on error
checkArithmeticOnObjCPointer(Sema & S,SourceLocation opLoc,Expr * op)4607 static bool checkArithmeticOnObjCPointer(Sema &S,
4608                                          SourceLocation opLoc,
4609                                          Expr *op) {
4610   assert(op->getType()->isObjCObjectPointerType());
4611   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4612       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4613     return false;
4614 
4615   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4616     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4617     << op->getSourceRange();
4618   return true;
4619 }
4620 
isMSPropertySubscriptExpr(Sema & S,Expr * Base)4621 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4622   auto *BaseNoParens = Base->IgnoreParens();
4623   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4624     return MSProp->getPropertyDecl()->getType()->isArrayType();
4625   return isa<MSPropertySubscriptExpr>(BaseNoParens);
4626 }
4627 
4628 ExprResult
ActOnArraySubscriptExpr(Scope * S,Expr * base,SourceLocation lbLoc,Expr * idx,SourceLocation rbLoc)4629 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
4630                               Expr *idx, SourceLocation rbLoc) {
4631   if (base && !base->getType().isNull() &&
4632       base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
4633     return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
4634                                     SourceLocation(), /*Length*/ nullptr,
4635                                     /*Stride=*/nullptr, rbLoc);
4636 
4637   // Since this might be a postfix expression, get rid of ParenListExprs.
4638   if (isa<ParenListExpr>(base)) {
4639     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4640     if (result.isInvalid()) return ExprError();
4641     base = result.get();
4642   }
4643 
4644   // Check if base and idx form a MatrixSubscriptExpr.
4645   //
4646   // Helper to check for comma expressions, which are not allowed as indices for
4647   // matrix subscript expressions.
4648   auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4649     if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
4650       Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
4651           << SourceRange(base->getBeginLoc(), rbLoc);
4652       return true;
4653     }
4654     return false;
4655   };
4656   // The matrix subscript operator ([][])is considered a single operator.
4657   // Separating the index expressions by parenthesis is not allowed.
4658   if (base->getType()->isSpecificPlaceholderType(
4659           BuiltinType::IncompleteMatrixIdx) &&
4660       !isa<MatrixSubscriptExpr>(base)) {
4661     Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
4662         << SourceRange(base->getBeginLoc(), rbLoc);
4663     return ExprError();
4664   }
4665   // If the base is a MatrixSubscriptExpr, try to create a new
4666   // MatrixSubscriptExpr.
4667   auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
4668   if (matSubscriptE) {
4669     if (CheckAndReportCommaError(idx))
4670       return ExprError();
4671 
4672     assert(matSubscriptE->isIncomplete() &&
4673            "base has to be an incomplete matrix subscript");
4674     return CreateBuiltinMatrixSubscriptExpr(
4675         matSubscriptE->getBase(), matSubscriptE->getRowIdx(), idx, rbLoc);
4676   }
4677 
4678   // Handle any non-overload placeholder types in the base and index
4679   // expressions.  We can't handle overloads here because the other
4680   // operand might be an overloadable type, in which case the overload
4681   // resolution for the operator overload should get the first crack
4682   // at the overload.
4683   bool IsMSPropertySubscript = false;
4684   if (base->getType()->isNonOverloadPlaceholderType()) {
4685     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4686     if (!IsMSPropertySubscript) {
4687       ExprResult result = CheckPlaceholderExpr(base);
4688       if (result.isInvalid())
4689         return ExprError();
4690       base = result.get();
4691     }
4692   }
4693 
4694   // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
4695   if (base->getType()->isMatrixType()) {
4696     if (CheckAndReportCommaError(idx))
4697       return ExprError();
4698 
4699     return CreateBuiltinMatrixSubscriptExpr(base, idx, nullptr, rbLoc);
4700   }
4701 
4702   // A comma-expression as the index is deprecated in C++2a onwards.
4703   if (getLangOpts().CPlusPlus20 &&
4704       ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
4705        (isa<CXXOperatorCallExpr>(idx) &&
4706         cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma))) {
4707     Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
4708         << SourceRange(base->getBeginLoc(), rbLoc);
4709   }
4710 
4711   if (idx->getType()->isNonOverloadPlaceholderType()) {
4712     ExprResult result = CheckPlaceholderExpr(idx);
4713     if (result.isInvalid()) return ExprError();
4714     idx = result.get();
4715   }
4716 
4717   // Build an unanalyzed expression if either operand is type-dependent.
4718   if (getLangOpts().CPlusPlus &&
4719       (base->isTypeDependent() || idx->isTypeDependent())) {
4720     return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
4721                                             VK_LValue, OK_Ordinary, rbLoc);
4722   }
4723 
4724   // MSDN, property (C++)
4725   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4726   // This attribute can also be used in the declaration of an empty array in a
4727   // class or structure definition. For example:
4728   // __declspec(property(get=GetX, put=PutX)) int x[];
4729   // The above statement indicates that x[] can be used with one or more array
4730   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4731   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4732   if (IsMSPropertySubscript) {
4733     // Build MS property subscript expression if base is MS property reference
4734     // or MS property subscript.
4735     return new (Context) MSPropertySubscriptExpr(
4736         base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
4737   }
4738 
4739   // Use C++ overloaded-operator rules if either operand has record
4740   // type.  The spec says to do this if either type is *overloadable*,
4741   // but enum types can't declare subscript operators or conversion
4742   // operators, so there's nothing interesting for overload resolution
4743   // to do if there aren't any record types involved.
4744   //
4745   // ObjC pointers have their own subscripting logic that is not tied
4746   // to overload resolution and so should not take this path.
4747   if (getLangOpts().CPlusPlus &&
4748       (base->getType()->isRecordType() ||
4749        (!base->getType()->isObjCObjectPointerType() &&
4750         idx->getType()->isRecordType()))) {
4751     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
4752   }
4753 
4754   ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
4755 
4756   if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
4757     CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
4758 
4759   return Res;
4760 }
4761 
tryConvertExprToType(Expr * E,QualType Ty)4762 ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
4763   InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
4764   InitializationKind Kind =
4765       InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
4766   InitializationSequence InitSeq(*this, Entity, Kind, E);
4767   return InitSeq.Perform(*this, Entity, Kind, E);
4768 }
4769 
CreateBuiltinMatrixSubscriptExpr(Expr * Base,Expr * RowIdx,Expr * ColumnIdx,SourceLocation RBLoc)4770 ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
4771                                                   Expr *ColumnIdx,
4772                                                   SourceLocation RBLoc) {
4773   ExprResult BaseR = CheckPlaceholderExpr(Base);
4774   if (BaseR.isInvalid())
4775     return BaseR;
4776   Base = BaseR.get();
4777 
4778   ExprResult RowR = CheckPlaceholderExpr(RowIdx);
4779   if (RowR.isInvalid())
4780     return RowR;
4781   RowIdx = RowR.get();
4782 
4783   if (!ColumnIdx)
4784     return new (Context) MatrixSubscriptExpr(
4785         Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
4786 
4787   // Build an unanalyzed expression if any of the operands is type-dependent.
4788   if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
4789       ColumnIdx->isTypeDependent())
4790     return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4791                                              Context.DependentTy, RBLoc);
4792 
4793   ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
4794   if (ColumnR.isInvalid())
4795     return ColumnR;
4796   ColumnIdx = ColumnR.get();
4797 
4798   // Check that IndexExpr is an integer expression. If it is a constant
4799   // expression, check that it is less than Dim (= the number of elements in the
4800   // corresponding dimension).
4801   auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
4802                           bool IsColumnIdx) -> Expr * {
4803     if (!IndexExpr->getType()->isIntegerType() &&
4804         !IndexExpr->isTypeDependent()) {
4805       Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
4806           << IsColumnIdx;
4807       return nullptr;
4808     }
4809 
4810     if (Optional<llvm::APSInt> Idx =
4811             IndexExpr->getIntegerConstantExpr(Context)) {
4812       if ((*Idx < 0 || *Idx >= Dim)) {
4813         Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
4814             << IsColumnIdx << Dim;
4815         return nullptr;
4816       }
4817     }
4818 
4819     ExprResult ConvExpr =
4820         tryConvertExprToType(IndexExpr, Context.getSizeType());
4821     assert(!ConvExpr.isInvalid() &&
4822            "should be able to convert any integer type to size type");
4823     return ConvExpr.get();
4824   };
4825 
4826   auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
4827   RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
4828   ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
4829   if (!RowIdx || !ColumnIdx)
4830     return ExprError();
4831 
4832   return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4833                                            MTy->getElementType(), RBLoc);
4834 }
4835 
CheckAddressOfNoDeref(const Expr * E)4836 void Sema::CheckAddressOfNoDeref(const Expr *E) {
4837   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4838   const Expr *StrippedExpr = E->IgnoreParenImpCasts();
4839 
4840   // For expressions like `&(*s).b`, the base is recorded and what should be
4841   // checked.
4842   const MemberExpr *Member = nullptr;
4843   while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
4844     StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
4845 
4846   LastRecord.PossibleDerefs.erase(StrippedExpr);
4847 }
4848 
CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr * E)4849 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
4850   if (isUnevaluatedContext())
4851     return;
4852 
4853   QualType ResultTy = E->getType();
4854   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4855 
4856   // Bail if the element is an array since it is not memory access.
4857   if (isa<ArrayType>(ResultTy))
4858     return;
4859 
4860   if (ResultTy->hasAttr(attr::NoDeref)) {
4861     LastRecord.PossibleDerefs.insert(E);
4862     return;
4863   }
4864 
4865   // Check if the base type is a pointer to a member access of a struct
4866   // marked with noderef.
4867   const Expr *Base = E->getBase();
4868   QualType BaseTy = Base->getType();
4869   if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
4870     // Not a pointer access
4871     return;
4872 
4873   const MemberExpr *Member = nullptr;
4874   while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
4875          Member->isArrow())
4876     Base = Member->getBase();
4877 
4878   if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
4879     if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
4880       LastRecord.PossibleDerefs.insert(E);
4881   }
4882 }
4883 
ActOnOMPArraySectionExpr(Expr * Base,SourceLocation LBLoc,Expr * LowerBound,SourceLocation ColonLocFirst,SourceLocation ColonLocSecond,Expr * Length,Expr * Stride,SourceLocation RBLoc)4884 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
4885                                           Expr *LowerBound,
4886                                           SourceLocation ColonLocFirst,
4887                                           SourceLocation ColonLocSecond,
4888                                           Expr *Length, Expr *Stride,
4889                                           SourceLocation RBLoc) {
4890   if (Base->getType()->isPlaceholderType() &&
4891       !Base->getType()->isSpecificPlaceholderType(
4892           BuiltinType::OMPArraySection)) {
4893     ExprResult Result = CheckPlaceholderExpr(Base);
4894     if (Result.isInvalid())
4895       return ExprError();
4896     Base = Result.get();
4897   }
4898   if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
4899     ExprResult Result = CheckPlaceholderExpr(LowerBound);
4900     if (Result.isInvalid())
4901       return ExprError();
4902     Result = DefaultLvalueConversion(Result.get());
4903     if (Result.isInvalid())
4904       return ExprError();
4905     LowerBound = Result.get();
4906   }
4907   if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
4908     ExprResult Result = CheckPlaceholderExpr(Length);
4909     if (Result.isInvalid())
4910       return ExprError();
4911     Result = DefaultLvalueConversion(Result.get());
4912     if (Result.isInvalid())
4913       return ExprError();
4914     Length = Result.get();
4915   }
4916   if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
4917     ExprResult Result = CheckPlaceholderExpr(Stride);
4918     if (Result.isInvalid())
4919       return ExprError();
4920     Result = DefaultLvalueConversion(Result.get());
4921     if (Result.isInvalid())
4922       return ExprError();
4923     Stride = Result.get();
4924   }
4925 
4926   // Build an unanalyzed expression if either operand is type-dependent.
4927   if (Base->isTypeDependent() ||
4928       (LowerBound &&
4929        (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
4930       (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
4931       (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
4932     return new (Context) OMPArraySectionExpr(
4933         Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
4934         OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
4935   }
4936 
4937   // Perform default conversions.
4938   QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
4939   QualType ResultTy;
4940   if (OriginalTy->isAnyPointerType()) {
4941     ResultTy = OriginalTy->getPointeeType();
4942   } else if (OriginalTy->isArrayType()) {
4943     ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
4944   } else {
4945     return ExprError(
4946         Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
4947         << Base->getSourceRange());
4948   }
4949   // C99 6.5.2.1p1
4950   if (LowerBound) {
4951     auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
4952                                                       LowerBound);
4953     if (Res.isInvalid())
4954       return ExprError(Diag(LowerBound->getExprLoc(),
4955                             diag::err_omp_typecheck_section_not_integer)
4956                        << 0 << LowerBound->getSourceRange());
4957     LowerBound = Res.get();
4958 
4959     if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4960         LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4961       Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
4962           << 0 << LowerBound->getSourceRange();
4963   }
4964   if (Length) {
4965     auto Res =
4966         PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
4967     if (Res.isInvalid())
4968       return ExprError(Diag(Length->getExprLoc(),
4969                             diag::err_omp_typecheck_section_not_integer)
4970                        << 1 << Length->getSourceRange());
4971     Length = Res.get();
4972 
4973     if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4974         Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4975       Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
4976           << 1 << Length->getSourceRange();
4977   }
4978   if (Stride) {
4979     ExprResult Res =
4980         PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
4981     if (Res.isInvalid())
4982       return ExprError(Diag(Stride->getExprLoc(),
4983                             diag::err_omp_typecheck_section_not_integer)
4984                        << 1 << Stride->getSourceRange());
4985     Stride = Res.get();
4986 
4987     if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4988         Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4989       Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
4990           << 1 << Stride->getSourceRange();
4991   }
4992 
4993   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4994   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4995   // type. Note that functions are not objects, and that (in C99 parlance)
4996   // incomplete types are not object types.
4997   if (ResultTy->isFunctionType()) {
4998     Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
4999         << ResultTy << Base->getSourceRange();
5000     return ExprError();
5001   }
5002 
5003   if (RequireCompleteType(Base->getExprLoc(), ResultTy,
5004                           diag::err_omp_section_incomplete_type, Base))
5005     return ExprError();
5006 
5007   if (LowerBound && !OriginalTy->isAnyPointerType()) {
5008     Expr::EvalResult Result;
5009     if (LowerBound->EvaluateAsInt(Result, Context)) {
5010       // OpenMP 5.0, [2.1.5 Array Sections]
5011       // The array section must be a subset of the original array.
5012       llvm::APSInt LowerBoundValue = Result.Val.getInt();
5013       if (LowerBoundValue.isNegative()) {
5014         Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
5015             << LowerBound->getSourceRange();
5016         return ExprError();
5017       }
5018     }
5019   }
5020 
5021   if (Length) {
5022     Expr::EvalResult Result;
5023     if (Length->EvaluateAsInt(Result, Context)) {
5024       // OpenMP 5.0, [2.1.5 Array Sections]
5025       // The length must evaluate to non-negative integers.
5026       llvm::APSInt LengthValue = Result.Val.getInt();
5027       if (LengthValue.isNegative()) {
5028         Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
5029             << LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
5030             << Length->getSourceRange();
5031         return ExprError();
5032       }
5033     }
5034   } else if (ColonLocFirst.isValid() &&
5035              (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
5036                                       !OriginalTy->isVariableArrayType()))) {
5037     // OpenMP 5.0, [2.1.5 Array Sections]
5038     // When the size of the array dimension is not known, the length must be
5039     // specified explicitly.
5040     Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
5041         << (!OriginalTy.isNull() && OriginalTy->isArrayType());
5042     return ExprError();
5043   }
5044 
5045   if (Stride) {
5046     Expr::EvalResult Result;
5047     if (Stride->EvaluateAsInt(Result, Context)) {
5048       // OpenMP 5.0, [2.1.5 Array Sections]
5049       // The stride must evaluate to a positive integer.
5050       llvm::APSInt StrideValue = Result.Val.getInt();
5051       if (!StrideValue.isStrictlyPositive()) {
5052         Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
5053             << StrideValue.toString(/*Radix=*/10, /*Signed=*/true)
5054             << Stride->getSourceRange();
5055         return ExprError();
5056       }
5057     }
5058   }
5059 
5060   if (!Base->getType()->isSpecificPlaceholderType(
5061           BuiltinType::OMPArraySection)) {
5062     ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
5063     if (Result.isInvalid())
5064       return ExprError();
5065     Base = Result.get();
5066   }
5067   return new (Context) OMPArraySectionExpr(
5068       Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
5069       OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5070 }
5071 
ActOnOMPArrayShapingExpr(Expr * Base,SourceLocation LParenLoc,SourceLocation RParenLoc,ArrayRef<Expr * > Dims,ArrayRef<SourceRange> Brackets)5072 ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5073                                           SourceLocation RParenLoc,
5074                                           ArrayRef<Expr *> Dims,
5075                                           ArrayRef<SourceRange> Brackets) {
5076   if (Base->getType()->isPlaceholderType()) {
5077     ExprResult Result = CheckPlaceholderExpr(Base);
5078     if (Result.isInvalid())
5079       return ExprError();
5080     Result = DefaultLvalueConversion(Result.get());
5081     if (Result.isInvalid())
5082       return ExprError();
5083     Base = Result.get();
5084   }
5085   QualType BaseTy = Base->getType();
5086   // Delay analysis of the types/expressions if instantiation/specialization is
5087   // required.
5088   if (!BaseTy->isPointerType() && Base->isTypeDependent())
5089     return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
5090                                        LParenLoc, RParenLoc, Dims, Brackets);
5091   if (!BaseTy->isPointerType() ||
5092       (!Base->isTypeDependent() &&
5093        BaseTy->getPointeeType()->isIncompleteType()))
5094     return ExprError(Diag(Base->getExprLoc(),
5095                           diag::err_omp_non_pointer_type_array_shaping_base)
5096                      << Base->getSourceRange());
5097 
5098   SmallVector<Expr *, 4> NewDims;
5099   bool ErrorFound = false;
5100   for (Expr *Dim : Dims) {
5101     if (Dim->getType()->isPlaceholderType()) {
5102       ExprResult Result = CheckPlaceholderExpr(Dim);
5103       if (Result.isInvalid()) {
5104         ErrorFound = true;
5105         continue;
5106       }
5107       Result = DefaultLvalueConversion(Result.get());
5108       if (Result.isInvalid()) {
5109         ErrorFound = true;
5110         continue;
5111       }
5112       Dim = Result.get();
5113     }
5114     if (!Dim->isTypeDependent()) {
5115       ExprResult Result =
5116           PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
5117       if (Result.isInvalid()) {
5118         ErrorFound = true;
5119         Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
5120             << Dim->getSourceRange();
5121         continue;
5122       }
5123       Dim = Result.get();
5124       Expr::EvalResult EvResult;
5125       if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
5126         // OpenMP 5.0, [2.1.4 Array Shaping]
5127         // Each si is an integral type expression that must evaluate to a
5128         // positive integer.
5129         llvm::APSInt Value = EvResult.Val.getInt();
5130         if (!Value.isStrictlyPositive()) {
5131           Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
5132               << Value.toString(/*Radix=*/10, /*Signed=*/true)
5133               << Dim->getSourceRange();
5134           ErrorFound = true;
5135           continue;
5136         }
5137       }
5138     }
5139     NewDims.push_back(Dim);
5140   }
5141   if (ErrorFound)
5142     return ExprError();
5143   return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
5144                                      LParenLoc, RParenLoc, NewDims, Brackets);
5145 }
5146 
ActOnOMPIteratorExpr(Scope * S,SourceLocation IteratorKwLoc,SourceLocation LLoc,SourceLocation RLoc,ArrayRef<OMPIteratorData> Data)5147 ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5148                                       SourceLocation LLoc, SourceLocation RLoc,
5149                                       ArrayRef<OMPIteratorData> Data) {
5150   SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
5151   bool IsCorrect = true;
5152   for (const OMPIteratorData &D : Data) {
5153     TypeSourceInfo *TInfo = nullptr;
5154     SourceLocation StartLoc;
5155     QualType DeclTy;
5156     if (!D.Type.getAsOpaquePtr()) {
5157       // OpenMP 5.0, 2.1.6 Iterators
5158       // In an iterator-specifier, if the iterator-type is not specified then
5159       // the type of that iterator is of int type.
5160       DeclTy = Context.IntTy;
5161       StartLoc = D.DeclIdentLoc;
5162     } else {
5163       DeclTy = GetTypeFromParser(D.Type, &TInfo);
5164       StartLoc = TInfo->getTypeLoc().getBeginLoc();
5165     }
5166 
5167     bool IsDeclTyDependent = DeclTy->isDependentType() ||
5168                              DeclTy->containsUnexpandedParameterPack() ||
5169                              DeclTy->isInstantiationDependentType();
5170     if (!IsDeclTyDependent) {
5171       if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
5172         // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5173         // The iterator-type must be an integral or pointer type.
5174         Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5175             << DeclTy;
5176         IsCorrect = false;
5177         continue;
5178       }
5179       if (DeclTy.isConstant(Context)) {
5180         // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5181         // The iterator-type must not be const qualified.
5182         Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5183             << DeclTy;
5184         IsCorrect = false;
5185         continue;
5186       }
5187     }
5188 
5189     // Iterator declaration.
5190     assert(D.DeclIdent && "Identifier expected.");
5191     // Always try to create iterator declarator to avoid extra error messages
5192     // about unknown declarations use.
5193     auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
5194                                D.DeclIdent, DeclTy, TInfo, SC_None);
5195     VD->setImplicit();
5196     if (S) {
5197       // Check for conflicting previous declaration.
5198       DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
5199       LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5200                             ForVisibleRedeclaration);
5201       Previous.suppressDiagnostics();
5202       LookupName(Previous, S);
5203 
5204       FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
5205                            /*AllowInlineNamespace=*/false);
5206       if (!Previous.empty()) {
5207         NamedDecl *Old = Previous.getRepresentativeDecl();
5208         Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
5209         Diag(Old->getLocation(), diag::note_previous_definition);
5210       } else {
5211         PushOnScopeChains(VD, S);
5212       }
5213     } else {
5214       CurContext->addDecl(VD);
5215     }
5216     Expr *Begin = D.Range.Begin;
5217     if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
5218       ExprResult BeginRes =
5219           PerformImplicitConversion(Begin, DeclTy, AA_Converting);
5220       Begin = BeginRes.get();
5221     }
5222     Expr *End = D.Range.End;
5223     if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
5224       ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
5225       End = EndRes.get();
5226     }
5227     Expr *Step = D.Range.Step;
5228     if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
5229       if (!Step->getType()->isIntegralType(Context)) {
5230         Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
5231             << Step << Step->getSourceRange();
5232         IsCorrect = false;
5233         continue;
5234       }
5235       Optional<llvm::APSInt> Result = Step->getIntegerConstantExpr(Context);
5236       // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5237       // If the step expression of a range-specification equals zero, the
5238       // behavior is unspecified.
5239       if (Result && Result->isNullValue()) {
5240         Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
5241             << Step << Step->getSourceRange();
5242         IsCorrect = false;
5243         continue;
5244       }
5245     }
5246     if (!Begin || !End || !IsCorrect) {
5247       IsCorrect = false;
5248       continue;
5249     }
5250     OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
5251     IDElem.IteratorDecl = VD;
5252     IDElem.AssignmentLoc = D.AssignLoc;
5253     IDElem.Range.Begin = Begin;
5254     IDElem.Range.End = End;
5255     IDElem.Range.Step = Step;
5256     IDElem.ColonLoc = D.ColonLoc;
5257     IDElem.SecondColonLoc = D.SecColonLoc;
5258   }
5259   if (!IsCorrect) {
5260     // Invalidate all created iterator declarations if error is found.
5261     for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5262       if (Decl *ID = D.IteratorDecl)
5263         ID->setInvalidDecl();
5264     }
5265     return ExprError();
5266   }
5267   SmallVector<OMPIteratorHelperData, 4> Helpers;
5268   if (!CurContext->isDependentContext()) {
5269     // Build number of ityeration for each iteration range.
5270     // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5271     // ((Begini-Stepi-1-Endi) / -Stepi);
5272     for (OMPIteratorExpr::IteratorDefinition &D : ID) {
5273       // (Endi - Begini)
5274       ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
5275                                           D.Range.Begin);
5276       if(!Res.isUsable()) {
5277         IsCorrect = false;
5278         continue;
5279       }
5280       ExprResult St, St1;
5281       if (D.Range.Step) {
5282         St = D.Range.Step;
5283         // (Endi - Begini) + Stepi
5284         Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
5285         if (!Res.isUsable()) {
5286           IsCorrect = false;
5287           continue;
5288         }
5289         // (Endi - Begini) + Stepi - 1
5290         Res =
5291             CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
5292                                ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5293         if (!Res.isUsable()) {
5294           IsCorrect = false;
5295           continue;
5296         }
5297         // ((Endi - Begini) + Stepi - 1) / Stepi
5298         Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
5299         if (!Res.isUsable()) {
5300           IsCorrect = false;
5301           continue;
5302         }
5303         St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
5304         // (Begini - Endi)
5305         ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
5306                                              D.Range.Begin, D.Range.End);
5307         if (!Res1.isUsable()) {
5308           IsCorrect = false;
5309           continue;
5310         }
5311         // (Begini - Endi) - Stepi
5312         Res1 =
5313             CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
5314         if (!Res1.isUsable()) {
5315           IsCorrect = false;
5316           continue;
5317         }
5318         // (Begini - Endi) - Stepi - 1
5319         Res1 =
5320             CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
5321                                ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5322         if (!Res1.isUsable()) {
5323           IsCorrect = false;
5324           continue;
5325         }
5326         // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5327         Res1 =
5328             CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
5329         if (!Res1.isUsable()) {
5330           IsCorrect = false;
5331           continue;
5332         }
5333         // Stepi > 0.
5334         ExprResult CmpRes =
5335             CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
5336                                ActOnIntegerConstant(D.AssignmentLoc, 0).get());
5337         if (!CmpRes.isUsable()) {
5338           IsCorrect = false;
5339           continue;
5340         }
5341         Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
5342                                  Res.get(), Res1.get());
5343         if (!Res.isUsable()) {
5344           IsCorrect = false;
5345           continue;
5346         }
5347       }
5348       Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
5349       if (!Res.isUsable()) {
5350         IsCorrect = false;
5351         continue;
5352       }
5353 
5354       // Build counter update.
5355       // Build counter.
5356       auto *CounterVD =
5357           VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
5358                           D.IteratorDecl->getBeginLoc(), nullptr,
5359                           Res.get()->getType(), nullptr, SC_None);
5360       CounterVD->setImplicit();
5361       ExprResult RefRes =
5362           BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
5363                            D.IteratorDecl->getBeginLoc());
5364       // Build counter update.
5365       // I = Begini + counter * Stepi;
5366       ExprResult UpdateRes;
5367       if (D.Range.Step) {
5368         UpdateRes = CreateBuiltinBinOp(
5369             D.AssignmentLoc, BO_Mul,
5370             DefaultLvalueConversion(RefRes.get()).get(), St.get());
5371       } else {
5372         UpdateRes = DefaultLvalueConversion(RefRes.get());
5373       }
5374       if (!UpdateRes.isUsable()) {
5375         IsCorrect = false;
5376         continue;
5377       }
5378       UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
5379                                      UpdateRes.get());
5380       if (!UpdateRes.isUsable()) {
5381         IsCorrect = false;
5382         continue;
5383       }
5384       ExprResult VDRes =
5385           BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
5386                            cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
5387                            D.IteratorDecl->getBeginLoc());
5388       UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
5389                                      UpdateRes.get());
5390       if (!UpdateRes.isUsable()) {
5391         IsCorrect = false;
5392         continue;
5393       }
5394       UpdateRes =
5395           ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
5396       if (!UpdateRes.isUsable()) {
5397         IsCorrect = false;
5398         continue;
5399       }
5400       ExprResult CounterUpdateRes =
5401           CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
5402       if (!CounterUpdateRes.isUsable()) {
5403         IsCorrect = false;
5404         continue;
5405       }
5406       CounterUpdateRes =
5407           ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
5408       if (!CounterUpdateRes.isUsable()) {
5409         IsCorrect = false;
5410         continue;
5411       }
5412       OMPIteratorHelperData &HD = Helpers.emplace_back();
5413       HD.CounterVD = CounterVD;
5414       HD.Upper = Res.get();
5415       HD.Update = UpdateRes.get();
5416       HD.CounterUpdate = CounterUpdateRes.get();
5417     }
5418   } else {
5419     Helpers.assign(ID.size(), {});
5420   }
5421   if (!IsCorrect) {
5422     // Invalidate all created iterator declarations if error is found.
5423     for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5424       if (Decl *ID = D.IteratorDecl)
5425         ID->setInvalidDecl();
5426     }
5427     return ExprError();
5428   }
5429   return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
5430                                  LLoc, RLoc, ID, Helpers);
5431 }
5432 
5433 ExprResult
CreateBuiltinArraySubscriptExpr(Expr * Base,SourceLocation LLoc,Expr * Idx,SourceLocation RLoc)5434 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5435                                       Expr *Idx, SourceLocation RLoc) {
5436   Expr *LHSExp = Base;
5437   Expr *RHSExp = Idx;
5438 
5439   ExprValueKind VK = VK_LValue;
5440   ExprObjectKind OK = OK_Ordinary;
5441 
5442   // Per C++ core issue 1213, the result is an xvalue if either operand is
5443   // a non-lvalue array, and an lvalue otherwise.
5444   if (getLangOpts().CPlusPlus11) {
5445     for (auto *Op : {LHSExp, RHSExp}) {
5446       Op = Op->IgnoreImplicit();
5447       if (Op->getType()->isArrayType() && !Op->isLValue())
5448         VK = VK_XValue;
5449     }
5450   }
5451 
5452   // Perform default conversions.
5453   if (!LHSExp->getType()->getAs<VectorType>()) {
5454     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5455     if (Result.isInvalid())
5456       return ExprError();
5457     LHSExp = Result.get();
5458   }
5459   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5460   if (Result.isInvalid())
5461     return ExprError();
5462   RHSExp = Result.get();
5463 
5464   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5465 
5466   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5467   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5468   // in the subscript position. As a result, we need to derive the array base
5469   // and index from the expression types.
5470   Expr *BaseExpr, *IndexExpr;
5471   QualType ResultType;
5472   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5473     BaseExpr = LHSExp;
5474     IndexExpr = RHSExp;
5475     ResultType = Context.DependentTy;
5476   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5477     BaseExpr = LHSExp;
5478     IndexExpr = RHSExp;
5479     ResultType = PTy->getPointeeType();
5480   } else if (const ObjCObjectPointerType *PTy =
5481                LHSTy->getAs<ObjCObjectPointerType>()) {
5482     BaseExpr = LHSExp;
5483     IndexExpr = RHSExp;
5484 
5485     // Use custom logic if this should be the pseudo-object subscript
5486     // expression.
5487     if (!LangOpts.isSubscriptPointerArithmetic())
5488       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
5489                                           nullptr);
5490 
5491     ResultType = PTy->getPointeeType();
5492   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5493      // Handle the uncommon case of "123[Ptr]".
5494     BaseExpr = RHSExp;
5495     IndexExpr = LHSExp;
5496     ResultType = PTy->getPointeeType();
5497   } else if (const ObjCObjectPointerType *PTy =
5498                RHSTy->getAs<ObjCObjectPointerType>()) {
5499      // Handle the uncommon case of "123[Ptr]".
5500     BaseExpr = RHSExp;
5501     IndexExpr = LHSExp;
5502     ResultType = PTy->getPointeeType();
5503     if (!LangOpts.isSubscriptPointerArithmetic()) {
5504       Diag(LLoc, diag::err_subscript_nonfragile_interface)
5505         << ResultType << BaseExpr->getSourceRange();
5506       return ExprError();
5507     }
5508   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
5509     BaseExpr = LHSExp;    // vectors: V[123]
5510     IndexExpr = RHSExp;
5511     // We apply C++ DR1213 to vector subscripting too.
5512     if (getLangOpts().CPlusPlus11 && LHSExp->getValueKind() == VK_RValue) {
5513       ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5514       if (Materialized.isInvalid())
5515         return ExprError();
5516       LHSExp = Materialized.get();
5517     }
5518     VK = LHSExp->getValueKind();
5519     if (VK != VK_RValue)
5520       OK = OK_VectorComponent;
5521 
5522     ResultType = VTy->getElementType();
5523     QualType BaseType = BaseExpr->getType();
5524     Qualifiers BaseQuals = BaseType.getQualifiers();
5525     Qualifiers MemberQuals = ResultType.getQualifiers();
5526     Qualifiers Combined = BaseQuals + MemberQuals;
5527     if (Combined != MemberQuals)
5528       ResultType = Context.getQualifiedType(ResultType, Combined);
5529   } else if (LHSTy->isArrayType()) {
5530     // If we see an array that wasn't promoted by
5531     // DefaultFunctionArrayLvalueConversion, it must be an array that
5532     // wasn't promoted because of the C90 rule that doesn't
5533     // allow promoting non-lvalue arrays.  Warn, then
5534     // force the promotion here.
5535     Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5536         << LHSExp->getSourceRange();
5537     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
5538                                CK_ArrayToPointerDecay).get();
5539     LHSTy = LHSExp->getType();
5540 
5541     BaseExpr = LHSExp;
5542     IndexExpr = RHSExp;
5543     ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
5544   } else if (RHSTy->isArrayType()) {
5545     // Same as previous, except for 123[f().a] case
5546     Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5547         << RHSExp->getSourceRange();
5548     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
5549                                CK_ArrayToPointerDecay).get();
5550     RHSTy = RHSExp->getType();
5551 
5552     BaseExpr = RHSExp;
5553     IndexExpr = LHSExp;
5554     ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
5555   } else {
5556     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
5557        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5558   }
5559   // C99 6.5.2.1p1
5560   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5561     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
5562                      << IndexExpr->getSourceRange());
5563 
5564   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5565        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5566          && !IndexExpr->isTypeDependent())
5567     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5568 
5569   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5570   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5571   // type. Note that Functions are not objects, and that (in C99 parlance)
5572   // incomplete types are not object types.
5573   if (ResultType->isFunctionType()) {
5574     Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
5575         << ResultType << BaseExpr->getSourceRange();
5576     return ExprError();
5577   }
5578 
5579   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5580     // GNU extension: subscripting on pointer to void
5581     Diag(LLoc, diag::ext_gnu_subscript_void_type)
5582       << BaseExpr->getSourceRange();
5583 
5584     // C forbids expressions of unqualified void type from being l-values.
5585     // See IsCForbiddenLValueType.
5586     if (!ResultType.hasQualifiers()) VK = VK_RValue;
5587   } else if (!ResultType->isDependentType() &&
5588              RequireCompleteSizedType(
5589                  LLoc, ResultType,
5590                  diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
5591     return ExprError();
5592 
5593   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
5594          !ResultType.isCForbiddenLValueType());
5595 
5596   if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5597       FunctionScopes.size() > 1) {
5598     if (auto *TT =
5599             LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5600       for (auto I = FunctionScopes.rbegin(),
5601                 E = std::prev(FunctionScopes.rend());
5602            I != E; ++I) {
5603         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
5604         if (CSI == nullptr)
5605           break;
5606         DeclContext *DC = nullptr;
5607         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
5608           DC = LSI->CallOperator;
5609         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
5610           DC = CRSI->TheCapturedDecl;
5611         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
5612           DC = BSI->TheDecl;
5613         if (DC) {
5614           if (DC->containsDecl(TT->getDecl()))
5615             break;
5616           captureVariablyModifiedType(
5617               Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
5618         }
5619       }
5620     }
5621   }
5622 
5623   return new (Context)
5624       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
5625 }
5626 
CheckCXXDefaultArgExpr(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param)5627 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5628                                   ParmVarDecl *Param) {
5629   if (Param->hasUnparsedDefaultArg()) {
5630     // If we've already cleared out the location for the default argument,
5631     // that means we're parsing it right now.
5632     if (!UnparsedDefaultArgLocs.count(Param)) {
5633       Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
5634       Diag(CallLoc, diag::note_recursive_default_argument_used_here);
5635       Param->setInvalidDecl();
5636       return true;
5637     }
5638 
5639     Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
5640         << FD << cast<CXXRecordDecl>(FD->getDeclContext());
5641     Diag(UnparsedDefaultArgLocs[Param],
5642          diag::note_default_argument_declared_here);
5643     return true;
5644   }
5645 
5646   if (Param->hasUninstantiatedDefaultArg() &&
5647       InstantiateDefaultArgument(CallLoc, FD, Param))
5648     return true;
5649 
5650   assert(Param->hasInit() && "default argument but no initializer?");
5651 
5652   // If the default expression creates temporaries, we need to
5653   // push them to the current stack of expression temporaries so they'll
5654   // be properly destroyed.
5655   // FIXME: We should really be rebuilding the default argument with new
5656   // bound temporaries; see the comment in PR5810.
5657   // We don't need to do that with block decls, though, because
5658   // blocks in default argument expression can never capture anything.
5659   if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
5660     // Set the "needs cleanups" bit regardless of whether there are
5661     // any explicit objects.
5662     Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
5663 
5664     // Append all the objects to the cleanup list.  Right now, this
5665     // should always be a no-op, because blocks in default argument
5666     // expressions should never be able to capture anything.
5667     assert(!Init->getNumObjects() &&
5668            "default argument expression has capturing blocks?");
5669   }
5670 
5671   // We already type-checked the argument, so we know it works.
5672   // Just mark all of the declarations in this potentially-evaluated expression
5673   // as being "referenced".
5674   EnterExpressionEvaluationContext EvalContext(
5675       *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
5676   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
5677                                    /*SkipLocalVariables=*/true);
5678   return false;
5679 }
5680 
BuildCXXDefaultArgExpr(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param)5681 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5682                                         FunctionDecl *FD, ParmVarDecl *Param) {
5683   assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
5684   if (CheckCXXDefaultArgExpr(CallLoc, FD, Param))
5685     return ExprError();
5686   return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext);
5687 }
5688 
5689 Sema::VariadicCallType
getVariadicCallType(FunctionDecl * FDecl,const FunctionProtoType * Proto,Expr * Fn)5690 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
5691                           Expr *Fn) {
5692   if (Proto && Proto->isVariadic()) {
5693     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
5694       return VariadicConstructor;
5695     else if (Fn && Fn->getType()->isBlockPointerType())
5696       return VariadicBlock;
5697     else if (FDecl) {
5698       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5699         if (Method->isInstance())
5700           return VariadicMethod;
5701     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
5702       return VariadicMethod;
5703     return VariadicFunction;
5704   }
5705   return VariadicDoesNotApply;
5706 }
5707 
5708 namespace {
5709 class FunctionCallCCC final : public FunctionCallFilterCCC {
5710 public:
FunctionCallCCC(Sema & SemaRef,const IdentifierInfo * FuncName,unsigned NumArgs,MemberExpr * ME)5711   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
5712                   unsigned NumArgs, MemberExpr *ME)
5713       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
5714         FunctionName(FuncName) {}
5715 
ValidateCandidate(const TypoCorrection & candidate)5716   bool ValidateCandidate(const TypoCorrection &candidate) override {
5717     if (!candidate.getCorrectionSpecifier() ||
5718         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
5719       return false;
5720     }
5721 
5722     return FunctionCallFilterCCC::ValidateCandidate(candidate);
5723   }
5724 
clone()5725   std::unique_ptr<CorrectionCandidateCallback> clone() override {
5726     return std::make_unique<FunctionCallCCC>(*this);
5727   }
5728 
5729 private:
5730   const IdentifierInfo *const FunctionName;
5731 };
5732 }
5733 
TryTypoCorrectionForCall(Sema & S,Expr * Fn,FunctionDecl * FDecl,ArrayRef<Expr * > Args)5734 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
5735                                                FunctionDecl *FDecl,
5736                                                ArrayRef<Expr *> Args) {
5737   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
5738   DeclarationName FuncName = FDecl->getDeclName();
5739   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
5740 
5741   FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
5742   if (TypoCorrection Corrected = S.CorrectTypo(
5743           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
5744           S.getScopeForContext(S.CurContext), nullptr, CCC,
5745           Sema::CTK_ErrorRecovery)) {
5746     if (NamedDecl *ND = Corrected.getFoundDecl()) {
5747       if (Corrected.isOverloaded()) {
5748         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
5749         OverloadCandidateSet::iterator Best;
5750         for (NamedDecl *CD : Corrected) {
5751           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
5752             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
5753                                    OCS);
5754         }
5755         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
5756         case OR_Success:
5757           ND = Best->FoundDecl;
5758           Corrected.setCorrectionDecl(ND);
5759           break;
5760         default:
5761           break;
5762         }
5763       }
5764       ND = ND->getUnderlyingDecl();
5765       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
5766         return Corrected;
5767     }
5768   }
5769   return TypoCorrection();
5770 }
5771 
5772 /// ConvertArgumentsForCall - Converts the arguments specified in
5773 /// Args/NumArgs to the parameter types of the function FDecl with
5774 /// function prototype Proto. Call is the call expression itself, and
5775 /// Fn is the function expression. For a C++ member function, this
5776 /// routine does not attempt to convert the object argument. Returns
5777 /// true if the call is ill-formed.
5778 bool
ConvertArgumentsForCall(CallExpr * Call,Expr * Fn,FunctionDecl * FDecl,const FunctionProtoType * Proto,ArrayRef<Expr * > Args,SourceLocation RParenLoc,bool IsExecConfig)5779 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5780                               FunctionDecl *FDecl,
5781                               const FunctionProtoType *Proto,
5782                               ArrayRef<Expr *> Args,
5783                               SourceLocation RParenLoc,
5784                               bool IsExecConfig) {
5785   // Bail out early if calling a builtin with custom typechecking.
5786   if (FDecl)
5787     if (unsigned ID = FDecl->getBuiltinID())
5788       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
5789         return false;
5790 
5791   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
5792   // assignment, to the types of the corresponding parameter, ...
5793   unsigned NumParams = Proto->getNumParams();
5794   bool Invalid = false;
5795   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
5796   unsigned FnKind = Fn->getType()->isBlockPointerType()
5797                        ? 1 /* block */
5798                        : (IsExecConfig ? 3 /* kernel function (exec config) */
5799                                        : 0 /* function */);
5800 
5801   // If too few arguments are available (and we don't have default
5802   // arguments for the remaining parameters), don't make the call.
5803   if (Args.size() < NumParams) {
5804     if (Args.size() < MinArgs) {
5805       TypoCorrection TC;
5806       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5807         unsigned diag_id =
5808             MinArgs == NumParams && !Proto->isVariadic()
5809                 ? diag::err_typecheck_call_too_few_args_suggest
5810                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
5811         diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
5812                                         << static_cast<unsigned>(Args.size())
5813                                         << TC.getCorrectionRange());
5814       } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
5815         Diag(RParenLoc,
5816              MinArgs == NumParams && !Proto->isVariadic()
5817                  ? diag::err_typecheck_call_too_few_args_one
5818                  : diag::err_typecheck_call_too_few_args_at_least_one)
5819             << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
5820       else
5821         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
5822                             ? diag::err_typecheck_call_too_few_args
5823                             : diag::err_typecheck_call_too_few_args_at_least)
5824             << FnKind << MinArgs << static_cast<unsigned>(Args.size())
5825             << Fn->getSourceRange();
5826 
5827       // Emit the location of the prototype.
5828       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5829         Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
5830 
5831       return true;
5832     }
5833     // We reserve space for the default arguments when we create
5834     // the call expression, before calling ConvertArgumentsForCall.
5835     assert((Call->getNumArgs() == NumParams) &&
5836            "We should have reserved space for the default arguments before!");
5837   }
5838 
5839   // If too many are passed and not variadic, error on the extras and drop
5840   // them.
5841   if (Args.size() > NumParams) {
5842     if (!Proto->isVariadic()) {
5843       TypoCorrection TC;
5844       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5845         unsigned diag_id =
5846             MinArgs == NumParams && !Proto->isVariadic()
5847                 ? diag::err_typecheck_call_too_many_args_suggest
5848                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
5849         diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
5850                                         << static_cast<unsigned>(Args.size())
5851                                         << TC.getCorrectionRange());
5852       } else if (NumParams == 1 && FDecl &&
5853                  FDecl->getParamDecl(0)->getDeclName())
5854         Diag(Args[NumParams]->getBeginLoc(),
5855              MinArgs == NumParams
5856                  ? diag::err_typecheck_call_too_many_args_one
5857                  : diag::err_typecheck_call_too_many_args_at_most_one)
5858             << FnKind << FDecl->getParamDecl(0)
5859             << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
5860             << SourceRange(Args[NumParams]->getBeginLoc(),
5861                            Args.back()->getEndLoc());
5862       else
5863         Diag(Args[NumParams]->getBeginLoc(),
5864              MinArgs == NumParams
5865                  ? diag::err_typecheck_call_too_many_args
5866                  : diag::err_typecheck_call_too_many_args_at_most)
5867             << FnKind << NumParams << static_cast<unsigned>(Args.size())
5868             << Fn->getSourceRange()
5869             << SourceRange(Args[NumParams]->getBeginLoc(),
5870                            Args.back()->getEndLoc());
5871 
5872       // Emit the location of the prototype.
5873       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5874         Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
5875 
5876       // This deletes the extra arguments.
5877       Call->shrinkNumArgs(NumParams);
5878       return true;
5879     }
5880   }
5881   SmallVector<Expr *, 8> AllArgs;
5882   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
5883 
5884   Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
5885                                    AllArgs, CallType);
5886   if (Invalid)
5887     return true;
5888   unsigned TotalNumArgs = AllArgs.size();
5889   for (unsigned i = 0; i < TotalNumArgs; ++i)
5890     Call->setArg(i, AllArgs[i]);
5891 
5892   return false;
5893 }
5894 
GatherArgumentsForCall(SourceLocation CallLoc,FunctionDecl * FDecl,const FunctionProtoType * Proto,unsigned FirstParam,ArrayRef<Expr * > Args,SmallVectorImpl<Expr * > & AllArgs,VariadicCallType CallType,bool AllowExplicit,bool IsListInitialization)5895 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
5896                                   const FunctionProtoType *Proto,
5897                                   unsigned FirstParam, ArrayRef<Expr *> Args,
5898                                   SmallVectorImpl<Expr *> &AllArgs,
5899                                   VariadicCallType CallType, bool AllowExplicit,
5900                                   bool IsListInitialization) {
5901   unsigned NumParams = Proto->getNumParams();
5902   bool Invalid = false;
5903   size_t ArgIx = 0;
5904   // Continue to check argument types (even if we have too few/many args).
5905   for (unsigned i = FirstParam; i < NumParams; i++) {
5906     QualType ProtoArgType = Proto->getParamType(i);
5907 
5908     Expr *Arg;
5909     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
5910     if (ArgIx < Args.size()) {
5911       Arg = Args[ArgIx++];
5912 
5913       if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
5914                               diag::err_call_incomplete_argument, Arg))
5915         return true;
5916 
5917       // Strip the unbridged-cast placeholder expression off, if applicable.
5918       bool CFAudited = false;
5919       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
5920           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5921           (!Param || !Param->hasAttr<CFConsumedAttr>()))
5922         Arg = stripARCUnbridgedCast(Arg);
5923       else if (getLangOpts().ObjCAutoRefCount &&
5924                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5925                (!Param || !Param->hasAttr<CFConsumedAttr>()))
5926         CFAudited = true;
5927 
5928       if (Proto->getExtParameterInfo(i).isNoEscape() &&
5929           ProtoArgType->isBlockPointerType())
5930         if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
5931           BE->getBlockDecl()->setDoesNotEscape();
5932 
5933       InitializedEntity Entity =
5934           Param ? InitializedEntity::InitializeParameter(Context, Param,
5935                                                          ProtoArgType)
5936                 : InitializedEntity::InitializeParameter(
5937                       Context, ProtoArgType, Proto->isParamConsumed(i));
5938 
5939       // Remember that parameter belongs to a CF audited API.
5940       if (CFAudited)
5941         Entity.setParameterCFAudited();
5942 
5943       ExprResult ArgE = PerformCopyInitialization(
5944           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
5945       if (ArgE.isInvalid())
5946         return true;
5947 
5948       Arg = ArgE.getAs<Expr>();
5949     } else {
5950       assert(Param && "can't use default arguments without a known callee");
5951 
5952       ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
5953       if (ArgExpr.isInvalid())
5954         return true;
5955 
5956       Arg = ArgExpr.getAs<Expr>();
5957     }
5958 
5959     // Check for array bounds violations for each argument to the call. This
5960     // check only triggers warnings when the argument isn't a more complex Expr
5961     // with its own checking, such as a BinaryOperator.
5962     CheckArrayAccess(Arg);
5963 
5964     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
5965     CheckStaticArrayArgument(CallLoc, Param, Arg);
5966 
5967     AllArgs.push_back(Arg);
5968   }
5969 
5970   // If this is a variadic call, handle args passed through "...".
5971   if (CallType != VariadicDoesNotApply) {
5972     // Assume that extern "C" functions with variadic arguments that
5973     // return __unknown_anytype aren't *really* variadic.
5974     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
5975         FDecl->isExternC()) {
5976       for (Expr *A : Args.slice(ArgIx)) {
5977         QualType paramType; // ignored
5978         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
5979         Invalid |= arg.isInvalid();
5980         AllArgs.push_back(arg.get());
5981       }
5982 
5983     // Otherwise do argument promotion, (C99 6.5.2.2p7).
5984     } else {
5985       for (Expr *A : Args.slice(ArgIx)) {
5986         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
5987         Invalid |= Arg.isInvalid();
5988         AllArgs.push_back(Arg.get());
5989       }
5990     }
5991 
5992     // Check for array bounds violations.
5993     for (Expr *A : Args.slice(ArgIx))
5994       CheckArrayAccess(A);
5995   }
5996   return Invalid;
5997 }
5998 
DiagnoseCalleeStaticArrayParam(Sema & S,ParmVarDecl * PVD)5999 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
6000   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6001   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6002     TL = DTL.getOriginalLoc();
6003   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6004     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6005       << ATL.getLocalSourceRange();
6006 }
6007 
6008 /// CheckStaticArrayArgument - If the given argument corresponds to a static
6009 /// array parameter, check that it is non-null, and that if it is formed by
6010 /// array-to-pointer decay, the underlying array is sufficiently large.
6011 ///
6012 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
6013 /// array type derivation, then for each call to the function, the value of the
6014 /// corresponding actual argument shall provide access to the first element of
6015 /// an array with at least as many elements as specified by the size expression.
6016 void
CheckStaticArrayArgument(SourceLocation CallLoc,ParmVarDecl * Param,const Expr * ArgExpr)6017 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6018                                ParmVarDecl *Param,
6019                                const Expr *ArgExpr) {
6020   // Static array parameters are not supported in C++.
6021   if (!Param || getLangOpts().CPlusPlus)
6022     return;
6023 
6024   QualType OrigTy = Param->getOriginalType();
6025 
6026   const ArrayType *AT = Context.getAsArrayType(OrigTy);
6027   if (!AT || AT->getSizeModifier() != ArrayType::Static)
6028     return;
6029 
6030   if (ArgExpr->isNullPointerConstant(Context,
6031                                      Expr::NPC_NeverValueDependent)) {
6032     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6033     DiagnoseCalleeStaticArrayParam(*this, Param);
6034     return;
6035   }
6036 
6037   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6038   if (!CAT)
6039     return;
6040 
6041   const ConstantArrayType *ArgCAT =
6042     Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6043   if (!ArgCAT)
6044     return;
6045 
6046   if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6047                                              ArgCAT->getElementType())) {
6048     if (ArgCAT->getSize().ult(CAT->getSize())) {
6049       Diag(CallLoc, diag::warn_static_array_too_small)
6050           << ArgExpr->getSourceRange()
6051           << (unsigned)ArgCAT->getSize().getZExtValue()
6052           << (unsigned)CAT->getSize().getZExtValue() << 0;
6053       DiagnoseCalleeStaticArrayParam(*this, Param);
6054     }
6055     return;
6056   }
6057 
6058   Optional<CharUnits> ArgSize =
6059       getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6060   Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT);
6061   if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6062     Diag(CallLoc, diag::warn_static_array_too_small)
6063         << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6064         << (unsigned)ParmSize->getQuantity() << 1;
6065     DiagnoseCalleeStaticArrayParam(*this, Param);
6066   }
6067 }
6068 
6069 /// Given a function expression of unknown-any type, try to rebuild it
6070 /// to have a function type.
6071 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6072 
6073 /// Is the given type a placeholder that we need to lower out
6074 /// immediately during argument processing?
isPlaceholderToRemoveAsArg(QualType type)6075 static bool isPlaceholderToRemoveAsArg(QualType type) {
6076   // Placeholders are never sugared.
6077   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6078   if (!placeholder) return false;
6079 
6080   switch (placeholder->getKind()) {
6081   // Ignore all the non-placeholder types.
6082 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6083   case BuiltinType::Id:
6084 #include "clang/Basic/OpenCLImageTypes.def"
6085 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6086   case BuiltinType::Id:
6087 #include "clang/Basic/OpenCLExtensionTypes.def"
6088   // In practice we'll never use this, since all SVE types are sugared
6089   // via TypedefTypes rather than exposed directly as BuiltinTypes.
6090 #define SVE_TYPE(Name, Id, SingletonId) \
6091   case BuiltinType::Id:
6092 #include "clang/Basic/AArch64SVEACLETypes.def"
6093 #define PPC_VECTOR_TYPE(Name, Id, Size) \
6094   case BuiltinType::Id:
6095 #include "clang/Basic/PPCTypes.def"
6096 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6097 #include "clang/Basic/RISCVVTypes.def"
6098 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6099 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6100 #include "clang/AST/BuiltinTypes.def"
6101     return false;
6102 
6103   // We cannot lower out overload sets; they might validly be resolved
6104   // by the call machinery.
6105   case BuiltinType::Overload:
6106     return false;
6107 
6108   // Unbridged casts in ARC can be handled in some call positions and
6109   // should be left in place.
6110   case BuiltinType::ARCUnbridgedCast:
6111     return false;
6112 
6113   // Pseudo-objects should be converted as soon as possible.
6114   case BuiltinType::PseudoObject:
6115     return true;
6116 
6117   // The debugger mode could theoretically but currently does not try
6118   // to resolve unknown-typed arguments based on known parameter types.
6119   case BuiltinType::UnknownAny:
6120     return true;
6121 
6122   // These are always invalid as call arguments and should be reported.
6123   case BuiltinType::BoundMember:
6124   case BuiltinType::BuiltinFn:
6125   case BuiltinType::IncompleteMatrixIdx:
6126   case BuiltinType::OMPArraySection:
6127   case BuiltinType::OMPArrayShaping:
6128   case BuiltinType::OMPIterator:
6129     return true;
6130 
6131   }
6132   llvm_unreachable("bad builtin type kind");
6133 }
6134 
6135 /// Check an argument list for placeholders that we won't try to
6136 /// handle later.
checkArgsForPlaceholders(Sema & S,MultiExprArg args)6137 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
6138   // Apply this processing to all the arguments at once instead of
6139   // dying at the first failure.
6140   bool hasInvalid = false;
6141   for (size_t i = 0, e = args.size(); i != e; i++) {
6142     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6143       ExprResult result = S.CheckPlaceholderExpr(args[i]);
6144       if (result.isInvalid()) hasInvalid = true;
6145       else args[i] = result.get();
6146     }
6147   }
6148   return hasInvalid;
6149 }
6150 
6151 /// If a builtin function has a pointer argument with no explicit address
6152 /// space, then it should be able to accept a pointer to any address
6153 /// space as input.  In order to do this, we need to replace the
6154 /// standard builtin declaration with one that uses the same address space
6155 /// as the call.
6156 ///
6157 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6158 ///                  it does not contain any pointer arguments without
6159 ///                  an address space qualifer.  Otherwise the rewritten
6160 ///                  FunctionDecl is returned.
6161 /// TODO: Handle pointer return types.
rewriteBuiltinFunctionDecl(Sema * Sema,ASTContext & Context,FunctionDecl * FDecl,MultiExprArg ArgExprs)6162 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6163                                                 FunctionDecl *FDecl,
6164                                                 MultiExprArg ArgExprs) {
6165 
6166   QualType DeclType = FDecl->getType();
6167   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6168 
6169   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6170       ArgExprs.size() < FT->getNumParams())
6171     return nullptr;
6172 
6173   bool NeedsNewDecl = false;
6174   unsigned i = 0;
6175   SmallVector<QualType, 8> OverloadParams;
6176 
6177   for (QualType ParamType : FT->param_types()) {
6178 
6179     // Convert array arguments to pointer to simplify type lookup.
6180     ExprResult ArgRes =
6181         Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6182     if (ArgRes.isInvalid())
6183       return nullptr;
6184     Expr *Arg = ArgRes.get();
6185     QualType ArgType = Arg->getType();
6186     if (!ParamType->isPointerType() ||
6187         ParamType.hasAddressSpace() ||
6188         !ArgType->isPointerType() ||
6189         !ArgType->getPointeeType().hasAddressSpace()) {
6190       OverloadParams.push_back(ParamType);
6191       continue;
6192     }
6193 
6194     QualType PointeeType = ParamType->getPointeeType();
6195     if (PointeeType.hasAddressSpace())
6196       continue;
6197 
6198     NeedsNewDecl = true;
6199     LangAS AS = ArgType->getPointeeType().getAddressSpace();
6200 
6201     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6202     OverloadParams.push_back(Context.getPointerType(PointeeType));
6203   }
6204 
6205   if (!NeedsNewDecl)
6206     return nullptr;
6207 
6208   FunctionProtoType::ExtProtoInfo EPI;
6209   EPI.Variadic = FT->isVariadic();
6210   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6211                                                 OverloadParams, EPI);
6212   DeclContext *Parent = FDecl->getParent();
6213   FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
6214                                                     FDecl->getLocation(),
6215                                                     FDecl->getLocation(),
6216                                                     FDecl->getIdentifier(),
6217                                                     OverloadTy,
6218                                                     /*TInfo=*/nullptr,
6219                                                     SC_Extern, false,
6220                                                     /*hasPrototype=*/true);
6221   SmallVector<ParmVarDecl*, 16> Params;
6222   FT = cast<FunctionProtoType>(OverloadTy);
6223   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6224     QualType ParamType = FT->getParamType(i);
6225     ParmVarDecl *Parm =
6226         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
6227                                 SourceLocation(), nullptr, ParamType,
6228                                 /*TInfo=*/nullptr, SC_None, nullptr);
6229     Parm->setScopeInfo(0, i);
6230     Params.push_back(Parm);
6231   }
6232   OverloadDecl->setParams(Params);
6233   Sema->mergeDeclAttributes(OverloadDecl, FDecl);
6234   return OverloadDecl;
6235 }
6236 
checkDirectCallValidity(Sema & S,const Expr * Fn,FunctionDecl * Callee,MultiExprArg ArgExprs)6237 static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6238                                     FunctionDecl *Callee,
6239                                     MultiExprArg ArgExprs) {
6240   // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6241   // similar attributes) really don't like it when functions are called with an
6242   // invalid number of args.
6243   if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
6244                          /*PartialOverloading=*/false) &&
6245       !Callee->isVariadic())
6246     return;
6247   if (Callee->getMinRequiredArguments() > ArgExprs.size())
6248     return;
6249 
6250   if (const EnableIfAttr *Attr =
6251           S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
6252     S.Diag(Fn->getBeginLoc(),
6253            isa<CXXMethodDecl>(Callee)
6254                ? diag::err_ovl_no_viable_member_function_in_call
6255                : diag::err_ovl_no_viable_function_in_call)
6256         << Callee << Callee->getSourceRange();
6257     S.Diag(Callee->getLocation(),
6258            diag::note_ovl_candidate_disabled_by_function_cond_attr)
6259         << Attr->getCond()->getSourceRange() << Attr->getMessage();
6260     return;
6261   }
6262 }
6263 
enclosingClassIsRelatedToClassInWhichMembersWereFound(const UnresolvedMemberExpr * const UME,Sema & S)6264 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6265     const UnresolvedMemberExpr *const UME, Sema &S) {
6266 
6267   const auto GetFunctionLevelDCIfCXXClass =
6268       [](Sema &S) -> const CXXRecordDecl * {
6269     const DeclContext *const DC = S.getFunctionLevelDeclContext();
6270     if (!DC || !DC->getParent())
6271       return nullptr;
6272 
6273     // If the call to some member function was made from within a member
6274     // function body 'M' return return 'M's parent.
6275     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
6276       return MD->getParent()->getCanonicalDecl();
6277     // else the call was made from within a default member initializer of a
6278     // class, so return the class.
6279     if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
6280       return RD->getCanonicalDecl();
6281     return nullptr;
6282   };
6283   // If our DeclContext is neither a member function nor a class (in the
6284   // case of a lambda in a default member initializer), we can't have an
6285   // enclosing 'this'.
6286 
6287   const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6288   if (!CurParentClass)
6289     return false;
6290 
6291   // The naming class for implicit member functions call is the class in which
6292   // name lookup starts.
6293   const CXXRecordDecl *const NamingClass =
6294       UME->getNamingClass()->getCanonicalDecl();
6295   assert(NamingClass && "Must have naming class even for implicit access");
6296 
6297   // If the unresolved member functions were found in a 'naming class' that is
6298   // related (either the same or derived from) to the class that contains the
6299   // member function that itself contained the implicit member access.
6300 
6301   return CurParentClass == NamingClass ||
6302          CurParentClass->isDerivedFrom(NamingClass);
6303 }
6304 
6305 static void
tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(Sema & S,const UnresolvedMemberExpr * const UME,SourceLocation CallLoc)6306 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6307     Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6308 
6309   if (!UME)
6310     return;
6311 
6312   LambdaScopeInfo *const CurLSI = S.getCurLambda();
6313   // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6314   // already been captured, or if this is an implicit member function call (if
6315   // it isn't, an attempt to capture 'this' should already have been made).
6316   if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6317       !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6318     return;
6319 
6320   // Check if the naming class in which the unresolved members were found is
6321   // related (same as or is a base of) to the enclosing class.
6322 
6323   if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6324     return;
6325 
6326 
6327   DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6328   // If the enclosing function is not dependent, then this lambda is
6329   // capture ready, so if we can capture this, do so.
6330   if (!EnclosingFunctionCtx->isDependentContext()) {
6331     // If the current lambda and all enclosing lambdas can capture 'this' -
6332     // then go ahead and capture 'this' (since our unresolved overload set
6333     // contains at least one non-static member function).
6334     if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
6335       S.CheckCXXThisCapture(CallLoc);
6336   } else if (S.CurContext->isDependentContext()) {
6337     // ... since this is an implicit member reference, that might potentially
6338     // involve a 'this' capture, mark 'this' for potential capture in
6339     // enclosing lambdas.
6340     if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6341       CurLSI->addPotentialThisCapture(CallLoc);
6342   }
6343 }
6344 
ActOnCallExpr(Scope * Scope,Expr * Fn,SourceLocation LParenLoc,MultiExprArg ArgExprs,SourceLocation RParenLoc,Expr * ExecConfig)6345 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6346                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
6347                                Expr *ExecConfig) {
6348   ExprResult Call =
6349       BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6350                     /*IsExecConfig=*/false, /*AllowRecovery=*/true);
6351   if (Call.isInvalid())
6352     return Call;
6353 
6354   // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
6355   // language modes.
6356   if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
6357     if (ULE->hasExplicitTemplateArgs() &&
6358         ULE->decls_begin() == ULE->decls_end()) {
6359       Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
6360                                  ? diag::warn_cxx17_compat_adl_only_template_id
6361                                  : diag::ext_adl_only_template_id)
6362           << ULE->getName();
6363     }
6364   }
6365 
6366   if (LangOpts.OpenMP)
6367     Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
6368                            ExecConfig);
6369 
6370   return Call;
6371 }
6372 
6373 /// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
6374 /// This provides the location of the left/right parens and a list of comma
6375 /// locations.
BuildCallExpr(Scope * Scope,Expr * Fn,SourceLocation LParenLoc,MultiExprArg ArgExprs,SourceLocation RParenLoc,Expr * ExecConfig,bool IsExecConfig,bool AllowRecovery)6376 ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6377                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
6378                                Expr *ExecConfig, bool IsExecConfig,
6379                                bool AllowRecovery) {
6380   // Since this might be a postfix expression, get rid of ParenListExprs.
6381   ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
6382   if (Result.isInvalid()) return ExprError();
6383   Fn = Result.get();
6384 
6385   if (checkArgsForPlaceholders(*this, ArgExprs))
6386     return ExprError();
6387 
6388   if (getLangOpts().CPlusPlus) {
6389     // If this is a pseudo-destructor expression, build the call immediately.
6390     if (isa<CXXPseudoDestructorExpr>(Fn)) {
6391       if (!ArgExprs.empty()) {
6392         // Pseudo-destructor calls should not have any arguments.
6393         Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
6394             << FixItHint::CreateRemoval(
6395                    SourceRange(ArgExprs.front()->getBeginLoc(),
6396                                ArgExprs.back()->getEndLoc()));
6397       }
6398 
6399       return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
6400                               VK_RValue, RParenLoc, CurFPFeatureOverrides());
6401     }
6402     if (Fn->getType() == Context.PseudoObjectTy) {
6403       ExprResult result = CheckPlaceholderExpr(Fn);
6404       if (result.isInvalid()) return ExprError();
6405       Fn = result.get();
6406     }
6407 
6408     // Determine whether this is a dependent call inside a C++ template,
6409     // in which case we won't do any semantic analysis now.
6410     if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
6411       if (ExecConfig) {
6412         return CUDAKernelCallExpr::Create(
6413             Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
6414             Context.DependentTy, VK_RValue, RParenLoc, CurFPFeatureOverrides());
6415       } else {
6416 
6417         tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6418             *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
6419             Fn->getBeginLoc());
6420 
6421         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6422                                 VK_RValue, RParenLoc, CurFPFeatureOverrides());
6423       }
6424     }
6425 
6426     // Determine whether this is a call to an object (C++ [over.call.object]).
6427     if (Fn->getType()->isRecordType())
6428       return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
6429                                           RParenLoc);
6430 
6431     if (Fn->getType() == Context.UnknownAnyTy) {
6432       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6433       if (result.isInvalid()) return ExprError();
6434       Fn = result.get();
6435     }
6436 
6437     if (Fn->getType() == Context.BoundMemberTy) {
6438       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6439                                        RParenLoc, AllowRecovery);
6440     }
6441   }
6442 
6443   // Check for overloaded calls.  This can happen even in C due to extensions.
6444   if (Fn->getType() == Context.OverloadTy) {
6445     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
6446 
6447     // We aren't supposed to apply this logic if there's an '&' involved.
6448     if (!find.HasFormOfMemberPointer) {
6449       if (Expr::hasAnyTypeDependentArguments(ArgExprs))
6450         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6451                                 VK_RValue, RParenLoc, CurFPFeatureOverrides());
6452       OverloadExpr *ovl = find.Expression;
6453       if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
6454         return BuildOverloadedCallExpr(
6455             Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6456             /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
6457       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6458                                        RParenLoc, AllowRecovery);
6459     }
6460   }
6461 
6462   // If we're directly calling a function, get the appropriate declaration.
6463   if (Fn->getType() == Context.UnknownAnyTy) {
6464     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6465     if (result.isInvalid()) return ExprError();
6466     Fn = result.get();
6467   }
6468 
6469   Expr *NakedFn = Fn->IgnoreParens();
6470 
6471   bool CallingNDeclIndirectly = false;
6472   NamedDecl *NDecl = nullptr;
6473   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
6474     if (UnOp->getOpcode() == UO_AddrOf) {
6475       CallingNDeclIndirectly = true;
6476       NakedFn = UnOp->getSubExpr()->IgnoreParens();
6477     }
6478   }
6479 
6480   if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
6481     NDecl = DRE->getDecl();
6482 
6483     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
6484     if (FDecl && FDecl->getBuiltinID()) {
6485       // Rewrite the function decl for this builtin by replacing parameters
6486       // with no explicit address space with the address space of the arguments
6487       // in ArgExprs.
6488       if ((FDecl =
6489                rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
6490         NDecl = FDecl;
6491         Fn = DeclRefExpr::Create(
6492             Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
6493             SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
6494             nullptr, DRE->isNonOdrUse());
6495       }
6496     }
6497   } else if (isa<MemberExpr>(NakedFn))
6498     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
6499 
6500   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
6501     if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
6502                                       FD, /*Complain=*/true, Fn->getBeginLoc()))
6503       return ExprError();
6504 
6505     checkDirectCallValidity(*this, Fn, FD, ArgExprs);
6506   }
6507 
6508   if (Context.isDependenceAllowed() &&
6509       (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
6510     assert(!getLangOpts().CPlusPlus);
6511     assert((Fn->containsErrors() ||
6512             llvm::any_of(ArgExprs,
6513                          [](clang::Expr *E) { return E->containsErrors(); })) &&
6514            "should only occur in error-recovery path.");
6515     QualType ReturnType =
6516         llvm::isa_and_nonnull<FunctionDecl>(NDecl)
6517             ? cast<FunctionDecl>(NDecl)->getCallResultType()
6518             : Context.DependentTy;
6519     return CallExpr::Create(Context, Fn, ArgExprs, ReturnType,
6520                             Expr::getValueKindForType(ReturnType), RParenLoc,
6521                             CurFPFeatureOverrides());
6522   }
6523   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
6524                                ExecConfig, IsExecConfig);
6525 }
6526 
6527 /// Parse a __builtin_astype expression.
6528 ///
6529 /// __builtin_astype( value, dst type )
6530 ///
ActOnAsTypeExpr(Expr * E,ParsedType ParsedDestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)6531 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
6532                                  SourceLocation BuiltinLoc,
6533                                  SourceLocation RParenLoc) {
6534   QualType DstTy = GetTypeFromParser(ParsedDestTy);
6535   return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
6536 }
6537 
6538 /// Create a new AsTypeExpr node (bitcast) from the arguments.
BuildAsTypeExpr(Expr * E,QualType DestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)6539 ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
6540                                  SourceLocation BuiltinLoc,
6541                                  SourceLocation RParenLoc) {
6542   ExprValueKind VK = VK_RValue;
6543   ExprObjectKind OK = OK_Ordinary;
6544   QualType SrcTy = E->getType();
6545   if (!SrcTy->isDependentType() &&
6546       Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
6547     return ExprError(
6548         Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
6549         << DestTy << SrcTy << E->getSourceRange());
6550   return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
6551 }
6552 
6553 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
6554 /// provided arguments.
6555 ///
6556 /// __builtin_convertvector( value, dst type )
6557 ///
ActOnConvertVectorExpr(Expr * E,ParsedType ParsedDestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)6558 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
6559                                         SourceLocation BuiltinLoc,
6560                                         SourceLocation RParenLoc) {
6561   TypeSourceInfo *TInfo;
6562   GetTypeFromParser(ParsedDestTy, &TInfo);
6563   return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
6564 }
6565 
6566 /// BuildResolvedCallExpr - Build a call to a resolved expression,
6567 /// i.e. an expression not of \p OverloadTy.  The expression should
6568 /// unary-convert to an expression of function-pointer or
6569 /// block-pointer type.
6570 ///
6571 /// \param NDecl the declaration being called, if available
BuildResolvedCallExpr(Expr * Fn,NamedDecl * NDecl,SourceLocation LParenLoc,ArrayRef<Expr * > Args,SourceLocation RParenLoc,Expr * Config,bool IsExecConfig,ADLCallKind UsesADL)6572 ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
6573                                        SourceLocation LParenLoc,
6574                                        ArrayRef<Expr *> Args,
6575                                        SourceLocation RParenLoc, Expr *Config,
6576                                        bool IsExecConfig, ADLCallKind UsesADL) {
6577   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
6578   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
6579 
6580   // Functions with 'interrupt' attribute cannot be called directly.
6581   if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
6582     Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
6583     return ExprError();
6584   }
6585 
6586   // Interrupt handlers don't save off the VFP regs automatically on ARM,
6587   // so there's some risk when calling out to non-interrupt handler functions
6588   // that the callee might not preserve them. This is easy to diagnose here,
6589   // but can be very challenging to debug.
6590   // Likewise, X86 interrupt handlers may only call routines with attribute
6591   // no_caller_saved_registers since there is no efficient way to
6592   // save and restore the non-GPR state.
6593   if (auto *Caller = getCurFunctionDecl()) {
6594     if (Caller->hasAttr<ARMInterruptAttr>()) {
6595       bool VFP = Context.getTargetInfo().hasFeature("vfp");
6596       if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) {
6597         Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
6598         if (FDecl)
6599           Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6600       }
6601     }
6602     if (Caller->hasAttr<AnyX86InterruptAttr>() &&
6603         ((!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()))) {
6604       Diag(Fn->getExprLoc(), diag::warn_anyx86_interrupt_regsave);
6605       if (FDecl)
6606         Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6607     }
6608   }
6609 
6610   // Promote the function operand.
6611   // We special-case function promotion here because we only allow promoting
6612   // builtin functions to function pointers in the callee of a call.
6613   ExprResult Result;
6614   QualType ResultTy;
6615   if (BuiltinID &&
6616       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
6617     // Extract the return type from the (builtin) function pointer type.
6618     // FIXME Several builtins still have setType in
6619     // Sema::CheckBuiltinFunctionCall. One should review their definitions in
6620     // Builtins.def to ensure they are correct before removing setType calls.
6621     QualType FnPtrTy = Context.getPointerType(FDecl->getType());
6622     Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
6623     ResultTy = FDecl->getCallResultType();
6624   } else {
6625     Result = CallExprUnaryConversions(Fn);
6626     ResultTy = Context.BoolTy;
6627   }
6628   if (Result.isInvalid())
6629     return ExprError();
6630   Fn = Result.get();
6631 
6632   // Check for a valid function type, but only if it is not a builtin which
6633   // requires custom type checking. These will be handled by
6634   // CheckBuiltinFunctionCall below just after creation of the call expression.
6635   const FunctionType *FuncT = nullptr;
6636   if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
6637   retry:
6638     if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
6639       // C99 6.5.2.2p1 - "The expression that denotes the called function shall
6640       // have type pointer to function".
6641       FuncT = PT->getPointeeType()->getAs<FunctionType>();
6642       if (!FuncT)
6643         return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6644                          << Fn->getType() << Fn->getSourceRange());
6645     } else if (const BlockPointerType *BPT =
6646                    Fn->getType()->getAs<BlockPointerType>()) {
6647       FuncT = BPT->getPointeeType()->castAs<FunctionType>();
6648     } else {
6649       // Handle calls to expressions of unknown-any type.
6650       if (Fn->getType() == Context.UnknownAnyTy) {
6651         ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
6652         if (rewrite.isInvalid())
6653           return ExprError();
6654         Fn = rewrite.get();
6655         goto retry;
6656       }
6657 
6658       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6659                        << Fn->getType() << Fn->getSourceRange());
6660     }
6661   }
6662 
6663   // Get the number of parameters in the function prototype, if any.
6664   // We will allocate space for max(Args.size(), NumParams) arguments
6665   // in the call expression.
6666   const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
6667   unsigned NumParams = Proto ? Proto->getNumParams() : 0;
6668 
6669   CallExpr *TheCall;
6670   if (Config) {
6671     assert(UsesADL == ADLCallKind::NotADL &&
6672            "CUDAKernelCallExpr should not use ADL");
6673     TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
6674                                          Args, ResultTy, VK_RValue, RParenLoc,
6675                                          CurFPFeatureOverrides(), NumParams);
6676   } else {
6677     TheCall =
6678         CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue, RParenLoc,
6679                          CurFPFeatureOverrides(), NumParams, UsesADL);
6680   }
6681 
6682   if (!Context.isDependenceAllowed()) {
6683     // Forget about the nulled arguments since typo correction
6684     // do not handle them well.
6685     TheCall->shrinkNumArgs(Args.size());
6686     // C cannot always handle TypoExpr nodes in builtin calls and direct
6687     // function calls as their argument checking don't necessarily handle
6688     // dependent types properly, so make sure any TypoExprs have been
6689     // dealt with.
6690     ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
6691     if (!Result.isUsable()) return ExprError();
6692     CallExpr *TheOldCall = TheCall;
6693     TheCall = dyn_cast<CallExpr>(Result.get());
6694     bool CorrectedTypos = TheCall != TheOldCall;
6695     if (!TheCall) return Result;
6696     Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
6697 
6698     // A new call expression node was created if some typos were corrected.
6699     // However it may not have been constructed with enough storage. In this
6700     // case, rebuild the node with enough storage. The waste of space is
6701     // immaterial since this only happens when some typos were corrected.
6702     if (CorrectedTypos && Args.size() < NumParams) {
6703       if (Config)
6704         TheCall = CUDAKernelCallExpr::Create(
6705             Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_RValue,
6706             RParenLoc, CurFPFeatureOverrides(), NumParams);
6707       else
6708         TheCall =
6709             CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue, RParenLoc,
6710                              CurFPFeatureOverrides(), NumParams, UsesADL);
6711     }
6712     // We can now handle the nulled arguments for the default arguments.
6713     TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
6714   }
6715 
6716   // Bail out early if calling a builtin with custom type checking.
6717   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
6718     return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6719 
6720   if (getLangOpts().CUDA) {
6721     if (Config) {
6722       // CUDA: Kernel calls must be to global functions
6723       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
6724         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
6725             << FDecl << Fn->getSourceRange());
6726 
6727       // CUDA: Kernel function must have 'void' return type
6728       if (!FuncT->getReturnType()->isVoidType() &&
6729           !FuncT->getReturnType()->getAs<AutoType>() &&
6730           !FuncT->getReturnType()->isInstantiationDependentType())
6731         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
6732             << Fn->getType() << Fn->getSourceRange());
6733     } else {
6734       // CUDA: Calls to global functions must be configured
6735       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
6736         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
6737             << FDecl << Fn->getSourceRange());
6738     }
6739   }
6740 
6741   // Check for a valid return type
6742   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
6743                           FDecl))
6744     return ExprError();
6745 
6746   // We know the result type of the call, set it.
6747   TheCall->setType(FuncT->getCallResultType(Context));
6748   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
6749 
6750   if (Proto) {
6751     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
6752                                 IsExecConfig))
6753       return ExprError();
6754   } else {
6755     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
6756 
6757     if (FDecl) {
6758       // Check if we have too few/too many template arguments, based
6759       // on our knowledge of the function definition.
6760       const FunctionDecl *Def = nullptr;
6761       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
6762         Proto = Def->getType()->getAs<FunctionProtoType>();
6763        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
6764           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
6765           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
6766       }
6767 
6768       // If the function we're calling isn't a function prototype, but we have
6769       // a function prototype from a prior declaratiom, use that prototype.
6770       if (!FDecl->hasPrototype())
6771         Proto = FDecl->getType()->getAs<FunctionProtoType>();
6772     }
6773 
6774     // Promote the arguments (C99 6.5.2.2p6).
6775     for (unsigned i = 0, e = Args.size(); i != e; i++) {
6776       Expr *Arg = Args[i];
6777 
6778       if (Proto && i < Proto->getNumParams()) {
6779         InitializedEntity Entity = InitializedEntity::InitializeParameter(
6780             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
6781         ExprResult ArgE =
6782             PerformCopyInitialization(Entity, SourceLocation(), Arg);
6783         if (ArgE.isInvalid())
6784           return true;
6785 
6786         Arg = ArgE.getAs<Expr>();
6787 
6788       } else {
6789         ExprResult ArgE = DefaultArgumentPromotion(Arg);
6790 
6791         if (ArgE.isInvalid())
6792           return true;
6793 
6794         Arg = ArgE.getAs<Expr>();
6795       }
6796 
6797       if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
6798                               diag::err_call_incomplete_argument, Arg))
6799         return ExprError();
6800 
6801       TheCall->setArg(i, Arg);
6802     }
6803   }
6804 
6805   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
6806     if (!Method->isStatic())
6807       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
6808         << Fn->getSourceRange());
6809 
6810   // Check for sentinels
6811   if (NDecl)
6812     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
6813 
6814   // Warn for unions passing across security boundary (CMSE).
6815   if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
6816     for (unsigned i = 0, e = Args.size(); i != e; i++) {
6817       if (const auto *RT =
6818               dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
6819         if (RT->getDecl()->isOrContainsUnion())
6820           Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
6821               << 0 << i;
6822       }
6823     }
6824   }
6825 
6826   // Do special checking on direct calls to functions.
6827   if (FDecl) {
6828     if (CheckFunctionCall(FDecl, TheCall, Proto))
6829       return ExprError();
6830 
6831     checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
6832 
6833     if (BuiltinID)
6834       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6835   } else if (NDecl) {
6836     if (CheckPointerCall(NDecl, TheCall, Proto))
6837       return ExprError();
6838   } else {
6839     if (CheckOtherCall(TheCall, Proto))
6840       return ExprError();
6841   }
6842 
6843   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
6844 }
6845 
6846 ExprResult
ActOnCompoundLiteral(SourceLocation LParenLoc,ParsedType Ty,SourceLocation RParenLoc,Expr * InitExpr)6847 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
6848                            SourceLocation RParenLoc, Expr *InitExpr) {
6849   assert(Ty && "ActOnCompoundLiteral(): missing type");
6850   assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
6851 
6852   TypeSourceInfo *TInfo;
6853   QualType literalType = GetTypeFromParser(Ty, &TInfo);
6854   if (!TInfo)
6855     TInfo = Context.getTrivialTypeSourceInfo(literalType);
6856 
6857   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
6858 }
6859 
6860 ExprResult
BuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * LiteralExpr)6861 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
6862                                SourceLocation RParenLoc, Expr *LiteralExpr) {
6863   QualType literalType = TInfo->getType();
6864 
6865   if (literalType->isArrayType()) {
6866     if (RequireCompleteSizedType(
6867             LParenLoc, Context.getBaseElementType(literalType),
6868             diag::err_array_incomplete_or_sizeless_type,
6869             SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
6870       return ExprError();
6871     if (literalType->isVariableArrayType()) {
6872       if (!tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
6873                                            diag::err_variable_object_no_init)) {
6874         return ExprError();
6875       }
6876     }
6877   } else if (!literalType->isDependentType() &&
6878              RequireCompleteType(LParenLoc, literalType,
6879                diag::err_typecheck_decl_incomplete_type,
6880                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
6881     return ExprError();
6882 
6883   InitializedEntity Entity
6884     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
6885   InitializationKind Kind
6886     = InitializationKind::CreateCStyleCast(LParenLoc,
6887                                            SourceRange(LParenLoc, RParenLoc),
6888                                            /*InitList=*/true);
6889   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
6890   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
6891                                       &literalType);
6892   if (Result.isInvalid())
6893     return ExprError();
6894   LiteralExpr = Result.get();
6895 
6896   bool isFileScope = !CurContext->isFunctionOrMethod();
6897 
6898   // In C, compound literals are l-values for some reason.
6899   // For GCC compatibility, in C++, file-scope array compound literals with
6900   // constant initializers are also l-values, and compound literals are
6901   // otherwise prvalues.
6902   //
6903   // (GCC also treats C++ list-initialized file-scope array prvalues with
6904   // constant initializers as l-values, but that's non-conforming, so we don't
6905   // follow it there.)
6906   //
6907   // FIXME: It would be better to handle the lvalue cases as materializing and
6908   // lifetime-extending a temporary object, but our materialized temporaries
6909   // representation only supports lifetime extension from a variable, not "out
6910   // of thin air".
6911   // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
6912   // is bound to the result of applying array-to-pointer decay to the compound
6913   // literal.
6914   // FIXME: GCC supports compound literals of reference type, which should
6915   // obviously have a value kind derived from the kind of reference involved.
6916   ExprValueKind VK =
6917       (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
6918           ? VK_RValue
6919           : VK_LValue;
6920 
6921   if (isFileScope)
6922     if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
6923       for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
6924         Expr *Init = ILE->getInit(i);
6925         ILE->setInit(i, ConstantExpr::Create(Context, Init));
6926       }
6927 
6928   auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
6929                                               VK, LiteralExpr, isFileScope);
6930   if (isFileScope) {
6931     if (!LiteralExpr->isTypeDependent() &&
6932         !LiteralExpr->isValueDependent() &&
6933         !literalType->isDependentType()) // C99 6.5.2.5p3
6934       if (CheckForConstantInitializer(LiteralExpr, literalType))
6935         return ExprError();
6936   } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
6937              literalType.getAddressSpace() != LangAS::Default) {
6938     // Embedded-C extensions to C99 6.5.2.5:
6939     //   "If the compound literal occurs inside the body of a function, the
6940     //   type name shall not be qualified by an address-space qualifier."
6941     Diag(LParenLoc, diag::err_compound_literal_with_address_space)
6942       << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
6943     return ExprError();
6944   }
6945 
6946   if (!isFileScope && !getLangOpts().CPlusPlus) {
6947     // Compound literals that have automatic storage duration are destroyed at
6948     // the end of the scope in C; in C++, they're just temporaries.
6949 
6950     // Emit diagnostics if it is or contains a C union type that is non-trivial
6951     // to destruct.
6952     if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
6953       checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
6954                             NTCUC_CompoundLiteral, NTCUK_Destruct);
6955 
6956     // Diagnose jumps that enter or exit the lifetime of the compound literal.
6957     if (literalType.isDestructedType()) {
6958       Cleanup.setExprNeedsCleanups(true);
6959       ExprCleanupObjects.push_back(E);
6960       getCurFunction()->setHasBranchProtectedScope();
6961     }
6962   }
6963 
6964   if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
6965       E->getType().hasNonTrivialToPrimitiveCopyCUnion())
6966     checkNonTrivialCUnionInInitializer(E->getInitializer(),
6967                                        E->getInitializer()->getExprLoc());
6968 
6969   return MaybeBindToTemporary(E);
6970 }
6971 
6972 ExprResult
ActOnInitList(SourceLocation LBraceLoc,MultiExprArg InitArgList,SourceLocation RBraceLoc)6973 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
6974                     SourceLocation RBraceLoc) {
6975   // Only produce each kind of designated initialization diagnostic once.
6976   SourceLocation FirstDesignator;
6977   bool DiagnosedArrayDesignator = false;
6978   bool DiagnosedNestedDesignator = false;
6979   bool DiagnosedMixedDesignator = false;
6980 
6981   // Check that any designated initializers are syntactically valid in the
6982   // current language mode.
6983   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
6984     if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
6985       if (FirstDesignator.isInvalid())
6986         FirstDesignator = DIE->getBeginLoc();
6987 
6988       if (!getLangOpts().CPlusPlus)
6989         break;
6990 
6991       if (!DiagnosedNestedDesignator && DIE->size() > 1) {
6992         DiagnosedNestedDesignator = true;
6993         Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
6994           << DIE->getDesignatorsSourceRange();
6995       }
6996 
6997       for (auto &Desig : DIE->designators()) {
6998         if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
6999           DiagnosedArrayDesignator = true;
7000           Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7001             << Desig.getSourceRange();
7002         }
7003       }
7004 
7005       if (!DiagnosedMixedDesignator &&
7006           !isa<DesignatedInitExpr>(InitArgList[0])) {
7007         DiagnosedMixedDesignator = true;
7008         Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7009           << DIE->getSourceRange();
7010         Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7011           << InitArgList[0]->getSourceRange();
7012       }
7013     } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7014                isa<DesignatedInitExpr>(InitArgList[0])) {
7015       DiagnosedMixedDesignator = true;
7016       auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
7017       Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7018         << DIE->getSourceRange();
7019       Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7020         << InitArgList[I]->getSourceRange();
7021     }
7022   }
7023 
7024   if (FirstDesignator.isValid()) {
7025     // Only diagnose designated initiaization as a C++20 extension if we didn't
7026     // already diagnose use of (non-C++20) C99 designator syntax.
7027     if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7028         !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7029       Diag(FirstDesignator, getLangOpts().CPlusPlus20
7030                                 ? diag::warn_cxx17_compat_designated_init
7031                                 : diag::ext_cxx_designated_init);
7032     } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7033       Diag(FirstDesignator, diag::ext_designated_init);
7034     }
7035   }
7036 
7037   return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7038 }
7039 
7040 ExprResult
BuildInitList(SourceLocation LBraceLoc,MultiExprArg InitArgList,SourceLocation RBraceLoc)7041 Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7042                     SourceLocation RBraceLoc) {
7043   // Semantic analysis for initializers is done by ActOnDeclarator() and
7044   // CheckInitializer() - it requires knowledge of the object being initialized.
7045 
7046   // Immediately handle non-overload placeholders.  Overloads can be
7047   // resolved contextually, but everything else here can't.
7048   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7049     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7050       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7051 
7052       // Ignore failures; dropping the entire initializer list because
7053       // of one failure would be terrible for indexing/etc.
7054       if (result.isInvalid()) continue;
7055 
7056       InitArgList[I] = result.get();
7057     }
7058   }
7059 
7060   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
7061                                                RBraceLoc);
7062   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7063   return E;
7064 }
7065 
7066 /// Do an explicit extend of the given block pointer if we're in ARC.
maybeExtendBlockObject(ExprResult & E)7067 void Sema::maybeExtendBlockObject(ExprResult &E) {
7068   assert(E.get()->getType()->isBlockPointerType());
7069   assert(E.get()->isRValue());
7070 
7071   // Only do this in an r-value context.
7072   if (!getLangOpts().ObjCAutoRefCount) return;
7073 
7074   E = ImplicitCastExpr::Create(
7075       Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
7076       /*base path*/ nullptr, VK_RValue, FPOptionsOverride());
7077   Cleanup.setExprNeedsCleanups(true);
7078 }
7079 
7080 /// Prepare a conversion of the given expression to an ObjC object
7081 /// pointer type.
PrepareCastToObjCObjectPointer(ExprResult & E)7082 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
7083   QualType type = E.get()->getType();
7084   if (type->isObjCObjectPointerType()) {
7085     return CK_BitCast;
7086   } else if (type->isBlockPointerType()) {
7087     maybeExtendBlockObject(E);
7088     return CK_BlockPointerToObjCPointerCast;
7089   } else {
7090     assert(type->isPointerType());
7091     return CK_CPointerToObjCPointerCast;
7092   }
7093 }
7094 
7095 /// Prepares for a scalar cast, performing all the necessary stages
7096 /// except the final cast and returning the kind required.
PrepareScalarCast(ExprResult & Src,QualType DestTy)7097 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
7098   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7099   // Also, callers should have filtered out the invalid cases with
7100   // pointers.  Everything else should be possible.
7101 
7102   QualType SrcTy = Src.get()->getType();
7103   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
7104     return CK_NoOp;
7105 
7106   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
7107   case Type::STK_MemberPointer:
7108     llvm_unreachable("member pointer type in C");
7109 
7110   case Type::STK_CPointer:
7111   case Type::STK_BlockPointer:
7112   case Type::STK_ObjCObjectPointer:
7113     switch (DestTy->getScalarTypeKind()) {
7114     case Type::STK_CPointer: {
7115       LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7116       LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7117       if (SrcAS != DestAS)
7118         return CK_AddressSpaceConversion;
7119       if (Context.hasCvrSimilarType(SrcTy, DestTy))
7120         return CK_NoOp;
7121       return CK_BitCast;
7122     }
7123     case Type::STK_BlockPointer:
7124       return (SrcKind == Type::STK_BlockPointer
7125                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7126     case Type::STK_ObjCObjectPointer:
7127       if (SrcKind == Type::STK_ObjCObjectPointer)
7128         return CK_BitCast;
7129       if (SrcKind == Type::STK_CPointer)
7130         return CK_CPointerToObjCPointerCast;
7131       maybeExtendBlockObject(Src);
7132       return CK_BlockPointerToObjCPointerCast;
7133     case Type::STK_Bool:
7134       return CK_PointerToBoolean;
7135     case Type::STK_Integral:
7136       return CK_PointerToIntegral;
7137     case Type::STK_Floating:
7138     case Type::STK_FloatingComplex:
7139     case Type::STK_IntegralComplex:
7140     case Type::STK_MemberPointer:
7141     case Type::STK_FixedPoint:
7142       llvm_unreachable("illegal cast from pointer");
7143     }
7144     llvm_unreachable("Should have returned before this");
7145 
7146   case Type::STK_FixedPoint:
7147     switch (DestTy->getScalarTypeKind()) {
7148     case Type::STK_FixedPoint:
7149       return CK_FixedPointCast;
7150     case Type::STK_Bool:
7151       return CK_FixedPointToBoolean;
7152     case Type::STK_Integral:
7153       return CK_FixedPointToIntegral;
7154     case Type::STK_Floating:
7155       return CK_FixedPointToFloating;
7156     case Type::STK_IntegralComplex:
7157     case Type::STK_FloatingComplex:
7158       Diag(Src.get()->getExprLoc(),
7159            diag::err_unimplemented_conversion_with_fixed_point_type)
7160           << DestTy;
7161       return CK_IntegralCast;
7162     case Type::STK_CPointer:
7163     case Type::STK_ObjCObjectPointer:
7164     case Type::STK_BlockPointer:
7165     case Type::STK_MemberPointer:
7166       llvm_unreachable("illegal cast to pointer type");
7167     }
7168     llvm_unreachable("Should have returned before this");
7169 
7170   case Type::STK_Bool: // casting from bool is like casting from an integer
7171   case Type::STK_Integral:
7172     switch (DestTy->getScalarTypeKind()) {
7173     case Type::STK_CPointer:
7174     case Type::STK_ObjCObjectPointer:
7175     case Type::STK_BlockPointer:
7176       if (Src.get()->isNullPointerConstant(Context,
7177                                            Expr::NPC_ValueDependentIsNull))
7178         return CK_NullToPointer;
7179       return CK_IntegralToPointer;
7180     case Type::STK_Bool:
7181       return CK_IntegralToBoolean;
7182     case Type::STK_Integral:
7183       return CK_IntegralCast;
7184     case Type::STK_Floating:
7185       return CK_IntegralToFloating;
7186     case Type::STK_IntegralComplex:
7187       Src = ImpCastExprToType(Src.get(),
7188                       DestTy->castAs<ComplexType>()->getElementType(),
7189                       CK_IntegralCast);
7190       return CK_IntegralRealToComplex;
7191     case Type::STK_FloatingComplex:
7192       Src = ImpCastExprToType(Src.get(),
7193                       DestTy->castAs<ComplexType>()->getElementType(),
7194                       CK_IntegralToFloating);
7195       return CK_FloatingRealToComplex;
7196     case Type::STK_MemberPointer:
7197       llvm_unreachable("member pointer type in C");
7198     case Type::STK_FixedPoint:
7199       return CK_IntegralToFixedPoint;
7200     }
7201     llvm_unreachable("Should have returned before this");
7202 
7203   case Type::STK_Floating:
7204     switch (DestTy->getScalarTypeKind()) {
7205     case Type::STK_Floating:
7206       return CK_FloatingCast;
7207     case Type::STK_Bool:
7208       return CK_FloatingToBoolean;
7209     case Type::STK_Integral:
7210       return CK_FloatingToIntegral;
7211     case Type::STK_FloatingComplex:
7212       Src = ImpCastExprToType(Src.get(),
7213                               DestTy->castAs<ComplexType>()->getElementType(),
7214                               CK_FloatingCast);
7215       return CK_FloatingRealToComplex;
7216     case Type::STK_IntegralComplex:
7217       Src = ImpCastExprToType(Src.get(),
7218                               DestTy->castAs<ComplexType>()->getElementType(),
7219                               CK_FloatingToIntegral);
7220       return CK_IntegralRealToComplex;
7221     case Type::STK_CPointer:
7222     case Type::STK_ObjCObjectPointer:
7223     case Type::STK_BlockPointer:
7224       llvm_unreachable("valid float->pointer cast?");
7225     case Type::STK_MemberPointer:
7226       llvm_unreachable("member pointer type in C");
7227     case Type::STK_FixedPoint:
7228       return CK_FloatingToFixedPoint;
7229     }
7230     llvm_unreachable("Should have returned before this");
7231 
7232   case Type::STK_FloatingComplex:
7233     switch (DestTy->getScalarTypeKind()) {
7234     case Type::STK_FloatingComplex:
7235       return CK_FloatingComplexCast;
7236     case Type::STK_IntegralComplex:
7237       return CK_FloatingComplexToIntegralComplex;
7238     case Type::STK_Floating: {
7239       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7240       if (Context.hasSameType(ET, DestTy))
7241         return CK_FloatingComplexToReal;
7242       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
7243       return CK_FloatingCast;
7244     }
7245     case Type::STK_Bool:
7246       return CK_FloatingComplexToBoolean;
7247     case Type::STK_Integral:
7248       Src = ImpCastExprToType(Src.get(),
7249                               SrcTy->castAs<ComplexType>()->getElementType(),
7250                               CK_FloatingComplexToReal);
7251       return CK_FloatingToIntegral;
7252     case Type::STK_CPointer:
7253     case Type::STK_ObjCObjectPointer:
7254     case Type::STK_BlockPointer:
7255       llvm_unreachable("valid complex float->pointer cast?");
7256     case Type::STK_MemberPointer:
7257       llvm_unreachable("member pointer type in C");
7258     case Type::STK_FixedPoint:
7259       Diag(Src.get()->getExprLoc(),
7260            diag::err_unimplemented_conversion_with_fixed_point_type)
7261           << SrcTy;
7262       return CK_IntegralCast;
7263     }
7264     llvm_unreachable("Should have returned before this");
7265 
7266   case Type::STK_IntegralComplex:
7267     switch (DestTy->getScalarTypeKind()) {
7268     case Type::STK_FloatingComplex:
7269       return CK_IntegralComplexToFloatingComplex;
7270     case Type::STK_IntegralComplex:
7271       return CK_IntegralComplexCast;
7272     case Type::STK_Integral: {
7273       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7274       if (Context.hasSameType(ET, DestTy))
7275         return CK_IntegralComplexToReal;
7276       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
7277       return CK_IntegralCast;
7278     }
7279     case Type::STK_Bool:
7280       return CK_IntegralComplexToBoolean;
7281     case Type::STK_Floating:
7282       Src = ImpCastExprToType(Src.get(),
7283                               SrcTy->castAs<ComplexType>()->getElementType(),
7284                               CK_IntegralComplexToReal);
7285       return CK_IntegralToFloating;
7286     case Type::STK_CPointer:
7287     case Type::STK_ObjCObjectPointer:
7288     case Type::STK_BlockPointer:
7289       llvm_unreachable("valid complex int->pointer cast?");
7290     case Type::STK_MemberPointer:
7291       llvm_unreachable("member pointer type in C");
7292     case Type::STK_FixedPoint:
7293       Diag(Src.get()->getExprLoc(),
7294            diag::err_unimplemented_conversion_with_fixed_point_type)
7295           << SrcTy;
7296       return CK_IntegralCast;
7297     }
7298     llvm_unreachable("Should have returned before this");
7299   }
7300 
7301   llvm_unreachable("Unhandled scalar cast");
7302 }
7303 
breakDownVectorType(QualType type,uint64_t & len,QualType & eltType)7304 static bool breakDownVectorType(QualType type, uint64_t &len,
7305                                 QualType &eltType) {
7306   // Vectors are simple.
7307   if (const VectorType *vecType = type->getAs<VectorType>()) {
7308     len = vecType->getNumElements();
7309     eltType = vecType->getElementType();
7310     assert(eltType->isScalarType());
7311     return true;
7312   }
7313 
7314   // We allow lax conversion to and from non-vector types, but only if
7315   // they're real types (i.e. non-complex, non-pointer scalar types).
7316   if (!type->isRealType()) return false;
7317 
7318   len = 1;
7319   eltType = type;
7320   return true;
7321 }
7322 
7323 /// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
7324 /// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
7325 /// allowed?
7326 ///
7327 /// This will also return false if the two given types do not make sense from
7328 /// the perspective of SVE bitcasts.
isValidSveBitcast(QualType srcTy,QualType destTy)7329 bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
7330   assert(srcTy->isVectorType() || destTy->isVectorType());
7331 
7332   auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
7333     if (!FirstType->isSizelessBuiltinType())
7334       return false;
7335 
7336     const auto *VecTy = SecondType->getAs<VectorType>();
7337     return VecTy &&
7338            VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector;
7339   };
7340 
7341   return ValidScalableConversion(srcTy, destTy) ||
7342          ValidScalableConversion(destTy, srcTy);
7343 }
7344 
7345 /// Are the two types matrix types and do they have the same dimensions i.e.
7346 /// do they have the same number of rows and the same number of columns?
areMatrixTypesOfTheSameDimension(QualType srcTy,QualType destTy)7347 bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
7348   if (!destTy->isMatrixType() || !srcTy->isMatrixType())
7349     return false;
7350 
7351   const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
7352   const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
7353 
7354   return matSrcType->getNumRows() == matDestType->getNumRows() &&
7355          matSrcType->getNumColumns() == matDestType->getNumColumns();
7356 }
7357 
areVectorTypesSameSize(QualType SrcTy,QualType DestTy)7358 bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
7359   assert(DestTy->isVectorType() || SrcTy->isVectorType());
7360 
7361   uint64_t SrcLen, DestLen;
7362   QualType SrcEltTy, DestEltTy;
7363   if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
7364     return false;
7365   if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
7366     return false;
7367 
7368   // ASTContext::getTypeSize will return the size rounded up to a
7369   // power of 2, so instead of using that, we need to use the raw
7370   // element size multiplied by the element count.
7371   uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
7372   uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
7373 
7374   return (SrcLen * SrcEltSize == DestLen * DestEltSize);
7375 }
7376 
7377 /// Are the two types lax-compatible vector types?  That is, given
7378 /// that one of them is a vector, do they have equal storage sizes,
7379 /// where the storage size is the number of elements times the element
7380 /// size?
7381 ///
7382 /// This will also return false if either of the types is neither a
7383 /// vector nor a real type.
areLaxCompatibleVectorTypes(QualType srcTy,QualType destTy)7384 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
7385   assert(destTy->isVectorType() || srcTy->isVectorType());
7386 
7387   // Disallow lax conversions between scalars and ExtVectors (these
7388   // conversions are allowed for other vector types because common headers
7389   // depend on them).  Most scalar OP ExtVector cases are handled by the
7390   // splat path anyway, which does what we want (convert, not bitcast).
7391   // What this rules out for ExtVectors is crazy things like char4*float.
7392   if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
7393   if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
7394 
7395   return areVectorTypesSameSize(srcTy, destTy);
7396 }
7397 
7398 /// Is this a legal conversion between two types, one of which is
7399 /// known to be a vector type?
isLaxVectorConversion(QualType srcTy,QualType destTy)7400 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
7401   assert(destTy->isVectorType() || srcTy->isVectorType());
7402 
7403   switch (Context.getLangOpts().getLaxVectorConversions()) {
7404   case LangOptions::LaxVectorConversionKind::None:
7405     return false;
7406 
7407   case LangOptions::LaxVectorConversionKind::Integer:
7408     if (!srcTy->isIntegralOrEnumerationType()) {
7409       auto *Vec = srcTy->getAs<VectorType>();
7410       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7411         return false;
7412     }
7413     if (!destTy->isIntegralOrEnumerationType()) {
7414       auto *Vec = destTy->getAs<VectorType>();
7415       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7416         return false;
7417     }
7418     // OK, integer (vector) -> integer (vector) bitcast.
7419     break;
7420 
7421     case LangOptions::LaxVectorConversionKind::All:
7422     break;
7423   }
7424 
7425   return areLaxCompatibleVectorTypes(srcTy, destTy);
7426 }
7427 
CheckMatrixCast(SourceRange R,QualType DestTy,QualType SrcTy,CastKind & Kind)7428 bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
7429                            CastKind &Kind) {
7430   if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
7431     if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
7432       return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
7433              << DestTy << SrcTy << R;
7434     }
7435   } else if (SrcTy->isMatrixType()) {
7436     return Diag(R.getBegin(),
7437                 diag::err_invalid_conversion_between_matrix_and_type)
7438            << SrcTy << DestTy << R;
7439   } else if (DestTy->isMatrixType()) {
7440     return Diag(R.getBegin(),
7441                 diag::err_invalid_conversion_between_matrix_and_type)
7442            << DestTy << SrcTy << R;
7443   }
7444 
7445   Kind = CK_MatrixCast;
7446   return false;
7447 }
7448 
CheckVectorCast(SourceRange R,QualType VectorTy,QualType Ty,CastKind & Kind)7449 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
7450                            CastKind &Kind) {
7451   assert(VectorTy->isVectorType() && "Not a vector type!");
7452 
7453   if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
7454     if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
7455       return Diag(R.getBegin(),
7456                   Ty->isVectorType() ?
7457                   diag::err_invalid_conversion_between_vectors :
7458                   diag::err_invalid_conversion_between_vector_and_integer)
7459         << VectorTy << Ty << R;
7460   } else
7461     return Diag(R.getBegin(),
7462                 diag::err_invalid_conversion_between_vector_and_scalar)
7463       << VectorTy << Ty << R;
7464 
7465   Kind = CK_BitCast;
7466   return false;
7467 }
7468 
prepareVectorSplat(QualType VectorTy,Expr * SplattedExpr)7469 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
7470   QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
7471 
7472   if (DestElemTy == SplattedExpr->getType())
7473     return SplattedExpr;
7474 
7475   assert(DestElemTy->isFloatingType() ||
7476          DestElemTy->isIntegralOrEnumerationType());
7477 
7478   CastKind CK;
7479   if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
7480     // OpenCL requires that we convert `true` boolean expressions to -1, but
7481     // only when splatting vectors.
7482     if (DestElemTy->isFloatingType()) {
7483       // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
7484       // in two steps: boolean to signed integral, then to floating.
7485       ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
7486                                                  CK_BooleanToSignedIntegral);
7487       SplattedExpr = CastExprRes.get();
7488       CK = CK_IntegralToFloating;
7489     } else {
7490       CK = CK_BooleanToSignedIntegral;
7491     }
7492   } else {
7493     ExprResult CastExprRes = SplattedExpr;
7494     CK = PrepareScalarCast(CastExprRes, DestElemTy);
7495     if (CastExprRes.isInvalid())
7496       return ExprError();
7497     SplattedExpr = CastExprRes.get();
7498   }
7499   return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
7500 }
7501 
CheckExtVectorCast(SourceRange R,QualType DestTy,Expr * CastExpr,CastKind & Kind)7502 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
7503                                     Expr *CastExpr, CastKind &Kind) {
7504   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
7505 
7506   QualType SrcTy = CastExpr->getType();
7507 
7508   // If SrcTy is a VectorType, the total size must match to explicitly cast to
7509   // an ExtVectorType.
7510   // In OpenCL, casts between vectors of different types are not allowed.
7511   // (See OpenCL 6.2).
7512   if (SrcTy->isVectorType()) {
7513     if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
7514         (getLangOpts().OpenCL &&
7515          !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
7516       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
7517         << DestTy << SrcTy << R;
7518       return ExprError();
7519     }
7520     Kind = CK_BitCast;
7521     return CastExpr;
7522   }
7523 
7524   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
7525   // conversion will take place first from scalar to elt type, and then
7526   // splat from elt type to vector.
7527   if (SrcTy->isPointerType())
7528     return Diag(R.getBegin(),
7529                 diag::err_invalid_conversion_between_vector_and_scalar)
7530       << DestTy << SrcTy << R;
7531 
7532   Kind = CK_VectorSplat;
7533   return prepareVectorSplat(DestTy, CastExpr);
7534 }
7535 
7536 ExprResult
ActOnCastExpr(Scope * S,SourceLocation LParenLoc,Declarator & D,ParsedType & Ty,SourceLocation RParenLoc,Expr * CastExpr)7537 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
7538                     Declarator &D, ParsedType &Ty,
7539                     SourceLocation RParenLoc, Expr *CastExpr) {
7540   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
7541          "ActOnCastExpr(): missing type or expr");
7542 
7543   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
7544   if (D.isInvalidType())
7545     return ExprError();
7546 
7547   if (getLangOpts().CPlusPlus) {
7548     // Check that there are no default arguments (C++ only).
7549     CheckExtraCXXDefaultArguments(D);
7550   } else {
7551     // Make sure any TypoExprs have been dealt with.
7552     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
7553     if (!Res.isUsable())
7554       return ExprError();
7555     CastExpr = Res.get();
7556   }
7557 
7558   checkUnusedDeclAttributes(D);
7559 
7560   QualType castType = castTInfo->getType();
7561   Ty = CreateParsedType(castType, castTInfo);
7562 
7563   bool isVectorLiteral = false;
7564 
7565   // Check for an altivec or OpenCL literal,
7566   // i.e. all the elements are integer constants.
7567   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
7568   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
7569   if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
7570        && castType->isVectorType() && (PE || PLE)) {
7571     if (PLE && PLE->getNumExprs() == 0) {
7572       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
7573       return ExprError();
7574     }
7575     if (PE || PLE->getNumExprs() == 1) {
7576       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
7577       if (!E->isTypeDependent() && !E->getType()->isVectorType())
7578         isVectorLiteral = true;
7579     }
7580     else
7581       isVectorLiteral = true;
7582   }
7583 
7584   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
7585   // then handle it as such.
7586   if (isVectorLiteral)
7587     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
7588 
7589   // If the Expr being casted is a ParenListExpr, handle it specially.
7590   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
7591   // sequence of BinOp comma operators.
7592   if (isa<ParenListExpr>(CastExpr)) {
7593     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
7594     if (Result.isInvalid()) return ExprError();
7595     CastExpr = Result.get();
7596   }
7597 
7598   if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
7599       !getSourceManager().isInSystemMacro(LParenLoc))
7600     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
7601 
7602   CheckTollFreeBridgeCast(castType, CastExpr);
7603 
7604   CheckObjCBridgeRelatedCast(castType, CastExpr);
7605 
7606   DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
7607 
7608   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
7609 }
7610 
BuildVectorLiteral(SourceLocation LParenLoc,SourceLocation RParenLoc,Expr * E,TypeSourceInfo * TInfo)7611 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
7612                                     SourceLocation RParenLoc, Expr *E,
7613                                     TypeSourceInfo *TInfo) {
7614   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
7615          "Expected paren or paren list expression");
7616 
7617   Expr **exprs;
7618   unsigned numExprs;
7619   Expr *subExpr;
7620   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
7621   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
7622     LiteralLParenLoc = PE->getLParenLoc();
7623     LiteralRParenLoc = PE->getRParenLoc();
7624     exprs = PE->getExprs();
7625     numExprs = PE->getNumExprs();
7626   } else { // isa<ParenExpr> by assertion at function entrance
7627     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
7628     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
7629     subExpr = cast<ParenExpr>(E)->getSubExpr();
7630     exprs = &subExpr;
7631     numExprs = 1;
7632   }
7633 
7634   QualType Ty = TInfo->getType();
7635   assert(Ty->isVectorType() && "Expected vector type");
7636 
7637   SmallVector<Expr *, 8> initExprs;
7638   const VectorType *VTy = Ty->castAs<VectorType>();
7639   unsigned numElems = VTy->getNumElements();
7640 
7641   // '(...)' form of vector initialization in AltiVec: the number of
7642   // initializers must be one or must match the size of the vector.
7643   // If a single value is specified in the initializer then it will be
7644   // replicated to all the components of the vector
7645   if (VTy->getVectorKind() == VectorType::AltiVecVector) {
7646     // The number of initializers must be one or must match the size of the
7647     // vector. If a single value is specified in the initializer then it will
7648     // be replicated to all the components of the vector
7649     if (numExprs == 1) {
7650       QualType ElemTy = VTy->getElementType();
7651       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7652       if (Literal.isInvalid())
7653         return ExprError();
7654       Literal = ImpCastExprToType(Literal.get(), ElemTy,
7655                                   PrepareScalarCast(Literal, ElemTy));
7656       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7657     }
7658     else if (numExprs < numElems) {
7659       Diag(E->getExprLoc(),
7660            diag::err_incorrect_number_of_vector_initializers);
7661       return ExprError();
7662     }
7663     else
7664       initExprs.append(exprs, exprs + numExprs);
7665   }
7666   else {
7667     // For OpenCL, when the number of initializers is a single value,
7668     // it will be replicated to all components of the vector.
7669     if (getLangOpts().OpenCL &&
7670         VTy->getVectorKind() == VectorType::GenericVector &&
7671         numExprs == 1) {
7672         QualType ElemTy = VTy->getElementType();
7673         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7674         if (Literal.isInvalid())
7675           return ExprError();
7676         Literal = ImpCastExprToType(Literal.get(), ElemTy,
7677                                     PrepareScalarCast(Literal, ElemTy));
7678         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7679     }
7680 
7681     initExprs.append(exprs, exprs + numExprs);
7682   }
7683   // FIXME: This means that pretty-printing the final AST will produce curly
7684   // braces instead of the original commas.
7685   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
7686                                                    initExprs, LiteralRParenLoc);
7687   initE->setType(Ty);
7688   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
7689 }
7690 
7691 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
7692 /// the ParenListExpr into a sequence of comma binary operators.
7693 ExprResult
MaybeConvertParenListExprToParenExpr(Scope * S,Expr * OrigExpr)7694 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
7695   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
7696   if (!E)
7697     return OrigExpr;
7698 
7699   ExprResult Result(E->getExpr(0));
7700 
7701   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
7702     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
7703                         E->getExpr(i));
7704 
7705   if (Result.isInvalid()) return ExprError();
7706 
7707   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
7708 }
7709 
ActOnParenListExpr(SourceLocation L,SourceLocation R,MultiExprArg Val)7710 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
7711                                     SourceLocation R,
7712                                     MultiExprArg Val) {
7713   return ParenListExpr::Create(Context, L, Val, R);
7714 }
7715 
7716 /// Emit a specialized diagnostic when one expression is a null pointer
7717 /// constant and the other is not a pointer.  Returns true if a diagnostic is
7718 /// emitted.
DiagnoseConditionalForNull(Expr * LHSExpr,Expr * RHSExpr,SourceLocation QuestionLoc)7719 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
7720                                       SourceLocation QuestionLoc) {
7721   Expr *NullExpr = LHSExpr;
7722   Expr *NonPointerExpr = RHSExpr;
7723   Expr::NullPointerConstantKind NullKind =
7724       NullExpr->isNullPointerConstant(Context,
7725                                       Expr::NPC_ValueDependentIsNotNull);
7726 
7727   if (NullKind == Expr::NPCK_NotNull) {
7728     NullExpr = RHSExpr;
7729     NonPointerExpr = LHSExpr;
7730     NullKind =
7731         NullExpr->isNullPointerConstant(Context,
7732                                         Expr::NPC_ValueDependentIsNotNull);
7733   }
7734 
7735   if (NullKind == Expr::NPCK_NotNull)
7736     return false;
7737 
7738   if (NullKind == Expr::NPCK_ZeroExpression)
7739     return false;
7740 
7741   if (NullKind == Expr::NPCK_ZeroLiteral) {
7742     // In this case, check to make sure that we got here from a "NULL"
7743     // string in the source code.
7744     NullExpr = NullExpr->IgnoreParenImpCasts();
7745     SourceLocation loc = NullExpr->getExprLoc();
7746     if (!findMacroSpelling(loc, "NULL"))
7747       return false;
7748   }
7749 
7750   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
7751   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
7752       << NonPointerExpr->getType() << DiagType
7753       << NonPointerExpr->getSourceRange();
7754   return true;
7755 }
7756 
7757 /// Return false if the condition expression is valid, true otherwise.
checkCondition(Sema & S,Expr * Cond,SourceLocation QuestionLoc)7758 static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
7759   QualType CondTy = Cond->getType();
7760 
7761   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
7762   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
7763     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
7764       << CondTy << Cond->getSourceRange();
7765     return true;
7766   }
7767 
7768   // C99 6.5.15p2
7769   if (CondTy->isScalarType()) return false;
7770 
7771   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
7772     << CondTy << Cond->getSourceRange();
7773   return true;
7774 }
7775 
7776 /// Handle when one or both operands are void type.
checkConditionalVoidType(Sema & S,ExprResult & LHS,ExprResult & RHS)7777 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
7778                                          ExprResult &RHS) {
7779     Expr *LHSExpr = LHS.get();
7780     Expr *RHSExpr = RHS.get();
7781 
7782     if (!LHSExpr->getType()->isVoidType())
7783       S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
7784           << RHSExpr->getSourceRange();
7785     if (!RHSExpr->getType()->isVoidType())
7786       S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
7787           << LHSExpr->getSourceRange();
7788     LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
7789     RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
7790     return S.Context.VoidTy;
7791 }
7792 
7793 /// Return false if the NullExpr can be promoted to PointerTy,
7794 /// true otherwise.
checkConditionalNullPointer(Sema & S,ExprResult & NullExpr,QualType PointerTy)7795 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
7796                                         QualType PointerTy) {
7797   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
7798       !NullExpr.get()->isNullPointerConstant(S.Context,
7799                                             Expr::NPC_ValueDependentIsNull))
7800     return true;
7801 
7802   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
7803   return false;
7804 }
7805 
7806 /// Checks compatibility between two pointers and return the resulting
7807 /// type.
checkConditionalPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)7808 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
7809                                                      ExprResult &RHS,
7810                                                      SourceLocation Loc) {
7811   QualType LHSTy = LHS.get()->getType();
7812   QualType RHSTy = RHS.get()->getType();
7813 
7814   if (S.Context.hasSameType(LHSTy, RHSTy)) {
7815     // Two identical pointers types are always compatible.
7816     return LHSTy;
7817   }
7818 
7819   QualType lhptee, rhptee;
7820 
7821   // Get the pointee types.
7822   bool IsBlockPointer = false;
7823   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
7824     lhptee = LHSBTy->getPointeeType();
7825     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
7826     IsBlockPointer = true;
7827   } else {
7828     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7829     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7830   }
7831 
7832   // C99 6.5.15p6: If both operands are pointers to compatible types or to
7833   // differently qualified versions of compatible types, the result type is
7834   // a pointer to an appropriately qualified version of the composite
7835   // type.
7836 
7837   // Only CVR-qualifiers exist in the standard, and the differently-qualified
7838   // clause doesn't make sense for our extensions. E.g. address space 2 should
7839   // be incompatible with address space 3: they may live on different devices or
7840   // anything.
7841   Qualifiers lhQual = lhptee.getQualifiers();
7842   Qualifiers rhQual = rhptee.getQualifiers();
7843 
7844   LangAS ResultAddrSpace = LangAS::Default;
7845   LangAS LAddrSpace = lhQual.getAddressSpace();
7846   LangAS RAddrSpace = rhQual.getAddressSpace();
7847 
7848   // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
7849   // spaces is disallowed.
7850   if (lhQual.isAddressSpaceSupersetOf(rhQual))
7851     ResultAddrSpace = LAddrSpace;
7852   else if (rhQual.isAddressSpaceSupersetOf(lhQual))
7853     ResultAddrSpace = RAddrSpace;
7854   else {
7855     S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
7856         << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
7857         << RHS.get()->getSourceRange();
7858     return QualType();
7859   }
7860 
7861   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
7862   auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
7863   lhQual.removeCVRQualifiers();
7864   rhQual.removeCVRQualifiers();
7865 
7866   // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
7867   // (C99 6.7.3) for address spaces. We assume that the check should behave in
7868   // the same manner as it's defined for CVR qualifiers, so for OpenCL two
7869   // qual types are compatible iff
7870   //  * corresponded types are compatible
7871   //  * CVR qualifiers are equal
7872   //  * address spaces are equal
7873   // Thus for conditional operator we merge CVR and address space unqualified
7874   // pointees and if there is a composite type we return a pointer to it with
7875   // merged qualifiers.
7876   LHSCastKind =
7877       LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7878   RHSCastKind =
7879       RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7880   lhQual.removeAddressSpace();
7881   rhQual.removeAddressSpace();
7882 
7883   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
7884   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
7885 
7886   QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
7887 
7888   if (CompositeTy.isNull()) {
7889     // In this situation, we assume void* type. No especially good
7890     // reason, but this is what gcc does, and we do have to pick
7891     // to get a consistent AST.
7892     QualType incompatTy;
7893     incompatTy = S.Context.getPointerType(
7894         S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
7895     LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
7896     RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
7897 
7898     // FIXME: For OpenCL the warning emission and cast to void* leaves a room
7899     // for casts between types with incompatible address space qualifiers.
7900     // For the following code the compiler produces casts between global and
7901     // local address spaces of the corresponded innermost pointees:
7902     // local int *global *a;
7903     // global int *global *b;
7904     // a = (0 ? a : b); // see C99 6.5.16.1.p1.
7905     S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
7906         << LHSTy << RHSTy << LHS.get()->getSourceRange()
7907         << RHS.get()->getSourceRange();
7908 
7909     return incompatTy;
7910   }
7911 
7912   // The pointer types are compatible.
7913   // In case of OpenCL ResultTy should have the address space qualifier
7914   // which is a superset of address spaces of both the 2nd and the 3rd
7915   // operands of the conditional operator.
7916   QualType ResultTy = [&, ResultAddrSpace]() {
7917     if (S.getLangOpts().OpenCL) {
7918       Qualifiers CompositeQuals = CompositeTy.getQualifiers();
7919       CompositeQuals.setAddressSpace(ResultAddrSpace);
7920       return S.Context
7921           .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
7922           .withCVRQualifiers(MergedCVRQual);
7923     }
7924     return CompositeTy.withCVRQualifiers(MergedCVRQual);
7925   }();
7926   if (IsBlockPointer)
7927     ResultTy = S.Context.getBlockPointerType(ResultTy);
7928   else
7929     ResultTy = S.Context.getPointerType(ResultTy);
7930 
7931   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
7932   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
7933   return ResultTy;
7934 }
7935 
7936 /// Return the resulting type when the operands are both block pointers.
checkConditionalBlockPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)7937 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
7938                                                           ExprResult &LHS,
7939                                                           ExprResult &RHS,
7940                                                           SourceLocation Loc) {
7941   QualType LHSTy = LHS.get()->getType();
7942   QualType RHSTy = RHS.get()->getType();
7943 
7944   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
7945     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
7946       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
7947       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
7948       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
7949       return destType;
7950     }
7951     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
7952       << LHSTy << RHSTy << LHS.get()->getSourceRange()
7953       << RHS.get()->getSourceRange();
7954     return QualType();
7955   }
7956 
7957   // We have 2 block pointer types.
7958   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
7959 }
7960 
7961 /// Return the resulting type when the operands are both pointers.
7962 static QualType
checkConditionalObjectPointersCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)7963 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
7964                                             ExprResult &RHS,
7965                                             SourceLocation Loc) {
7966   // get the pointer types
7967   QualType LHSTy = LHS.get()->getType();
7968   QualType RHSTy = RHS.get()->getType();
7969 
7970   // get the "pointed to" types
7971   QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7972   QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7973 
7974   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
7975   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
7976     // Figure out necessary qualifiers (C99 6.5.15p6)
7977     QualType destPointee
7978       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
7979     QualType destType = S.Context.getPointerType(destPointee);
7980     // Add qualifiers if necessary.
7981     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
7982     // Promote to void*.
7983     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
7984     return destType;
7985   }
7986   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
7987     QualType destPointee
7988       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
7989     QualType destType = S.Context.getPointerType(destPointee);
7990     // Add qualifiers if necessary.
7991     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
7992     // Promote to void*.
7993     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
7994     return destType;
7995   }
7996 
7997   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
7998 }
7999 
8000 /// Return false if the first expression is not an integer and the second
8001 /// expression is not a pointer, true otherwise.
checkPointerIntegerMismatch(Sema & S,ExprResult & Int,Expr * PointerExpr,SourceLocation Loc,bool IsIntFirstExpr)8002 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8003                                         Expr* PointerExpr, SourceLocation Loc,
8004                                         bool IsIntFirstExpr) {
8005   if (!PointerExpr->getType()->isPointerType() ||
8006       !Int.get()->getType()->isIntegerType())
8007     return false;
8008 
8009   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8010   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8011 
8012   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8013     << Expr1->getType() << Expr2->getType()
8014     << Expr1->getSourceRange() << Expr2->getSourceRange();
8015   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
8016                             CK_IntegralToPointer);
8017   return true;
8018 }
8019 
8020 /// Simple conversion between integer and floating point types.
8021 ///
8022 /// Used when handling the OpenCL conditional operator where the
8023 /// condition is a vector while the other operands are scalar.
8024 ///
8025 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8026 /// types are either integer or floating type. Between the two
8027 /// operands, the type with the higher rank is defined as the "result
8028 /// type". The other operand needs to be promoted to the same type. No
8029 /// other type promotion is allowed. We cannot use
8030 /// UsualArithmeticConversions() for this purpose, since it always
8031 /// promotes promotable types.
OpenCLArithmeticConversions(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)8032 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8033                                             ExprResult &RHS,
8034                                             SourceLocation QuestionLoc) {
8035   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
8036   if (LHS.isInvalid())
8037     return QualType();
8038   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8039   if (RHS.isInvalid())
8040     return QualType();
8041 
8042   // For conversion purposes, we ignore any qualifiers.
8043   // For example, "const float" and "float" are equivalent.
8044   QualType LHSType =
8045     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
8046   QualType RHSType =
8047     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
8048 
8049   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
8050     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8051       << LHSType << LHS.get()->getSourceRange();
8052     return QualType();
8053   }
8054 
8055   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
8056     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8057       << RHSType << RHS.get()->getSourceRange();
8058     return QualType();
8059   }
8060 
8061   // If both types are identical, no conversion is needed.
8062   if (LHSType == RHSType)
8063     return LHSType;
8064 
8065   // Now handle "real" floating types (i.e. float, double, long double).
8066   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
8067     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
8068                                  /*IsCompAssign = */ false);
8069 
8070   // Finally, we have two differing integer types.
8071   return handleIntegerConversion<doIntegralCast, doIntegralCast>
8072   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
8073 }
8074 
8075 /// Convert scalar operands to a vector that matches the
8076 ///        condition in length.
8077 ///
8078 /// Used when handling the OpenCL conditional operator where the
8079 /// condition is a vector while the other operands are scalar.
8080 ///
8081 /// We first compute the "result type" for the scalar operands
8082 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
8083 /// into a vector of that type where the length matches the condition
8084 /// vector type. s6.11.6 requires that the element types of the result
8085 /// and the condition must have the same number of bits.
8086 static QualType
OpenCLConvertScalarsToVectors(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType CondTy,SourceLocation QuestionLoc)8087 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
8088                               QualType CondTy, SourceLocation QuestionLoc) {
8089   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
8090   if (ResTy.isNull()) return QualType();
8091 
8092   const VectorType *CV = CondTy->getAs<VectorType>();
8093   assert(CV);
8094 
8095   // Determine the vector result type
8096   unsigned NumElements = CV->getNumElements();
8097   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
8098 
8099   // Ensure that all types have the same number of bits
8100   if (S.Context.getTypeSize(CV->getElementType())
8101       != S.Context.getTypeSize(ResTy)) {
8102     // Since VectorTy is created internally, it does not pretty print
8103     // with an OpenCL name. Instead, we just print a description.
8104     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
8105     SmallString<64> Str;
8106     llvm::raw_svector_ostream OS(Str);
8107     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
8108     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8109       << CondTy << OS.str();
8110     return QualType();
8111   }
8112 
8113   // Convert operands to the vector result type
8114   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
8115   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
8116 
8117   return VectorTy;
8118 }
8119 
8120 /// Return false if this is a valid OpenCL condition vector
checkOpenCLConditionVector(Sema & S,Expr * Cond,SourceLocation QuestionLoc)8121 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
8122                                        SourceLocation QuestionLoc) {
8123   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
8124   // integral type.
8125   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
8126   assert(CondTy);
8127   QualType EleTy = CondTy->getElementType();
8128   if (EleTy->isIntegerType()) return false;
8129 
8130   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8131     << Cond->getType() << Cond->getSourceRange();
8132   return true;
8133 }
8134 
8135 /// Return false if the vector condition type and the vector
8136 ///        result type are compatible.
8137 ///
8138 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
8139 /// number of elements, and their element types have the same number
8140 /// of bits.
checkVectorResult(Sema & S,QualType CondTy,QualType VecResTy,SourceLocation QuestionLoc)8141 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
8142                               SourceLocation QuestionLoc) {
8143   const VectorType *CV = CondTy->getAs<VectorType>();
8144   const VectorType *RV = VecResTy->getAs<VectorType>();
8145   assert(CV && RV);
8146 
8147   if (CV->getNumElements() != RV->getNumElements()) {
8148     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
8149       << CondTy << VecResTy;
8150     return true;
8151   }
8152 
8153   QualType CVE = CV->getElementType();
8154   QualType RVE = RV->getElementType();
8155 
8156   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
8157     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8158       << CondTy << VecResTy;
8159     return true;
8160   }
8161 
8162   return false;
8163 }
8164 
8165 /// Return the resulting type for the conditional operator in
8166 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
8167 ///        s6.3.i) when the condition is a vector type.
8168 static QualType
OpenCLCheckVectorConditional(Sema & S,ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)8169 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
8170                              ExprResult &LHS, ExprResult &RHS,
8171                              SourceLocation QuestionLoc) {
8172   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
8173   if (Cond.isInvalid())
8174     return QualType();
8175   QualType CondTy = Cond.get()->getType();
8176 
8177   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
8178     return QualType();
8179 
8180   // If either operand is a vector then find the vector type of the
8181   // result as specified in OpenCL v1.1 s6.3.i.
8182   if (LHS.get()->getType()->isVectorType() ||
8183       RHS.get()->getType()->isVectorType()) {
8184     QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
8185                                               /*isCompAssign*/false,
8186                                               /*AllowBothBool*/true,
8187                                               /*AllowBoolConversions*/false);
8188     if (VecResTy.isNull()) return QualType();
8189     // The result type must match the condition type as specified in
8190     // OpenCL v1.1 s6.11.6.
8191     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
8192       return QualType();
8193     return VecResTy;
8194   }
8195 
8196   // Both operands are scalar.
8197   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
8198 }
8199 
8200 /// Return true if the Expr is block type
checkBlockType(Sema & S,const Expr * E)8201 static bool checkBlockType(Sema &S, const Expr *E) {
8202   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
8203     QualType Ty = CE->getCallee()->getType();
8204     if (Ty->isBlockPointerType()) {
8205       S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
8206       return true;
8207     }
8208   }
8209   return false;
8210 }
8211 
8212 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
8213 /// In that case, LHS = cond.
8214 /// C99 6.5.15
CheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)8215 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
8216                                         ExprResult &RHS, ExprValueKind &VK,
8217                                         ExprObjectKind &OK,
8218                                         SourceLocation QuestionLoc) {
8219 
8220   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
8221   if (!LHSResult.isUsable()) return QualType();
8222   LHS = LHSResult;
8223 
8224   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
8225   if (!RHSResult.isUsable()) return QualType();
8226   RHS = RHSResult;
8227 
8228   // C++ is sufficiently different to merit its own checker.
8229   if (getLangOpts().CPlusPlus)
8230     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
8231 
8232   VK = VK_RValue;
8233   OK = OK_Ordinary;
8234 
8235   if (Context.isDependenceAllowed() &&
8236       (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
8237        RHS.get()->isTypeDependent())) {
8238     assert(!getLangOpts().CPlusPlus);
8239     assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
8240             RHS.get()->containsErrors()) &&
8241            "should only occur in error-recovery path.");
8242     return Context.DependentTy;
8243   }
8244 
8245   // The OpenCL operator with a vector condition is sufficiently
8246   // different to merit its own checker.
8247   if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
8248       Cond.get()->getType()->isExtVectorType())
8249     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
8250 
8251   // First, check the condition.
8252   Cond = UsualUnaryConversions(Cond.get());
8253   if (Cond.isInvalid())
8254     return QualType();
8255   if (checkCondition(*this, Cond.get(), QuestionLoc))
8256     return QualType();
8257 
8258   // Now check the two expressions.
8259   if (LHS.get()->getType()->isVectorType() ||
8260       RHS.get()->getType()->isVectorType())
8261     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
8262                                /*AllowBothBool*/true,
8263                                /*AllowBoolConversions*/false);
8264 
8265   QualType ResTy =
8266       UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
8267   if (LHS.isInvalid() || RHS.isInvalid())
8268     return QualType();
8269 
8270   QualType LHSTy = LHS.get()->getType();
8271   QualType RHSTy = RHS.get()->getType();
8272 
8273   // Diagnose attempts to convert between __float128 and long double where
8274   // such conversions currently can't be handled.
8275   if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
8276     Diag(QuestionLoc,
8277          diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
8278       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8279     return QualType();
8280   }
8281 
8282   // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
8283   // selection operator (?:).
8284   if (getLangOpts().OpenCL &&
8285       (checkBlockType(*this, LHS.get()) | checkBlockType(*this, RHS.get()))) {
8286     return QualType();
8287   }
8288 
8289   // If both operands have arithmetic type, do the usual arithmetic conversions
8290   // to find a common type: C99 6.5.15p3,5.
8291   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
8292     // Disallow invalid arithmetic conversions, such as those between ExtInts of
8293     // different sizes, or between ExtInts and other types.
8294     if (ResTy.isNull() && (LHSTy->isExtIntType() || RHSTy->isExtIntType())) {
8295       Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8296           << LHSTy << RHSTy << LHS.get()->getSourceRange()
8297           << RHS.get()->getSourceRange();
8298       return QualType();
8299     }
8300 
8301     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
8302     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
8303 
8304     return ResTy;
8305   }
8306 
8307   // And if they're both bfloat (which isn't arithmetic), that's fine too.
8308   if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) {
8309     return LHSTy;
8310   }
8311 
8312   // If both operands are the same structure or union type, the result is that
8313   // type.
8314   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
8315     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
8316       if (LHSRT->getDecl() == RHSRT->getDecl())
8317         // "If both the operands have structure or union type, the result has
8318         // that type."  This implies that CV qualifiers are dropped.
8319         return LHSTy.getUnqualifiedType();
8320     // FIXME: Type of conditional expression must be complete in C mode.
8321   }
8322 
8323   // C99 6.5.15p5: "If both operands have void type, the result has void type."
8324   // The following || allows only one side to be void (a GCC-ism).
8325   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
8326     return checkConditionalVoidType(*this, LHS, RHS);
8327   }
8328 
8329   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
8330   // the type of the other operand."
8331   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
8332   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
8333 
8334   // All objective-c pointer type analysis is done here.
8335   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
8336                                                         QuestionLoc);
8337   if (LHS.isInvalid() || RHS.isInvalid())
8338     return QualType();
8339   if (!compositeType.isNull())
8340     return compositeType;
8341 
8342 
8343   // Handle block pointer types.
8344   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
8345     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
8346                                                      QuestionLoc);
8347 
8348   // Check constraints for C object pointers types (C99 6.5.15p3,6).
8349   if (LHSTy->isPointerType() && RHSTy->isPointerType())
8350     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
8351                                                        QuestionLoc);
8352 
8353   // GCC compatibility: soften pointer/integer mismatch.  Note that
8354   // null pointers have been filtered out by this point.
8355   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
8356       /*IsIntFirstExpr=*/true))
8357     return RHSTy;
8358   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
8359       /*IsIntFirstExpr=*/false))
8360     return LHSTy;
8361 
8362   // Allow ?: operations in which both operands have the same
8363   // built-in sizeless type.
8364   if (LHSTy->isSizelessBuiltinType() && LHSTy == RHSTy)
8365     return LHSTy;
8366 
8367   // Emit a better diagnostic if one of the expressions is a null pointer
8368   // constant and the other is not a pointer type. In this case, the user most
8369   // likely forgot to take the address of the other expression.
8370   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
8371     return QualType();
8372 
8373   // Otherwise, the operands are not compatible.
8374   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8375     << LHSTy << RHSTy << LHS.get()->getSourceRange()
8376     << RHS.get()->getSourceRange();
8377   return QualType();
8378 }
8379 
8380 /// FindCompositeObjCPointerType - Helper method to find composite type of
8381 /// two objective-c pointer types of the two input expressions.
FindCompositeObjCPointerType(ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)8382 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
8383                                             SourceLocation QuestionLoc) {
8384   QualType LHSTy = LHS.get()->getType();
8385   QualType RHSTy = RHS.get()->getType();
8386 
8387   // Handle things like Class and struct objc_class*.  Here we case the result
8388   // to the pseudo-builtin, because that will be implicitly cast back to the
8389   // redefinition type if an attempt is made to access its fields.
8390   if (LHSTy->isObjCClassType() &&
8391       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
8392     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8393     return LHSTy;
8394   }
8395   if (RHSTy->isObjCClassType() &&
8396       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
8397     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8398     return RHSTy;
8399   }
8400   // And the same for struct objc_object* / id
8401   if (LHSTy->isObjCIdType() &&
8402       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
8403     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8404     return LHSTy;
8405   }
8406   if (RHSTy->isObjCIdType() &&
8407       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
8408     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8409     return RHSTy;
8410   }
8411   // And the same for struct objc_selector* / SEL
8412   if (Context.isObjCSelType(LHSTy) &&
8413       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
8414     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
8415     return LHSTy;
8416   }
8417   if (Context.isObjCSelType(RHSTy) &&
8418       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
8419     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
8420     return RHSTy;
8421   }
8422   // Check constraints for Objective-C object pointers types.
8423   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
8424 
8425     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
8426       // Two identical object pointer types are always compatible.
8427       return LHSTy;
8428     }
8429     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
8430     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
8431     QualType compositeType = LHSTy;
8432 
8433     // If both operands are interfaces and either operand can be
8434     // assigned to the other, use that type as the composite
8435     // type. This allows
8436     //   xxx ? (A*) a : (B*) b
8437     // where B is a subclass of A.
8438     //
8439     // Additionally, as for assignment, if either type is 'id'
8440     // allow silent coercion. Finally, if the types are
8441     // incompatible then make sure to use 'id' as the composite
8442     // type so the result is acceptable for sending messages to.
8443 
8444     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
8445     // It could return the composite type.
8446     if (!(compositeType =
8447           Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
8448       // Nothing more to do.
8449     } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
8450       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
8451     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
8452       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
8453     } else if ((LHSOPT->isObjCQualifiedIdType() ||
8454                 RHSOPT->isObjCQualifiedIdType()) &&
8455                Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
8456                                                          true)) {
8457       // Need to handle "id<xx>" explicitly.
8458       // GCC allows qualified id and any Objective-C type to devolve to
8459       // id. Currently localizing to here until clear this should be
8460       // part of ObjCQualifiedIdTypesAreCompatible.
8461       compositeType = Context.getObjCIdType();
8462     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
8463       compositeType = Context.getObjCIdType();
8464     } else {
8465       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
8466       << LHSTy << RHSTy
8467       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8468       QualType incompatTy = Context.getObjCIdType();
8469       LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
8470       RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
8471       return incompatTy;
8472     }
8473     // The object pointer types are compatible.
8474     LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
8475     RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
8476     return compositeType;
8477   }
8478   // Check Objective-C object pointer types and 'void *'
8479   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
8480     if (getLangOpts().ObjCAutoRefCount) {
8481       // ARC forbids the implicit conversion of object pointers to 'void *',
8482       // so these types are not compatible.
8483       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8484           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8485       LHS = RHS = true;
8486       return QualType();
8487     }
8488     QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8489     QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8490     QualType destPointee
8491     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8492     QualType destType = Context.getPointerType(destPointee);
8493     // Add qualifiers if necessary.
8494     LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8495     // Promote to void*.
8496     RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8497     return destType;
8498   }
8499   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
8500     if (getLangOpts().ObjCAutoRefCount) {
8501       // ARC forbids the implicit conversion of object pointers to 'void *',
8502       // so these types are not compatible.
8503       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8504           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8505       LHS = RHS = true;
8506       return QualType();
8507     }
8508     QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8509     QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8510     QualType destPointee
8511     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8512     QualType destType = Context.getPointerType(destPointee);
8513     // Add qualifiers if necessary.
8514     RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8515     // Promote to void*.
8516     LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8517     return destType;
8518   }
8519   return QualType();
8520 }
8521 
8522 /// SuggestParentheses - Emit a note with a fixit hint that wraps
8523 /// ParenRange in parentheses.
SuggestParentheses(Sema & Self,SourceLocation Loc,const PartialDiagnostic & Note,SourceRange ParenRange)8524 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
8525                                const PartialDiagnostic &Note,
8526                                SourceRange ParenRange) {
8527   SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
8528   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
8529       EndLoc.isValid()) {
8530     Self.Diag(Loc, Note)
8531       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
8532       << FixItHint::CreateInsertion(EndLoc, ")");
8533   } else {
8534     // We can't display the parentheses, so just show the bare note.
8535     Self.Diag(Loc, Note) << ParenRange;
8536   }
8537 }
8538 
IsArithmeticOp(BinaryOperatorKind Opc)8539 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
8540   return BinaryOperator::isAdditiveOp(Opc) ||
8541          BinaryOperator::isMultiplicativeOp(Opc) ||
8542          BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
8543   // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
8544   // not any of the logical operators.  Bitwise-xor is commonly used as a
8545   // logical-xor because there is no logical-xor operator.  The logical
8546   // operators, including uses of xor, have a high false positive rate for
8547   // precedence warnings.
8548 }
8549 
8550 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
8551 /// expression, either using a built-in or overloaded operator,
8552 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
8553 /// expression.
IsArithmeticBinaryExpr(Expr * E,BinaryOperatorKind * Opcode,Expr ** RHSExprs)8554 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
8555                                    Expr **RHSExprs) {
8556   // Don't strip parenthesis: we should not warn if E is in parenthesis.
8557   E = E->IgnoreImpCasts();
8558   E = E->IgnoreConversionOperatorSingleStep();
8559   E = E->IgnoreImpCasts();
8560   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
8561     E = MTE->getSubExpr();
8562     E = E->IgnoreImpCasts();
8563   }
8564 
8565   // Built-in binary operator.
8566   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
8567     if (IsArithmeticOp(OP->getOpcode())) {
8568       *Opcode = OP->getOpcode();
8569       *RHSExprs = OP->getRHS();
8570       return true;
8571     }
8572   }
8573 
8574   // Overloaded operator.
8575   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
8576     if (Call->getNumArgs() != 2)
8577       return false;
8578 
8579     // Make sure this is really a binary operator that is safe to pass into
8580     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
8581     OverloadedOperatorKind OO = Call->getOperator();
8582     if (OO < OO_Plus || OO > OO_Arrow ||
8583         OO == OO_PlusPlus || OO == OO_MinusMinus)
8584       return false;
8585 
8586     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
8587     if (IsArithmeticOp(OpKind)) {
8588       *Opcode = OpKind;
8589       *RHSExprs = Call->getArg(1);
8590       return true;
8591     }
8592   }
8593 
8594   return false;
8595 }
8596 
8597 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
8598 /// or is a logical expression such as (x==y) which has int type, but is
8599 /// commonly interpreted as boolean.
ExprLooksBoolean(Expr * E)8600 static bool ExprLooksBoolean(Expr *E) {
8601   E = E->IgnoreParenImpCasts();
8602 
8603   if (E->getType()->isBooleanType())
8604     return true;
8605   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
8606     return OP->isComparisonOp() || OP->isLogicalOp();
8607   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
8608     return OP->getOpcode() == UO_LNot;
8609   if (E->getType()->isPointerType())
8610     return true;
8611   // FIXME: What about overloaded operator calls returning "unspecified boolean
8612   // type"s (commonly pointer-to-members)?
8613 
8614   return false;
8615 }
8616 
8617 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
8618 /// and binary operator are mixed in a way that suggests the programmer assumed
8619 /// the conditional operator has higher precedence, for example:
8620 /// "int x = a + someBinaryCondition ? 1 : 2".
DiagnoseConditionalPrecedence(Sema & Self,SourceLocation OpLoc,Expr * Condition,Expr * LHSExpr,Expr * RHSExpr)8621 static void DiagnoseConditionalPrecedence(Sema &Self,
8622                                           SourceLocation OpLoc,
8623                                           Expr *Condition,
8624                                           Expr *LHSExpr,
8625                                           Expr *RHSExpr) {
8626   BinaryOperatorKind CondOpcode;
8627   Expr *CondRHS;
8628 
8629   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
8630     return;
8631   if (!ExprLooksBoolean(CondRHS))
8632     return;
8633 
8634   // The condition is an arithmetic binary expression, with a right-
8635   // hand side that looks boolean, so warn.
8636 
8637   unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
8638                         ? diag::warn_precedence_bitwise_conditional
8639                         : diag::warn_precedence_conditional;
8640 
8641   Self.Diag(OpLoc, DiagID)
8642       << Condition->getSourceRange()
8643       << BinaryOperator::getOpcodeStr(CondOpcode);
8644 
8645   SuggestParentheses(
8646       Self, OpLoc,
8647       Self.PDiag(diag::note_precedence_silence)
8648           << BinaryOperator::getOpcodeStr(CondOpcode),
8649       SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
8650 
8651   SuggestParentheses(Self, OpLoc,
8652                      Self.PDiag(diag::note_precedence_conditional_first),
8653                      SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
8654 }
8655 
8656 /// Compute the nullability of a conditional expression.
computeConditionalNullability(QualType ResTy,bool IsBin,QualType LHSTy,QualType RHSTy,ASTContext & Ctx)8657 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
8658                                               QualType LHSTy, QualType RHSTy,
8659                                               ASTContext &Ctx) {
8660   if (!ResTy->isAnyPointerType())
8661     return ResTy;
8662 
8663   auto GetNullability = [&Ctx](QualType Ty) {
8664     Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
8665     if (Kind) {
8666       // For our purposes, treat _Nullable_result as _Nullable.
8667       if (*Kind == NullabilityKind::NullableResult)
8668         return NullabilityKind::Nullable;
8669       return *Kind;
8670     }
8671     return NullabilityKind::Unspecified;
8672   };
8673 
8674   auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
8675   NullabilityKind MergedKind;
8676 
8677   // Compute nullability of a binary conditional expression.
8678   if (IsBin) {
8679     if (LHSKind == NullabilityKind::NonNull)
8680       MergedKind = NullabilityKind::NonNull;
8681     else
8682       MergedKind = RHSKind;
8683   // Compute nullability of a normal conditional expression.
8684   } else {
8685     if (LHSKind == NullabilityKind::Nullable ||
8686         RHSKind == NullabilityKind::Nullable)
8687       MergedKind = NullabilityKind::Nullable;
8688     else if (LHSKind == NullabilityKind::NonNull)
8689       MergedKind = RHSKind;
8690     else if (RHSKind == NullabilityKind::NonNull)
8691       MergedKind = LHSKind;
8692     else
8693       MergedKind = NullabilityKind::Unspecified;
8694   }
8695 
8696   // Return if ResTy already has the correct nullability.
8697   if (GetNullability(ResTy) == MergedKind)
8698     return ResTy;
8699 
8700   // Strip all nullability from ResTy.
8701   while (ResTy->getNullability(Ctx))
8702     ResTy = ResTy.getSingleStepDesugaredType(Ctx);
8703 
8704   // Create a new AttributedType with the new nullability kind.
8705   auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
8706   return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
8707 }
8708 
8709 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
8710 /// in the case of a the GNU conditional expr extension.
ActOnConditionalOp(SourceLocation QuestionLoc,SourceLocation ColonLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr)8711 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
8712                                     SourceLocation ColonLoc,
8713                                     Expr *CondExpr, Expr *LHSExpr,
8714                                     Expr *RHSExpr) {
8715   if (!Context.isDependenceAllowed()) {
8716     // C cannot handle TypoExpr nodes in the condition because it
8717     // doesn't handle dependent types properly, so make sure any TypoExprs have
8718     // been dealt with before checking the operands.
8719     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
8720     ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
8721     ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
8722 
8723     if (!CondResult.isUsable())
8724       return ExprError();
8725 
8726     if (LHSExpr) {
8727       if (!LHSResult.isUsable())
8728         return ExprError();
8729     }
8730 
8731     if (!RHSResult.isUsable())
8732       return ExprError();
8733 
8734     CondExpr = CondResult.get();
8735     LHSExpr = LHSResult.get();
8736     RHSExpr = RHSResult.get();
8737   }
8738 
8739   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
8740   // was the condition.
8741   OpaqueValueExpr *opaqueValue = nullptr;
8742   Expr *commonExpr = nullptr;
8743   if (!LHSExpr) {
8744     commonExpr = CondExpr;
8745     // Lower out placeholder types first.  This is important so that we don't
8746     // try to capture a placeholder. This happens in few cases in C++; such
8747     // as Objective-C++'s dictionary subscripting syntax.
8748     if (commonExpr->hasPlaceholderType()) {
8749       ExprResult result = CheckPlaceholderExpr(commonExpr);
8750       if (!result.isUsable()) return ExprError();
8751       commonExpr = result.get();
8752     }
8753     // We usually want to apply unary conversions *before* saving, except
8754     // in the special case of a C++ l-value conditional.
8755     if (!(getLangOpts().CPlusPlus
8756           && !commonExpr->isTypeDependent()
8757           && commonExpr->getValueKind() == RHSExpr->getValueKind()
8758           && commonExpr->isGLValue()
8759           && commonExpr->isOrdinaryOrBitFieldObject()
8760           && RHSExpr->isOrdinaryOrBitFieldObject()
8761           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
8762       ExprResult commonRes = UsualUnaryConversions(commonExpr);
8763       if (commonRes.isInvalid())
8764         return ExprError();
8765       commonExpr = commonRes.get();
8766     }
8767 
8768     // If the common expression is a class or array prvalue, materialize it
8769     // so that we can safely refer to it multiple times.
8770     if (commonExpr->isRValue() && (commonExpr->getType()->isRecordType() ||
8771                                    commonExpr->getType()->isArrayType())) {
8772       ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
8773       if (MatExpr.isInvalid())
8774         return ExprError();
8775       commonExpr = MatExpr.get();
8776     }
8777 
8778     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
8779                                                 commonExpr->getType(),
8780                                                 commonExpr->getValueKind(),
8781                                                 commonExpr->getObjectKind(),
8782                                                 commonExpr);
8783     LHSExpr = CondExpr = opaqueValue;
8784   }
8785 
8786   QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
8787   ExprValueKind VK = VK_RValue;
8788   ExprObjectKind OK = OK_Ordinary;
8789   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
8790   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
8791                                              VK, OK, QuestionLoc);
8792   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
8793       RHS.isInvalid())
8794     return ExprError();
8795 
8796   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
8797                                 RHS.get());
8798 
8799   CheckBoolLikeConversion(Cond.get(), QuestionLoc);
8800 
8801   result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
8802                                          Context);
8803 
8804   if (!commonExpr)
8805     return new (Context)
8806         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
8807                             RHS.get(), result, VK, OK);
8808 
8809   return new (Context) BinaryConditionalOperator(
8810       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
8811       ColonLoc, result, VK, OK);
8812 }
8813 
8814 // Check if we have a conversion between incompatible cmse function pointer
8815 // types, that is, a conversion between a function pointer with the
8816 // cmse_nonsecure_call attribute and one without.
IsInvalidCmseNSCallConversion(Sema & S,QualType FromType,QualType ToType)8817 static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
8818                                           QualType ToType) {
8819   if (const auto *ToFn =
8820           dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
8821     if (const auto *FromFn =
8822             dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
8823       FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
8824       FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
8825 
8826       return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
8827     }
8828   }
8829   return false;
8830 }
8831 
8832 // checkPointerTypesForAssignment - This is a very tricky routine (despite
8833 // being closely modeled after the C99 spec:-). The odd characteristic of this
8834 // routine is it effectively iqnores the qualifiers on the top level pointee.
8835 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
8836 // FIXME: add a couple examples in this comment.
8837 static Sema::AssignConvertType
checkPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)8838 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
8839   assert(LHSType.isCanonical() && "LHS not canonicalized!");
8840   assert(RHSType.isCanonical() && "RHS not canonicalized!");
8841 
8842   // get the "pointed to" type (ignoring qualifiers at the top level)
8843   const Type *lhptee, *rhptee;
8844   Qualifiers lhq, rhq;
8845   std::tie(lhptee, lhq) =
8846       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
8847   std::tie(rhptee, rhq) =
8848       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
8849 
8850   Sema::AssignConvertType ConvTy = Sema::Compatible;
8851 
8852   // C99 6.5.16.1p1: This following citation is common to constraints
8853   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
8854   // qualifiers of the type *pointed to* by the right;
8855 
8856   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
8857   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
8858       lhq.compatiblyIncludesObjCLifetime(rhq)) {
8859     // Ignore lifetime for further calculation.
8860     lhq.removeObjCLifetime();
8861     rhq.removeObjCLifetime();
8862   }
8863 
8864   if (!lhq.compatiblyIncludes(rhq)) {
8865     // Treat address-space mismatches as fatal.
8866     if (!lhq.isAddressSpaceSupersetOf(rhq))
8867       return Sema::IncompatiblePointerDiscardsQualifiers;
8868 
8869     // It's okay to add or remove GC or lifetime qualifiers when converting to
8870     // and from void*.
8871     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
8872                         .compatiblyIncludes(
8873                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
8874              && (lhptee->isVoidType() || rhptee->isVoidType()))
8875       ; // keep old
8876 
8877     // Treat lifetime mismatches as fatal.
8878     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
8879       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
8880 
8881     // For GCC/MS compatibility, other qualifier mismatches are treated
8882     // as still compatible in C.
8883     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
8884   }
8885 
8886   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
8887   // incomplete type and the other is a pointer to a qualified or unqualified
8888   // version of void...
8889   if (lhptee->isVoidType()) {
8890     if (rhptee->isIncompleteOrObjectType())
8891       return ConvTy;
8892 
8893     // As an extension, we allow cast to/from void* to function pointer.
8894     assert(rhptee->isFunctionType());
8895     return Sema::FunctionVoidPointer;
8896   }
8897 
8898   if (rhptee->isVoidType()) {
8899     if (lhptee->isIncompleteOrObjectType())
8900       return ConvTy;
8901 
8902     // As an extension, we allow cast to/from void* to function pointer.
8903     assert(lhptee->isFunctionType());
8904     return Sema::FunctionVoidPointer;
8905   }
8906 
8907   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
8908   // unqualified versions of compatible types, ...
8909   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
8910   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
8911     // Check if the pointee types are compatible ignoring the sign.
8912     // We explicitly check for char so that we catch "char" vs
8913     // "unsigned char" on systems where "char" is unsigned.
8914     if (lhptee->isCharType())
8915       ltrans = S.Context.UnsignedCharTy;
8916     else if (lhptee->hasSignedIntegerRepresentation())
8917       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
8918 
8919     if (rhptee->isCharType())
8920       rtrans = S.Context.UnsignedCharTy;
8921     else if (rhptee->hasSignedIntegerRepresentation())
8922       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
8923 
8924     if (ltrans == rtrans) {
8925       // Types are compatible ignoring the sign. Qualifier incompatibility
8926       // takes priority over sign incompatibility because the sign
8927       // warning can be disabled.
8928       if (ConvTy != Sema::Compatible)
8929         return ConvTy;
8930 
8931       return Sema::IncompatiblePointerSign;
8932     }
8933 
8934     // If we are a multi-level pointer, it's possible that our issue is simply
8935     // one of qualification - e.g. char ** -> const char ** is not allowed. If
8936     // the eventual target type is the same and the pointers have the same
8937     // level of indirection, this must be the issue.
8938     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
8939       do {
8940         std::tie(lhptee, lhq) =
8941           cast<PointerType>(lhptee)->getPointeeType().split().asPair();
8942         std::tie(rhptee, rhq) =
8943           cast<PointerType>(rhptee)->getPointeeType().split().asPair();
8944 
8945         // Inconsistent address spaces at this point is invalid, even if the
8946         // address spaces would be compatible.
8947         // FIXME: This doesn't catch address space mismatches for pointers of
8948         // different nesting levels, like:
8949         //   __local int *** a;
8950         //   int ** b = a;
8951         // It's not clear how to actually determine when such pointers are
8952         // invalidly incompatible.
8953         if (lhq.getAddressSpace() != rhq.getAddressSpace())
8954           return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
8955 
8956       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
8957 
8958       if (lhptee == rhptee)
8959         return Sema::IncompatibleNestedPointerQualifiers;
8960     }
8961 
8962     // General pointer incompatibility takes priority over qualifiers.
8963     if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
8964       return Sema::IncompatibleFunctionPointer;
8965     return Sema::IncompatiblePointer;
8966   }
8967   if (!S.getLangOpts().CPlusPlus &&
8968       S.IsFunctionConversion(ltrans, rtrans, ltrans))
8969     return Sema::IncompatibleFunctionPointer;
8970   if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
8971     return Sema::IncompatibleFunctionPointer;
8972   return ConvTy;
8973 }
8974 
8975 /// checkBlockPointerTypesForAssignment - This routine determines whether two
8976 /// block pointer types are compatible or whether a block and normal pointer
8977 /// are compatible. It is more restrict than comparing two function pointer
8978 // types.
8979 static Sema::AssignConvertType
checkBlockPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)8980 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
8981                                     QualType RHSType) {
8982   assert(LHSType.isCanonical() && "LHS not canonicalized!");
8983   assert(RHSType.isCanonical() && "RHS not canonicalized!");
8984 
8985   QualType lhptee, rhptee;
8986 
8987   // get the "pointed to" type (ignoring qualifiers at the top level)
8988   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
8989   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
8990 
8991   // In C++, the types have to match exactly.
8992   if (S.getLangOpts().CPlusPlus)
8993     return Sema::IncompatibleBlockPointer;
8994 
8995   Sema::AssignConvertType ConvTy = Sema::Compatible;
8996 
8997   // For blocks we enforce that qualifiers are identical.
8998   Qualifiers LQuals = lhptee.getLocalQualifiers();
8999   Qualifiers RQuals = rhptee.getLocalQualifiers();
9000   if (S.getLangOpts().OpenCL) {
9001     LQuals.removeAddressSpace();
9002     RQuals.removeAddressSpace();
9003   }
9004   if (LQuals != RQuals)
9005     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9006 
9007   // FIXME: OpenCL doesn't define the exact compile time semantics for a block
9008   // assignment.
9009   // The current behavior is similar to C++ lambdas. A block might be
9010   // assigned to a variable iff its return type and parameters are compatible
9011   // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
9012   // an assignment. Presumably it should behave in way that a function pointer
9013   // assignment does in C, so for each parameter and return type:
9014   //  * CVR and address space of LHS should be a superset of CVR and address
9015   //  space of RHS.
9016   //  * unqualified types should be compatible.
9017   if (S.getLangOpts().OpenCL) {
9018     if (!S.Context.typesAreBlockPointerCompatible(
9019             S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
9020             S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
9021       return Sema::IncompatibleBlockPointer;
9022   } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
9023     return Sema::IncompatibleBlockPointer;
9024 
9025   return ConvTy;
9026 }
9027 
9028 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
9029 /// for assignment compatibility.
9030 static Sema::AssignConvertType
checkObjCPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)9031 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
9032                                    QualType RHSType) {
9033   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
9034   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
9035 
9036   if (LHSType->isObjCBuiltinType()) {
9037     // Class is not compatible with ObjC object pointers.
9038     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
9039         !RHSType->isObjCQualifiedClassType())
9040       return Sema::IncompatiblePointer;
9041     return Sema::Compatible;
9042   }
9043   if (RHSType->isObjCBuiltinType()) {
9044     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
9045         !LHSType->isObjCQualifiedClassType())
9046       return Sema::IncompatiblePointer;
9047     return Sema::Compatible;
9048   }
9049   QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9050   QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9051 
9052   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
9053       // make an exception for id<P>
9054       !LHSType->isObjCQualifiedIdType())
9055     return Sema::CompatiblePointerDiscardsQualifiers;
9056 
9057   if (S.Context.typesAreCompatible(LHSType, RHSType))
9058     return Sema::Compatible;
9059   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
9060     return Sema::IncompatibleObjCQualifiedId;
9061   return Sema::IncompatiblePointer;
9062 }
9063 
9064 Sema::AssignConvertType
CheckAssignmentConstraints(SourceLocation Loc,QualType LHSType,QualType RHSType)9065 Sema::CheckAssignmentConstraints(SourceLocation Loc,
9066                                  QualType LHSType, QualType RHSType) {
9067   // Fake up an opaque expression.  We don't actually care about what
9068   // cast operations are required, so if CheckAssignmentConstraints
9069   // adds casts to this they'll be wasted, but fortunately that doesn't
9070   // usually happen on valid code.
9071   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
9072   ExprResult RHSPtr = &RHSExpr;
9073   CastKind K;
9074 
9075   return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
9076 }
9077 
9078 /// This helper function returns true if QT is a vector type that has element
9079 /// type ElementType.
isVector(QualType QT,QualType ElementType)9080 static bool isVector(QualType QT, QualType ElementType) {
9081   if (const VectorType *VT = QT->getAs<VectorType>())
9082     return VT->getElementType().getCanonicalType() == ElementType;
9083   return false;
9084 }
9085 
9086 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
9087 /// has code to accommodate several GCC extensions when type checking
9088 /// pointers. Here are some objectionable examples that GCC considers warnings:
9089 ///
9090 ///  int a, *pint;
9091 ///  short *pshort;
9092 ///  struct foo *pfoo;
9093 ///
9094 ///  pint = pshort; // warning: assignment from incompatible pointer type
9095 ///  a = pint; // warning: assignment makes integer from pointer without a cast
9096 ///  pint = a; // warning: assignment makes pointer from integer without a cast
9097 ///  pint = pfoo; // warning: assignment from incompatible pointer type
9098 ///
9099 /// As a result, the code for dealing with pointers is more complex than the
9100 /// C99 spec dictates.
9101 ///
9102 /// Sets 'Kind' for any result kind except Incompatible.
9103 Sema::AssignConvertType
CheckAssignmentConstraints(QualType LHSType,ExprResult & RHS,CastKind & Kind,bool ConvertRHS)9104 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
9105                                  CastKind &Kind, bool ConvertRHS) {
9106   QualType RHSType = RHS.get()->getType();
9107   QualType OrigLHSType = LHSType;
9108 
9109   // Get canonical types.  We're not formatting these types, just comparing
9110   // them.
9111   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
9112   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
9113 
9114   // Common case: no conversion required.
9115   if (LHSType == RHSType) {
9116     Kind = CK_NoOp;
9117     return Compatible;
9118   }
9119 
9120   // If we have an atomic type, try a non-atomic assignment, then just add an
9121   // atomic qualification step.
9122   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
9123     Sema::AssignConvertType result =
9124       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
9125     if (result != Compatible)
9126       return result;
9127     if (Kind != CK_NoOp && ConvertRHS)
9128       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
9129     Kind = CK_NonAtomicToAtomic;
9130     return Compatible;
9131   }
9132 
9133   // If the left-hand side is a reference type, then we are in a
9134   // (rare!) case where we've allowed the use of references in C,
9135   // e.g., as a parameter type in a built-in function. In this case,
9136   // just make sure that the type referenced is compatible with the
9137   // right-hand side type. The caller is responsible for adjusting
9138   // LHSType so that the resulting expression does not have reference
9139   // type.
9140   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
9141     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
9142       Kind = CK_LValueBitCast;
9143       return Compatible;
9144     }
9145     return Incompatible;
9146   }
9147 
9148   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
9149   // to the same ExtVector type.
9150   if (LHSType->isExtVectorType()) {
9151     if (RHSType->isExtVectorType())
9152       return Incompatible;
9153     if (RHSType->isArithmeticType()) {
9154       // CK_VectorSplat does T -> vector T, so first cast to the element type.
9155       if (ConvertRHS)
9156         RHS = prepareVectorSplat(LHSType, RHS.get());
9157       Kind = CK_VectorSplat;
9158       return Compatible;
9159     }
9160   }
9161 
9162   // Conversions to or from vector type.
9163   if (LHSType->isVectorType() || RHSType->isVectorType()) {
9164     if (LHSType->isVectorType() && RHSType->isVectorType()) {
9165       // Allow assignments of an AltiVec vector type to an equivalent GCC
9166       // vector type and vice versa
9167       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9168         Kind = CK_BitCast;
9169         return Compatible;
9170       }
9171 
9172       // If we are allowing lax vector conversions, and LHS and RHS are both
9173       // vectors, the total size only needs to be the same. This is a bitcast;
9174       // no bits are changed but the result type is different.
9175       if (isLaxVectorConversion(RHSType, LHSType)) {
9176         Kind = CK_BitCast;
9177         return IncompatibleVectors;
9178       }
9179     }
9180 
9181     // When the RHS comes from another lax conversion (e.g. binops between
9182     // scalars and vectors) the result is canonicalized as a vector. When the
9183     // LHS is also a vector, the lax is allowed by the condition above. Handle
9184     // the case where LHS is a scalar.
9185     if (LHSType->isScalarType()) {
9186       const VectorType *VecType = RHSType->getAs<VectorType>();
9187       if (VecType && VecType->getNumElements() == 1 &&
9188           isLaxVectorConversion(RHSType, LHSType)) {
9189         ExprResult *VecExpr = &RHS;
9190         *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
9191         Kind = CK_BitCast;
9192         return Compatible;
9193       }
9194     }
9195 
9196     // Allow assignments between fixed-length and sizeless SVE vectors.
9197     if ((LHSType->isSizelessBuiltinType() && RHSType->isVectorType()) ||
9198         (LHSType->isVectorType() && RHSType->isSizelessBuiltinType()))
9199       if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
9200           Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
9201         Kind = CK_BitCast;
9202         return Compatible;
9203       }
9204 
9205     return Incompatible;
9206   }
9207 
9208   // Diagnose attempts to convert between __float128 and long double where
9209   // such conversions currently can't be handled.
9210   if (unsupportedTypeConversion(*this, LHSType, RHSType))
9211     return Incompatible;
9212 
9213   // Disallow assigning a _Complex to a real type in C++ mode since it simply
9214   // discards the imaginary part.
9215   if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
9216       !LHSType->getAs<ComplexType>())
9217     return Incompatible;
9218 
9219   // Arithmetic conversions.
9220   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
9221       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
9222     if (ConvertRHS)
9223       Kind = PrepareScalarCast(RHS, LHSType);
9224     return Compatible;
9225   }
9226 
9227   // Conversions to normal pointers.
9228   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
9229     // U* -> T*
9230     if (isa<PointerType>(RHSType)) {
9231       LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9232       LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
9233       if (AddrSpaceL != AddrSpaceR)
9234         Kind = CK_AddressSpaceConversion;
9235       else if (Context.hasCvrSimilarType(RHSType, LHSType))
9236         Kind = CK_NoOp;
9237       else
9238         Kind = CK_BitCast;
9239       return checkPointerTypesForAssignment(*this, LHSType, RHSType);
9240     }
9241 
9242     // int -> T*
9243     if (RHSType->isIntegerType()) {
9244       Kind = CK_IntegralToPointer; // FIXME: null?
9245       return IntToPointer;
9246     }
9247 
9248     // C pointers are not compatible with ObjC object pointers,
9249     // with two exceptions:
9250     if (isa<ObjCObjectPointerType>(RHSType)) {
9251       //  - conversions to void*
9252       if (LHSPointer->getPointeeType()->isVoidType()) {
9253         Kind = CK_BitCast;
9254         return Compatible;
9255       }
9256 
9257       //  - conversions from 'Class' to the redefinition type
9258       if (RHSType->isObjCClassType() &&
9259           Context.hasSameType(LHSType,
9260                               Context.getObjCClassRedefinitionType())) {
9261         Kind = CK_BitCast;
9262         return Compatible;
9263       }
9264 
9265       Kind = CK_BitCast;
9266       return IncompatiblePointer;
9267     }
9268 
9269     // U^ -> void*
9270     if (RHSType->getAs<BlockPointerType>()) {
9271       if (LHSPointer->getPointeeType()->isVoidType()) {
9272         LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9273         LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9274                                 ->getPointeeType()
9275                                 .getAddressSpace();
9276         Kind =
9277             AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9278         return Compatible;
9279       }
9280     }
9281 
9282     return Incompatible;
9283   }
9284 
9285   // Conversions to block pointers.
9286   if (isa<BlockPointerType>(LHSType)) {
9287     // U^ -> T^
9288     if (RHSType->isBlockPointerType()) {
9289       LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
9290                               ->getPointeeType()
9291                               .getAddressSpace();
9292       LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9293                               ->getPointeeType()
9294                               .getAddressSpace();
9295       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9296       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
9297     }
9298 
9299     // int or null -> T^
9300     if (RHSType->isIntegerType()) {
9301       Kind = CK_IntegralToPointer; // FIXME: null
9302       return IntToBlockPointer;
9303     }
9304 
9305     // id -> T^
9306     if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
9307       Kind = CK_AnyPointerToBlockPointerCast;
9308       return Compatible;
9309     }
9310 
9311     // void* -> T^
9312     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
9313       if (RHSPT->getPointeeType()->isVoidType()) {
9314         Kind = CK_AnyPointerToBlockPointerCast;
9315         return Compatible;
9316       }
9317 
9318     return Incompatible;
9319   }
9320 
9321   // Conversions to Objective-C pointers.
9322   if (isa<ObjCObjectPointerType>(LHSType)) {
9323     // A* -> B*
9324     if (RHSType->isObjCObjectPointerType()) {
9325       Kind = CK_BitCast;
9326       Sema::AssignConvertType result =
9327         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
9328       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9329           result == Compatible &&
9330           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
9331         result = IncompatibleObjCWeakRef;
9332       return result;
9333     }
9334 
9335     // int or null -> A*
9336     if (RHSType->isIntegerType()) {
9337       Kind = CK_IntegralToPointer; // FIXME: null
9338       return IntToPointer;
9339     }
9340 
9341     // In general, C pointers are not compatible with ObjC object pointers,
9342     // with two exceptions:
9343     if (isa<PointerType>(RHSType)) {
9344       Kind = CK_CPointerToObjCPointerCast;
9345 
9346       //  - conversions from 'void*'
9347       if (RHSType->isVoidPointerType()) {
9348         return Compatible;
9349       }
9350 
9351       //  - conversions to 'Class' from its redefinition type
9352       if (LHSType->isObjCClassType() &&
9353           Context.hasSameType(RHSType,
9354                               Context.getObjCClassRedefinitionType())) {
9355         return Compatible;
9356       }
9357 
9358       return IncompatiblePointer;
9359     }
9360 
9361     // Only under strict condition T^ is compatible with an Objective-C pointer.
9362     if (RHSType->isBlockPointerType() &&
9363         LHSType->isBlockCompatibleObjCPointerType(Context)) {
9364       if (ConvertRHS)
9365         maybeExtendBlockObject(RHS);
9366       Kind = CK_BlockPointerToObjCPointerCast;
9367       return Compatible;
9368     }
9369 
9370     return Incompatible;
9371   }
9372 
9373   // Conversions from pointers that are not covered by the above.
9374   if (isa<PointerType>(RHSType)) {
9375     // T* -> _Bool
9376     if (LHSType == Context.BoolTy) {
9377       Kind = CK_PointerToBoolean;
9378       return Compatible;
9379     }
9380 
9381     // T* -> int
9382     if (LHSType->isIntegerType()) {
9383       Kind = CK_PointerToIntegral;
9384       return PointerToInt;
9385     }
9386 
9387     return Incompatible;
9388   }
9389 
9390   // Conversions from Objective-C pointers that are not covered by the above.
9391   if (isa<ObjCObjectPointerType>(RHSType)) {
9392     // T* -> _Bool
9393     if (LHSType == Context.BoolTy) {
9394       Kind = CK_PointerToBoolean;
9395       return Compatible;
9396     }
9397 
9398     // T* -> int
9399     if (LHSType->isIntegerType()) {
9400       Kind = CK_PointerToIntegral;
9401       return PointerToInt;
9402     }
9403 
9404     return Incompatible;
9405   }
9406 
9407   // struct A -> struct B
9408   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
9409     if (Context.typesAreCompatible(LHSType, RHSType)) {
9410       Kind = CK_NoOp;
9411       return Compatible;
9412     }
9413   }
9414 
9415   if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
9416     Kind = CK_IntToOCLSampler;
9417     return Compatible;
9418   }
9419 
9420   return Incompatible;
9421 }
9422 
9423 /// Constructs a transparent union from an expression that is
9424 /// used to initialize the transparent union.
ConstructTransparentUnion(Sema & S,ASTContext & C,ExprResult & EResult,QualType UnionType,FieldDecl * Field)9425 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
9426                                       ExprResult &EResult, QualType UnionType,
9427                                       FieldDecl *Field) {
9428   // Build an initializer list that designates the appropriate member
9429   // of the transparent union.
9430   Expr *E = EResult.get();
9431   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
9432                                                    E, SourceLocation());
9433   Initializer->setType(UnionType);
9434   Initializer->setInitializedFieldInUnion(Field);
9435 
9436   // Build a compound literal constructing a value of the transparent
9437   // union type from this initializer list.
9438   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
9439   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
9440                                         VK_RValue, Initializer, false);
9441 }
9442 
9443 Sema::AssignConvertType
CheckTransparentUnionArgumentConstraints(QualType ArgType,ExprResult & RHS)9444 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
9445                                                ExprResult &RHS) {
9446   QualType RHSType = RHS.get()->getType();
9447 
9448   // If the ArgType is a Union type, we want to handle a potential
9449   // transparent_union GCC extension.
9450   const RecordType *UT = ArgType->getAsUnionType();
9451   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
9452     return Incompatible;
9453 
9454   // The field to initialize within the transparent union.
9455   RecordDecl *UD = UT->getDecl();
9456   FieldDecl *InitField = nullptr;
9457   // It's compatible if the expression matches any of the fields.
9458   for (auto *it : UD->fields()) {
9459     if (it->getType()->isPointerType()) {
9460       // If the transparent union contains a pointer type, we allow:
9461       // 1) void pointer
9462       // 2) null pointer constant
9463       if (RHSType->isPointerType())
9464         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
9465           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
9466           InitField = it;
9467           break;
9468         }
9469 
9470       if (RHS.get()->isNullPointerConstant(Context,
9471                                            Expr::NPC_ValueDependentIsNull)) {
9472         RHS = ImpCastExprToType(RHS.get(), it->getType(),
9473                                 CK_NullToPointer);
9474         InitField = it;
9475         break;
9476       }
9477     }
9478 
9479     CastKind Kind;
9480     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
9481           == Compatible) {
9482       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
9483       InitField = it;
9484       break;
9485     }
9486   }
9487 
9488   if (!InitField)
9489     return Incompatible;
9490 
9491   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
9492   return Compatible;
9493 }
9494 
9495 Sema::AssignConvertType
CheckSingleAssignmentConstraints(QualType LHSType,ExprResult & CallerRHS,bool Diagnose,bool DiagnoseCFAudited,bool ConvertRHS)9496 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
9497                                        bool Diagnose,
9498                                        bool DiagnoseCFAudited,
9499                                        bool ConvertRHS) {
9500   // We need to be able to tell the caller whether we diagnosed a problem, if
9501   // they ask us to issue diagnostics.
9502   assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
9503 
9504   // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
9505   // we can't avoid *all* modifications at the moment, so we need some somewhere
9506   // to put the updated value.
9507   ExprResult LocalRHS = CallerRHS;
9508   ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
9509 
9510   if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
9511     if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
9512       if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
9513           !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
9514         Diag(RHS.get()->getExprLoc(),
9515              diag::warn_noderef_to_dereferenceable_pointer)
9516             << RHS.get()->getSourceRange();
9517       }
9518     }
9519   }
9520 
9521   if (getLangOpts().CPlusPlus) {
9522     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
9523       // C++ 5.17p3: If the left operand is not of class type, the
9524       // expression is implicitly converted (C++ 4) to the
9525       // cv-unqualified type of the left operand.
9526       QualType RHSType = RHS.get()->getType();
9527       if (Diagnose) {
9528         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9529                                         AA_Assigning);
9530       } else {
9531         ImplicitConversionSequence ICS =
9532             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9533                                   /*SuppressUserConversions=*/false,
9534                                   AllowedExplicit::None,
9535                                   /*InOverloadResolution=*/false,
9536                                   /*CStyle=*/false,
9537                                   /*AllowObjCWritebackConversion=*/false);
9538         if (ICS.isFailure())
9539           return Incompatible;
9540         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9541                                         ICS, AA_Assigning);
9542       }
9543       if (RHS.isInvalid())
9544         return Incompatible;
9545       Sema::AssignConvertType result = Compatible;
9546       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9547           !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
9548         result = IncompatibleObjCWeakRef;
9549       return result;
9550     }
9551 
9552     // FIXME: Currently, we fall through and treat C++ classes like C
9553     // structures.
9554     // FIXME: We also fall through for atomics; not sure what should
9555     // happen there, though.
9556   } else if (RHS.get()->getType() == Context.OverloadTy) {
9557     // As a set of extensions to C, we support overloading on functions. These
9558     // functions need to be resolved here.
9559     DeclAccessPair DAP;
9560     if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
9561             RHS.get(), LHSType, /*Complain=*/false, DAP))
9562       RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
9563     else
9564       return Incompatible;
9565   }
9566 
9567   // C99 6.5.16.1p1: the left operand is a pointer and the right is
9568   // a null pointer constant.
9569   if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
9570        LHSType->isBlockPointerType()) &&
9571       RHS.get()->isNullPointerConstant(Context,
9572                                        Expr::NPC_ValueDependentIsNull)) {
9573     if (Diagnose || ConvertRHS) {
9574       CastKind Kind;
9575       CXXCastPath Path;
9576       CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
9577                              /*IgnoreBaseAccess=*/false, Diagnose);
9578       if (ConvertRHS)
9579         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
9580     }
9581     return Compatible;
9582   }
9583 
9584   // OpenCL queue_t type assignment.
9585   if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
9586                                  Context, Expr::NPC_ValueDependentIsNull)) {
9587     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
9588     return Compatible;
9589   }
9590 
9591   // This check seems unnatural, however it is necessary to ensure the proper
9592   // conversion of functions/arrays. If the conversion were done for all
9593   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
9594   // expressions that suppress this implicit conversion (&, sizeof).
9595   //
9596   // Suppress this for references: C++ 8.5.3p5.
9597   if (!LHSType->isReferenceType()) {
9598     // FIXME: We potentially allocate here even if ConvertRHS is false.
9599     RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
9600     if (RHS.isInvalid())
9601       return Incompatible;
9602   }
9603   CastKind Kind;
9604   Sema::AssignConvertType result =
9605     CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
9606 
9607   // C99 6.5.16.1p2: The value of the right operand is converted to the
9608   // type of the assignment expression.
9609   // CheckAssignmentConstraints allows the left-hand side to be a reference,
9610   // so that we can use references in built-in functions even in C.
9611   // The getNonReferenceType() call makes sure that the resulting expression
9612   // does not have reference type.
9613   if (result != Incompatible && RHS.get()->getType() != LHSType) {
9614     QualType Ty = LHSType.getNonLValueExprType(Context);
9615     Expr *E = RHS.get();
9616 
9617     // Check for various Objective-C errors. If we are not reporting
9618     // diagnostics and just checking for errors, e.g., during overload
9619     // resolution, return Incompatible to indicate the failure.
9620     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9621         CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
9622                             Diagnose, DiagnoseCFAudited) != ACR_okay) {
9623       if (!Diagnose)
9624         return Incompatible;
9625     }
9626     if (getLangOpts().ObjC &&
9627         (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
9628                                            E->getType(), E, Diagnose) ||
9629          CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
9630       if (!Diagnose)
9631         return Incompatible;
9632       // Replace the expression with a corrected version and continue so we
9633       // can find further errors.
9634       RHS = E;
9635       return Compatible;
9636     }
9637 
9638     if (ConvertRHS)
9639       RHS = ImpCastExprToType(E, Ty, Kind);
9640   }
9641 
9642   return result;
9643 }
9644 
9645 namespace {
9646 /// The original operand to an operator, prior to the application of the usual
9647 /// arithmetic conversions and converting the arguments of a builtin operator
9648 /// candidate.
9649 struct OriginalOperand {
OriginalOperand__anona7fab9d50c11::OriginalOperand9650   explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
9651     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
9652       Op = MTE->getSubExpr();
9653     if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
9654       Op = BTE->getSubExpr();
9655     if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
9656       Orig = ICE->getSubExprAsWritten();
9657       Conversion = ICE->getConversionFunction();
9658     }
9659   }
9660 
getType__anona7fab9d50c11::OriginalOperand9661   QualType getType() const { return Orig->getType(); }
9662 
9663   Expr *Orig;
9664   NamedDecl *Conversion;
9665 };
9666 }
9667 
InvalidOperands(SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)9668 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
9669                                ExprResult &RHS) {
9670   OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
9671 
9672   Diag(Loc, diag::err_typecheck_invalid_operands)
9673     << OrigLHS.getType() << OrigRHS.getType()
9674     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9675 
9676   // If a user-defined conversion was applied to either of the operands prior
9677   // to applying the built-in operator rules, tell the user about it.
9678   if (OrigLHS.Conversion) {
9679     Diag(OrigLHS.Conversion->getLocation(),
9680          diag::note_typecheck_invalid_operands_converted)
9681       << 0 << LHS.get()->getType();
9682   }
9683   if (OrigRHS.Conversion) {
9684     Diag(OrigRHS.Conversion->getLocation(),
9685          diag::note_typecheck_invalid_operands_converted)
9686       << 1 << RHS.get()->getType();
9687   }
9688 
9689   return QualType();
9690 }
9691 
9692 // Diagnose cases where a scalar was implicitly converted to a vector and
9693 // diagnose the underlying types. Otherwise, diagnose the error
9694 // as invalid vector logical operands for non-C++ cases.
InvalidLogicalVectorOperands(SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)9695 QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
9696                                             ExprResult &RHS) {
9697   QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
9698   QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
9699 
9700   bool LHSNatVec = LHSType->isVectorType();
9701   bool RHSNatVec = RHSType->isVectorType();
9702 
9703   if (!(LHSNatVec && RHSNatVec)) {
9704     Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
9705     Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
9706     Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9707         << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
9708         << Vector->getSourceRange();
9709     return QualType();
9710   }
9711 
9712   Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9713       << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
9714       << RHS.get()->getSourceRange();
9715 
9716   return QualType();
9717 }
9718 
9719 /// Try to convert a value of non-vector type to a vector type by converting
9720 /// the type to the element type of the vector and then performing a splat.
9721 /// If the language is OpenCL, we only use conversions that promote scalar
9722 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
9723 /// for float->int.
9724 ///
9725 /// OpenCL V2.0 6.2.6.p2:
9726 /// An error shall occur if any scalar operand type has greater rank
9727 /// than the type of the vector element.
9728 ///
9729 /// \param scalar - if non-null, actually perform the conversions
9730 /// \return true if the operation fails (but without diagnosing the failure)
tryVectorConvertAndSplat(Sema & S,ExprResult * scalar,QualType scalarTy,QualType vectorEltTy,QualType vectorTy,unsigned & DiagID)9731 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
9732                                      QualType scalarTy,
9733                                      QualType vectorEltTy,
9734                                      QualType vectorTy,
9735                                      unsigned &DiagID) {
9736   // The conversion to apply to the scalar before splatting it,
9737   // if necessary.
9738   CastKind scalarCast = CK_NoOp;
9739 
9740   if (vectorEltTy->isIntegralType(S.Context)) {
9741     if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
9742         (scalarTy->isIntegerType() &&
9743          S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
9744       DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9745       return true;
9746     }
9747     if (!scalarTy->isIntegralType(S.Context))
9748       return true;
9749     scalarCast = CK_IntegralCast;
9750   } else if (vectorEltTy->isRealFloatingType()) {
9751     if (scalarTy->isRealFloatingType()) {
9752       if (S.getLangOpts().OpenCL &&
9753           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
9754         DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9755         return true;
9756       }
9757       scalarCast = CK_FloatingCast;
9758     }
9759     else if (scalarTy->isIntegralType(S.Context))
9760       scalarCast = CK_IntegralToFloating;
9761     else
9762       return true;
9763   } else {
9764     return true;
9765   }
9766 
9767   // Adjust scalar if desired.
9768   if (scalar) {
9769     if (scalarCast != CK_NoOp)
9770       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
9771     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
9772   }
9773   return false;
9774 }
9775 
9776 /// Convert vector E to a vector with the same number of elements but different
9777 /// element type.
convertVector(Expr * E,QualType ElementType,Sema & S)9778 static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
9779   const auto *VecTy = E->getType()->getAs<VectorType>();
9780   assert(VecTy && "Expression E must be a vector");
9781   QualType NewVecTy = S.Context.getVectorType(ElementType,
9782                                               VecTy->getNumElements(),
9783                                               VecTy->getVectorKind());
9784 
9785   // Look through the implicit cast. Return the subexpression if its type is
9786   // NewVecTy.
9787   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
9788     if (ICE->getSubExpr()->getType() == NewVecTy)
9789       return ICE->getSubExpr();
9790 
9791   auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
9792   return S.ImpCastExprToType(E, NewVecTy, Cast);
9793 }
9794 
9795 /// Test if a (constant) integer Int can be casted to another integer type
9796 /// IntTy without losing precision.
canConvertIntToOtherIntTy(Sema & S,ExprResult * Int,QualType OtherIntTy)9797 static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
9798                                       QualType OtherIntTy) {
9799   QualType IntTy = Int->get()->getType().getUnqualifiedType();
9800 
9801   // Reject cases where the value of the Int is unknown as that would
9802   // possibly cause truncation, but accept cases where the scalar can be
9803   // demoted without loss of precision.
9804   Expr::EvalResult EVResult;
9805   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9806   int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
9807   bool IntSigned = IntTy->hasSignedIntegerRepresentation();
9808   bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
9809 
9810   if (CstInt) {
9811     // If the scalar is constant and is of a higher order and has more active
9812     // bits that the vector element type, reject it.
9813     llvm::APSInt Result = EVResult.Val.getInt();
9814     unsigned NumBits = IntSigned
9815                            ? (Result.isNegative() ? Result.getMinSignedBits()
9816                                                   : Result.getActiveBits())
9817                            : Result.getActiveBits();
9818     if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
9819       return true;
9820 
9821     // If the signedness of the scalar type and the vector element type
9822     // differs and the number of bits is greater than that of the vector
9823     // element reject it.
9824     return (IntSigned != OtherIntSigned &&
9825             NumBits > S.Context.getIntWidth(OtherIntTy));
9826   }
9827 
9828   // Reject cases where the value of the scalar is not constant and it's
9829   // order is greater than that of the vector element type.
9830   return (Order < 0);
9831 }
9832 
9833 /// Test if a (constant) integer Int can be casted to floating point type
9834 /// FloatTy without losing precision.
canConvertIntTyToFloatTy(Sema & S,ExprResult * Int,QualType FloatTy)9835 static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
9836                                      QualType FloatTy) {
9837   QualType IntTy = Int->get()->getType().getUnqualifiedType();
9838 
9839   // Determine if the integer constant can be expressed as a floating point
9840   // number of the appropriate type.
9841   Expr::EvalResult EVResult;
9842   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9843 
9844   uint64_t Bits = 0;
9845   if (CstInt) {
9846     // Reject constants that would be truncated if they were converted to
9847     // the floating point type. Test by simple to/from conversion.
9848     // FIXME: Ideally the conversion to an APFloat and from an APFloat
9849     //        could be avoided if there was a convertFromAPInt method
9850     //        which could signal back if implicit truncation occurred.
9851     llvm::APSInt Result = EVResult.Val.getInt();
9852     llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
9853     Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
9854                            llvm::APFloat::rmTowardZero);
9855     llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
9856                              !IntTy->hasSignedIntegerRepresentation());
9857     bool Ignored = false;
9858     Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
9859                            &Ignored);
9860     if (Result != ConvertBack)
9861       return true;
9862   } else {
9863     // Reject types that cannot be fully encoded into the mantissa of
9864     // the float.
9865     Bits = S.Context.getTypeSize(IntTy);
9866     unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
9867         S.Context.getFloatTypeSemantics(FloatTy));
9868     if (Bits > FloatPrec)
9869       return true;
9870   }
9871 
9872   return false;
9873 }
9874 
9875 /// Attempt to convert and splat Scalar into a vector whose types matches
9876 /// Vector following GCC conversion rules. The rule is that implicit
9877 /// conversion can occur when Scalar can be casted to match Vector's element
9878 /// type without causing truncation of Scalar.
tryGCCVectorConvertAndSplat(Sema & S,ExprResult * Scalar,ExprResult * Vector)9879 static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
9880                                         ExprResult *Vector) {
9881   QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
9882   QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
9883   const VectorType *VT = VectorTy->getAs<VectorType>();
9884 
9885   assert(!isa<ExtVectorType>(VT) &&
9886          "ExtVectorTypes should not be handled here!");
9887 
9888   QualType VectorEltTy = VT->getElementType();
9889 
9890   // Reject cases where the vector element type or the scalar element type are
9891   // not integral or floating point types.
9892   if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
9893     return true;
9894 
9895   // The conversion to apply to the scalar before splatting it,
9896   // if necessary.
9897   CastKind ScalarCast = CK_NoOp;
9898 
9899   // Accept cases where the vector elements are integers and the scalar is
9900   // an integer.
9901   // FIXME: Notionally if the scalar was a floating point value with a precise
9902   //        integral representation, we could cast it to an appropriate integer
9903   //        type and then perform the rest of the checks here. GCC will perform
9904   //        this conversion in some cases as determined by the input language.
9905   //        We should accept it on a language independent basis.
9906   if (VectorEltTy->isIntegralType(S.Context) &&
9907       ScalarTy->isIntegralType(S.Context) &&
9908       S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
9909 
9910     if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
9911       return true;
9912 
9913     ScalarCast = CK_IntegralCast;
9914   } else if (VectorEltTy->isIntegralType(S.Context) &&
9915              ScalarTy->isRealFloatingType()) {
9916     if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
9917       ScalarCast = CK_FloatingToIntegral;
9918     else
9919       return true;
9920   } else if (VectorEltTy->isRealFloatingType()) {
9921     if (ScalarTy->isRealFloatingType()) {
9922 
9923       // Reject cases where the scalar type is not a constant and has a higher
9924       // Order than the vector element type.
9925       llvm::APFloat Result(0.0);
9926 
9927       // Determine whether this is a constant scalar. In the event that the
9928       // value is dependent (and thus cannot be evaluated by the constant
9929       // evaluator), skip the evaluation. This will then diagnose once the
9930       // expression is instantiated.
9931       bool CstScalar = Scalar->get()->isValueDependent() ||
9932                        Scalar->get()->EvaluateAsFloat(Result, S.Context);
9933       int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
9934       if (!CstScalar && Order < 0)
9935         return true;
9936 
9937       // If the scalar cannot be safely casted to the vector element type,
9938       // reject it.
9939       if (CstScalar) {
9940         bool Truncated = false;
9941         Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
9942                        llvm::APFloat::rmNearestTiesToEven, &Truncated);
9943         if (Truncated)
9944           return true;
9945       }
9946 
9947       ScalarCast = CK_FloatingCast;
9948     } else if (ScalarTy->isIntegralType(S.Context)) {
9949       if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
9950         return true;
9951 
9952       ScalarCast = CK_IntegralToFloating;
9953     } else
9954       return true;
9955   } else if (ScalarTy->isEnumeralType())
9956     return true;
9957 
9958   // Adjust scalar if desired.
9959   if (Scalar) {
9960     if (ScalarCast != CK_NoOp)
9961       *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
9962     *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
9963   }
9964   return false;
9965 }
9966 
CheckVectorOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,bool AllowBothBool,bool AllowBoolConversions)9967 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
9968                                    SourceLocation Loc, bool IsCompAssign,
9969                                    bool AllowBothBool,
9970                                    bool AllowBoolConversions) {
9971   if (!IsCompAssign) {
9972     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
9973     if (LHS.isInvalid())
9974       return QualType();
9975   }
9976   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
9977   if (RHS.isInvalid())
9978     return QualType();
9979 
9980   // For conversion purposes, we ignore any qualifiers.
9981   // For example, "const float" and "float" are equivalent.
9982   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
9983   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
9984 
9985   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
9986   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
9987   assert(LHSVecType || RHSVecType);
9988 
9989   if ((LHSVecType && LHSVecType->getElementType()->isBFloat16Type()) ||
9990       (RHSVecType && RHSVecType->getElementType()->isBFloat16Type()))
9991     return InvalidOperands(Loc, LHS, RHS);
9992 
9993   // AltiVec-style "vector bool op vector bool" combinations are allowed
9994   // for some operators but not others.
9995   if (!AllowBothBool &&
9996       LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
9997       RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
9998     return InvalidOperands(Loc, LHS, RHS);
9999 
10000   // If the vector types are identical, return.
10001   if (Context.hasSameType(LHSType, RHSType))
10002     return LHSType;
10003 
10004   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
10005   if (LHSVecType && RHSVecType &&
10006       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10007     if (isa<ExtVectorType>(LHSVecType)) {
10008       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10009       return LHSType;
10010     }
10011 
10012     if (!IsCompAssign)
10013       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10014     return RHSType;
10015   }
10016 
10017   // AllowBoolConversions says that bool and non-bool AltiVec vectors
10018   // can be mixed, with the result being the non-bool type.  The non-bool
10019   // operand must have integer element type.
10020   if (AllowBoolConversions && LHSVecType && RHSVecType &&
10021       LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
10022       (Context.getTypeSize(LHSVecType->getElementType()) ==
10023        Context.getTypeSize(RHSVecType->getElementType()))) {
10024     if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10025         LHSVecType->getElementType()->isIntegerType() &&
10026         RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
10027       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10028       return LHSType;
10029     }
10030     if (!IsCompAssign &&
10031         LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
10032         RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10033         RHSVecType->getElementType()->isIntegerType()) {
10034       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10035       return RHSType;
10036     }
10037   }
10038 
10039   // Expressions containing fixed-length and sizeless SVE vectors are invalid
10040   // since the ambiguity can affect the ABI.
10041   auto IsSveConversion = [](QualType FirstType, QualType SecondType) {
10042     const VectorType *VecType = SecondType->getAs<VectorType>();
10043     return FirstType->isSizelessBuiltinType() && VecType &&
10044            (VecType->getVectorKind() == VectorType::SveFixedLengthDataVector ||
10045             VecType->getVectorKind() ==
10046                 VectorType::SveFixedLengthPredicateVector);
10047   };
10048 
10049   if (IsSveConversion(LHSType, RHSType) || IsSveConversion(RHSType, LHSType)) {
10050     Diag(Loc, diag::err_typecheck_sve_ambiguous) << LHSType << RHSType;
10051     return QualType();
10052   }
10053 
10054   // Expressions containing GNU and SVE (fixed or sizeless) vectors are invalid
10055   // since the ambiguity can affect the ABI.
10056   auto IsSveGnuConversion = [](QualType FirstType, QualType SecondType) {
10057     const VectorType *FirstVecType = FirstType->getAs<VectorType>();
10058     const VectorType *SecondVecType = SecondType->getAs<VectorType>();
10059 
10060     if (FirstVecType && SecondVecType)
10061       return FirstVecType->getVectorKind() == VectorType::GenericVector &&
10062              (SecondVecType->getVectorKind() ==
10063                   VectorType::SveFixedLengthDataVector ||
10064               SecondVecType->getVectorKind() ==
10065                   VectorType::SveFixedLengthPredicateVector);
10066 
10067     return FirstType->isSizelessBuiltinType() && SecondVecType &&
10068            SecondVecType->getVectorKind() == VectorType::GenericVector;
10069   };
10070 
10071   if (IsSveGnuConversion(LHSType, RHSType) ||
10072       IsSveGnuConversion(RHSType, LHSType)) {
10073     Diag(Loc, diag::err_typecheck_sve_gnu_ambiguous) << LHSType << RHSType;
10074     return QualType();
10075   }
10076 
10077   // If there's a vector type and a scalar, try to convert the scalar to
10078   // the vector element type and splat.
10079   unsigned DiagID = diag::err_typecheck_vector_not_convertable;
10080   if (!RHSVecType) {
10081     if (isa<ExtVectorType>(LHSVecType)) {
10082       if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
10083                                     LHSVecType->getElementType(), LHSType,
10084                                     DiagID))
10085         return LHSType;
10086     } else {
10087       if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10088         return LHSType;
10089     }
10090   }
10091   if (!LHSVecType) {
10092     if (isa<ExtVectorType>(RHSVecType)) {
10093       if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
10094                                     LHSType, RHSVecType->getElementType(),
10095                                     RHSType, DiagID))
10096         return RHSType;
10097     } else {
10098       if (LHS.get()->getValueKind() == VK_LValue ||
10099           !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10100         return RHSType;
10101     }
10102   }
10103 
10104   // FIXME: The code below also handles conversion between vectors and
10105   // non-scalars, we should break this down into fine grained specific checks
10106   // and emit proper diagnostics.
10107   QualType VecType = LHSVecType ? LHSType : RHSType;
10108   const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
10109   QualType OtherType = LHSVecType ? RHSType : LHSType;
10110   ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
10111   if (isLaxVectorConversion(OtherType, VecType)) {
10112     // If we're allowing lax vector conversions, only the total (data) size
10113     // needs to be the same. For non compound assignment, if one of the types is
10114     // scalar, the result is always the vector type.
10115     if (!IsCompAssign) {
10116       *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
10117       return VecType;
10118     // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
10119     // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
10120     // type. Note that this is already done by non-compound assignments in
10121     // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
10122     // <1 x T> -> T. The result is also a vector type.
10123     } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
10124                (OtherType->isScalarType() && VT->getNumElements() == 1)) {
10125       ExprResult *RHSExpr = &RHS;
10126       *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
10127       return VecType;
10128     }
10129   }
10130 
10131   // Okay, the expression is invalid.
10132 
10133   // If there's a non-vector, non-real operand, diagnose that.
10134   if ((!RHSVecType && !RHSType->isRealType()) ||
10135       (!LHSVecType && !LHSType->isRealType())) {
10136     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10137       << LHSType << RHSType
10138       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10139     return QualType();
10140   }
10141 
10142   // OpenCL V1.1 6.2.6.p1:
10143   // If the operands are of more than one vector type, then an error shall
10144   // occur. Implicit conversions between vector types are not permitted, per
10145   // section 6.2.1.
10146   if (getLangOpts().OpenCL &&
10147       RHSVecType && isa<ExtVectorType>(RHSVecType) &&
10148       LHSVecType && isa<ExtVectorType>(LHSVecType)) {
10149     Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
10150                                                            << RHSType;
10151     return QualType();
10152   }
10153 
10154 
10155   // If there is a vector type that is not a ExtVector and a scalar, we reach
10156   // this point if scalar could not be converted to the vector's element type
10157   // without truncation.
10158   if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
10159       (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
10160     QualType Scalar = LHSVecType ? RHSType : LHSType;
10161     QualType Vector = LHSVecType ? LHSType : RHSType;
10162     unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
10163     Diag(Loc,
10164          diag::err_typecheck_vector_not_convertable_implict_truncation)
10165         << ScalarOrVector << Scalar << Vector;
10166 
10167     return QualType();
10168   }
10169 
10170   // Otherwise, use the generic diagnostic.
10171   Diag(Loc, DiagID)
10172     << LHSType << RHSType
10173     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10174   return QualType();
10175 }
10176 
10177 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
10178 // expression.  These are mainly cases where the null pointer is used as an
10179 // integer instead of a pointer.
checkArithmeticNull(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompare)10180 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
10181                                 SourceLocation Loc, bool IsCompare) {
10182   // The canonical way to check for a GNU null is with isNullPointerConstant,
10183   // but we use a bit of a hack here for speed; this is a relatively
10184   // hot path, and isNullPointerConstant is slow.
10185   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
10186   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
10187 
10188   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
10189 
10190   // Avoid analyzing cases where the result will either be invalid (and
10191   // diagnosed as such) or entirely valid and not something to warn about.
10192   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
10193       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
10194     return;
10195 
10196   // Comparison operations would not make sense with a null pointer no matter
10197   // what the other expression is.
10198   if (!IsCompare) {
10199     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
10200         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
10201         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
10202     return;
10203   }
10204 
10205   // The rest of the operations only make sense with a null pointer
10206   // if the other expression is a pointer.
10207   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
10208       NonNullType->canDecayToPointerType())
10209     return;
10210 
10211   S.Diag(Loc, diag::warn_null_in_comparison_operation)
10212       << LHSNull /* LHS is NULL */ << NonNullType
10213       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10214 }
10215 
DiagnoseDivisionSizeofPointerOrArray(Sema & S,Expr * LHS,Expr * RHS,SourceLocation Loc)10216 static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
10217                                           SourceLocation Loc) {
10218   const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
10219   const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
10220   if (!LUE || !RUE)
10221     return;
10222   if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
10223       RUE->getKind() != UETT_SizeOf)
10224     return;
10225 
10226   const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
10227   QualType LHSTy = LHSArg->getType();
10228   QualType RHSTy;
10229 
10230   if (RUE->isArgumentType())
10231     RHSTy = RUE->getArgumentType().getNonReferenceType();
10232   else
10233     RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
10234 
10235   if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
10236     if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
10237       return;
10238 
10239     S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
10240     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10241       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10242         S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
10243             << LHSArgDecl;
10244     }
10245   } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
10246     QualType ArrayElemTy = ArrayTy->getElementType();
10247     if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
10248         ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
10249         RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
10250         S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
10251       return;
10252     S.Diag(Loc, diag::warn_division_sizeof_array)
10253         << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
10254     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10255       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10256         S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
10257             << LHSArgDecl;
10258     }
10259 
10260     S.Diag(Loc, diag::note_precedence_silence) << RHS;
10261   }
10262 }
10263 
DiagnoseBadDivideOrRemainderValues(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsDiv)10264 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
10265                                                ExprResult &RHS,
10266                                                SourceLocation Loc, bool IsDiv) {
10267   // Check for division/remainder by zero.
10268   Expr::EvalResult RHSValue;
10269   if (!RHS.get()->isValueDependent() &&
10270       RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
10271       RHSValue.Val.getInt() == 0)
10272     S.DiagRuntimeBehavior(Loc, RHS.get(),
10273                           S.PDiag(diag::warn_remainder_division_by_zero)
10274                             << IsDiv << RHS.get()->getSourceRange());
10275 }
10276 
CheckMultiplyDivideOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,bool IsDiv)10277 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
10278                                            SourceLocation Loc,
10279                                            bool IsCompAssign, bool IsDiv) {
10280   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10281 
10282   QualType LHSTy = LHS.get()->getType();
10283   QualType RHSTy = RHS.get()->getType();
10284   if (LHSTy->isVectorType() || RHSTy->isVectorType())
10285     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10286                                /*AllowBothBool*/getLangOpts().AltiVec,
10287                                /*AllowBoolConversions*/false);
10288   if (!IsDiv &&
10289       (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
10290     return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
10291   // For division, only matrix-by-scalar is supported. Other combinations with
10292   // matrix types are invalid.
10293   if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
10294     return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
10295 
10296   QualType compType = UsualArithmeticConversions(
10297       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10298   if (LHS.isInvalid() || RHS.isInvalid())
10299     return QualType();
10300 
10301 
10302   if (compType.isNull() || !compType->isArithmeticType())
10303     return InvalidOperands(Loc, LHS, RHS);
10304   if (IsDiv) {
10305     DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
10306     DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
10307   }
10308   return compType;
10309 }
10310 
CheckRemainderOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)10311 QualType Sema::CheckRemainderOperands(
10312   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
10313   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10314 
10315   if (LHS.get()->getType()->isVectorType() ||
10316       RHS.get()->getType()->isVectorType()) {
10317     if (LHS.get()->getType()->hasIntegerRepresentation() &&
10318         RHS.get()->getType()->hasIntegerRepresentation())
10319       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10320                                  /*AllowBothBool*/getLangOpts().AltiVec,
10321                                  /*AllowBoolConversions*/false);
10322     return InvalidOperands(Loc, LHS, RHS);
10323   }
10324 
10325   QualType compType = UsualArithmeticConversions(
10326       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10327   if (LHS.isInvalid() || RHS.isInvalid())
10328     return QualType();
10329 
10330   if (compType.isNull() || !compType->isIntegerType())
10331     return InvalidOperands(Loc, LHS, RHS);
10332   DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
10333   return compType;
10334 }
10335 
10336 /// Diagnose invalid arithmetic on two void pointers.
diagnoseArithmeticOnTwoVoidPointers(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)10337 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
10338                                                 Expr *LHSExpr, Expr *RHSExpr) {
10339   S.Diag(Loc, S.getLangOpts().CPlusPlus
10340                 ? diag::err_typecheck_pointer_arith_void_type
10341                 : diag::ext_gnu_void_ptr)
10342     << 1 /* two pointers */ << LHSExpr->getSourceRange()
10343                             << RHSExpr->getSourceRange();
10344 }
10345 
10346 /// Diagnose invalid arithmetic on a void pointer.
diagnoseArithmeticOnVoidPointer(Sema & S,SourceLocation Loc,Expr * Pointer)10347 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
10348                                             Expr *Pointer) {
10349   S.Diag(Loc, S.getLangOpts().CPlusPlus
10350                 ? diag::err_typecheck_pointer_arith_void_type
10351                 : diag::ext_gnu_void_ptr)
10352     << 0 /* one pointer */ << Pointer->getSourceRange();
10353 }
10354 
10355 /// Diagnose invalid arithmetic on a null pointer.
10356 ///
10357 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
10358 /// idiom, which we recognize as a GNU extension.
10359 ///
diagnoseArithmeticOnNullPointer(Sema & S,SourceLocation Loc,Expr * Pointer,bool IsGNUIdiom)10360 static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
10361                                             Expr *Pointer, bool IsGNUIdiom) {
10362   if (IsGNUIdiom)
10363     S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
10364       << Pointer->getSourceRange();
10365   else
10366     S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
10367       << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
10368 }
10369 
10370 /// Diagnose invalid arithmetic on two function pointers.
diagnoseArithmeticOnTwoFunctionPointers(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)10371 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
10372                                                     Expr *LHS, Expr *RHS) {
10373   assert(LHS->getType()->isAnyPointerType());
10374   assert(RHS->getType()->isAnyPointerType());
10375   S.Diag(Loc, S.getLangOpts().CPlusPlus
10376                 ? diag::err_typecheck_pointer_arith_function_type
10377                 : diag::ext_gnu_ptr_func_arith)
10378     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
10379     // We only show the second type if it differs from the first.
10380     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
10381                                                    RHS->getType())
10382     << RHS->getType()->getPointeeType()
10383     << LHS->getSourceRange() << RHS->getSourceRange();
10384 }
10385 
10386 /// Diagnose invalid arithmetic on a function pointer.
diagnoseArithmeticOnFunctionPointer(Sema & S,SourceLocation Loc,Expr * Pointer)10387 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
10388                                                 Expr *Pointer) {
10389   assert(Pointer->getType()->isAnyPointerType());
10390   S.Diag(Loc, S.getLangOpts().CPlusPlus
10391                 ? diag::err_typecheck_pointer_arith_function_type
10392                 : diag::ext_gnu_ptr_func_arith)
10393     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
10394     << 0 /* one pointer, so only one type */
10395     << Pointer->getSourceRange();
10396 }
10397 
10398 /// Emit error if Operand is incomplete pointer type
10399 ///
10400 /// \returns True if pointer has incomplete type
checkArithmeticIncompletePointerType(Sema & S,SourceLocation Loc,Expr * Operand)10401 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
10402                                                  Expr *Operand) {
10403   QualType ResType = Operand->getType();
10404   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10405     ResType = ResAtomicType->getValueType();
10406 
10407   assert(ResType->isAnyPointerType() && !ResType->isDependentType());
10408   QualType PointeeTy = ResType->getPointeeType();
10409   return S.RequireCompleteSizedType(
10410       Loc, PointeeTy,
10411       diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
10412       Operand->getSourceRange());
10413 }
10414 
10415 /// Check the validity of an arithmetic pointer operand.
10416 ///
10417 /// If the operand has pointer type, this code will check for pointer types
10418 /// which are invalid in arithmetic operations. These will be diagnosed
10419 /// appropriately, including whether or not the use is supported as an
10420 /// extension.
10421 ///
10422 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticOpPointerOperand(Sema & S,SourceLocation Loc,Expr * Operand)10423 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
10424                                             Expr *Operand) {
10425   QualType ResType = Operand->getType();
10426   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10427     ResType = ResAtomicType->getValueType();
10428 
10429   if (!ResType->isAnyPointerType()) return true;
10430 
10431   QualType PointeeTy = ResType->getPointeeType();
10432   if (PointeeTy->isVoidType()) {
10433     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
10434     return !S.getLangOpts().CPlusPlus;
10435   }
10436   if (PointeeTy->isFunctionType()) {
10437     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
10438     return !S.getLangOpts().CPlusPlus;
10439   }
10440 
10441   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
10442 
10443   return true;
10444 }
10445 
10446 /// Check the validity of a binary arithmetic operation w.r.t. pointer
10447 /// operands.
10448 ///
10449 /// This routine will diagnose any invalid arithmetic on pointer operands much
10450 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
10451 /// for emitting a single diagnostic even for operations where both LHS and RHS
10452 /// are (potentially problematic) pointers.
10453 ///
10454 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticBinOpPointerOperands(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)10455 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
10456                                                 Expr *LHSExpr, Expr *RHSExpr) {
10457   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
10458   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
10459   if (!isLHSPointer && !isRHSPointer) return true;
10460 
10461   QualType LHSPointeeTy, RHSPointeeTy;
10462   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
10463   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
10464 
10465   // if both are pointers check if operation is valid wrt address spaces
10466   if (isLHSPointer && isRHSPointer) {
10467     if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
10468       S.Diag(Loc,
10469              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
10470           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
10471           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
10472       return false;
10473     }
10474   }
10475 
10476   // Check for arithmetic on pointers to incomplete types.
10477   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
10478   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
10479   if (isLHSVoidPtr || isRHSVoidPtr) {
10480     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
10481     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
10482     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
10483 
10484     return !S.getLangOpts().CPlusPlus;
10485   }
10486 
10487   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
10488   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
10489   if (isLHSFuncPtr || isRHSFuncPtr) {
10490     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
10491     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
10492                                                                 RHSExpr);
10493     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
10494 
10495     return !S.getLangOpts().CPlusPlus;
10496   }
10497 
10498   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
10499     return false;
10500   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
10501     return false;
10502 
10503   return true;
10504 }
10505 
10506 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
10507 /// literal.
diagnoseStringPlusInt(Sema & Self,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)10508 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
10509                                   Expr *LHSExpr, Expr *RHSExpr) {
10510   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
10511   Expr* IndexExpr = RHSExpr;
10512   if (!StrExpr) {
10513     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
10514     IndexExpr = LHSExpr;
10515   }
10516 
10517   bool IsStringPlusInt = StrExpr &&
10518       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
10519   if (!IsStringPlusInt || IndexExpr->isValueDependent())
10520     return;
10521 
10522   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10523   Self.Diag(OpLoc, diag::warn_string_plus_int)
10524       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
10525 
10526   // Only print a fixit for "str" + int, not for int + "str".
10527   if (IndexExpr == RHSExpr) {
10528     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10529     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10530         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10531         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10532         << FixItHint::CreateInsertion(EndLoc, "]");
10533   } else
10534     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10535 }
10536 
10537 /// Emit a warning when adding a char literal to a string.
diagnoseStringPlusChar(Sema & Self,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)10538 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
10539                                    Expr *LHSExpr, Expr *RHSExpr) {
10540   const Expr *StringRefExpr = LHSExpr;
10541   const CharacterLiteral *CharExpr =
10542       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
10543 
10544   if (!CharExpr) {
10545     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
10546     StringRefExpr = RHSExpr;
10547   }
10548 
10549   if (!CharExpr || !StringRefExpr)
10550     return;
10551 
10552   const QualType StringType = StringRefExpr->getType();
10553 
10554   // Return if not a PointerType.
10555   if (!StringType->isAnyPointerType())
10556     return;
10557 
10558   // Return if not a CharacterType.
10559   if (!StringType->getPointeeType()->isAnyCharacterType())
10560     return;
10561 
10562   ASTContext &Ctx = Self.getASTContext();
10563   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10564 
10565   const QualType CharType = CharExpr->getType();
10566   if (!CharType->isAnyCharacterType() &&
10567       CharType->isIntegerType() &&
10568       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
10569     Self.Diag(OpLoc, diag::warn_string_plus_char)
10570         << DiagRange << Ctx.CharTy;
10571   } else {
10572     Self.Diag(OpLoc, diag::warn_string_plus_char)
10573         << DiagRange << CharExpr->getType();
10574   }
10575 
10576   // Only print a fixit for str + char, not for char + str.
10577   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
10578     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10579     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10580         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10581         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10582         << FixItHint::CreateInsertion(EndLoc, "]");
10583   } else {
10584     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10585   }
10586 }
10587 
10588 /// Emit error when two pointers are incompatible.
diagnosePointerIncompatibility(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)10589 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
10590                                            Expr *LHSExpr, Expr *RHSExpr) {
10591   assert(LHSExpr->getType()->isAnyPointerType());
10592   assert(RHSExpr->getType()->isAnyPointerType());
10593   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
10594     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
10595     << RHSExpr->getSourceRange();
10596 }
10597 
10598 // C99 6.5.6
CheckAdditionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc,QualType * CompLHSTy)10599 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
10600                                      SourceLocation Loc, BinaryOperatorKind Opc,
10601                                      QualType* CompLHSTy) {
10602   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10603 
10604   if (LHS.get()->getType()->isVectorType() ||
10605       RHS.get()->getType()->isVectorType()) {
10606     QualType compType = CheckVectorOperands(
10607         LHS, RHS, Loc, CompLHSTy,
10608         /*AllowBothBool*/getLangOpts().AltiVec,
10609         /*AllowBoolConversions*/getLangOpts().ZVector);
10610     if (CompLHSTy) *CompLHSTy = compType;
10611     return compType;
10612   }
10613 
10614   if (LHS.get()->getType()->isConstantMatrixType() ||
10615       RHS.get()->getType()->isConstantMatrixType()) {
10616     QualType compType =
10617         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10618     if (CompLHSTy)
10619       *CompLHSTy = compType;
10620     return compType;
10621   }
10622 
10623   QualType compType = UsualArithmeticConversions(
10624       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
10625   if (LHS.isInvalid() || RHS.isInvalid())
10626     return QualType();
10627 
10628   // Diagnose "string literal" '+' int and string '+' "char literal".
10629   if (Opc == BO_Add) {
10630     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
10631     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
10632   }
10633 
10634   // handle the common case first (both operands are arithmetic).
10635   if (!compType.isNull() && compType->isArithmeticType()) {
10636     if (CompLHSTy) *CompLHSTy = compType;
10637     return compType;
10638   }
10639 
10640   // Type-checking.  Ultimately the pointer's going to be in PExp;
10641   // note that we bias towards the LHS being the pointer.
10642   Expr *PExp = LHS.get(), *IExp = RHS.get();
10643 
10644   bool isObjCPointer;
10645   if (PExp->getType()->isPointerType()) {
10646     isObjCPointer = false;
10647   } else if (PExp->getType()->isObjCObjectPointerType()) {
10648     isObjCPointer = true;
10649   } else {
10650     std::swap(PExp, IExp);
10651     if (PExp->getType()->isPointerType()) {
10652       isObjCPointer = false;
10653     } else if (PExp->getType()->isObjCObjectPointerType()) {
10654       isObjCPointer = true;
10655     } else {
10656       return InvalidOperands(Loc, LHS, RHS);
10657     }
10658   }
10659   assert(PExp->getType()->isAnyPointerType());
10660 
10661   if (!IExp->getType()->isIntegerType())
10662     return InvalidOperands(Loc, LHS, RHS);
10663 
10664   // Adding to a null pointer results in undefined behavior.
10665   if (PExp->IgnoreParenCasts()->isNullPointerConstant(
10666           Context, Expr::NPC_ValueDependentIsNotNull)) {
10667     // In C++ adding zero to a null pointer is defined.
10668     Expr::EvalResult KnownVal;
10669     if (!getLangOpts().CPlusPlus ||
10670         (!IExp->isValueDependent() &&
10671          (!IExp->EvaluateAsInt(KnownVal, Context) ||
10672           KnownVal.Val.getInt() != 0))) {
10673       // Check the conditions to see if this is the 'p = nullptr + n' idiom.
10674       bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
10675           Context, BO_Add, PExp, IExp);
10676       diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
10677     }
10678   }
10679 
10680   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
10681     return QualType();
10682 
10683   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
10684     return QualType();
10685 
10686   // Check array bounds for pointer arithemtic
10687   CheckArrayAccess(PExp, IExp);
10688 
10689   if (CompLHSTy) {
10690     QualType LHSTy = Context.isPromotableBitField(LHS.get());
10691     if (LHSTy.isNull()) {
10692       LHSTy = LHS.get()->getType();
10693       if (LHSTy->isPromotableIntegerType())
10694         LHSTy = Context.getPromotedIntegerType(LHSTy);
10695     }
10696     *CompLHSTy = LHSTy;
10697   }
10698 
10699   return PExp->getType();
10700 }
10701 
10702 // C99 6.5.6
CheckSubtractionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,QualType * CompLHSTy)10703 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
10704                                         SourceLocation Loc,
10705                                         QualType* CompLHSTy) {
10706   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10707 
10708   if (LHS.get()->getType()->isVectorType() ||
10709       RHS.get()->getType()->isVectorType()) {
10710     QualType compType = CheckVectorOperands(
10711         LHS, RHS, Loc, CompLHSTy,
10712         /*AllowBothBool*/getLangOpts().AltiVec,
10713         /*AllowBoolConversions*/getLangOpts().ZVector);
10714     if (CompLHSTy) *CompLHSTy = compType;
10715     return compType;
10716   }
10717 
10718   if (LHS.get()->getType()->isConstantMatrixType() ||
10719       RHS.get()->getType()->isConstantMatrixType()) {
10720     QualType compType =
10721         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10722     if (CompLHSTy)
10723       *CompLHSTy = compType;
10724     return compType;
10725   }
10726 
10727   QualType compType = UsualArithmeticConversions(
10728       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
10729   if (LHS.isInvalid() || RHS.isInvalid())
10730     return QualType();
10731 
10732   // Enforce type constraints: C99 6.5.6p3.
10733 
10734   // Handle the common case first (both operands are arithmetic).
10735   if (!compType.isNull() && compType->isArithmeticType()) {
10736     if (CompLHSTy) *CompLHSTy = compType;
10737     return compType;
10738   }
10739 
10740   // Either ptr - int   or   ptr - ptr.
10741   if (LHS.get()->getType()->isAnyPointerType()) {
10742     QualType lpointee = LHS.get()->getType()->getPointeeType();
10743 
10744     // Diagnose bad cases where we step over interface counts.
10745     if (LHS.get()->getType()->isObjCObjectPointerType() &&
10746         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
10747       return QualType();
10748 
10749     // The result type of a pointer-int computation is the pointer type.
10750     if (RHS.get()->getType()->isIntegerType()) {
10751       // Subtracting from a null pointer should produce a warning.
10752       // The last argument to the diagnose call says this doesn't match the
10753       // GNU int-to-pointer idiom.
10754       if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
10755                                            Expr::NPC_ValueDependentIsNotNull)) {
10756         // In C++ adding zero to a null pointer is defined.
10757         Expr::EvalResult KnownVal;
10758         if (!getLangOpts().CPlusPlus ||
10759             (!RHS.get()->isValueDependent() &&
10760              (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
10761               KnownVal.Val.getInt() != 0))) {
10762           diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
10763         }
10764       }
10765 
10766       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
10767         return QualType();
10768 
10769       // Check array bounds for pointer arithemtic
10770       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
10771                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
10772 
10773       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
10774       return LHS.get()->getType();
10775     }
10776 
10777     // Handle pointer-pointer subtractions.
10778     if (const PointerType *RHSPTy
10779           = RHS.get()->getType()->getAs<PointerType>()) {
10780       QualType rpointee = RHSPTy->getPointeeType();
10781 
10782       if (getLangOpts().CPlusPlus) {
10783         // Pointee types must be the same: C++ [expr.add]
10784         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
10785           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
10786         }
10787       } else {
10788         // Pointee types must be compatible C99 6.5.6p3
10789         if (!Context.typesAreCompatible(
10790                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
10791                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
10792           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
10793           return QualType();
10794         }
10795       }
10796 
10797       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
10798                                                LHS.get(), RHS.get()))
10799         return QualType();
10800 
10801       // FIXME: Add warnings for nullptr - ptr.
10802 
10803       // The pointee type may have zero size.  As an extension, a structure or
10804       // union may have zero size or an array may have zero length.  In this
10805       // case subtraction does not make sense.
10806       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
10807         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
10808         if (ElementSize.isZero()) {
10809           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
10810             << rpointee.getUnqualifiedType()
10811             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10812         }
10813       }
10814 
10815       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
10816       return Context.getPointerDiffType();
10817     }
10818   }
10819 
10820   return InvalidOperands(Loc, LHS, RHS);
10821 }
10822 
isScopedEnumerationType(QualType T)10823 static bool isScopedEnumerationType(QualType T) {
10824   if (const EnumType *ET = T->getAs<EnumType>())
10825     return ET->getDecl()->isScoped();
10826   return false;
10827 }
10828 
DiagnoseBadShiftValues(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc,QualType LHSType)10829 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
10830                                    SourceLocation Loc, BinaryOperatorKind Opc,
10831                                    QualType LHSType) {
10832   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
10833   // so skip remaining warnings as we don't want to modify values within Sema.
10834   if (S.getLangOpts().OpenCL)
10835     return;
10836 
10837   // Check right/shifter operand
10838   Expr::EvalResult RHSResult;
10839   if (RHS.get()->isValueDependent() ||
10840       !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
10841     return;
10842   llvm::APSInt Right = RHSResult.Val.getInt();
10843 
10844   if (Right.isNegative()) {
10845     S.DiagRuntimeBehavior(Loc, RHS.get(),
10846                           S.PDiag(diag::warn_shift_negative)
10847                             << RHS.get()->getSourceRange());
10848     return;
10849   }
10850 
10851   QualType LHSExprType = LHS.get()->getType();
10852   uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
10853   if (LHSExprType->isExtIntType())
10854     LeftSize = S.Context.getIntWidth(LHSExprType);
10855   else if (LHSExprType->isFixedPointType()) {
10856     auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
10857     LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
10858   }
10859   llvm::APInt LeftBits(Right.getBitWidth(), LeftSize);
10860   if (Right.uge(LeftBits)) {
10861     S.DiagRuntimeBehavior(Loc, RHS.get(),
10862                           S.PDiag(diag::warn_shift_gt_typewidth)
10863                             << RHS.get()->getSourceRange());
10864     return;
10865   }
10866 
10867   // FIXME: We probably need to handle fixed point types specially here.
10868   if (Opc != BO_Shl || LHSExprType->isFixedPointType())
10869     return;
10870 
10871   // When left shifting an ICE which is signed, we can check for overflow which
10872   // according to C++ standards prior to C++2a has undefined behavior
10873   // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
10874   // more than the maximum value representable in the result type, so never
10875   // warn for those. (FIXME: Unsigned left-shift overflow in a constant
10876   // expression is still probably a bug.)
10877   Expr::EvalResult LHSResult;
10878   if (LHS.get()->isValueDependent() ||
10879       LHSType->hasUnsignedIntegerRepresentation() ||
10880       !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
10881     return;
10882   llvm::APSInt Left = LHSResult.Val.getInt();
10883 
10884   // If LHS does not have a signed type and non-negative value
10885   // then, the behavior is undefined before C++2a. Warn about it.
10886   if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined() &&
10887       !S.getLangOpts().CPlusPlus20) {
10888     S.DiagRuntimeBehavior(Loc, LHS.get(),
10889                           S.PDiag(diag::warn_shift_lhs_negative)
10890                             << LHS.get()->getSourceRange());
10891     return;
10892   }
10893 
10894   llvm::APInt ResultBits =
10895       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
10896   if (LeftBits.uge(ResultBits))
10897     return;
10898   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
10899   Result = Result.shl(Right);
10900 
10901   // Print the bit representation of the signed integer as an unsigned
10902   // hexadecimal number.
10903   SmallString<40> HexResult;
10904   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
10905 
10906   // If we are only missing a sign bit, this is less likely to result in actual
10907   // bugs -- if the result is cast back to an unsigned type, it will have the
10908   // expected value. Thus we place this behind a different warning that can be
10909   // turned off separately if needed.
10910   if (LeftBits == ResultBits - 1) {
10911     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
10912         << HexResult << LHSType
10913         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10914     return;
10915   }
10916 
10917   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
10918     << HexResult.str() << Result.getMinSignedBits() << LHSType
10919     << Left.getBitWidth() << LHS.get()->getSourceRange()
10920     << RHS.get()->getSourceRange();
10921 }
10922 
10923 /// Return the resulting type when a vector is shifted
10924 ///        by a scalar or vector shift amount.
checkVectorShift(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)10925 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
10926                                  SourceLocation Loc, bool IsCompAssign) {
10927   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
10928   if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
10929       !LHS.get()->getType()->isVectorType()) {
10930     S.Diag(Loc, diag::err_shift_rhs_only_vector)
10931       << RHS.get()->getType() << LHS.get()->getType()
10932       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10933     return QualType();
10934   }
10935 
10936   if (!IsCompAssign) {
10937     LHS = S.UsualUnaryConversions(LHS.get());
10938     if (LHS.isInvalid()) return QualType();
10939   }
10940 
10941   RHS = S.UsualUnaryConversions(RHS.get());
10942   if (RHS.isInvalid()) return QualType();
10943 
10944   QualType LHSType = LHS.get()->getType();
10945   // Note that LHS might be a scalar because the routine calls not only in
10946   // OpenCL case.
10947   const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
10948   QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
10949 
10950   // Note that RHS might not be a vector.
10951   QualType RHSType = RHS.get()->getType();
10952   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
10953   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
10954 
10955   // The operands need to be integers.
10956   if (!LHSEleType->isIntegerType()) {
10957     S.Diag(Loc, diag::err_typecheck_expect_int)
10958       << LHS.get()->getType() << LHS.get()->getSourceRange();
10959     return QualType();
10960   }
10961 
10962   if (!RHSEleType->isIntegerType()) {
10963     S.Diag(Loc, diag::err_typecheck_expect_int)
10964       << RHS.get()->getType() << RHS.get()->getSourceRange();
10965     return QualType();
10966   }
10967 
10968   if (!LHSVecTy) {
10969     assert(RHSVecTy);
10970     if (IsCompAssign)
10971       return RHSType;
10972     if (LHSEleType != RHSEleType) {
10973       LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
10974       LHSEleType = RHSEleType;
10975     }
10976     QualType VecTy =
10977         S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
10978     LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
10979     LHSType = VecTy;
10980   } else if (RHSVecTy) {
10981     // OpenCL v1.1 s6.3.j says that for vector types, the operators
10982     // are applied component-wise. So if RHS is a vector, then ensure
10983     // that the number of elements is the same as LHS...
10984     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
10985       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
10986         << LHS.get()->getType() << RHS.get()->getType()
10987         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10988       return QualType();
10989     }
10990     if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
10991       const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
10992       const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
10993       if (LHSBT != RHSBT &&
10994           S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
10995         S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
10996             << LHS.get()->getType() << RHS.get()->getType()
10997             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10998       }
10999     }
11000   } else {
11001     // ...else expand RHS to match the number of elements in LHS.
11002     QualType VecTy =
11003       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
11004     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11005   }
11006 
11007   return LHSType;
11008 }
11009 
11010 // C99 6.5.7
CheckShiftOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc,bool IsCompAssign)11011 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
11012                                   SourceLocation Loc, BinaryOperatorKind Opc,
11013                                   bool IsCompAssign) {
11014   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11015 
11016   // Vector shifts promote their scalar inputs to vector type.
11017   if (LHS.get()->getType()->isVectorType() ||
11018       RHS.get()->getType()->isVectorType()) {
11019     if (LangOpts.ZVector) {
11020       // The shift operators for the z vector extensions work basically
11021       // like general shifts, except that neither the LHS nor the RHS is
11022       // allowed to be a "vector bool".
11023       if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
11024         if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
11025           return InvalidOperands(Loc, LHS, RHS);
11026       if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
11027         if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
11028           return InvalidOperands(Loc, LHS, RHS);
11029     }
11030     return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11031   }
11032 
11033   // Shifts don't perform usual arithmetic conversions, they just do integer
11034   // promotions on each operand. C99 6.5.7p3
11035 
11036   // For the LHS, do usual unary conversions, but then reset them away
11037   // if this is a compound assignment.
11038   ExprResult OldLHS = LHS;
11039   LHS = UsualUnaryConversions(LHS.get());
11040   if (LHS.isInvalid())
11041     return QualType();
11042   QualType LHSType = LHS.get()->getType();
11043   if (IsCompAssign) LHS = OldLHS;
11044 
11045   // The RHS is simpler.
11046   RHS = UsualUnaryConversions(RHS.get());
11047   if (RHS.isInvalid())
11048     return QualType();
11049   QualType RHSType = RHS.get()->getType();
11050 
11051   // C99 6.5.7p2: Each of the operands shall have integer type.
11052   // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
11053   if ((!LHSType->isFixedPointOrIntegerType() &&
11054        !LHSType->hasIntegerRepresentation()) ||
11055       !RHSType->hasIntegerRepresentation())
11056     return InvalidOperands(Loc, LHS, RHS);
11057 
11058   // C++0x: Don't allow scoped enums. FIXME: Use something better than
11059   // hasIntegerRepresentation() above instead of this.
11060   if (isScopedEnumerationType(LHSType) ||
11061       isScopedEnumerationType(RHSType)) {
11062     return InvalidOperands(Loc, LHS, RHS);
11063   }
11064   // Sanity-check shift operands
11065   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
11066 
11067   // "The type of the result is that of the promoted left operand."
11068   return LHSType;
11069 }
11070 
11071 /// Diagnose bad pointer comparisons.
diagnoseDistinctPointerComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)11072 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
11073                                               ExprResult &LHS, ExprResult &RHS,
11074                                               bool IsError) {
11075   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
11076                       : diag::ext_typecheck_comparison_of_distinct_pointers)
11077     << LHS.get()->getType() << RHS.get()->getType()
11078     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11079 }
11080 
11081 /// Returns false if the pointers are converted to a composite type,
11082 /// true otherwise.
convertPointersToCompositeType(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)11083 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
11084                                            ExprResult &LHS, ExprResult &RHS) {
11085   // C++ [expr.rel]p2:
11086   //   [...] Pointer conversions (4.10) and qualification
11087   //   conversions (4.4) are performed on pointer operands (or on
11088   //   a pointer operand and a null pointer constant) to bring
11089   //   them to their composite pointer type. [...]
11090   //
11091   // C++ [expr.eq]p1 uses the same notion for (in)equality
11092   // comparisons of pointers.
11093 
11094   QualType LHSType = LHS.get()->getType();
11095   QualType RHSType = RHS.get()->getType();
11096   assert(LHSType->isPointerType() || RHSType->isPointerType() ||
11097          LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
11098 
11099   QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
11100   if (T.isNull()) {
11101     if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
11102         (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
11103       diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
11104     else
11105       S.InvalidOperands(Loc, LHS, RHS);
11106     return true;
11107   }
11108 
11109   return false;
11110 }
11111 
diagnoseFunctionPointerToVoidComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)11112 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
11113                                                     ExprResult &LHS,
11114                                                     ExprResult &RHS,
11115                                                     bool IsError) {
11116   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
11117                       : diag::ext_typecheck_comparison_of_fptr_to_void)
11118     << LHS.get()->getType() << RHS.get()->getType()
11119     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11120 }
11121 
isObjCObjectLiteral(ExprResult & E)11122 static bool isObjCObjectLiteral(ExprResult &E) {
11123   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
11124   case Stmt::ObjCArrayLiteralClass:
11125   case Stmt::ObjCDictionaryLiteralClass:
11126   case Stmt::ObjCStringLiteralClass:
11127   case Stmt::ObjCBoxedExprClass:
11128     return true;
11129   default:
11130     // Note that ObjCBoolLiteral is NOT an object literal!
11131     return false;
11132   }
11133 }
11134 
hasIsEqualMethod(Sema & S,const Expr * LHS,const Expr * RHS)11135 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
11136   const ObjCObjectPointerType *Type =
11137     LHS->getType()->getAs<ObjCObjectPointerType>();
11138 
11139   // If this is not actually an Objective-C object, bail out.
11140   if (!Type)
11141     return false;
11142 
11143   // Get the LHS object's interface type.
11144   QualType InterfaceType = Type->getPointeeType();
11145 
11146   // If the RHS isn't an Objective-C object, bail out.
11147   if (!RHS->getType()->isObjCObjectPointerType())
11148     return false;
11149 
11150   // Try to find the -isEqual: method.
11151   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
11152   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
11153                                                       InterfaceType,
11154                                                       /*IsInstance=*/true);
11155   if (!Method) {
11156     if (Type->isObjCIdType()) {
11157       // For 'id', just check the global pool.
11158       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
11159                                                   /*receiverId=*/true);
11160     } else {
11161       // Check protocols.
11162       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
11163                                              /*IsInstance=*/true);
11164     }
11165   }
11166 
11167   if (!Method)
11168     return false;
11169 
11170   QualType T = Method->parameters()[0]->getType();
11171   if (!T->isObjCObjectPointerType())
11172     return false;
11173 
11174   QualType R = Method->getReturnType();
11175   if (!R->isScalarType())
11176     return false;
11177 
11178   return true;
11179 }
11180 
CheckLiteralKind(Expr * FromE)11181 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
11182   FromE = FromE->IgnoreParenImpCasts();
11183   switch (FromE->getStmtClass()) {
11184     default:
11185       break;
11186     case Stmt::ObjCStringLiteralClass:
11187       // "string literal"
11188       return LK_String;
11189     case Stmt::ObjCArrayLiteralClass:
11190       // "array literal"
11191       return LK_Array;
11192     case Stmt::ObjCDictionaryLiteralClass:
11193       // "dictionary literal"
11194       return LK_Dictionary;
11195     case Stmt::BlockExprClass:
11196       return LK_Block;
11197     case Stmt::ObjCBoxedExprClass: {
11198       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
11199       switch (Inner->getStmtClass()) {
11200         case Stmt::IntegerLiteralClass:
11201         case Stmt::FloatingLiteralClass:
11202         case Stmt::CharacterLiteralClass:
11203         case Stmt::ObjCBoolLiteralExprClass:
11204         case Stmt::CXXBoolLiteralExprClass:
11205           // "numeric literal"
11206           return LK_Numeric;
11207         case Stmt::ImplicitCastExprClass: {
11208           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
11209           // Boolean literals can be represented by implicit casts.
11210           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
11211             return LK_Numeric;
11212           break;
11213         }
11214         default:
11215           break;
11216       }
11217       return LK_Boxed;
11218     }
11219   }
11220   return LK_None;
11221 }
11222 
diagnoseObjCLiteralComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,BinaryOperator::Opcode Opc)11223 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
11224                                           ExprResult &LHS, ExprResult &RHS,
11225                                           BinaryOperator::Opcode Opc){
11226   Expr *Literal;
11227   Expr *Other;
11228   if (isObjCObjectLiteral(LHS)) {
11229     Literal = LHS.get();
11230     Other = RHS.get();
11231   } else {
11232     Literal = RHS.get();
11233     Other = LHS.get();
11234   }
11235 
11236   // Don't warn on comparisons against nil.
11237   Other = Other->IgnoreParenCasts();
11238   if (Other->isNullPointerConstant(S.getASTContext(),
11239                                    Expr::NPC_ValueDependentIsNotNull))
11240     return;
11241 
11242   // This should be kept in sync with warn_objc_literal_comparison.
11243   // LK_String should always be after the other literals, since it has its own
11244   // warning flag.
11245   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
11246   assert(LiteralKind != Sema::LK_Block);
11247   if (LiteralKind == Sema::LK_None) {
11248     llvm_unreachable("Unknown Objective-C object literal kind");
11249   }
11250 
11251   if (LiteralKind == Sema::LK_String)
11252     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
11253       << Literal->getSourceRange();
11254   else
11255     S.Diag(Loc, diag::warn_objc_literal_comparison)
11256       << LiteralKind << Literal->getSourceRange();
11257 
11258   if (BinaryOperator::isEqualityOp(Opc) &&
11259       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
11260     SourceLocation Start = LHS.get()->getBeginLoc();
11261     SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
11262     CharSourceRange OpRange =
11263       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
11264 
11265     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
11266       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
11267       << FixItHint::CreateReplacement(OpRange, " isEqual:")
11268       << FixItHint::CreateInsertion(End, "]");
11269   }
11270 }
11271 
11272 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
diagnoseLogicalNotOnLHSofCheck(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)11273 static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
11274                                            ExprResult &RHS, SourceLocation Loc,
11275                                            BinaryOperatorKind Opc) {
11276   // Check that left hand side is !something.
11277   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
11278   if (!UO || UO->getOpcode() != UO_LNot) return;
11279 
11280   // Only check if the right hand side is non-bool arithmetic type.
11281   if (RHS.get()->isKnownToHaveBooleanValue()) return;
11282 
11283   // Make sure that the something in !something is not bool.
11284   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
11285   if (SubExpr->isKnownToHaveBooleanValue()) return;
11286 
11287   // Emit warning.
11288   bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
11289   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
11290       << Loc << IsBitwiseOp;
11291 
11292   // First note suggest !(x < y)
11293   SourceLocation FirstOpen = SubExpr->getBeginLoc();
11294   SourceLocation FirstClose = RHS.get()->getEndLoc();
11295   FirstClose = S.getLocForEndOfToken(FirstClose);
11296   if (FirstClose.isInvalid())
11297     FirstOpen = SourceLocation();
11298   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
11299       << IsBitwiseOp
11300       << FixItHint::CreateInsertion(FirstOpen, "(")
11301       << FixItHint::CreateInsertion(FirstClose, ")");
11302 
11303   // Second note suggests (!x) < y
11304   SourceLocation SecondOpen = LHS.get()->getBeginLoc();
11305   SourceLocation SecondClose = LHS.get()->getEndLoc();
11306   SecondClose = S.getLocForEndOfToken(SecondClose);
11307   if (SecondClose.isInvalid())
11308     SecondOpen = SourceLocation();
11309   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
11310       << FixItHint::CreateInsertion(SecondOpen, "(")
11311       << FixItHint::CreateInsertion(SecondClose, ")");
11312 }
11313 
11314 // Returns true if E refers to a non-weak array.
checkForArray(const Expr * E)11315 static bool checkForArray(const Expr *E) {
11316   const ValueDecl *D = nullptr;
11317   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
11318     D = DR->getDecl();
11319   } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
11320     if (Mem->isImplicitAccess())
11321       D = Mem->getMemberDecl();
11322   }
11323   if (!D)
11324     return false;
11325   return D->getType()->isArrayType() && !D->isWeak();
11326 }
11327 
11328 /// Diagnose some forms of syntactically-obvious tautological comparison.
diagnoseTautologicalComparison(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS,BinaryOperatorKind Opc)11329 static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
11330                                            Expr *LHS, Expr *RHS,
11331                                            BinaryOperatorKind Opc) {
11332   Expr *LHSStripped = LHS->IgnoreParenImpCasts();
11333   Expr *RHSStripped = RHS->IgnoreParenImpCasts();
11334 
11335   QualType LHSType = LHS->getType();
11336   QualType RHSType = RHS->getType();
11337   if (LHSType->hasFloatingRepresentation() ||
11338       (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
11339       S.inTemplateInstantiation())
11340     return;
11341 
11342   // Comparisons between two array types are ill-formed for operator<=>, so
11343   // we shouldn't emit any additional warnings about it.
11344   if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
11345     return;
11346 
11347   // For non-floating point types, check for self-comparisons of the form
11348   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
11349   // often indicate logic errors in the program.
11350   //
11351   // NOTE: Don't warn about comparison expressions resulting from macro
11352   // expansion. Also don't warn about comparisons which are only self
11353   // comparisons within a template instantiation. The warnings should catch
11354   // obvious cases in the definition of the template anyways. The idea is to
11355   // warn when the typed comparison operator will always evaluate to the same
11356   // result.
11357 
11358   // Used for indexing into %select in warn_comparison_always
11359   enum {
11360     AlwaysConstant,
11361     AlwaysTrue,
11362     AlwaysFalse,
11363     AlwaysEqual, // std::strong_ordering::equal from operator<=>
11364   };
11365 
11366   // C++2a [depr.array.comp]:
11367   //   Equality and relational comparisons ([expr.eq], [expr.rel]) between two
11368   //   operands of array type are deprecated.
11369   if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
11370       RHSStripped->getType()->isArrayType()) {
11371     S.Diag(Loc, diag::warn_depr_array_comparison)
11372         << LHS->getSourceRange() << RHS->getSourceRange()
11373         << LHSStripped->getType() << RHSStripped->getType();
11374     // Carry on to produce the tautological comparison warning, if this
11375     // expression is potentially-evaluated, we can resolve the array to a
11376     // non-weak declaration, and so on.
11377   }
11378 
11379   if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
11380     if (Expr::isSameComparisonOperand(LHS, RHS)) {
11381       unsigned Result;
11382       switch (Opc) {
11383       case BO_EQ:
11384       case BO_LE:
11385       case BO_GE:
11386         Result = AlwaysTrue;
11387         break;
11388       case BO_NE:
11389       case BO_LT:
11390       case BO_GT:
11391         Result = AlwaysFalse;
11392         break;
11393       case BO_Cmp:
11394         Result = AlwaysEqual;
11395         break;
11396       default:
11397         Result = AlwaysConstant;
11398         break;
11399       }
11400       S.DiagRuntimeBehavior(Loc, nullptr,
11401                             S.PDiag(diag::warn_comparison_always)
11402                                 << 0 /*self-comparison*/
11403                                 << Result);
11404     } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
11405       // What is it always going to evaluate to?
11406       unsigned Result;
11407       switch (Opc) {
11408       case BO_EQ: // e.g. array1 == array2
11409         Result = AlwaysFalse;
11410         break;
11411       case BO_NE: // e.g. array1 != array2
11412         Result = AlwaysTrue;
11413         break;
11414       default: // e.g. array1 <= array2
11415         // The best we can say is 'a constant'
11416         Result = AlwaysConstant;
11417         break;
11418       }
11419       S.DiagRuntimeBehavior(Loc, nullptr,
11420                             S.PDiag(diag::warn_comparison_always)
11421                                 << 1 /*array comparison*/
11422                                 << Result);
11423     }
11424   }
11425 
11426   if (isa<CastExpr>(LHSStripped))
11427     LHSStripped = LHSStripped->IgnoreParenCasts();
11428   if (isa<CastExpr>(RHSStripped))
11429     RHSStripped = RHSStripped->IgnoreParenCasts();
11430 
11431   // Warn about comparisons against a string constant (unless the other
11432   // operand is null); the user probably wants string comparison function.
11433   Expr *LiteralString = nullptr;
11434   Expr *LiteralStringStripped = nullptr;
11435   if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
11436       !RHSStripped->isNullPointerConstant(S.Context,
11437                                           Expr::NPC_ValueDependentIsNull)) {
11438     LiteralString = LHS;
11439     LiteralStringStripped = LHSStripped;
11440   } else if ((isa<StringLiteral>(RHSStripped) ||
11441               isa<ObjCEncodeExpr>(RHSStripped)) &&
11442              !LHSStripped->isNullPointerConstant(S.Context,
11443                                           Expr::NPC_ValueDependentIsNull)) {
11444     LiteralString = RHS;
11445     LiteralStringStripped = RHSStripped;
11446   }
11447 
11448   if (LiteralString) {
11449     S.DiagRuntimeBehavior(Loc, nullptr,
11450                           S.PDiag(diag::warn_stringcompare)
11451                               << isa<ObjCEncodeExpr>(LiteralStringStripped)
11452                               << LiteralString->getSourceRange());
11453   }
11454 }
11455 
castKindToImplicitConversionKind(CastKind CK)11456 static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
11457   switch (CK) {
11458   default: {
11459 #ifndef NDEBUG
11460     llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
11461                  << "\n";
11462 #endif
11463     llvm_unreachable("unhandled cast kind");
11464   }
11465   case CK_UserDefinedConversion:
11466     return ICK_Identity;
11467   case CK_LValueToRValue:
11468     return ICK_Lvalue_To_Rvalue;
11469   case CK_ArrayToPointerDecay:
11470     return ICK_Array_To_Pointer;
11471   case CK_FunctionToPointerDecay:
11472     return ICK_Function_To_Pointer;
11473   case CK_IntegralCast:
11474     return ICK_Integral_Conversion;
11475   case CK_FloatingCast:
11476     return ICK_Floating_Conversion;
11477   case CK_IntegralToFloating:
11478   case CK_FloatingToIntegral:
11479     return ICK_Floating_Integral;
11480   case CK_IntegralComplexCast:
11481   case CK_FloatingComplexCast:
11482   case CK_FloatingComplexToIntegralComplex:
11483   case CK_IntegralComplexToFloatingComplex:
11484     return ICK_Complex_Conversion;
11485   case CK_FloatingComplexToReal:
11486   case CK_FloatingRealToComplex:
11487   case CK_IntegralComplexToReal:
11488   case CK_IntegralRealToComplex:
11489     return ICK_Complex_Real;
11490   }
11491 }
11492 
checkThreeWayNarrowingConversion(Sema & S,QualType ToType,Expr * E,QualType FromType,SourceLocation Loc)11493 static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
11494                                              QualType FromType,
11495                                              SourceLocation Loc) {
11496   // Check for a narrowing implicit conversion.
11497   StandardConversionSequence SCS;
11498   SCS.setAsIdentityConversion();
11499   SCS.setToType(0, FromType);
11500   SCS.setToType(1, ToType);
11501   if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
11502     SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
11503 
11504   APValue PreNarrowingValue;
11505   QualType PreNarrowingType;
11506   switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
11507                                PreNarrowingType,
11508                                /*IgnoreFloatToIntegralConversion*/ true)) {
11509   case NK_Dependent_Narrowing:
11510     // Implicit conversion to a narrower type, but the expression is
11511     // value-dependent so we can't tell whether it's actually narrowing.
11512   case NK_Not_Narrowing:
11513     return false;
11514 
11515   case NK_Constant_Narrowing:
11516     // Implicit conversion to a narrower type, and the value is not a constant
11517     // expression.
11518     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11519         << /*Constant*/ 1
11520         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
11521     return true;
11522 
11523   case NK_Variable_Narrowing:
11524     // Implicit conversion to a narrower type, and the value is not a constant
11525     // expression.
11526   case NK_Type_Narrowing:
11527     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11528         << /*Constant*/ 0 << FromType << ToType;
11529     // TODO: It's not a constant expression, but what if the user intended it
11530     // to be? Can we produce notes to help them figure out why it isn't?
11531     return true;
11532   }
11533   llvm_unreachable("unhandled case in switch");
11534 }
11535 
checkArithmeticOrEnumeralThreeWayCompare(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)11536 static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
11537                                                          ExprResult &LHS,
11538                                                          ExprResult &RHS,
11539                                                          SourceLocation Loc) {
11540   QualType LHSType = LHS.get()->getType();
11541   QualType RHSType = RHS.get()->getType();
11542   // Dig out the original argument type and expression before implicit casts
11543   // were applied. These are the types/expressions we need to check the
11544   // [expr.spaceship] requirements against.
11545   ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
11546   ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
11547   QualType LHSStrippedType = LHSStripped.get()->getType();
11548   QualType RHSStrippedType = RHSStripped.get()->getType();
11549 
11550   // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
11551   // other is not, the program is ill-formed.
11552   if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
11553     S.InvalidOperands(Loc, LHSStripped, RHSStripped);
11554     return QualType();
11555   }
11556 
11557   // FIXME: Consider combining this with checkEnumArithmeticConversions.
11558   int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
11559                     RHSStrippedType->isEnumeralType();
11560   if (NumEnumArgs == 1) {
11561     bool LHSIsEnum = LHSStrippedType->isEnumeralType();
11562     QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
11563     if (OtherTy->hasFloatingRepresentation()) {
11564       S.InvalidOperands(Loc, LHSStripped, RHSStripped);
11565       return QualType();
11566     }
11567   }
11568   if (NumEnumArgs == 2) {
11569     // C++2a [expr.spaceship]p5: If both operands have the same enumeration
11570     // type E, the operator yields the result of converting the operands
11571     // to the underlying type of E and applying <=> to the converted operands.
11572     if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
11573       S.InvalidOperands(Loc, LHS, RHS);
11574       return QualType();
11575     }
11576     QualType IntType =
11577         LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
11578     assert(IntType->isArithmeticType());
11579 
11580     // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
11581     // promote the boolean type, and all other promotable integer types, to
11582     // avoid this.
11583     if (IntType->isPromotableIntegerType())
11584       IntType = S.Context.getPromotedIntegerType(IntType);
11585 
11586     LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
11587     RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
11588     LHSType = RHSType = IntType;
11589   }
11590 
11591   // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
11592   // usual arithmetic conversions are applied to the operands.
11593   QualType Type =
11594       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
11595   if (LHS.isInvalid() || RHS.isInvalid())
11596     return QualType();
11597   if (Type.isNull())
11598     return S.InvalidOperands(Loc, LHS, RHS);
11599 
11600   Optional<ComparisonCategoryType> CCT =
11601       getComparisonCategoryForBuiltinCmp(Type);
11602   if (!CCT)
11603     return S.InvalidOperands(Loc, LHS, RHS);
11604 
11605   bool HasNarrowing = checkThreeWayNarrowingConversion(
11606       S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
11607   HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
11608                                                    RHS.get()->getBeginLoc());
11609   if (HasNarrowing)
11610     return QualType();
11611 
11612   assert(!Type.isNull() && "composite type for <=> has not been set");
11613 
11614   return S.CheckComparisonCategoryType(
11615       *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
11616 }
11617 
checkArithmeticOrEnumeralCompare(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)11618 static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
11619                                                  ExprResult &RHS,
11620                                                  SourceLocation Loc,
11621                                                  BinaryOperatorKind Opc) {
11622   if (Opc == BO_Cmp)
11623     return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
11624 
11625   // C99 6.5.8p3 / C99 6.5.9p4
11626   QualType Type =
11627       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
11628   if (LHS.isInvalid() || RHS.isInvalid())
11629     return QualType();
11630   if (Type.isNull())
11631     return S.InvalidOperands(Loc, LHS, RHS);
11632   assert(Type->isArithmeticType() || Type->isEnumeralType());
11633 
11634   if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
11635     return S.InvalidOperands(Loc, LHS, RHS);
11636 
11637   // Check for comparisons of floating point operands using != and ==.
11638   if (Type->hasFloatingRepresentation() && BinaryOperator::isEqualityOp(Opc))
11639     S.CheckFloatComparison(Loc, LHS.get(), RHS.get());
11640 
11641   // The result of comparisons is 'bool' in C++, 'int' in C.
11642   return S.Context.getLogicalOperationType();
11643 }
11644 
CheckPtrComparisonWithNullChar(ExprResult & E,ExprResult & NullE)11645 void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
11646   if (!NullE.get()->getType()->isAnyPointerType())
11647     return;
11648   int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
11649   if (!E.get()->getType()->isAnyPointerType() &&
11650       E.get()->isNullPointerConstant(Context,
11651                                      Expr::NPC_ValueDependentIsNotNull) ==
11652         Expr::NPCK_ZeroExpression) {
11653     if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
11654       if (CL->getValue() == 0)
11655         Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
11656             << NullValue
11657             << FixItHint::CreateReplacement(E.get()->getExprLoc(),
11658                                             NullValue ? "NULL" : "(void *)0");
11659     } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
11660         TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
11661         QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
11662         if (T == Context.CharTy)
11663           Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
11664               << NullValue
11665               << FixItHint::CreateReplacement(E.get()->getExprLoc(),
11666                                               NullValue ? "NULL" : "(void *)0");
11667       }
11668   }
11669 }
11670 
11671 // C99 6.5.8, C++ [expr.rel]
CheckCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)11672 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
11673                                     SourceLocation Loc,
11674                                     BinaryOperatorKind Opc) {
11675   bool IsRelational = BinaryOperator::isRelationalOp(Opc);
11676   bool IsThreeWay = Opc == BO_Cmp;
11677   bool IsOrdered = IsRelational || IsThreeWay;
11678   auto IsAnyPointerType = [](ExprResult E) {
11679     QualType Ty = E.get()->getType();
11680     return Ty->isPointerType() || Ty->isMemberPointerType();
11681   };
11682 
11683   // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
11684   // type, array-to-pointer, ..., conversions are performed on both operands to
11685   // bring them to their composite type.
11686   // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
11687   // any type-related checks.
11688   if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
11689     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
11690     if (LHS.isInvalid())
11691       return QualType();
11692     RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
11693     if (RHS.isInvalid())
11694       return QualType();
11695   } else {
11696     LHS = DefaultLvalueConversion(LHS.get());
11697     if (LHS.isInvalid())
11698       return QualType();
11699     RHS = DefaultLvalueConversion(RHS.get());
11700     if (RHS.isInvalid())
11701       return QualType();
11702   }
11703 
11704   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
11705   if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
11706     CheckPtrComparisonWithNullChar(LHS, RHS);
11707     CheckPtrComparisonWithNullChar(RHS, LHS);
11708   }
11709 
11710   // Handle vector comparisons separately.
11711   if (LHS.get()->getType()->isVectorType() ||
11712       RHS.get()->getType()->isVectorType())
11713     return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
11714 
11715   diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
11716   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
11717 
11718   QualType LHSType = LHS.get()->getType();
11719   QualType RHSType = RHS.get()->getType();
11720   if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
11721       (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
11722     return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
11723 
11724   const Expr::NullPointerConstantKind LHSNullKind =
11725       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
11726   const Expr::NullPointerConstantKind RHSNullKind =
11727       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
11728   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
11729   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
11730 
11731   auto computeResultTy = [&]() {
11732     if (Opc != BO_Cmp)
11733       return Context.getLogicalOperationType();
11734     assert(getLangOpts().CPlusPlus);
11735     assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
11736 
11737     QualType CompositeTy = LHS.get()->getType();
11738     assert(!CompositeTy->isReferenceType());
11739 
11740     Optional<ComparisonCategoryType> CCT =
11741         getComparisonCategoryForBuiltinCmp(CompositeTy);
11742     if (!CCT)
11743       return InvalidOperands(Loc, LHS, RHS);
11744 
11745     if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
11746       // P0946R0: Comparisons between a null pointer constant and an object
11747       // pointer result in std::strong_equality, which is ill-formed under
11748       // P1959R0.
11749       Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
11750           << (LHSIsNull ? LHS.get()->getSourceRange()
11751                         : RHS.get()->getSourceRange());
11752       return QualType();
11753     }
11754 
11755     return CheckComparisonCategoryType(
11756         *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
11757   };
11758 
11759   if (!IsOrdered && LHSIsNull != RHSIsNull) {
11760     bool IsEquality = Opc == BO_EQ;
11761     if (RHSIsNull)
11762       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
11763                                    RHS.get()->getSourceRange());
11764     else
11765       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
11766                                    LHS.get()->getSourceRange());
11767   }
11768 
11769   if ((LHSType->isIntegerType() && !LHSIsNull) ||
11770       (RHSType->isIntegerType() && !RHSIsNull)) {
11771     // Skip normal pointer conversion checks in this case; we have better
11772     // diagnostics for this below.
11773   } else if (getLangOpts().CPlusPlus) {
11774     // Equality comparison of a function pointer to a void pointer is invalid,
11775     // but we allow it as an extension.
11776     // FIXME: If we really want to allow this, should it be part of composite
11777     // pointer type computation so it works in conditionals too?
11778     if (!IsOrdered &&
11779         ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
11780          (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
11781       // This is a gcc extension compatibility comparison.
11782       // In a SFINAE context, we treat this as a hard error to maintain
11783       // conformance with the C++ standard.
11784       diagnoseFunctionPointerToVoidComparison(
11785           *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
11786 
11787       if (isSFINAEContext())
11788         return QualType();
11789 
11790       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11791       return computeResultTy();
11792     }
11793 
11794     // C++ [expr.eq]p2:
11795     //   If at least one operand is a pointer [...] bring them to their
11796     //   composite pointer type.
11797     // C++ [expr.spaceship]p6
11798     //  If at least one of the operands is of pointer type, [...] bring them
11799     //  to their composite pointer type.
11800     // C++ [expr.rel]p2:
11801     //   If both operands are pointers, [...] bring them to their composite
11802     //   pointer type.
11803     // For <=>, the only valid non-pointer types are arrays and functions, and
11804     // we already decayed those, so this is really the same as the relational
11805     // comparison rule.
11806     if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
11807             (IsOrdered ? 2 : 1) &&
11808         (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
11809                                          RHSType->isObjCObjectPointerType()))) {
11810       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
11811         return QualType();
11812       return computeResultTy();
11813     }
11814   } else if (LHSType->isPointerType() &&
11815              RHSType->isPointerType()) { // C99 6.5.8p2
11816     // All of the following pointer-related warnings are GCC extensions, except
11817     // when handling null pointer constants.
11818     QualType LCanPointeeTy =
11819       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
11820     QualType RCanPointeeTy =
11821       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
11822 
11823     // C99 6.5.9p2 and C99 6.5.8p2
11824     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
11825                                    RCanPointeeTy.getUnqualifiedType())) {
11826       if (IsRelational) {
11827         // Pointers both need to point to complete or incomplete types
11828         if ((LCanPointeeTy->isIncompleteType() !=
11829              RCanPointeeTy->isIncompleteType()) &&
11830             !getLangOpts().C11) {
11831           Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
11832               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
11833               << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
11834               << RCanPointeeTy->isIncompleteType();
11835         }
11836         if (LCanPointeeTy->isFunctionType()) {
11837           // Valid unless a relational comparison of function pointers
11838           Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
11839               << LHSType << RHSType << LHS.get()->getSourceRange()
11840               << RHS.get()->getSourceRange();
11841         }
11842       }
11843     } else if (!IsRelational &&
11844                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
11845       // Valid unless comparison between non-null pointer and function pointer
11846       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
11847           && !LHSIsNull && !RHSIsNull)
11848         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
11849                                                 /*isError*/false);
11850     } else {
11851       // Invalid
11852       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
11853     }
11854     if (LCanPointeeTy != RCanPointeeTy) {
11855       // Treat NULL constant as a special case in OpenCL.
11856       if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
11857         if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
11858           Diag(Loc,
11859                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
11860               << LHSType << RHSType << 0 /* comparison */
11861               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11862         }
11863       }
11864       LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
11865       LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
11866       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
11867                                                : CK_BitCast;
11868       if (LHSIsNull && !RHSIsNull)
11869         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
11870       else
11871         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
11872     }
11873     return computeResultTy();
11874   }
11875 
11876   if (getLangOpts().CPlusPlus) {
11877     // C++ [expr.eq]p4:
11878     //   Two operands of type std::nullptr_t or one operand of type
11879     //   std::nullptr_t and the other a null pointer constant compare equal.
11880     if (!IsOrdered && LHSIsNull && RHSIsNull) {
11881       if (LHSType->isNullPtrType()) {
11882         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11883         return computeResultTy();
11884       }
11885       if (RHSType->isNullPtrType()) {
11886         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11887         return computeResultTy();
11888       }
11889     }
11890 
11891     // Comparison of Objective-C pointers and block pointers against nullptr_t.
11892     // These aren't covered by the composite pointer type rules.
11893     if (!IsOrdered && RHSType->isNullPtrType() &&
11894         (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
11895       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11896       return computeResultTy();
11897     }
11898     if (!IsOrdered && LHSType->isNullPtrType() &&
11899         (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
11900       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11901       return computeResultTy();
11902     }
11903 
11904     if (IsRelational &&
11905         ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
11906          (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
11907       // HACK: Relational comparison of nullptr_t against a pointer type is
11908       // invalid per DR583, but we allow it within std::less<> and friends,
11909       // since otherwise common uses of it break.
11910       // FIXME: Consider removing this hack once LWG fixes std::less<> and
11911       // friends to have std::nullptr_t overload candidates.
11912       DeclContext *DC = CurContext;
11913       if (isa<FunctionDecl>(DC))
11914         DC = DC->getParent();
11915       if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
11916         if (CTSD->isInStdNamespace() &&
11917             llvm::StringSwitch<bool>(CTSD->getName())
11918                 .Cases("less", "less_equal", "greater", "greater_equal", true)
11919                 .Default(false)) {
11920           if (RHSType->isNullPtrType())
11921             RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11922           else
11923             LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11924           return computeResultTy();
11925         }
11926       }
11927     }
11928 
11929     // C++ [expr.eq]p2:
11930     //   If at least one operand is a pointer to member, [...] bring them to
11931     //   their composite pointer type.
11932     if (!IsOrdered &&
11933         (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
11934       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
11935         return QualType();
11936       else
11937         return computeResultTy();
11938     }
11939   }
11940 
11941   // Handle block pointer types.
11942   if (!IsOrdered && LHSType->isBlockPointerType() &&
11943       RHSType->isBlockPointerType()) {
11944     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
11945     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
11946 
11947     if (!LHSIsNull && !RHSIsNull &&
11948         !Context.typesAreCompatible(lpointee, rpointee)) {
11949       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
11950         << LHSType << RHSType << LHS.get()->getSourceRange()
11951         << RHS.get()->getSourceRange();
11952     }
11953     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11954     return computeResultTy();
11955   }
11956 
11957   // Allow block pointers to be compared with null pointer constants.
11958   if (!IsOrdered
11959       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
11960           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
11961     if (!LHSIsNull && !RHSIsNull) {
11962       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
11963              ->getPointeeType()->isVoidType())
11964             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
11965                 ->getPointeeType()->isVoidType())))
11966         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
11967           << LHSType << RHSType << LHS.get()->getSourceRange()
11968           << RHS.get()->getSourceRange();
11969     }
11970     if (LHSIsNull && !RHSIsNull)
11971       LHS = ImpCastExprToType(LHS.get(), RHSType,
11972                               RHSType->isPointerType() ? CK_BitCast
11973                                 : CK_AnyPointerToBlockPointerCast);
11974     else
11975       RHS = ImpCastExprToType(RHS.get(), LHSType,
11976                               LHSType->isPointerType() ? CK_BitCast
11977                                 : CK_AnyPointerToBlockPointerCast);
11978     return computeResultTy();
11979   }
11980 
11981   if (LHSType->isObjCObjectPointerType() ||
11982       RHSType->isObjCObjectPointerType()) {
11983     const PointerType *LPT = LHSType->getAs<PointerType>();
11984     const PointerType *RPT = RHSType->getAs<PointerType>();
11985     if (LPT || RPT) {
11986       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
11987       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
11988 
11989       if (!LPtrToVoid && !RPtrToVoid &&
11990           !Context.typesAreCompatible(LHSType, RHSType)) {
11991         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
11992                                           /*isError*/false);
11993       }
11994       // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
11995       // the RHS, but we have test coverage for this behavior.
11996       // FIXME: Consider using convertPointersToCompositeType in C++.
11997       if (LHSIsNull && !RHSIsNull) {
11998         Expr *E = LHS.get();
11999         if (getLangOpts().ObjCAutoRefCount)
12000           CheckObjCConversion(SourceRange(), RHSType, E,
12001                               CCK_ImplicitConversion);
12002         LHS = ImpCastExprToType(E, RHSType,
12003                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12004       }
12005       else {
12006         Expr *E = RHS.get();
12007         if (getLangOpts().ObjCAutoRefCount)
12008           CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
12009                               /*Diagnose=*/true,
12010                               /*DiagnoseCFAudited=*/false, Opc);
12011         RHS = ImpCastExprToType(E, LHSType,
12012                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12013       }
12014       return computeResultTy();
12015     }
12016     if (LHSType->isObjCObjectPointerType() &&
12017         RHSType->isObjCObjectPointerType()) {
12018       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
12019         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12020                                           /*isError*/false);
12021       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
12022         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
12023 
12024       if (LHSIsNull && !RHSIsNull)
12025         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
12026       else
12027         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12028       return computeResultTy();
12029     }
12030 
12031     if (!IsOrdered && LHSType->isBlockPointerType() &&
12032         RHSType->isBlockCompatibleObjCPointerType(Context)) {
12033       LHS = ImpCastExprToType(LHS.get(), RHSType,
12034                               CK_BlockPointerToObjCPointerCast);
12035       return computeResultTy();
12036     } else if (!IsOrdered &&
12037                LHSType->isBlockCompatibleObjCPointerType(Context) &&
12038                RHSType->isBlockPointerType()) {
12039       RHS = ImpCastExprToType(RHS.get(), LHSType,
12040                               CK_BlockPointerToObjCPointerCast);
12041       return computeResultTy();
12042     }
12043   }
12044   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
12045       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
12046     unsigned DiagID = 0;
12047     bool isError = false;
12048     if (LangOpts.DebuggerSupport) {
12049       // Under a debugger, allow the comparison of pointers to integers,
12050       // since users tend to want to compare addresses.
12051     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
12052                (RHSIsNull && RHSType->isIntegerType())) {
12053       if (IsOrdered) {
12054         isError = getLangOpts().CPlusPlus;
12055         DiagID =
12056           isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
12057                   : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
12058       }
12059     } else if (getLangOpts().CPlusPlus) {
12060       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
12061       isError = true;
12062     } else if (IsOrdered)
12063       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
12064     else
12065       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
12066 
12067     if (DiagID) {
12068       Diag(Loc, DiagID)
12069         << LHSType << RHSType << LHS.get()->getSourceRange()
12070         << RHS.get()->getSourceRange();
12071       if (isError)
12072         return QualType();
12073     }
12074 
12075     if (LHSType->isIntegerType())
12076       LHS = ImpCastExprToType(LHS.get(), RHSType,
12077                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12078     else
12079       RHS = ImpCastExprToType(RHS.get(), LHSType,
12080                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12081     return computeResultTy();
12082   }
12083 
12084   // Handle block pointers.
12085   if (!IsOrdered && RHSIsNull
12086       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
12087     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12088     return computeResultTy();
12089   }
12090   if (!IsOrdered && LHSIsNull
12091       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
12092     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12093     return computeResultTy();
12094   }
12095 
12096   if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
12097     if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
12098       return computeResultTy();
12099     }
12100 
12101     if (LHSType->isQueueT() && RHSType->isQueueT()) {
12102       return computeResultTy();
12103     }
12104 
12105     if (LHSIsNull && RHSType->isQueueT()) {
12106       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12107       return computeResultTy();
12108     }
12109 
12110     if (LHSType->isQueueT() && RHSIsNull) {
12111       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12112       return computeResultTy();
12113     }
12114   }
12115 
12116   return InvalidOperands(Loc, LHS, RHS);
12117 }
12118 
12119 // Return a signed ext_vector_type that is of identical size and number of
12120 // elements. For floating point vectors, return an integer type of identical
12121 // size and number of elements. In the non ext_vector_type case, search from
12122 // the largest type to the smallest type to avoid cases where long long == long,
12123 // where long gets picked over long long.
GetSignedVectorType(QualType V)12124 QualType Sema::GetSignedVectorType(QualType V) {
12125   const VectorType *VTy = V->castAs<VectorType>();
12126   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
12127 
12128   if (isa<ExtVectorType>(VTy)) {
12129     if (TypeSize == Context.getTypeSize(Context.CharTy))
12130       return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
12131     else if (TypeSize == Context.getTypeSize(Context.ShortTy))
12132       return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
12133     else if (TypeSize == Context.getTypeSize(Context.IntTy))
12134       return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
12135     else if (TypeSize == Context.getTypeSize(Context.LongTy))
12136       return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
12137     assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
12138            "Unhandled vector element size in vector compare");
12139     return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
12140   }
12141 
12142   if (TypeSize == Context.getTypeSize(Context.LongLongTy))
12143     return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
12144                                  VectorType::GenericVector);
12145   else if (TypeSize == Context.getTypeSize(Context.LongTy))
12146     return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
12147                                  VectorType::GenericVector);
12148   else if (TypeSize == Context.getTypeSize(Context.IntTy))
12149     return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
12150                                  VectorType::GenericVector);
12151   else if (TypeSize == Context.getTypeSize(Context.ShortTy))
12152     return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
12153                                  VectorType::GenericVector);
12154   assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
12155          "Unhandled vector element size in vector compare");
12156   return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
12157                                VectorType::GenericVector);
12158 }
12159 
12160 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
12161 /// operates on extended vector types.  Instead of producing an IntTy result,
12162 /// like a scalar comparison, a vector comparison produces a vector of integer
12163 /// types.
CheckVectorCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)12164 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
12165                                           SourceLocation Loc,
12166                                           BinaryOperatorKind Opc) {
12167   if (Opc == BO_Cmp) {
12168     Diag(Loc, diag::err_three_way_vector_comparison);
12169     return QualType();
12170   }
12171 
12172   // Check to make sure we're operating on vectors of the same type and width,
12173   // Allowing one side to be a scalar of element type.
12174   QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
12175                               /*AllowBothBool*/true,
12176                               /*AllowBoolConversions*/getLangOpts().ZVector);
12177   if (vType.isNull())
12178     return vType;
12179 
12180   QualType LHSType = LHS.get()->getType();
12181 
12182   // If AltiVec, the comparison results in a numeric type, i.e.
12183   // bool for C++, int for C
12184   if (getLangOpts().AltiVec &&
12185       vType->castAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
12186     return Context.getLogicalOperationType();
12187 
12188   // For non-floating point types, check for self-comparisons of the form
12189   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
12190   // often indicate logic errors in the program.
12191   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12192 
12193   // Check for comparisons of floating point operands using != and ==.
12194   if (BinaryOperator::isEqualityOp(Opc) &&
12195       LHSType->hasFloatingRepresentation()) {
12196     assert(RHS.get()->getType()->hasFloatingRepresentation());
12197     CheckFloatComparison(Loc, LHS.get(), RHS.get());
12198   }
12199 
12200   // Return a signed type for the vector.
12201   return GetSignedVectorType(vType);
12202 }
12203 
diagnoseXorMisusedAsPow(Sema & S,const ExprResult & XorLHS,const ExprResult & XorRHS,const SourceLocation Loc)12204 static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
12205                                     const ExprResult &XorRHS,
12206                                     const SourceLocation Loc) {
12207   // Do not diagnose macros.
12208   if (Loc.isMacroID())
12209     return;
12210 
12211   // Do not diagnose if both LHS and RHS are macros.
12212   if (XorLHS.get()->getExprLoc().isMacroID() &&
12213       XorRHS.get()->getExprLoc().isMacroID())
12214     return;
12215 
12216   bool Negative = false;
12217   bool ExplicitPlus = false;
12218   const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
12219   const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
12220 
12221   if (!LHSInt)
12222     return;
12223   if (!RHSInt) {
12224     // Check negative literals.
12225     if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
12226       UnaryOperatorKind Opc = UO->getOpcode();
12227       if (Opc != UO_Minus && Opc != UO_Plus)
12228         return;
12229       RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
12230       if (!RHSInt)
12231         return;
12232       Negative = (Opc == UO_Minus);
12233       ExplicitPlus = !Negative;
12234     } else {
12235       return;
12236     }
12237   }
12238 
12239   const llvm::APInt &LeftSideValue = LHSInt->getValue();
12240   llvm::APInt RightSideValue = RHSInt->getValue();
12241   if (LeftSideValue != 2 && LeftSideValue != 10)
12242     return;
12243 
12244   if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
12245     return;
12246 
12247   CharSourceRange ExprRange = CharSourceRange::getCharRange(
12248       LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
12249   llvm::StringRef ExprStr =
12250       Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
12251 
12252   CharSourceRange XorRange =
12253       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
12254   llvm::StringRef XorStr =
12255       Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
12256   // Do not diagnose if xor keyword/macro is used.
12257   if (XorStr == "xor")
12258     return;
12259 
12260   std::string LHSStr = std::string(Lexer::getSourceText(
12261       CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
12262       S.getSourceManager(), S.getLangOpts()));
12263   std::string RHSStr = std::string(Lexer::getSourceText(
12264       CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
12265       S.getSourceManager(), S.getLangOpts()));
12266 
12267   if (Negative) {
12268     RightSideValue = -RightSideValue;
12269     RHSStr = "-" + RHSStr;
12270   } else if (ExplicitPlus) {
12271     RHSStr = "+" + RHSStr;
12272   }
12273 
12274   StringRef LHSStrRef = LHSStr;
12275   StringRef RHSStrRef = RHSStr;
12276   // Do not diagnose literals with digit separators, binary, hexadecimal, octal
12277   // literals.
12278   if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
12279       RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
12280       LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
12281       RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
12282       (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
12283       (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) ||
12284       LHSStrRef.find('\'') != StringRef::npos ||
12285       RHSStrRef.find('\'') != StringRef::npos)
12286     return;
12287 
12288   bool SuggestXor = S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
12289   const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
12290   int64_t RightSideIntValue = RightSideValue.getSExtValue();
12291   if (LeftSideValue == 2 && RightSideIntValue >= 0) {
12292     std::string SuggestedExpr = "1 << " + RHSStr;
12293     bool Overflow = false;
12294     llvm::APInt One = (LeftSideValue - 1);
12295     llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
12296     if (Overflow) {
12297       if (RightSideIntValue < 64)
12298         S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12299             << ExprStr << XorValue.toString(10, true) << ("1LL << " + RHSStr)
12300             << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
12301       else if (RightSideIntValue == 64)
12302         S.Diag(Loc, diag::warn_xor_used_as_pow) << ExprStr << XorValue.toString(10, true);
12303       else
12304         return;
12305     } else {
12306       S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
12307           << ExprStr << XorValue.toString(10, true) << SuggestedExpr
12308           << PowValue.toString(10, true)
12309           << FixItHint::CreateReplacement(
12310                  ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
12311     }
12312 
12313     S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0x2 ^ " + RHSStr) << SuggestXor;
12314   } else if (LeftSideValue == 10) {
12315     std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
12316     S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12317         << ExprStr << XorValue.toString(10, true) << SuggestedValue
12318         << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
12319     S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0xA ^ " + RHSStr) << SuggestXor;
12320   }
12321 }
12322 
CheckVectorLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)12323 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12324                                           SourceLocation Loc) {
12325   // Ensure that either both operands are of the same vector type, or
12326   // one operand is of a vector type and the other is of its element type.
12327   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
12328                                        /*AllowBothBool*/true,
12329                                        /*AllowBoolConversions*/false);
12330   if (vType.isNull())
12331     return InvalidOperands(Loc, LHS, RHS);
12332   if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
12333       !getLangOpts().OpenCLCPlusPlus && vType->hasFloatingRepresentation())
12334     return InvalidOperands(Loc, LHS, RHS);
12335   // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
12336   //        usage of the logical operators && and || with vectors in C. This
12337   //        check could be notionally dropped.
12338   if (!getLangOpts().CPlusPlus &&
12339       !(isa<ExtVectorType>(vType->getAs<VectorType>())))
12340     return InvalidLogicalVectorOperands(Loc, LHS, RHS);
12341 
12342   return GetSignedVectorType(LHS.get()->getType());
12343 }
12344 
CheckMatrixElementwiseOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)12345 QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
12346                                               SourceLocation Loc,
12347                                               bool IsCompAssign) {
12348   if (!IsCompAssign) {
12349     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12350     if (LHS.isInvalid())
12351       return QualType();
12352   }
12353   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12354   if (RHS.isInvalid())
12355     return QualType();
12356 
12357   // For conversion purposes, we ignore any qualifiers.
12358   // For example, "const float" and "float" are equivalent.
12359   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
12360   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
12361 
12362   const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
12363   const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
12364   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
12365 
12366   if (Context.hasSameType(LHSType, RHSType))
12367     return LHSType;
12368 
12369   // Type conversion may change LHS/RHS. Keep copies to the original results, in
12370   // case we have to return InvalidOperands.
12371   ExprResult OriginalLHS = LHS;
12372   ExprResult OriginalRHS = RHS;
12373   if (LHSMatType && !RHSMatType) {
12374     RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
12375     if (!RHS.isInvalid())
12376       return LHSType;
12377 
12378     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12379   }
12380 
12381   if (!LHSMatType && RHSMatType) {
12382     LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
12383     if (!LHS.isInvalid())
12384       return RHSType;
12385     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12386   }
12387 
12388   return InvalidOperands(Loc, LHS, RHS);
12389 }
12390 
CheckMatrixMultiplyOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)12391 QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
12392                                            SourceLocation Loc,
12393                                            bool IsCompAssign) {
12394   if (!IsCompAssign) {
12395     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12396     if (LHS.isInvalid())
12397       return QualType();
12398   }
12399   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12400   if (RHS.isInvalid())
12401     return QualType();
12402 
12403   auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
12404   auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
12405   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
12406 
12407   if (LHSMatType && RHSMatType) {
12408     if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
12409       return InvalidOperands(Loc, LHS, RHS);
12410 
12411     if (!Context.hasSameType(LHSMatType->getElementType(),
12412                              RHSMatType->getElementType()))
12413       return InvalidOperands(Loc, LHS, RHS);
12414 
12415     return Context.getConstantMatrixType(LHSMatType->getElementType(),
12416                                          LHSMatType->getNumRows(),
12417                                          RHSMatType->getNumColumns());
12418   }
12419   return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
12420 }
12421 
CheckBitwiseOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)12422 inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
12423                                            SourceLocation Loc,
12424                                            BinaryOperatorKind Opc) {
12425   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
12426 
12427   bool IsCompAssign =
12428       Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
12429 
12430   if (LHS.get()->getType()->isVectorType() ||
12431       RHS.get()->getType()->isVectorType()) {
12432     if (LHS.get()->getType()->hasIntegerRepresentation() &&
12433         RHS.get()->getType()->hasIntegerRepresentation())
12434       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
12435                         /*AllowBothBool*/true,
12436                         /*AllowBoolConversions*/getLangOpts().ZVector);
12437     return InvalidOperands(Loc, LHS, RHS);
12438   }
12439 
12440   if (Opc == BO_And)
12441     diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
12442 
12443   if (LHS.get()->getType()->hasFloatingRepresentation() ||
12444       RHS.get()->getType()->hasFloatingRepresentation())
12445     return InvalidOperands(Loc, LHS, RHS);
12446 
12447   ExprResult LHSResult = LHS, RHSResult = RHS;
12448   QualType compType = UsualArithmeticConversions(
12449       LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
12450   if (LHSResult.isInvalid() || RHSResult.isInvalid())
12451     return QualType();
12452   LHS = LHSResult.get();
12453   RHS = RHSResult.get();
12454 
12455   if (Opc == BO_Xor)
12456     diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
12457 
12458   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
12459     return compType;
12460   return InvalidOperands(Loc, LHS, RHS);
12461 }
12462 
12463 // C99 6.5.[13,14]
CheckLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)12464 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12465                                            SourceLocation Loc,
12466                                            BinaryOperatorKind Opc) {
12467   // Check vector operands differently.
12468   if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
12469     return CheckVectorLogicalOperands(LHS, RHS, Loc);
12470 
12471   bool EnumConstantInBoolContext = false;
12472   for (const ExprResult &HS : {LHS, RHS}) {
12473     if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
12474       const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
12475       if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
12476         EnumConstantInBoolContext = true;
12477     }
12478   }
12479 
12480   if (EnumConstantInBoolContext)
12481     Diag(Loc, diag::warn_enum_constant_in_bool_context);
12482 
12483   // Diagnose cases where the user write a logical and/or but probably meant a
12484   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
12485   // is a constant.
12486   if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
12487       !LHS.get()->getType()->isBooleanType() &&
12488       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
12489       // Don't warn in macros or template instantiations.
12490       !Loc.isMacroID() && !inTemplateInstantiation()) {
12491     // If the RHS can be constant folded, and if it constant folds to something
12492     // that isn't 0 or 1 (which indicate a potential logical operation that
12493     // happened to fold to true/false) then warn.
12494     // Parens on the RHS are ignored.
12495     Expr::EvalResult EVResult;
12496     if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
12497       llvm::APSInt Result = EVResult.Val.getInt();
12498       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
12499            !RHS.get()->getExprLoc().isMacroID()) ||
12500           (Result != 0 && Result != 1)) {
12501         Diag(Loc, diag::warn_logical_instead_of_bitwise)
12502           << RHS.get()->getSourceRange()
12503           << (Opc == BO_LAnd ? "&&" : "||");
12504         // Suggest replacing the logical operator with the bitwise version
12505         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
12506             << (Opc == BO_LAnd ? "&" : "|")
12507             << FixItHint::CreateReplacement(SourceRange(
12508                                                  Loc, getLocForEndOfToken(Loc)),
12509                                             Opc == BO_LAnd ? "&" : "|");
12510         if (Opc == BO_LAnd)
12511           // Suggest replacing "Foo() && kNonZero" with "Foo()"
12512           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
12513               << FixItHint::CreateRemoval(
12514                      SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
12515                                  RHS.get()->getEndLoc()));
12516       }
12517     }
12518   }
12519 
12520   if (!Context.getLangOpts().CPlusPlus) {
12521     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
12522     // not operate on the built-in scalar and vector float types.
12523     if (Context.getLangOpts().OpenCL &&
12524         Context.getLangOpts().OpenCLVersion < 120) {
12525       if (LHS.get()->getType()->isFloatingType() ||
12526           RHS.get()->getType()->isFloatingType())
12527         return InvalidOperands(Loc, LHS, RHS);
12528     }
12529 
12530     LHS = UsualUnaryConversions(LHS.get());
12531     if (LHS.isInvalid())
12532       return QualType();
12533 
12534     RHS = UsualUnaryConversions(RHS.get());
12535     if (RHS.isInvalid())
12536       return QualType();
12537 
12538     if (!LHS.get()->getType()->isScalarType() ||
12539         !RHS.get()->getType()->isScalarType())
12540       return InvalidOperands(Loc, LHS, RHS);
12541 
12542     return Context.IntTy;
12543   }
12544 
12545   // The following is safe because we only use this method for
12546   // non-overloadable operands.
12547 
12548   // C++ [expr.log.and]p1
12549   // C++ [expr.log.or]p1
12550   // The operands are both contextually converted to type bool.
12551   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
12552   if (LHSRes.isInvalid())
12553     return InvalidOperands(Loc, LHS, RHS);
12554   LHS = LHSRes;
12555 
12556   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
12557   if (RHSRes.isInvalid())
12558     return InvalidOperands(Loc, LHS, RHS);
12559   RHS = RHSRes;
12560 
12561   // C++ [expr.log.and]p2
12562   // C++ [expr.log.or]p2
12563   // The result is a bool.
12564   return Context.BoolTy;
12565 }
12566 
IsReadonlyMessage(Expr * E,Sema & S)12567 static bool IsReadonlyMessage(Expr *E, Sema &S) {
12568   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
12569   if (!ME) return false;
12570   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
12571   ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
12572       ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
12573   if (!Base) return false;
12574   return Base->getMethodDecl() != nullptr;
12575 }
12576 
12577 /// Is the given expression (which must be 'const') a reference to a
12578 /// variable which was originally non-const, but which has become
12579 /// 'const' due to being captured within a block?
12580 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
isReferenceToNonConstCapture(Sema & S,Expr * E)12581 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
12582   assert(E->isLValue() && E->getType().isConstQualified());
12583   E = E->IgnoreParens();
12584 
12585   // Must be a reference to a declaration from an enclosing scope.
12586   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
12587   if (!DRE) return NCCK_None;
12588   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
12589 
12590   // The declaration must be a variable which is not declared 'const'.
12591   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
12592   if (!var) return NCCK_None;
12593   if (var->getType().isConstQualified()) return NCCK_None;
12594   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
12595 
12596   // Decide whether the first capture was for a block or a lambda.
12597   DeclContext *DC = S.CurContext, *Prev = nullptr;
12598   // Decide whether the first capture was for a block or a lambda.
12599   while (DC) {
12600     // For init-capture, it is possible that the variable belongs to the
12601     // template pattern of the current context.
12602     if (auto *FD = dyn_cast<FunctionDecl>(DC))
12603       if (var->isInitCapture() &&
12604           FD->getTemplateInstantiationPattern() == var->getDeclContext())
12605         break;
12606     if (DC == var->getDeclContext())
12607       break;
12608     Prev = DC;
12609     DC = DC->getParent();
12610   }
12611   // Unless we have an init-capture, we've gone one step too far.
12612   if (!var->isInitCapture())
12613     DC = Prev;
12614   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
12615 }
12616 
IsTypeModifiable(QualType Ty,bool IsDereference)12617 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
12618   Ty = Ty.getNonReferenceType();
12619   if (IsDereference && Ty->isPointerType())
12620     Ty = Ty->getPointeeType();
12621   return !Ty.isConstQualified();
12622 }
12623 
12624 // Update err_typecheck_assign_const and note_typecheck_assign_const
12625 // when this enum is changed.
12626 enum {
12627   ConstFunction,
12628   ConstVariable,
12629   ConstMember,
12630   ConstMethod,
12631   NestedConstMember,
12632   ConstUnknown,  // Keep as last element
12633 };
12634 
12635 /// Emit the "read-only variable not assignable" error and print notes to give
12636 /// more information about why the variable is not assignable, such as pointing
12637 /// to the declaration of a const variable, showing that a method is const, or
12638 /// that the function is returning a const reference.
DiagnoseConstAssignment(Sema & S,const Expr * E,SourceLocation Loc)12639 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
12640                                     SourceLocation Loc) {
12641   SourceRange ExprRange = E->getSourceRange();
12642 
12643   // Only emit one error on the first const found.  All other consts will emit
12644   // a note to the error.
12645   bool DiagnosticEmitted = false;
12646 
12647   // Track if the current expression is the result of a dereference, and if the
12648   // next checked expression is the result of a dereference.
12649   bool IsDereference = false;
12650   bool NextIsDereference = false;
12651 
12652   // Loop to process MemberExpr chains.
12653   while (true) {
12654     IsDereference = NextIsDereference;
12655 
12656     E = E->IgnoreImplicit()->IgnoreParenImpCasts();
12657     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
12658       NextIsDereference = ME->isArrow();
12659       const ValueDecl *VD = ME->getMemberDecl();
12660       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
12661         // Mutable fields can be modified even if the class is const.
12662         if (Field->isMutable()) {
12663           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
12664           break;
12665         }
12666 
12667         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
12668           if (!DiagnosticEmitted) {
12669             S.Diag(Loc, diag::err_typecheck_assign_const)
12670                 << ExprRange << ConstMember << false /*static*/ << Field
12671                 << Field->getType();
12672             DiagnosticEmitted = true;
12673           }
12674           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12675               << ConstMember << false /*static*/ << Field << Field->getType()
12676               << Field->getSourceRange();
12677         }
12678         E = ME->getBase();
12679         continue;
12680       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
12681         if (VDecl->getType().isConstQualified()) {
12682           if (!DiagnosticEmitted) {
12683             S.Diag(Loc, diag::err_typecheck_assign_const)
12684                 << ExprRange << ConstMember << true /*static*/ << VDecl
12685                 << VDecl->getType();
12686             DiagnosticEmitted = true;
12687           }
12688           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12689               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
12690               << VDecl->getSourceRange();
12691         }
12692         // Static fields do not inherit constness from parents.
12693         break;
12694       }
12695       break; // End MemberExpr
12696     } else if (const ArraySubscriptExpr *ASE =
12697                    dyn_cast<ArraySubscriptExpr>(E)) {
12698       E = ASE->getBase()->IgnoreParenImpCasts();
12699       continue;
12700     } else if (const ExtVectorElementExpr *EVE =
12701                    dyn_cast<ExtVectorElementExpr>(E)) {
12702       E = EVE->getBase()->IgnoreParenImpCasts();
12703       continue;
12704     }
12705     break;
12706   }
12707 
12708   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
12709     // Function calls
12710     const FunctionDecl *FD = CE->getDirectCallee();
12711     if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
12712       if (!DiagnosticEmitted) {
12713         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
12714                                                       << ConstFunction << FD;
12715         DiagnosticEmitted = true;
12716       }
12717       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
12718              diag::note_typecheck_assign_const)
12719           << ConstFunction << FD << FD->getReturnType()
12720           << FD->getReturnTypeSourceRange();
12721     }
12722   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
12723     // Point to variable declaration.
12724     if (const ValueDecl *VD = DRE->getDecl()) {
12725       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
12726         if (!DiagnosticEmitted) {
12727           S.Diag(Loc, diag::err_typecheck_assign_const)
12728               << ExprRange << ConstVariable << VD << VD->getType();
12729           DiagnosticEmitted = true;
12730         }
12731         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12732             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
12733       }
12734     }
12735   } else if (isa<CXXThisExpr>(E)) {
12736     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
12737       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
12738         if (MD->isConst()) {
12739           if (!DiagnosticEmitted) {
12740             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
12741                                                           << ConstMethod << MD;
12742             DiagnosticEmitted = true;
12743           }
12744           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
12745               << ConstMethod << MD << MD->getSourceRange();
12746         }
12747       }
12748     }
12749   }
12750 
12751   if (DiagnosticEmitted)
12752     return;
12753 
12754   // Can't determine a more specific message, so display the generic error.
12755   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
12756 }
12757 
12758 enum OriginalExprKind {
12759   OEK_Variable,
12760   OEK_Member,
12761   OEK_LValue
12762 };
12763 
DiagnoseRecursiveConstFields(Sema & S,const ValueDecl * VD,const RecordType * Ty,SourceLocation Loc,SourceRange Range,OriginalExprKind OEK,bool & DiagnosticEmitted)12764 static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
12765                                          const RecordType *Ty,
12766                                          SourceLocation Loc, SourceRange Range,
12767                                          OriginalExprKind OEK,
12768                                          bool &DiagnosticEmitted) {
12769   std::vector<const RecordType *> RecordTypeList;
12770   RecordTypeList.push_back(Ty);
12771   unsigned NextToCheckIndex = 0;
12772   // We walk the record hierarchy breadth-first to ensure that we print
12773   // diagnostics in field nesting order.
12774   while (RecordTypeList.size() > NextToCheckIndex) {
12775     bool IsNested = NextToCheckIndex > 0;
12776     for (const FieldDecl *Field :
12777          RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
12778       // First, check every field for constness.
12779       QualType FieldTy = Field->getType();
12780       if (FieldTy.isConstQualified()) {
12781         if (!DiagnosticEmitted) {
12782           S.Diag(Loc, diag::err_typecheck_assign_const)
12783               << Range << NestedConstMember << OEK << VD
12784               << IsNested << Field;
12785           DiagnosticEmitted = true;
12786         }
12787         S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
12788             << NestedConstMember << IsNested << Field
12789             << FieldTy << Field->getSourceRange();
12790       }
12791 
12792       // Then we append it to the list to check next in order.
12793       FieldTy = FieldTy.getCanonicalType();
12794       if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
12795         if (llvm::find(RecordTypeList, FieldRecTy) == RecordTypeList.end())
12796           RecordTypeList.push_back(FieldRecTy);
12797       }
12798     }
12799     ++NextToCheckIndex;
12800   }
12801 }
12802 
12803 /// Emit an error for the case where a record we are trying to assign to has a
12804 /// const-qualified field somewhere in its hierarchy.
DiagnoseRecursiveConstFields(Sema & S,const Expr * E,SourceLocation Loc)12805 static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
12806                                          SourceLocation Loc) {
12807   QualType Ty = E->getType();
12808   assert(Ty->isRecordType() && "lvalue was not record?");
12809   SourceRange Range = E->getSourceRange();
12810   const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
12811   bool DiagEmitted = false;
12812 
12813   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
12814     DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
12815             Range, OEK_Member, DiagEmitted);
12816   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12817     DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
12818             Range, OEK_Variable, DiagEmitted);
12819   else
12820     DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
12821             Range, OEK_LValue, DiagEmitted);
12822   if (!DiagEmitted)
12823     DiagnoseConstAssignment(S, E, Loc);
12824 }
12825 
12826 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
12827 /// emit an error and return true.  If so, return false.
CheckForModifiableLvalue(Expr * E,SourceLocation Loc,Sema & S)12828 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
12829   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
12830 
12831   S.CheckShadowingDeclModification(E, Loc);
12832 
12833   SourceLocation OrigLoc = Loc;
12834   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
12835                                                               &Loc);
12836   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
12837     IsLV = Expr::MLV_InvalidMessageExpression;
12838   if (IsLV == Expr::MLV_Valid)
12839     return false;
12840 
12841   unsigned DiagID = 0;
12842   bool NeedType = false;
12843   switch (IsLV) { // C99 6.5.16p2
12844   case Expr::MLV_ConstQualified:
12845     // Use a specialized diagnostic when we're assigning to an object
12846     // from an enclosing function or block.
12847     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
12848       if (NCCK == NCCK_Block)
12849         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
12850       else
12851         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
12852       break;
12853     }
12854 
12855     // In ARC, use some specialized diagnostics for occasions where we
12856     // infer 'const'.  These are always pseudo-strong variables.
12857     if (S.getLangOpts().ObjCAutoRefCount) {
12858       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
12859       if (declRef && isa<VarDecl>(declRef->getDecl())) {
12860         VarDecl *var = cast<VarDecl>(declRef->getDecl());
12861 
12862         // Use the normal diagnostic if it's pseudo-__strong but the
12863         // user actually wrote 'const'.
12864         if (var->isARCPseudoStrong() &&
12865             (!var->getTypeSourceInfo() ||
12866              !var->getTypeSourceInfo()->getType().isConstQualified())) {
12867           // There are three pseudo-strong cases:
12868           //  - self
12869           ObjCMethodDecl *method = S.getCurMethodDecl();
12870           if (method && var == method->getSelfDecl()) {
12871             DiagID = method->isClassMethod()
12872               ? diag::err_typecheck_arc_assign_self_class_method
12873               : diag::err_typecheck_arc_assign_self;
12874 
12875           //  - Objective-C externally_retained attribute.
12876           } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
12877                      isa<ParmVarDecl>(var)) {
12878             DiagID = diag::err_typecheck_arc_assign_externally_retained;
12879 
12880           //  - fast enumeration variables
12881           } else {
12882             DiagID = diag::err_typecheck_arr_assign_enumeration;
12883           }
12884 
12885           SourceRange Assign;
12886           if (Loc != OrigLoc)
12887             Assign = SourceRange(OrigLoc, OrigLoc);
12888           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
12889           // We need to preserve the AST regardless, so migration tool
12890           // can do its job.
12891           return false;
12892         }
12893       }
12894     }
12895 
12896     // If none of the special cases above are triggered, then this is a
12897     // simple const assignment.
12898     if (DiagID == 0) {
12899       DiagnoseConstAssignment(S, E, Loc);
12900       return true;
12901     }
12902 
12903     break;
12904   case Expr::MLV_ConstAddrSpace:
12905     DiagnoseConstAssignment(S, E, Loc);
12906     return true;
12907   case Expr::MLV_ConstQualifiedField:
12908     DiagnoseRecursiveConstFields(S, E, Loc);
12909     return true;
12910   case Expr::MLV_ArrayType:
12911   case Expr::MLV_ArrayTemporary:
12912     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
12913     NeedType = true;
12914     break;
12915   case Expr::MLV_NotObjectType:
12916     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
12917     NeedType = true;
12918     break;
12919   case Expr::MLV_LValueCast:
12920     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
12921     break;
12922   case Expr::MLV_Valid:
12923     llvm_unreachable("did not take early return for MLV_Valid");
12924   case Expr::MLV_InvalidExpression:
12925   case Expr::MLV_MemberFunction:
12926   case Expr::MLV_ClassTemporary:
12927     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
12928     break;
12929   case Expr::MLV_IncompleteType:
12930   case Expr::MLV_IncompleteVoidType:
12931     return S.RequireCompleteType(Loc, E->getType(),
12932              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
12933   case Expr::MLV_DuplicateVectorComponents:
12934     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
12935     break;
12936   case Expr::MLV_NoSetterProperty:
12937     llvm_unreachable("readonly properties should be processed differently");
12938   case Expr::MLV_InvalidMessageExpression:
12939     DiagID = diag::err_readonly_message_assignment;
12940     break;
12941   case Expr::MLV_SubObjCPropertySetting:
12942     DiagID = diag::err_no_subobject_property_setting;
12943     break;
12944   }
12945 
12946   SourceRange Assign;
12947   if (Loc != OrigLoc)
12948     Assign = SourceRange(OrigLoc, OrigLoc);
12949   if (NeedType)
12950     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
12951   else
12952     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
12953   return true;
12954 }
12955 
CheckIdentityFieldAssignment(Expr * LHSExpr,Expr * RHSExpr,SourceLocation Loc,Sema & Sema)12956 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
12957                                          SourceLocation Loc,
12958                                          Sema &Sema) {
12959   if (Sema.inTemplateInstantiation())
12960     return;
12961   if (Sema.isUnevaluatedContext())
12962     return;
12963   if (Loc.isInvalid() || Loc.isMacroID())
12964     return;
12965   if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
12966     return;
12967 
12968   // C / C++ fields
12969   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
12970   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
12971   if (ML && MR) {
12972     if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
12973       return;
12974     const ValueDecl *LHSDecl =
12975         cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
12976     const ValueDecl *RHSDecl =
12977         cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
12978     if (LHSDecl != RHSDecl)
12979       return;
12980     if (LHSDecl->getType().isVolatileQualified())
12981       return;
12982     if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
12983       if (RefTy->getPointeeType().isVolatileQualified())
12984         return;
12985 
12986     Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
12987   }
12988 
12989   // Objective-C instance variables
12990   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
12991   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
12992   if (OL && OR && OL->getDecl() == OR->getDecl()) {
12993     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
12994     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
12995     if (RL && RR && RL->getDecl() == RR->getDecl())
12996       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
12997   }
12998 }
12999 
13000 // C99 6.5.16.1
CheckAssignmentOperands(Expr * LHSExpr,ExprResult & RHS,SourceLocation Loc,QualType CompoundType)13001 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
13002                                        SourceLocation Loc,
13003                                        QualType CompoundType) {
13004   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
13005 
13006   // Verify that LHS is a modifiable lvalue, and emit error if not.
13007   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
13008     return QualType();
13009 
13010   QualType LHSType = LHSExpr->getType();
13011   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
13012                                              CompoundType;
13013   // OpenCL v1.2 s6.1.1.1 p2:
13014   // The half data type can only be used to declare a pointer to a buffer that
13015   // contains half values
13016   if (getLangOpts().OpenCL &&
13017       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
13018       LHSType->isHalfType()) {
13019     Diag(Loc, diag::err_opencl_half_load_store) << 1
13020         << LHSType.getUnqualifiedType();
13021     return QualType();
13022   }
13023 
13024   AssignConvertType ConvTy;
13025   if (CompoundType.isNull()) {
13026     Expr *RHSCheck = RHS.get();
13027 
13028     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
13029 
13030     QualType LHSTy(LHSType);
13031     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
13032     if (RHS.isInvalid())
13033       return QualType();
13034     // Special case of NSObject attributes on c-style pointer types.
13035     if (ConvTy == IncompatiblePointer &&
13036         ((Context.isObjCNSObjectType(LHSType) &&
13037           RHSType->isObjCObjectPointerType()) ||
13038          (Context.isObjCNSObjectType(RHSType) &&
13039           LHSType->isObjCObjectPointerType())))
13040       ConvTy = Compatible;
13041 
13042     if (ConvTy == Compatible &&
13043         LHSType->isObjCObjectType())
13044         Diag(Loc, diag::err_objc_object_assignment)
13045           << LHSType;
13046 
13047     // If the RHS is a unary plus or minus, check to see if they = and + are
13048     // right next to each other.  If so, the user may have typo'd "x =+ 4"
13049     // instead of "x += 4".
13050     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
13051       RHSCheck = ICE->getSubExpr();
13052     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
13053       if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
13054           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
13055           // Only if the two operators are exactly adjacent.
13056           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
13057           // And there is a space or other character before the subexpr of the
13058           // unary +/-.  We don't want to warn on "x=-1".
13059           Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
13060           UO->getSubExpr()->getBeginLoc().isFileID()) {
13061         Diag(Loc, diag::warn_not_compound_assign)
13062           << (UO->getOpcode() == UO_Plus ? "+" : "-")
13063           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
13064       }
13065     }
13066 
13067     if (ConvTy == Compatible) {
13068       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
13069         // Warn about retain cycles where a block captures the LHS, but
13070         // not if the LHS is a simple variable into which the block is
13071         // being stored...unless that variable can be captured by reference!
13072         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
13073         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
13074         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
13075           checkRetainCycles(LHSExpr, RHS.get());
13076       }
13077 
13078       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
13079           LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
13080         // It is safe to assign a weak reference into a strong variable.
13081         // Although this code can still have problems:
13082         //   id x = self.weakProp;
13083         //   id y = self.weakProp;
13084         // we do not warn to warn spuriously when 'x' and 'y' are on separate
13085         // paths through the function. This should be revisited if
13086         // -Wrepeated-use-of-weak is made flow-sensitive.
13087         // For ObjCWeak only, we do not warn if the assign is to a non-weak
13088         // variable, which will be valid for the current autorelease scope.
13089         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
13090                              RHS.get()->getBeginLoc()))
13091           getCurFunction()->markSafeWeakUse(RHS.get());
13092 
13093       } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
13094         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
13095       }
13096     }
13097   } else {
13098     // Compound assignment "x += y"
13099     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
13100   }
13101 
13102   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
13103                                RHS.get(), AA_Assigning))
13104     return QualType();
13105 
13106   CheckForNullPointerDereference(*this, LHSExpr);
13107 
13108   if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
13109     if (CompoundType.isNull()) {
13110       // C++2a [expr.ass]p5:
13111       //   A simple-assignment whose left operand is of a volatile-qualified
13112       //   type is deprecated unless the assignment is either a discarded-value
13113       //   expression or an unevaluated operand
13114       ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
13115     } else {
13116       // C++2a [expr.ass]p6:
13117       //   [Compound-assignment] expressions are deprecated if E1 has
13118       //   volatile-qualified type
13119       Diag(Loc, diag::warn_deprecated_compound_assign_volatile) << LHSType;
13120     }
13121   }
13122 
13123   // C99 6.5.16p3: The type of an assignment expression is the type of the
13124   // left operand unless the left operand has qualified type, in which case
13125   // it is the unqualified version of the type of the left operand.
13126   // C99 6.5.16.1p2: In simple assignment, the value of the right operand
13127   // is converted to the type of the assignment expression (above).
13128   // C++ 5.17p1: the type of the assignment expression is that of its left
13129   // operand.
13130   return (getLangOpts().CPlusPlus
13131           ? LHSType : LHSType.getUnqualifiedType());
13132 }
13133 
13134 // Only ignore explicit casts to void.
IgnoreCommaOperand(const Expr * E)13135 static bool IgnoreCommaOperand(const Expr *E) {
13136   E = E->IgnoreParens();
13137 
13138   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
13139     if (CE->getCastKind() == CK_ToVoid) {
13140       return true;
13141     }
13142 
13143     // static_cast<void> on a dependent type will not show up as CK_ToVoid.
13144     if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
13145         CE->getSubExpr()->getType()->isDependentType()) {
13146       return true;
13147     }
13148   }
13149 
13150   return false;
13151 }
13152 
13153 // Look for instances where it is likely the comma operator is confused with
13154 // another operator.  There is an explicit list of acceptable expressions for
13155 // the left hand side of the comma operator, otherwise emit a warning.
DiagnoseCommaOperator(const Expr * LHS,SourceLocation Loc)13156 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
13157   // No warnings in macros
13158   if (Loc.isMacroID())
13159     return;
13160 
13161   // Don't warn in template instantiations.
13162   if (inTemplateInstantiation())
13163     return;
13164 
13165   // Scope isn't fine-grained enough to explicitly list the specific cases, so
13166   // instead, skip more than needed, then call back into here with the
13167   // CommaVisitor in SemaStmt.cpp.
13168   // The listed locations are the initialization and increment portions
13169   // of a for loop.  The additional checks are on the condition of
13170   // if statements, do/while loops, and for loops.
13171   // Differences in scope flags for C89 mode requires the extra logic.
13172   const unsigned ForIncrementFlags =
13173       getLangOpts().C99 || getLangOpts().CPlusPlus
13174           ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
13175           : Scope::ContinueScope | Scope::BreakScope;
13176   const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
13177   const unsigned ScopeFlags = getCurScope()->getFlags();
13178   if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
13179       (ScopeFlags & ForInitFlags) == ForInitFlags)
13180     return;
13181 
13182   // If there are multiple comma operators used together, get the RHS of the
13183   // of the comma operator as the LHS.
13184   while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
13185     if (BO->getOpcode() != BO_Comma)
13186       break;
13187     LHS = BO->getRHS();
13188   }
13189 
13190   // Only allow some expressions on LHS to not warn.
13191   if (IgnoreCommaOperand(LHS))
13192     return;
13193 
13194   Diag(Loc, diag::warn_comma_operator);
13195   Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
13196       << LHS->getSourceRange()
13197       << FixItHint::CreateInsertion(LHS->getBeginLoc(),
13198                                     LangOpts.CPlusPlus ? "static_cast<void>("
13199                                                        : "(void)(")
13200       << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
13201                                     ")");
13202 }
13203 
13204 // C99 6.5.17
CheckCommaOperands(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)13205 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
13206                                    SourceLocation Loc) {
13207   LHS = S.CheckPlaceholderExpr(LHS.get());
13208   RHS = S.CheckPlaceholderExpr(RHS.get());
13209   if (LHS.isInvalid() || RHS.isInvalid())
13210     return QualType();
13211 
13212   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
13213   // operands, but not unary promotions.
13214   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
13215 
13216   // So we treat the LHS as a ignored value, and in C++ we allow the
13217   // containing site to determine what should be done with the RHS.
13218   LHS = S.IgnoredValueConversions(LHS.get());
13219   if (LHS.isInvalid())
13220     return QualType();
13221 
13222   S.DiagnoseUnusedExprResult(LHS.get());
13223 
13224   if (!S.getLangOpts().CPlusPlus) {
13225     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
13226     if (RHS.isInvalid())
13227       return QualType();
13228     if (!RHS.get()->getType()->isVoidType())
13229       S.RequireCompleteType(Loc, RHS.get()->getType(),
13230                             diag::err_incomplete_type);
13231   }
13232 
13233   if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
13234     S.DiagnoseCommaOperator(LHS.get(), Loc);
13235 
13236   return RHS.get()->getType();
13237 }
13238 
13239 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
13240 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
CheckIncrementDecrementOperand(Sema & S,Expr * Op,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation OpLoc,bool IsInc,bool IsPrefix)13241 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
13242                                                ExprValueKind &VK,
13243                                                ExprObjectKind &OK,
13244                                                SourceLocation OpLoc,
13245                                                bool IsInc, bool IsPrefix) {
13246   if (Op->isTypeDependent())
13247     return S.Context.DependentTy;
13248 
13249   QualType ResType = Op->getType();
13250   // Atomic types can be used for increment / decrement where the non-atomic
13251   // versions can, so ignore the _Atomic() specifier for the purpose of
13252   // checking.
13253   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
13254     ResType = ResAtomicType->getValueType();
13255 
13256   assert(!ResType.isNull() && "no type for increment/decrement expression");
13257 
13258   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
13259     // Decrement of bool is not allowed.
13260     if (!IsInc) {
13261       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
13262       return QualType();
13263     }
13264     // Increment of bool sets it to true, but is deprecated.
13265     S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
13266                                               : diag::warn_increment_bool)
13267       << Op->getSourceRange();
13268   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
13269     // Error on enum increments and decrements in C++ mode
13270     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
13271     return QualType();
13272   } else if (ResType->isRealType()) {
13273     // OK!
13274   } else if (ResType->isPointerType()) {
13275     // C99 6.5.2.4p2, 6.5.6p2
13276     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
13277       return QualType();
13278   } else if (ResType->isObjCObjectPointerType()) {
13279     // On modern runtimes, ObjC pointer arithmetic is forbidden.
13280     // Otherwise, we just need a complete type.
13281     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
13282         checkArithmeticOnObjCPointer(S, OpLoc, Op))
13283       return QualType();
13284   } else if (ResType->isAnyComplexType()) {
13285     // C99 does not support ++/-- on complex types, we allow as an extension.
13286     S.Diag(OpLoc, diag::ext_integer_increment_complex)
13287       << ResType << Op->getSourceRange();
13288   } else if (ResType->isPlaceholderType()) {
13289     ExprResult PR = S.CheckPlaceholderExpr(Op);
13290     if (PR.isInvalid()) return QualType();
13291     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
13292                                           IsInc, IsPrefix);
13293   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
13294     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
13295   } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
13296              (ResType->castAs<VectorType>()->getVectorKind() !=
13297               VectorType::AltiVecBool)) {
13298     // The z vector extensions allow ++ and -- for non-bool vectors.
13299   } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
13300             ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
13301     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
13302   } else {
13303     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
13304       << ResType << int(IsInc) << Op->getSourceRange();
13305     return QualType();
13306   }
13307   // At this point, we know we have a real, complex or pointer type.
13308   // Now make sure the operand is a modifiable lvalue.
13309   if (CheckForModifiableLvalue(Op, OpLoc, S))
13310     return QualType();
13311   if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
13312     // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
13313     //   An operand with volatile-qualified type is deprecated
13314     S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
13315         << IsInc << ResType;
13316   }
13317   // In C++, a prefix increment is the same type as the operand. Otherwise
13318   // (in C or with postfix), the increment is the unqualified type of the
13319   // operand.
13320   if (IsPrefix && S.getLangOpts().CPlusPlus) {
13321     VK = VK_LValue;
13322     OK = Op->getObjectKind();
13323     return ResType;
13324   } else {
13325     VK = VK_RValue;
13326     return ResType.getUnqualifiedType();
13327   }
13328 }
13329 
13330 
13331 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
13332 /// This routine allows us to typecheck complex/recursive expressions
13333 /// where the declaration is needed for type checking. We only need to
13334 /// handle cases when the expression references a function designator
13335 /// or is an lvalue. Here are some examples:
13336 ///  - &(x) => x
13337 ///  - &*****f => f for f a function designator.
13338 ///  - &s.xx => s
13339 ///  - &s.zz[1].yy -> s, if zz is an array
13340 ///  - *(x + 1) -> x, if x is an array
13341 ///  - &"123"[2] -> 0
13342 ///  - & __real__ x -> x
13343 ///
13344 /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
13345 /// members.
getPrimaryDecl(Expr * E)13346 static ValueDecl *getPrimaryDecl(Expr *E) {
13347   switch (E->getStmtClass()) {
13348   case Stmt::DeclRefExprClass:
13349     return cast<DeclRefExpr>(E)->getDecl();
13350   case Stmt::MemberExprClass:
13351     // If this is an arrow operator, the address is an offset from
13352     // the base's value, so the object the base refers to is
13353     // irrelevant.
13354     if (cast<MemberExpr>(E)->isArrow())
13355       return nullptr;
13356     // Otherwise, the expression refers to a part of the base
13357     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
13358   case Stmt::ArraySubscriptExprClass: {
13359     // FIXME: This code shouldn't be necessary!  We should catch the implicit
13360     // promotion of register arrays earlier.
13361     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
13362     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
13363       if (ICE->getSubExpr()->getType()->isArrayType())
13364         return getPrimaryDecl(ICE->getSubExpr());
13365     }
13366     return nullptr;
13367   }
13368   case Stmt::UnaryOperatorClass: {
13369     UnaryOperator *UO = cast<UnaryOperator>(E);
13370 
13371     switch(UO->getOpcode()) {
13372     case UO_Real:
13373     case UO_Imag:
13374     case UO_Extension:
13375       return getPrimaryDecl(UO->getSubExpr());
13376     default:
13377       return nullptr;
13378     }
13379   }
13380   case Stmt::ParenExprClass:
13381     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
13382   case Stmt::ImplicitCastExprClass:
13383     // If the result of an implicit cast is an l-value, we care about
13384     // the sub-expression; otherwise, the result here doesn't matter.
13385     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
13386   case Stmt::CXXUuidofExprClass:
13387     return cast<CXXUuidofExpr>(E)->getGuidDecl();
13388   default:
13389     return nullptr;
13390   }
13391 }
13392 
13393 namespace {
13394 enum {
13395   AO_Bit_Field = 0,
13396   AO_Vector_Element = 1,
13397   AO_Property_Expansion = 2,
13398   AO_Register_Variable = 3,
13399   AO_Matrix_Element = 4,
13400   AO_No_Error = 5
13401 };
13402 }
13403 /// Diagnose invalid operand for address of operations.
13404 ///
13405 /// \param Type The type of operand which cannot have its address taken.
diagnoseAddressOfInvalidType(Sema & S,SourceLocation Loc,Expr * E,unsigned Type)13406 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
13407                                          Expr *E, unsigned Type) {
13408   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
13409 }
13410 
13411 /// CheckAddressOfOperand - The operand of & must be either a function
13412 /// designator or an lvalue designating an object. If it is an lvalue, the
13413 /// object cannot be declared with storage class register or be a bit field.
13414 /// Note: The usual conversions are *not* applied to the operand of the &
13415 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
13416 /// In C++, the operand might be an overloaded function name, in which case
13417 /// we allow the '&' but retain the overloaded-function type.
CheckAddressOfOperand(ExprResult & OrigOp,SourceLocation OpLoc)13418 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
13419   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
13420     if (PTy->getKind() == BuiltinType::Overload) {
13421       Expr *E = OrigOp.get()->IgnoreParens();
13422       if (!isa<OverloadExpr>(E)) {
13423         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
13424         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
13425           << OrigOp.get()->getSourceRange();
13426         return QualType();
13427       }
13428 
13429       OverloadExpr *Ovl = cast<OverloadExpr>(E);
13430       if (isa<UnresolvedMemberExpr>(Ovl))
13431         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
13432           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13433             << OrigOp.get()->getSourceRange();
13434           return QualType();
13435         }
13436 
13437       return Context.OverloadTy;
13438     }
13439 
13440     if (PTy->getKind() == BuiltinType::UnknownAny)
13441       return Context.UnknownAnyTy;
13442 
13443     if (PTy->getKind() == BuiltinType::BoundMember) {
13444       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13445         << OrigOp.get()->getSourceRange();
13446       return QualType();
13447     }
13448 
13449     OrigOp = CheckPlaceholderExpr(OrigOp.get());
13450     if (OrigOp.isInvalid()) return QualType();
13451   }
13452 
13453   if (OrigOp.get()->isTypeDependent())
13454     return Context.DependentTy;
13455 
13456   assert(!OrigOp.get()->getType()->isPlaceholderType());
13457 
13458   // Make sure to ignore parentheses in subsequent checks
13459   Expr *op = OrigOp.get()->IgnoreParens();
13460 
13461   // In OpenCL captures for blocks called as lambda functions
13462   // are located in the private address space. Blocks used in
13463   // enqueue_kernel can be located in a different address space
13464   // depending on a vendor implementation. Thus preventing
13465   // taking an address of the capture to avoid invalid AS casts.
13466   if (LangOpts.OpenCL) {
13467     auto* VarRef = dyn_cast<DeclRefExpr>(op);
13468     if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
13469       Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
13470       return QualType();
13471     }
13472   }
13473 
13474   if (getLangOpts().C99) {
13475     // Implement C99-only parts of addressof rules.
13476     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
13477       if (uOp->getOpcode() == UO_Deref)
13478         // Per C99 6.5.3.2, the address of a deref always returns a valid result
13479         // (assuming the deref expression is valid).
13480         return uOp->getSubExpr()->getType();
13481     }
13482     // Technically, there should be a check for array subscript
13483     // expressions here, but the result of one is always an lvalue anyway.
13484   }
13485   ValueDecl *dcl = getPrimaryDecl(op);
13486 
13487   if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
13488     if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
13489                                            op->getBeginLoc()))
13490       return QualType();
13491 
13492   Expr::LValueClassification lval = op->ClassifyLValue(Context);
13493   unsigned AddressOfError = AO_No_Error;
13494 
13495   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
13496     bool sfinae = (bool)isSFINAEContext();
13497     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
13498                                   : diag::ext_typecheck_addrof_temporary)
13499       << op->getType() << op->getSourceRange();
13500     if (sfinae)
13501       return QualType();
13502     // Materialize the temporary as an lvalue so that we can take its address.
13503     OrigOp = op =
13504         CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
13505   } else if (isa<ObjCSelectorExpr>(op)) {
13506     return Context.getPointerType(op->getType());
13507   } else if (lval == Expr::LV_MemberFunction) {
13508     // If it's an instance method, make a member pointer.
13509     // The expression must have exactly the form &A::foo.
13510 
13511     // If the underlying expression isn't a decl ref, give up.
13512     if (!isa<DeclRefExpr>(op)) {
13513       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13514         << OrigOp.get()->getSourceRange();
13515       return QualType();
13516     }
13517     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
13518     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
13519 
13520     // The id-expression was parenthesized.
13521     if (OrigOp.get() != DRE) {
13522       Diag(OpLoc, diag::err_parens_pointer_member_function)
13523         << OrigOp.get()->getSourceRange();
13524 
13525     // The method was named without a qualifier.
13526     } else if (!DRE->getQualifier()) {
13527       if (MD->getParent()->getName().empty())
13528         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
13529           << op->getSourceRange();
13530       else {
13531         SmallString<32> Str;
13532         StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
13533         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
13534           << op->getSourceRange()
13535           << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
13536       }
13537     }
13538 
13539     // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
13540     if (isa<CXXDestructorDecl>(MD))
13541       Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
13542 
13543     QualType MPTy = Context.getMemberPointerType(
13544         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
13545     // Under the MS ABI, lock down the inheritance model now.
13546     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13547       (void)isCompleteType(OpLoc, MPTy);
13548     return MPTy;
13549   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
13550     // C99 6.5.3.2p1
13551     // The operand must be either an l-value or a function designator
13552     if (!op->getType()->isFunctionType()) {
13553       // Use a special diagnostic for loads from property references.
13554       if (isa<PseudoObjectExpr>(op)) {
13555         AddressOfError = AO_Property_Expansion;
13556       } else {
13557         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
13558           << op->getType() << op->getSourceRange();
13559         return QualType();
13560       }
13561     }
13562   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
13563     // The operand cannot be a bit-field
13564     AddressOfError = AO_Bit_Field;
13565   } else if (op->getObjectKind() == OK_VectorComponent) {
13566     // The operand cannot be an element of a vector
13567     AddressOfError = AO_Vector_Element;
13568   } else if (op->getObjectKind() == OK_MatrixComponent) {
13569     // The operand cannot be an element of a matrix.
13570     AddressOfError = AO_Matrix_Element;
13571   } else if (dcl) { // C99 6.5.3.2p1
13572     // We have an lvalue with a decl. Make sure the decl is not declared
13573     // with the register storage-class specifier.
13574     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
13575       // in C++ it is not error to take address of a register
13576       // variable (c++03 7.1.1P3)
13577       if (vd->getStorageClass() == SC_Register &&
13578           !getLangOpts().CPlusPlus) {
13579         AddressOfError = AO_Register_Variable;
13580       }
13581     } else if (isa<MSPropertyDecl>(dcl)) {
13582       AddressOfError = AO_Property_Expansion;
13583     } else if (isa<FunctionTemplateDecl>(dcl)) {
13584       return Context.OverloadTy;
13585     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
13586       // Okay: we can take the address of a field.
13587       // Could be a pointer to member, though, if there is an explicit
13588       // scope qualifier for the class.
13589       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
13590         DeclContext *Ctx = dcl->getDeclContext();
13591         if (Ctx && Ctx->isRecord()) {
13592           if (dcl->getType()->isReferenceType()) {
13593             Diag(OpLoc,
13594                  diag::err_cannot_form_pointer_to_member_of_reference_type)
13595               << dcl->getDeclName() << dcl->getType();
13596             return QualType();
13597           }
13598 
13599           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
13600             Ctx = Ctx->getParent();
13601 
13602           QualType MPTy = Context.getMemberPointerType(
13603               op->getType(),
13604               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
13605           // Under the MS ABI, lock down the inheritance model now.
13606           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13607             (void)isCompleteType(OpLoc, MPTy);
13608           return MPTy;
13609         }
13610       }
13611     } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl) &&
13612                !isa<BindingDecl>(dcl) && !isa<MSGuidDecl>(dcl))
13613       llvm_unreachable("Unknown/unexpected decl type");
13614   }
13615 
13616   if (AddressOfError != AO_No_Error) {
13617     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
13618     return QualType();
13619   }
13620 
13621   if (lval == Expr::LV_IncompleteVoidType) {
13622     // Taking the address of a void variable is technically illegal, but we
13623     // allow it in cases which are otherwise valid.
13624     // Example: "extern void x; void* y = &x;".
13625     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
13626   }
13627 
13628   // If the operand has type "type", the result has type "pointer to type".
13629   if (op->getType()->isObjCObjectType())
13630     return Context.getObjCObjectPointerType(op->getType());
13631 
13632   CheckAddressOfPackedMember(op);
13633 
13634   return Context.getPointerType(op->getType());
13635 }
13636 
RecordModifiableNonNullParam(Sema & S,const Expr * Exp)13637 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
13638   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
13639   if (!DRE)
13640     return;
13641   const Decl *D = DRE->getDecl();
13642   if (!D)
13643     return;
13644   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
13645   if (!Param)
13646     return;
13647   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
13648     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
13649       return;
13650   if (FunctionScopeInfo *FD = S.getCurFunction())
13651     if (!FD->ModifiedNonNullParams.count(Param))
13652       FD->ModifiedNonNullParams.insert(Param);
13653 }
13654 
13655 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
CheckIndirectionOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc)13656 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
13657                                         SourceLocation OpLoc) {
13658   if (Op->isTypeDependent())
13659     return S.Context.DependentTy;
13660 
13661   ExprResult ConvResult = S.UsualUnaryConversions(Op);
13662   if (ConvResult.isInvalid())
13663     return QualType();
13664   Op = ConvResult.get();
13665   QualType OpTy = Op->getType();
13666   QualType Result;
13667 
13668   if (isa<CXXReinterpretCastExpr>(Op)) {
13669     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
13670     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
13671                                      Op->getSourceRange());
13672   }
13673 
13674   if (const PointerType *PT = OpTy->getAs<PointerType>())
13675   {
13676     Result = PT->getPointeeType();
13677   }
13678   else if (const ObjCObjectPointerType *OPT =
13679              OpTy->getAs<ObjCObjectPointerType>())
13680     Result = OPT->getPointeeType();
13681   else {
13682     ExprResult PR = S.CheckPlaceholderExpr(Op);
13683     if (PR.isInvalid()) return QualType();
13684     if (PR.get() != Op)
13685       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
13686   }
13687 
13688   if (Result.isNull()) {
13689     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
13690       << OpTy << Op->getSourceRange();
13691     return QualType();
13692   }
13693 
13694   // Note that per both C89 and C99, indirection is always legal, even if Result
13695   // is an incomplete type or void.  It would be possible to warn about
13696   // dereferencing a void pointer, but it's completely well-defined, and such a
13697   // warning is unlikely to catch any mistakes. In C++, indirection is not valid
13698   // for pointers to 'void' but is fine for any other pointer type:
13699   //
13700   // C++ [expr.unary.op]p1:
13701   //   [...] the expression to which [the unary * operator] is applied shall
13702   //   be a pointer to an object type, or a pointer to a function type
13703   if (S.getLangOpts().CPlusPlus && Result->isVoidType())
13704     S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
13705       << OpTy << Op->getSourceRange();
13706 
13707   // Dereferences are usually l-values...
13708   VK = VK_LValue;
13709 
13710   // ...except that certain expressions are never l-values in C.
13711   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
13712     VK = VK_RValue;
13713 
13714   return Result;
13715 }
13716 
ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind)13717 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
13718   BinaryOperatorKind Opc;
13719   switch (Kind) {
13720   default: llvm_unreachable("Unknown binop!");
13721   case tok::periodstar:           Opc = BO_PtrMemD; break;
13722   case tok::arrowstar:            Opc = BO_PtrMemI; break;
13723   case tok::star:                 Opc = BO_Mul; break;
13724   case tok::slash:                Opc = BO_Div; break;
13725   case tok::percent:              Opc = BO_Rem; break;
13726   case tok::plus:                 Opc = BO_Add; break;
13727   case tok::minus:                Opc = BO_Sub; break;
13728   case tok::lessless:             Opc = BO_Shl; break;
13729   case tok::greatergreater:       Opc = BO_Shr; break;
13730   case tok::lessequal:            Opc = BO_LE; break;
13731   case tok::less:                 Opc = BO_LT; break;
13732   case tok::greaterequal:         Opc = BO_GE; break;
13733   case tok::greater:              Opc = BO_GT; break;
13734   case tok::exclaimequal:         Opc = BO_NE; break;
13735   case tok::equalequal:           Opc = BO_EQ; break;
13736   case tok::spaceship:            Opc = BO_Cmp; break;
13737   case tok::amp:                  Opc = BO_And; break;
13738   case tok::caret:                Opc = BO_Xor; break;
13739   case tok::pipe:                 Opc = BO_Or; break;
13740   case tok::ampamp:               Opc = BO_LAnd; break;
13741   case tok::pipepipe:             Opc = BO_LOr; break;
13742   case tok::equal:                Opc = BO_Assign; break;
13743   case tok::starequal:            Opc = BO_MulAssign; break;
13744   case tok::slashequal:           Opc = BO_DivAssign; break;
13745   case tok::percentequal:         Opc = BO_RemAssign; break;
13746   case tok::plusequal:            Opc = BO_AddAssign; break;
13747   case tok::minusequal:           Opc = BO_SubAssign; break;
13748   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
13749   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
13750   case tok::ampequal:             Opc = BO_AndAssign; break;
13751   case tok::caretequal:           Opc = BO_XorAssign; break;
13752   case tok::pipeequal:            Opc = BO_OrAssign; break;
13753   case tok::comma:                Opc = BO_Comma; break;
13754   }
13755   return Opc;
13756 }
13757 
ConvertTokenKindToUnaryOpcode(tok::TokenKind Kind)13758 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
13759   tok::TokenKind Kind) {
13760   UnaryOperatorKind Opc;
13761   switch (Kind) {
13762   default: llvm_unreachable("Unknown unary op!");
13763   case tok::plusplus:     Opc = UO_PreInc; break;
13764   case tok::minusminus:   Opc = UO_PreDec; break;
13765   case tok::amp:          Opc = UO_AddrOf; break;
13766   case tok::star:         Opc = UO_Deref; break;
13767   case tok::plus:         Opc = UO_Plus; break;
13768   case tok::minus:        Opc = UO_Minus; break;
13769   case tok::tilde:        Opc = UO_Not; break;
13770   case tok::exclaim:      Opc = UO_LNot; break;
13771   case tok::kw___real:    Opc = UO_Real; break;
13772   case tok::kw___imag:    Opc = UO_Imag; break;
13773   case tok::kw___extension__: Opc = UO_Extension; break;
13774   }
13775   return Opc;
13776 }
13777 
13778 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
13779 /// This warning suppressed in the event of macro expansions.
DiagnoseSelfAssignment(Sema & S,Expr * LHSExpr,Expr * RHSExpr,SourceLocation OpLoc,bool IsBuiltin)13780 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
13781                                    SourceLocation OpLoc, bool IsBuiltin) {
13782   if (S.inTemplateInstantiation())
13783     return;
13784   if (S.isUnevaluatedContext())
13785     return;
13786   if (OpLoc.isInvalid() || OpLoc.isMacroID())
13787     return;
13788   LHSExpr = LHSExpr->IgnoreParenImpCasts();
13789   RHSExpr = RHSExpr->IgnoreParenImpCasts();
13790   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
13791   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
13792   if (!LHSDeclRef || !RHSDeclRef ||
13793       LHSDeclRef->getLocation().isMacroID() ||
13794       RHSDeclRef->getLocation().isMacroID())
13795     return;
13796   const ValueDecl *LHSDecl =
13797     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
13798   const ValueDecl *RHSDecl =
13799     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
13800   if (LHSDecl != RHSDecl)
13801     return;
13802   if (LHSDecl->getType().isVolatileQualified())
13803     return;
13804   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
13805     if (RefTy->getPointeeType().isVolatileQualified())
13806       return;
13807 
13808   S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
13809                           : diag::warn_self_assignment_overloaded)
13810       << LHSDeclRef->getType() << LHSExpr->getSourceRange()
13811       << RHSExpr->getSourceRange();
13812 }
13813 
13814 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
13815 /// is usually indicative of introspection within the Objective-C pointer.
checkObjCPointerIntrospection(Sema & S,ExprResult & L,ExprResult & R,SourceLocation OpLoc)13816 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
13817                                           SourceLocation OpLoc) {
13818   if (!S.getLangOpts().ObjC)
13819     return;
13820 
13821   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
13822   const Expr *LHS = L.get();
13823   const Expr *RHS = R.get();
13824 
13825   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
13826     ObjCPointerExpr = LHS;
13827     OtherExpr = RHS;
13828   }
13829   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
13830     ObjCPointerExpr = RHS;
13831     OtherExpr = LHS;
13832   }
13833 
13834   // This warning is deliberately made very specific to reduce false
13835   // positives with logic that uses '&' for hashing.  This logic mainly
13836   // looks for code trying to introspect into tagged pointers, which
13837   // code should generally never do.
13838   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
13839     unsigned Diag = diag::warn_objc_pointer_masking;
13840     // Determine if we are introspecting the result of performSelectorXXX.
13841     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
13842     // Special case messages to -performSelector and friends, which
13843     // can return non-pointer values boxed in a pointer value.
13844     // Some clients may wish to silence warnings in this subcase.
13845     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
13846       Selector S = ME->getSelector();
13847       StringRef SelArg0 = S.getNameForSlot(0);
13848       if (SelArg0.startswith("performSelector"))
13849         Diag = diag::warn_objc_pointer_masking_performSelector;
13850     }
13851 
13852     S.Diag(OpLoc, Diag)
13853       << ObjCPointerExpr->getSourceRange();
13854   }
13855 }
13856 
getDeclFromExpr(Expr * E)13857 static NamedDecl *getDeclFromExpr(Expr *E) {
13858   if (!E)
13859     return nullptr;
13860   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
13861     return DRE->getDecl();
13862   if (auto *ME = dyn_cast<MemberExpr>(E))
13863     return ME->getMemberDecl();
13864   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
13865     return IRE->getDecl();
13866   return nullptr;
13867 }
13868 
13869 // This helper function promotes a binary operator's operands (which are of a
13870 // half vector type) to a vector of floats and then truncates the result to
13871 // a vector of either half or short.
convertHalfVecBinOp(Sema & S,ExprResult LHS,ExprResult RHS,BinaryOperatorKind Opc,QualType ResultTy,ExprValueKind VK,ExprObjectKind OK,bool IsCompAssign,SourceLocation OpLoc,FPOptionsOverride FPFeatures)13872 static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
13873                                       BinaryOperatorKind Opc, QualType ResultTy,
13874                                       ExprValueKind VK, ExprObjectKind OK,
13875                                       bool IsCompAssign, SourceLocation OpLoc,
13876                                       FPOptionsOverride FPFeatures) {
13877   auto &Context = S.getASTContext();
13878   assert((isVector(ResultTy, Context.HalfTy) ||
13879           isVector(ResultTy, Context.ShortTy)) &&
13880          "Result must be a vector of half or short");
13881   assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
13882          isVector(RHS.get()->getType(), Context.HalfTy) &&
13883          "both operands expected to be a half vector");
13884 
13885   RHS = convertVector(RHS.get(), Context.FloatTy, S);
13886   QualType BinOpResTy = RHS.get()->getType();
13887 
13888   // If Opc is a comparison, ResultType is a vector of shorts. In that case,
13889   // change BinOpResTy to a vector of ints.
13890   if (isVector(ResultTy, Context.ShortTy))
13891     BinOpResTy = S.GetSignedVectorType(BinOpResTy);
13892 
13893   if (IsCompAssign)
13894     return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
13895                                           ResultTy, VK, OK, OpLoc, FPFeatures,
13896                                           BinOpResTy, BinOpResTy);
13897 
13898   LHS = convertVector(LHS.get(), Context.FloatTy, S);
13899   auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
13900                                     BinOpResTy, VK, OK, OpLoc, FPFeatures);
13901   return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
13902 }
13903 
13904 static std::pair<ExprResult, ExprResult>
CorrectDelayedTyposInBinOp(Sema & S,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)13905 CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
13906                            Expr *RHSExpr) {
13907   ExprResult LHS = LHSExpr, RHS = RHSExpr;
13908   if (!S.Context.isDependenceAllowed()) {
13909     // C cannot handle TypoExpr nodes on either side of a binop because it
13910     // doesn't handle dependent types properly, so make sure any TypoExprs have
13911     // been dealt with before checking the operands.
13912     LHS = S.CorrectDelayedTyposInExpr(LHS);
13913     RHS = S.CorrectDelayedTyposInExpr(
13914         RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
13915         [Opc, LHS](Expr *E) {
13916           if (Opc != BO_Assign)
13917             return ExprResult(E);
13918           // Avoid correcting the RHS to the same Expr as the LHS.
13919           Decl *D = getDeclFromExpr(E);
13920           return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
13921         });
13922   }
13923   return std::make_pair(LHS, RHS);
13924 }
13925 
13926 /// Returns true if conversion between vectors of halfs and vectors of floats
13927 /// is needed.
needsConversionOfHalfVec(bool OpRequiresConversion,ASTContext & Ctx,Expr * E0,Expr * E1=nullptr)13928 static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
13929                                      Expr *E0, Expr *E1 = nullptr) {
13930   if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
13931       Ctx.getTargetInfo().useFP16ConversionIntrinsics())
13932     return false;
13933 
13934   auto HasVectorOfHalfType = [&Ctx](Expr *E) {
13935     QualType Ty = E->IgnoreImplicit()->getType();
13936 
13937     // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
13938     // to vectors of floats. Although the element type of the vectors is __fp16,
13939     // the vectors shouldn't be treated as storage-only types. See the
13940     // discussion here: https://reviews.llvm.org/rG825235c140e7
13941     if (const VectorType *VT = Ty->getAs<VectorType>()) {
13942       if (VT->getVectorKind() == VectorType::NeonVector)
13943         return false;
13944       return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
13945     }
13946     return false;
13947   };
13948 
13949   return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
13950 }
13951 
13952 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
13953 /// operator @p Opc at location @c TokLoc. This routine only supports
13954 /// built-in operations; ActOnBinOp handles overloaded operators.
CreateBuiltinBinOp(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)13955 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
13956                                     BinaryOperatorKind Opc,
13957                                     Expr *LHSExpr, Expr *RHSExpr) {
13958   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
13959     // The syntax only allows initializer lists on the RHS of assignment,
13960     // so we don't need to worry about accepting invalid code for
13961     // non-assignment operators.
13962     // C++11 5.17p9:
13963     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
13964     //   of x = {} is x = T().
13965     InitializationKind Kind = InitializationKind::CreateDirectList(
13966         RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
13967     InitializedEntity Entity =
13968         InitializedEntity::InitializeTemporary(LHSExpr->getType());
13969     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
13970     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
13971     if (Init.isInvalid())
13972       return Init;
13973     RHSExpr = Init.get();
13974   }
13975 
13976   ExprResult LHS = LHSExpr, RHS = RHSExpr;
13977   QualType ResultTy;     // Result type of the binary operator.
13978   // The following two variables are used for compound assignment operators
13979   QualType CompLHSTy;    // Type of LHS after promotions for computation
13980   QualType CompResultTy; // Type of computation result
13981   ExprValueKind VK = VK_RValue;
13982   ExprObjectKind OK = OK_Ordinary;
13983   bool ConvertHalfVec = false;
13984 
13985   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
13986   if (!LHS.isUsable() || !RHS.isUsable())
13987     return ExprError();
13988 
13989   if (getLangOpts().OpenCL) {
13990     QualType LHSTy = LHSExpr->getType();
13991     QualType RHSTy = RHSExpr->getType();
13992     // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
13993     // the ATOMIC_VAR_INIT macro.
13994     if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
13995       SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
13996       if (BO_Assign == Opc)
13997         Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
13998       else
13999         ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14000       return ExprError();
14001     }
14002 
14003     // OpenCL special types - image, sampler, pipe, and blocks are to be used
14004     // only with a builtin functions and therefore should be disallowed here.
14005     if (LHSTy->isImageType() || RHSTy->isImageType() ||
14006         LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
14007         LHSTy->isPipeType() || RHSTy->isPipeType() ||
14008         LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
14009       ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14010       return ExprError();
14011     }
14012   }
14013 
14014   switch (Opc) {
14015   case BO_Assign:
14016     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
14017     if (getLangOpts().CPlusPlus &&
14018         LHS.get()->getObjectKind() != OK_ObjCProperty) {
14019       VK = LHS.get()->getValueKind();
14020       OK = LHS.get()->getObjectKind();
14021     }
14022     if (!ResultTy.isNull()) {
14023       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14024       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
14025 
14026       // Avoid copying a block to the heap if the block is assigned to a local
14027       // auto variable that is declared in the same scope as the block. This
14028       // optimization is unsafe if the local variable is declared in an outer
14029       // scope. For example:
14030       //
14031       // BlockTy b;
14032       // {
14033       //   b = ^{...};
14034       // }
14035       // // It is unsafe to invoke the block here if it wasn't copied to the
14036       // // heap.
14037       // b();
14038 
14039       if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
14040         if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
14041           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
14042             if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
14043               BE->getBlockDecl()->setCanAvoidCopyToHeap();
14044 
14045       if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
14046         checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
14047                               NTCUC_Assignment, NTCUK_Copy);
14048     }
14049     RecordModifiableNonNullParam(*this, LHS.get());
14050     break;
14051   case BO_PtrMemD:
14052   case BO_PtrMemI:
14053     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
14054                                             Opc == BO_PtrMemI);
14055     break;
14056   case BO_Mul:
14057   case BO_Div:
14058     ConvertHalfVec = true;
14059     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
14060                                            Opc == BO_Div);
14061     break;
14062   case BO_Rem:
14063     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
14064     break;
14065   case BO_Add:
14066     ConvertHalfVec = true;
14067     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
14068     break;
14069   case BO_Sub:
14070     ConvertHalfVec = true;
14071     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
14072     break;
14073   case BO_Shl:
14074   case BO_Shr:
14075     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
14076     break;
14077   case BO_LE:
14078   case BO_LT:
14079   case BO_GE:
14080   case BO_GT:
14081     ConvertHalfVec = true;
14082     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14083     break;
14084   case BO_EQ:
14085   case BO_NE:
14086     ConvertHalfVec = true;
14087     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14088     break;
14089   case BO_Cmp:
14090     ConvertHalfVec = true;
14091     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14092     assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
14093     break;
14094   case BO_And:
14095     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
14096     LLVM_FALLTHROUGH;
14097   case BO_Xor:
14098   case BO_Or:
14099     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14100     break;
14101   case BO_LAnd:
14102   case BO_LOr:
14103     ConvertHalfVec = true;
14104     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
14105     break;
14106   case BO_MulAssign:
14107   case BO_DivAssign:
14108     ConvertHalfVec = true;
14109     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
14110                                                Opc == BO_DivAssign);
14111     CompLHSTy = CompResultTy;
14112     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14113       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14114     break;
14115   case BO_RemAssign:
14116     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
14117     CompLHSTy = CompResultTy;
14118     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14119       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14120     break;
14121   case BO_AddAssign:
14122     ConvertHalfVec = true;
14123     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
14124     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14125       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14126     break;
14127   case BO_SubAssign:
14128     ConvertHalfVec = true;
14129     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
14130     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14131       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14132     break;
14133   case BO_ShlAssign:
14134   case BO_ShrAssign:
14135     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
14136     CompLHSTy = CompResultTy;
14137     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14138       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14139     break;
14140   case BO_AndAssign:
14141   case BO_OrAssign: // fallthrough
14142     DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14143     LLVM_FALLTHROUGH;
14144   case BO_XorAssign:
14145     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14146     CompLHSTy = CompResultTy;
14147     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14148       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14149     break;
14150   case BO_Comma:
14151     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
14152     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
14153       VK = RHS.get()->getValueKind();
14154       OK = RHS.get()->getObjectKind();
14155     }
14156     break;
14157   }
14158   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
14159     return ExprError();
14160 
14161   // Some of the binary operations require promoting operands of half vector to
14162   // float vectors and truncating the result back to half vector. For now, we do
14163   // this only when HalfArgsAndReturn is set (that is, when the target is arm or
14164   // arm64).
14165   assert(
14166       (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
14167                               isVector(LHS.get()->getType(), Context.HalfTy)) &&
14168       "both sides are half vectors or neither sides are");
14169   ConvertHalfVec =
14170       needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
14171 
14172   // Check for array bounds violations for both sides of the BinaryOperator
14173   CheckArrayAccess(LHS.get());
14174   CheckArrayAccess(RHS.get());
14175 
14176   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
14177     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
14178                                                  &Context.Idents.get("object_setClass"),
14179                                                  SourceLocation(), LookupOrdinaryName);
14180     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
14181       SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
14182       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
14183           << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
14184                                         "object_setClass(")
14185           << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
14186                                           ",")
14187           << FixItHint::CreateInsertion(RHSLocEnd, ")");
14188     }
14189     else
14190       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
14191   }
14192   else if (const ObjCIvarRefExpr *OIRE =
14193            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
14194     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
14195 
14196   // Opc is not a compound assignment if CompResultTy is null.
14197   if (CompResultTy.isNull()) {
14198     if (ConvertHalfVec)
14199       return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
14200                                  OpLoc, CurFPFeatureOverrides());
14201     return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
14202                                   VK, OK, OpLoc, CurFPFeatureOverrides());
14203   }
14204 
14205   // Handle compound assignments.
14206   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
14207       OK_ObjCProperty) {
14208     VK = VK_LValue;
14209     OK = LHS.get()->getObjectKind();
14210   }
14211 
14212   // The LHS is not converted to the result type for fixed-point compound
14213   // assignment as the common type is computed on demand. Reset the CompLHSTy
14214   // to the LHS type we would have gotten after unary conversions.
14215   if (CompResultTy->isFixedPointType())
14216     CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
14217 
14218   if (ConvertHalfVec)
14219     return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
14220                                OpLoc, CurFPFeatureOverrides());
14221 
14222   return CompoundAssignOperator::Create(
14223       Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
14224       CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
14225 }
14226 
14227 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
14228 /// operators are mixed in a way that suggests that the programmer forgot that
14229 /// comparison operators have higher precedence. The most typical example of
14230 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
DiagnoseBitwisePrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)14231 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
14232                                       SourceLocation OpLoc, Expr *LHSExpr,
14233                                       Expr *RHSExpr) {
14234   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
14235   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
14236 
14237   // Check that one of the sides is a comparison operator and the other isn't.
14238   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
14239   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
14240   if (isLeftComp == isRightComp)
14241     return;
14242 
14243   // Bitwise operations are sometimes used as eager logical ops.
14244   // Don't diagnose this.
14245   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
14246   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
14247   if (isLeftBitwise || isRightBitwise)
14248     return;
14249 
14250   SourceRange DiagRange = isLeftComp
14251                               ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
14252                               : SourceRange(OpLoc, RHSExpr->getEndLoc());
14253   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
14254   SourceRange ParensRange =
14255       isLeftComp
14256           ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
14257           : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
14258 
14259   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
14260     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
14261   SuggestParentheses(Self, OpLoc,
14262     Self.PDiag(diag::note_precedence_silence) << OpStr,
14263     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
14264   SuggestParentheses(Self, OpLoc,
14265     Self.PDiag(diag::note_precedence_bitwise_first)
14266       << BinaryOperator::getOpcodeStr(Opc),
14267     ParensRange);
14268 }
14269 
14270 /// It accepts a '&&' expr that is inside a '||' one.
14271 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
14272 /// in parentheses.
14273 static void
EmitDiagnosticForLogicalAndInLogicalOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)14274 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
14275                                        BinaryOperator *Bop) {
14276   assert(Bop->getOpcode() == BO_LAnd);
14277   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
14278       << Bop->getSourceRange() << OpLoc;
14279   SuggestParentheses(Self, Bop->getOperatorLoc(),
14280     Self.PDiag(diag::note_precedence_silence)
14281       << Bop->getOpcodeStr(),
14282     Bop->getSourceRange());
14283 }
14284 
14285 /// Returns true if the given expression can be evaluated as a constant
14286 /// 'true'.
EvaluatesAsTrue(Sema & S,Expr * E)14287 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
14288   bool Res;
14289   return !E->isValueDependent() &&
14290          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
14291 }
14292 
14293 /// Returns true if the given expression can be evaluated as a constant
14294 /// 'false'.
EvaluatesAsFalse(Sema & S,Expr * E)14295 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
14296   bool Res;
14297   return !E->isValueDependent() &&
14298          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
14299 }
14300 
14301 /// Look for '&&' in the left hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrLHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)14302 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
14303                                              Expr *LHSExpr, Expr *RHSExpr) {
14304   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
14305     if (Bop->getOpcode() == BO_LAnd) {
14306       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
14307       if (EvaluatesAsFalse(S, RHSExpr))
14308         return;
14309       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
14310       if (!EvaluatesAsTrue(S, Bop->getLHS()))
14311         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
14312     } else if (Bop->getOpcode() == BO_LOr) {
14313       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
14314         // If it's "a || b && 1 || c" we didn't warn earlier for
14315         // "a || b && 1", but warn now.
14316         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
14317           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
14318       }
14319     }
14320   }
14321 }
14322 
14323 /// Look for '&&' in the right hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrRHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)14324 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
14325                                              Expr *LHSExpr, Expr *RHSExpr) {
14326   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
14327     if (Bop->getOpcode() == BO_LAnd) {
14328       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
14329       if (EvaluatesAsFalse(S, LHSExpr))
14330         return;
14331       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
14332       if (!EvaluatesAsTrue(S, Bop->getRHS()))
14333         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
14334     }
14335   }
14336 }
14337 
14338 /// Look for bitwise op in the left or right hand of a bitwise op with
14339 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
14340 /// the '&' expression in parentheses.
DiagnoseBitwiseOpInBitwiseOp(Sema & S,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * SubExpr)14341 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
14342                                          SourceLocation OpLoc, Expr *SubExpr) {
14343   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
14344     if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
14345       S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
14346         << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
14347         << Bop->getSourceRange() << OpLoc;
14348       SuggestParentheses(S, Bop->getOperatorLoc(),
14349         S.PDiag(diag::note_precedence_silence)
14350           << Bop->getOpcodeStr(),
14351         Bop->getSourceRange());
14352     }
14353   }
14354 }
14355 
DiagnoseAdditionInShift(Sema & S,SourceLocation OpLoc,Expr * SubExpr,StringRef Shift)14356 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
14357                                     Expr *SubExpr, StringRef Shift) {
14358   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
14359     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
14360       StringRef Op = Bop->getOpcodeStr();
14361       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
14362           << Bop->getSourceRange() << OpLoc << Shift << Op;
14363       SuggestParentheses(S, Bop->getOperatorLoc(),
14364           S.PDiag(diag::note_precedence_silence) << Op,
14365           Bop->getSourceRange());
14366     }
14367   }
14368 }
14369 
DiagnoseShiftCompare(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)14370 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
14371                                  Expr *LHSExpr, Expr *RHSExpr) {
14372   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
14373   if (!OCE)
14374     return;
14375 
14376   FunctionDecl *FD = OCE->getDirectCallee();
14377   if (!FD || !FD->isOverloadedOperator())
14378     return;
14379 
14380   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
14381   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
14382     return;
14383 
14384   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
14385       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
14386       << (Kind == OO_LessLess);
14387   SuggestParentheses(S, OCE->getOperatorLoc(),
14388                      S.PDiag(diag::note_precedence_silence)
14389                          << (Kind == OO_LessLess ? "<<" : ">>"),
14390                      OCE->getSourceRange());
14391   SuggestParentheses(
14392       S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
14393       SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
14394 }
14395 
14396 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
14397 /// precedence.
DiagnoseBinOpPrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)14398 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
14399                                     SourceLocation OpLoc, Expr *LHSExpr,
14400                                     Expr *RHSExpr){
14401   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
14402   if (BinaryOperator::isBitwiseOp(Opc))
14403     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
14404 
14405   // Diagnose "arg1 & arg2 | arg3"
14406   if ((Opc == BO_Or || Opc == BO_Xor) &&
14407       !OpLoc.isMacroID()/* Don't warn in macros. */) {
14408     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
14409     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
14410   }
14411 
14412   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
14413   // We don't warn for 'assert(a || b && "bad")' since this is safe.
14414   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
14415     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
14416     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
14417   }
14418 
14419   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
14420       || Opc == BO_Shr) {
14421     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
14422     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
14423     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
14424   }
14425 
14426   // Warn on overloaded shift operators and comparisons, such as:
14427   // cout << 5 == 4;
14428   if (BinaryOperator::isComparisonOp(Opc))
14429     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
14430 }
14431 
14432 // Binary Operators.  'Tok' is the token for the operator.
ActOnBinOp(Scope * S,SourceLocation TokLoc,tok::TokenKind Kind,Expr * LHSExpr,Expr * RHSExpr)14433 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
14434                             tok::TokenKind Kind,
14435                             Expr *LHSExpr, Expr *RHSExpr) {
14436   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
14437   assert(LHSExpr && "ActOnBinOp(): missing left expression");
14438   assert(RHSExpr && "ActOnBinOp(): missing right expression");
14439 
14440   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
14441   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
14442 
14443   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
14444 }
14445 
LookupBinOp(Scope * S,SourceLocation OpLoc,BinaryOperatorKind Opc,UnresolvedSetImpl & Functions)14446 void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
14447                        UnresolvedSetImpl &Functions) {
14448   OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
14449   if (OverOp != OO_None && OverOp != OO_Equal)
14450     LookupOverloadedOperatorName(OverOp, S, Functions);
14451 
14452   // In C++20 onwards, we may have a second operator to look up.
14453   if (getLangOpts().CPlusPlus20) {
14454     if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
14455       LookupOverloadedOperatorName(ExtraOp, S, Functions);
14456   }
14457 }
14458 
14459 /// Build an overloaded binary operator expression in the given scope.
BuildOverloadedBinOp(Sema & S,Scope * Sc,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHS,Expr * RHS)14460 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
14461                                        BinaryOperatorKind Opc,
14462                                        Expr *LHS, Expr *RHS) {
14463   switch (Opc) {
14464   case BO_Assign:
14465   case BO_DivAssign:
14466   case BO_RemAssign:
14467   case BO_SubAssign:
14468   case BO_AndAssign:
14469   case BO_OrAssign:
14470   case BO_XorAssign:
14471     DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
14472     CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
14473     break;
14474   default:
14475     break;
14476   }
14477 
14478   // Find all of the overloaded operators visible from this point.
14479   UnresolvedSet<16> Functions;
14480   S.LookupBinOp(Sc, OpLoc, Opc, Functions);
14481 
14482   // Build the (potentially-overloaded, potentially-dependent)
14483   // binary operation.
14484   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
14485 }
14486 
BuildBinOp(Scope * S,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)14487 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
14488                             BinaryOperatorKind Opc,
14489                             Expr *LHSExpr, Expr *RHSExpr) {
14490   ExprResult LHS, RHS;
14491   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
14492   if (!LHS.isUsable() || !RHS.isUsable())
14493     return ExprError();
14494   LHSExpr = LHS.get();
14495   RHSExpr = RHS.get();
14496 
14497   // We want to end up calling one of checkPseudoObjectAssignment
14498   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
14499   // both expressions are overloadable or either is type-dependent),
14500   // or CreateBuiltinBinOp (in any other case).  We also want to get
14501   // any placeholder types out of the way.
14502 
14503   // Handle pseudo-objects in the LHS.
14504   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
14505     // Assignments with a pseudo-object l-value need special analysis.
14506     if (pty->getKind() == BuiltinType::PseudoObject &&
14507         BinaryOperator::isAssignmentOp(Opc))
14508       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
14509 
14510     // Don't resolve overloads if the other type is overloadable.
14511     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
14512       // We can't actually test that if we still have a placeholder,
14513       // though.  Fortunately, none of the exceptions we see in that
14514       // code below are valid when the LHS is an overload set.  Note
14515       // that an overload set can be dependently-typed, but it never
14516       // instantiates to having an overloadable type.
14517       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
14518       if (resolvedRHS.isInvalid()) return ExprError();
14519       RHSExpr = resolvedRHS.get();
14520 
14521       if (RHSExpr->isTypeDependent() ||
14522           RHSExpr->getType()->isOverloadableType())
14523         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14524     }
14525 
14526     // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
14527     // template, diagnose the missing 'template' keyword instead of diagnosing
14528     // an invalid use of a bound member function.
14529     //
14530     // Note that "A::x < b" might be valid if 'b' has an overloadable type due
14531     // to C++1z [over.over]/1.4, but we already checked for that case above.
14532     if (Opc == BO_LT && inTemplateInstantiation() &&
14533         (pty->getKind() == BuiltinType::BoundMember ||
14534          pty->getKind() == BuiltinType::Overload)) {
14535       auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
14536       if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
14537           std::any_of(OE->decls_begin(), OE->decls_end(), [](NamedDecl *ND) {
14538             return isa<FunctionTemplateDecl>(ND);
14539           })) {
14540         Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
14541                                 : OE->getNameLoc(),
14542              diag::err_template_kw_missing)
14543           << OE->getName().getAsString() << "";
14544         return ExprError();
14545       }
14546     }
14547 
14548     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
14549     if (LHS.isInvalid()) return ExprError();
14550     LHSExpr = LHS.get();
14551   }
14552 
14553   // Handle pseudo-objects in the RHS.
14554   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
14555     // An overload in the RHS can potentially be resolved by the type
14556     // being assigned to.
14557     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
14558       if (getLangOpts().CPlusPlus &&
14559           (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
14560            LHSExpr->getType()->isOverloadableType()))
14561         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14562 
14563       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
14564     }
14565 
14566     // Don't resolve overloads if the other type is overloadable.
14567     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
14568         LHSExpr->getType()->isOverloadableType())
14569       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14570 
14571     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
14572     if (!resolvedRHS.isUsable()) return ExprError();
14573     RHSExpr = resolvedRHS.get();
14574   }
14575 
14576   if (getLangOpts().CPlusPlus) {
14577     // If either expression is type-dependent, always build an
14578     // overloaded op.
14579     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
14580       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14581 
14582     // Otherwise, build an overloaded op if either expression has an
14583     // overloadable type.
14584     if (LHSExpr->getType()->isOverloadableType() ||
14585         RHSExpr->getType()->isOverloadableType())
14586       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14587   }
14588 
14589   if (getLangOpts().RecoveryAST &&
14590       (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
14591     assert(!getLangOpts().CPlusPlus);
14592     assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
14593            "Should only occur in error-recovery path.");
14594     if (BinaryOperator::isCompoundAssignmentOp(Opc))
14595       // C [6.15.16] p3:
14596       // An assignment expression has the value of the left operand after the
14597       // assignment, but is not an lvalue.
14598       return CompoundAssignOperator::Create(
14599           Context, LHSExpr, RHSExpr, Opc,
14600           LHSExpr->getType().getUnqualifiedType(), VK_RValue, OK_Ordinary,
14601           OpLoc, CurFPFeatureOverrides());
14602     QualType ResultType;
14603     switch (Opc) {
14604     case BO_Assign:
14605       ResultType = LHSExpr->getType().getUnqualifiedType();
14606       break;
14607     case BO_LT:
14608     case BO_GT:
14609     case BO_LE:
14610     case BO_GE:
14611     case BO_EQ:
14612     case BO_NE:
14613     case BO_LAnd:
14614     case BO_LOr:
14615       // These operators have a fixed result type regardless of operands.
14616       ResultType = Context.IntTy;
14617       break;
14618     case BO_Comma:
14619       ResultType = RHSExpr->getType();
14620       break;
14621     default:
14622       ResultType = Context.DependentTy;
14623       break;
14624     }
14625     return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
14626                                   VK_RValue, OK_Ordinary, OpLoc,
14627                                   CurFPFeatureOverrides());
14628   }
14629 
14630   // Build a built-in binary operation.
14631   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
14632 }
14633 
isOverflowingIntegerType(ASTContext & Ctx,QualType T)14634 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
14635   if (T.isNull() || T->isDependentType())
14636     return false;
14637 
14638   if (!T->isPromotableIntegerType())
14639     return true;
14640 
14641   return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
14642 }
14643 
CreateBuiltinUnaryOp(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * InputExpr)14644 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
14645                                       UnaryOperatorKind Opc,
14646                                       Expr *InputExpr) {
14647   ExprResult Input = InputExpr;
14648   ExprValueKind VK = VK_RValue;
14649   ExprObjectKind OK = OK_Ordinary;
14650   QualType resultType;
14651   bool CanOverflow = false;
14652 
14653   bool ConvertHalfVec = false;
14654   if (getLangOpts().OpenCL) {
14655     QualType Ty = InputExpr->getType();
14656     // The only legal unary operation for atomics is '&'.
14657     if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
14658     // OpenCL special types - image, sampler, pipe, and blocks are to be used
14659     // only with a builtin functions and therefore should be disallowed here.
14660         (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
14661         || Ty->isBlockPointerType())) {
14662       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14663                        << InputExpr->getType()
14664                        << Input.get()->getSourceRange());
14665     }
14666   }
14667 
14668   switch (Opc) {
14669   case UO_PreInc:
14670   case UO_PreDec:
14671   case UO_PostInc:
14672   case UO_PostDec:
14673     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
14674                                                 OpLoc,
14675                                                 Opc == UO_PreInc ||
14676                                                 Opc == UO_PostInc,
14677                                                 Opc == UO_PreInc ||
14678                                                 Opc == UO_PreDec);
14679     CanOverflow = isOverflowingIntegerType(Context, resultType);
14680     break;
14681   case UO_AddrOf:
14682     resultType = CheckAddressOfOperand(Input, OpLoc);
14683     CheckAddressOfNoDeref(InputExpr);
14684     RecordModifiableNonNullParam(*this, InputExpr);
14685     break;
14686   case UO_Deref: {
14687     Input = DefaultFunctionArrayLvalueConversion(Input.get());
14688     if (Input.isInvalid()) return ExprError();
14689     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
14690     break;
14691   }
14692   case UO_Plus:
14693   case UO_Minus:
14694     CanOverflow = Opc == UO_Minus &&
14695                   isOverflowingIntegerType(Context, Input.get()->getType());
14696     Input = UsualUnaryConversions(Input.get());
14697     if (Input.isInvalid()) return ExprError();
14698     // Unary plus and minus require promoting an operand of half vector to a
14699     // float vector and truncating the result back to a half vector. For now, we
14700     // do this only when HalfArgsAndReturns is set (that is, when the target is
14701     // arm or arm64).
14702     ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
14703 
14704     // If the operand is a half vector, promote it to a float vector.
14705     if (ConvertHalfVec)
14706       Input = convertVector(Input.get(), Context.FloatTy, *this);
14707     resultType = Input.get()->getType();
14708     if (resultType->isDependentType())
14709       break;
14710     if (resultType->isArithmeticType()) // C99 6.5.3.3p1
14711       break;
14712     else if (resultType->isVectorType() &&
14713              // The z vector extensions don't allow + or - with bool vectors.
14714              (!Context.getLangOpts().ZVector ||
14715               resultType->castAs<VectorType>()->getVectorKind() !=
14716               VectorType::AltiVecBool))
14717       break;
14718     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
14719              Opc == UO_Plus &&
14720              resultType->isPointerType())
14721       break;
14722 
14723     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14724       << resultType << Input.get()->getSourceRange());
14725 
14726   case UO_Not: // bitwise complement
14727     Input = UsualUnaryConversions(Input.get());
14728     if (Input.isInvalid())
14729       return ExprError();
14730     resultType = Input.get()->getType();
14731     if (resultType->isDependentType())
14732       break;
14733     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
14734     if (resultType->isComplexType() || resultType->isComplexIntegerType())
14735       // C99 does not support '~' for complex conjugation.
14736       Diag(OpLoc, diag::ext_integer_complement_complex)
14737           << resultType << Input.get()->getSourceRange();
14738     else if (resultType->hasIntegerRepresentation())
14739       break;
14740     else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
14741       // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
14742       // on vector float types.
14743       QualType T = resultType->castAs<ExtVectorType>()->getElementType();
14744       if (!T->isIntegerType())
14745         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14746                           << resultType << Input.get()->getSourceRange());
14747     } else {
14748       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14749                        << resultType << Input.get()->getSourceRange());
14750     }
14751     break;
14752 
14753   case UO_LNot: // logical negation
14754     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
14755     Input = DefaultFunctionArrayLvalueConversion(Input.get());
14756     if (Input.isInvalid()) return ExprError();
14757     resultType = Input.get()->getType();
14758 
14759     // Though we still have to promote half FP to float...
14760     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
14761       Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
14762       resultType = Context.FloatTy;
14763     }
14764 
14765     if (resultType->isDependentType())
14766       break;
14767     if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
14768       // C99 6.5.3.3p1: ok, fallthrough;
14769       if (Context.getLangOpts().CPlusPlus) {
14770         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
14771         // operand contextually converted to bool.
14772         Input = ImpCastExprToType(Input.get(), Context.BoolTy,
14773                                   ScalarTypeToBooleanCastKind(resultType));
14774       } else if (Context.getLangOpts().OpenCL &&
14775                  Context.getLangOpts().OpenCLVersion < 120) {
14776         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
14777         // operate on scalar float types.
14778         if (!resultType->isIntegerType() && !resultType->isPointerType())
14779           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14780                            << resultType << Input.get()->getSourceRange());
14781       }
14782     } else if (resultType->isExtVectorType()) {
14783       if (Context.getLangOpts().OpenCL &&
14784           Context.getLangOpts().OpenCLVersion < 120 &&
14785           !Context.getLangOpts().OpenCLCPlusPlus) {
14786         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
14787         // operate on vector float types.
14788         QualType T = resultType->castAs<ExtVectorType>()->getElementType();
14789         if (!T->isIntegerType())
14790           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14791                            << resultType << Input.get()->getSourceRange());
14792       }
14793       // Vector logical not returns the signed variant of the operand type.
14794       resultType = GetSignedVectorType(resultType);
14795       break;
14796     } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
14797       const VectorType *VTy = resultType->castAs<VectorType>();
14798       if (VTy->getVectorKind() != VectorType::GenericVector)
14799         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14800                          << resultType << Input.get()->getSourceRange());
14801 
14802       // Vector logical not returns the signed variant of the operand type.
14803       resultType = GetSignedVectorType(resultType);
14804       break;
14805     } else {
14806       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14807         << resultType << Input.get()->getSourceRange());
14808     }
14809 
14810     // LNot always has type int. C99 6.5.3.3p5.
14811     // In C++, it's bool. C++ 5.3.1p8
14812     resultType = Context.getLogicalOperationType();
14813     break;
14814   case UO_Real:
14815   case UO_Imag:
14816     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
14817     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
14818     // complex l-values to ordinary l-values and all other values to r-values.
14819     if (Input.isInvalid()) return ExprError();
14820     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
14821       if (Input.get()->getValueKind() != VK_RValue &&
14822           Input.get()->getObjectKind() == OK_Ordinary)
14823         VK = Input.get()->getValueKind();
14824     } else if (!getLangOpts().CPlusPlus) {
14825       // In C, a volatile scalar is read by __imag. In C++, it is not.
14826       Input = DefaultLvalueConversion(Input.get());
14827     }
14828     break;
14829   case UO_Extension:
14830     resultType = Input.get()->getType();
14831     VK = Input.get()->getValueKind();
14832     OK = Input.get()->getObjectKind();
14833     break;
14834   case UO_Coawait:
14835     // It's unnecessary to represent the pass-through operator co_await in the
14836     // AST; just return the input expression instead.
14837     assert(!Input.get()->getType()->isDependentType() &&
14838                    "the co_await expression must be non-dependant before "
14839                    "building operator co_await");
14840     return Input;
14841   }
14842   if (resultType.isNull() || Input.isInvalid())
14843     return ExprError();
14844 
14845   // Check for array bounds violations in the operand of the UnaryOperator,
14846   // except for the '*' and '&' operators that have to be handled specially
14847   // by CheckArrayAccess (as there are special cases like &array[arraysize]
14848   // that are explicitly defined as valid by the standard).
14849   if (Opc != UO_AddrOf && Opc != UO_Deref)
14850     CheckArrayAccess(Input.get());
14851 
14852   auto *UO =
14853       UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
14854                             OpLoc, CanOverflow, CurFPFeatureOverrides());
14855 
14856   if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
14857       !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
14858       !isUnevaluatedContext())
14859     ExprEvalContexts.back().PossibleDerefs.insert(UO);
14860 
14861   // Convert the result back to a half vector.
14862   if (ConvertHalfVec)
14863     return convertVector(UO, Context.HalfTy, *this);
14864   return UO;
14865 }
14866 
14867 /// Determine whether the given expression is a qualified member
14868 /// access expression, of a form that could be turned into a pointer to member
14869 /// with the address-of operator.
isQualifiedMemberAccess(Expr * E)14870 bool Sema::isQualifiedMemberAccess(Expr *E) {
14871   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
14872     if (!DRE->getQualifier())
14873       return false;
14874 
14875     ValueDecl *VD = DRE->getDecl();
14876     if (!VD->isCXXClassMember())
14877       return false;
14878 
14879     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
14880       return true;
14881     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
14882       return Method->isInstance();
14883 
14884     return false;
14885   }
14886 
14887   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
14888     if (!ULE->getQualifier())
14889       return false;
14890 
14891     for (NamedDecl *D : ULE->decls()) {
14892       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
14893         if (Method->isInstance())
14894           return true;
14895       } else {
14896         // Overload set does not contain methods.
14897         break;
14898       }
14899     }
14900 
14901     return false;
14902   }
14903 
14904   return false;
14905 }
14906 
BuildUnaryOp(Scope * S,SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * Input)14907 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
14908                               UnaryOperatorKind Opc, Expr *Input) {
14909   // First things first: handle placeholders so that the
14910   // overloaded-operator check considers the right type.
14911   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
14912     // Increment and decrement of pseudo-object references.
14913     if (pty->getKind() == BuiltinType::PseudoObject &&
14914         UnaryOperator::isIncrementDecrementOp(Opc))
14915       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
14916 
14917     // extension is always a builtin operator.
14918     if (Opc == UO_Extension)
14919       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
14920 
14921     // & gets special logic for several kinds of placeholder.
14922     // The builtin code knows what to do.
14923     if (Opc == UO_AddrOf &&
14924         (pty->getKind() == BuiltinType::Overload ||
14925          pty->getKind() == BuiltinType::UnknownAny ||
14926          pty->getKind() == BuiltinType::BoundMember))
14927       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
14928 
14929     // Anything else needs to be handled now.
14930     ExprResult Result = CheckPlaceholderExpr(Input);
14931     if (Result.isInvalid()) return ExprError();
14932     Input = Result.get();
14933   }
14934 
14935   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
14936       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
14937       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
14938     // Find all of the overloaded operators visible from this point.
14939     UnresolvedSet<16> Functions;
14940     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
14941     if (S && OverOp != OO_None)
14942       LookupOverloadedOperatorName(OverOp, S, Functions);
14943 
14944     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
14945   }
14946 
14947   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
14948 }
14949 
14950 // Unary Operators.  'Tok' is the token for the operator.
ActOnUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Op,Expr * Input)14951 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
14952                               tok::TokenKind Op, Expr *Input) {
14953   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
14954 }
14955 
14956 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ActOnAddrLabel(SourceLocation OpLoc,SourceLocation LabLoc,LabelDecl * TheDecl)14957 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
14958                                 LabelDecl *TheDecl) {
14959   TheDecl->markUsed(Context);
14960   // Create the AST node.  The address of a label always has type 'void*'.
14961   return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
14962                                      Context.getPointerType(Context.VoidTy));
14963 }
14964 
ActOnStartStmtExpr()14965 void Sema::ActOnStartStmtExpr() {
14966   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
14967 }
14968 
ActOnStmtExprError()14969 void Sema::ActOnStmtExprError() {
14970   // Note that function is also called by TreeTransform when leaving a
14971   // StmtExpr scope without rebuilding anything.
14972 
14973   DiscardCleanupsInEvaluationContext();
14974   PopExpressionEvaluationContext();
14975 }
14976 
ActOnStmtExpr(Scope * S,SourceLocation LPLoc,Stmt * SubStmt,SourceLocation RPLoc)14977 ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
14978                                SourceLocation RPLoc) {
14979   return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
14980 }
14981 
BuildStmtExpr(SourceLocation LPLoc,Stmt * SubStmt,SourceLocation RPLoc,unsigned TemplateDepth)14982 ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
14983                                SourceLocation RPLoc, unsigned TemplateDepth) {
14984   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
14985   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
14986 
14987   if (hasAnyUnrecoverableErrorsInThisFunction())
14988     DiscardCleanupsInEvaluationContext();
14989   assert(!Cleanup.exprNeedsCleanups() &&
14990          "cleanups within StmtExpr not correctly bound!");
14991   PopExpressionEvaluationContext();
14992 
14993   // FIXME: there are a variety of strange constraints to enforce here, for
14994   // example, it is not possible to goto into a stmt expression apparently.
14995   // More semantic analysis is needed.
14996 
14997   // If there are sub-stmts in the compound stmt, take the type of the last one
14998   // as the type of the stmtexpr.
14999   QualType Ty = Context.VoidTy;
15000   bool StmtExprMayBindToTemp = false;
15001   if (!Compound->body_empty()) {
15002     // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
15003     if (const auto *LastStmt =
15004             dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
15005       if (const Expr *Value = LastStmt->getExprStmt()) {
15006         StmtExprMayBindToTemp = true;
15007         Ty = Value->getType();
15008       }
15009     }
15010   }
15011 
15012   // FIXME: Check that expression type is complete/non-abstract; statement
15013   // expressions are not lvalues.
15014   Expr *ResStmtExpr =
15015       new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
15016   if (StmtExprMayBindToTemp)
15017     return MaybeBindToTemporary(ResStmtExpr);
15018   return ResStmtExpr;
15019 }
15020 
ActOnStmtExprResult(ExprResult ER)15021 ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
15022   if (ER.isInvalid())
15023     return ExprError();
15024 
15025   // Do function/array conversion on the last expression, but not
15026   // lvalue-to-rvalue.  However, initialize an unqualified type.
15027   ER = DefaultFunctionArrayConversion(ER.get());
15028   if (ER.isInvalid())
15029     return ExprError();
15030   Expr *E = ER.get();
15031 
15032   if (E->isTypeDependent())
15033     return E;
15034 
15035   // In ARC, if the final expression ends in a consume, splice
15036   // the consume out and bind it later.  In the alternate case
15037   // (when dealing with a retainable type), the result
15038   // initialization will create a produce.  In both cases the
15039   // result will be +1, and we'll need to balance that out with
15040   // a bind.
15041   auto *Cast = dyn_cast<ImplicitCastExpr>(E);
15042   if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
15043     return Cast->getSubExpr();
15044 
15045   // FIXME: Provide a better location for the initialization.
15046   return PerformCopyInitialization(
15047       InitializedEntity::InitializeStmtExprResult(
15048           E->getBeginLoc(), E->getType().getUnqualifiedType()),
15049       SourceLocation(), E);
15050 }
15051 
BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,TypeSourceInfo * TInfo,ArrayRef<OffsetOfComponent> Components,SourceLocation RParenLoc)15052 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
15053                                       TypeSourceInfo *TInfo,
15054                                       ArrayRef<OffsetOfComponent> Components,
15055                                       SourceLocation RParenLoc) {
15056   QualType ArgTy = TInfo->getType();
15057   bool Dependent = ArgTy->isDependentType();
15058   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
15059 
15060   // We must have at least one component that refers to the type, and the first
15061   // one is known to be a field designator.  Verify that the ArgTy represents
15062   // a struct/union/class.
15063   if (!Dependent && !ArgTy->isRecordType())
15064     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
15065                        << ArgTy << TypeRange);
15066 
15067   // Type must be complete per C99 7.17p3 because a declaring a variable
15068   // with an incomplete type would be ill-formed.
15069   if (!Dependent
15070       && RequireCompleteType(BuiltinLoc, ArgTy,
15071                              diag::err_offsetof_incomplete_type, TypeRange))
15072     return ExprError();
15073 
15074   bool DidWarnAboutNonPOD = false;
15075   QualType CurrentType = ArgTy;
15076   SmallVector<OffsetOfNode, 4> Comps;
15077   SmallVector<Expr*, 4> Exprs;
15078   for (const OffsetOfComponent &OC : Components) {
15079     if (OC.isBrackets) {
15080       // Offset of an array sub-field.  TODO: Should we allow vector elements?
15081       if (!CurrentType->isDependentType()) {
15082         const ArrayType *AT = Context.getAsArrayType(CurrentType);
15083         if(!AT)
15084           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
15085                            << CurrentType);
15086         CurrentType = AT->getElementType();
15087       } else
15088         CurrentType = Context.DependentTy;
15089 
15090       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
15091       if (IdxRval.isInvalid())
15092         return ExprError();
15093       Expr *Idx = IdxRval.get();
15094 
15095       // The expression must be an integral expression.
15096       // FIXME: An integral constant expression?
15097       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
15098           !Idx->getType()->isIntegerType())
15099         return ExprError(
15100             Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
15101             << Idx->getSourceRange());
15102 
15103       // Record this array index.
15104       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
15105       Exprs.push_back(Idx);
15106       continue;
15107     }
15108 
15109     // Offset of a field.
15110     if (CurrentType->isDependentType()) {
15111       // We have the offset of a field, but we can't look into the dependent
15112       // type. Just record the identifier of the field.
15113       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
15114       CurrentType = Context.DependentTy;
15115       continue;
15116     }
15117 
15118     // We need to have a complete type to look into.
15119     if (RequireCompleteType(OC.LocStart, CurrentType,
15120                             diag::err_offsetof_incomplete_type))
15121       return ExprError();
15122 
15123     // Look for the designated field.
15124     const RecordType *RC = CurrentType->getAs<RecordType>();
15125     if (!RC)
15126       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
15127                        << CurrentType);
15128     RecordDecl *RD = RC->getDecl();
15129 
15130     // C++ [lib.support.types]p5:
15131     //   The macro offsetof accepts a restricted set of type arguments in this
15132     //   International Standard. type shall be a POD structure or a POD union
15133     //   (clause 9).
15134     // C++11 [support.types]p4:
15135     //   If type is not a standard-layout class (Clause 9), the results are
15136     //   undefined.
15137     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
15138       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
15139       unsigned DiagID =
15140         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
15141                             : diag::ext_offsetof_non_pod_type;
15142 
15143       if (!IsSafe && !DidWarnAboutNonPOD &&
15144           DiagRuntimeBehavior(BuiltinLoc, nullptr,
15145                               PDiag(DiagID)
15146                               << SourceRange(Components[0].LocStart, OC.LocEnd)
15147                               << CurrentType))
15148         DidWarnAboutNonPOD = true;
15149     }
15150 
15151     // Look for the field.
15152     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
15153     LookupQualifiedName(R, RD);
15154     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
15155     IndirectFieldDecl *IndirectMemberDecl = nullptr;
15156     if (!MemberDecl) {
15157       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
15158         MemberDecl = IndirectMemberDecl->getAnonField();
15159     }
15160 
15161     if (!MemberDecl)
15162       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
15163                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
15164                                                               OC.LocEnd));
15165 
15166     // C99 7.17p3:
15167     //   (If the specified member is a bit-field, the behavior is undefined.)
15168     //
15169     // We diagnose this as an error.
15170     if (MemberDecl->isBitField()) {
15171       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
15172         << MemberDecl->getDeclName()
15173         << SourceRange(BuiltinLoc, RParenLoc);
15174       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
15175       return ExprError();
15176     }
15177 
15178     RecordDecl *Parent = MemberDecl->getParent();
15179     if (IndirectMemberDecl)
15180       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
15181 
15182     // If the member was found in a base class, introduce OffsetOfNodes for
15183     // the base class indirections.
15184     CXXBasePaths Paths;
15185     if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
15186                       Paths)) {
15187       if (Paths.getDetectedVirtual()) {
15188         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
15189           << MemberDecl->getDeclName()
15190           << SourceRange(BuiltinLoc, RParenLoc);
15191         return ExprError();
15192       }
15193 
15194       CXXBasePath &Path = Paths.front();
15195       for (const CXXBasePathElement &B : Path)
15196         Comps.push_back(OffsetOfNode(B.Base));
15197     }
15198 
15199     if (IndirectMemberDecl) {
15200       for (auto *FI : IndirectMemberDecl->chain()) {
15201         assert(isa<FieldDecl>(FI));
15202         Comps.push_back(OffsetOfNode(OC.LocStart,
15203                                      cast<FieldDecl>(FI), OC.LocEnd));
15204       }
15205     } else
15206       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
15207 
15208     CurrentType = MemberDecl->getType().getNonReferenceType();
15209   }
15210 
15211   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
15212                               Comps, Exprs, RParenLoc);
15213 }
15214 
ActOnBuiltinOffsetOf(Scope * S,SourceLocation BuiltinLoc,SourceLocation TypeLoc,ParsedType ParsedArgTy,ArrayRef<OffsetOfComponent> Components,SourceLocation RParenLoc)15215 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
15216                                       SourceLocation BuiltinLoc,
15217                                       SourceLocation TypeLoc,
15218                                       ParsedType ParsedArgTy,
15219                                       ArrayRef<OffsetOfComponent> Components,
15220                                       SourceLocation RParenLoc) {
15221 
15222   TypeSourceInfo *ArgTInfo;
15223   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
15224   if (ArgTy.isNull())
15225     return ExprError();
15226 
15227   if (!ArgTInfo)
15228     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
15229 
15230   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
15231 }
15232 
15233 
ActOnChooseExpr(SourceLocation BuiltinLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr,SourceLocation RPLoc)15234 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
15235                                  Expr *CondExpr,
15236                                  Expr *LHSExpr, Expr *RHSExpr,
15237                                  SourceLocation RPLoc) {
15238   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
15239 
15240   ExprValueKind VK = VK_RValue;
15241   ExprObjectKind OK = OK_Ordinary;
15242   QualType resType;
15243   bool CondIsTrue = false;
15244   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
15245     resType = Context.DependentTy;
15246   } else {
15247     // The conditional expression is required to be a constant expression.
15248     llvm::APSInt condEval(32);
15249     ExprResult CondICE = VerifyIntegerConstantExpression(
15250         CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
15251     if (CondICE.isInvalid())
15252       return ExprError();
15253     CondExpr = CondICE.get();
15254     CondIsTrue = condEval.getZExtValue();
15255 
15256     // If the condition is > zero, then the AST type is the same as the LHSExpr.
15257     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
15258 
15259     resType = ActiveExpr->getType();
15260     VK = ActiveExpr->getValueKind();
15261     OK = ActiveExpr->getObjectKind();
15262   }
15263 
15264   return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
15265                                   resType, VK, OK, RPLoc, CondIsTrue);
15266 }
15267 
15268 //===----------------------------------------------------------------------===//
15269 // Clang Extensions.
15270 //===----------------------------------------------------------------------===//
15271 
15272 /// ActOnBlockStart - This callback is invoked when a block literal is started.
ActOnBlockStart(SourceLocation CaretLoc,Scope * CurScope)15273 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
15274   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
15275 
15276   if (LangOpts.CPlusPlus) {
15277     MangleNumberingContext *MCtx;
15278     Decl *ManglingContextDecl;
15279     std::tie(MCtx, ManglingContextDecl) =
15280         getCurrentMangleNumberContext(Block->getDeclContext());
15281     if (MCtx) {
15282       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
15283       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
15284     }
15285   }
15286 
15287   PushBlockScope(CurScope, Block);
15288   CurContext->addDecl(Block);
15289   if (CurScope)
15290     PushDeclContext(CurScope, Block);
15291   else
15292     CurContext = Block;
15293 
15294   getCurBlock()->HasImplicitReturnType = true;
15295 
15296   // Enter a new evaluation context to insulate the block from any
15297   // cleanups from the enclosing full-expression.
15298   PushExpressionEvaluationContext(
15299       ExpressionEvaluationContext::PotentiallyEvaluated);
15300 }
15301 
ActOnBlockArguments(SourceLocation CaretLoc,Declarator & ParamInfo,Scope * CurScope)15302 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
15303                                Scope *CurScope) {
15304   assert(ParamInfo.getIdentifier() == nullptr &&
15305          "block-id should have no identifier!");
15306   assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
15307   BlockScopeInfo *CurBlock = getCurBlock();
15308 
15309   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
15310   QualType T = Sig->getType();
15311 
15312   // FIXME: We should allow unexpanded parameter packs here, but that would,
15313   // in turn, make the block expression contain unexpanded parameter packs.
15314   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
15315     // Drop the parameters.
15316     FunctionProtoType::ExtProtoInfo EPI;
15317     EPI.HasTrailingReturn = false;
15318     EPI.TypeQuals.addConst();
15319     T = Context.getFunctionType(Context.DependentTy, None, EPI);
15320     Sig = Context.getTrivialTypeSourceInfo(T);
15321   }
15322 
15323   // GetTypeForDeclarator always produces a function type for a block
15324   // literal signature.  Furthermore, it is always a FunctionProtoType
15325   // unless the function was written with a typedef.
15326   assert(T->isFunctionType() &&
15327          "GetTypeForDeclarator made a non-function block signature");
15328 
15329   // Look for an explicit signature in that function type.
15330   FunctionProtoTypeLoc ExplicitSignature;
15331 
15332   if ((ExplicitSignature = Sig->getTypeLoc()
15333                                .getAsAdjusted<FunctionProtoTypeLoc>())) {
15334 
15335     // Check whether that explicit signature was synthesized by
15336     // GetTypeForDeclarator.  If so, don't save that as part of the
15337     // written signature.
15338     if (ExplicitSignature.getLocalRangeBegin() ==
15339         ExplicitSignature.getLocalRangeEnd()) {
15340       // This would be much cheaper if we stored TypeLocs instead of
15341       // TypeSourceInfos.
15342       TypeLoc Result = ExplicitSignature.getReturnLoc();
15343       unsigned Size = Result.getFullDataSize();
15344       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
15345       Sig->getTypeLoc().initializeFullCopy(Result, Size);
15346 
15347       ExplicitSignature = FunctionProtoTypeLoc();
15348     }
15349   }
15350 
15351   CurBlock->TheDecl->setSignatureAsWritten(Sig);
15352   CurBlock->FunctionType = T;
15353 
15354   const auto *Fn = T->castAs<FunctionType>();
15355   QualType RetTy = Fn->getReturnType();
15356   bool isVariadic =
15357       (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
15358 
15359   CurBlock->TheDecl->setIsVariadic(isVariadic);
15360 
15361   // Context.DependentTy is used as a placeholder for a missing block
15362   // return type.  TODO:  what should we do with declarators like:
15363   //   ^ * { ... }
15364   // If the answer is "apply template argument deduction"....
15365   if (RetTy != Context.DependentTy) {
15366     CurBlock->ReturnType = RetTy;
15367     CurBlock->TheDecl->setBlockMissingReturnType(false);
15368     CurBlock->HasImplicitReturnType = false;
15369   }
15370 
15371   // Push block parameters from the declarator if we had them.
15372   SmallVector<ParmVarDecl*, 8> Params;
15373   if (ExplicitSignature) {
15374     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
15375       ParmVarDecl *Param = ExplicitSignature.getParam(I);
15376       if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
15377           !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
15378         // Diagnose this as an extension in C17 and earlier.
15379         if (!getLangOpts().C2x)
15380           Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
15381       }
15382       Params.push_back(Param);
15383     }
15384 
15385   // Fake up parameter variables if we have a typedef, like
15386   //   ^ fntype { ... }
15387   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
15388     for (const auto &I : Fn->param_types()) {
15389       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
15390           CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
15391       Params.push_back(Param);
15392     }
15393   }
15394 
15395   // Set the parameters on the block decl.
15396   if (!Params.empty()) {
15397     CurBlock->TheDecl->setParams(Params);
15398     CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
15399                              /*CheckParameterNames=*/false);
15400   }
15401 
15402   // Finally we can process decl attributes.
15403   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
15404 
15405   // Put the parameter variables in scope.
15406   for (auto AI : CurBlock->TheDecl->parameters()) {
15407     AI->setOwningFunction(CurBlock->TheDecl);
15408 
15409     // If this has an identifier, add it to the scope stack.
15410     if (AI->getIdentifier()) {
15411       CheckShadow(CurBlock->TheScope, AI);
15412 
15413       PushOnScopeChains(AI, CurBlock->TheScope);
15414     }
15415   }
15416 }
15417 
15418 /// ActOnBlockError - If there is an error parsing a block, this callback
15419 /// is invoked to pop the information about the block from the action impl.
ActOnBlockError(SourceLocation CaretLoc,Scope * CurScope)15420 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
15421   // Leave the expression-evaluation context.
15422   DiscardCleanupsInEvaluationContext();
15423   PopExpressionEvaluationContext();
15424 
15425   // Pop off CurBlock, handle nested blocks.
15426   PopDeclContext();
15427   PopFunctionScopeInfo();
15428 }
15429 
15430 /// ActOnBlockStmtExpr - This is called when the body of a block statement
15431 /// literal was successfully completed.  ^(int x){...}
ActOnBlockStmtExpr(SourceLocation CaretLoc,Stmt * Body,Scope * CurScope)15432 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
15433                                     Stmt *Body, Scope *CurScope) {
15434   // If blocks are disabled, emit an error.
15435   if (!LangOpts.Blocks)
15436     Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
15437 
15438   // Leave the expression-evaluation context.
15439   if (hasAnyUnrecoverableErrorsInThisFunction())
15440     DiscardCleanupsInEvaluationContext();
15441   assert(!Cleanup.exprNeedsCleanups() &&
15442          "cleanups within block not correctly bound!");
15443   PopExpressionEvaluationContext();
15444 
15445   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
15446   BlockDecl *BD = BSI->TheDecl;
15447 
15448   if (BSI->HasImplicitReturnType)
15449     deduceClosureReturnType(*BSI);
15450 
15451   QualType RetTy = Context.VoidTy;
15452   if (!BSI->ReturnType.isNull())
15453     RetTy = BSI->ReturnType;
15454 
15455   bool NoReturn = BD->hasAttr<NoReturnAttr>();
15456   QualType BlockTy;
15457 
15458   // If the user wrote a function type in some form, try to use that.
15459   if (!BSI->FunctionType.isNull()) {
15460     const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
15461 
15462     FunctionType::ExtInfo Ext = FTy->getExtInfo();
15463     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
15464 
15465     // Turn protoless block types into nullary block types.
15466     if (isa<FunctionNoProtoType>(FTy)) {
15467       FunctionProtoType::ExtProtoInfo EPI;
15468       EPI.ExtInfo = Ext;
15469       BlockTy = Context.getFunctionType(RetTy, None, EPI);
15470 
15471     // Otherwise, if we don't need to change anything about the function type,
15472     // preserve its sugar structure.
15473     } else if (FTy->getReturnType() == RetTy &&
15474                (!NoReturn || FTy->getNoReturnAttr())) {
15475       BlockTy = BSI->FunctionType;
15476 
15477     // Otherwise, make the minimal modifications to the function type.
15478     } else {
15479       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
15480       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
15481       EPI.TypeQuals = Qualifiers();
15482       EPI.ExtInfo = Ext;
15483       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
15484     }
15485 
15486   // If we don't have a function type, just build one from nothing.
15487   } else {
15488     FunctionProtoType::ExtProtoInfo EPI;
15489     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
15490     BlockTy = Context.getFunctionType(RetTy, None, EPI);
15491   }
15492 
15493   DiagnoseUnusedParameters(BD->parameters());
15494   BlockTy = Context.getBlockPointerType(BlockTy);
15495 
15496   // If needed, diagnose invalid gotos and switches in the block.
15497   if (getCurFunction()->NeedsScopeChecking() &&
15498       !PP.isCodeCompletionEnabled())
15499     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
15500 
15501   BD->setBody(cast<CompoundStmt>(Body));
15502 
15503   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
15504     DiagnoseUnguardedAvailabilityViolations(BD);
15505 
15506   // Try to apply the named return value optimization. We have to check again
15507   // if we can do this, though, because blocks keep return statements around
15508   // to deduce an implicit return type.
15509   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
15510       !BD->isDependentContext())
15511     computeNRVO(Body, BSI);
15512 
15513   if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
15514       RetTy.hasNonTrivialToPrimitiveCopyCUnion())
15515     checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
15516                           NTCUK_Destruct|NTCUK_Copy);
15517 
15518   PopDeclContext();
15519 
15520   // Set the captured variables on the block.
15521   SmallVector<BlockDecl::Capture, 4> Captures;
15522   for (Capture &Cap : BSI->Captures) {
15523     if (Cap.isInvalid() || Cap.isThisCapture())
15524       continue;
15525 
15526     VarDecl *Var = Cap.getVariable();
15527     Expr *CopyExpr = nullptr;
15528     if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
15529       if (const RecordType *Record =
15530               Cap.getCaptureType()->getAs<RecordType>()) {
15531         // The capture logic needs the destructor, so make sure we mark it.
15532         // Usually this is unnecessary because most local variables have
15533         // their destructors marked at declaration time, but parameters are
15534         // an exception because it's technically only the call site that
15535         // actually requires the destructor.
15536         if (isa<ParmVarDecl>(Var))
15537           FinalizeVarWithDestructor(Var, Record);
15538 
15539         // Enter a separate potentially-evaluated context while building block
15540         // initializers to isolate their cleanups from those of the block
15541         // itself.
15542         // FIXME: Is this appropriate even when the block itself occurs in an
15543         // unevaluated operand?
15544         EnterExpressionEvaluationContext EvalContext(
15545             *this, ExpressionEvaluationContext::PotentiallyEvaluated);
15546 
15547         SourceLocation Loc = Cap.getLocation();
15548 
15549         ExprResult Result = BuildDeclarationNameExpr(
15550             CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
15551 
15552         // According to the blocks spec, the capture of a variable from
15553         // the stack requires a const copy constructor.  This is not true
15554         // of the copy/move done to move a __block variable to the heap.
15555         if (!Result.isInvalid() &&
15556             !Result.get()->getType().isConstQualified()) {
15557           Result = ImpCastExprToType(Result.get(),
15558                                      Result.get()->getType().withConst(),
15559                                      CK_NoOp, VK_LValue);
15560         }
15561 
15562         if (!Result.isInvalid()) {
15563           Result = PerformCopyInitialization(
15564               InitializedEntity::InitializeBlock(Var->getLocation(),
15565                                                  Cap.getCaptureType(), false),
15566               Loc, Result.get());
15567         }
15568 
15569         // Build a full-expression copy expression if initialization
15570         // succeeded and used a non-trivial constructor.  Recover from
15571         // errors by pretending that the copy isn't necessary.
15572         if (!Result.isInvalid() &&
15573             !cast<CXXConstructExpr>(Result.get())->getConstructor()
15574                 ->isTrivial()) {
15575           Result = MaybeCreateExprWithCleanups(Result);
15576           CopyExpr = Result.get();
15577         }
15578       }
15579     }
15580 
15581     BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
15582                               CopyExpr);
15583     Captures.push_back(NewCap);
15584   }
15585   BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
15586 
15587   // Pop the block scope now but keep it alive to the end of this function.
15588   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
15589   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
15590 
15591   BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
15592 
15593   // If the block isn't obviously global, i.e. it captures anything at
15594   // all, then we need to do a few things in the surrounding context:
15595   if (Result->getBlockDecl()->hasCaptures()) {
15596     // First, this expression has a new cleanup object.
15597     ExprCleanupObjects.push_back(Result->getBlockDecl());
15598     Cleanup.setExprNeedsCleanups(true);
15599 
15600     // It also gets a branch-protected scope if any of the captured
15601     // variables needs destruction.
15602     for (const auto &CI : Result->getBlockDecl()->captures()) {
15603       const VarDecl *var = CI.getVariable();
15604       if (var->getType().isDestructedType() != QualType::DK_none) {
15605         setFunctionHasBranchProtectedScope();
15606         break;
15607       }
15608     }
15609   }
15610 
15611   if (getCurFunction())
15612     getCurFunction()->addBlock(BD);
15613 
15614   return Result;
15615 }
15616 
ActOnVAArg(SourceLocation BuiltinLoc,Expr * E,ParsedType Ty,SourceLocation RPLoc)15617 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
15618                             SourceLocation RPLoc) {
15619   TypeSourceInfo *TInfo;
15620   GetTypeFromParser(Ty, &TInfo);
15621   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
15622 }
15623 
BuildVAArgExpr(SourceLocation BuiltinLoc,Expr * E,TypeSourceInfo * TInfo,SourceLocation RPLoc)15624 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
15625                                 Expr *E, TypeSourceInfo *TInfo,
15626                                 SourceLocation RPLoc) {
15627   Expr *OrigExpr = E;
15628   bool IsMS = false;
15629 
15630   // CUDA device code does not support varargs.
15631   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
15632     if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
15633       CUDAFunctionTarget T = IdentifyCUDATarget(F);
15634       if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
15635         return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
15636     }
15637   }
15638 
15639   // NVPTX does not support va_arg expression.
15640   if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
15641       Context.getTargetInfo().getTriple().isNVPTX())
15642     targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
15643 
15644   // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
15645   // as Microsoft ABI on an actual Microsoft platform, where
15646   // __builtin_ms_va_list and __builtin_va_list are the same.)
15647   if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
15648       Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
15649     QualType MSVaListType = Context.getBuiltinMSVaListType();
15650     if (Context.hasSameType(MSVaListType, E->getType())) {
15651       if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
15652         return ExprError();
15653       IsMS = true;
15654     }
15655   }
15656 
15657   // Get the va_list type
15658   QualType VaListType = Context.getBuiltinVaListType();
15659   if (!IsMS) {
15660     if (VaListType->isArrayType()) {
15661       // Deal with implicit array decay; for example, on x86-64,
15662       // va_list is an array, but it's supposed to decay to
15663       // a pointer for va_arg.
15664       VaListType = Context.getArrayDecayedType(VaListType);
15665       // Make sure the input expression also decays appropriately.
15666       ExprResult Result = UsualUnaryConversions(E);
15667       if (Result.isInvalid())
15668         return ExprError();
15669       E = Result.get();
15670     } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
15671       // If va_list is a record type and we are compiling in C++ mode,
15672       // check the argument using reference binding.
15673       InitializedEntity Entity = InitializedEntity::InitializeParameter(
15674           Context, Context.getLValueReferenceType(VaListType), false);
15675       ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
15676       if (Init.isInvalid())
15677         return ExprError();
15678       E = Init.getAs<Expr>();
15679     } else {
15680       // Otherwise, the va_list argument must be an l-value because
15681       // it is modified by va_arg.
15682       if (!E->isTypeDependent() &&
15683           CheckForModifiableLvalue(E, BuiltinLoc, *this))
15684         return ExprError();
15685     }
15686   }
15687 
15688   if (!IsMS && !E->isTypeDependent() &&
15689       !Context.hasSameType(VaListType, E->getType()))
15690     return ExprError(
15691         Diag(E->getBeginLoc(),
15692              diag::err_first_argument_to_va_arg_not_of_type_va_list)
15693         << OrigExpr->getType() << E->getSourceRange());
15694 
15695   if (!TInfo->getType()->isDependentType()) {
15696     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
15697                             diag::err_second_parameter_to_va_arg_incomplete,
15698                             TInfo->getTypeLoc()))
15699       return ExprError();
15700 
15701     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
15702                                TInfo->getType(),
15703                                diag::err_second_parameter_to_va_arg_abstract,
15704                                TInfo->getTypeLoc()))
15705       return ExprError();
15706 
15707     if (!TInfo->getType().isPODType(Context)) {
15708       Diag(TInfo->getTypeLoc().getBeginLoc(),
15709            TInfo->getType()->isObjCLifetimeType()
15710              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
15711              : diag::warn_second_parameter_to_va_arg_not_pod)
15712         << TInfo->getType()
15713         << TInfo->getTypeLoc().getSourceRange();
15714     }
15715 
15716     // Check for va_arg where arguments of the given type will be promoted
15717     // (i.e. this va_arg is guaranteed to have undefined behavior).
15718     QualType PromoteType;
15719     if (TInfo->getType()->isPromotableIntegerType()) {
15720       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
15721       if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
15722         PromoteType = QualType();
15723     }
15724     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
15725       PromoteType = Context.DoubleTy;
15726     if (!PromoteType.isNull())
15727       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
15728                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
15729                           << TInfo->getType()
15730                           << PromoteType
15731                           << TInfo->getTypeLoc().getSourceRange());
15732   }
15733 
15734   QualType T = TInfo->getType().getNonLValueExprType(Context);
15735   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
15736 }
15737 
ActOnGNUNullExpr(SourceLocation TokenLoc)15738 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
15739   // The type of __null will be int or long, depending on the size of
15740   // pointers on the target.
15741   QualType Ty;
15742   unsigned pw = Context.getTargetInfo().getPointerWidth(0);
15743   if (pw == Context.getTargetInfo().getIntWidth())
15744     Ty = Context.IntTy;
15745   else if (pw == Context.getTargetInfo().getLongWidth())
15746     Ty = Context.LongTy;
15747   else if (pw == Context.getTargetInfo().getLongLongWidth())
15748     Ty = Context.LongLongTy;
15749   else {
15750     llvm_unreachable("I don't know size of pointer!");
15751   }
15752 
15753   return new (Context) GNUNullExpr(Ty, TokenLoc);
15754 }
15755 
ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,SourceLocation BuiltinLoc,SourceLocation RPLoc)15756 ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
15757                                     SourceLocation BuiltinLoc,
15758                                     SourceLocation RPLoc) {
15759   return BuildSourceLocExpr(Kind, BuiltinLoc, RPLoc, CurContext);
15760 }
15761 
BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,SourceLocation BuiltinLoc,SourceLocation RPLoc,DeclContext * ParentContext)15762 ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
15763                                     SourceLocation BuiltinLoc,
15764                                     SourceLocation RPLoc,
15765                                     DeclContext *ParentContext) {
15766   return new (Context)
15767       SourceLocExpr(Context, Kind, BuiltinLoc, RPLoc, ParentContext);
15768 }
15769 
CheckConversionToObjCLiteral(QualType DstType,Expr * & Exp,bool Diagnose)15770 bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
15771                                         bool Diagnose) {
15772   if (!getLangOpts().ObjC)
15773     return false;
15774 
15775   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
15776   if (!PT)
15777     return false;
15778   const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
15779 
15780   // Ignore any parens, implicit casts (should only be
15781   // array-to-pointer decays), and not-so-opaque values.  The last is
15782   // important for making this trigger for property assignments.
15783   Expr *SrcExpr = Exp->IgnoreParenImpCasts();
15784   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
15785     if (OV->getSourceExpr())
15786       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
15787 
15788   if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
15789     if (!PT->isObjCIdType() &&
15790         !(ID && ID->getIdentifier()->isStr("NSString")))
15791       return false;
15792     if (!SL->isAscii())
15793       return false;
15794 
15795     if (Diagnose) {
15796       Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
15797           << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
15798       Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
15799     }
15800     return true;
15801   }
15802 
15803   if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
15804       isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
15805       isa<CXXBoolLiteralExpr>(SrcExpr)) &&
15806       !SrcExpr->isNullPointerConstant(
15807           getASTContext(), Expr::NPC_NeverValueDependent)) {
15808     if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
15809       return false;
15810     if (Diagnose) {
15811       Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
15812           << /*number*/1
15813           << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
15814       Expr *NumLit =
15815           BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
15816       if (NumLit)
15817         Exp = NumLit;
15818     }
15819     return true;
15820   }
15821 
15822   return false;
15823 }
15824 
maybeDiagnoseAssignmentToFunction(Sema & S,QualType DstType,const Expr * SrcExpr)15825 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
15826                                               const Expr *SrcExpr) {
15827   if (!DstType->isFunctionPointerType() ||
15828       !SrcExpr->getType()->isFunctionType())
15829     return false;
15830 
15831   auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
15832   if (!DRE)
15833     return false;
15834 
15835   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
15836   if (!FD)
15837     return false;
15838 
15839   return !S.checkAddressOfFunctionIsAvailable(FD,
15840                                               /*Complain=*/true,
15841                                               SrcExpr->getBeginLoc());
15842 }
15843 
DiagnoseAssignmentResult(AssignConvertType ConvTy,SourceLocation Loc,QualType DstType,QualType SrcType,Expr * SrcExpr,AssignmentAction Action,bool * Complained)15844 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
15845                                     SourceLocation Loc,
15846                                     QualType DstType, QualType SrcType,
15847                                     Expr *SrcExpr, AssignmentAction Action,
15848                                     bool *Complained) {
15849   if (Complained)
15850     *Complained = false;
15851 
15852   // Decode the result (notice that AST's are still created for extensions).
15853   bool CheckInferredResultType = false;
15854   bool isInvalid = false;
15855   unsigned DiagKind = 0;
15856   ConversionFixItGenerator ConvHints;
15857   bool MayHaveConvFixit = false;
15858   bool MayHaveFunctionDiff = false;
15859   const ObjCInterfaceDecl *IFace = nullptr;
15860   const ObjCProtocolDecl *PDecl = nullptr;
15861 
15862   switch (ConvTy) {
15863   case Compatible:
15864       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
15865       return false;
15866 
15867   case PointerToInt:
15868     if (getLangOpts().CPlusPlus) {
15869       DiagKind = diag::err_typecheck_convert_pointer_int;
15870       isInvalid = true;
15871     } else {
15872       DiagKind = diag::ext_typecheck_convert_pointer_int;
15873     }
15874     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
15875     MayHaveConvFixit = true;
15876     break;
15877   case IntToPointer:
15878     if (getLangOpts().CPlusPlus) {
15879       DiagKind = diag::err_typecheck_convert_int_pointer;
15880       isInvalid = true;
15881     } else {
15882       DiagKind = diag::ext_typecheck_convert_int_pointer;
15883     }
15884     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
15885     MayHaveConvFixit = true;
15886     break;
15887   case IncompatibleFunctionPointer:
15888     if (getLangOpts().CPlusPlus) {
15889       DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
15890       isInvalid = true;
15891     } else {
15892       DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
15893     }
15894     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
15895     MayHaveConvFixit = true;
15896     break;
15897   case IncompatiblePointer:
15898     if (Action == AA_Passing_CFAudited) {
15899       DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
15900     } else if (getLangOpts().CPlusPlus) {
15901       DiagKind = diag::err_typecheck_convert_incompatible_pointer;
15902       isInvalid = true;
15903     } else {
15904       DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
15905     }
15906     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
15907       SrcType->isObjCObjectPointerType();
15908     if (!CheckInferredResultType) {
15909       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
15910     } else if (CheckInferredResultType) {
15911       SrcType = SrcType.getUnqualifiedType();
15912       DstType = DstType.getUnqualifiedType();
15913     }
15914     MayHaveConvFixit = true;
15915     break;
15916   case IncompatiblePointerSign:
15917     if (getLangOpts().CPlusPlus) {
15918       DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
15919       isInvalid = true;
15920     } else {
15921       DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
15922     }
15923     break;
15924   case FunctionVoidPointer:
15925     if (getLangOpts().CPlusPlus) {
15926       DiagKind = diag::err_typecheck_convert_pointer_void_func;
15927       isInvalid = true;
15928     } else {
15929       DiagKind = diag::ext_typecheck_convert_pointer_void_func;
15930     }
15931     break;
15932   case IncompatiblePointerDiscardsQualifiers: {
15933     // Perform array-to-pointer decay if necessary.
15934     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
15935 
15936     isInvalid = true;
15937 
15938     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
15939     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
15940     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
15941       DiagKind = diag::err_typecheck_incompatible_address_space;
15942       break;
15943 
15944     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
15945       DiagKind = diag::err_typecheck_incompatible_ownership;
15946       break;
15947     }
15948 
15949     llvm_unreachable("unknown error case for discarding qualifiers!");
15950     // fallthrough
15951   }
15952   case CompatiblePointerDiscardsQualifiers:
15953     // If the qualifiers lost were because we were applying the
15954     // (deprecated) C++ conversion from a string literal to a char*
15955     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
15956     // Ideally, this check would be performed in
15957     // checkPointerTypesForAssignment. However, that would require a
15958     // bit of refactoring (so that the second argument is an
15959     // expression, rather than a type), which should be done as part
15960     // of a larger effort to fix checkPointerTypesForAssignment for
15961     // C++ semantics.
15962     if (getLangOpts().CPlusPlus &&
15963         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
15964       return false;
15965     if (getLangOpts().CPlusPlus) {
15966       DiagKind =  diag::err_typecheck_convert_discards_qualifiers;
15967       isInvalid = true;
15968     } else {
15969       DiagKind =  diag::ext_typecheck_convert_discards_qualifiers;
15970     }
15971 
15972     break;
15973   case IncompatibleNestedPointerQualifiers:
15974     if (getLangOpts().CPlusPlus) {
15975       isInvalid = true;
15976       DiagKind = diag::err_nested_pointer_qualifier_mismatch;
15977     } else {
15978       DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
15979     }
15980     break;
15981   case IncompatibleNestedPointerAddressSpaceMismatch:
15982     DiagKind = diag::err_typecheck_incompatible_nested_address_space;
15983     isInvalid = true;
15984     break;
15985   case IntToBlockPointer:
15986     DiagKind = diag::err_int_to_block_pointer;
15987     isInvalid = true;
15988     break;
15989   case IncompatibleBlockPointer:
15990     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
15991     isInvalid = true;
15992     break;
15993   case IncompatibleObjCQualifiedId: {
15994     if (SrcType->isObjCQualifiedIdType()) {
15995       const ObjCObjectPointerType *srcOPT =
15996                 SrcType->castAs<ObjCObjectPointerType>();
15997       for (auto *srcProto : srcOPT->quals()) {
15998         PDecl = srcProto;
15999         break;
16000       }
16001       if (const ObjCInterfaceType *IFaceT =
16002             DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
16003         IFace = IFaceT->getDecl();
16004     }
16005     else if (DstType->isObjCQualifiedIdType()) {
16006       const ObjCObjectPointerType *dstOPT =
16007         DstType->castAs<ObjCObjectPointerType>();
16008       for (auto *dstProto : dstOPT->quals()) {
16009         PDecl = dstProto;
16010         break;
16011       }
16012       if (const ObjCInterfaceType *IFaceT =
16013             SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
16014         IFace = IFaceT->getDecl();
16015     }
16016     if (getLangOpts().CPlusPlus) {
16017       DiagKind = diag::err_incompatible_qualified_id;
16018       isInvalid = true;
16019     } else {
16020       DiagKind = diag::warn_incompatible_qualified_id;
16021     }
16022     break;
16023   }
16024   case IncompatibleVectors:
16025     if (getLangOpts().CPlusPlus) {
16026       DiagKind = diag::err_incompatible_vectors;
16027       isInvalid = true;
16028     } else {
16029       DiagKind = diag::warn_incompatible_vectors;
16030     }
16031     break;
16032   case IncompatibleObjCWeakRef:
16033     DiagKind = diag::err_arc_weak_unavailable_assign;
16034     isInvalid = true;
16035     break;
16036   case Incompatible:
16037     if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
16038       if (Complained)
16039         *Complained = true;
16040       return true;
16041     }
16042 
16043     DiagKind = diag::err_typecheck_convert_incompatible;
16044     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16045     MayHaveConvFixit = true;
16046     isInvalid = true;
16047     MayHaveFunctionDiff = true;
16048     break;
16049   }
16050 
16051   QualType FirstType, SecondType;
16052   switch (Action) {
16053   case AA_Assigning:
16054   case AA_Initializing:
16055     // The destination type comes first.
16056     FirstType = DstType;
16057     SecondType = SrcType;
16058     break;
16059 
16060   case AA_Returning:
16061   case AA_Passing:
16062   case AA_Passing_CFAudited:
16063   case AA_Converting:
16064   case AA_Sending:
16065   case AA_Casting:
16066     // The source type comes first.
16067     FirstType = SrcType;
16068     SecondType = DstType;
16069     break;
16070   }
16071 
16072   PartialDiagnostic FDiag = PDiag(DiagKind);
16073   if (Action == AA_Passing_CFAudited)
16074     FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
16075   else
16076     FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
16077 
16078   if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
16079       DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
16080     auto isPlainChar = [](const clang::Type *Type) {
16081       return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
16082              Type->isSpecificBuiltinType(BuiltinType::Char_U);
16083     };
16084     FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
16085               isPlainChar(SecondType->getPointeeOrArrayElementType()));
16086   }
16087 
16088   // If we can fix the conversion, suggest the FixIts.
16089   if (!ConvHints.isNull()) {
16090     for (FixItHint &H : ConvHints.Hints)
16091       FDiag << H;
16092   }
16093 
16094   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
16095 
16096   if (MayHaveFunctionDiff)
16097     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
16098 
16099   Diag(Loc, FDiag);
16100   if ((DiagKind == diag::warn_incompatible_qualified_id ||
16101        DiagKind == diag::err_incompatible_qualified_id) &&
16102       PDecl && IFace && !IFace->hasDefinition())
16103     Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
16104         << IFace << PDecl;
16105 
16106   if (SecondType == Context.OverloadTy)
16107     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
16108                               FirstType, /*TakingAddress=*/true);
16109 
16110   if (CheckInferredResultType)
16111     EmitRelatedResultTypeNote(SrcExpr);
16112 
16113   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
16114     EmitRelatedResultTypeNoteForReturn(DstType);
16115 
16116   if (Complained)
16117     *Complained = true;
16118   return isInvalid;
16119 }
16120 
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,AllowFoldKind CanFold)16121 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
16122                                                  llvm::APSInt *Result,
16123                                                  AllowFoldKind CanFold) {
16124   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
16125   public:
16126     SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
16127                                              QualType T) override {
16128       return S.Diag(Loc, diag::err_ice_not_integral)
16129              << T << S.LangOpts.CPlusPlus;
16130     }
16131     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
16132       return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
16133     }
16134   } Diagnoser;
16135 
16136   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
16137 }
16138 
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,unsigned DiagID,AllowFoldKind CanFold)16139 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
16140                                                  llvm::APSInt *Result,
16141                                                  unsigned DiagID,
16142                                                  AllowFoldKind CanFold) {
16143   class IDDiagnoser : public VerifyICEDiagnoser {
16144     unsigned DiagID;
16145 
16146   public:
16147     IDDiagnoser(unsigned DiagID)
16148       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
16149 
16150     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
16151       return S.Diag(Loc, DiagID);
16152     }
16153   } Diagnoser(DiagID);
16154 
16155   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
16156 }
16157 
16158 Sema::SemaDiagnosticBuilder
diagnoseNotICEType(Sema & S,SourceLocation Loc,QualType T)16159 Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
16160                                              QualType T) {
16161   return diagnoseNotICE(S, Loc);
16162 }
16163 
16164 Sema::SemaDiagnosticBuilder
diagnoseFold(Sema & S,SourceLocation Loc)16165 Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
16166   return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
16167 }
16168 
16169 ExprResult
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,VerifyICEDiagnoser & Diagnoser,AllowFoldKind CanFold)16170 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
16171                                       VerifyICEDiagnoser &Diagnoser,
16172                                       AllowFoldKind CanFold) {
16173   SourceLocation DiagLoc = E->getBeginLoc();
16174 
16175   if (getLangOpts().CPlusPlus11) {
16176     // C++11 [expr.const]p5:
16177     //   If an expression of literal class type is used in a context where an
16178     //   integral constant expression is required, then that class type shall
16179     //   have a single non-explicit conversion function to an integral or
16180     //   unscoped enumeration type
16181     ExprResult Converted;
16182     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
16183       VerifyICEDiagnoser &BaseDiagnoser;
16184     public:
16185       CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
16186           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
16187                                 BaseDiagnoser.Suppress, true),
16188             BaseDiagnoser(BaseDiagnoser) {}
16189 
16190       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
16191                                            QualType T) override {
16192         return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
16193       }
16194 
16195       SemaDiagnosticBuilder diagnoseIncomplete(
16196           Sema &S, SourceLocation Loc, QualType T) override {
16197         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
16198       }
16199 
16200       SemaDiagnosticBuilder diagnoseExplicitConv(
16201           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
16202         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
16203       }
16204 
16205       SemaDiagnosticBuilder noteExplicitConv(
16206           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
16207         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
16208                  << ConvTy->isEnumeralType() << ConvTy;
16209       }
16210 
16211       SemaDiagnosticBuilder diagnoseAmbiguous(
16212           Sema &S, SourceLocation Loc, QualType T) override {
16213         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
16214       }
16215 
16216       SemaDiagnosticBuilder noteAmbiguous(
16217           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
16218         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
16219                  << ConvTy->isEnumeralType() << ConvTy;
16220       }
16221 
16222       SemaDiagnosticBuilder diagnoseConversion(
16223           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
16224         llvm_unreachable("conversion functions are permitted");
16225       }
16226     } ConvertDiagnoser(Diagnoser);
16227 
16228     Converted = PerformContextualImplicitConversion(DiagLoc, E,
16229                                                     ConvertDiagnoser);
16230     if (Converted.isInvalid())
16231       return Converted;
16232     E = Converted.get();
16233     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
16234       return ExprError();
16235   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
16236     // An ICE must be of integral or unscoped enumeration type.
16237     if (!Diagnoser.Suppress)
16238       Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
16239           << E->getSourceRange();
16240     return ExprError();
16241   }
16242 
16243   ExprResult RValueExpr = DefaultLvalueConversion(E);
16244   if (RValueExpr.isInvalid())
16245     return ExprError();
16246 
16247   E = RValueExpr.get();
16248 
16249   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
16250   // in the non-ICE case.
16251   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
16252     if (Result)
16253       *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
16254     if (!isa<ConstantExpr>(E))
16255       E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
16256                  : ConstantExpr::Create(Context, E);
16257     return E;
16258   }
16259 
16260   Expr::EvalResult EvalResult;
16261   SmallVector<PartialDiagnosticAt, 8> Notes;
16262   EvalResult.Diag = &Notes;
16263 
16264   // Try to evaluate the expression, and produce diagnostics explaining why it's
16265   // not a constant expression as a side-effect.
16266   bool Folded =
16267       E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
16268       EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
16269 
16270   if (!isa<ConstantExpr>(E))
16271     E = ConstantExpr::Create(Context, E, EvalResult.Val);
16272 
16273   // In C++11, we can rely on diagnostics being produced for any expression
16274   // which is not a constant expression. If no diagnostics were produced, then
16275   // this is a constant expression.
16276   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
16277     if (Result)
16278       *Result = EvalResult.Val.getInt();
16279     return E;
16280   }
16281 
16282   // If our only note is the usual "invalid subexpression" note, just point
16283   // the caret at its location rather than producing an essentially
16284   // redundant note.
16285   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
16286         diag::note_invalid_subexpr_in_const_expr) {
16287     DiagLoc = Notes[0].first;
16288     Notes.clear();
16289   }
16290 
16291   if (!Folded || !CanFold) {
16292     if (!Diagnoser.Suppress) {
16293       Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
16294       for (const PartialDiagnosticAt &Note : Notes)
16295         Diag(Note.first, Note.second);
16296     }
16297 
16298     return ExprError();
16299   }
16300 
16301   Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
16302   for (const PartialDiagnosticAt &Note : Notes)
16303     Diag(Note.first, Note.second);
16304 
16305   if (Result)
16306     *Result = EvalResult.Val.getInt();
16307   return E;
16308 }
16309 
16310 namespace {
16311   // Handle the case where we conclude a expression which we speculatively
16312   // considered to be unevaluated is actually evaluated.
16313   class TransformToPE : public TreeTransform<TransformToPE> {
16314     typedef TreeTransform<TransformToPE> BaseTransform;
16315 
16316   public:
TransformToPE(Sema & SemaRef)16317     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
16318 
16319     // Make sure we redo semantic analysis
AlwaysRebuild()16320     bool AlwaysRebuild() { return true; }
ReplacingOriginal()16321     bool ReplacingOriginal() { return true; }
16322 
16323     // We need to special-case DeclRefExprs referring to FieldDecls which
16324     // are not part of a member pointer formation; normal TreeTransforming
16325     // doesn't catch this case because of the way we represent them in the AST.
16326     // FIXME: This is a bit ugly; is it really the best way to handle this
16327     // case?
16328     //
16329     // Error on DeclRefExprs referring to FieldDecls.
TransformDeclRefExpr(DeclRefExpr * E)16330     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
16331       if (isa<FieldDecl>(E->getDecl()) &&
16332           !SemaRef.isUnevaluatedContext())
16333         return SemaRef.Diag(E->getLocation(),
16334                             diag::err_invalid_non_static_member_use)
16335             << E->getDecl() << E->getSourceRange();
16336 
16337       return BaseTransform::TransformDeclRefExpr(E);
16338     }
16339 
16340     // Exception: filter out member pointer formation
TransformUnaryOperator(UnaryOperator * E)16341     ExprResult TransformUnaryOperator(UnaryOperator *E) {
16342       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
16343         return E;
16344 
16345       return BaseTransform::TransformUnaryOperator(E);
16346     }
16347 
16348     // The body of a lambda-expression is in a separate expression evaluation
16349     // context so never needs to be transformed.
16350     // FIXME: Ideally we wouldn't transform the closure type either, and would
16351     // just recreate the capture expressions and lambda expression.
TransformLambdaBody(LambdaExpr * E,Stmt * Body)16352     StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
16353       return SkipLambdaBody(E, Body);
16354     }
16355   };
16356 }
16357 
TransformToPotentiallyEvaluated(Expr * E)16358 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
16359   assert(isUnevaluatedContext() &&
16360          "Should only transform unevaluated expressions");
16361   ExprEvalContexts.back().Context =
16362       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
16363   if (isUnevaluatedContext())
16364     return E;
16365   return TransformToPE(*this).TransformExpr(E);
16366 }
16367 
16368 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,Decl * LambdaContextDecl,ExpressionEvaluationContextRecord::ExpressionKind ExprContext)16369 Sema::PushExpressionEvaluationContext(
16370     ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
16371     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
16372   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
16373                                 LambdaContextDecl, ExprContext);
16374   Cleanup.reset();
16375   if (!MaybeODRUseExprs.empty())
16376     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
16377 }
16378 
16379 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,ReuseLambdaContextDecl_t,ExpressionEvaluationContextRecord::ExpressionKind ExprContext)16380 Sema::PushExpressionEvaluationContext(
16381     ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
16382     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
16383   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
16384   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
16385 }
16386 
16387 namespace {
16388 
CheckPossibleDeref(Sema & S,const Expr * PossibleDeref)16389 const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
16390   PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
16391   if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
16392     if (E->getOpcode() == UO_Deref)
16393       return CheckPossibleDeref(S, E->getSubExpr());
16394   } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
16395     return CheckPossibleDeref(S, E->getBase());
16396   } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
16397     return CheckPossibleDeref(S, E->getBase());
16398   } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
16399     QualType Inner;
16400     QualType Ty = E->getType();
16401     if (const auto *Ptr = Ty->getAs<PointerType>())
16402       Inner = Ptr->getPointeeType();
16403     else if (const auto *Arr = S.Context.getAsArrayType(Ty))
16404       Inner = Arr->getElementType();
16405     else
16406       return nullptr;
16407 
16408     if (Inner->hasAttr(attr::NoDeref))
16409       return E;
16410   }
16411   return nullptr;
16412 }
16413 
16414 } // namespace
16415 
WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord & Rec)16416 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
16417   for (const Expr *E : Rec.PossibleDerefs) {
16418     const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
16419     if (DeclRef) {
16420       const ValueDecl *Decl = DeclRef->getDecl();
16421       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
16422           << Decl->getName() << E->getSourceRange();
16423       Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
16424     } else {
16425       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
16426           << E->getSourceRange();
16427     }
16428   }
16429   Rec.PossibleDerefs.clear();
16430 }
16431 
16432 /// Check whether E, which is either a discarded-value expression or an
16433 /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
16434 /// and if so, remove it from the list of volatile-qualified assignments that
16435 /// we are going to warn are deprecated.
CheckUnusedVolatileAssignment(Expr * E)16436 void Sema::CheckUnusedVolatileAssignment(Expr *E) {
16437   if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
16438     return;
16439 
16440   // Note: ignoring parens here is not justified by the standard rules, but
16441   // ignoring parentheses seems like a more reasonable approach, and this only
16442   // drives a deprecation warning so doesn't affect conformance.
16443   if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
16444     if (BO->getOpcode() == BO_Assign) {
16445       auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
16446       LHSs.erase(std::remove(LHSs.begin(), LHSs.end(), BO->getLHS()),
16447                  LHSs.end());
16448     }
16449   }
16450 }
16451 
CheckForImmediateInvocation(ExprResult E,FunctionDecl * Decl)16452 ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
16453   if (!E.isUsable() || !Decl || !Decl->isConsteval() || isConstantEvaluated() ||
16454       RebuildingImmediateInvocation)
16455     return E;
16456 
16457   /// Opportunistically remove the callee from ReferencesToConsteval if we can.
16458   /// It's OK if this fails; we'll also remove this in
16459   /// HandleImmediateInvocations, but catching it here allows us to avoid
16460   /// walking the AST looking for it in simple cases.
16461   if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
16462     if (auto *DeclRef =
16463             dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
16464       ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
16465 
16466   E = MaybeCreateExprWithCleanups(E);
16467 
16468   ConstantExpr *Res = ConstantExpr::Create(
16469       getASTContext(), E.get(),
16470       ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
16471                                    getASTContext()),
16472       /*IsImmediateInvocation*/ true);
16473   ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
16474   return Res;
16475 }
16476 
EvaluateAndDiagnoseImmediateInvocation(Sema & SemaRef,Sema::ImmediateInvocationCandidate Candidate)16477 static void EvaluateAndDiagnoseImmediateInvocation(
16478     Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
16479   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
16480   Expr::EvalResult Eval;
16481   Eval.Diag = &Notes;
16482   ConstantExpr *CE = Candidate.getPointer();
16483   bool Result = CE->EvaluateAsConstantExpr(
16484       Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
16485   if (!Result || !Notes.empty()) {
16486     Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
16487     if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
16488       InnerExpr = FunctionalCast->getSubExpr();
16489     FunctionDecl *FD = nullptr;
16490     if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
16491       FD = cast<FunctionDecl>(Call->getCalleeDecl());
16492     else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
16493       FD = Call->getConstructor();
16494     else
16495       llvm_unreachable("unhandled decl kind");
16496     assert(FD->isConsteval());
16497     SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) << FD;
16498     for (auto &Note : Notes)
16499       SemaRef.Diag(Note.first, Note.second);
16500     return;
16501   }
16502   CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
16503 }
16504 
RemoveNestedImmediateInvocation(Sema & SemaRef,Sema::ExpressionEvaluationContextRecord & Rec,SmallVector<Sema::ImmediateInvocationCandidate,4>::reverse_iterator It)16505 static void RemoveNestedImmediateInvocation(
16506     Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
16507     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
16508   struct ComplexRemove : TreeTransform<ComplexRemove> {
16509     using Base = TreeTransform<ComplexRemove>;
16510     llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
16511     SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
16512     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
16513         CurrentII;
16514     ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
16515                   SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
16516                   SmallVector<Sema::ImmediateInvocationCandidate,
16517                               4>::reverse_iterator Current)
16518         : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
16519     void RemoveImmediateInvocation(ConstantExpr* E) {
16520       auto It = std::find_if(CurrentII, IISet.rend(),
16521                              [E](Sema::ImmediateInvocationCandidate Elem) {
16522                                return Elem.getPointer() == E;
16523                              });
16524       assert(It != IISet.rend() &&
16525              "ConstantExpr marked IsImmediateInvocation should "
16526              "be present");
16527       It->setInt(1); // Mark as deleted
16528     }
16529     ExprResult TransformConstantExpr(ConstantExpr *E) {
16530       if (!E->isImmediateInvocation())
16531         return Base::TransformConstantExpr(E);
16532       RemoveImmediateInvocation(E);
16533       return Base::TransformExpr(E->getSubExpr());
16534     }
16535     /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
16536     /// we need to remove its DeclRefExpr from the DRSet.
16537     ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
16538       DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
16539       return Base::TransformCXXOperatorCallExpr(E);
16540     }
16541     /// Base::TransformInitializer skip ConstantExpr so we need to visit them
16542     /// here.
16543     ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
16544       if (!Init)
16545         return Init;
16546       /// ConstantExpr are the first layer of implicit node to be removed so if
16547       /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
16548       if (auto *CE = dyn_cast<ConstantExpr>(Init))
16549         if (CE->isImmediateInvocation())
16550           RemoveImmediateInvocation(CE);
16551       return Base::TransformInitializer(Init, NotCopyInit);
16552     }
16553     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
16554       DRSet.erase(E);
16555       return E;
16556     }
16557     bool AlwaysRebuild() { return false; }
16558     bool ReplacingOriginal() { return true; }
16559     bool AllowSkippingCXXConstructExpr() {
16560       bool Res = AllowSkippingFirstCXXConstructExpr;
16561       AllowSkippingFirstCXXConstructExpr = true;
16562       return Res;
16563     }
16564     bool AllowSkippingFirstCXXConstructExpr = true;
16565   } Transformer(SemaRef, Rec.ReferenceToConsteval,
16566                 Rec.ImmediateInvocationCandidates, It);
16567 
16568   /// CXXConstructExpr with a single argument are getting skipped by
16569   /// TreeTransform in some situtation because they could be implicit. This
16570   /// can only occur for the top-level CXXConstructExpr because it is used
16571   /// nowhere in the expression being transformed therefore will not be rebuilt.
16572   /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
16573   /// skipping the first CXXConstructExpr.
16574   if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
16575     Transformer.AllowSkippingFirstCXXConstructExpr = false;
16576 
16577   ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
16578   assert(Res.isUsable());
16579   Res = SemaRef.MaybeCreateExprWithCleanups(Res);
16580   It->getPointer()->setSubExpr(Res.get());
16581 }
16582 
16583 static void
HandleImmediateInvocations(Sema & SemaRef,Sema::ExpressionEvaluationContextRecord & Rec)16584 HandleImmediateInvocations(Sema &SemaRef,
16585                            Sema::ExpressionEvaluationContextRecord &Rec) {
16586   if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
16587        Rec.ReferenceToConsteval.size() == 0) ||
16588       SemaRef.RebuildingImmediateInvocation)
16589     return;
16590 
16591   /// When we have more then 1 ImmediateInvocationCandidates we need to check
16592   /// for nested ImmediateInvocationCandidates. when we have only 1 we only
16593   /// need to remove ReferenceToConsteval in the immediate invocation.
16594   if (Rec.ImmediateInvocationCandidates.size() > 1) {
16595 
16596     /// Prevent sema calls during the tree transform from adding pointers that
16597     /// are already in the sets.
16598     llvm::SaveAndRestore<bool> DisableIITracking(
16599         SemaRef.RebuildingImmediateInvocation, true);
16600 
16601     /// Prevent diagnostic during tree transfrom as they are duplicates
16602     Sema::TentativeAnalysisScope DisableDiag(SemaRef);
16603 
16604     for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
16605          It != Rec.ImmediateInvocationCandidates.rend(); It++)
16606       if (!It->getInt())
16607         RemoveNestedImmediateInvocation(SemaRef, Rec, It);
16608   } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
16609              Rec.ReferenceToConsteval.size()) {
16610     struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
16611       llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
16612       SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
16613       bool VisitDeclRefExpr(DeclRefExpr *E) {
16614         DRSet.erase(E);
16615         return DRSet.size();
16616       }
16617     } Visitor(Rec.ReferenceToConsteval);
16618     Visitor.TraverseStmt(
16619         Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
16620   }
16621   for (auto CE : Rec.ImmediateInvocationCandidates)
16622     if (!CE.getInt())
16623       EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
16624   for (auto DR : Rec.ReferenceToConsteval) {
16625     auto *FD = cast<FunctionDecl>(DR->getDecl());
16626     SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
16627         << FD;
16628     SemaRef.Diag(FD->getLocation(), diag::note_declared_at);
16629   }
16630 }
16631 
PopExpressionEvaluationContext()16632 void Sema::PopExpressionEvaluationContext() {
16633   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
16634   unsigned NumTypos = Rec.NumTypos;
16635 
16636   if (!Rec.Lambdas.empty()) {
16637     using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
16638     if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument || Rec.isUnevaluated() ||
16639         (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17)) {
16640       unsigned D;
16641       if (Rec.isUnevaluated()) {
16642         // C++11 [expr.prim.lambda]p2:
16643         //   A lambda-expression shall not appear in an unevaluated operand
16644         //   (Clause 5).
16645         D = diag::err_lambda_unevaluated_operand;
16646       } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
16647         // C++1y [expr.const]p2:
16648         //   A conditional-expression e is a core constant expression unless the
16649         //   evaluation of e, following the rules of the abstract machine, would
16650         //   evaluate [...] a lambda-expression.
16651         D = diag::err_lambda_in_constant_expression;
16652       } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
16653         // C++17 [expr.prim.lamda]p2:
16654         // A lambda-expression shall not appear [...] in a template-argument.
16655         D = diag::err_lambda_in_invalid_context;
16656       } else
16657         llvm_unreachable("Couldn't infer lambda error message.");
16658 
16659       for (const auto *L : Rec.Lambdas)
16660         Diag(L->getBeginLoc(), D);
16661     }
16662   }
16663 
16664   WarnOnPendingNoDerefs(Rec);
16665   HandleImmediateInvocations(*this, Rec);
16666 
16667   // Warn on any volatile-qualified simple-assignments that are not discarded-
16668   // value expressions nor unevaluated operands (those cases get removed from
16669   // this list by CheckUnusedVolatileAssignment).
16670   for (auto *BO : Rec.VolatileAssignmentLHSs)
16671     Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
16672         << BO->getType();
16673 
16674   // When are coming out of an unevaluated context, clear out any
16675   // temporaries that we may have created as part of the evaluation of
16676   // the expression in that context: they aren't relevant because they
16677   // will never be constructed.
16678   if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
16679     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
16680                              ExprCleanupObjects.end());
16681     Cleanup = Rec.ParentCleanup;
16682     CleanupVarDeclMarking();
16683     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
16684   // Otherwise, merge the contexts together.
16685   } else {
16686     Cleanup.mergeFrom(Rec.ParentCleanup);
16687     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
16688                             Rec.SavedMaybeODRUseExprs.end());
16689   }
16690 
16691   // Pop the current expression evaluation context off the stack.
16692   ExprEvalContexts.pop_back();
16693 
16694   // The global expression evaluation context record is never popped.
16695   ExprEvalContexts.back().NumTypos += NumTypos;
16696 }
16697 
DiscardCleanupsInEvaluationContext()16698 void Sema::DiscardCleanupsInEvaluationContext() {
16699   ExprCleanupObjects.erase(
16700          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
16701          ExprCleanupObjects.end());
16702   Cleanup.reset();
16703   MaybeODRUseExprs.clear();
16704 }
16705 
HandleExprEvaluationContextForTypeof(Expr * E)16706 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
16707   ExprResult Result = CheckPlaceholderExpr(E);
16708   if (Result.isInvalid())
16709     return ExprError();
16710   E = Result.get();
16711   if (!E->getType()->isVariablyModifiedType())
16712     return E;
16713   return TransformToPotentiallyEvaluated(E);
16714 }
16715 
16716 /// Are we in a context that is potentially constant evaluated per C++20
16717 /// [expr.const]p12?
isPotentiallyConstantEvaluatedContext(Sema & SemaRef)16718 static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
16719   /// C++2a [expr.const]p12:
16720   //   An expression or conversion is potentially constant evaluated if it is
16721   switch (SemaRef.ExprEvalContexts.back().Context) {
16722     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
16723       // -- a manifestly constant-evaluated expression,
16724     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
16725     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
16726     case Sema::ExpressionEvaluationContext::DiscardedStatement:
16727       // -- a potentially-evaluated expression,
16728     case Sema::ExpressionEvaluationContext::UnevaluatedList:
16729       // -- an immediate subexpression of a braced-init-list,
16730 
16731       // -- [FIXME] an expression of the form & cast-expression that occurs
16732       //    within a templated entity
16733       // -- a subexpression of one of the above that is not a subexpression of
16734       // a nested unevaluated operand.
16735       return true;
16736 
16737     case Sema::ExpressionEvaluationContext::Unevaluated:
16738     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
16739       // Expressions in this context are never evaluated.
16740       return false;
16741   }
16742   llvm_unreachable("Invalid context");
16743 }
16744 
16745 /// Return true if this function has a calling convention that requires mangling
16746 /// in the size of the parameter pack.
funcHasParameterSizeMangling(Sema & S,FunctionDecl * FD)16747 static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
16748   // These manglings don't do anything on non-Windows or non-x86 platforms, so
16749   // we don't need parameter type sizes.
16750   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
16751   if (!TT.isOSWindows() || !TT.isX86())
16752     return false;
16753 
16754   // If this is C++ and this isn't an extern "C" function, parameters do not
16755   // need to be complete. In this case, C++ mangling will apply, which doesn't
16756   // use the size of the parameters.
16757   if (S.getLangOpts().CPlusPlus && !FD->isExternC())
16758     return false;
16759 
16760   // Stdcall, fastcall, and vectorcall need this special treatment.
16761   CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
16762   switch (CC) {
16763   case CC_X86StdCall:
16764   case CC_X86FastCall:
16765   case CC_X86VectorCall:
16766     return true;
16767   default:
16768     break;
16769   }
16770   return false;
16771 }
16772 
16773 /// Require that all of the parameter types of function be complete. Normally,
16774 /// parameter types are only required to be complete when a function is called
16775 /// or defined, but to mangle functions with certain calling conventions, the
16776 /// mangler needs to know the size of the parameter list. In this situation,
16777 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
16778 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
16779 /// result in a linker error. Clang doesn't implement this behavior, and instead
16780 /// attempts to error at compile time.
CheckCompleteParameterTypesForMangler(Sema & S,FunctionDecl * FD,SourceLocation Loc)16781 static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
16782                                                   SourceLocation Loc) {
16783   class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
16784     FunctionDecl *FD;
16785     ParmVarDecl *Param;
16786 
16787   public:
16788     ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
16789         : FD(FD), Param(Param) {}
16790 
16791     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
16792       CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
16793       StringRef CCName;
16794       switch (CC) {
16795       case CC_X86StdCall:
16796         CCName = "stdcall";
16797         break;
16798       case CC_X86FastCall:
16799         CCName = "fastcall";
16800         break;
16801       case CC_X86VectorCall:
16802         CCName = "vectorcall";
16803         break;
16804       default:
16805         llvm_unreachable("CC does not need mangling");
16806       }
16807 
16808       S.Diag(Loc, diag::err_cconv_incomplete_param_type)
16809           << Param->getDeclName() << FD->getDeclName() << CCName;
16810     }
16811   };
16812 
16813   for (ParmVarDecl *Param : FD->parameters()) {
16814     ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
16815     S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
16816   }
16817 }
16818 
16819 namespace {
16820 enum class OdrUseContext {
16821   /// Declarations in this context are not odr-used.
16822   None,
16823   /// Declarations in this context are formally odr-used, but this is a
16824   /// dependent context.
16825   Dependent,
16826   /// Declarations in this context are odr-used but not actually used (yet).
16827   FormallyOdrUsed,
16828   /// Declarations in this context are used.
16829   Used
16830 };
16831 }
16832 
16833 /// Are we within a context in which references to resolved functions or to
16834 /// variables result in odr-use?
isOdrUseContext(Sema & SemaRef)16835 static OdrUseContext isOdrUseContext(Sema &SemaRef) {
16836   OdrUseContext Result;
16837 
16838   switch (SemaRef.ExprEvalContexts.back().Context) {
16839     case Sema::ExpressionEvaluationContext::Unevaluated:
16840     case Sema::ExpressionEvaluationContext::UnevaluatedList:
16841     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
16842       return OdrUseContext::None;
16843 
16844     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
16845     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
16846       Result = OdrUseContext::Used;
16847       break;
16848 
16849     case Sema::ExpressionEvaluationContext::DiscardedStatement:
16850       Result = OdrUseContext::FormallyOdrUsed;
16851       break;
16852 
16853     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
16854       // A default argument formally results in odr-use, but doesn't actually
16855       // result in a use in any real sense until it itself is used.
16856       Result = OdrUseContext::FormallyOdrUsed;
16857       break;
16858   }
16859 
16860   if (SemaRef.CurContext->isDependentContext())
16861     return OdrUseContext::Dependent;
16862 
16863   return Result;
16864 }
16865 
isImplicitlyDefinableConstexprFunction(FunctionDecl * Func)16866 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
16867   if (!Func->isConstexpr())
16868     return false;
16869 
16870   if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
16871     return true;
16872   auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
16873   return CCD && CCD->getInheritedConstructor();
16874 }
16875 
16876 /// Mark a function referenced, and check whether it is odr-used
16877 /// (C++ [basic.def.odr]p2, C99 6.9p3)
MarkFunctionReferenced(SourceLocation Loc,FunctionDecl * Func,bool MightBeOdrUse)16878 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
16879                                   bool MightBeOdrUse) {
16880   assert(Func && "No function?");
16881 
16882   Func->setReferenced();
16883 
16884   // Recursive functions aren't really used until they're used from some other
16885   // context.
16886   bool IsRecursiveCall = CurContext == Func;
16887 
16888   // C++11 [basic.def.odr]p3:
16889   //   A function whose name appears as a potentially-evaluated expression is
16890   //   odr-used if it is the unique lookup result or the selected member of a
16891   //   set of overloaded functions [...].
16892   //
16893   // We (incorrectly) mark overload resolution as an unevaluated context, so we
16894   // can just check that here.
16895   OdrUseContext OdrUse =
16896       MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
16897   if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
16898     OdrUse = OdrUseContext::FormallyOdrUsed;
16899 
16900   // Trivial default constructors and destructors are never actually used.
16901   // FIXME: What about other special members?
16902   if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
16903       OdrUse == OdrUseContext::Used) {
16904     if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
16905       if (Constructor->isDefaultConstructor())
16906         OdrUse = OdrUseContext::FormallyOdrUsed;
16907     if (isa<CXXDestructorDecl>(Func))
16908       OdrUse = OdrUseContext::FormallyOdrUsed;
16909   }
16910 
16911   // C++20 [expr.const]p12:
16912   //   A function [...] is needed for constant evaluation if it is [...] a
16913   //   constexpr function that is named by an expression that is potentially
16914   //   constant evaluated
16915   bool NeededForConstantEvaluation =
16916       isPotentiallyConstantEvaluatedContext(*this) &&
16917       isImplicitlyDefinableConstexprFunction(Func);
16918 
16919   // Determine whether we require a function definition to exist, per
16920   // C++11 [temp.inst]p3:
16921   //   Unless a function template specialization has been explicitly
16922   //   instantiated or explicitly specialized, the function template
16923   //   specialization is implicitly instantiated when the specialization is
16924   //   referenced in a context that requires a function definition to exist.
16925   // C++20 [temp.inst]p7:
16926   //   The existence of a definition of a [...] function is considered to
16927   //   affect the semantics of the program if the [...] function is needed for
16928   //   constant evaluation by an expression
16929   // C++20 [basic.def.odr]p10:
16930   //   Every program shall contain exactly one definition of every non-inline
16931   //   function or variable that is odr-used in that program outside of a
16932   //   discarded statement
16933   // C++20 [special]p1:
16934   //   The implementation will implicitly define [defaulted special members]
16935   //   if they are odr-used or needed for constant evaluation.
16936   //
16937   // Note that we skip the implicit instantiation of templates that are only
16938   // used in unused default arguments or by recursive calls to themselves.
16939   // This is formally non-conforming, but seems reasonable in practice.
16940   bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
16941                                              NeededForConstantEvaluation);
16942 
16943   // C++14 [temp.expl.spec]p6:
16944   //   If a template [...] is explicitly specialized then that specialization
16945   //   shall be declared before the first use of that specialization that would
16946   //   cause an implicit instantiation to take place, in every translation unit
16947   //   in which such a use occurs
16948   if (NeedDefinition &&
16949       (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
16950        Func->getMemberSpecializationInfo()))
16951     checkSpecializationVisibility(Loc, Func);
16952 
16953   if (getLangOpts().CUDA)
16954     CheckCUDACall(Loc, Func);
16955 
16956   if (getLangOpts().SYCLIsDevice)
16957     checkSYCLDeviceFunction(Loc, Func);
16958 
16959   // If we need a definition, try to create one.
16960   if (NeedDefinition && !Func->getBody()) {
16961     runWithSufficientStackSpace(Loc, [&] {
16962       if (CXXConstructorDecl *Constructor =
16963               dyn_cast<CXXConstructorDecl>(Func)) {
16964         Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
16965         if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
16966           if (Constructor->isDefaultConstructor()) {
16967             if (Constructor->isTrivial() &&
16968                 !Constructor->hasAttr<DLLExportAttr>())
16969               return;
16970             DefineImplicitDefaultConstructor(Loc, Constructor);
16971           } else if (Constructor->isCopyConstructor()) {
16972             DefineImplicitCopyConstructor(Loc, Constructor);
16973           } else if (Constructor->isMoveConstructor()) {
16974             DefineImplicitMoveConstructor(Loc, Constructor);
16975           }
16976         } else if (Constructor->getInheritedConstructor()) {
16977           DefineInheritingConstructor(Loc, Constructor);
16978         }
16979       } else if (CXXDestructorDecl *Destructor =
16980                      dyn_cast<CXXDestructorDecl>(Func)) {
16981         Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
16982         if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
16983           if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
16984             return;
16985           DefineImplicitDestructor(Loc, Destructor);
16986         }
16987         if (Destructor->isVirtual() && getLangOpts().AppleKext)
16988           MarkVTableUsed(Loc, Destructor->getParent());
16989       } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
16990         if (MethodDecl->isOverloadedOperator() &&
16991             MethodDecl->getOverloadedOperator() == OO_Equal) {
16992           MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
16993           if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
16994             if (MethodDecl->isCopyAssignmentOperator())
16995               DefineImplicitCopyAssignment(Loc, MethodDecl);
16996             else if (MethodDecl->isMoveAssignmentOperator())
16997               DefineImplicitMoveAssignment(Loc, MethodDecl);
16998           }
16999         } else if (isa<CXXConversionDecl>(MethodDecl) &&
17000                    MethodDecl->getParent()->isLambda()) {
17001           CXXConversionDecl *Conversion =
17002               cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
17003           if (Conversion->isLambdaToBlockPointerConversion())
17004             DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
17005           else
17006             DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
17007         } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
17008           MarkVTableUsed(Loc, MethodDecl->getParent());
17009       }
17010 
17011       if (Func->isDefaulted() && !Func->isDeleted()) {
17012         DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
17013         if (DCK != DefaultedComparisonKind::None)
17014           DefineDefaultedComparison(Loc, Func, DCK);
17015       }
17016 
17017       // Implicit instantiation of function templates and member functions of
17018       // class templates.
17019       if (Func->isImplicitlyInstantiable()) {
17020         TemplateSpecializationKind TSK =
17021             Func->getTemplateSpecializationKindForInstantiation();
17022         SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
17023         bool FirstInstantiation = PointOfInstantiation.isInvalid();
17024         if (FirstInstantiation) {
17025           PointOfInstantiation = Loc;
17026           if (auto *MSI = Func->getMemberSpecializationInfo())
17027             MSI->setPointOfInstantiation(Loc);
17028             // FIXME: Notify listener.
17029           else
17030             Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
17031         } else if (TSK != TSK_ImplicitInstantiation) {
17032           // Use the point of use as the point of instantiation, instead of the
17033           // point of explicit instantiation (which we track as the actual point
17034           // of instantiation). This gives better backtraces in diagnostics.
17035           PointOfInstantiation = Loc;
17036         }
17037 
17038         if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
17039             Func->isConstexpr()) {
17040           if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
17041               cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
17042               CodeSynthesisContexts.size())
17043             PendingLocalImplicitInstantiations.push_back(
17044                 std::make_pair(Func, PointOfInstantiation));
17045           else if (Func->isConstexpr())
17046             // Do not defer instantiations of constexpr functions, to avoid the
17047             // expression evaluator needing to call back into Sema if it sees a
17048             // call to such a function.
17049             InstantiateFunctionDefinition(PointOfInstantiation, Func);
17050           else {
17051             Func->setInstantiationIsPending(true);
17052             PendingInstantiations.push_back(
17053                 std::make_pair(Func, PointOfInstantiation));
17054             // Notify the consumer that a function was implicitly instantiated.
17055             Consumer.HandleCXXImplicitFunctionInstantiation(Func);
17056           }
17057         }
17058       } else {
17059         // Walk redefinitions, as some of them may be instantiable.
17060         for (auto i : Func->redecls()) {
17061           if (!i->isUsed(false) && i->isImplicitlyInstantiable())
17062             MarkFunctionReferenced(Loc, i, MightBeOdrUse);
17063         }
17064       }
17065     });
17066   }
17067 
17068   // C++14 [except.spec]p17:
17069   //   An exception-specification is considered to be needed when:
17070   //   - the function is odr-used or, if it appears in an unevaluated operand,
17071   //     would be odr-used if the expression were potentially-evaluated;
17072   //
17073   // Note, we do this even if MightBeOdrUse is false. That indicates that the
17074   // function is a pure virtual function we're calling, and in that case the
17075   // function was selected by overload resolution and we need to resolve its
17076   // exception specification for a different reason.
17077   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
17078   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
17079     ResolveExceptionSpec(Loc, FPT);
17080 
17081   // If this is the first "real" use, act on that.
17082   if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
17083     // Keep track of used but undefined functions.
17084     if (!Func->isDefined()) {
17085       if (mightHaveNonExternalLinkage(Func))
17086         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
17087       else if (Func->getMostRecentDecl()->isInlined() &&
17088                !LangOpts.GNUInline &&
17089                !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
17090         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
17091       else if (isExternalWithNoLinkageType(Func))
17092         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
17093     }
17094 
17095     // Some x86 Windows calling conventions mangle the size of the parameter
17096     // pack into the name. Computing the size of the parameters requires the
17097     // parameter types to be complete. Check that now.
17098     if (funcHasParameterSizeMangling(*this, Func))
17099       CheckCompleteParameterTypesForMangler(*this, Func, Loc);
17100 
17101     // In the MS C++ ABI, the compiler emits destructor variants where they are
17102     // used. If the destructor is used here but defined elsewhere, mark the
17103     // virtual base destructors referenced. If those virtual base destructors
17104     // are inline, this will ensure they are defined when emitting the complete
17105     // destructor variant. This checking may be redundant if the destructor is
17106     // provided later in this TU.
17107     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
17108       if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
17109         CXXRecordDecl *Parent = Dtor->getParent();
17110         if (Parent->getNumVBases() > 0 && !Dtor->getBody())
17111           CheckCompleteDestructorVariant(Loc, Dtor);
17112       }
17113     }
17114 
17115     Func->markUsed(Context);
17116   }
17117 }
17118 
17119 /// Directly mark a variable odr-used. Given a choice, prefer to use
17120 /// MarkVariableReferenced since it does additional checks and then
17121 /// calls MarkVarDeclODRUsed.
17122 /// If the variable must be captured:
17123 ///  - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
17124 ///  - else capture it in the DeclContext that maps to the
17125 ///    *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
17126 static void
MarkVarDeclODRUsed(VarDecl * Var,SourceLocation Loc,Sema & SemaRef,const unsigned * const FunctionScopeIndexToStopAt=nullptr)17127 MarkVarDeclODRUsed(VarDecl *Var, SourceLocation Loc, Sema &SemaRef,
17128                    const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
17129   // Keep track of used but undefined variables.
17130   // FIXME: We shouldn't suppress this warning for static data members.
17131   if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
17132       (!Var->isExternallyVisible() || Var->isInline() ||
17133        SemaRef.isExternalWithNoLinkageType(Var)) &&
17134       !(Var->isStaticDataMember() && Var->hasInit())) {
17135     SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
17136     if (old.isInvalid())
17137       old = Loc;
17138   }
17139   QualType CaptureType, DeclRefType;
17140   if (SemaRef.LangOpts.OpenMP)
17141     SemaRef.tryCaptureOpenMPLambdas(Var);
17142   SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit,
17143     /*EllipsisLoc*/ SourceLocation(),
17144     /*BuildAndDiagnose*/ true,
17145     CaptureType, DeclRefType,
17146     FunctionScopeIndexToStopAt);
17147 
17148   if (SemaRef.LangOpts.CUDA && Var && Var->hasGlobalStorage()) {
17149     auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
17150     auto VarTarget = SemaRef.IdentifyCUDATarget(Var);
17151     auto UserTarget = SemaRef.IdentifyCUDATarget(FD);
17152     if (VarTarget == Sema::CVT_Host &&
17153         (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice ||
17154          UserTarget == Sema::CFT_Global)) {
17155       // Diagnose ODR-use of host global variables in device functions.
17156       // Reference of device global variables in host functions is allowed
17157       // through shadow variables therefore it is not diagnosed.
17158       if (SemaRef.LangOpts.CUDAIsDevice)
17159         SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
17160             << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget;
17161     } else if (VarTarget == Sema::CVT_Device &&
17162                (UserTarget == Sema::CFT_Host ||
17163                 UserTarget == Sema::CFT_HostDevice) &&
17164                !Var->hasExternalStorage()) {
17165       // Record a CUDA/HIP device side variable if it is ODR-used
17166       // by host code. This is done conservatively, when the variable is
17167       // referenced in any of the following contexts:
17168       //   - a non-function context
17169       //   - a host function
17170       //   - a host device function
17171       // This makes the ODR-use of the device side variable by host code to
17172       // be visible in the device compilation for the compiler to be able to
17173       // emit template variables instantiated by host code only and to
17174       // externalize the static device side variable ODR-used by host code.
17175       SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
17176     }
17177   }
17178 
17179   Var->markUsed(SemaRef.Context);
17180 }
17181 
MarkCaptureUsedInEnclosingContext(VarDecl * Capture,SourceLocation Loc,unsigned CapturingScopeIndex)17182 void Sema::MarkCaptureUsedInEnclosingContext(VarDecl *Capture,
17183                                              SourceLocation Loc,
17184                                              unsigned CapturingScopeIndex) {
17185   MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
17186 }
17187 
17188 static void
diagnoseUncapturableValueReference(Sema & S,SourceLocation loc,ValueDecl * var,DeclContext * DC)17189 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
17190                                    ValueDecl *var, DeclContext *DC) {
17191   DeclContext *VarDC = var->getDeclContext();
17192 
17193   //  If the parameter still belongs to the translation unit, then
17194   //  we're actually just using one parameter in the declaration of
17195   //  the next.
17196   if (isa<ParmVarDecl>(var) &&
17197       isa<TranslationUnitDecl>(VarDC))
17198     return;
17199 
17200   // For C code, don't diagnose about capture if we're not actually in code
17201   // right now; it's impossible to write a non-constant expression outside of
17202   // function context, so we'll get other (more useful) diagnostics later.
17203   //
17204   // For C++, things get a bit more nasty... it would be nice to suppress this
17205   // diagnostic for certain cases like using a local variable in an array bound
17206   // for a member of a local class, but the correct predicate is not obvious.
17207   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
17208     return;
17209 
17210   unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
17211   unsigned ContextKind = 3; // unknown
17212   if (isa<CXXMethodDecl>(VarDC) &&
17213       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
17214     ContextKind = 2;
17215   } else if (isa<FunctionDecl>(VarDC)) {
17216     ContextKind = 0;
17217   } else if (isa<BlockDecl>(VarDC)) {
17218     ContextKind = 1;
17219   }
17220 
17221   S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
17222     << var << ValueKind << ContextKind << VarDC;
17223   S.Diag(var->getLocation(), diag::note_entity_declared_at)
17224       << var;
17225 
17226   // FIXME: Add additional diagnostic info about class etc. which prevents
17227   // capture.
17228 }
17229 
17230 
isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo * CSI,VarDecl * Var,bool & SubCapturesAreNested,QualType & CaptureType,QualType & DeclRefType)17231 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
17232                                       bool &SubCapturesAreNested,
17233                                       QualType &CaptureType,
17234                                       QualType &DeclRefType) {
17235    // Check whether we've already captured it.
17236   if (CSI->CaptureMap.count(Var)) {
17237     // If we found a capture, any subcaptures are nested.
17238     SubCapturesAreNested = true;
17239 
17240     // Retrieve the capture type for this variable.
17241     CaptureType = CSI->getCapture(Var).getCaptureType();
17242 
17243     // Compute the type of an expression that refers to this variable.
17244     DeclRefType = CaptureType.getNonReferenceType();
17245 
17246     // Similarly to mutable captures in lambda, all the OpenMP captures by copy
17247     // are mutable in the sense that user can change their value - they are
17248     // private instances of the captured declarations.
17249     const Capture &Cap = CSI->getCapture(Var);
17250     if (Cap.isCopyCapture() &&
17251         !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
17252         !(isa<CapturedRegionScopeInfo>(CSI) &&
17253           cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
17254       DeclRefType.addConst();
17255     return true;
17256   }
17257   return false;
17258 }
17259 
17260 // Only block literals, captured statements, and lambda expressions can
17261 // capture; other scopes don't work.
getParentOfCapturingContextOrNull(DeclContext * DC,VarDecl * Var,SourceLocation Loc,const bool Diagnose,Sema & S)17262 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
17263                                  SourceLocation Loc,
17264                                  const bool Diagnose, Sema &S) {
17265   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
17266     return getLambdaAwareParentOfDeclContext(DC);
17267   else if (Var->hasLocalStorage()) {
17268     if (Diagnose)
17269        diagnoseUncapturableValueReference(S, Loc, Var, DC);
17270   }
17271   return nullptr;
17272 }
17273 
17274 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
17275 // certain types of variables (unnamed, variably modified types etc.)
17276 // so check for eligibility.
isVariableCapturable(CapturingScopeInfo * CSI,VarDecl * Var,SourceLocation Loc,const bool Diagnose,Sema & S)17277 static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
17278                                  SourceLocation Loc,
17279                                  const bool Diagnose, Sema &S) {
17280 
17281   bool IsBlock = isa<BlockScopeInfo>(CSI);
17282   bool IsLambda = isa<LambdaScopeInfo>(CSI);
17283 
17284   // Lambdas are not allowed to capture unnamed variables
17285   // (e.g. anonymous unions).
17286   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
17287   // assuming that's the intent.
17288   if (IsLambda && !Var->getDeclName()) {
17289     if (Diagnose) {
17290       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
17291       S.Diag(Var->getLocation(), diag::note_declared_at);
17292     }
17293     return false;
17294   }
17295 
17296   // Prohibit variably-modified types in blocks; they're difficult to deal with.
17297   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
17298     if (Diagnose) {
17299       S.Diag(Loc, diag::err_ref_vm_type);
17300       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17301     }
17302     return false;
17303   }
17304   // Prohibit structs with flexible array members too.
17305   // We cannot capture what is in the tail end of the struct.
17306   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
17307     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
17308       if (Diagnose) {
17309         if (IsBlock)
17310           S.Diag(Loc, diag::err_ref_flexarray_type);
17311         else
17312           S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
17313         S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17314       }
17315       return false;
17316     }
17317   }
17318   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
17319   // Lambdas and captured statements are not allowed to capture __block
17320   // variables; they don't support the expected semantics.
17321   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
17322     if (Diagnose) {
17323       S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
17324       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17325     }
17326     return false;
17327   }
17328   // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
17329   if (S.getLangOpts().OpenCL && IsBlock &&
17330       Var->getType()->isBlockPointerType()) {
17331     if (Diagnose)
17332       S.Diag(Loc, diag::err_opencl_block_ref_block);
17333     return false;
17334   }
17335 
17336   return true;
17337 }
17338 
17339 // Returns true if the capture by block was successful.
captureInBlock(BlockScopeInfo * BSI,VarDecl * Var,SourceLocation Loc,const bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const bool Nested,Sema & S,bool Invalid)17340 static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
17341                                  SourceLocation Loc,
17342                                  const bool BuildAndDiagnose,
17343                                  QualType &CaptureType,
17344                                  QualType &DeclRefType,
17345                                  const bool Nested,
17346                                  Sema &S, bool Invalid) {
17347   bool ByRef = false;
17348 
17349   // Blocks are not allowed to capture arrays, excepting OpenCL.
17350   // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
17351   // (decayed to pointers).
17352   if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
17353     if (BuildAndDiagnose) {
17354       S.Diag(Loc, diag::err_ref_array_type);
17355       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17356       Invalid = true;
17357     } else {
17358       return false;
17359     }
17360   }
17361 
17362   // Forbid the block-capture of autoreleasing variables.
17363   if (!Invalid &&
17364       CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
17365     if (BuildAndDiagnose) {
17366       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
17367         << /*block*/ 0;
17368       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17369       Invalid = true;
17370     } else {
17371       return false;
17372     }
17373   }
17374 
17375   // Warn about implicitly autoreleasing indirect parameters captured by blocks.
17376   if (const auto *PT = CaptureType->getAs<PointerType>()) {
17377     QualType PointeeTy = PT->getPointeeType();
17378 
17379     if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
17380         PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
17381         !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
17382       if (BuildAndDiagnose) {
17383         SourceLocation VarLoc = Var->getLocation();
17384         S.Diag(Loc, diag::warn_block_capture_autoreleasing);
17385         S.Diag(VarLoc, diag::note_declare_parameter_strong);
17386       }
17387     }
17388   }
17389 
17390   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
17391   if (HasBlocksAttr || CaptureType->isReferenceType() ||
17392       (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
17393     // Block capture by reference does not change the capture or
17394     // declaration reference types.
17395     ByRef = true;
17396   } else {
17397     // Block capture by copy introduces 'const'.
17398     CaptureType = CaptureType.getNonReferenceType().withConst();
17399     DeclRefType = CaptureType;
17400   }
17401 
17402   // Actually capture the variable.
17403   if (BuildAndDiagnose)
17404     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
17405                     CaptureType, Invalid);
17406 
17407   return !Invalid;
17408 }
17409 
17410 
17411 /// Capture the given variable in the captured region.
captureInCapturedRegion(CapturedRegionScopeInfo * RSI,VarDecl * Var,SourceLocation Loc,const bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const bool RefersToCapturedVariable,Sema::TryCaptureKind Kind,bool IsTopScope,Sema & S,bool Invalid)17412 static bool captureInCapturedRegion(
17413     CapturedRegionScopeInfo *RSI, VarDecl *Var, SourceLocation Loc,
17414     const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
17415     const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
17416     bool IsTopScope, Sema &S, bool Invalid) {
17417   // By default, capture variables by reference.
17418   bool ByRef = true;
17419   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
17420     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
17421   } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
17422     // Using an LValue reference type is consistent with Lambdas (see below).
17423     if (S.isOpenMPCapturedDecl(Var)) {
17424       bool HasConst = DeclRefType.isConstQualified();
17425       DeclRefType = DeclRefType.getUnqualifiedType();
17426       // Don't lose diagnostics about assignments to const.
17427       if (HasConst)
17428         DeclRefType.addConst();
17429     }
17430     // Do not capture firstprivates in tasks.
17431     if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
17432         OMPC_unknown)
17433       return true;
17434     ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
17435                                     RSI->OpenMPCaptureLevel);
17436   }
17437 
17438   if (ByRef)
17439     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
17440   else
17441     CaptureType = DeclRefType;
17442 
17443   // Actually capture the variable.
17444   if (BuildAndDiagnose)
17445     RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
17446                     Loc, SourceLocation(), CaptureType, Invalid);
17447 
17448   return !Invalid;
17449 }
17450 
17451 /// Capture the given variable in the lambda.
captureInLambda(LambdaScopeInfo * LSI,VarDecl * Var,SourceLocation Loc,const bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const bool RefersToCapturedVariable,const Sema::TryCaptureKind Kind,SourceLocation EllipsisLoc,const bool IsTopScope,Sema & S,bool Invalid)17452 static bool captureInLambda(LambdaScopeInfo *LSI,
17453                             VarDecl *Var,
17454                             SourceLocation Loc,
17455                             const bool BuildAndDiagnose,
17456                             QualType &CaptureType,
17457                             QualType &DeclRefType,
17458                             const bool RefersToCapturedVariable,
17459                             const Sema::TryCaptureKind Kind,
17460                             SourceLocation EllipsisLoc,
17461                             const bool IsTopScope,
17462                             Sema &S, bool Invalid) {
17463   // Determine whether we are capturing by reference or by value.
17464   bool ByRef = false;
17465   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
17466     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
17467   } else {
17468     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
17469   }
17470 
17471   // Compute the type of the field that will capture this variable.
17472   if (ByRef) {
17473     // C++11 [expr.prim.lambda]p15:
17474     //   An entity is captured by reference if it is implicitly or
17475     //   explicitly captured but not captured by copy. It is
17476     //   unspecified whether additional unnamed non-static data
17477     //   members are declared in the closure type for entities
17478     //   captured by reference.
17479     //
17480     // FIXME: It is not clear whether we want to build an lvalue reference
17481     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
17482     // to do the former, while EDG does the latter. Core issue 1249 will
17483     // clarify, but for now we follow GCC because it's a more permissive and
17484     // easily defensible position.
17485     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
17486   } else {
17487     // C++11 [expr.prim.lambda]p14:
17488     //   For each entity captured by copy, an unnamed non-static
17489     //   data member is declared in the closure type. The
17490     //   declaration order of these members is unspecified. The type
17491     //   of such a data member is the type of the corresponding
17492     //   captured entity if the entity is not a reference to an
17493     //   object, or the referenced type otherwise. [Note: If the
17494     //   captured entity is a reference to a function, the
17495     //   corresponding data member is also a reference to a
17496     //   function. - end note ]
17497     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
17498       if (!RefType->getPointeeType()->isFunctionType())
17499         CaptureType = RefType->getPointeeType();
17500     }
17501 
17502     // Forbid the lambda copy-capture of autoreleasing variables.
17503     if (!Invalid &&
17504         CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
17505       if (BuildAndDiagnose) {
17506         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
17507         S.Diag(Var->getLocation(), diag::note_previous_decl)
17508           << Var->getDeclName();
17509         Invalid = true;
17510       } else {
17511         return false;
17512       }
17513     }
17514 
17515     // Make sure that by-copy captures are of a complete and non-abstract type.
17516     if (!Invalid && BuildAndDiagnose) {
17517       if (!CaptureType->isDependentType() &&
17518           S.RequireCompleteSizedType(
17519               Loc, CaptureType,
17520               diag::err_capture_of_incomplete_or_sizeless_type,
17521               Var->getDeclName()))
17522         Invalid = true;
17523       else if (S.RequireNonAbstractType(Loc, CaptureType,
17524                                         diag::err_capture_of_abstract_type))
17525         Invalid = true;
17526     }
17527   }
17528 
17529   // Compute the type of a reference to this captured variable.
17530   if (ByRef)
17531     DeclRefType = CaptureType.getNonReferenceType();
17532   else {
17533     // C++ [expr.prim.lambda]p5:
17534     //   The closure type for a lambda-expression has a public inline
17535     //   function call operator [...]. This function call operator is
17536     //   declared const (9.3.1) if and only if the lambda-expression's
17537     //   parameter-declaration-clause is not followed by mutable.
17538     DeclRefType = CaptureType.getNonReferenceType();
17539     if (!LSI->Mutable && !CaptureType->isReferenceType())
17540       DeclRefType.addConst();
17541   }
17542 
17543   // Add the capture.
17544   if (BuildAndDiagnose)
17545     LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
17546                     Loc, EllipsisLoc, CaptureType, Invalid);
17547 
17548   return !Invalid;
17549 }
17550 
canCaptureVariableByCopy(VarDecl * Var,const ASTContext & Context)17551 static bool canCaptureVariableByCopy(VarDecl *Var, const ASTContext &Context) {
17552   // Offer a Copy fix even if the type is dependent.
17553   if (Var->getType()->isDependentType())
17554     return true;
17555   QualType T = Var->getType().getNonReferenceType();
17556   if (T.isTriviallyCopyableType(Context))
17557     return true;
17558   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
17559 
17560     if (!(RD = RD->getDefinition()))
17561       return false;
17562     if (RD->hasSimpleCopyConstructor())
17563       return true;
17564     if (RD->hasUserDeclaredCopyConstructor())
17565       for (CXXConstructorDecl *Ctor : RD->ctors())
17566         if (Ctor->isCopyConstructor())
17567           return !Ctor->isDeleted();
17568   }
17569   return false;
17570 }
17571 
17572 /// Create up to 4 fix-its for explicit reference and value capture of \p Var or
17573 /// default capture. Fixes may be omitted if they aren't allowed by the
17574 /// standard, for example we can't emit a default copy capture fix-it if we
17575 /// already explicitly copy capture capture another variable.
buildLambdaCaptureFixit(Sema & Sema,LambdaScopeInfo * LSI,VarDecl * Var)17576 static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
17577                                     VarDecl *Var) {
17578   assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
17579   // Don't offer Capture by copy of default capture by copy fixes if Var is
17580   // known not to be copy constructible.
17581   bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
17582 
17583   SmallString<32> FixBuffer;
17584   StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
17585   if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
17586     SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
17587     if (ShouldOfferCopyFix) {
17588       // Offer fixes to insert an explicit capture for the variable.
17589       // [] -> [VarName]
17590       // [OtherCapture] -> [OtherCapture, VarName]
17591       FixBuffer.assign({Separator, Var->getName()});
17592       Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
17593           << Var << /*value*/ 0
17594           << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
17595     }
17596     // As above but capture by reference.
17597     FixBuffer.assign({Separator, "&", Var->getName()});
17598     Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
17599         << Var << /*reference*/ 1
17600         << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
17601   }
17602 
17603   // Only try to offer default capture if there are no captures excluding this
17604   // and init captures.
17605   // [this]: OK.
17606   // [X = Y]: OK.
17607   // [&A, &B]: Don't offer.
17608   // [A, B]: Don't offer.
17609   if (llvm::any_of(LSI->Captures, [](Capture &C) {
17610         return !C.isThisCapture() && !C.isInitCapture();
17611       }))
17612     return;
17613 
17614   // The default capture specifiers, '=' or '&', must appear first in the
17615   // capture body.
17616   SourceLocation DefaultInsertLoc =
17617       LSI->IntroducerRange.getBegin().getLocWithOffset(1);
17618 
17619   if (ShouldOfferCopyFix) {
17620     bool CanDefaultCopyCapture = true;
17621     // [=, *this] OK since c++17
17622     // [=, this] OK since c++20
17623     if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
17624       CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
17625                                   ? LSI->getCXXThisCapture().isCopyCapture()
17626                                   : false;
17627     // We can't use default capture by copy if any captures already specified
17628     // capture by copy.
17629     if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
17630           return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
17631         })) {
17632       FixBuffer.assign({"=", Separator});
17633       Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
17634           << /*value*/ 0
17635           << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
17636     }
17637   }
17638 
17639   // We can't use default capture by reference if any captures already specified
17640   // capture by reference.
17641   if (llvm::none_of(LSI->Captures, [](Capture &C) {
17642         return !C.isInitCapture() && C.isReferenceCapture() &&
17643                !C.isThisCapture();
17644       })) {
17645     FixBuffer.assign({"&", Separator});
17646     Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
17647         << /*reference*/ 1
17648         << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
17649   }
17650 }
17651 
tryCaptureVariable(VarDecl * Var,SourceLocation ExprLoc,TryCaptureKind Kind,SourceLocation EllipsisLoc,bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const unsigned * const FunctionScopeIndexToStopAt)17652 bool Sema::tryCaptureVariable(
17653     VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
17654     SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
17655     QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
17656   // An init-capture is notionally from the context surrounding its
17657   // declaration, but its parent DC is the lambda class.
17658   DeclContext *VarDC = Var->getDeclContext();
17659   if (Var->isInitCapture())
17660     VarDC = VarDC->getParent();
17661 
17662   DeclContext *DC = CurContext;
17663   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
17664       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
17665   // We need to sync up the Declaration Context with the
17666   // FunctionScopeIndexToStopAt
17667   if (FunctionScopeIndexToStopAt) {
17668     unsigned FSIndex = FunctionScopes.size() - 1;
17669     while (FSIndex != MaxFunctionScopesIndex) {
17670       DC = getLambdaAwareParentOfDeclContext(DC);
17671       --FSIndex;
17672     }
17673   }
17674 
17675 
17676   // If the variable is declared in the current context, there is no need to
17677   // capture it.
17678   if (VarDC == DC) return true;
17679 
17680   // Capture global variables if it is required to use private copy of this
17681   // variable.
17682   bool IsGlobal = !Var->hasLocalStorage();
17683   if (IsGlobal &&
17684       !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
17685                                                 MaxFunctionScopesIndex)))
17686     return true;
17687   Var = Var->getCanonicalDecl();
17688 
17689   // Walk up the stack to determine whether we can capture the variable,
17690   // performing the "simple" checks that don't depend on type. We stop when
17691   // we've either hit the declared scope of the variable or find an existing
17692   // capture of that variable.  We start from the innermost capturing-entity
17693   // (the DC) and ensure that all intervening capturing-entities
17694   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
17695   // declcontext can either capture the variable or have already captured
17696   // the variable.
17697   CaptureType = Var->getType();
17698   DeclRefType = CaptureType.getNonReferenceType();
17699   bool Nested = false;
17700   bool Explicit = (Kind != TryCapture_Implicit);
17701   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
17702   do {
17703     // Only block literals, captured statements, and lambda expressions can
17704     // capture; other scopes don't work.
17705     DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
17706                                                               ExprLoc,
17707                                                               BuildAndDiagnose,
17708                                                               *this);
17709     // We need to check for the parent *first* because, if we *have*
17710     // private-captured a global variable, we need to recursively capture it in
17711     // intermediate blocks, lambdas, etc.
17712     if (!ParentDC) {
17713       if (IsGlobal) {
17714         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
17715         break;
17716       }
17717       return true;
17718     }
17719 
17720     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
17721     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
17722 
17723 
17724     // Check whether we've already captured it.
17725     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
17726                                              DeclRefType)) {
17727       CSI->getCapture(Var).markUsed(BuildAndDiagnose);
17728       break;
17729     }
17730     // If we are instantiating a generic lambda call operator body,
17731     // we do not want to capture new variables.  What was captured
17732     // during either a lambdas transformation or initial parsing
17733     // should be used.
17734     if (isGenericLambdaCallOperatorSpecialization(DC)) {
17735       if (BuildAndDiagnose) {
17736         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
17737         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
17738           Diag(ExprLoc, diag::err_lambda_impcap) << Var;
17739           Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17740           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
17741           buildLambdaCaptureFixit(*this, LSI, Var);
17742         } else
17743           diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
17744       }
17745       return true;
17746     }
17747 
17748     // Try to capture variable-length arrays types.
17749     if (Var->getType()->isVariablyModifiedType()) {
17750       // We're going to walk down into the type and look for VLA
17751       // expressions.
17752       QualType QTy = Var->getType();
17753       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
17754         QTy = PVD->getOriginalType();
17755       captureVariablyModifiedType(Context, QTy, CSI);
17756     }
17757 
17758     if (getLangOpts().OpenMP) {
17759       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
17760         // OpenMP private variables should not be captured in outer scope, so
17761         // just break here. Similarly, global variables that are captured in a
17762         // target region should not be captured outside the scope of the region.
17763         if (RSI->CapRegionKind == CR_OpenMP) {
17764           OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
17765               Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
17766           // If the variable is private (i.e. not captured) and has variably
17767           // modified type, we still need to capture the type for correct
17768           // codegen in all regions, associated with the construct. Currently,
17769           // it is captured in the innermost captured region only.
17770           if (IsOpenMPPrivateDecl != OMPC_unknown &&
17771               Var->getType()->isVariablyModifiedType()) {
17772             QualType QTy = Var->getType();
17773             if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
17774               QTy = PVD->getOriginalType();
17775             for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
17776                  I < E; ++I) {
17777               auto *OuterRSI = cast<CapturedRegionScopeInfo>(
17778                   FunctionScopes[FunctionScopesIndex - I]);
17779               assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
17780                      "Wrong number of captured regions associated with the "
17781                      "OpenMP construct.");
17782               captureVariablyModifiedType(Context, QTy, OuterRSI);
17783             }
17784           }
17785           bool IsTargetCap =
17786               IsOpenMPPrivateDecl != OMPC_private &&
17787               isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
17788                                          RSI->OpenMPCaptureLevel);
17789           // Do not capture global if it is not privatized in outer regions.
17790           bool IsGlobalCap =
17791               IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
17792                                                      RSI->OpenMPCaptureLevel);
17793 
17794           // When we detect target captures we are looking from inside the
17795           // target region, therefore we need to propagate the capture from the
17796           // enclosing region. Therefore, the capture is not initially nested.
17797           if (IsTargetCap)
17798             adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
17799 
17800           if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
17801               (IsGlobal && !IsGlobalCap)) {
17802             Nested = !IsTargetCap;
17803             bool HasConst = DeclRefType.isConstQualified();
17804             DeclRefType = DeclRefType.getUnqualifiedType();
17805             // Don't lose diagnostics about assignments to const.
17806             if (HasConst)
17807               DeclRefType.addConst();
17808             CaptureType = Context.getLValueReferenceType(DeclRefType);
17809             break;
17810           }
17811         }
17812       }
17813     }
17814     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
17815       // No capture-default, and this is not an explicit capture
17816       // so cannot capture this variable.
17817       if (BuildAndDiagnose) {
17818         Diag(ExprLoc, diag::err_lambda_impcap) << Var;
17819         Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17820         auto *LSI = cast<LambdaScopeInfo>(CSI);
17821         if (LSI->Lambda) {
17822           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
17823           buildLambdaCaptureFixit(*this, LSI, Var);
17824         }
17825         // FIXME: If we error out because an outer lambda can not implicitly
17826         // capture a variable that an inner lambda explicitly captures, we
17827         // should have the inner lambda do the explicit capture - because
17828         // it makes for cleaner diagnostics later.  This would purely be done
17829         // so that the diagnostic does not misleadingly claim that a variable
17830         // can not be captured by a lambda implicitly even though it is captured
17831         // explicitly.  Suggestion:
17832         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
17833         //    at the function head
17834         //  - cache the StartingDeclContext - this must be a lambda
17835         //  - captureInLambda in the innermost lambda the variable.
17836       }
17837       return true;
17838     }
17839 
17840     FunctionScopesIndex--;
17841     DC = ParentDC;
17842     Explicit = false;
17843   } while (!VarDC->Equals(DC));
17844 
17845   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
17846   // computing the type of the capture at each step, checking type-specific
17847   // requirements, and adding captures if requested.
17848   // If the variable had already been captured previously, we start capturing
17849   // at the lambda nested within that one.
17850   bool Invalid = false;
17851   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
17852        ++I) {
17853     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
17854 
17855     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
17856     // certain types of variables (unnamed, variably modified types etc.)
17857     // so check for eligibility.
17858     if (!Invalid)
17859       Invalid =
17860           !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
17861 
17862     // After encountering an error, if we're actually supposed to capture, keep
17863     // capturing in nested contexts to suppress any follow-on diagnostics.
17864     if (Invalid && !BuildAndDiagnose)
17865       return true;
17866 
17867     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
17868       Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
17869                                DeclRefType, Nested, *this, Invalid);
17870       Nested = true;
17871     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
17872       Invalid = !captureInCapturedRegion(
17873           RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
17874           Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
17875       Nested = true;
17876     } else {
17877       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
17878       Invalid =
17879           !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
17880                            DeclRefType, Nested, Kind, EllipsisLoc,
17881                            /*IsTopScope*/ I == N - 1, *this, Invalid);
17882       Nested = true;
17883     }
17884 
17885     if (Invalid && !BuildAndDiagnose)
17886       return true;
17887   }
17888   return Invalid;
17889 }
17890 
tryCaptureVariable(VarDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc)17891 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
17892                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
17893   QualType CaptureType;
17894   QualType DeclRefType;
17895   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
17896                             /*BuildAndDiagnose=*/true, CaptureType,
17897                             DeclRefType, nullptr);
17898 }
17899 
NeedToCaptureVariable(VarDecl * Var,SourceLocation Loc)17900 bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
17901   QualType CaptureType;
17902   QualType DeclRefType;
17903   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
17904                              /*BuildAndDiagnose=*/false, CaptureType,
17905                              DeclRefType, nullptr);
17906 }
17907 
getCapturedDeclRefType(VarDecl * Var,SourceLocation Loc)17908 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
17909   QualType CaptureType;
17910   QualType DeclRefType;
17911 
17912   // Determine whether we can capture this variable.
17913   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
17914                          /*BuildAndDiagnose=*/false, CaptureType,
17915                          DeclRefType, nullptr))
17916     return QualType();
17917 
17918   return DeclRefType;
17919 }
17920 
17921 namespace {
17922 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
17923 // The produced TemplateArgumentListInfo* points to data stored within this
17924 // object, so should only be used in contexts where the pointer will not be
17925 // used after the CopiedTemplateArgs object is destroyed.
17926 class CopiedTemplateArgs {
17927   bool HasArgs;
17928   TemplateArgumentListInfo TemplateArgStorage;
17929 public:
17930   template<typename RefExpr>
CopiedTemplateArgs(RefExpr * E)17931   CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
17932     if (HasArgs)
17933       E->copyTemplateArgumentsInto(TemplateArgStorage);
17934   }
operator TemplateArgumentListInfo*()17935   operator TemplateArgumentListInfo*()
17936 #ifdef __has_cpp_attribute
17937 #if __has_cpp_attribute(clang::lifetimebound)
17938   [[clang::lifetimebound]]
17939 #endif
17940 #endif
17941   {
17942     return HasArgs ? &TemplateArgStorage : nullptr;
17943   }
17944 };
17945 }
17946 
17947 /// Walk the set of potential results of an expression and mark them all as
17948 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
17949 ///
17950 /// \return A new expression if we found any potential results, ExprEmpty() if
17951 ///         not, and ExprError() if we diagnosed an error.
rebuildPotentialResultsAsNonOdrUsed(Sema & S,Expr * E,NonOdrUseReason NOUR)17952 static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
17953                                                       NonOdrUseReason NOUR) {
17954   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
17955   // an object that satisfies the requirements for appearing in a
17956   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
17957   // is immediately applied."  This function handles the lvalue-to-rvalue
17958   // conversion part.
17959   //
17960   // If we encounter a node that claims to be an odr-use but shouldn't be, we
17961   // transform it into the relevant kind of non-odr-use node and rebuild the
17962   // tree of nodes leading to it.
17963   //
17964   // This is a mini-TreeTransform that only transforms a restricted subset of
17965   // nodes (and only certain operands of them).
17966 
17967   // Rebuild a subexpression.
17968   auto Rebuild = [&](Expr *Sub) {
17969     return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
17970   };
17971 
17972   // Check whether a potential result satisfies the requirements of NOUR.
17973   auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
17974     // Any entity other than a VarDecl is always odr-used whenever it's named
17975     // in a potentially-evaluated expression.
17976     auto *VD = dyn_cast<VarDecl>(D);
17977     if (!VD)
17978       return true;
17979 
17980     // C++2a [basic.def.odr]p4:
17981     //   A variable x whose name appears as a potentially-evalauted expression
17982     //   e is odr-used by e unless
17983     //   -- x is a reference that is usable in constant expressions, or
17984     //   -- x is a variable of non-reference type that is usable in constant
17985     //      expressions and has no mutable subobjects, and e is an element of
17986     //      the set of potential results of an expression of
17987     //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
17988     //      conversion is applied, or
17989     //   -- x is a variable of non-reference type, and e is an element of the
17990     //      set of potential results of a discarded-value expression to which
17991     //      the lvalue-to-rvalue conversion is not applied
17992     //
17993     // We check the first bullet and the "potentially-evaluated" condition in
17994     // BuildDeclRefExpr. We check the type requirements in the second bullet
17995     // in CheckLValueToRValueConversionOperand below.
17996     switch (NOUR) {
17997     case NOUR_None:
17998     case NOUR_Unevaluated:
17999       llvm_unreachable("unexpected non-odr-use-reason");
18000 
18001     case NOUR_Constant:
18002       // Constant references were handled when they were built.
18003       if (VD->getType()->isReferenceType())
18004         return true;
18005       if (auto *RD = VD->getType()->getAsCXXRecordDecl())
18006         if (RD->hasMutableFields())
18007           return true;
18008       if (!VD->isUsableInConstantExpressions(S.Context))
18009         return true;
18010       break;
18011 
18012     case NOUR_Discarded:
18013       if (VD->getType()->isReferenceType())
18014         return true;
18015       break;
18016     }
18017     return false;
18018   };
18019 
18020   // Mark that this expression does not constitute an odr-use.
18021   auto MarkNotOdrUsed = [&] {
18022     S.MaybeODRUseExprs.remove(E);
18023     if (LambdaScopeInfo *LSI = S.getCurLambda())
18024       LSI->markVariableExprAsNonODRUsed(E);
18025   };
18026 
18027   // C++2a [basic.def.odr]p2:
18028   //   The set of potential results of an expression e is defined as follows:
18029   switch (E->getStmtClass()) {
18030   //   -- If e is an id-expression, ...
18031   case Expr::DeclRefExprClass: {
18032     auto *DRE = cast<DeclRefExpr>(E);
18033     if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
18034       break;
18035 
18036     // Rebuild as a non-odr-use DeclRefExpr.
18037     MarkNotOdrUsed();
18038     return DeclRefExpr::Create(
18039         S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
18040         DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
18041         DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
18042         DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
18043   }
18044 
18045   case Expr::FunctionParmPackExprClass: {
18046     auto *FPPE = cast<FunctionParmPackExpr>(E);
18047     // If any of the declarations in the pack is odr-used, then the expression
18048     // as a whole constitutes an odr-use.
18049     for (VarDecl *D : *FPPE)
18050       if (IsPotentialResultOdrUsed(D))
18051         return ExprEmpty();
18052 
18053     // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
18054     // nothing cares about whether we marked this as an odr-use, but it might
18055     // be useful for non-compiler tools.
18056     MarkNotOdrUsed();
18057     break;
18058   }
18059 
18060   //   -- If e is a subscripting operation with an array operand...
18061   case Expr::ArraySubscriptExprClass: {
18062     auto *ASE = cast<ArraySubscriptExpr>(E);
18063     Expr *OldBase = ASE->getBase()->IgnoreImplicit();
18064     if (!OldBase->getType()->isArrayType())
18065       break;
18066     ExprResult Base = Rebuild(OldBase);
18067     if (!Base.isUsable())
18068       return Base;
18069     Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
18070     Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
18071     SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
18072     return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
18073                                      ASE->getRBracketLoc());
18074   }
18075 
18076   case Expr::MemberExprClass: {
18077     auto *ME = cast<MemberExpr>(E);
18078     // -- If e is a class member access expression [...] naming a non-static
18079     //    data member...
18080     if (isa<FieldDecl>(ME->getMemberDecl())) {
18081       ExprResult Base = Rebuild(ME->getBase());
18082       if (!Base.isUsable())
18083         return Base;
18084       return MemberExpr::Create(
18085           S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
18086           ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
18087           ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
18088           CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
18089           ME->getObjectKind(), ME->isNonOdrUse());
18090     }
18091 
18092     if (ME->getMemberDecl()->isCXXInstanceMember())
18093       break;
18094 
18095     // -- If e is a class member access expression naming a static data member,
18096     //    ...
18097     if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
18098       break;
18099 
18100     // Rebuild as a non-odr-use MemberExpr.
18101     MarkNotOdrUsed();
18102     return MemberExpr::Create(
18103         S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
18104         ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
18105         ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
18106         ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
18107     return ExprEmpty();
18108   }
18109 
18110   case Expr::BinaryOperatorClass: {
18111     auto *BO = cast<BinaryOperator>(E);
18112     Expr *LHS = BO->getLHS();
18113     Expr *RHS = BO->getRHS();
18114     // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
18115     if (BO->getOpcode() == BO_PtrMemD) {
18116       ExprResult Sub = Rebuild(LHS);
18117       if (!Sub.isUsable())
18118         return Sub;
18119       LHS = Sub.get();
18120     //   -- If e is a comma expression, ...
18121     } else if (BO->getOpcode() == BO_Comma) {
18122       ExprResult Sub = Rebuild(RHS);
18123       if (!Sub.isUsable())
18124         return Sub;
18125       RHS = Sub.get();
18126     } else {
18127       break;
18128     }
18129     return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
18130                         LHS, RHS);
18131   }
18132 
18133   //   -- If e has the form (e1)...
18134   case Expr::ParenExprClass: {
18135     auto *PE = cast<ParenExpr>(E);
18136     ExprResult Sub = Rebuild(PE->getSubExpr());
18137     if (!Sub.isUsable())
18138       return Sub;
18139     return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
18140   }
18141 
18142   //   -- If e is a glvalue conditional expression, ...
18143   // We don't apply this to a binary conditional operator. FIXME: Should we?
18144   case Expr::ConditionalOperatorClass: {
18145     auto *CO = cast<ConditionalOperator>(E);
18146     ExprResult LHS = Rebuild(CO->getLHS());
18147     if (LHS.isInvalid())
18148       return ExprError();
18149     ExprResult RHS = Rebuild(CO->getRHS());
18150     if (RHS.isInvalid())
18151       return ExprError();
18152     if (!LHS.isUsable() && !RHS.isUsable())
18153       return ExprEmpty();
18154     if (!LHS.isUsable())
18155       LHS = CO->getLHS();
18156     if (!RHS.isUsable())
18157       RHS = CO->getRHS();
18158     return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
18159                                 CO->getCond(), LHS.get(), RHS.get());
18160   }
18161 
18162   // [Clang extension]
18163   //   -- If e has the form __extension__ e1...
18164   case Expr::UnaryOperatorClass: {
18165     auto *UO = cast<UnaryOperator>(E);
18166     if (UO->getOpcode() != UO_Extension)
18167       break;
18168     ExprResult Sub = Rebuild(UO->getSubExpr());
18169     if (!Sub.isUsable())
18170       return Sub;
18171     return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
18172                           Sub.get());
18173   }
18174 
18175   // [Clang extension]
18176   //   -- If e has the form _Generic(...), the set of potential results is the
18177   //      union of the sets of potential results of the associated expressions.
18178   case Expr::GenericSelectionExprClass: {
18179     auto *GSE = cast<GenericSelectionExpr>(E);
18180 
18181     SmallVector<Expr *, 4> AssocExprs;
18182     bool AnyChanged = false;
18183     for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
18184       ExprResult AssocExpr = Rebuild(OrigAssocExpr);
18185       if (AssocExpr.isInvalid())
18186         return ExprError();
18187       if (AssocExpr.isUsable()) {
18188         AssocExprs.push_back(AssocExpr.get());
18189         AnyChanged = true;
18190       } else {
18191         AssocExprs.push_back(OrigAssocExpr);
18192       }
18193     }
18194 
18195     return AnyChanged ? S.CreateGenericSelectionExpr(
18196                             GSE->getGenericLoc(), GSE->getDefaultLoc(),
18197                             GSE->getRParenLoc(), GSE->getControllingExpr(),
18198                             GSE->getAssocTypeSourceInfos(), AssocExprs)
18199                       : ExprEmpty();
18200   }
18201 
18202   // [Clang extension]
18203   //   -- If e has the form __builtin_choose_expr(...), the set of potential
18204   //      results is the union of the sets of potential results of the
18205   //      second and third subexpressions.
18206   case Expr::ChooseExprClass: {
18207     auto *CE = cast<ChooseExpr>(E);
18208 
18209     ExprResult LHS = Rebuild(CE->getLHS());
18210     if (LHS.isInvalid())
18211       return ExprError();
18212 
18213     ExprResult RHS = Rebuild(CE->getLHS());
18214     if (RHS.isInvalid())
18215       return ExprError();
18216 
18217     if (!LHS.get() && !RHS.get())
18218       return ExprEmpty();
18219     if (!LHS.isUsable())
18220       LHS = CE->getLHS();
18221     if (!RHS.isUsable())
18222       RHS = CE->getRHS();
18223 
18224     return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
18225                              RHS.get(), CE->getRParenLoc());
18226   }
18227 
18228   // Step through non-syntactic nodes.
18229   case Expr::ConstantExprClass: {
18230     auto *CE = cast<ConstantExpr>(E);
18231     ExprResult Sub = Rebuild(CE->getSubExpr());
18232     if (!Sub.isUsable())
18233       return Sub;
18234     return ConstantExpr::Create(S.Context, Sub.get());
18235   }
18236 
18237   // We could mostly rely on the recursive rebuilding to rebuild implicit
18238   // casts, but not at the top level, so rebuild them here.
18239   case Expr::ImplicitCastExprClass: {
18240     auto *ICE = cast<ImplicitCastExpr>(E);
18241     // Only step through the narrow set of cast kinds we expect to encounter.
18242     // Anything else suggests we've left the region in which potential results
18243     // can be found.
18244     switch (ICE->getCastKind()) {
18245     case CK_NoOp:
18246     case CK_DerivedToBase:
18247     case CK_UncheckedDerivedToBase: {
18248       ExprResult Sub = Rebuild(ICE->getSubExpr());
18249       if (!Sub.isUsable())
18250         return Sub;
18251       CXXCastPath Path(ICE->path());
18252       return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
18253                                  ICE->getValueKind(), &Path);
18254     }
18255 
18256     default:
18257       break;
18258     }
18259     break;
18260   }
18261 
18262   default:
18263     break;
18264   }
18265 
18266   // Can't traverse through this node. Nothing to do.
18267   return ExprEmpty();
18268 }
18269 
CheckLValueToRValueConversionOperand(Expr * E)18270 ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
18271   // Check whether the operand is or contains an object of non-trivial C union
18272   // type.
18273   if (E->getType().isVolatileQualified() &&
18274       (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
18275        E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
18276     checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
18277                           Sema::NTCUC_LValueToRValueVolatile,
18278                           NTCUK_Destruct|NTCUK_Copy);
18279 
18280   // C++2a [basic.def.odr]p4:
18281   //   [...] an expression of non-volatile-qualified non-class type to which
18282   //   the lvalue-to-rvalue conversion is applied [...]
18283   if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
18284     return E;
18285 
18286   ExprResult Result =
18287       rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
18288   if (Result.isInvalid())
18289     return ExprError();
18290   return Result.get() ? Result : E;
18291 }
18292 
ActOnConstantExpression(ExprResult Res)18293 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
18294   Res = CorrectDelayedTyposInExpr(Res);
18295 
18296   if (!Res.isUsable())
18297     return Res;
18298 
18299   // If a constant-expression is a reference to a variable where we delay
18300   // deciding whether it is an odr-use, just assume we will apply the
18301   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
18302   // (a non-type template argument), we have special handling anyway.
18303   return CheckLValueToRValueConversionOperand(Res.get());
18304 }
18305 
CleanupVarDeclMarking()18306 void Sema::CleanupVarDeclMarking() {
18307   // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
18308   // call.
18309   MaybeODRUseExprSet LocalMaybeODRUseExprs;
18310   std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
18311 
18312   for (Expr *E : LocalMaybeODRUseExprs) {
18313     if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
18314       MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
18315                          DRE->getLocation(), *this);
18316     } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
18317       MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
18318                          *this);
18319     } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
18320       for (VarDecl *VD : *FP)
18321         MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
18322     } else {
18323       llvm_unreachable("Unexpected expression");
18324     }
18325   }
18326 
18327   assert(MaybeODRUseExprs.empty() &&
18328          "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
18329 }
18330 
DoMarkVarDeclReferenced(Sema & SemaRef,SourceLocation Loc,VarDecl * Var,Expr * E)18331 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
18332                                     VarDecl *Var, Expr *E) {
18333   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
18334           isa<FunctionParmPackExpr>(E)) &&
18335          "Invalid Expr argument to DoMarkVarDeclReferenced");
18336   Var->setReferenced();
18337 
18338   if (Var->isInvalidDecl())
18339     return;
18340 
18341   auto *MSI = Var->getMemberSpecializationInfo();
18342   TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
18343                                        : Var->getTemplateSpecializationKind();
18344 
18345   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
18346   bool UsableInConstantExpr =
18347       Var->mightBeUsableInConstantExpressions(SemaRef.Context);
18348 
18349   // C++20 [expr.const]p12:
18350   //   A variable [...] is needed for constant evaluation if it is [...] a
18351   //   variable whose name appears as a potentially constant evaluated
18352   //   expression that is either a contexpr variable or is of non-volatile
18353   //   const-qualified integral type or of reference type
18354   bool NeededForConstantEvaluation =
18355       isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
18356 
18357   bool NeedDefinition =
18358       OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
18359 
18360   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
18361          "Can't instantiate a partial template specialization.");
18362 
18363   // If this might be a member specialization of a static data member, check
18364   // the specialization is visible. We already did the checks for variable
18365   // template specializations when we created them.
18366   if (NeedDefinition && TSK != TSK_Undeclared &&
18367       !isa<VarTemplateSpecializationDecl>(Var))
18368     SemaRef.checkSpecializationVisibility(Loc, Var);
18369 
18370   // Perform implicit instantiation of static data members, static data member
18371   // templates of class templates, and variable template specializations. Delay
18372   // instantiations of variable templates, except for those that could be used
18373   // in a constant expression.
18374   if (NeedDefinition && isTemplateInstantiation(TSK)) {
18375     // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
18376     // instantiation declaration if a variable is usable in a constant
18377     // expression (among other cases).
18378     bool TryInstantiating =
18379         TSK == TSK_ImplicitInstantiation ||
18380         (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
18381 
18382     if (TryInstantiating) {
18383       SourceLocation PointOfInstantiation =
18384           MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
18385       bool FirstInstantiation = PointOfInstantiation.isInvalid();
18386       if (FirstInstantiation) {
18387         PointOfInstantiation = Loc;
18388         if (MSI)
18389           MSI->setPointOfInstantiation(PointOfInstantiation);
18390           // FIXME: Notify listener.
18391         else
18392           Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
18393       }
18394 
18395       if (UsableInConstantExpr) {
18396         // Do not defer instantiations of variables that could be used in a
18397         // constant expression.
18398         SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
18399           SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
18400         });
18401 
18402         // Re-set the member to trigger a recomputation of the dependence bits
18403         // for the expression.
18404         if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
18405           DRE->setDecl(DRE->getDecl());
18406         else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
18407           ME->setMemberDecl(ME->getMemberDecl());
18408       } else if (FirstInstantiation ||
18409                  isa<VarTemplateSpecializationDecl>(Var)) {
18410         // FIXME: For a specialization of a variable template, we don't
18411         // distinguish between "declaration and type implicitly instantiated"
18412         // and "implicit instantiation of definition requested", so we have
18413         // no direct way to avoid enqueueing the pending instantiation
18414         // multiple times.
18415         SemaRef.PendingInstantiations
18416             .push_back(std::make_pair(Var, PointOfInstantiation));
18417       }
18418     }
18419   }
18420 
18421   // C++2a [basic.def.odr]p4:
18422   //   A variable x whose name appears as a potentially-evaluated expression e
18423   //   is odr-used by e unless
18424   //   -- x is a reference that is usable in constant expressions
18425   //   -- x is a variable of non-reference type that is usable in constant
18426   //      expressions and has no mutable subobjects [FIXME], and e is an
18427   //      element of the set of potential results of an expression of
18428   //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
18429   //      conversion is applied
18430   //   -- x is a variable of non-reference type, and e is an element of the set
18431   //      of potential results of a discarded-value expression to which the
18432   //      lvalue-to-rvalue conversion is not applied [FIXME]
18433   //
18434   // We check the first part of the second bullet here, and
18435   // Sema::CheckLValueToRValueConversionOperand deals with the second part.
18436   // FIXME: To get the third bullet right, we need to delay this even for
18437   // variables that are not usable in constant expressions.
18438 
18439   // If we already know this isn't an odr-use, there's nothing more to do.
18440   if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
18441     if (DRE->isNonOdrUse())
18442       return;
18443   if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
18444     if (ME->isNonOdrUse())
18445       return;
18446 
18447   switch (OdrUse) {
18448   case OdrUseContext::None:
18449     assert((!E || isa<FunctionParmPackExpr>(E)) &&
18450            "missing non-odr-use marking for unevaluated decl ref");
18451     break;
18452 
18453   case OdrUseContext::FormallyOdrUsed:
18454     // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
18455     // behavior.
18456     break;
18457 
18458   case OdrUseContext::Used:
18459     // If we might later find that this expression isn't actually an odr-use,
18460     // delay the marking.
18461     if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
18462       SemaRef.MaybeODRUseExprs.insert(E);
18463     else
18464       MarkVarDeclODRUsed(Var, Loc, SemaRef);
18465     break;
18466 
18467   case OdrUseContext::Dependent:
18468     // If this is a dependent context, we don't need to mark variables as
18469     // odr-used, but we may still need to track them for lambda capture.
18470     // FIXME: Do we also need to do this inside dependent typeid expressions
18471     // (which are modeled as unevaluated at this point)?
18472     const bool RefersToEnclosingScope =
18473         (SemaRef.CurContext != Var->getDeclContext() &&
18474          Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
18475     if (RefersToEnclosingScope) {
18476       LambdaScopeInfo *const LSI =
18477           SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
18478       if (LSI && (!LSI->CallOperator ||
18479                   !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
18480         // If a variable could potentially be odr-used, defer marking it so
18481         // until we finish analyzing the full expression for any
18482         // lvalue-to-rvalue
18483         // or discarded value conversions that would obviate odr-use.
18484         // Add it to the list of potential captures that will be analyzed
18485         // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
18486         // unless the variable is a reference that was initialized by a constant
18487         // expression (this will never need to be captured or odr-used).
18488         //
18489         // FIXME: We can simplify this a lot after implementing P0588R1.
18490         assert(E && "Capture variable should be used in an expression.");
18491         if (!Var->getType()->isReferenceType() ||
18492             !Var->isUsableInConstantExpressions(SemaRef.Context))
18493           LSI->addPotentialCapture(E->IgnoreParens());
18494       }
18495     }
18496     break;
18497   }
18498 }
18499 
18500 /// Mark a variable referenced, and check whether it is odr-used
18501 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
18502 /// used directly for normal expressions referring to VarDecl.
MarkVariableReferenced(SourceLocation Loc,VarDecl * Var)18503 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
18504   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
18505 }
18506 
MarkExprReferenced(Sema & SemaRef,SourceLocation Loc,Decl * D,Expr * E,bool MightBeOdrUse)18507 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
18508                                Decl *D, Expr *E, bool MightBeOdrUse) {
18509   if (SemaRef.isInOpenMPDeclareTargetContext())
18510     SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
18511 
18512   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
18513     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
18514     return;
18515   }
18516 
18517   SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
18518 
18519   // If this is a call to a method via a cast, also mark the method in the
18520   // derived class used in case codegen can devirtualize the call.
18521   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
18522   if (!ME)
18523     return;
18524   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
18525   if (!MD)
18526     return;
18527   // Only attempt to devirtualize if this is truly a virtual call.
18528   bool IsVirtualCall = MD->isVirtual() &&
18529                           ME->performsVirtualDispatch(SemaRef.getLangOpts());
18530   if (!IsVirtualCall)
18531     return;
18532 
18533   // If it's possible to devirtualize the call, mark the called function
18534   // referenced.
18535   CXXMethodDecl *DM = MD->getDevirtualizedMethod(
18536       ME->getBase(), SemaRef.getLangOpts().AppleKext);
18537   if (DM)
18538     SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
18539 }
18540 
18541 /// Perform reference-marking and odr-use handling for a DeclRefExpr.
18542 ///
18543 /// Note, this may change the dependence of the DeclRefExpr, and so needs to be
18544 /// handled with care if the DeclRefExpr is not newly-created.
MarkDeclRefReferenced(DeclRefExpr * E,const Expr * Base)18545 void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
18546   // TODO: update this with DR# once a defect report is filed.
18547   // C++11 defect. The address of a pure member should not be an ODR use, even
18548   // if it's a qualified reference.
18549   bool OdrUse = true;
18550   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
18551     if (Method->isVirtual() &&
18552         !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
18553       OdrUse = false;
18554 
18555   if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl()))
18556     if (!isConstantEvaluated() && FD->isConsteval() &&
18557         !RebuildingImmediateInvocation)
18558       ExprEvalContexts.back().ReferenceToConsteval.insert(E);
18559   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
18560 }
18561 
18562 /// Perform reference-marking and odr-use handling for a MemberExpr.
MarkMemberReferenced(MemberExpr * E)18563 void Sema::MarkMemberReferenced(MemberExpr *E) {
18564   // C++11 [basic.def.odr]p2:
18565   //   A non-overloaded function whose name appears as a potentially-evaluated
18566   //   expression or a member of a set of candidate functions, if selected by
18567   //   overload resolution when referred to from a potentially-evaluated
18568   //   expression, is odr-used, unless it is a pure virtual function and its
18569   //   name is not explicitly qualified.
18570   bool MightBeOdrUse = true;
18571   if (E->performsVirtualDispatch(getLangOpts())) {
18572     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
18573       if (Method->isPure())
18574         MightBeOdrUse = false;
18575   }
18576   SourceLocation Loc =
18577       E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
18578   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse);
18579 }
18580 
18581 /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
MarkFunctionParmPackReferenced(FunctionParmPackExpr * E)18582 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
18583   for (VarDecl *VD : *E)
18584     MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true);
18585 }
18586 
18587 /// Perform marking for a reference to an arbitrary declaration.  It
18588 /// marks the declaration referenced, and performs odr-use checking for
18589 /// functions and variables. This method should not be used when building a
18590 /// normal expression which refers to a variable.
MarkAnyDeclReferenced(SourceLocation Loc,Decl * D,bool MightBeOdrUse)18591 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
18592                                  bool MightBeOdrUse) {
18593   if (MightBeOdrUse) {
18594     if (auto *VD = dyn_cast<VarDecl>(D)) {
18595       MarkVariableReferenced(Loc, VD);
18596       return;
18597     }
18598   }
18599   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
18600     MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
18601     return;
18602   }
18603   D->setReferenced();
18604 }
18605 
18606 namespace {
18607   // Mark all of the declarations used by a type as referenced.
18608   // FIXME: Not fully implemented yet! We need to have a better understanding
18609   // of when we're entering a context we should not recurse into.
18610   // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
18611   // TreeTransforms rebuilding the type in a new context. Rather than
18612   // duplicating the TreeTransform logic, we should consider reusing it here.
18613   // Currently that causes problems when rebuilding LambdaExprs.
18614   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
18615     Sema &S;
18616     SourceLocation Loc;
18617 
18618   public:
18619     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
18620 
MarkReferencedDecls(Sema & S,SourceLocation Loc)18621     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
18622 
18623     bool TraverseTemplateArgument(const TemplateArgument &Arg);
18624   };
18625 }
18626 
TraverseTemplateArgument(const TemplateArgument & Arg)18627 bool MarkReferencedDecls::TraverseTemplateArgument(
18628     const TemplateArgument &Arg) {
18629   {
18630     // A non-type template argument is a constant-evaluated context.
18631     EnterExpressionEvaluationContext Evaluated(
18632         S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
18633     if (Arg.getKind() == TemplateArgument::Declaration) {
18634       if (Decl *D = Arg.getAsDecl())
18635         S.MarkAnyDeclReferenced(Loc, D, true);
18636     } else if (Arg.getKind() == TemplateArgument::Expression) {
18637       S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
18638     }
18639   }
18640 
18641   return Inherited::TraverseTemplateArgument(Arg);
18642 }
18643 
MarkDeclarationsReferencedInType(SourceLocation Loc,QualType T)18644 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
18645   MarkReferencedDecls Marker(*this, Loc);
18646   Marker.TraverseType(T);
18647 }
18648 
18649 namespace {
18650 /// Helper class that marks all of the declarations referenced by
18651 /// potentially-evaluated subexpressions as "referenced".
18652 class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
18653 public:
18654   typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
18655   bool SkipLocalVariables;
18656 
EvaluatedExprMarker(Sema & S,bool SkipLocalVariables)18657   EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
18658       : Inherited(S), SkipLocalVariables(SkipLocalVariables) {}
18659 
visitUsedDecl(SourceLocation Loc,Decl * D)18660   void visitUsedDecl(SourceLocation Loc, Decl *D) {
18661     S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
18662   }
18663 
VisitDeclRefExpr(DeclRefExpr * E)18664   void VisitDeclRefExpr(DeclRefExpr *E) {
18665     // If we were asked not to visit local variables, don't.
18666     if (SkipLocalVariables) {
18667       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
18668         if (VD->hasLocalStorage())
18669           return;
18670     }
18671 
18672     // FIXME: This can trigger the instantiation of the initializer of a
18673     // variable, which can cause the expression to become value-dependent
18674     // or error-dependent. Do we need to propagate the new dependence bits?
18675     S.MarkDeclRefReferenced(E);
18676   }
18677 
VisitMemberExpr(MemberExpr * E)18678   void VisitMemberExpr(MemberExpr *E) {
18679     S.MarkMemberReferenced(E);
18680     Visit(E->getBase());
18681   }
18682 };
18683 } // namespace
18684 
18685 /// Mark any declarations that appear within this expression or any
18686 /// potentially-evaluated subexpressions as "referenced".
18687 ///
18688 /// \param SkipLocalVariables If true, don't mark local variables as
18689 /// 'referenced'.
MarkDeclarationsReferencedInExpr(Expr * E,bool SkipLocalVariables)18690 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
18691                                             bool SkipLocalVariables) {
18692   EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
18693 }
18694 
18695 /// Emit a diagnostic that describes an effect on the run-time behavior
18696 /// of the program being compiled.
18697 ///
18698 /// This routine emits the given diagnostic when the code currently being
18699 /// type-checked is "potentially evaluated", meaning that there is a
18700 /// possibility that the code will actually be executable. Code in sizeof()
18701 /// expressions, code used only during overload resolution, etc., are not
18702 /// potentially evaluated. This routine will suppress such diagnostics or,
18703 /// in the absolutely nutty case of potentially potentially evaluated
18704 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
18705 /// later.
18706 ///
18707 /// This routine should be used for all diagnostics that describe the run-time
18708 /// behavior of a program, such as passing a non-POD value through an ellipsis.
18709 /// Failure to do so will likely result in spurious diagnostics or failures
18710 /// during overload resolution or within sizeof/alignof/typeof/typeid.
DiagRuntimeBehavior(SourceLocation Loc,ArrayRef<const Stmt * > Stmts,const PartialDiagnostic & PD)18711 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
18712                                const PartialDiagnostic &PD) {
18713   switch (ExprEvalContexts.back().Context) {
18714   case ExpressionEvaluationContext::Unevaluated:
18715   case ExpressionEvaluationContext::UnevaluatedList:
18716   case ExpressionEvaluationContext::UnevaluatedAbstract:
18717   case ExpressionEvaluationContext::DiscardedStatement:
18718     // The argument will never be evaluated, so don't complain.
18719     break;
18720 
18721   case ExpressionEvaluationContext::ConstantEvaluated:
18722     // Relevant diagnostics should be produced by constant evaluation.
18723     break;
18724 
18725   case ExpressionEvaluationContext::PotentiallyEvaluated:
18726   case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18727     if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
18728       FunctionScopes.back()->PossiblyUnreachableDiags.
18729         push_back(sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
18730       return true;
18731     }
18732 
18733     // The initializer of a constexpr variable or of the first declaration of a
18734     // static data member is not syntactically a constant evaluated constant,
18735     // but nonetheless is always required to be a constant expression, so we
18736     // can skip diagnosing.
18737     // FIXME: Using the mangling context here is a hack.
18738     if (auto *VD = dyn_cast_or_null<VarDecl>(
18739             ExprEvalContexts.back().ManglingContextDecl)) {
18740       if (VD->isConstexpr() ||
18741           (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
18742         break;
18743       // FIXME: For any other kind of variable, we should build a CFG for its
18744       // initializer and check whether the context in question is reachable.
18745     }
18746 
18747     Diag(Loc, PD);
18748     return true;
18749   }
18750 
18751   return false;
18752 }
18753 
DiagRuntimeBehavior(SourceLocation Loc,const Stmt * Statement,const PartialDiagnostic & PD)18754 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
18755                                const PartialDiagnostic &PD) {
18756   return DiagRuntimeBehavior(
18757       Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD);
18758 }
18759 
CheckCallReturnType(QualType ReturnType,SourceLocation Loc,CallExpr * CE,FunctionDecl * FD)18760 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
18761                                CallExpr *CE, FunctionDecl *FD) {
18762   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
18763     return false;
18764 
18765   // If we're inside a decltype's expression, don't check for a valid return
18766   // type or construct temporaries until we know whether this is the last call.
18767   if (ExprEvalContexts.back().ExprContext ==
18768       ExpressionEvaluationContextRecord::EK_Decltype) {
18769     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
18770     return false;
18771   }
18772 
18773   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
18774     FunctionDecl *FD;
18775     CallExpr *CE;
18776 
18777   public:
18778     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
18779       : FD(FD), CE(CE) { }
18780 
18781     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
18782       if (!FD) {
18783         S.Diag(Loc, diag::err_call_incomplete_return)
18784           << T << CE->getSourceRange();
18785         return;
18786       }
18787 
18788       S.Diag(Loc, diag::err_call_function_incomplete_return)
18789           << CE->getSourceRange() << FD << T;
18790       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
18791           << FD->getDeclName();
18792     }
18793   } Diagnoser(FD, CE);
18794 
18795   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
18796     return true;
18797 
18798   return false;
18799 }
18800 
18801 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
18802 // will prevent this condition from triggering, which is what we want.
DiagnoseAssignmentAsCondition(Expr * E)18803 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
18804   SourceLocation Loc;
18805 
18806   unsigned diagnostic = diag::warn_condition_is_assignment;
18807   bool IsOrAssign = false;
18808 
18809   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
18810     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
18811       return;
18812 
18813     IsOrAssign = Op->getOpcode() == BO_OrAssign;
18814 
18815     // Greylist some idioms by putting them into a warning subcategory.
18816     if (ObjCMessageExpr *ME
18817           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
18818       Selector Sel = ME->getSelector();
18819 
18820       // self = [<foo> init...]
18821       if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
18822         diagnostic = diag::warn_condition_is_idiomatic_assignment;
18823 
18824       // <foo> = [<bar> nextObject]
18825       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
18826         diagnostic = diag::warn_condition_is_idiomatic_assignment;
18827     }
18828 
18829     Loc = Op->getOperatorLoc();
18830   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
18831     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
18832       return;
18833 
18834     IsOrAssign = Op->getOperator() == OO_PipeEqual;
18835     Loc = Op->getOperatorLoc();
18836   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
18837     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
18838   else {
18839     // Not an assignment.
18840     return;
18841   }
18842 
18843   Diag(Loc, diagnostic) << E->getSourceRange();
18844 
18845   SourceLocation Open = E->getBeginLoc();
18846   SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
18847   Diag(Loc, diag::note_condition_assign_silence)
18848         << FixItHint::CreateInsertion(Open, "(")
18849         << FixItHint::CreateInsertion(Close, ")");
18850 
18851   if (IsOrAssign)
18852     Diag(Loc, diag::note_condition_or_assign_to_comparison)
18853       << FixItHint::CreateReplacement(Loc, "!=");
18854   else
18855     Diag(Loc, diag::note_condition_assign_to_comparison)
18856       << FixItHint::CreateReplacement(Loc, "==");
18857 }
18858 
18859 /// Redundant parentheses over an equality comparison can indicate
18860 /// that the user intended an assignment used as condition.
DiagnoseEqualityWithExtraParens(ParenExpr * ParenE)18861 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
18862   // Don't warn if the parens came from a macro.
18863   SourceLocation parenLoc = ParenE->getBeginLoc();
18864   if (parenLoc.isInvalid() || parenLoc.isMacroID())
18865     return;
18866   // Don't warn for dependent expressions.
18867   if (ParenE->isTypeDependent())
18868     return;
18869 
18870   Expr *E = ParenE->IgnoreParens();
18871 
18872   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
18873     if (opE->getOpcode() == BO_EQ &&
18874         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
18875                                                            == Expr::MLV_Valid) {
18876       SourceLocation Loc = opE->getOperatorLoc();
18877 
18878       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
18879       SourceRange ParenERange = ParenE->getSourceRange();
18880       Diag(Loc, diag::note_equality_comparison_silence)
18881         << FixItHint::CreateRemoval(ParenERange.getBegin())
18882         << FixItHint::CreateRemoval(ParenERange.getEnd());
18883       Diag(Loc, diag::note_equality_comparison_to_assign)
18884         << FixItHint::CreateReplacement(Loc, "=");
18885     }
18886 }
18887 
CheckBooleanCondition(SourceLocation Loc,Expr * E,bool IsConstexpr)18888 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
18889                                        bool IsConstexpr) {
18890   DiagnoseAssignmentAsCondition(E);
18891   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
18892     DiagnoseEqualityWithExtraParens(parenE);
18893 
18894   ExprResult result = CheckPlaceholderExpr(E);
18895   if (result.isInvalid()) return ExprError();
18896   E = result.get();
18897 
18898   if (!E->isTypeDependent()) {
18899     if (getLangOpts().CPlusPlus)
18900       return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
18901 
18902     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
18903     if (ERes.isInvalid())
18904       return ExprError();
18905     E = ERes.get();
18906 
18907     QualType T = E->getType();
18908     if (!T->isScalarType()) { // C99 6.8.4.1p1
18909       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
18910         << T << E->getSourceRange();
18911       return ExprError();
18912     }
18913     CheckBoolLikeConversion(E, Loc);
18914   }
18915 
18916   return E;
18917 }
18918 
ActOnCondition(Scope * S,SourceLocation Loc,Expr * SubExpr,ConditionKind CK)18919 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
18920                                            Expr *SubExpr, ConditionKind CK) {
18921   // Empty conditions are valid in for-statements.
18922   if (!SubExpr)
18923     return ConditionResult();
18924 
18925   ExprResult Cond;
18926   switch (CK) {
18927   case ConditionKind::Boolean:
18928     Cond = CheckBooleanCondition(Loc, SubExpr);
18929     break;
18930 
18931   case ConditionKind::ConstexprIf:
18932     Cond = CheckBooleanCondition(Loc, SubExpr, true);
18933     break;
18934 
18935   case ConditionKind::Switch:
18936     Cond = CheckSwitchCondition(Loc, SubExpr);
18937     break;
18938   }
18939   if (Cond.isInvalid()) {
18940     Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
18941                               {SubExpr});
18942     if (!Cond.get())
18943       return ConditionError();
18944   }
18945   // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
18946   FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
18947   if (!FullExpr.get())
18948     return ConditionError();
18949 
18950   return ConditionResult(*this, nullptr, FullExpr,
18951                          CK == ConditionKind::ConstexprIf);
18952 }
18953 
18954 namespace {
18955   /// A visitor for rebuilding a call to an __unknown_any expression
18956   /// to have an appropriate type.
18957   struct RebuildUnknownAnyFunction
18958     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
18959 
18960     Sema &S;
18961 
RebuildUnknownAnyFunction__anona7fab9d52811::RebuildUnknownAnyFunction18962     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
18963 
VisitStmt__anona7fab9d52811::RebuildUnknownAnyFunction18964     ExprResult VisitStmt(Stmt *S) {
18965       llvm_unreachable("unexpected statement!");
18966     }
18967 
VisitExpr__anona7fab9d52811::RebuildUnknownAnyFunction18968     ExprResult VisitExpr(Expr *E) {
18969       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
18970         << E->getSourceRange();
18971       return ExprError();
18972     }
18973 
18974     /// Rebuild an expression which simply semantically wraps another
18975     /// expression which it shares the type and value kind of.
rebuildSugarExpr__anona7fab9d52811::RebuildUnknownAnyFunction18976     template <class T> ExprResult rebuildSugarExpr(T *E) {
18977       ExprResult SubResult = Visit(E->getSubExpr());
18978       if (SubResult.isInvalid()) return ExprError();
18979 
18980       Expr *SubExpr = SubResult.get();
18981       E->setSubExpr(SubExpr);
18982       E->setType(SubExpr->getType());
18983       E->setValueKind(SubExpr->getValueKind());
18984       assert(E->getObjectKind() == OK_Ordinary);
18985       return E;
18986     }
18987 
VisitParenExpr__anona7fab9d52811::RebuildUnknownAnyFunction18988     ExprResult VisitParenExpr(ParenExpr *E) {
18989       return rebuildSugarExpr(E);
18990     }
18991 
VisitUnaryExtension__anona7fab9d52811::RebuildUnknownAnyFunction18992     ExprResult VisitUnaryExtension(UnaryOperator *E) {
18993       return rebuildSugarExpr(E);
18994     }
18995 
VisitUnaryAddrOf__anona7fab9d52811::RebuildUnknownAnyFunction18996     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
18997       ExprResult SubResult = Visit(E->getSubExpr());
18998       if (SubResult.isInvalid()) return ExprError();
18999 
19000       Expr *SubExpr = SubResult.get();
19001       E->setSubExpr(SubExpr);
19002       E->setType(S.Context.getPointerType(SubExpr->getType()));
19003       assert(E->getValueKind() == VK_RValue);
19004       assert(E->getObjectKind() == OK_Ordinary);
19005       return E;
19006     }
19007 
resolveDecl__anona7fab9d52811::RebuildUnknownAnyFunction19008     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
19009       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
19010 
19011       E->setType(VD->getType());
19012 
19013       assert(E->getValueKind() == VK_RValue);
19014       if (S.getLangOpts().CPlusPlus &&
19015           !(isa<CXXMethodDecl>(VD) &&
19016             cast<CXXMethodDecl>(VD)->isInstance()))
19017         E->setValueKind(VK_LValue);
19018 
19019       return E;
19020     }
19021 
VisitMemberExpr__anona7fab9d52811::RebuildUnknownAnyFunction19022     ExprResult VisitMemberExpr(MemberExpr *E) {
19023       return resolveDecl(E, E->getMemberDecl());
19024     }
19025 
VisitDeclRefExpr__anona7fab9d52811::RebuildUnknownAnyFunction19026     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
19027       return resolveDecl(E, E->getDecl());
19028     }
19029   };
19030 }
19031 
19032 /// Given a function expression of unknown-any type, try to rebuild it
19033 /// to have a function type.
rebuildUnknownAnyFunction(Sema & S,Expr * FunctionExpr)19034 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
19035   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
19036   if (Result.isInvalid()) return ExprError();
19037   return S.DefaultFunctionArrayConversion(Result.get());
19038 }
19039 
19040 namespace {
19041   /// A visitor for rebuilding an expression of type __unknown_anytype
19042   /// into one which resolves the type directly on the referring
19043   /// expression.  Strict preservation of the original source
19044   /// structure is not a goal.
19045   struct RebuildUnknownAnyExpr
19046     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
19047 
19048     Sema &S;
19049 
19050     /// The current destination type.
19051     QualType DestType;
19052 
RebuildUnknownAnyExpr__anona7fab9d52911::RebuildUnknownAnyExpr19053     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
19054       : S(S), DestType(CastType) {}
19055 
VisitStmt__anona7fab9d52911::RebuildUnknownAnyExpr19056     ExprResult VisitStmt(Stmt *S) {
19057       llvm_unreachable("unexpected statement!");
19058     }
19059 
VisitExpr__anona7fab9d52911::RebuildUnknownAnyExpr19060     ExprResult VisitExpr(Expr *E) {
19061       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
19062         << E->getSourceRange();
19063       return ExprError();
19064     }
19065 
19066     ExprResult VisitCallExpr(CallExpr *E);
19067     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
19068 
19069     /// Rebuild an expression which simply semantically wraps another
19070     /// expression which it shares the type and value kind of.
rebuildSugarExpr__anona7fab9d52911::RebuildUnknownAnyExpr19071     template <class T> ExprResult rebuildSugarExpr(T *E) {
19072       ExprResult SubResult = Visit(E->getSubExpr());
19073       if (SubResult.isInvalid()) return ExprError();
19074       Expr *SubExpr = SubResult.get();
19075       E->setSubExpr(SubExpr);
19076       E->setType(SubExpr->getType());
19077       E->setValueKind(SubExpr->getValueKind());
19078       assert(E->getObjectKind() == OK_Ordinary);
19079       return E;
19080     }
19081 
VisitParenExpr__anona7fab9d52911::RebuildUnknownAnyExpr19082     ExprResult VisitParenExpr(ParenExpr *E) {
19083       return rebuildSugarExpr(E);
19084     }
19085 
VisitUnaryExtension__anona7fab9d52911::RebuildUnknownAnyExpr19086     ExprResult VisitUnaryExtension(UnaryOperator *E) {
19087       return rebuildSugarExpr(E);
19088     }
19089 
VisitUnaryAddrOf__anona7fab9d52911::RebuildUnknownAnyExpr19090     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
19091       const PointerType *Ptr = DestType->getAs<PointerType>();
19092       if (!Ptr) {
19093         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
19094           << E->getSourceRange();
19095         return ExprError();
19096       }
19097 
19098       if (isa<CallExpr>(E->getSubExpr())) {
19099         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
19100           << E->getSourceRange();
19101         return ExprError();
19102       }
19103 
19104       assert(E->getValueKind() == VK_RValue);
19105       assert(E->getObjectKind() == OK_Ordinary);
19106       E->setType(DestType);
19107 
19108       // Build the sub-expression as if it were an object of the pointee type.
19109       DestType = Ptr->getPointeeType();
19110       ExprResult SubResult = Visit(E->getSubExpr());
19111       if (SubResult.isInvalid()) return ExprError();
19112       E->setSubExpr(SubResult.get());
19113       return E;
19114     }
19115 
19116     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
19117 
19118     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
19119 
VisitMemberExpr__anona7fab9d52911::RebuildUnknownAnyExpr19120     ExprResult VisitMemberExpr(MemberExpr *E) {
19121       return resolveDecl(E, E->getMemberDecl());
19122     }
19123 
VisitDeclRefExpr__anona7fab9d52911::RebuildUnknownAnyExpr19124     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
19125       return resolveDecl(E, E->getDecl());
19126     }
19127   };
19128 }
19129 
19130 /// Rebuilds a call expression which yielded __unknown_anytype.
VisitCallExpr(CallExpr * E)19131 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
19132   Expr *CalleeExpr = E->getCallee();
19133 
19134   enum FnKind {
19135     FK_MemberFunction,
19136     FK_FunctionPointer,
19137     FK_BlockPointer
19138   };
19139 
19140   FnKind Kind;
19141   QualType CalleeType = CalleeExpr->getType();
19142   if (CalleeType == S.Context.BoundMemberTy) {
19143     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
19144     Kind = FK_MemberFunction;
19145     CalleeType = Expr::findBoundMemberType(CalleeExpr);
19146   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
19147     CalleeType = Ptr->getPointeeType();
19148     Kind = FK_FunctionPointer;
19149   } else {
19150     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
19151     Kind = FK_BlockPointer;
19152   }
19153   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
19154 
19155   // Verify that this is a legal result type of a function.
19156   if (DestType->isArrayType() || DestType->isFunctionType()) {
19157     unsigned diagID = diag::err_func_returning_array_function;
19158     if (Kind == FK_BlockPointer)
19159       diagID = diag::err_block_returning_array_function;
19160 
19161     S.Diag(E->getExprLoc(), diagID)
19162       << DestType->isFunctionType() << DestType;
19163     return ExprError();
19164   }
19165 
19166   // Otherwise, go ahead and set DestType as the call's result.
19167   E->setType(DestType.getNonLValueExprType(S.Context));
19168   E->setValueKind(Expr::getValueKindForType(DestType));
19169   assert(E->getObjectKind() == OK_Ordinary);
19170 
19171   // Rebuild the function type, replacing the result type with DestType.
19172   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
19173   if (Proto) {
19174     // __unknown_anytype(...) is a special case used by the debugger when
19175     // it has no idea what a function's signature is.
19176     //
19177     // We want to build this call essentially under the K&R
19178     // unprototyped rules, but making a FunctionNoProtoType in C++
19179     // would foul up all sorts of assumptions.  However, we cannot
19180     // simply pass all arguments as variadic arguments, nor can we
19181     // portably just call the function under a non-variadic type; see
19182     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
19183     // However, it turns out that in practice it is generally safe to
19184     // call a function declared as "A foo(B,C,D);" under the prototype
19185     // "A foo(B,C,D,...);".  The only known exception is with the
19186     // Windows ABI, where any variadic function is implicitly cdecl
19187     // regardless of its normal CC.  Therefore we change the parameter
19188     // types to match the types of the arguments.
19189     //
19190     // This is a hack, but it is far superior to moving the
19191     // corresponding target-specific code from IR-gen to Sema/AST.
19192 
19193     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
19194     SmallVector<QualType, 8> ArgTypes;
19195     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
19196       ArgTypes.reserve(E->getNumArgs());
19197       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
19198         Expr *Arg = E->getArg(i);
19199         QualType ArgType = Arg->getType();
19200         if (E->isLValue()) {
19201           ArgType = S.Context.getLValueReferenceType(ArgType);
19202         } else if (E->isXValue()) {
19203           ArgType = S.Context.getRValueReferenceType(ArgType);
19204         }
19205         ArgTypes.push_back(ArgType);
19206       }
19207       ParamTypes = ArgTypes;
19208     }
19209     DestType = S.Context.getFunctionType(DestType, ParamTypes,
19210                                          Proto->getExtProtoInfo());
19211   } else {
19212     DestType = S.Context.getFunctionNoProtoType(DestType,
19213                                                 FnType->getExtInfo());
19214   }
19215 
19216   // Rebuild the appropriate pointer-to-function type.
19217   switch (Kind) {
19218   case FK_MemberFunction:
19219     // Nothing to do.
19220     break;
19221 
19222   case FK_FunctionPointer:
19223     DestType = S.Context.getPointerType(DestType);
19224     break;
19225 
19226   case FK_BlockPointer:
19227     DestType = S.Context.getBlockPointerType(DestType);
19228     break;
19229   }
19230 
19231   // Finally, we can recurse.
19232   ExprResult CalleeResult = Visit(CalleeExpr);
19233   if (!CalleeResult.isUsable()) return ExprError();
19234   E->setCallee(CalleeResult.get());
19235 
19236   // Bind a temporary if necessary.
19237   return S.MaybeBindToTemporary(E);
19238 }
19239 
VisitObjCMessageExpr(ObjCMessageExpr * E)19240 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
19241   // Verify that this is a legal result type of a call.
19242   if (DestType->isArrayType() || DestType->isFunctionType()) {
19243     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
19244       << DestType->isFunctionType() << DestType;
19245     return ExprError();
19246   }
19247 
19248   // Rewrite the method result type if available.
19249   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
19250     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
19251     Method->setReturnType(DestType);
19252   }
19253 
19254   // Change the type of the message.
19255   E->setType(DestType.getNonReferenceType());
19256   E->setValueKind(Expr::getValueKindForType(DestType));
19257 
19258   return S.MaybeBindToTemporary(E);
19259 }
19260 
VisitImplicitCastExpr(ImplicitCastExpr * E)19261 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
19262   // The only case we should ever see here is a function-to-pointer decay.
19263   if (E->getCastKind() == CK_FunctionToPointerDecay) {
19264     assert(E->getValueKind() == VK_RValue);
19265     assert(E->getObjectKind() == OK_Ordinary);
19266 
19267     E->setType(DestType);
19268 
19269     // Rebuild the sub-expression as the pointee (function) type.
19270     DestType = DestType->castAs<PointerType>()->getPointeeType();
19271 
19272     ExprResult Result = Visit(E->getSubExpr());
19273     if (!Result.isUsable()) return ExprError();
19274 
19275     E->setSubExpr(Result.get());
19276     return E;
19277   } else if (E->getCastKind() == CK_LValueToRValue) {
19278     assert(E->getValueKind() == VK_RValue);
19279     assert(E->getObjectKind() == OK_Ordinary);
19280 
19281     assert(isa<BlockPointerType>(E->getType()));
19282 
19283     E->setType(DestType);
19284 
19285     // The sub-expression has to be a lvalue reference, so rebuild it as such.
19286     DestType = S.Context.getLValueReferenceType(DestType);
19287 
19288     ExprResult Result = Visit(E->getSubExpr());
19289     if (!Result.isUsable()) return ExprError();
19290 
19291     E->setSubExpr(Result.get());
19292     return E;
19293   } else {
19294     llvm_unreachable("Unhandled cast type!");
19295   }
19296 }
19297 
resolveDecl(Expr * E,ValueDecl * VD)19298 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
19299   ExprValueKind ValueKind = VK_LValue;
19300   QualType Type = DestType;
19301 
19302   // We know how to make this work for certain kinds of decls:
19303 
19304   //  - functions
19305   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
19306     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
19307       DestType = Ptr->getPointeeType();
19308       ExprResult Result = resolveDecl(E, VD);
19309       if (Result.isInvalid()) return ExprError();
19310       return S.ImpCastExprToType(Result.get(), Type,
19311                                  CK_FunctionToPointerDecay, VK_RValue);
19312     }
19313 
19314     if (!Type->isFunctionType()) {
19315       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
19316         << VD << E->getSourceRange();
19317       return ExprError();
19318     }
19319     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
19320       // We must match the FunctionDecl's type to the hack introduced in
19321       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
19322       // type. See the lengthy commentary in that routine.
19323       QualType FDT = FD->getType();
19324       const FunctionType *FnType = FDT->castAs<FunctionType>();
19325       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
19326       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
19327       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
19328         SourceLocation Loc = FD->getLocation();
19329         FunctionDecl *NewFD = FunctionDecl::Create(
19330             S.Context, FD->getDeclContext(), Loc, Loc,
19331             FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
19332             SC_None, false /*isInlineSpecified*/, FD->hasPrototype(),
19333             /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
19334 
19335         if (FD->getQualifier())
19336           NewFD->setQualifierInfo(FD->getQualifierLoc());
19337 
19338         SmallVector<ParmVarDecl*, 16> Params;
19339         for (const auto &AI : FT->param_types()) {
19340           ParmVarDecl *Param =
19341             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
19342           Param->setScopeInfo(0, Params.size());
19343           Params.push_back(Param);
19344         }
19345         NewFD->setParams(Params);
19346         DRE->setDecl(NewFD);
19347         VD = DRE->getDecl();
19348       }
19349     }
19350 
19351     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
19352       if (MD->isInstance()) {
19353         ValueKind = VK_RValue;
19354         Type = S.Context.BoundMemberTy;
19355       }
19356 
19357     // Function references aren't l-values in C.
19358     if (!S.getLangOpts().CPlusPlus)
19359       ValueKind = VK_RValue;
19360 
19361   //  - variables
19362   } else if (isa<VarDecl>(VD)) {
19363     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
19364       Type = RefTy->getPointeeType();
19365     } else if (Type->isFunctionType()) {
19366       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
19367         << VD << E->getSourceRange();
19368       return ExprError();
19369     }
19370 
19371   //  - nothing else
19372   } else {
19373     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
19374       << VD << E->getSourceRange();
19375     return ExprError();
19376   }
19377 
19378   // Modifying the declaration like this is friendly to IR-gen but
19379   // also really dangerous.
19380   VD->setType(DestType);
19381   E->setType(Type);
19382   E->setValueKind(ValueKind);
19383   return E;
19384 }
19385 
19386 /// Check a cast of an unknown-any type.  We intentionally only
19387 /// trigger this for C-style casts.
checkUnknownAnyCast(SourceRange TypeRange,QualType CastType,Expr * CastExpr,CastKind & CastKind,ExprValueKind & VK,CXXCastPath & Path)19388 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
19389                                      Expr *CastExpr, CastKind &CastKind,
19390                                      ExprValueKind &VK, CXXCastPath &Path) {
19391   // The type we're casting to must be either void or complete.
19392   if (!CastType->isVoidType() &&
19393       RequireCompleteType(TypeRange.getBegin(), CastType,
19394                           diag::err_typecheck_cast_to_incomplete))
19395     return ExprError();
19396 
19397   // Rewrite the casted expression from scratch.
19398   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
19399   if (!result.isUsable()) return ExprError();
19400 
19401   CastExpr = result.get();
19402   VK = CastExpr->getValueKind();
19403   CastKind = CK_NoOp;
19404 
19405   return CastExpr;
19406 }
19407 
forceUnknownAnyToType(Expr * E,QualType ToType)19408 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
19409   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
19410 }
19411 
checkUnknownAnyArg(SourceLocation callLoc,Expr * arg,QualType & paramType)19412 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
19413                                     Expr *arg, QualType &paramType) {
19414   // If the syntactic form of the argument is not an explicit cast of
19415   // any sort, just do default argument promotion.
19416   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
19417   if (!castArg) {
19418     ExprResult result = DefaultArgumentPromotion(arg);
19419     if (result.isInvalid()) return ExprError();
19420     paramType = result.get()->getType();
19421     return result;
19422   }
19423 
19424   // Otherwise, use the type that was written in the explicit cast.
19425   assert(!arg->hasPlaceholderType());
19426   paramType = castArg->getTypeAsWritten();
19427 
19428   // Copy-initialize a parameter of that type.
19429   InitializedEntity entity =
19430     InitializedEntity::InitializeParameter(Context, paramType,
19431                                            /*consumed*/ false);
19432   return PerformCopyInitialization(entity, callLoc, arg);
19433 }
19434 
diagnoseUnknownAnyExpr(Sema & S,Expr * E)19435 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
19436   Expr *orig = E;
19437   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
19438   while (true) {
19439     E = E->IgnoreParenImpCasts();
19440     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
19441       E = call->getCallee();
19442       diagID = diag::err_uncasted_call_of_unknown_any;
19443     } else {
19444       break;
19445     }
19446   }
19447 
19448   SourceLocation loc;
19449   NamedDecl *d;
19450   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
19451     loc = ref->getLocation();
19452     d = ref->getDecl();
19453   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
19454     loc = mem->getMemberLoc();
19455     d = mem->getMemberDecl();
19456   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
19457     diagID = diag::err_uncasted_call_of_unknown_any;
19458     loc = msg->getSelectorStartLoc();
19459     d = msg->getMethodDecl();
19460     if (!d) {
19461       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
19462         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
19463         << orig->getSourceRange();
19464       return ExprError();
19465     }
19466   } else {
19467     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
19468       << E->getSourceRange();
19469     return ExprError();
19470   }
19471 
19472   S.Diag(loc, diagID) << d << orig->getSourceRange();
19473 
19474   // Never recoverable.
19475   return ExprError();
19476 }
19477 
19478 /// Check for operands with placeholder types and complain if found.
19479 /// Returns ExprError() if there was an error and no recovery was possible.
CheckPlaceholderExpr(Expr * E)19480 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
19481   if (!Context.isDependenceAllowed()) {
19482     // C cannot handle TypoExpr nodes on either side of a binop because it
19483     // doesn't handle dependent types properly, so make sure any TypoExprs have
19484     // been dealt with before checking the operands.
19485     ExprResult Result = CorrectDelayedTyposInExpr(E);
19486     if (!Result.isUsable()) return ExprError();
19487     E = Result.get();
19488   }
19489 
19490   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
19491   if (!placeholderType) return E;
19492 
19493   switch (placeholderType->getKind()) {
19494 
19495   // Overloaded expressions.
19496   case BuiltinType::Overload: {
19497     // Try to resolve a single function template specialization.
19498     // This is obligatory.
19499     ExprResult Result = E;
19500     if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
19501       return Result;
19502 
19503     // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
19504     // leaves Result unchanged on failure.
19505     Result = E;
19506     if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
19507       return Result;
19508 
19509     // If that failed, try to recover with a call.
19510     tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
19511                          /*complain*/ true);
19512     return Result;
19513   }
19514 
19515   // Bound member functions.
19516   case BuiltinType::BoundMember: {
19517     ExprResult result = E;
19518     const Expr *BME = E->IgnoreParens();
19519     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
19520     // Try to give a nicer diagnostic if it is a bound member that we recognize.
19521     if (isa<CXXPseudoDestructorExpr>(BME)) {
19522       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
19523     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
19524       if (ME->getMemberNameInfo().getName().getNameKind() ==
19525           DeclarationName::CXXDestructorName)
19526         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
19527     }
19528     tryToRecoverWithCall(result, PD,
19529                          /*complain*/ true);
19530     return result;
19531   }
19532 
19533   // ARC unbridged casts.
19534   case BuiltinType::ARCUnbridgedCast: {
19535     Expr *realCast = stripARCUnbridgedCast(E);
19536     diagnoseARCUnbridgedCast(realCast);
19537     return realCast;
19538   }
19539 
19540   // Expressions of unknown type.
19541   case BuiltinType::UnknownAny:
19542     return diagnoseUnknownAnyExpr(*this, E);
19543 
19544   // Pseudo-objects.
19545   case BuiltinType::PseudoObject:
19546     return checkPseudoObjectRValue(E);
19547 
19548   case BuiltinType::BuiltinFn: {
19549     // Accept __noop without parens by implicitly converting it to a call expr.
19550     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
19551     if (DRE) {
19552       auto *FD = cast<FunctionDecl>(DRE->getDecl());
19553       if (FD->getBuiltinID() == Builtin::BI__noop) {
19554         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
19555                               CK_BuiltinFnToFnPtr)
19556                 .get();
19557         return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
19558                                 VK_RValue, SourceLocation(),
19559                                 FPOptionsOverride());
19560       }
19561     }
19562 
19563     Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
19564     return ExprError();
19565   }
19566 
19567   case BuiltinType::IncompleteMatrixIdx:
19568     Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
19569              ->getRowIdx()
19570              ->getBeginLoc(),
19571          diag::err_matrix_incomplete_index);
19572     return ExprError();
19573 
19574   // Expressions of unknown type.
19575   case BuiltinType::OMPArraySection:
19576     Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
19577     return ExprError();
19578 
19579   // Expressions of unknown type.
19580   case BuiltinType::OMPArrayShaping:
19581     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
19582 
19583   case BuiltinType::OMPIterator:
19584     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
19585 
19586   // Everything else should be impossible.
19587 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
19588   case BuiltinType::Id:
19589 #include "clang/Basic/OpenCLImageTypes.def"
19590 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
19591   case BuiltinType::Id:
19592 #include "clang/Basic/OpenCLExtensionTypes.def"
19593 #define SVE_TYPE(Name, Id, SingletonId) \
19594   case BuiltinType::Id:
19595 #include "clang/Basic/AArch64SVEACLETypes.def"
19596 #define PPC_VECTOR_TYPE(Name, Id, Size) \
19597   case BuiltinType::Id:
19598 #include "clang/Basic/PPCTypes.def"
19599 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
19600 #include "clang/Basic/RISCVVTypes.def"
19601 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
19602 #define PLACEHOLDER_TYPE(Id, SingletonId)
19603 #include "clang/AST/BuiltinTypes.def"
19604     break;
19605   }
19606 
19607   llvm_unreachable("invalid placeholder type!");
19608 }
19609 
CheckCaseExpression(Expr * E)19610 bool Sema::CheckCaseExpression(Expr *E) {
19611   if (E->isTypeDependent())
19612     return true;
19613   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
19614     return E->getType()->isIntegralOrEnumerationType();
19615   return false;
19616 }
19617 
19618 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
19619 ExprResult
ActOnObjCBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)19620 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
19621   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
19622          "Unknown Objective-C Boolean value!");
19623   QualType BoolT = Context.ObjCBuiltinBoolTy;
19624   if (!Context.getBOOLDecl()) {
19625     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
19626                         Sema::LookupOrdinaryName);
19627     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
19628       NamedDecl *ND = Result.getFoundDecl();
19629       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
19630         Context.setBOOLDecl(TD);
19631     }
19632   }
19633   if (Context.getBOOLDecl())
19634     BoolT = Context.getBOOLType();
19635   return new (Context)
19636       ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
19637 }
19638 
ActOnObjCAvailabilityCheckExpr(llvm::ArrayRef<AvailabilitySpec> AvailSpecs,SourceLocation AtLoc,SourceLocation RParen)19639 ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
19640     llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
19641     SourceLocation RParen) {
19642 
19643   StringRef Platform = getASTContext().getTargetInfo().getPlatformName();
19644 
19645   auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
19646     return Spec.getPlatform() == Platform;
19647   });
19648 
19649   VersionTuple Version;
19650   if (Spec != AvailSpecs.end())
19651     Version = Spec->getVersion();
19652 
19653   // The use of `@available` in the enclosing function should be analyzed to
19654   // warn when it's used inappropriately (i.e. not if(@available)).
19655   if (getCurFunctionOrMethodDecl())
19656     getEnclosingFunction()->HasPotentialAvailabilityViolations = true;
19657   else if (getCurBlock() || getCurLambda())
19658     getCurFunction()->HasPotentialAvailabilityViolations = true;
19659 
19660   return new (Context)
19661       ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
19662 }
19663 
CreateRecoveryExpr(SourceLocation Begin,SourceLocation End,ArrayRef<Expr * > SubExprs,QualType T)19664 ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
19665                                     ArrayRef<Expr *> SubExprs, QualType T) {
19666   if (!Context.getLangOpts().RecoveryAST)
19667     return ExprError();
19668 
19669   if (isSFINAEContext())
19670     return ExprError();
19671 
19672   if (T.isNull() || T->isUndeducedType() ||
19673       !Context.getLangOpts().RecoveryASTType)
19674     // We don't know the concrete type, fallback to dependent type.
19675     T = Context.DependentTy;
19676 
19677   return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
19678 }
19679